
(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 200126044 B2 
(10) Patent No. 777835

(54) Title
Method and system and article of manufacture for an N-tier software component 
architecture application

(51)7 International Patent Classification(s)
G06F 009/44

(21) Application No: 200126044 (22) Application Date: 2000.12.28

(87) WIPONo: WO01/48603

(30) Priority Data

(31) Number
60/173914
09/746157

(32) Date
1999.12.29
2000.12.22

(33) Country
US
US

(43) Publication Date: 2001.07.09
(43) Publication Journal Date : 2001.09.20
(44) Accepted Journal Date : 2004.11.04

(71) Applicant(s)
Baker Hughes Incorporated

(72) Inventor(s)
Kevin L. Banks; David W. Green; John W. Kiowski Jr.

(74) Agent/Attorney
Freehills Carter Smith Beadle,Level 43,101 Collins Street,MELBOURNE VIC 3000

(56) Related Art
US 6006230 
US 5881230



AU 200126044
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 
5 July 2001 (05.07.2001) PCI

(10) International Publication Number
WO 01/48603 Al

(51)

(21)

(22)

(25)

(26)

(30)

(71)

International Patent Classification7: G06F 9/44

International Application Number: PCT/US00/35466

International Filing Date:
28 December 2000 (28.12.2000)

Filing Language: English

Publication Language: English

Priority Data:
60/173,914 29 December 1999 (29.12.1999) US
09/746,157 22 December 2000 (22 12.2000) US

Applicant: BAKER HUGHES INCORPORATED
[—/US); 3900 Essex I.ane, Suite 1200, Houston, TX 
77027 (IJS).

W.; 3524 Robertson Road, Richmond, TX 77469 (US). 
KIOWSKI, John, W., Jr.; 3126 Markscott Drive, Hous­
ton, TX 77082 (US).

(74) Agents: RIDDLE, J., Albert, et al.; Baker Hughes Incor­
porated, 3900 Essex Lane, Suite 1200. Houston, TX 77027 
(US).

(81) Designated States (national)·. AT, AU, BR, CA, till, CN, 
CR, CU, CZ, DE, DK, ES, FI, GB. HU, ID, IL, IN, JP, KR, 
LU, MX, NO, NZ, PL, PT. RO, RU, SE, SG. TR, IT, UA, 
VN, YU, ZA.

(84) Designated States (regional): Eurasian patent (ΛΜ, AZ, 
BY, KG, KZ, MD, RU. TJ, TM), European patent (AT, BE. 
CH, CY, DE, DK, ES, FI, FR, GB. GR, IE, IT, LU, MC, 
NL, PT, SE, TR).

(72) Inventors: BANKS, Kevin, L.; 107 CedarPark Drive 
SW, Calgary, Alberta T2W 2J2 (CA). GREEN, David,

Published:
— With international search report.

[Continued on next page]

(54) Title: OBJECT ORIENTED SOFTWARE DEVELOPMENT TOOL WITH THF 
■NEW COMPONENTS AND ADD THEM TO-AN-INVENTORV (CATALOG) 
fV\e.YkoA ^usFe«-"i λπΛ β.H-'icAe. e'F £or- <x->

ABIUTY-TO CREATE OR PURCHASE

Λ—4-i'e.p

W
O

 01
/4

86
03

 Al

(57) Abstract: Λ computing system tor creating an extensible N-tieied 
software application (figure 6, 70) is described, comprising at least one 
processing unit, at least one memory store operatively connected to the 
ptocessing unit, extensible N-tiered software executable within the at least 
one processing unit, a communications pathway operatively connected to 
the processing unit, and at least one extensible tier capable of residing in 
the memory store, the tier further comprising a logically grouped set of a 
predetermined number of executable software components (figure 6, 74), 
each executable software component further comprising an external in­
terlace, each software component further capable of communicating with 
each other software component. A method for generating a software ap­
plication in a computing system for creating an extensible N-tiered soft­
ware application (figure 6, 86) using the system comprises determining 
a set of application requirements and then, for each of the set of appli­
cation requirements, reviewing the inventory of software components for 
software components that match at least one of the set of application re­
quirements. For each application requirement in the set of application 
requirements for which a software component match docs not exist in the 
software component inventory, a new software component is created to 
match that application requirement and then stored in the software com­
ponent inventory. Each of the matching or new software components is 
associated with a respective tier of the predetermined set of tiers and the 
software application created by assembling the predetermined set of tiers.



1

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to development of software applications using software 

component architecture for the development of extensible N-tier software applications.

Description of the Related Art

A variety of techniques are used by a programmer or code developer to design or generate 

software program code. In one approach, software applications are designed as “monolithic” 

structures in which the various functions, such as data storage and application logic, are completely



WO 01/48603 PCT/US00/35466

2

entwined. For example, given a set of system specifications and functions which are to be 

implemented by a given application or program, a code developer designs a monolithic, 

independently executable program which implements all the desired functions. The programmer 

may use, for example, a high-level programming language such as C++ and a code development tool 

to generate high-level language source code, which is compiled in turn by a compiler to provide an 

executable version of the program.

One problem with this approach is that the applications are difficult to maintain, and separate 

functional portions of the program are difficult to reuse because all portions of the program are 

entwined and application-specific.

Accordingly, in the software development arts various software architectures have been 

developed in which application functionality is broken down into smaller units, such as objects or 

components. These units may be assembled to provide the overall functionality for a desired 

application. For example, a group of components may be assembled and compiled to provide a 

stand-alone, executable program. Alternatively, the components may be invoked and used in real­

time, when the component’s functionality is needed.

Because ofthe resource expenditure necessary to develop these units, it is desirable to be able 

to reuse these units so that their functionality may be employed in subsequent applications without 

having to “re-invent the wheel” each time this functionality is needed. In current software 

architectures, such as two-tier and three-tier architectures, some portions, such as data repositories 

and user interfaces, are relatively easy to reuse. However, other types of components, such as those 

implementing application logic, are still clumped in large blocks, making reuse of these components



WO 01/48603 PCT/US00/35466

3

or their various functions difficult. There is a need, therefore, for improved software component 

architectures and related software application and component development techniques that avoid the 

drawbacks of the prior art.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a diagrammatic representation of the present invention’s “N-tier architecture” 

paradigm;

Fig. 2 is a pictographic representation of a software factory;

Fig. 3 is a diagrammatic representation of a framework;

Fig. 4 is a flowchart diagram of rules;

Fig. 5 is a flowchart representation of the present invention’s life cycle rules;

Fig. 6 is a flowchart generally describing the present invention’s method for designing a

software architecture for use in generating software components;

Fig. 7, a Venn-type diagram of the present invention’s Base Tier,

Fig. 8, a Venn-type diagram of the present invention’s Messaging Tier;

Fig. 9, a Venn-type diagram of the present invention’s business software components; 

Fig. 10, a Venn-type diagram of composite components;

Fig. 11, a Venn-type diagram of the present invention’s Real-Time Device tier;

Fig. 12, a Venn-type diagram of the present invention’s Data tier,

Fig. 13, a Venn-type diagram of the present invention’s Processing tier,

Fig. 14, a Venn-type diagram of the present invention’s Visual tier;



WO 01/48603 PCT/US00/35466

4

Fig. 15, a Venn-type diagram of the present invention’s Model-View-Controller (MVC) 

design pattern;

Fig. 16, a Venn-type diagram of the present invention’s template objects;

Fig. 17, a Venn-type diagram of the present invention’s Business Rules tier,

Fig. 18, a Venn-type diagram of the present invention’s Interceptor tier;

Fig. 19, a Venn-type diagram of the present invention’s Application tier;

Fig. 20, a Venn-type diagram of the present invention’s Wizards tier, and

Fig. 21, a Venn-type diagram of the present invention’s Testing tier.

DETAILED DESCRIPTION

Referring generally to Fig. 1, the present invention comprises a methodology that applies an 

engineering and manufacturing oriented approach to software production based on a well-defined 

architecture. As used herein, “manufacturing” implies a method analogous to a software factory. 

Using the present invention methodology, software application development can proceed as if it was 

a software manufacturing process with an assembly line capable of assembling all types of 

intellectual property quickly and at the lowest cost

The present invention uses an “N-tier architecture” paradigm. In an N-tier architecture, all 

functionality is broken down at the system level into logical chunks or tiers 30 that perform a well- 

defined business function. In the present invention’s N-tier architecture there is no limit to the

number of tiers 30.

The present invention’s N-tier software design architecture is employed to develop software 

components 20. As those of ordinary skill in the programming arts will appreciate, “software



WO 01/48603 PCT/US00/35466

5

components” are language independent and may be implemented in any of a number of computer 

languages including without limitation FORTRAN, C, C++, JAVA, assembler, or the like or any 

combination thereof. As those of ordinary skill in the programming arts will appreciate, “N-tier” in 

the prior art may be thought of as implying a hierarchy such as with protocol stacks. However, as 

used herein, “N-tier” describes an architecture that is characterized by a plurality of “N” tiers 30, 

each of which has a specified type and a specified interface. Although a hierarchy can be defined 

for the tiers 30, no one hierarchy is mandatory in the N-tier architecture of the present invention.

Each software component 20 to be developed is associated with at least one tier 30, 

depending upon the nature of the functions to be performed by that software component 20 and tier 

30. The present invention specifies a method and a system for using architectures to implement a 

N-tier system wherein a software component designer can design or select each software component 

20 to perform specified functionality and ensure that each software component 20 has the interfaces 

specified by the architecture for that tier 30.

Using the methodology of the present invention, there is no limit to the number of tiers 30 

or software components 20 that can be implemented or defined. Rules for the architecture are used 

whereby tiers 30 are not necessarily part of a hierarchy as in two- or three-tier systems, but are 

logically interconnected using specified interfaces so that each tier 30 can interact with one or more 

other tiers 30 as needed, i.e., a software component 20 within a given tier 30 can interact with 

software components 20 of one or more other tiers 30 as necessary.

The following terms are understood to have the following meanings to those of ordinary skill 

in the software programming arts for the present invention, and some are further explained herein:



WO 01/48603 PCT/US00/35466

6

TERM DEFINITION
Architecture A set of design principles and rules used to create a design.
COM Component Object Modeling.
Component An object that encapsulates, or hides, the details of how its 

functionality is implemented and has a well-defined interface 
reusable at a binary level.

