(11) Application No. AU 2004264626 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Transparent session migration across servers
(51)2 International Patent Classification(s)

GO6F 9,50 (2006.01) 29-06
HO04L 29,06 (2006.01) 20060101AL12005100

HO04L 29,08 (2006.01) 8BMEP H04L
GO6F 950 2908
20060101AFI 2005100 20060101AL12005100
8BMEP H04L 8BMEP
PCTUS2004-026445
(21) Application No: 2004264626 (22) Application Date: 2094 08 13

(87) WIPO No: wops.,017750

(30) Priority Data

(31 Number (32) Date (33) Country
10,918,055 2004 08 12 us
60,500,096 2003 .09 03 us
60,495,368 2003 08 14 us
10,917,873 2004 08 12 us
60,601,346 2004 .08 .12 us
10,917,953 2004 08 12 us
60,601,259 2004 08 12 us
60,500,050 2003 .09 03 us
60,601,250 2004 08 12 us

(43) Publication Date : 2005 02 24

(1) Applicant(s)
Oracle Internaticnal Corporation

(72) Inventor(s)

Chatterjee, Debashish, Kaluskar, Sanjay. Gollapudi, Sreenivas

(74) Agent/Attorney
PIZZEYS, Level 14, ANZ Centre 324 Queen Street, Brisbane, QLD, 4000

(56) Related Art
us 6601101
us 6041357
us 2002-0161896
us 5951694

[ag]
<
>
v
~
~
—
il
S~
v
>
=
o
g

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATE

(19) World Intelleetual Property
Organization
Tnternational Burcau

(43) International Publication Date
24 February 2005 (24.02.2005)

PCT

T COOPERATION TREATY (PCT)

0 OO O 0

(10) International Publication Number

WO 2005/017750 A3

(51) International Paleni Classilication’:

TI04L 29/06

(21) International Application Number:
PCT/S2004/026445

GOGF 9/50,

(22) International Filing Date: 13 August 2004 (13.08.2004)

(25) Tiling Language:

(26) Publication Language:

(30) Priority Data:
60/495,368
60/500,096
60/500,050
101917,953
10/917,873
10/918,055
60/601,346

Lnglish

English

14 August 2003 (14.08.2003) US

3 September 2003 (03.09.2003) US
3 Seplember 2003 (03.09.2003) TS
12 Auguost 2004 (12.08.2004) US
12 August 2004 (12.08.2004) US
12 August 2004 (12.08.2004) US
12 August 2004 (12.08.2004) US

7

(72)

(75)

74

(81)

60/601,250 12 August 2004 (12.08.2004) US
60/601,259 12 August 2004 (12.08.2004) US
Applicant (for all designared States except US): ORACLE

INTERNATIONAL CORPORATION [US/US]; 500 Or-
acle Parkway, Redwood Shores, CA 94065 (US).

Inventors; and

Inventors/Applicants (for US only)i KALUSKAR,
Sanjay [IN/USJ; 2111 Latham Sweet, #323, Mountain
View, 94040 (US). GOLLAPUDI, Sreenivas [IN/US]:
10389 Bonny Drive, Cuperlino, CA 94014 (US). CHAT-
TERJEE, Debashish [IN/US]; 39610 Benavente Avenue,
Fremonl, CA 94539 (US).

Agent: BINGHAM, Marcel, K.; Hickman Palermo
Truong & Becker LLP, Suite 550, 2055 Gatcway Place,
San Jose, CA 95110-1089 (US).

Designaled Stules (unless otherwise indicated, for every
kind of national protection available): AL, AG, Al,, AM,

[Continued on next page]

(54) Title: TRANSPARENT SESSION MIGRATION ACROSS SERVERS

SOURCE CLIENT DEST
) Vigrdon rquest o
igrate st of scssicns.

408 Ruceise

migtaion :

request,

A0 Reseivn sl (g G

cliert and fransT.t

segot msg.

420 Perfonn migraton

chesks,

425 5ond) Propaioloigrte ALLMEHeSIRSL,) TeaCes s

oare. DRI sesslor. T
PIOBRIC 0 oot for et | 430 Estadish dest.
nigrate mess. session and migration

3) Prepare-to-Migrate

channgl (o sourge

Instance. Sand dest -

S36Re0ENR 1T (5) Dt oy 200V OSSR
(migraton chanel and transni: -+
(migration channel ol .
informtion) prepane-emigh i agaion channel
msg. information)
440 Transmt sessior: {7 Sessien State 145 Receive sessicn
stato via shadow e va migraton
eont channel.
450 Upon complaticr
of session siat>
franafer, send swich 455 Client s7as session or
message. i sorce end begins fo use
(3) Sitch session on deskination, and seads
_> end-o*-migraton message.
End-stinig-ation (8)
+—

(57) Abstract: Techniques allow a client to be
switched from a session on a server to another
session on another server in a way that is a
transparent to the application for which the initial
scssion was cstablished. Thus, under transparent
session migration, a client is switched between
sessions without exccuting application instructions
tailored 1o accomplish the migration. Instead, a
client-side interface component, through which the
application interacts with the server, handles details
of migration, modifying the internal state of the
client-side interface component to effect the same.
Legacy applications do not have to be modified in
order to institute techniques described herein.

WO 2005/017750 A3

0 0O

(34)

AT, AU, AZ. BA, RR, BG, BR, BW, RY, B7, CA, CIT,CN,
€O, CR, CU, CZ, DI, DK, DM, DZ, 1C. LI, LG, US, 17
GB, G, GI, GH, GM, HR, HU, 1D, 11, 1N, 1S, JP, KI},
KG, KP, KR, K7, 1.C, LK, TR, .S, 1T, LU, TV, MA, MD,
MG, MK, MN, MW, MX, M, NA, NI, NO, NZ, OM, PG,
PH, PI, PT, RO, RU, SC, SD, ST, SG, SK, SL, SY, TJ, T™,
TN, TR, TT, TZ, UA, UG, 118, UIZ, VC, VN, YU, 7A, 7M,
7W.

Designated States (undess otherwise indicated, for every
kind of regional protection available)s ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ. MD, RU, TJ, TM),
Huropean (A1, BE, BG, CH, CY, CZ, DK, DK, EE, ES, H,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SL,

SK, TR), OAPT (RF, BI, CF, CG, CT, CM, GA, GN, GQ,
GW, ML, MR, NLi, SN, TDD, 1G).

Published:

— with international search report

— hefore the expiration of the time limit for amending the
claims and to be vepublished in the event of receipt of
amendmenis

(88) Date of publication of the international search report:
13 October 2005

For iwo-letier codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing al the begin-
ning of each regular issue of the PCI Gazette.

2004264626 02 Oct 2009

TRANSPARENT SESSION MIGRATION ACROSS SERVERS

RELATED APPLICATIONS

[0001} The present invention relates to capturing and restoring sessions state to
perform such tasks as transferring sessions between servers to balance work load in a
multi-node computer system.

[0002] The present application claims priority to U.S. Provisional Application No.
60/495,368, Computer Resource Provisioning, filed on August 14, 2003, which is
incorporated herein by reference.

[0003] The present a;pplication is related to the following U.S. Applications:

[0004] U.S. Application No. 10/917,953, Transparent Session Migration Across
Servers |, filed by Sanjay Kaluskar, et al. on August 12, 2004, (now Pat. No. 7,552,218)
and incorporated herein by reference;

[0005] U.S. Application No. 10/917,873, Hierarchical Management of the Dynamic
Allocation of Resources in a Multi-Node System , filed by Benny Souder, et al. on August
12, 2004, (now Pat. No. 7,516,221) and incorporated herein by reference;

[0006) U.S. Application No. 10/918,055, Incremental Run-Time Session Balancing in
a Multi-Node System filed by Lakshminarayanan Chidambaran, et al. on August 12,
2004, (now Pat. No. 7,552,171) and incorporated herein by reference;

[0007) U.S. Provisional Application No. 60/601,346, entitled Suspending A Result Set
And Continuing From A Suspended Result Set For Transparent Session Migration (
Applicant Docket No. OID-2004-043-01), filed August 12, 2004, later published as
2006/0036617 and incorporated herein by reference;

[0008] U.S. Provisional Application No. 60/601,250, entitled Suspending A Result Set

And Continuing From A Suspended Result Set (Applicant Docket No. OID-2004-043-

50277-2593 (OID 2003-285-01-PCT)

2004264626 02 Oct 2009

02), filed on August 12, 2004, later published as 2006/0059176 and incorporated herein

by reference; and

[0009] U.S. Provisional Application No. 60/601,259, entitled Suspending 4 Result Set
And Continuing From A Suspended Result Set For Scrollable Cursors (Applicant Docket
No. OID-2004-043-03), filed on August 12, 2004, later published as 2006/0036616 and
incorporated herein by reference.