CORBA Common Object Request Broker Architecture
DCOM Distributed Component Object Model
DLL Dynamic Link Library
eventhandler message handling object
Framework An architected context for business objects that modify the 

business objects' attributes or add new behavior.
QUID Globally unique identifier, e.g. a number having a 

predetermined number of bits that uniquely identifies a 
software component

JAVA a programming language
Model A heterogeneous collection of components whose relationships 

are enforced via a predetermined set of rules; a collection or 
instantiation of software components where the collection or 
instantiation may be organized into a hierarchy

Object A programming structure encapsulating both data and 
functionality that are defined and allocated as a single unit and 
for which the only public access is through the programming 
structure's interfaces. A COM object must support, at a 
minimum, the IUnknown interface, which maintains the 
object's existence while it is being used and provides access to 
the object's other interfaces.

Package A logical grouping of interfaces within a framework that 
provide a specific behavior such as messaging or connecting.

Sink Connection sink for messaging.
Source Connection source for messaging
Tier A logical grouping of components that perform a well-defined, 

predetermined function.

As further used herein, “manipulates” is meant to be read in an inclusive manner to include 

a software application that passively models, actively models, or performs a combination of active 

and passive modeling. Further, a software application that “manipulates” also includes software



WO 01/48603 PCT/USOfl/35466

7

applications that perform data processing, data acquisition, and supervisory control functions as 

those terms are understood by those of ordinary skill in the software programming arts.

Frameworks 40 specify a basic design structure for a tier 30, including software components 

20 and a set of standard interfaces for any software component 20 categorized as belonging to that 

tier 30. As indicated in Fig. 1 through Fig. 21, frameworks 40, shown generally as boxes, comprise 

one or more packages 42, shown generally as circles in the various figures; one or more 

representative interfaces, where the interfaces are shown generally as clouds in the various figures; 

and one or more methods for collecting software components 20 as well as one or more 

interrogatable properties and variables. A package 42 is thus a collection of interfaces that provide 

a specific behavior, such as messaging or connecting. Most frameworks 40 in the present invention 

comprise more than one package 42.

In object oriented software programming arts, methods and properties arc often referred to 

as attributes, but frameworks 40, packages 42, and interfaces are not limited to object oriented 

programming constructs. As used herein, “methods” are meant to mean software that exhibits a 

behavior and “properties” are meant to mean variables and constants exposed to other interfaces.

As further used herein, a “collection” or “software collection” is a software construct that 

provides an interface that allows access to a group of data items, whether raw data or other software 

components 20. An interface that follows the standards for providing access to a group of objects 

is referred to herein as a “collection interface.” By way of example and not limitation, a collection 

interface provides programmatic access to a single item in the collection such as by a particular 

method, e.g. an “Itcm()” method. By way of further example and not limitation, a collection



WO 01/48603 PCT/US00/35466

8

interface lets “clients,” as that term is understood by those of ordinary skill in the software 

programming arts, discover characteristics, e.g. how many items are in the collection, via a property, 

e.g. a “Count” property.

Throughout this document, references to different kinds of software components 20 will use 

the following naming conventions:

Table 1: Standard Abbreviations
Abbreviation Definition

GC Class
GP Package
IGC Interface to Class

Thus, within this specification an entity, construct, or named example such as “GCxxx” 

implies that “GCxxx” may be implemented as a class as that term is understood by those of ordinary 

skill in the software programming arts. An entity, construct, or named example such as “IGCxxx” 

implies that “IGCxxx” is an interface to a class as that term is understood by those of ordinary skill 

in the software programming arts. An entity, construct, or named example such as “GPxxx” implies 

that “GPxxx” is a package 42. This terms and naming conventions are meant to be illustrative and 

are not meant to be limiting as software components 20 may be implemented in other than software 

that uses the notion of “class,” e.g. object oriented programming languages.

In addition, software components 20 may comprise properties or attributes. As used herein, 

a property indicated with a name having a trailing set of parentheses “0” is to be understood to be 

an in vocable method, whereas a property indicated with a name without a trailing set of parentheses 

“()” is to be understood to be a variable or other datum point. By way of example and not limitation, 

those of ordinary skill in the programming arts will understand that an object or software component



WO 01/48603 PCT/US00/35466

9

20 named “foo” may have a method “add()” invocable by “foo.addO" and a property “grex” 

accessible by “foo.grex” or in similar manner. As will be readily understood by those skilled in the 

software programming arts, two or more software components 20 may have identically named 

methods or properties, but each represents a unique and distinct method of property. For example, 

an interface “IGOne” may have a property “x” as may an interface “IGTwo,” but IGOne.x is not the 

same as IGTwo.x. Similarly, IGOne.fooO is not the same as IGTwo.foo().

It is understood that these descriptive constructs are not limitations of the present invention, 

the scope of which is as set forth in the claims, but are rather meant to help one of ordinary skill in 

the software programming arts more readily understand the present invention. In addition, more 

information on these functions and naming conventions, and on software components and COM 

objects in general, can be found in the MSDN (Microsoft Developer's Network) Library (January 

1999), published by Microsoft Press and incorporated herein by reference.

It is further understood that, as used herein, “software components,” generally referred to by 

the numeral “20,” include objects such as are used in object oriented programming, as these terms 

are readily understood by those of ordinary skill in the software programming arts, but are not 

limited to objects. Instead, software components 20 may further comprise any invocable software 

including runtime libraries, dynamic link libraries, protocol handlers, system services, class libraries, 

third party software components and libraries, and the like, or any combination thereof.

A given N-tier application may be designed using the principles, rules, and methods of the 

present invention to satisfy the needs and characteristics of a given industry. As used herein, 

“application” is understood to include compiled, interpreted, and on-the-fly applications, such as,



10

····

by way of example and not limitation, CORB A, just-in-time, JAVA, and the like, or any combination 

thereof, as these terms are understood by those of ordinary skill in the software programming.arts. 

A “wizard” or other code development tool may also be used which allows the code developer to 

generate software components 20 within the specifications of the particular N-tier architecture. For 

example, the wizard may permit the code designer to generate a software component 20 by selecting 

the tier 30 for the software component 20 and ensuring that the software component 20 is in 

compliance with the interface standards designatedfor software components 20 of that particular tier

30.

An N-tier application defined and implemented using the present invention may be thus 

adapted for use in numerous industries and contexts, for example ship-building arts, financial arts, 

or medical arts as well as geological industry arts.

Referring now generally to Fig. 1 through Fig. 21, an N-tier application of the present

invention is designed using an extensible N-tier architecture developed using a methodology for

specifying rules and methods that enable applications to be constructed. Such a methodology has

been proposed in.co-pending U.S. patent application Ser. No. 2002/0104067 and incor­
porated herein by reference.

Such applications have functionality broken down at the system level into logical chunks or 

tiers 30 that perform a well-defined function, such as a business function, according to rules for the 

selected architecture. In a currently preferred embodiment, each tier 30 logically groups together 

software components 20 that have a similar or complementary type of behavior.



WO 01/48603 PCT/US00/35466

11

As discussed herein below, framework 40 specifies a basic design paradigm for a tier 30, 

including a base set of software components 20 and a set of standard interfaces for any software 

component 20 categorized as belonging to that tier 30. Frameworks 40 may comprise a plurality of 

packages 42.

The present invention uses predetermined rules to allow new software components 20 to be 

created or purchased and then possibly added to an inventory (or catalog) 700 of components for 

future reuse in subsequent applications. As more software components 20 are developed, inventory 

700 grows, thus further reducing the time and resources needed to develop new applications. 

Further, software components 20 are available for use by any other software component 20 that can 

use its interface, including off-the-shelf components. Off-the-shelf components, e.g. purchased 

components, may be incorporated into the N-tier application of the present invention such as by 

adding a predetermined interface to that off-the-shelf component as required by the N-tier 

architecture of the present invention.

The present invention also uses predetermined rules to allow a given N-tier application to be 

extended, for example by adding a new tier 30 to result in a new, N+l-tier application. Many 

software components 20 developed for the predecessor N-tier application will be immediately 

reusable in the incremental, N+l-tier application and others will be reusable with relatively minor

modifications.

Each tier 30 defined and implemented using the present invention specifies the types of 

interfaces that software components 20 associated with that tier 30 must have. These interfaces are 

thus standardized interfaces for that N-tier architecture that allow software components 20 of a type



WO 01/48603 PCT/US00/35466

12

of tier 30 to be accessed by other software components 20 in other tiers 30. A software component*

designer using the present invention uses the rules for building software components 20 with the 

knowledge of or ability to access other software components 20, based on the interface specified by 

tier 30 for these types of software components 20.

In one embodiment, the present invention uses predetermined rules to define and create a 

particular N-tier application with a specified, initial number and type of tiers 30 and with a specified 

interface architecture for each tier 30, where each initial tier 30 satisfies one of a major portion of 

system functionality, such as business logic processing, data processing, and the like.

Each tier 30 will tend to have a unique set of interfaces, depending on the nature of the types 

of software components 20 grouped under that tier 30. More common interfaces may include a 

specific, common first interface to allow a software component’s 20 dependencies to be collected 

by that software component 20 and accessed by other components; and a specific, common second 

interface to allow a software component 20 to be identified at run time by another component.

In an embodiment, the N-tier application of the present invention may utilize an 

asynchronous architecture paradigm permitting software components 20 to engage in asynchronous 

communication via asynchronous messaging. In other embodiment, synchronous or mixed 

synchronous and asynchronous messaging may be present.

In a currently preferred embodiment, software component 20 interfaces are implemented 

using Microsoft’s COM specification for its WINDOWS (R) operating system environment. See, 

e.g., ESSENTIAL COM by Don Box, published by ADDISON WESLEY LONGMAN, INC., 1998 

with ISBN Number 0-201-63446-5. Only a software component’s 20 external interfaces are seen



WO 01/48603 PCT/US00/35466

13

by the outside world. Common interaction standards, such as ActiveX, may be used to facilitate 

communication between software components 20 and reduce the need for connective software 

between software components 20. Services provided by software components 20 may then be 

networked together to support one or more desired processes. These services can be reused and 

shared by other software components 20. However, it will be apparent to those of ordinary skill in 

the programming arts that software components 20 may be constructed using numerous other 

environmental paradigms, by way of example and not limitation including those required by LINUX, 

SUN (R) SOLARIS (R), Unix, or the like, or any combination thereof.

As currently contemplated, some tiers 30 may exist that are not true tiers 30, i.e. they do not 

exist to provide additional behavior to software components 20. These tiers 30, such as Wizard, 

Testing, or Template tiers 30, shown generally in Fig. 1 as tier 600, may be present to provide 

additional auxiliary functionality. By way of example and not limitation, Wizard tier 30 may exist 

to provide a set of interactive help utilities that assists developers in quickly creating standard present 

invention components. Testing tier 30 may be present to contain software components 20 that 

exercise software components 20 or packages 42 from the functional tiers 30, record test results in 

a log, and notify developers of the test completion status. Software components 20 in Template tier 

30 may provide C++ implementation of persistence, collections, and iterators for standard present 

invention software components.

Referring now to Fig. 2, a pictographic representation of a software factory, software 

components 20, whether purchased or created, may be placed into inventory 700 for future use using 

library or cataloging processes, all of which are familiar to those of ordinary skill in the



WO 01/48603 PCT/US00/35466

14

programming arts. Software component 20 interfaces are standardized, with software component

20 functionality limited to the characteristics and behavior unique to the software components they 

represent. The paradigm for the present invention is a software application assembly line as if in a 

software application factory. As shown at 11, application requirements are first determined. The 

existing inventory 700 is then reviewed 12 for software components 20 that fit the new application 

requirements. System requirements that do not exist as stock software components 20 are created 

13 or possibly purchased and possibly added to inventory 700. A new application may then be 

created 14 from the stock software components 20 and the new software components 20. The 

application may be created by combining software components 20 at run-time to form new unique 

applications on-the-fly, and making software reuse a practical reality.

Referring now to Fig. 5, a life cycle flowchart, the present invention’s methodology allows 

application development to drive changes to the present invention’s architecture using a set of life 

cycle rules. By way of example and not limitation, rules that define that software architecture are 

either designed anew, selected from a preexisting set of rules, or any combination thereof. Thus, a 

software application designed using the present invention’s method generates software components 

20, tiers 30, and applications by using software component rules 210, tier rules 310, and assembly 

rules 410 for an initial design 50. The initial design may have a predetermined number of initial tiers

30.

The system implemented is put into production 52 and periodically reviewed for adjustments 

that may be necessary 54. If any tier 30 is determined to be in need of adjustment 56, it can be 

removed or otherwise modified 58. As additional requirements arise 60, new software components



WO 01/48603 PCT/US00/35466

15

20 are created, existing software components 20 modified 62,64, or a combination thereof. Tiers 

30 may be added, modified, or deleted 66 as application requirements dictate.

Referring now to Fig. 6, once a list of required models 31 and software components 20 is 

determined 70, software components 20 are logically grouped 72. A determination 74, 76 is then 

made to determine if any of the needed software components 20 already exist in inventory 700. 

Whenever possible, software components 20 are reused 78 from inventory 700. Software 

components 20 that do not fit the current architecture may be restructured to ensure conformance 

while retaining the original intent of the requirement.

Additional software components 20 may be created or purchased 80 as needed after review 

of specifications and current inventory 700.

Using the predetermined rules and design methods of the present invention, software 

components 20 are designed and implemented as needed for a given functionality. By way of 

example and not limitation, business software components 20 may be defined and implemented 

where each business software component 20 encapsulates information about a real-world object or 

process, such as a.well, a geological feature under the earth (e.g. a fault), a logging truck or tool, or 

information about a job that has been run. Visual software components 20 may be defined and 

implemented to encapsulate presentation information. By way of further example and not limitation, 

data software components 20 may also be defined and implemented as a software component 20 that 

preserves the state of a business software component 20 and allows data within a business software 

component 20 to be accessed and used. For example, a data software component 20 may extract data 

from a given business software component 20 and store it in a database.



5
WO 01/48603 PCT/US00/35466

16

After new or modified software components 20 successfully pass a testing and validation 

phase, new or modified software components 20 are assessed for suitability 82 to become part of 

inventory 700. Software components 20 that have potential for reuse are added 88 to inventory 700. 

These new or modified software components 20 may thus be integrated into a current architecture, 

expanding the current architecture, i.e., adding 86 one or more tiers 30 to accommodate them. By 

definition via the rigid implementation of standard interfaces, a software component 20 from one 

tier 30 can be used by any software component 20 from any other tier, making tier 30 relationships 

of little importance. However, in practice it is likely that certain software components 20 will 

primarily be used by certain other software components 20.

As illustrated in Fig. 1, each of present invention’s tiers 30 may interface with one or more 

other tiers 30 using an interface mechanism as further described and claimed herein. By way of 

example and not limitation, in one embodiment of the present invention, the present invention’s 

design methodology specifies a predetermined, initial number of tiers 30 comprising Base tier 1000. 

Base tier 1000 software components 20 may then be used to create software components 20 and 

other tiers 30, by way of example and not limitation such as Messaging tier 2000, Business Object 

tier 3000, Real-Time Device tier 4000, Data tier 5000, Processing tier 6000, Visual tier 7000, 

Template tier 8000, Business Rules tier 9000, Wizards tier 10000, Testing tier 11000, Interceptor 

tier 12000, and Application tier 13000. Other tiers 30 may also be created, such as by way of 

example and not limitation Plotting tier 30.



WO 01/48603 PCT/US00/35466

17

Referring now to Fig. 7, Base tier 1000 may be present to provide initial, basic mechanisms «

for implementing an application. In a preferred embodiment, Base tier 1000 software components 

20 form tailorable, initial building blocks for other software components 20 and other tiers 30.

Base tier 1000 comprises GPCollection 1100, which provides a method for collecting 

software components 20; GPBase 1200, which contains several software components which are 

normally aggregated into other software components 20; GPConnection 1300, which provides 

methods for connecting software components 20 as sources or sinks of information, where source 

and sink have the meanings as described herein below; GPEventHandler 1400, which provides the 

message-based, asynchronous behavior; and GPDevice 1500, which provides methods for 

controlling devices.

GPCollection 1100 allows accessing a group of data items, e.g. a set of oil well data curves. 

In a preferred embodiment, GPCollection 1100 comprises methods that enable access to and 

maintenance of a data set and is an implementation of a COM collection interface, including 

determining the number of and allowing iteration through software components 20 in a collection. 

In the preferred embodiment, these methods provide access to a specific item by its ordinal position 

in a collection as well as by one or more of a predetermined type of identifier, e.g. a name.

GPBase 1200 supports software components 20 that are used by most other software 

components 20, for example, to get or set the time and date as well as assignment of a predetermined 

category characteristic to a software component 20. The category characteristic property may allow 

getting or setting descriptive information about a software component 20, including the registered 

number (CLSID) of software component 20 and a “type characteristic’’ of a software component 20



WO 01/48603 PCT/US00/35466

18

where type characteristics may be different for different software components 20 and where type 

characteristics are predefined or programmatically defined. For example, “business” software 

components 20 might have a type of “curve” or “well,” and “data” software components 20 might 

have a type of “curve” or “parameter.”

GPConnection 1300 implements COM connection point behavior. As will be understood by 

those of ordinary skill in the software arts, a “connection” has two parts: the software component 20 

invoking the interface (called the “source”) and the software component 20 implementing the 

interface (called the “sink”). A “connection point” is the interface exposed by the source. By 

exposing a connection point, a source allows one or more sinks to establish connections to that

source.

In the present invention, one or more GPConnection 1300 methods allow passage of an 

interface, as that term is readily understood by those in the software programming arts, from the sink 

to the source. This interface provides the source with access to the sink’s implementation of a set 

of member functions. For example, to fire an event implemented by the sink, the source can call the 

appropriate method of the sink’s implementation. In the currently preferred embodiment, only 

GCMessage 1340 (not shown in the Figures), comprising a message that can contain anything from 

a text string to a pointer to a large amount of data, can be sent between the sink and the source.

GPConnection 1300 comprises one or more interfaces to enable sendi ng and receiving events 

or information to another software component 20. In the preferred embodiment, a designer must 

aggregate a connection source interface into any software component 20 that needs to send events



WO 01/48603 PCT/US00/35466

19

or information to another software component 20, e.g. a message, or that needs to support sink

interfaces.

GPEventHandler 1400 executes previously registered callbacks between a framework 40 and 

applications built on top of the framework 40. GPEventHandler 1400 comprises interfaces that 

support event processing, including event-handling services capable of handling synchronous or 

asynchronous events, thread pool services to manipulate and maintain a pre-set number of threads; 

and methods to provide callback processing on an event and to track which callbacks are registered 

to handle which message types.

Each callback handles only one message type, and an interface is used inside the event 

handler to track which callbacks are registered to handle which message types.

GPDevice 1500 allows communication with hardware devices. GPDevice 1500 comprises 

interfaces to provide for communication to and from hardware devices as well as interfaces to let an

event handler send information or events back to a device.

Referring now to Fig.8, Messaging Tier 2000 software components 20 convey information, 

in the form of other software components 20 such as business software components 20, to a 

recipient. For example, in the preferred embodiment messaging software components 20 control 

asynchronous message queuing and notification. Messaging Tier 2000 comprises three packages: 

GPMessage 2100, that handles message generation; GPMessageQueue 2200, that handles message 

queuing; and GPRouter 2300, that handles message routing.

GPMessage 2100 adds interfaces that support message generation for different types of 

messages, including interfaces to manage the message data or information and to specify the



WO 01/48603 PCT/US00/35466

20

software component 20 that will receive the message, for example, a software component’s 20 sink 

interface. Additionally, GPMessage 2100 may provide interfaces to provide a set or collection of 

destination software components 20, for example multiple software component 20 sink interfaces 

and/or to contain information about a specific queue.

In a preferred embodiment, GPMessage 2100 is the standard information packet, i.e., the 

body of the message, contains an IUnknown 1302 interface (not shown in the Figures) to the body 

of the message and aggregates IGCType 1230 to identify the message type.

Further, in a preferred embodiment, the interface that specifies a destination software 

component 20 supports either sink or message queue interfaces as well as stores timing information 

for routing analysis. These include support for message routing to one or more service destinations. 

The message queue interface accepts messages and queues them asynchronously as well as notifies 

registered users of a queue that the queue contents have changed.

GPRouter 2300 decides whether to send a message asynchronously via a message queue or 

synchronously via a direct call on the sink, and comprises an interface that examines the route a 

message can take to reach its destination and determines whether to send the message directly to the 

sink or send it to the message queue to be routed asynchronously.

Referring now to Fig. 9, in a preferred embodiment, Business Object tier 3000 specifies base 

interfaces used to create business software components 20. In the preferred embodiment, business 

software components 20 provide storage for and access to information, encapsulating the attributes 

and methods of a common business entity, such as a well, log, sensor, or bed.