[0010] The present application is related to the following International Applications;
[0011] International Application No. PCT/US2004/026398, entitled Automatic and
Dynamic Provisioning of Databases , filed on August 9, 2004 by Oracle International
Corporation at the United States Receiving Office, published as WO 2005/017783 and
which is incorporated herein by reference;

{0012} International Application No. PCT/US2004/026389, Hierarchical
Management of the Dynamic Allocation of Resources in a Multi-Node System , filed on
August 13, 2004 by Oracle International Corporation at the United States Receiving
Office, published as WO 2005/017883 and which is incorporated herein by reference;
[0013] Intemnational Application No. PCT/US2004/026570, Transparent Migration of
Stateless Sessions Across Servers , filed on August 13, 2004 by Oracle International
Corporation at the United States Receiving Office, published as WO 2005/018203 and
which is incorporated herein by reference; and

{0014] International Application No. PCT/US2004/026405, On Demand Node and
Server Instance Allocation and De-Allocation, filed on August 13, 2004 by Oracle
International Corporation at the United States Receiving Office, published as WO

2005/017745 and which is incorporated herein by reference.

50277-2593 (OID 2003-285-01-PCT)

WO 2005/017750 PCT/US2004/026443

BACKGROUND OF THE INVENTION

[0015] Many enterprise data processing systems rely on multi-node database servers
to store and manage data. Such enterprise data processing systems typically follow a
multi-tier mode] that has a multi-node database server in the first tier, and one or more
computers in the middle tier and outer tiers.

[0016] FIG. 1 depicts multi-node database server mds11, which is implemented on
mulii-tier architecture 10. A server, such as multi-node database server mds11, is a
combination of integrated software components and an allocation of computational
resources, such as memory, a node, and processes on the node for executing the
integrated software components on a processor, the combination of the software and
computational resources being dedicated to performing a particular finction on behalf of
one or more clients. Resources from multiple nodes in a multi-node computer system can
be allocated to run a particular server's software. A partticular combination of the software
on anode and the allocation of the resources from the node is a server that is referred to
herein as a server instance or instance. Thus, a multi-node server comprises multiple
server instances that can run on multiple nodes. Several instances of a multi-node server
can even run on the same node.

[0017] A database server governs and facilitates access to a particular database,
processing requests by clients to access the database. A multi-node database server, such
as multi-node database server mds11, comprises multiple "database instances", each
database instance running on a node. Multi-node database server mds11 governs access to
database db11. A multi-node database server can govern and facilitate access to one or
more databases.

[0018] The middle-tier of multi-tier architecture 10 includes middle-tier computer

cmpl1 and the outer-tier includes user computer cmp12. User computer cmp12 executes

3-

WO 2005/017750 PCT/US2004/026443

browser brl1, which interacts with an end-user. The end-user's interaction with browser
brl1 causes the browser to transmit requests over a network, such as the Intcmet, to
middle-tier computer cmp11. The request causes a process on middle-tier computer
cmpl1, client 11, to execute application appl11. Execution of application appl11 by the
client c11 causes client ¢11 to connect to mulii-node database server mds11. For example,
application appl11 may be an order entry application that is configured to receive order
requests from browser brl1. Data for the order entry application is stored in db11. To
process the requests, execution of application appl11 by client c11 causes client c11 to
connect to database db11. Once connected, client c11 issues database statements to
retrieve und manipulate data stored in database db11.

[0019] The tier that directly connects to a server, relative to other tiers in a multi-tier
architecture, is referred to herein as containing the client of the server. Thus, client
process cl1 is referred to herein as the client of multi-node database server mds1l.
[0020] An application, as the term is used herein, is a unit of software that is
configured to interact with and use the functions of a server. In general, applications are
comprised of integrated functions and software modules (e.g. programs comprised of
machine executable code or interpretable code, dynamically linked libraries) that perform
a set ol related functions.

[0021] An application, such application applll, interacis with a multi-node database
server mds11 via client-side interface component intcomp11. Execution of application
appl11 causes client c11 to execute client-side interface component intcomp11 to interact
with multi-node database server mds11. Application appl11 includes invocations of
routines (e.g. functions, procedures, object methods, remote procedures) of cli ent-side

interface component intcomp11. Applications are typically developed by vendors and

WO 2005/017750 PCT/US2004/026443

development teams different from those that develop servers and interfaces to servers,
such as multi-node database server mds11 and client-side component intcomp11.

[0022] In order for a client to interact with multi-node database server mdsl1, a
session is established for the client on a database instance of multi-node database server
mds11. A session, such as a database session, is a particular connection established for a
client to a server, such as a database instance, through which the client issues a series of
requests (e.g., requests for execution of database statements).

[0023] For each database session established on a database instance, session state is
maintained for the session. Session state includes the data stored for a database session
for the duration of the database session. Such data includes, for example, the identity of
the client for which the session is established, and temporary variable values generated by
processes and database components executing software within the database session. A
database component is a set of software modules that provide specialized and related
functions for a database server, and shall be dcscribed‘ later in greater detail. An example
of a database component is a Java execution engine.

[0024] The beginning and end of a session demarcates a unit of work. Often, the
beginning of a database session corresponds to an end-user establishing an interactive
session with an application via, for example, a browser, and ends when the end-user logs
off. Thus, the beginning and ending of the database session depend on application logic
and end-user action, and may not be controlled by a server on which the session is

established.

Client-side Interface Components
[0025] Client-side interface components, such as client-side interface component
intcomp11, arc software components that reside and are executed on the same computer

of a client of a server, and that are configured to provide an interface between the client
-5

WO 2005/017750 PCT/US2004/026443

and the server. The client-side interface component intcomp11 is configured for
performing the detailed operations needed to interface with multi-node database server
mds11. For example, an application appl11 invokes a function of client-side interface
component intcomp11 to establish a connection to multi-node database server mds11. The
client-side interface component then handles the details of a connection on a particular
instance of multi-node databasc server mds11. To make requests of multi-node database
server mds11, such as a request for execution of a query, application appl11 is configured
to invoke functions of client-side interface component intcomp11, which then transmits a
request for the same to the node and database instance on which the session is established.
[0026] Client-side interface component intcomp11 may generate and/or access state
that is hidden from other software modules, that is, is not or may not be referenced and
accessed by other software modules, and in particular, by application appll1. Such state is
referred to as being internal or private to client-side interface component intcomp11.
[0027] For example, to create a database scssion on a multi-node database server
mds11, application appl11 invokes a routine of client-side interface cornponent
intcomp11. The client-side interface component establishes a database session on a
particular database instance within multi-node database server mds11, and stores details
about the database session within internal data structures or objects. Such data structures
and objects define, for example, the session established for an application, and specify
such values as an identity of a session on a database instance, the name of the database
instance, and a network address and port number for the connection to the database
instance.

[0028] Such details of the session are not returned to application appl11, nor may
application appl11 access the details. Instead, what is provided to application appl11 is an

"external identifier" for the session, such as a value that internal data of client-side

-6-

WO 2005/017750 PCT/US2004/026443

interface component intcomp11 maps to the session, or a reference to an object generated
by client-sidc interface component intcomp11 to store some details of the session in
private attributes of the ij ect that are inaccessible to application appl11. In this way,
application appl11 does not "know" of the specific details of the session that has been
established for it; however, application appl11 has the information needed to be ablc to
identify to client-side interfacc component intcomp11 the particular session that has been

established for application appl11.

Distributing Workload

[0029] Animportant capability needed to manage nulti-node database servers is to
distribute work load between the nodes. Distributing work load is used to improve
performance, by optimally balancing workload between nodes. Distributing workload
also allows work to be shifted from a node that is being taken off-line for maintenance
operations to another node.

[0030] To improve performance, work load on a multi-node database server is
distributed using connection-time balancing. Under comnection-time balancing, work load
is distributed at connection-time, when a database session for a client is created.
Speciﬁcally, when a client requests to establish a database session on a multi-node
database server, the session is placed on an instance or node based on work load
considerations. For example, a client transmits a request for a session to a multi-node
database server. The multi-node database server determines that a node is less busy than
other nodes, and establishes a session for the client on that node.

[0031] A drawback to connection-time balancing is that it cannot rebalance existing
sessions; it only balances sessions when they created. The work load created by existing

sessions cannot be shifted and does not abate until a client, on its own accord, reduces or

-

-10-

WO 2005/017750 PCT/US2004/026443

ceases to make requests and/or terminates the sessions. As a result, the timing of work
load shifting is subject to events not under the control of a multi-node database server.
[0032] Based on the foregoing, it is clearly desirable to provide a way to shift work

load of clients of sessions after the sessions have been created.

-8-

11-

WO 2005/017750 PCT/US2004/026443

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

[0034] FIG. 1 is a block diagram of a multi-tier architecture for a computer system
[0035] FIG. 2 is a block diagram showing a multi-node computer system on which an
embodiment of the present invention may be implemented according to an embodiment of
the present invention. »

[0036] FIG. 3 is a block diagram depicting a client, source database instance, and
destination database instance that participate in migrating a session according to an
embodiment of the present invention.