WO 01/48603 PCT/US00/35466

21

Thus, a business software component 20 may represent real-world business data, such as a 

well, log, gamma ray measurement, resistivity measurement, job, run, pass, sensor, STAR tool, 

fracture, fault, bed, bedding surface, or borehole. Business software components 20 contain many

attributes and methods used to access the data but contain little additional behavior.

Rather than try to model all the possible associations of business software components 20 

and create a static business software component model 31, in the preferred embodiment business 

software components 20 have a generalized collection interface used to collect other business 

software components 20. Valid types of business software components 20 that can be collected by 

(or associated with) other business software components 20 are defined external to the business 

software components 20 in Business Rules tier 9000. This allows business software components 20 

to be maintained separately from the rules defining their relationships. This also lets the 

relationships change without changing business software components 20.

For example, business rules may allow a set of business software components 20 to be 

associated with a defined model 31. If a new business software component 20 is defined, a simple 

update to a rules database would allow its associations to be defined as well. Therefore, business 

rules could be updated to allow the new business software component 20 to be associated with the 

existing model 31, and none of the existing business software components 20 would need to be 

changed or rebuilt.

By building meaningful associations of business software components 20, software 

components 20 model real-world business needs. Using business software components 20 as “black-



WO 01/48603 PCT/US00/35466

22
box” data containers, software components 20 can implement additional behavior to visually render, 

analyze, or modify model 31.

Referring now to Fig. 10, composition software components, some business software 

components 20 may be “compositions,” business software components 20 that have attributes that 

are other business software components 20. In the case of compositions, a composite business 

software component 20 is static - the relationship between business software component 20 and the 

attribute software component 20 is not an association enforced by business rules. Compositions may 

be used when there is a “whole-to-part” relationship between software components 20; by way of 

example and not limitation, in an exemplary embodiment for an oil well, composite business 

software component 20 GCBed 3010 comprises a top GCBeddingSurface 3011 and bottom 

GCBeddingSurface 3012. These surface software components 20 are a critical part of GCBed 3010 

in.that GCBed 3010 cannot accurately be defined without them. Therefore, GCBed 3010 is a 

composite business software component 20 further comprising two attributes, GCBeddingSurfaces 

3011, which are themselves business software components 20. Methods may then be provided on 

a business software component 20 to access the composite business software components 20.

Composite business software components 20 are not created when a new business software 

component 20 is created. It is therefore the responsibility of the system designer to create any 

business software components 20 that comprise each composite business software component 20 and 

set them into the composite software component 20. In the preferred embodiment, when business 

software components 20 are retrieved from a persistent store, composite business software 

components 20 are automatically retrieved.



WO 01/48603 PCT/US00/35466

23

Every business software component 20 has a business software component interface to 

support access to the encapsulated data. Business software components 20 are implemented as 

standard dual interface COM components, meaning they support both IUnknown 1302 interface 

needed for languages that support early binding such as C++, and IDispatch 1303 needed by 

languages that support late binding like Visual Basic. Business software components 20 may be 

designed and tested to be used with either interface or both interfaces which allows them to be used 

in multiple container types supported by, for example, C++, Visual Basic, Java, scripting languages, 

or Web Browser automation, or any combination thereof.

In addition to the standard COM interfaces, other standard interfaces may exist on business 

software components 20, some of which may be optional and others required. For example, business 

software components 20 are often central to an application and need to be accessed by other software 

components 20 in numerous tiers 30. Therefore, there is usually a business software component 20 

interface as well as some additional interfaces present in a present invention application. However, 

business software components 20 do not usually need to access many other software components 20.

Referring back to Fig. 9, additional interfaces may provide a base level of functionality for 

all business software components 20. All business software components 20 support the following 

required interfaces: IGCAssociations 3110, that lets software components 20 have other software 

components 20 associated with them; IGCAttributes 3140, that lets users of business software 

components 20 determine persistable attribute names of business software components 20, e.g. 

allowing persistable attribute names to be written to a data store and retrieved at a future time; 

IGCObject 3130, that allows for dumping the contents of software components 20; IGCParents 3120,



WO 01/48603 PCT/US00/35466

24

that lets software components 20 establish and maintain hierarchical relationships with other 

software components 20; IGCType 1230; and IPersistStream 101, a standard Microsoft COM 

interface. In addition, all business software components 20 provide a standard, unique ED (GUID).

In addition, software components 20 can use these interfaces to implement new behavior. 

For example, rather than writing a routine to traverse a model 31 looking for every possible business 

software component 20 interface, program logic can traverse the model 31 by programmatically 

obtaining IGCType 1230 from each software component 20 and examining the message returned. 

One way to accomplish this traversal may be to use a template iterator class to facilitate accessing

associations.

Business Object tier 3000 software components are easily extensible. Because business 

software components 20 are COM components designed to have no dependencies, new attributes 

and behavior can readily be added to one business software component 20 or to all business software 

components 20 with little or no modification to existing code.

In a preferred embodiment, Business Object tier 3000 comprises: GPModel 3100, allowing 

collection of a group of related business software components 20 into a real-world business entity 

called a model; and GPBLOB 3200, allowing storage of large amounts of binary data in a business 

software component 20.

GPModel 3100 comprises a set of interfaces that business software components 20 aggregate 

to achieve specific functionality.

GPBLOB 3200 provides interfaces that supply information about large amounts of binary 

data stored in business software components 20. These interfaces are optional and used only when



WO 01/48603 PCT/US00/35466

25

the number of instances of a business software component 20 is very large. For example, a group 

of logging measurements could be collected into a GPBLOB 3200 describing a section of a well log. 

As is well understood by those of ordinary skill in the programming arts, “BLOB” is an acronym for 

binary large object.

Referring now to Fig. 11, Real-Time Device tier 4000 supports communication with and 

event handling for a real-time device, such as from a down-hole logging tool to a computer on a 

truck. Real-Time Device tier4000 comprises GPRealTime 4100 to support standard communication 

and event-handling interfaces that allow a device to communicate with other connected software 

components 20, including interfaces to provide methods for allowing a user to register a real-time

device with another real-time device.

Referring now to Fig. 12, Data tier 5000 provides data persistence services for business 

software components 20. Data tier 5000 also provides access to data. Data tier 5000 comprises: 

GPPersist 5100, that lets data be written to and read from a data source, and GPDataAccess 5200, 

that provides access to specific types of data.

In a preferred embodiment, GPDataAccess 5200 comprises: GPDataFormat 52100, that 

provides business software component 20 persistence for a specific data format; GPDataService 

52200, used to build software components 20 that hold a list of registered data formats available; 

GPWindowedlO 52300, that establishes the requirements for information a software component 20 

is retrieving from a data service; GPDatalO 52400, used for low-level hardware device (e.g. disk and 

tape) input/output (“I/O”) access; GPUnitsConverter() 52500, used for data conversion from one 

measurement system to another, and GPDataDictionary 52600, that provides data identity and



WO 01/48603 PCT/US00/35466

26

naming conventions for information retrieved from a data file. It is important to note that, as 

exemplified by GPDataAccess 5200, a feature of the present invention’s architecture allows a 

package such as GPDataAccess 5200 to comprise other packages such as GPDataFormat 52110.

In a preferred embodiment, GPDataFormat 52100 provides business software component 20 

persistence to a format known by a specific data-format software component 20 and comprises an 

interface to support business software component 20 persistence for a particular file format to allow 

generic message handlers to call specific functions as well as an interface to provide standard 

messaging for sending and receiving by business software components 20. In the preferred 

embodiment, IGCBaseDataFormat 51210 is an interface that must be implemented for a data-format 

software component 20, and comprises the properties that allow manipulation of devices and data 

according to a predetermined format. In the preferred embodiment, IGCBaseDataFormat 51210 

comprises IGCDataFormat 52120 that must be aggregated for a data-format software component 20 

to provide standard messaging for sending and receiving by business software components 20.

In a preferred embodiment, GPDataService 52200 may be used to build software components 

20 that hold a list of registered data formats available for read or write access.

In a preferred embodiment, GPWindowedlO 52300 specifies the requirements for 

information a software component 20 is retrieving from a data service. GPWindowedlO 52300 

comprises IGCWindowedlO 52310 that specifies the requirements for information a software 

component 20 is retrieving from a data service. In a currently preferred embodiment, 

IGCWindowedlO 52310 comprises: OffsetFromCurrent 52311, this windowed I/O interval’s offset 

from the main set’s current working level data, if any; TopOffset 52312, the interval’s top offset in



WO 01/48603 PCT/US00/35466

27
levels from its current working level; BottomOffset 52313, the interval’s bottom offset in levels from 

its current working level; Increment 52314, the level spacing to return in the given interval; 

ResampleType 52315, describes the actions to perform when a level spacing of data sets does not 

match; TopBoundType 52316, indicates what happens to the data above the current working level, 

e.g. when a curve interval is iterated off the beginning/end of the data or over a NULL value; 

BottomBoundType 52317 , indicates what happens to the data below the current working level, e.g. 

when a curve interval is iterated off the beginning/end of the data or over a NULL value; DataType 

52318, the returned data type; and AccessType 52319, e.g. either random or sequential access.

In a preferred embodiment, GPDatalO 52400 specifies interfaces for low-level device (e.g., 

disk and tape) I/O access, GPUnitsConverter 52500 comprises interfaces used for data conversion 

from one measurement system to another, and GPDataDictionary 52600 comprises interfaces for 

components that provide data identity and naming conventions for information retrieved from a data

file.

Referring now to Fig. 13 .software components 20 associated with Processing tier 6000 need 

to have interfaces specified by Processing tier 6000 but also need to be able to access business 

software components 20 through business software component 20 interfaces. Processing tier 6000 

provides for the instantiation and control of a process flow (or process model), including algorithmic 

processing. Algorithmic processing follows patterns defined by GPProcessingObject 6200 with 

required interfaces.

Processing tier 6000 comprises: GPProcessor 6100, defines the main processing interface; 

GPProcessingComponent 6200, handles the types of processing software components 20 that



WO 01/48603 PCT/US00/35466

28

GPProcessor 6100 understands; GPHistoryModel 6300; GPProcessingModel 6400; and 

GPProcessingConnection 6500. Additionally, Processing tier 6000 aggregates IGCAttributes 3140, 

IGCObject 3130, IGCParents 3120, and IGCAssociations 3110. As used herein, connection 

components are understood to be connections between an output of one processing object to the 

input of another processing object that additionally validated that the output is compatible with the 

input.