[0037] FIG. 4 s an entity-interaction diagram showing a protocol for migrating
scssions between servers according to an embodiment of the present invention.

[0038] FIG. 5 is a block diagram depicting migration criteria and its use to determine
whether to migrate a session according to an embodiment of the present invention.

[0039] FIG. 6 is a block diagram depicting database components that use a portion of
a session state of sessions according to an embodiment of the present invention.

[0040] FIG. 7is a stage-transition diagram depicting stages of session migration
according to an embodiment of the present invention.

[0041] FIG. 8 shows various components of an extensible framework for database
components responsible for capturing and loading session state of sessions according to
an embodiment of the present invention.

10042] FIG. 9 is a block diagram of a computer system that may be uscd to implement

an embodiment of the present invention.

9.

-12-

WO 2005/017750 PCT/US2004/026443

DETAILED DESCRIPTION OF THE INVENTION

[0043] Approaches that may be used to transfer sessions in a multi-node environment
are described. In the following description, for the purposes of explanation, numerous .
specific details are set forth in order to provide a thorough understanding of the present
invention. Tt will be apparent, however, that the present invention may be practiced
without these specific details. In other instances, well-known structures and devices are
shown in block diagram form in order to avoid unnecessarily obscuring the present
invention.

[0044] Described herein are techniques that allow a client to be switched from a
session on a server to another session on another server in a way that is a transparent to
the application for which the initial session was established. The term migrate refers to an
operation in which a client of an existing session on a server is switched from the existing
session to another the session, allowing the existing session to be terminated and the
client to use the other session in lieu of the existing session. The existing session is
referred to herein as having been migrated. The term "transparent” refers to performing an
operation in a way that, with respect to a unit of software, does not require execution of
instructions in the unit that are tailored to perform the operation. Thus, under transparent
session migration, a client is switched between sessions without executing application
mstructions tailored to accomplish the migration. Instcad, a client-side interface
component, through which the application interacts with the server, handles details of
migration, modifying the internal state of the client-side interface component to effect the
same. Legacy applications do not have to be modified in order to institute techniques

described herein.

-10-

13-

WO 2005/017750 PCT/US2004/026443

[0045] In transparent migration session, a session is transparently migrated from a
"source” server to a "destination” server. In this way, existing sessions can be balanced
belween servers to improve performance and resource availability.

[0046] To migrate a session, the session's state is captured and restored. Capturing a
session's state entails producing a stream of bytes, as a veritable copy of a session state of
the session, that can be stored in an objcet, file, or other type of data structure and later
accessed to restore the session. Under transparent session migration, the session of a
client is captured on a source server, producing a stream of bytes that is stored in a data
structure and transported to the destination server, where the destination server restores
the session by loading the stream of bytes into a session on the destination server that was
established for the client.

[0047] The participants of session migration may include a client on a computer, a
source server and a destination server, each located on a different node in a multi-node
system. The participants follow a variation of a protocol that allows session migration to
occur transparently to an application or other software module for which the session was
established. Hence, the protocol is referred to as a transparent session migration protocol.
The protocol allows recovery processing if any session migration operations fail.

[0048] According to an embodiment, session statc can be viewed as a union or
combination of "component session states”. A component session state is specifically
generated and used by a database component. Session state can be a combination of
complex component states; developing software that generates and restores a copy of a
component session state is equally complex. Described herein is an extensible framework
that facilitates the development and deployment of such software. The extensiblc

framework defines an interface for callback functions that are invoked to capture and

11-

-14-

WO 2005/017750 PCT/US2004/026443

restore component session state, and to determine whether a component session state
permits a session to be migrated.

[0049] While the extensible framework is illustrated using session migration, the
framework is not limited to this use. It can be applied to any use in which session state is

captured, stored, and than later restored for a session.

Tllustrative Computer System

[0050] FIG. 2 shows a multi-node computer system that may be used to implement an
embodiment of the present invention. Referring to FIG. 2, it shows database cluster
dbc20. A database cluster is a set ol nodes that host 2 multi-node databasc server, such as
multi-node database server mds20, that manages access o a particular database. Database
cluster dbc20 includes nodes nd21, nd22, nd23, and nd24. The nodes of database cluster
dbe20 provide some degree of shared storage (e.g. shared access to a set of disk drives)
between the nodes. The nodes in database cluster dbe20 may be in the form of computers
(e.g. work stations, personal computers) interconnected via a network, and may be part of
a grid. Database server mds20 includes database instances inst21, inst22, inst23, and
inst24.

[0051] Clients that connect to a database instance that is part of a multi-node database
sarver to aceess the database managed by the database instance, are referred to herein as
clients of the database instance, clients of the multi-node database server, or clients of the
database. For example, a process on a computer not part of database cluster dbc20
executes an application and is connected to databasc instance inst23 to access database
db20. The process is referred to as a client of database instance inst23, a olient of multi-
node database server mds20, and a client of database db20.

[0052] Work load manager wm?20 is a process running on database cluster dbc20, and

in parﬁcular, instance inst21, that is responsible for managing work load on the database

12

-15-

WO 2005/017750 PCT/US2004/026443

instances hosted on database cluster dbc20. An example of a work load manager is a
database director, described in Incremental Run-Time Session Balancing, which performs
run-time session balancing by migrating one or more sessions from a source database

instance to a destination database instance,

Sessions Established for Clients by a Listener

[0053] In order for a client to interact with multi-node database server mds20, the
client transmits a database connection request to establish a session on a database
instance. A listener receives the request. A listener is a process running on database
cluster dbc20 that receives requests and directs them to a database instance within
database cluster dbc20.

[0054] Once the database session is established for the client, the client may issue
additional requests, which may be in the form of remote procedure invocations, and
which include requests to begin execution of a transaction, to execute queries, to perform
updates and other types of transaction operations, to commit or otherwise terminate a

transaction, and to terminate a database session.

Tlustrative Client and Source and Destination Instance

[0055] FIG. 3 is a block diagram showing an illustrative client and source and
destination instance used to illustrate transparent session migration according to an
embodiment of the present invention. Referring to FIG. 3, it shows database instance
inst22 and inst24 as source instance inst22 and destination instance inst24. Client c130 is a
process that is running on a client computer cmp30. Client computer cmp30 is a computer
that is separate from any node in database cluster dbc20 and that hosts one or more

database clients of database cluster dbc20, including client c130. Clients hosted by client

13-

-16-

WO 2005/017750 PCT/US2004/026443

computer cmp30 include processes that execute an application, such as application
appl30, which is executed by client ¢130.

[0056] Application appl30 interacts with database cluster dbc20 and multi-node
database server mds20 via client-side interface component intcomp30. Application appl30
includes invocations of routines (e.g. functions, procedures, object methods, remote
procedures) of client-side interface component intcomp30. An cxample of a client-side
interface component is the Oracle Call Interface ("OCI"), available from Oracle
Corporation.

[0057] For purposes of exposition, software modules, such as application appl30, are
described herein as performing particular actions, when in fact execution of the software
by a process causcs the process to perform those actions. For example, when an
application appl30 is described as transmitting or receiving a message or accessing data, a
process executing the application software is transmitting or receiving the message or

accessing the data.

Calls

[0058] A callis arequest made by a client to a server to execute a task. Typically, a
call is made by a process executing an invocation of a routine in a software module. The
invocation causes the process to execute the routine (such execution may itself entail
calling and executing other routines), and then to return to execute the module to a point
at or just beyond the invocation (or some other designated point e.g. exception handler).
[0059] A call may entail passing in one or more inpuf parameters to the invoked
routine and returning values as one or more output parameters, Messages may be
transmitted as part of an input parameter and part of an output parameter. A call fo 2

datahase instance typically is made to perform a task, such as executing a database

.14~

17-

WO 2005/017750 PCT/US2004/026443

statement. A message transmitted by the call may include a query suing as an input
parameter, and query results or a reference to their location as an output parameter.

[0060] A remote procedure call is a call of a routine made by a process in which
another process, on the same or different node and/or computer, executes the called
routine. The other process is referred to as the remote process. The call is made by
transmitting a request to execute a routine to another process over a communication
connection, such as a network connection. Also, input parameters and output parameters
are transmitted over the connection. While the remote process executes the procedure, the
calling process's execution is suspended or blocked.

[0061] A call causes the calling process or remote process to execute the called
routine, which may cause calling and execution of other routines. The call terminates
when the call returns. Operations, which are carried out as part of execution of a called
Toutine, are referred as being made within the call.

[0062] Tor example, to make a call to database cluster dbc20, application appl30
makes a call of a function of client-side interface component intcomp30. In response to
the invocation, client-side interface component intcomp30 executes the call, which entails
client-side interface component intcomp30 modifying and accessing "local" data stored in
the memory of client computer cmp30 by client-side interface component intcomp30, and
client-side interface component intcomp30 making multiple remote procedure calls to
source instance inst22, the multiple remote procedure calls including a first remote
procedure call and a second remote procedure call. In response to the first remote
procedure call, source instance inst22 performs various operations. The modification and
access of the local data, the multiple remote procedure calls, and the various operations
performed by source instance inst22, are referred to as being performed within the

"application call" made by application appl30. The various operations performed by

-15-

18-

WO 2005/017750 PCT/US2004/026443

source instance inst22 while executing the routine invoked by the first remote procedure

call (which may entail execution of other routines) are referred to herein as being made

within the first remote procedure call, within a client-side call because the first remote
procedure call was made by the client-side interface component intcomp30, and within an
application call because the remote procedure call was made by client-side interface
component intcomp30 while executing a routine called by application appl30. An

application call or client-side call may both be referred to herein as a client call.

Transparent Session Migration Protocol

[0063] FIG. 41is un entity-interaction diagram used to illustrate a protocol for
transparent session migration. The protocol is illustrated using client ¢130, source instance
inst22, and destination instance inst24 as participants in the protocol. The protocol is
initiated by a migration initiator, which is an entity that determines and/or requests that a
set of sessions is to be migrated. For example, work load manager wm20 may determine
that a set of sessions be migrated from source instance inst22 to destination instance
inst24 to shift work load from source instance inst22 to destination instance inst24. Work
load manager wm20 generates a request to migrate the set of sessions. Work load
manager wm?20 requesting migration of sessions to shift work load between database
instances is just one example of an entity and purpose for requesting session migration;
there may be other types of entities that request that a set of sessions be migrated for other
types of purposes. For example, an entity responsible for shutting down a database
instance may migrate all sessions currently being hosted by the database instance so that
the database instance may be shut down.

[0064] At step 405, source instance inst22 receives migration request 2, which is a
request to migrate a list of one or more sessions, The request is transmitted from a session

migration initiator, such as work load manager wm20. A session selected or otherwise

-16-

-19-

WO 2005/017750 PCT/US2004/026443

designated for session migration is referred to herein as a selected session. For purposes
of illustration, the list of sessions to migrate includes only one selected session, source
session sess30 (see FIG. 3).

[0065] At step 410, source instance inst22 waits for a call from a client for source
session sess30 and intercepts the call to send select message 3 to the client. The call is
referred o as being intercepted because although the call is being used to effect some
action reiated to session migration, an action such as sending select message 3, the call
was made for some purpose other than to effect such action, such as requesting execution
of a query. The output parameters returned to the client include "output data structures”
that may have mulliple altributes. Source instance inst22 transmits select message 3 by
setting one or more the attributes of the output parameters to a particular value.

[0066] At step 420, source instance inst22 performs migration checks, that is,
determines whether migration criteria are satisfied. 1f the migration critetia are satisfied,

then execution of the protocol proceeds to step 425.

Migration Criteria

[0067) FIG. 5 is a block diagram depicting use of three kinds of migration criterion
according to an embodiment. Referring to FIG. 5, at block 510, it is determined whether
source session sess30 is at a transaction boundary; at block 520, it is determined whether
source session sess30 is at a call boundary; at block 530, it is determine whether source
session sess30 is at a component boundary.

[0068] A sessionis al a transaction boundary if there are currently no active
transactions being executed for the session. A transaction is a logical unit of work that is
performed as an atomic unit. In the context of database systems, the database must reflect
all the changes made by a transaction, or none of the changes made by the transaction to

ensure of the integrity of the database. Consequently, none of the changes made by a

17-

-20-

WO 2005/017750 PCT/US2004/026443

transaction are permanently applied to a database until the transaction has been fully
executed. A transaction is said to "commit" when the changes made by the transaction are
made permanent. A transaction is active if the transaction has not been committed,
aborted, or otherwise terminated.

[0069] A session is at a call boundary if a database jnstance has finished exeouting a
client call rather being at an intermediate stage of processing the call.

[0070] For example, to process a call to execute a datebase statement, a database
instance goes through stages, each stage corresponding to a particular type of operation.
The stages are (1) creating a cursor, (2) parsing the database statement and binding its
variables, (3) executing the database statoment, (4) fetching the rows to return for the
query, and (5) closing the cursor. These stages are describ‘ed in greater detail in Oracle8
Server Concepts, Release 8.0, Volume 3 (the contents of which incorporated herein by
reference), at chapter 23, Intermediate stages arc the operations performed before
processing of the call is complete. In the current example, the intermediate stages are
stages (1) — (5). After source instance inst22 performs step (5) in response to a call,
source session sess30 is at a call boundary.

[0071] A session is at a component boundary if each database component of a session
is at its respective component boundary. As mentioned before, database components use a
portion of session state, referred to hercin as component session stﬁte. A session, such as
source session sess30, is at a component boundary for a particular date;base component if
the component session state of the database component can be migrated to another

session.

Hlustrative Database components
[0072] FIG. 6 depicts an illustrative set of database components de60 and their

respective component session states within session state state60. Session state state60 is

18-

21-

WO 2005/017750 PCT/US2004/026443

the session state for source session sess30. FIG. 6 shows the following database
componenis: cursor component cc61, PL/SQL component cc62, session parameter
component cc63, and Java component cc64.

[0073] Cursor component cc61 is used to manage cursors within a database instance,
such as source instance inst22 and destination instance inst24. A cursor is an area of
memory used to store information about a parsed database statement and other
information related to the processing of the database statement. Cursor component cc61
uses and stores information in cursor state ¢s61, a component session state within session
state state60.

[0074] PL/SQL component cc62 is responsible for executing code (e.g. procedures)
written in PL/SQL, a procedural database language promulgated by Oracle Corporation.
The components use component session state PL/SQL state cs62 to store information
related to the execution of PL/SQL code, such as variable values and parsed PL/SQL
statements.

[0075] Session parameters component cc63 is responsible for managing atiributes that
generally control how calls and requests associated with a session are processed. The
atiributes are stored in component session state paramsters state cs63. For example,
session parameters can include an attribute that controls the particular human language
for results returned by executing queries.

[0076] Java component cc64 is responsible for executing code (e.g. class and object
methods) written in Java. The components use component session state Java state cs64 to
store information related to the execution of Java code.

[0077] Cursor component cc61, PL/SQL component cc62, session parameter
component cc63, and Java component cc64 each include a database cbmponent interface

that conforms to an interface definition. An interface definition defines a set of routines,

-19-

22-

WO 2005/017750 PCT/US2004/026443

typically functions, and values returned by those routines. Examples of an interface
definition include an object class defined in a computer language, an interface described
by an interface definition langnage (e.g. OMG Interface Definition Language), or a
specification written in a human language that describes the interface. Functions of a
database component interface support the transfer of component session state between

_ sessions. According to an embodiment, the interface includes three functions:
IsReadyToMigrate(), GetState(), and SetState().
[0078] IsReadyToMigrate() is invoked to cause a database component to determine
whether or not the component session state of a database component for a session can be
migrated to the session space of another session. The function returns a result indicating
whether or not the component session state may be migrated. For example, when the
IsReadyToMigrate() function of PL/SQL component cc62 is invoked, PL/SQL
component cc62 determines that it is storing a file descriptor of an open file within
PL/SQL state cs62. The file descriptor contains information that is only valid for a
session on source instance inst22 but not destination instance insi24, and therefore
PL/SQL component cc62 returns a value indicating that PL/SQL state ¢s62 cannot be
migrated.
[0079] The function GetState() is invoked to causc a database component to generate
a copy of component session state for a session. The function SetState() is invoked to
cause a database component to load (i.e. add) a copy of a component session state to the
session state of a target session.
[0080] The component sossion state returned by the GetState() function is opaque, in
that the one or more entities that participate in transferring the returned copy of the
component session state do not have to know about the particular structure of the

component session state. The entitics simply invoke the GetState() function to capture the

-20-

-23-

WO 2005/017750 PCT/US2004/026443

component session state of a database component and load the returned copy of the
component session state by invoking and passing the copy to SetState().

[0081] The determination of whether source session sess30 is at the component
boundary for each database component is made by invoking the IsReadyToMigrate()
function for each database component that could be using component session state. If all
such invocations return a value indicating that the respective component session state can
be migrated, then the determination at block 530 is that the source session sess30 is at a

component boundary for each database component.

Prepare to Migrate

[0082] Omce source instance inst22 has determined at step 420 that the migration
criferia is satisfied, at step 425 source instance inst22 transmits a prepare-to-migrate
message 4 to the client. Step 425 is performed by intercepting a call. The prepare-to-
migrate message 4 is transmitted via an output data structure returned for the intercepted
call. The prepare-to-migrate message 4 and the select message 2 may be returned in the
same client call.

[0083] The prepare-to-migrate message contains the connect information for
establishing a connection to destination instance inst24. The purpose of the connection is
to establish a destination session on destination instance inst24 and to initiate the
destination instances participation in migrating source session sess30.