GPProcessor 6100 is the main interface to Processing tier 6000 and handles all external 

communications, including managing process components along with their inputs, outputs, 

parameters, and how they are interconnected. This allows global setup of parameters and I/O 

components for a process. GPProcessor 6100 lets a client software component 20 communicate with 

a process, including software components 20 from one tier 30 to communicate with software 

components 20 of another tier 30.

In a preferred embodiment, GPProcessor 6100 tracks the requirements of filters in a 

processing model 31, modifies queries and windowedlO parameters to satisfy these requirements, 

monitors/optimizes the flow of data through a model 31, and performs other functions as required 

to manage the process flow. GPProcessor 6100 comprises IGCProcessor 6110 to manage external 

communications for a process model 31, including starting and stopping the process and modifying 

model 31. For example, a user can drop a query on IGCProcessor 6110, and IGCProcessor 6110 

will modify the query to match the I/O requirements of software components 20 in process model 

31. IGCProcessor 6110 also allows process software components 20 to be added to process model 

31 and checks connections between software components 20 in model 31 for validity. In addition,



WO 01/48603 PCT/US00/35466

29

outputs that are connected to sinks, i.e. persisted, are tracked and process model 31 that produced«

the output is attached as a history entry on the business software component 20 itself. In the 

preferred embodiment, IGCProcessor 6110 holds an abstract list of inputs, outputs, and parameters 

required by processing software components 20.

GPProcessingObject 6200 defines the types of processing software components 20 that the 

main processor GPProcessor 6100 understands, including filters, synchronization software 

components 20, sources, sinks, and graphical software components 20. In a preferred embodiment, 

processing software components 20 will have separate interfaces to allow setup of the inputs 

(connections), outputs (connections), and parameters (connections and constants), such as by way 

of example and not limitation tabs on a visual display page.

GPProcessingObject 6200 comprises: IGCProcessingObjectManager 6210, a common 

interface that all processing software components 20 aggregate. Additionally, GPProcessingObject 

6200 comprises interfaces that must be inherited to ensure that the user software component 20 

implements a predetermined set of methods when invoked, that store the name of the input (e.g., that 

can be used in the calculate function) and the type of software component 20 it supports, and that 

store the name of the output (e.g., that can be used in the calculate function) and the type of software 

component 20 it supports. Additionally, GPProcessingObject 6200 comprises IGCParameterObject 

6250, IGCAttributes 3140, IGCObject 3130, IGCParents 3120, and IGCAssociations 3110

interfaces.

In the preferred embodiment, IGCProcessingObjectManager 6210 is the common interface 

that all processing software components 20 aggregate, and maintains the state machine which



WO 01/48603 PCT/US00/35466

30

determines when a software component 20 is ready to fire a predetermined method and when it is 

ready to send data out. IGCProcessingObjectManager 6210 is dependent on 

IGCBaseProcessingObject 6220, a base processing software component 20 interface that must be 

inherited to ensure that the user software component 20 implements a predetermined function when

invoked.

IGCInputObject 6230 stores the name of the input and the type of software component 20 

it supports. IGCInputObject 6230 can be added to both a connection and a processing software 

component 20 in model 31. Windowed I/O parameter components and range validation components 

can be added to software components 20 to further describe input characteristics.

In a preferred embodiment, IGCInputObject 6240 is a business software component 20 and 

therefore includes the required business software component 20 interfaces. IGCInputObject 6240 

interface also aggregates IGCType 1230 and IGCConnectionSink 1320. IGCOutputObject 6240 

stores the name of the output and the type of software component 20 it supports. It can be added to 

both a connection software component 20 and a processing software component 20 in model 31. 

Windowed I/O parameter software component 20 can be added to it to further describe the output

characteristics.

In the preferred embodiment, IGCParameterObject 6250 defines an acceptable input 

parameter. The parameter can change like an input value but can also be set to a constant value. 

IGCParameterObject 6250 can be added to both a connection software component 20 and a 

processing software component 20 in model 31. Windowed I/O parameter components and range 

validation components can be added to it to further describe the parameter characteristics.



WO 01/48603 PCT/US00/35466

31

IGCParameterObject 6250 is a business software component 20 and therefore includes the 

required business software component 20 interfaces and aggregates IGCType 1230 and 

IGCConnectionSink 1320. IGCParameterObject 6250 also aggregates GPHistoryModel 6300, 

GPProcessingModel 6400, and GPProcessingConnection 6500.

GPHistoryModel 6300 stores a complete process model 31 and query model 31 that was 

required to generate some output. For example, assuming a given input curve had some history 

model associated with it, one would have to query back into the input software components 20 

recursively to get a complete history from raw data of the current software component 20. 

GPHistoryModel 6300 stores a history of how a software component 20 was generated. 

GPHistoryModel 6300 comprises IGCHistoryModel 6310, the base history software component 20 

used to save a complete history of the process (for example, algorithms and inputs) used to generate 

an output software component 20. A user can add a process model 31 and a query model 31 to 

IGCHistoryModel 6310 to save a history of how an output software component 20 was generated. 

IGCHistoryModel 6310 is a business software component 20 and therefore includes the required 

business software component 20 interfaces and aggregates GPBase 1200 interfaces such as type, 

data, and time interfaces.

GPProcessingModel 6400 consists of processing software components 20 and connection 

software components 20 used to form a specific processing flow. GPProcessingModel 6400 can be 

persisted and re-used, for example, with different input queries or stored with history attachments 

to output software components 20. GPProcessingModel 6400 comprises: IGCProcessingModel 

6410, the process model comprising process software components 20, connections, and IGCType



WO 01/48603 PCT/US00/35466

32

1230; and IGCProcessingObject 6420, the base software component 20 for all processing software 

components 20.

IGCProcessingModel 6410 is a business software component 20 and can be persisted and re­

used, for example, with different input queries or stored as a history attachment to output software 

components 20.

IGCProcessingObject 6420 is a business software component 20 that can represent any type 

of processing software components 20. IGCProcessingObject 6420 holds an interface pointer to the 

processor to which it is connected for data output. The state of the software components 20 is 

maintained for the length of a transaction.

GPProcessingConnection 6500 provides connections between processing software 

components 20. There is one connection software component 20 in the process model 31 for every 

input, output, and parameter that a processing software component 20 requires. Outputs that are not 

connected are dead-ended. Parameters can be setup as constants, e.g. in a property sheet, or 

connected to a source and queried.

In a currently preferred embodiment, there will be one IGCProcessingConnection 6510 in 

a process model 31 for every input, output, and parameter that a processing software component 20 

requires. Inputs that are not connected are queried. Outputs that are not connected are dead-ended. 

IGCProcessingConnection 6510 parameters can be set up as constants, for example in their property 

sheets, or, if not connected, they are queried. IGCProcessingConnection 6510 is a business software 

component 20 and includes the business software component interfaces and aggregates IGCType 

1230 and IGCConncctionSink 1320. A base type can be used for more flexibility. For example, an



WO 01/48603 PCT/US00/35466

33

input software component 20 of a given predetermined type “GCGr” must be connected to an output«

component of type “GCGr” and an input type of “GCGr” can also be connected to an output type of 

“GCCx” or “GCCy.”

IGCProcessingConnectCondition 6520 interface serves as a connector between processing 

software components 20 but allows a conditional expression that determines whether the processing 

branch continues. The conditional software component 20 holds the qualifying condition for the 

connection. There can be more than one condition for a connection, and there can be more than one 

condition per outgoing branch. In a preferred embodiment, a “true” response indicates the 

processing branch is live.

IGCProcessingConnectCondition 6520 is a business software component 20 and therefore 

includes the required business software component 20 interfaces. In addition, 

IGCProcessingConnectCondition 6520 interface also aggregates IGCType 1230, 

IGCConnectionSink 1320, and IGCConnectionSource 1310.

Referring now to Fig. 14, Visual tier 7000 provides display of and user interaction with 

information. In a.preferred embodiment, Visual tier 7000 architecture is based on a Model-View- 

Controller design pattern. A Visual tier 7000 visual software component 20 comprises visual model 

7001 (identified by IGCViewModel 7210), view 7002 (typically a full ActiveX control which 

exposes IGCView 7110 and IGCBaseView 7120), and controller 7003 (identified by 

IGCViewController 7310). Visual model 7001, view 7002, and controller 7003 are connected using 

messaging such as from GPConnection 1300, GPMessage 2100, and GPEventHandler 1400, and



WO 01/48603 PCT/US00/35466

34

each can have one or more message handlers attached to provide additional behavior. Additionally, 

visual software components 20 have a connection sink.

Stock visual model 7001 and controller 7003 software components 20 are similar and 

comprise event handler, connection source, and connection sink interfaces. Stock visual model 7001 

and controller 7003 software components 20 differ in behavior because they have different message 

handlers attached. Views 7002 are custom software components 20 (usually full ActiveX controls), 

but they are similar to visual models 7001 and controllers 7003 in views 7003 aggregate interfaces 

that implement stock view behavior including event and connection handlers.

In a preferred embodiment, a visual software component 20 or controller 7003 comprises a

custom ActiveX control for a view 7002 as well as stock visual model 7001 and controller 7003

software components 20. In a currently preferred embodiment, visual model 7001 and controller 

7003 are stock software components 20 whose behavior is modified by attaching behavioral 

components to them. View 7003 is a composite of several software components 20, but requires 

more attention to customize behavior. In a currently preferred embodiment, visual model 7001, view 

7002, and controller 7003 are COM software components 20.

Visual tier 7000 also comprises: GPView 7100, that provides visual representation of 

business software components 20; GPViewModel 7200, that handles data and computational logic; 

and GPViewController 7300, that manages user interaction.

GPView 7100 implements the visual portion of the pattern and provides visual representation 

of business software components 20. GPView 7100 comprises: IGCView 7110, that contains stock 

view behavior; and IGCBaseView 7120, that forces the definition of required customized behavior



WO 01/48603 PCT/US00/35466

35

for each view 7002. Views 7002 (for example, log viewers or graphical displays) must aggregate 

IGCView 7110, which exposes the same set of interfaces that stock visual models 7001 and 

controllers 7003 expose for event handling and connections. However, IGCView 7110 also provides 

basic drag-and-drop behavior with the addition of the standard OLE interfaces for drag-and-drop, 

as these terms are readily understood by those of ordinary skill in the programming arts.