[0084] The intercepted call was initiated within an application call from application
appl30. The remainder of the protocol 1s performed within this application call. The
intercepted client is referred to herein as a "seed call" because client c¢130 must make the
call to initiate the remainder of the protocol and complete session migration.

[0085] Atstep 427, client c130 transmits a request to establish a destination session to

destination instance inst24. Establishing a session on a database instance may require

21-

-24-

WO 2005/017750 PCT/US2004/026443

authenticating client c130. To authenticate client 130, authenticating information (e.g.
user name and password) is supplied to source instance insi22 by client-side interface
component intcomp30. Client-side interface component intcomp30 had received the
authentication information earlier from application appl30 to establish a session on
database cluster dbc20.

[0086} Client c130 sets session parameters of the destination session to the same
values as those of source session sess30. The client-side interface component intcomp30,
which had supplied the values to source instance inst22 for source session sess30, has
retained these values and uses them to set the session parameters of destination instance
inst24.

10087} At step 430, dcéﬁnation instance inst24 establishes the destination session and
a "migration channel", which is a communication channel between the source instance
and destination instance that is used to transfer session state between them.

[0088] In an embodiment of the present invention, the migration channel is
established. In some database servers, for each session, the database server receives
incoming messages at only one end point (e.g. a port number associated with a port). The
single end point is typically used for a connection to communicate with the client. The
connection, for example, is used by the client to transmit database statoments and by &
database instance to transmit query results, or to transmit messages such as those
discussed above. The single end point for a session is referred to herein as the session's
incoming end point.

[0089] To transfer session state of a selected scssion, 2 new and different incoming
end point on destination instance inst24, referred to as a shadow port, is used for the
migration channel. Destination instance inst24 listens for and accepts a connection

request from source instance inst22 at the shadow port. For example, a new socket may

222

-25-

WO 2005/017750 PCT/US2004/026443

be created for the shadow port, and used as the session's incoming end point. Destination
instance inst24 listens for and accepts a connection request from source instance inst22 at
the new socket.

[0090] Next, destination instance inst24 sends a destination-ready message 6 to client
¢130. The destination-ready message 6 includes the migration channel information, which
iﬁcludes information sufficient for source instance inst22 to connect to destination
instance inst24 via the migration channel. The migration chamnel includes, for example,
the port number of the shadow port.

[0091] At step 435, client ¢130 receives destination-ready message 6 and transmits a
prepared-to-migraie message 7 to source instance inst22. The migration channel
information is sent with the message.

[0092] Source instance inst22 receives the prepared-to-migrate message 7.

[0093] At step 440, the source instance inst22 transfers session stale 7 (o destination
instance inst24 via the migration channel. First, source instance inst22 establishes, based
on the received migration channel information, a "migration connection" with destination
instance inst24 via the migration channel. In an embodiment, for a particular database
component, source instance inst22 invokes the respective GetState() function, stores the
returned copy of the component session state, and transmits the copy via the migration
connection to destination instance inst24.

[0094] At step 445, destination instance inst24 receives the component session state
transmitted along the migration connection, and invokes, for each component session
state of a database component sent, the respective SetState() function, loading the
component session state to the session state of the destination session.

[0095] The transfer of session state between source instance inst22 and destination

instance inst24 may be performed in such a way that source instance inst22 and

-23-

-26-

WO 2005/017750 PCT/US2004/026443

destination instance inst24 perform their work concurrently. For example, function
GetState() may return only a portion of a component session state of a session
component, and may be invoked multiple times to retrieve all the component session
state. When source instance inst22 retrieves a portion by invoking GetState(), source
instance inst22 transmits the portion to destination instance inst24, and then invokes
GetState() again to retrieve another portion. When destination instance inst24 receives a
portion, destination instance inst24 calls SetSate() to transfer the portion to the destination
session state. Thus, source instance inst22 may be retrieving a portion of session state
while destination instance inst24 is Joading a portion of session state. In this way, source
instance inst22 and destination instance inst24 concurrently perform their respective
operations for transferring component session state.

[0096] After completing transfer of session state from the source session to
destination instance insi24, the migration connection is terminated. Destination instance
inst24 changes the incoming end point of the destination session sess30 back to the client
end point.

[0097] At step 450, source instance inst22 transmits a switch message 8 to client 130,
informing client 130 that it may switch to the destination session. Switch message 8 may
be sent to client c130 as part the client call in which the prepared-to-migrate message was
sent, by returning the message as an output parameter value of the call. The message may
also be retumned as part of a subsequent client ¢130 call.

[0098] At step 455, in response to receiving the switch message 8, client 130
switches to the destination session. The internal state of client-side interface components,
such as internal data that maps the external identifier of the source session, is modified to
reflect that the destination session is now the client's session. Next, client c130 transmits

an end-of-migration message to source instance inst22. The end-of-migration message 9

. 24-

27-

WO 2005/017750 PCT/US2004/026443

contains data indicating that client ¢130 and/or destination instance inst24 have
successfully completed their respective portion of session migration. As explained later in
greater detail, the end-of-migration message 9 is used to communicate whether or not
session migration has been completed successfully. Finally, client c130 sends a message
to source instance inst22 to terminate the source session. In subsequent client and
application calls by client ¢130, the destination session is used in lieu of the source
session.

[0099] Steps 420 through 455 are performed within a single application call. The
application does not know or need to know that the particular database session associated
with the external scssion identifier when the application call was commenced is not the
same as when the application call returns. No application instructions tailored to handle
session migration of a database session had to be executed in order to migrate the session.

In this way, the database session has boon migrated transparently to the application.

Kick Starting Synchronously Performed Session Migration

[0100] With respect to a session migration requested by a call, session migration may
be performed asynchronously or synchronously. When performed synchronously, the call
returns after session migration of the requested session has been completed, The caller is
blocked until completion of session migration. When performed asynchronously, the
caller’s execution is not blocked while the requested session migration is being
performed. The call can return before session migration is completed.

[0101] As mentioned before, the completion of the session migration protocol
depicted in FIG. 4 depends on a seed call received from the client. The initiation of
session migration is delayed until the seed call is made. The delay may be substantial. For
example, a client c130 executes a browser and generates application calls to source

instance inst22 in response to a human user manipulating a graphical interface of a

“25-

-28-

WO 2005/017750 PCT/US2004/026443

browser. The human user, pausing to read the browser output or leaving for a break, may
not manipulate the graphical interface for a long period of time, delaying issuance of an
application call and a seed call. A session migration request made synchronously may
thus be blocked for a substantial period of time.

[0102] To avoid such a long delay, a synchronously performed session migration can
be initiated. If, after a call is made that requests synchronous session migration of a
session, a period of time expires without a seed call being received, then a message,
referred to as a seed call request, is sent to the client of the session to request that the
client make a seed call. The seed call request may be, for example, a simple ping initiated
by source instance inst22 to client c130.

[0103] In an embodiment, the progress of session migration is tracked using a
migration tracking mechanism (such as described later in greater detail) that generates
migration-progress data. The migration-progress data indicates what stage session
migration has been reached. The migration initiator specifies a "migration timeout period”
in which migration of a session must be performed or aborted. If by a portion of the
migration time-out period migration-progress data indicates that session migration has not
reached the stage where the seed call has been made, then a seed call request is generated.
[0104] A seed call request may not only be initiated by source instance inst22 but also
by, for example, a migration initiator. In an embodiment, a migration initiator, after
making a request to migrate a session, invokes an API function of source instance inst22
to get migration-progress data. The migration initiator determines, based on certain
criteria, whether or not to issue a seed call request to the client. Altemnately, a migration
initiator may issue a seed call request to clients of selected sessions automatically after

making a migration request to migrate sessions.

26~

-29-

WO 2005/017750 PCT/US2004/026443

Recoverability

[0105] As the transparent session migration progresses, source instance inst22,
destination instance inst24, and client c130 transition between migration stages. These
migration stages represent the progress of session migration, and may be tracked and
reported and used to derive migration-progress data. Furthermore, a failure may be
encountered during session migration of a session, requiring the performance of recovery
operations. The particular operations performed depend on the migration stage reached
when the failure was encountered.

[0106] FIG. 7 is a stage-transition diagram showing various migration stages which
participants of session migration transition between during session migration. The
occurrence of various events or the completion of certain operations causes transition
between migration stages. Client-side stages 72 correspond to migration stages of client
¢l30, while server-side stages 73 correspond to migration stages of multi-node database
server mds20.

[0107] Referring to FIG. 7, stage SRC-NORMAL is the server-side stage that
corresponds to multi-node database server mds20 not being in the process of performing
session migration. Multi-node database server mds20 remains at this migration stage until
it receives a request to migrate a session. When such a request is received, multi-node
database server mds20 transitions to stage SRC-SELECTED, where multi-node databasc
server mds20 transmits a select message 4, and then proceeds to stage SRC-
CONFIRMED-SELECTED.

[0108] Multi-node database server mds20 then performs migration checks. Once
multi-node database server mds20 determines that migration criteria are satisfied, multi-
node database server mds20 transitions to stage SRC-READY-FOR-PREPARE. During

this stage, multi-node database server mds20 waits for a client call to intercept and uses

27-

-30-

WO 2005/017750 PCT/US2004/026443

the call to transmit a prepare-to-migrate message 4 to client c130. Once multi-node
database server mds20 receives prepared-to-migrate message 7, multi-node database
server mds20 transitions to stage SRC-PREPART.

[0109] During stage SRC-PREPARE, the source instance inst22 captures session state
of the source session and transfers a copy of the session state via the migration connection
to destination instance inst24, which adds it to the session state of the destination session.
After completing the transfer of source session state, multi-node database server mds20
transitions to the stage SRC-READY-FOR-SWITCH, where source instance inst22
transmits switch message to client c130. When source instance inst22 receives an end-of-
migration message 9 from client ¢130, indicating successful switching to the destination
session, multi-node database server mds20 transitions to the stage SRC-SWITCHED,
where such operations as commencing the termination of the source session are
performed.

[0110] After completion of stage SRC-SWITCHED, multi-node database server

mds20 transitions to normal stage acl80.

Client-side Stages

[0111] Analogous to service-side stages, client-side stages include a stage CLN-
NORMAL, which corresponds to client c130 not being in the process of participating in
session migration. Once client ¢130 receives select message 3, client ¢130 transitions to
stage CLN-SELECTED. When client ¢130 receives the prepare-to-migrate message 4,
client c130 then transitions to stage CLN-READY-FOR-PREPARE. During this stage,
client ¢130 performs such operations as establishing a destination session, establishing
session parameters of the destination session, and receiving a destination-ready message 6

[rom destination instance inst24. Once this message is received, client ¢130 transmits

28-

-31-

WO 2005/017750 PCT/US2004/026443

prepared-to-migratc message 7 to source instance inst22 and transitions to slage CLN-
PREPARE.

[0112] When client ¢130 receives the destination-ready message 6, client c130
transitions to stage CLN-READY-FOR-SWITCH, where client ¢130 transmits an end-of-
migration message 9 to source instance inst22 indicating the successful completion of
switching. Client c130 then proceeds to CLN-SWITCHED stage, where the client
performs such operations as requesting termination of the source session. Finally, client

¢130 transitions to stage CLN-NORMAL.

Recovery

[0113] During session migration of a source session, events that prevent or make
undesirable completion of session migration may be encountered. Such events are
referred to herein as “migration failure events”. When a migration failure event is
encountered, client ¢i30 and multi-node database server mds20 transition into stage CLN-
FAILURE and SRC-FAILURE, respectively, where recovery operations are performed to
enable all participants in the attempted session migration to proceed without completing
session migration. The particular set of recovery operations petformed depends on the
particular migration stage at which the failure was encountered.

{0114] For example, after client cI30 receives prepare-to-migrate message 7, client
¢130 attempts to establish a destination session on destination instance inst24, but is
unable o do so. Having thus encountered a failure event, client c130 transitions to stage
CLN-FAILURE. As part of stage CLN-FAILURE, client c130 transmits end-of-migration
message 9, which includes data that specifies that client ¢130 and the destination instance
are unable to perform their portion of session migration, and specifically, specifying that

client cI30 is unable to establish a destination session.

-32-

WO 2005/017750 PCT/US2004/026443

[0115] When source instance inst22 receives the end-of-migration message 9, it
determines that a migration failure event has been encountercd. Sourcc instance inst22
then enters stage CLN-FAILURE. At this stage, source instance inst22 may generate
"unable-to-migrate data", which is data that indicates that the source session had been
selected for migration but was not able to be migrated. The data may also indicate the
reason or migration failure event underlying the failed to attempt to migrate, e.g. that a
destination session could not be established. Unable-to-migrate data may be useful to and
accessed by software and/or processes responsible for selecting sessions for migration,
such as work load manager wm?20. Work load manager wm20 may forego selecting a
session for migration if unablc-to-migrate data indicates that an unsuccessful attempt was
made to migrate the session recently.

[0116] Finally, source instance inst22 completes execution of the client-side call
within which source instance inst22 was attempting the failed session migration. Multi-
node databasc scrver mds20 then re-renters stage SRC-NORMAL.

[0117] When the client-side call returns, the application call within which the client-
side call was executing returns. Client c130 then leaves stage CLN-FAILURE and enters
stage CLN-NORMAL.

[0118] Recovery operations may entail releasing resources that are used, allocated
and/or otherwise reserved to perform session migration and that are no longer needed.
[0119] For example, while multi-node database server mds20 and client c130 are in
stage SRC-PREPARE, source instance inst22 is capturing session state when source
instance inst22 detects either that a dgtabase component is unable to provide session state
or that the migration connection has failed, Having encountered a migration failure event,
multi-node database server mds20 enters stage SRC-FAILURE. Source instance inst22

closes the migration connection and de-allocates memory used for the purpose of

-30-

-33-

WO 2005/017750 PCT/US2004/026443

performing the attempted session migration (e.g. memory used to store capture
component session state before transferring it). Rather then sending switch message 8,
source instance inst22 transmits an "abort-migration" message to client ¢130 indicating
that session migration is to be aborted. The message is transmitted via an output
parameter of the client call within which the attempted session migration is being
performed. When source instance inst22 completes execution of the client call, multi-
node database server mds20 then enters stage SRC-NORMAL.

[0120] ‘When client c130 receives the message, client ¢130 terminates the destination
session. This operation frees memory that had been allocated for the destination session.
Clent c130 continues to use source session sess30 rather than using the terminated

destination session.

Extensible Session Component Framework

[0121] TUse of database components enables an extensible framework for session
migration. The framework is extensible because it facilitates the development and staging
of database components.

[0122] FIG. 7 is ablock diagram that illustrates features of an extensible database
component framework according to an embodiment. FIG. 7 depicts database components
60, registration function rf80 and active component list ac180.

[0123] Registration function rf80 is a function of a database server invoked by a
database component to dynamically register a bandle. The handle allows the database
server to invoke a function of a database component interface. A handle may be, for
example, a pointer and/or an object reference.

[0124] For a given session, not all database components are needed or used. For
example, the client of a session may never make a request that requires execution of, for

example, PL/SQL or Java. When a database instance determines that it needs a database

-31-

-34-

WO 2005/017750 PCT/US2004/026443

component for a session, the database instance invokes the database component. This
invocation causes the database component to perform initialization operations for the
session, which include invoking registration function rf80 and passing in the handle as an
input parameter. The database server then adds an entry to active component list acl80;
the entry identifies the database component as an active database component of the
SEsSion.

[0125] For a given session on a database server, a database server maintains an active
component list acl80, which identifies the active database components for the session and
includes the respective handle. To migrate a particular session, a database server only
processes active database components, that is, checks the migration boundaries for and
migrates the databasc component session state of only the database components that are
active for the session.

[0126] Tllustrated within FIG. 7 are additional functions that may be included within a
database component interface. In addition to functions IsReadyToMigrate(), GetState(),
SetState(), the database component interface includes functions Migration-Enabled() and
MigrationCost().

[0127] The function Migration-Enabled() returns data that indicates, for a particular
database component, whether the component scssion statc is capable of being of migrated
to another server. In an embodiment, some database components may not have undergéne
the development needed to support migration of component session state.

[0128] The MigrationCost() function returns data indicating a cost to migrating a
component. In an cnbodiment, migration checks may be performed to ensure that the
cost of migrating a session satisfies cost-related migration criteria. If the individual cost
of migrating component session state of a particular database component violates such

migration criteria, or the collective cost of migrating component session state violates

32.

-35-

WO 2005/017750 PCT/US2004/026443

such migration criteria, then a selected session is not migrated. In addition, the function

may provide cost data that can be used for cost-based selection of sessions to migrate.

Delegation of Database Component Development to Specialists

[0129] Database components can be highly complex. The responsibility of developing
and maintaining database components is usually given to dedicated teams of expert
developers that have the training and experience needed to perform the responsibility.
Software that captures and loads component session state is also highly complex. Its
development is most effectively performed by the development team whose bailiwick a
database component falls.

[0130] The database componént interface allows this development effort to be divided
into subtasks that can be allotted to development teams that perform the subtasks
effectively. The development team that specializes in a particular dalabase component is
allotted to develop the component to enable the components to support the interface, to
determine whether a session is at a migration boundary with respect to the database
component, and to capture and load the component session state. Furthermore, a
development team can be allotted to develop the software module that implements the
session migration protocol without having to deal with the complexity of database
components. In this way, the development of session migration software may be

performed more effectively and efficiently.