IGCBaseView 7120 forces the definition of required customized behavior for each view 

7002. IGCBaseView 7120 comprises: InitializeModel() 7121, to communicate a view’s 7002 data 

requirements to a visual model 7001; UpdateViewO 7122, to redraw view 7002 as needed; and 

GetObject() 7123, to find out what the current software component is. Views 7002 must implement 

IGCBaseView 7120. There is no stock implementation for IGCBaseView 7120 because each view 

7002 will have different requirements for this interface. InitializeModel() 7121 has the custom logic 

to communicate the view’s 7002 data requirements to visual model 7001. UpdateViewO 7122 is 

called by the stock UpdateViewHandler software component 20 to re-draw view 7002. GetObject() 

7123 must implement hit-testing, and it is used by IGCView’s 7110 drag-and-drop implementation.

GPViewModel 7200 implements the visual model 7001 part of the model-view-controller 

pattern and is responsible for managing business software components 20 that are being visually 

manipulated. GPViewModel 7200 contains IGCViewModel 7210.

Visual model 7001 exposes IGCViewModel 7210, IGCConnectionSink 1320, and 

IGCConnectionSource 1310. IGCViewModel 7210 serves as a wrapper for a business model 31 and 

provides methods for registering an external software component 20. IGCConnectionSink 1320 

receives messages which are routed to appropriate message handlers. Outbound messages are sent



WO 01/48603 PCT/US00/35466

36

out through IGCConnectionSource 1310. Message handler software components 20 are attached via

IGCEventHandler 1410.

IGCViewModel 7210 contains a pointer to the business model 31 that it wraps. In general, 

changes to business model 31 generate update messages bound for views 7002 with which the 

business model 31 is registered.

IGCViewModel 7210 and IGCViewController 7310 are stock software components 20. A 

custom view 7002 is a full Active Template Library(“ATL”) control that aggregates stock component 

IGCView 7110 to create view 7002. Additionally, view 7002 must expose and implement a base 

view interface. Further, View tier 7000 interfaces may be provided a user on a read-only mode, 

whereby the viewer can be specified to allow read-only access to the system; an editing mode, 

whereby users may edit models as well as view them; or configurably in either read-only or editing

modes.

Referring now to Fig. 15, the Model-View-Controller (“MVC”) design pattern comprises 

three logical sub-components: visual model 7001, view 7002, and controller 7003. Visual model 

7001 contains data and computational logic. View 7002 presents visual model 7001, or a portion 

of it, to users. Controller 7003 handles user interaction, such as keystrokes and pointer device­

generated inputs. The basic MVC design pattern is used by the present invention for Visual tier 7000 

software components 20 such as log viewers or editors. Generally, a view 7002 must be associated 

with a visual model 7001 so that the visual model 7001 can notify the view 7002 that it needs to 

update itself. Visual model 7001 must have some sort of registration mechanism for views 7002 to



WO 01/48603 PCT/US00/35466

37

use to request the update notices, and view 7002 must have an update mechanism for visual model

7001 to use.

A view 7002 will also be associated with a controller 7003. User interaction, initially 

captured by view 7002, is forwarded to controller 7003 for interpretation. Controller 7003 then 

notifies visual model 7001, if necessary, of any action that should be taken as a result of the

interaction.

Although Fig. 15 shows the main lines of communication between the three MVC 

sub-components, other interactions between these components may also exist. For example, view

7002 must get data it needs to present from visual model 7001, and controller 7003 may not need 

to request action of visual model 7001 to process some user interaction events. By way of further 

example and not limitation, view 7002 may need to update because of some event that does not 

result in an update notification from visual model 7001.

Referring now to Fig. 16, template software components 20 found within Template tier 8000 

provide implementation of persistence, collections, and iterators for standard software components 

20 of the present invention, by way of example and not limitation such as those used by the C++ 

language. Template software components 20 may be used in software component 20 implementation 

to facilitate the implementation of standard functionality and to reduce the maintenance effort for 

extending the functionality of software components 20.

In a preferred embodiment, the present invention template system is a set of C++ classes that 

support some of the functionality of the present invention system and are not COM software 

components 20. This means that the template software components 20 do not have interfaces and



WO 01/48603 PCT/US00/35466

38

are not implemented through COM logic. Instead, they are implemented using standard 

implementation techniques for C++ templates. In a similar manner, templates may be provided for 

other languages such as, by way of example and not limitation, JAVA, FORTRAN, assembler, SQL, 

or any combination thereof.

Template tier 8000 comprises: GCPersistStreamlmpl 8100, that provides C++ 

implementation of persistence, e.g. to allow reading and writing of data; GCCollectionlmpl 8200, 

that provides C++ implementation of collections, e.g. to allow associated business software 

components 20 to be grouped in a set (collection); GCIterator 8300, that provides C++ 

implementation of iteration, e.g. moving through a collection of software components 20; and 

GCTraversinglterator 8400, that provides C++ implementation of traversing iteration, including 

movement through a collection in a particular order. GCTraversinglterator 8400 is dependent on 

GCIterator 8300 and implements methods with the same names as those in GCIterator 8300.

Referring now to Fig. 17, Business Rules tier 9000 is used to facilitate use of business rules, 

which are conditions and tests to determine whether it is valid for one business software component 

20 to have another business software component 20 added to its associations. For example, business 

rules may dictate that an oil field may have many wells associated with it, but a well may only be 

associated with one oil field. Business rules are also used to enforce cardinality.

Business Rules tier 9000 comprises GPBusinessRules 9100 which provides the interface 

through which business software component 20 associations are validated and enforced.

Referring now to Fig. 18, Interceptor tier 12000 intercepts and controls messages between 

software components 20 or calls to a software component’s 20 interface. An intercepted message or



WO 01/48603 PCT/US00/35466

39

interface call may be validated, interrogated, and acted upon by callbacks registered with an 

interceptor software component 20 before it is transmitted to the target software component 20. This 

technique allows for validation and control of the disposition of messages and interface calls without 

modifying the source or target software components 20. Callbacks have complete control over the 

disposition of the message or interface call and may thwart the intended activity.

Interceptor tier 12000 comprises GPInterceptor 12100 which intercepts and controls 

messages, including interfaces to allow a user to intercept and control messages between software 

components 20 or calls to a software component’s 20 interface.

Referring now to Fig. 19, Application tier 13000 provides a method for creating applications 

that use the behavior of the present invention system, including the asynchronous behavior of the 

preferred embodiment Software components 20 may be created and registered and service 

components connected to, thus establishing dependencies and communication links before an 

application begins responding to events.

Application tier 13000 comprises GPApplication 13100 that allows a user to create 

applications that, use the present invention’s preferred embodiment asynchronous behavior. 

Although GPApplication’s 13100 interface contains no methods or properties, it aggregates 

IGCEventHandler 1410, IGCMessageQueue 2210, IGCPersist 5110, and IGCRouter 2310.

Referring now to Fig. 20, tiers 30 may be defined and implemented which are not integrated 

into a final application but rather are present to aid development.

In the preferred embodiment, Wizard tier 10000 software components 20 are wizards, as that 

term is readily understood by those of ordinary skill in the software programming arts, that assist a



WO 01/48603 PCT/US00/35466

40

developer in creating software components 20. Wizard tier 10000 is one of the present invention’s 

supporting tiers 30 and does not provide additional behavior to software components 20, but assists 

developers in quickly creating standard software components 20. Wizards are developed for 

frameworks 40 to insure that the proper framework 40 interfaces are implemented for a software 

component 20. In the preferred embodiment, most wizards are specific to the Microsoft C++ 

development environment, with these wizard presenting questions to the developer and generating 

a set of C++ classes and methods based on the developer’s responses, by way of example and not 

limitation such as an ATL Project wizard similar to the Microsoft standard Visual Studio ATL 

Project Wizard. However, wizards are not limited in their actions or outputs to C++, and can 

include, by way of example and not limitation, wizards to generate ASCII text files, project files, 

source code in computer languages other than C++ such as JAVA, or any combination thereof.

Referring now to Fig. 21, also an integral part of the development process, Testing tier 11000 

provides a set of rules and required activities that define acceptable tests of software components 20. 

Coupled with the requirements for developing software components 20, Testing tier 11000 rules and 

activities are defined by and derived from those same requirements. In the preferred embodiment, 

a test software component 20 implementing these rules and activities is developed in parallel with 

development of software components 20 for a given framework 40 to exercise the finished software 

components 20 in that framework 40. This insures the conformity of the finished software 

components 20 with the stated requirements.

In the preferred embodiment, at least one test software component 20 (created as a “test 

harness”) is developed per framework 40. The test harness inspects a software component 20 to



WO 01/48603 PCT/US00/35466

41

insure that it has implemented all the required interfaces for its framework 40 and that the interfaces 

function properly. In the preferred embodiment, the test harness interface includes functionality for 

running test scripts and storing test results. The test results may include pass/fail information, 

time/date stamp, and specific results of individual tests, for example, the CLSID of software 

components 20.

Every test harness must also implement an interface comprising specific test criteria and 

execution methods for software components 20 in a framework 40. The test criteria are derived from 

the requirements and design documents created for the software components 20 to be tested, and 

compiled into a test harnesses.

Tiers 30 in the present invention may be extended as a user desires, such as by adding 

additional tiers 30. By way of example and not limitation, a user may desire Graphics tier 30, 

Plotting tier 30, and Security tier 30, or any other tier 30 to address a given functionality required, 

e.g. for a system’s requirements.

In the operation of the preferred embodiment, referring generally to Fig. 6, to create a 

software application a set of application requirements is determined 70, either manually, 

heuristically, automatically, or by any combination thereof. Using predetermined N-tier architecture 

rules and optional wizards, a system designer determines 72, 74 a list of required models 31 and 

software components 20 to satisfy the application requirements. The list of required models 31 and 

software components 20 are logically grouped 72 into one or more packages 42 and the packages

42 associated with tiers 30.



WO 01/48603 PCT/TJS00/35466

42

Using the predetermined N-tier architecture rules, the system designer then determines 76 

if each software component 20 in each tier 30 is available in an inventory 700 of software 

components 20. Each software component 20 found in inventory 700 is then associated with an 

appropriate tier 30 if that software component 20 is required. The N-tier architecture rules will 

further comprise rules for restructuring software components 20 in inventory 700 to ensure 

conformance with all other application design rules while retaining the original intent of the 

requirement. Similarly, the N-tier architecture rules may contain rules on expanding the architecture 

by adding one or more tiers 30 to accommodate new or restructured software components 20.

Each software component 20 not found in inventory 700 is located elsewhere, purchased, or 

created 80 and added to inventory 700 according to rules for inclusion defined by the N-tier 

architecture rules. These rules may include rules on assessing each new and/or restructured software 

component 20 for suitability 82,84,86 to become part of the software inventory 700. By way of 

example and not limitation, this may include rules that allow that software components 20 that are 

so specific they can only be used in the current application are not added to inventory 700.

After at least one software component 20 exists for each requirement, the present invention’s 

an application is created 80 using the predetermined N-tier architecture rules that include rules on 

defining and implementing linkages between the tiers 30.

After an application is created, the all software components 20 to be used in the application 

may be tested.

Once all requirements have software components 20 to satisfy the requirements, and the 

software components 20 have been associated with tiers 30, the tiers 30 are assembled and compiled



WO 01/48603 PCT/USOO/35466

43

into a stand-alone, executable program. As will be understood by those of ordinary skill in the«

software programming arts, assembly and compilation may occur in many equivalent forms 

including by way of example and not limitation P-code or pseudo code, interpreters, dynamically 

linked runtime libraries, just-in-time runtime techniques, monolithic executables, or any combination 

thereof. Such assembly and compilation may be accomplished at run-time to form new unique 

applications on-the-fly.

Once all requirements are satisfied, i.e. software components 20 are acquired from inventory 

700 or elsewhere and associated into tiers 30, a testing tier 30 may be defined and implemented to 

accomplish system level testing and validation. Alternatively, testing tier 30 may be defined when 

all requirements are identified, and then developed in parallel with software component 20 assembly.

The present invention can be embodied in the form of computer-implemented processes and 

apparatuses for practicing those processes. Various aspects of the present invention can also be 

embodied in the form of computer program code embodied in tangible media, such as floppy 

diskettes, CD-ROMs, hard drives, or any other computer-readable storage medium, wherein, when 

the computer program code is loaded into and executed by a computer, the computer becomes an 

apparatus for practicing the invention. The present invention can also be embodied in the form of 

computer program code, for example, whether stored in a storage medium, loaded into and/or 

executed by a computer, or transmitted as a propagated computer data or other signal over some 

transmission or propagation medium, such as over electrical wiring or cabling, through fiber optics, 

or via electromagnetic radiation, or otherwise embodied in a carrier wave, wherein, when the 

computer program code is loaded into and executed by a computer, the computer becomes an



44

ft · · ·

apparatus for practicing the invention. When implemented on a general-purpose microprocessor,

the computer program code segments configure the microprocessor to create specific logic circuits

to carry out the desired process.

Therefore, a system for designing and/or implementing a software application can comprise 

numerous means for creating software components 20 and tiers 30, and assembling the application, 

all of which will be familiar to those of ordinary skill in the computer arts, including, by way of 

example and not limitation, keyboards, mice, drag-and-drop interfaces, text editors, graphical editors, 

OLE interfaces, and the like or any combination thereof. These means may further comprise manual 

means, heurisdc means, automated means, and the like, or any combination thereof, such as expert 

system driven or implemented designs, neural networks, and the like.

It will be understood that various changes in the details, materials, and arrangements of the 

parts which have been described and illustrated above in order to explain the nature of this invention 

may be made by those skilled in the art without departing from the principle and scope of the 

invention as recited in the following claims.

ft ft
It will also be understood that the term “comprises” (or its grammatical 

variants) as used in this specification is equivalent to the term “includes” and 

should not be taken as excluding the presence of other elements or features.



The claims defining the invention are as follows:

• · ··
B · ·

• ·

• ·

1. A computing system for creating an extensible N-tiered software 

application, comprising:

a. at least one processing unit;

b. at least one memory store operatively connected to the processing

unit;

c. extensible N-tiered creation software, executable within the at least

one processing unit, comprising a plurality of predetermined 

extensible N-tier architecture rules; and

d. at least one extensible tier, capable of residing in the memory store, 

further comprising:

. i. a framework that specifies a basic design structure for

software components categorized as belonging to the extensible tier, 

the framework further comprising base software components and a 

set of standard interfaces for any software component categorized as 

belonging to the tier; and

ii. a logically grouped set of a predetermined number of 

executable software components compliant with the tier framework, 

each software component further capable of communicating with at 

least one other software component.

2. The computing system of claim 1 further comprising a

communications network, operatively in communication with the processing unit,
584-25558-PC-SG - .
BAT-0004F-SG

45



the communications network selected from the group of networks consisting of local 

internal networks, local area networks, asynchronous networks, synchronous

networks, and wide area networks.

3. The computing system of claim 1 wherein communication between 

the software components comprises asynchronous communications.

4. The computing system of claim 1 further comprising an inventory of 

software components.

5. The computing system of claim 1 wherein the at least one extensible 

tier is a set of extensible tiers, further comprising a set of logical connections 

comprising sequencing and messaging information between a first one of the 

extensible tiers and at least one other tier of the extensible set of tiers, whereby each 

tier in the extensible set of tiers is capable of communicating with any other tier 

through one or more tier interfaces.

6. The computing system of claim 5 wherein the set of extensible tiers 

comprises a base tier comprising a base tier framework, the base tier framework 

comprising:

a. at least one collection interface for collecting software components, 

— —including software components which are normally aggregated into

other software components;

b. at least one connection interface for connecting software components 

as sources or sinks of information;
584-25558-PC-SG
BAT-0004F-SG

46



c. at least one messaging interface comprising message-based behavior;

and

d. at least one control interface for controlling devices.

7. The computing system of claim 5 wherein the set of extensible tiers 

comprises a business rules tier, a processing tier, a data tier, a messaging tier, a 

business objects tier, a visual tier, a base tier, a real-time device tier, an interceptor 

tier, and an application tier.

• · r ·

• · · ·

• «·

8. The computing system of claim 7 wherein the processing tier further 

comprises a framework comprising:

a. an interface capable of handling processing components associated 

with the processing tier;

, b. an aggregation interface to aggregate a predetermined number of 

software component attributes;

c. a query interface comprising a query modification interface; and

d. a predetermined number of windowed input/output parameters to 

satisfy processing tier requirements:

e. whereby a processing tier software component can manage process 

flows and monitor and/or optimize flow of data through a model.

9. The computing system of claim 8 further comprising a tracking" 

interface to track processing model filter requirements.

584-25558-PC-SG
BAT-0004F-SG

47



• · ··

« ·• »·««·• 4·

• « ··«*

10. The computing system of claim 9 wherein the processing 

components comprise filters, synchronization components, sources, sinks, and 

graphical components.

11. The computing system of claim 7 wherein the data tier comprises a 

data tier framework and provides data persistence services for a predetermined set of 

software components and access to data, the data tier framework further comprising:

a. a data modification interface whereby data may be written to and

read from a data source; and

b. a data access interface whereby access may be provided to specific 

types of data.

12. The computing system of claim 7 wherein the messaging tier further 

comprises a messaging tier framework and messaging software components to 

convey information from a source of messages to a recipient of messages, the 

messaging tier framework further comprising:

a. a message generation interface;

b. a message queuing interface;

c. a message routing interface;

d. a message text management interface;

e. a message routing interface whereby one or more software 

componentslhat will receive a message may be specified; and

f. a message queue interface whereby information about a specific 

queue may be specified;

584-25558-PC-SG
BAT-00tl4r-SG 48



g. wherein the messaging software components control message 

queuing and notification, and support message generation for 

different types of messages.

13. The computing system of claim 12 wherein the messaging tier 

interface supports asynchronous messaging.

• · · «
• · · ·

14. The computing system of claim 7 wherein the business components 

tier further comprises:

a. at least one business software component, the business software 

component comprising a general purpose data container providing

• storage for and access to information, the business software

component further encapsulating attributes comprising data and 

behavior for a business entity; and

b. a business software component framework, comprising:

i. a model comprising a collection of related business software 

components to reflect a real-world business entity; and

ii. a binary large object to allow storage of large amounts of data 

within the business software component.

15. The computing system of claim 14 wherein at least one business 

"software component has an attribute that is other business software component—

16. The computing system of claim 14 wherein the at least one business

software component is a composition defining a static model whereby the
584-2555S-PC-SG
BAT-0004 F-SG

49



relationship between the business software component and an attribute component is 

not an association enforced by business rules.

17. The computing system of claim 14 wherein the model further 

comprises a set of business software components model interfaces that the business 

software components aggregate to achieve specific functionality.

18. The computing system of claim 17 wherein the business software 

components model interfaces comprise:

a. an association interface whereby business software components may 

be associated with other software components;

b. a relationship interface whereby hierarchical relationships with other 

software components may be established and maintained;

c. a data dump interface whereby contents of a software component 

may be selectively retrieved; and

d. a name interface whereby persistable attribute names may be

retrieved.

19. The computing system of claim 7 further comprising a visual tier to 

provide display of and user interaction with information, the visual tier using a 

model, view, and controller design pattern comprising:

a. a modeler comprising data and computational logic to handle user 

interaction, the modeler further comprising an event handler, a 

connection source, and a connection sink;

5R4-25558-PC-SG
BAT-0004F-SG

50



····
····

• · ··
• · · ·

b. a viewer comprising data and computational logic to present at least a 

portion of a model perceptively to a requestor, the view component 

further comprising an event handler and a connection source; and

c. a controller comprising data and computational logic to handle 

requestor interaction, the requestor interaction further comprising 

actions from an input device, the controller component further 

comprising an event handler, a connection source, and a connection

sink;

d. wherein the modeler, the viewer, and the controller may utilize a 

messaging tier whereby each of the modeler, the viewer, and the 

controller can have one or more message handlers attached to 

provide additional behavior, the modeler and the controller having 

different message handlers attached to effect differing behavior.

20. The computing system of claim 19 wherein the visual tier further 

comprises:

a. a read-only mode, whereby the viewer can be specified to allow 

read-only access to the system: and

b. an editing mode, whereby users may edit models as well as view

them;

c. wherein an N-tiered application may selectively comprise either the

— read-only mode, the editing mode, or both on a user by user basis.

21. The computing system of claim 7 wherein the real-time device tier 

further comprises:
584-25558-PC-SG
BAT-0004F-SG

51



a. a communication interface; and

b. an event-handling interface;

c. whereby a real-time device can communicate with connected 

software components to support communication with and event 

handling for a real-time device.