Staging of Migration-Enabled Database Component Development

[0131] The development of migration-enabled database components may be staged.
Not all database components need to be migration-enabled before session migration is
instituted on a multi-node database server or server at some level. In earlier releases of a

database server product, only a subset of database components need to be migration-

233-

-36-

WO 2005/017750 PCT/US2004/026443

enabled. While some sessions, those that have active database components that are not
migration-enabled, cannot be migrated, other sessions can be, In laier releases, more
database components would be migration-cnablcd, allowing sessions to be migrated
under a greater proportion of circumstances.

[0132] Checking whether a selected session has an active database component that is
not migration-enabled can be performed when migration checks are performed. Detecting
that a selected session has an active database component that is not migration-enabled can

be treated as a migration failure event.

Other Embodiments

[0133] An embodiment of the present invention has been illustrated by dynamically
allocating the resources of a multi-node database server in a single tier of a multi-tier
system. However, an embodiment of the present invention is not limited to migrating
sessions within a database server, or within a single tier of a multi-tier system.

[0134] For example, an embodiment of the present invention may be used to migrate
sessions in multiple tiers of a multi-tier system that includes a multi-node database server
in the first tier, and a mulli-node application server in the second tier, where the
application server is a client with respect to the database server and browsers that connect
to the application server over a network are clients with respect to the application server.
The application server is used primarily for storing, providing access to, and executing
application code, while a database server is used primarily for storing and providing
access to a database for the application server. ransparent session migration may be used
to migrate sessions between instances of the application server in a way similar to the
way in which sessions are migrated between instances on the database server. An
exaniple of an application server is an Oracle 9i Application Server or Oracle 10g

Application Server.

234~

-37-

WO 2005/017750 PCT/US2004/026443

[0135] Neither is transparent session migration limited to migrating sessions to
dynamically balancc sessions and workload between servers. For example, sessions may
be migrated from a server to allow the server to be taken down for planned down time, or
to move sessions to another server when the server becomes available after having been

provisioned.

HARDWARE OVERVIEW
[0136] Figure 9 is a block diagram that illustrates a computer system 900 upon which
an embodiment of the invention may be implemented. Computer system 900 includes a
bus 902 or other communication mechanism for communicating information, and a
processor 904 coupled with bus 902 for processing information. Computer system 900
also includes a main memory 906, such as a random access memory (RAM) or other
dynamic storage device, coupled to bus 902 for storing information and instructions to be
executed by processor 904. Main memory 906 also may be used for storing temporary
variables or other intermediate information during execution of instructions to be
executed by processor 904, Computer system 900 further includes a read only memory
(ROM) 908 or other static storage devics coupled to bus 902 for storing static information
and instructions for processor 904. A storage device 910, such as a magnetic disk or
optical disk, is provided and coupled to bus 902 for storing information and instructions.
[0137] Computer system 900 may be coupled via bus 902 to a display 912, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
914, including alphanumeric and other keys, is coupled to bus 902 for communicating
information and command selections to processor 904. Another type of user input device
is cursor control 916, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 904 and for

controlling cursor movement on display 912. This input device typically has two degrees

-35-

-38-

WO 2005/017750 PCT/US2004/026443

of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0138] The invention is related to the use of computer system 900 for implementing
the techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer system 900 in response to processor 904 executing
one or more sequences of one or more instructions contained in main memory 906. Such
instructions may be read into main memory 906 from another computer-readable
medium, such as storage device 910. Execution of the sequences of instructions
contained in main memory 906 causes processor 904 to perform the process steps
described herein. In alternative embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific combination of hardware
circuitry and software.

[0139] The term “computer-readable medium™ as used herein refers to any medium
that participates in providing instructions to processor 904 for execution. Such a medium
may take many forms, including but not limited to, non-volatile media, volatile media,
and transmission media. Non-volatile media includes, for example, optical or magnetic
disks, such as storage device 910, Volatile media includes dynamic memory, such as
main memory 906. Transmission media includes coaxial cables, copper wire and fiber
optics, including the wires that comprise bus 902, Transmission media can also take the
form of acoustic or light waves, such as those generated during radio-wave and infra-red
data communications.

[0140] Common forms of computer-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-

ROM, any other optical medium, puncheards, papertape, any other physical medium with

_36-

-39-

WO 2005/017750 PCT/US2004/026443

patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory
chip or cariridge, a carrier wave as described hereinafier, or any other medium from
which a computer can read.

[0141] Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 904 for execution. For example,
the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
900 can receive the data on the telephone line and use an infra-red transmitter to convert
the data to an infra-red signal. An infra-red detector can receive the data carried in the
infra-red signal and appropriate circuiiry can place the data on bus 902. Bus 902 carries
the data to main memory 906, from which processor 904 retrieves and executes the
instructions. The instructions received by main memory 906 may optionally be stored on
storage device 910 either before or after execution by processor 904.

[0142] Computer system 900 also includes a communication interface 918 coupled to
bus 902. Communication interface 918 provides a two-way data comumunication coupling
to a network link 920 that is connected to a local network 922. For example,
communication interface 918 may be an integrated scrvices digital network (ISDN) card
or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 918 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 918 sends and receives electrical, electromagnetic or optical signals that carry

digital data streams representing various types of information.

.37-

-40-

WO 2005/017750 PCT/US2004/026443

[0143] Network link 920 typically provides data communication through one or more
networks to other data devices. For example, network link 920 may provide a connection
through local network 922 to a host computer 924 or to data equipment operated by an
Internet Sefvice Provider (ISP) 926, ISP 926 in turn provides data communication
services through the world wide packet data communication network now commonly
referred to as the “Internet” 928. Local network 922 and Internet 928 hoth use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 920 and through communication
interface 918, which carry the digital data to and from computer system 900, are
exemplary forms of carrier waves transporting the information.

[0144] Computer system 900 can send messages and receive data, including program
code, through the network(s), network link 920 and communication interface 918. In the
Internet example, a server 930 might transmit a requested code for an application program
throngh Internet 928, ISP 926, local network 922 and communication interface 918.
[0145] The received code may be executed by processor 904 as it is received, and/o'r
stored in storage device 910, or other non-volatile storage for later execution. In this
manner, computer system 900 may obtain application code in the form of a carrier wave.
[0146] In the foregoing specification, cmbodiments of the invention have been
described with reference to numerous specific details that may vary from implementation
to implementation. Thus, the sole and exclusive indicator of what is the invention, and is
intended by the applicants to be the invention, is the set of claims that issue from this
application, in the specific form in which such claims issue, including any subsequent
correction. Any definitions expressly set forth herein for terms contained in such claims
shall govern the meaning of such terms as used in the claims. Hence, no limitation,

element, property, feature, advantage or attribute that is not expressly recited in a claim

-38-

-41-

WO 2005/017750 PCT/US2004/026445

should limit the scope of such claim in any way. The specification and drawings are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

-39-

-42-

2004264626 02 Oct 2009

CLAIMS

The claims defining the invention are as follows:
1. A method for database session migration, the method comprising the computer-
implemented steps of:
receiving a request to establish a certain session for a client of a multi-node
system;
wherein a first database server runs on a first node of said multi-node system;
wherein a second database server runs on a second node of said multi-node
system;
establishing as the certain session a first database session with said first database
server of the multi-node system;
determining to transfer the certain session to said second database server;
transferring first session state of the first database session from the first database
server to a second database session on the second database server;
wherein said first session state comprises temporary variable values generated by
one or more processes executing database component software within the
database session; and

establishing the second database session as the certain session for the client.

2. The method of claim 1, wherein the step of transferring first session state includes:
the first node generating and storing a copy of a portion of the first database session
state; and
sending a copy of the portion of the first database session state to the second node

via a connection established between the first node and the second node.

-40-
50277-2593 (OID 2003-285-01-PCT) 191270RA

-43-

2004264626 02 Oct 2009

3. The method of claim 1, wherein:
the step of determining to transfer includes determining whether one or more
migration criteria are satisfied; and
wherein the step of transferring first session state is commenced only if the one or

more migration criteria are satisfied.

4 The method of claim 3, wherein the one or more migration criteria are based on

whether a transaction associated with the first database session has terminated.

5. The method of claim 3, wherein:

each component of a plurality of software components executed on the first node
accesses a respective portion of the first database session state;

the step of determining whether the one or more migration criteria are satisfied
includes for each component of the plurality of components, invoking a
function of the each component, the function returning a value indicating
whether the respective portion of the first database session state can be
transferred to another node; and

wherein the one or more migration criteria are based on the values returned by the

function of each component of the plurality of components.

6. The method of claim 4, the steps further including:
sending a first message to the client to cause the client to create the second database
session;
the client transmitting a second message to the first node indicating that the second
database session has been created; and

_41-
50277-2593 (OID 2003-285-01-PCT) 191270RA

-44-

2004264626 02 Oct 2009

in response to receiving the second message, the first node commencing

transferring first session state.

7. The method of claim 6, wherein:
the second message contains connection data for establishing a connection to the
second node; and
transferring first session state includes transferring the first database session state

via the connection.