• · · • · ·

22. A method for creating an extensible N-tiered software application for 

a system including at least one processing unit and at least one memory store 

operatively connected to the processing unit; the method comprising:

utilizing extensible N-tiered creation software, comprising a predetermined 

set of software component rules, tier rules, and application assembly rules, the 

N-tiered software being executable within the at least one processing unit;

employing an inventor}' of executable software components, each software 

component further comprising a given structure and an external interface and further 

capable of communicating with at least one other software component; and a 

predetermined set of initial extensible tiers capable of residing in the memory store, 

each tier of the predetermined set of extensible tiers having a given structure, the set 

of extensible tiers further comprising a logically grouped set of a predetermined 

number of the executable software components:

determining a set of application requirements;

for each of the set of application requirements, reviewing the inventor}' of 

software components for software components that match at least 

one of the set of application requirements;

for each application requirement in the set of application requirements for 

which a software component match does not exist in the software
5S4-2555S-PC-SG
BAT-0004F-SG

52



component inventory, obtaining a software component that does 

match that application requirement;

defining a set of tiers to logically model the application requirements; 

selecting tiers from the predetermined set of tiers to satisfy the defined set of

tiers;

for tiers not within the predetermined set of tiers needed to satisfy the 

defined set of tiers, creating new tiers;

associating each of the matching software components with at least one tier 

of the defined set of tiers according to a framework associated with

that tier; and

creating a software application by assembling the predetermined set of tiers 

according to the application assembly rules;

whereby the software application satisfies the set of application 

requirements.

23. The method of claim 22 wherein obtaining a software component 

that does match that application requirement further comprises selectively 

modifying an existing software component or procuring and selectively modifying a 

new software component from an independent source of software components to 

comply with a tier's framework requirements.

24. The method of claim 22 further comprising:

a. examining the obtained software components for incorporation into 

the software component inventory' according to predetermined incorporation 

criteria; and
584-25558-PC-SG
BAT-0004F-SG 53



b. storing the obtained software component in the software component

inventory if it meets the incorporation criteria.

25. The method of claim 22, wherein at least one of the software

components is a business software component, further comprising automatically 

retrieving composite software components along with an associated business 

software component when the associated business software component is retrieved 

from a persistent store.

26. The method of claim 22 wherein composite components are not 

created when a new business software component is created but instead where it is 

the responsibility of the creator to create a composite component and set it into the 

composing component.

·· ·

27. The method of claim 22 wherein software components and tiers are 

combined at run-time to form new, unique applications on-the-fly.

28. The method of claim 22 further comprising:

a. defining a testing tier;

b. testing a final model using the testing tier; and

c. correcting errors within the executable software components within

the final model.

29. The method of claim 22 wherein associating is accomplished using a

graphical user interface.
584-25558-PC-SG
BAT-0004F-SG

54



30. The method of claim 22 wherein creating new tiers further

comprises:

a. examining a requirement;

b. determining if a current framework is adaptable to accommodate the

c.

requirement;

using the current framework if it is adaptable to accommodate the

d.

requirement;

defining a new framework to accommodate the requirement is no

e.

current framework is adaptable or otherwise accommodates the

requirement; and

creating a new tier with the new framework.

•• · ··•···· 31. The method of claim 22 further comprising removing a tier, the step
····•····• · · ·

comprising:
• ·• ·· ·• ·• · ·• · ·

a. examining current requirements;
• · · ·• · ·• · ·• · ·• ·

b. for each current tier, determining if at least one other tier satisfies the

requirements;
• · »·•····• · · ·« ·

c. if so, combining those tiers;
• ·····• · ·• · ·• · ·

d. for each remaining tier, determining if the tier is no longer needed to
• · ·• · · ·• ·• ·• · · ·

satisfy at least one requirement; and
• · ·• · ·• · ·-r ·· e. —if so, remove the no longer needed tier.

• ·

32. The method of claim 22 further comprising defining an initial set of

tiers.
584-2555S-PC-SG
BAT-0004F-SG 55



33. The method of claim 32, wherein the initial set of tiers comprise a

business rules tier, a processing tier, a data tier, a messaging tier, a plotting tier, a

business objects tier, a visualization tier, a base tier, a real time device tier, an

interceptor tier, and an application tier.

• ••ft • •ft·

··♦·

34. The method of claim 33 wherein defining a business rules tier 

framework further comprises:

a. defining a set of business rules;

b. defining a predetermined set of properties and methods which can be 

used to determine whether a first software component violates the 

business rules by being associated with a second software

component;

c. defining a predetermined set of properties and methods which can be 

used to determine a type of each associated child software component;

d. defining a predetermined set of properties and methods which can be 

used to determine a type of each associated parent software 

component; and

e. defining a predetermined set of properties and methods which can be 

used to determine whether a first software component having a 

specific type violates the business rules by being associated with a 

second software component having a specific type.

35. The method of claim 33 further comprising allowing building of

business software components as general purpose, reusable data containers,
584-25558-PC-SG
BAT-0004F-SG

56



whereby data and behaviors in a business software component are hidden from other 

software components, other components are kept from having to know the business 

software component's internal structure and implementation details, and data 

integrity checks are allowed to occur at the business software component level.

36. The method of claim 35 further comprising collecting business 

software components into a heterogeneous collection model that represents a 

real-world business entity.

37. The method of claim 35 wherein collecting business software 

components uses a generalized collection interface to collect other business software

components.

38. The method of claim 33 further comprising specifying a framework 

for the real-time device tier to support communication with and event handling for at 

least one real-time device, the framework comprising properties and methods that 

support a predetermined communication interface and a predetermined 

event-handling interface whereby a real-time device can communicate with 

connected software components.

39. The method of claim 33 wherein the interceptor tier comprises 

properties and methods to allow interception and control of messages passed 

between software components or calls to a software component's interface, whereby 

an intercepted message or interface call may be validated, interrogated, and acted

upon by callbacks registered with the interceptor tier before the intercepted message
584-25558-PC-SG
BAT-0004F-SG

57



or interface call is transmitted to a target software component, allowing validation

and control of the disposition of the message or call to the software component's

interface to occur without modifying a source or the target software component.

40. The method of claim 39 further comprising:

a. specifying a method for registering a callback with the interceptor;

b. specifying a method for canceling registration of a callback; and

c. specifying a method for creating an instance of a software

component.

41. The method of claim 33 further comprising:

a. specifying a method within the application tier for creating 

applications that use asynchronous behavior;

b. specifying how software components are created and registered; and

c. specifying how service components are connected;

d. whereby dependencies and communication links are established 

before an application begins responding to events.

• · · ·

« · ·

42. The method of claim 33 further comprising specifying a wizard tier 

comprising one or more wizards developed for frameworks to insure that proper 

framework interfaces are implemented for a software component associated with a 

tier, whereby the wizard tier may be used~during a development process.

43. The method of claim 33 further comprising:

a. specifying a set of rules and required activities for the testing tier; and
584-2555R-PC-SG
BAT-0004F-SG c „



b. using the rules and required activities to define acceptable tests of a 

software component;

c. wherein the rules and activities comprise at least one test harness to 

run a test script and store test results, whereby the test harness 

inspects a software component associated with f a framework to 

insure that the software component has implemented all the required

interfaces for that framework and that the interfaces function

properly.

44. The method of claim 43 wherein the rules and required activities are 

defined by and derived from the requirements for developing a software component.

45. The method of claim 33 further comprising providing a template tier,

the template tier comprising templates comprising predetermined software language 

implementations of persistence, collections, and iterators for software components 

within the template tier, whereby the templates are used in component 

implementation to facilitate the implementation of predetermined functionality and 

to reduce the maintenance effort for extending the functionality of components.

46. A method for generating an application comprising software 

components, each software component having a given structure, comprising:

a. determining an application's system requirements;

b. with the-system requirements, creating .one or more tiers from an 

initial set of tiers to create a model design, each tier being responsible 

for providing a discrete set of application programmatic

584-25558-PC-SG
BAT-0004F-SG 59



··*«··»·• «

···· ·· «

• · ··

responsibilities, until all the tiers collectively satisfy the application's 

system requirements;

c. for each tier, creating a framework, comprising:

i. defining an architect context for software components to be 

associated with that tier, comprising specifying a basic design 

structure, including base components, of that tier;

ii. defining a logical grouping of executable software 

components to be associated with that tier to implement the 

tier; and

iii. specifying a set of standard interfaces for any software 

component categorized as belonging to that tier;

d. for each framework:

i. checking each required software component for existence in 

an inventory of software component components;

ii. selecting for use within a tier software components within 

each framework that are also present in the inventory' that 

satisfy the framework; and

iii. for each required software component not present in the 

inventory, obtaining a software component to satisfy the 

requirement;

e. for each tier:

i. assembling all software-component components associated 

with the tier into that tier; and

584-25558-PC-SG
BAT-0004F-SG 60



ii. defining the sequencing and data relationships between that 

tier and each other tier with which that tier needs to be

sequenced or exchange data; and

f. packaging all the tiers that collectively satisfy the application's 

system requirements into an invocable application.

47. The method of claim 46 further comprising:

a. defining a testing tier;

b. testing the invocable application using the testing tier; and

c. correcting errors within the invocable application.

48. The method of claim 46 wherein defining the sequencing and data 

relationships between that tier and each other tier with which that tier needs to be 

sequenced or exchange data are accomplished via a graphical user interface.

49. A computer program embodied within a computer-readable medium 

created using the method of claim 22.

50. A computer program embodied within a computer-readable medium

·· created using the method of claim 46.
♦

Baker Hughes Incorporated 
by its Registered Patent Attorneys 
Freehills Carter Smith Beadle

17 August 2004

61



WO 01/48603 PCT/US00/35466I/I7

FIGURE 1



WO 01/48603
2/17

PCT/US00/35466

FIGURE 2



WO 01/48603
3/17

PCT/USOO/35466

FIGURE 3



WO 01/48603 PCT/US00/35466
4/17

VO

Specify software 
component rules

Rules on software component behavior, 
programmatic interfaces, extending and 
manipulating software components, 
encapsulation, interfacing, data transfer i

O
)

Rules on association, software component 
manipulation, tier manipulation and 
extension, framework

Specify assembly 
rules

FIGURE 4



WO 01/48603 PCT/US00/35466
5/17

FIGURE 5



WO 01/48603 PCT/US00/35466
6/17

FIGURE 6



PCT/US00/35466
WO 01/48603

7/17



8/17
WO 01/48603 PCT/US00/35466



PCT/US00/35466
WO 01/48603

9/17



PCT/US00/35466
WO 01/48603

10/17



PCT/US00/35466
WO 01/48603



PCT/US00/35466WO 01/48603
12/17



PCT/US00/35466
WO 01/48603

13/17

Λ



PCT/US00/35466
WO 01/48603

14/17



PCT/US00/35466
WO 01/48603

15/17



PCT/US00/35466WO 01/48603
16/17

O

<·■
I

Y

Fu, lb



PCT/USOO/35466
WO 01/48603

17/17