8. The method of claim 6, wherein the steps further include:
in response to receiving the first message from the first node, the client transmitting
to the second node a certain request to create the second database session;
and
after creating the second database session:
the second node establishing a port for a connection to the first node, and
the second node transmitting to the client a message that contains

connection data for establishing a connection to the port.

9. The method of claim 8, wherein the steps further include:
the client transmitting to the second node a message that contains a copy of the
connection data for establishing the connection to the port; and
in response to receiving the message that contains a copy of the connection data:
the first node establishing a connection based on the connection data, and

commencing the step of transferring first session state.

-42-
50277-2593 (OID 2003-285-01-PCT) 191270RA

-45-

2004264626 02 Oct 2009

10. The method of claim 6, the steps further including after transferring the first
database session state, sending a third message to the client to cause the client to use the

second database session as the certain session.

11. The method of claim 1, the steps further including receiving a request to migrate

the first database session to the second node.

12. The method of claim 11, the steps further including:
tracking progress of migrating the first database session;
based on the progress of migrating the first database session and a period of time,
ceasing to migrate the first database session,
generating data that indicates that migration of the first database session

was attempted unsuccessfully.

13. The method of claim 1, wherein:
the client resides on a computer and executes an application;
the application invokes a interface component to interact with a server that resides
on the multi-node system;
the application makes a call to the server; and
the step of transferring first session state and establishing the second database

session as the certain session are performed within the call.

14, The method of claim 1, the steps further including:
the first node receiving a request to migrate the first database session to the second
node;

-43-
50277-2593 (OID 2003-285-01-PCT) 191270RA

-46-

2004264626 04 Jan 2010

after determining that a period of time has elapsed, the first node causing the client
to call a server hosted one the second node; and
the step of transferring first session state and establishing the second database

session as the certain session are performed within the call.

15. The method of claim 1, wherein:

the step of transferring first session state and establishing the second database
session are performed as an operation to migrate the first database session to
the second node;

the steps further include, as a response to detecting a migration failure event:
ceasing to migrate the first database session,
relir.quishing resources allocated to migrating the first database session, and
generating data that indicates that migration of the first database session

was attempted unsuccessfully.

16. A computer-readable storage medium carrying one or more sequences of
instructions which, when executed by one or more processors, causes the one or more

processors to perform the method as claimed in any one of the preceding claims 1 to 15.

17. A method for database session migration substantially as hereinbefore described

with reference to the accompanying drawings.

-44-
50277-2593 (OID 2003-285-01-PCT) 191270RA Rev 2

47-

PCT/US2004/026443

WO 2005/017750

119

E 0} TUNLOTLIHOEY HIILTLAN

Lap
asvavivd

; JONVLSNI ISVavLYd
W 300N
m JONYLSNI 3ISYavLva

B 300N
: JONVLSNI ISvav.Lya
m 300N

TISPW Y3AYES ISvAv.Lva IAON-LLTNN:

Trde .
NOLLYOIddY |

H3LNdWOD ¥311-31AadIn

q
HISMONE

1AW Y3 1N4IN0D ¥ASN

-48-

PCT/US2004/026443

WO 2005/017750

219

7ZPu IA0N £ZPU IAON
2y | |
M JONVLISNI JONVLSNI| i
M TZUR YIOYNYH
m avOT RIOM m
Zas praie
m JONVLSNI JONVISNI| |
R PR UZSPU 43ANES 3SVAYLYO JOONLTON;
Z¢pu 340N T2PU 340N
Z 9l 029P 3SvavLva
02°9p ¥3LSN10 ASvdy1vd

-49-

PCT/US2004/026443

319

€ ol

Ogdwooyy
SININOdINOD gldde

Fov4daiN | I NOWLYOIddY
3QIS-INID

yasu
JONVLISNI NOLLYNIES3A

0€P N0

gcssss
LoIssag

ceisul
JONVLSNI 30HN0S 0EdWI Y31NdWOD INAMO

WO 2005/017750

-50-

WO 2005/017750

SOURCE

(1) Migration request to
migrate 4 list of sessions.
405 Receive I
migration D
request.
410 Receive call from (2) Shlect Msg.
client and fransmit —
select msg.
420 Perform migration
checks.
425 Send (3) Prepare-to-Migrate AZLBequest dest. (4
Prepare- to- —» Session.

migrate mess.

419
CLIENT

(connect idata for dest.)

b

PCT/US2004/026443

DEST

) Reg

Dest. Sess.

430 Establish dest,
session and migration
channel to source
instance. Send dest.-

(6) Prepaned -to-Migrate 435 Receive msg (5) Dest ready ready message.

440 Transmit session

<—t—_h | and transmit
(n;lgra I;)I’I channe prepared-to-migr.
in orma:|0n) msg.
ession State
' (GE Stat

(m[gﬁatlon channel
information)

o 445 Receive session

state via shadow
conn.

450 Upon completion
of session state
transfer, send switch
message.

source and begins to use

455 Client ends session on

» . . N
state via migration
channel,

:1ds

(8) Switch session on destination, and se
end-of-migration message.
End-ofimigration (9)
4+

FIG. 4

-51-

WO 2005/017750 PCT/US2004/026443

5/9
Is session at transaction boundary?
) .
™~ 510
Is sessicn at a call boundary?
VES SESSION MIGRATION
' CRITERIA IS SATISFIED
™ 520
s session at component boundary?
YES =

Have the server components specified
that the session can be migrated? ™53

Database Server Components
1. Cursor

2. PL/SQL

5. Session Parameters

3. Java

FIG. 5

-52-

PCT/US2004/026443

WO 2005/017750

6/9

950 3LYLS[* > Oereisies
YAVP (Jerns199
7307 [NANOLNQD AW ()ereiBiNO L ApEDXS|
£OS03LYIS
SHILANVHYd] » (o8I98
NOISS3S
995 LNANOINOD O2resio0
SHILAWYHY NOISS3S ()eriBiNo 1 Apeays]
2950 JLV.1S| » Qeeisies
108 /d (Jere8199
2839 LNINOJIN0D TOSd ()orelBiNOo [Apeays|
19S5 JLV LS| > (o8I98
HOSYND O=s199
0g9lels 31¥.1S NOISS3AS T3 LNINOQNOD HOSHND ()ateiBino.1 Apeaxs

e

059p SLNINOAWOD 3SVaVLYQ

9 Ol

-53-

WO 2005/017750

7

N
SELECT MESSAGE {2)
N

CLN-
SELECTED

FAILURE

y

~
S

X

_FALURE

\

CLN-
SWITCHED

FIG. 7

-54-

~
PREPARE-TO-MIGRATE (3)

CLN-READY-
FOR- PREPARE e
C)EREPARED—TO-MIGRAIE

~ FAILURE
\(6)\ SRV-READY-
FOR- PREPARE
|
FAILURE e
SRV-
CLN PREPARE
PREPARE -
i FAILURE
FAILURE SWITSH.G) >
- ~ . \ 4
4 -~

CLNReaDy-) END OF MIGRATION(8).. —
FOR-SWITCH

PCT/US2004/026443

CLIENT
CALL

SRV-NORMAL

CLIENT

CALL SRv-

SELECTED

FAILURE |

SRV-CONFIRMED
SELECTED

~

y

SRV-READY-
FOR-SWITCH

FAILURE

\ 4
SRY- CLIENT-SIDE SERVER-SIDE $
FAILURE STAGES T2 STAGES 73
\

PCT/US2004/026443

WO 2005/017750

819

Jusuodwo)) aapoy

08RE IS

7995 ININOJINOD VAV

(1soguopeiBipy

(Jelgeuz-uone.biyy

(Jereis1es

(Joreisien

()s1eBINO 1 ApEas]

£993 ININOJINOD
S¥ALANVEVC NOISSIS

(§sopuonelBipy

()e|qeuz-uoneiBipy

O=reis108

Oaeigien
()e1iB1N0 1 Apeoys]

¢990 ININOJNOD T0S/1d

(isopuone.biny

(arqeuz-uonesbyy

(ereig188

(erm15189

()=1e61n0) ApEays]

isoQuonelBiy

()s1qeuz-uoneibipy

(=1eIS198

S ED)

1892 ININOdINOD HoSYND

(JeyeiBino [Apesys|

[
uooung uonessibey

09 SININOdWOD ¥3AYES JSvaviva

8 9l

-55-

PCT/US2004/026445

WO 2005/017750

9/9

HIOMLAN
o0l

9¢6

8¢6

0g6

2 556
| —

f %

xmo\,w_W:_,_ _ ERYZRETIN 706
| NOILYQINNINWOD HOSSI008d
!
|
|
i
!
» 7%
l
_ sng A
!
I
|
!
|
! 016 306 e
! 301A3a AHOWIN
_ JOVHOLS
REINER | Woy NIV

6 Ol

— N| 9B

TOYINOD
J0SHND

V15

/| 301A3a LNdNI

—N 716

AV1dSId

-56-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

