» UK Patent Application

(19) GB (11) 2 446 199 (13) A

(43) Date of A Publication 06.08.2008
(21) Application No: 0624053.5 (51) INT CL:
HO4L 29/08 (2006.01) GO6F 21/24 (2006.01)
(22) Date of Filing: 01.12.2006 HO4L 9/00 (2006.01) HO04L 29/06 (2006.01)
(56) Documents Cited:

(71) Applicant(s): None

David Irvine

82a Portland Street, TROON, Ayrshire, (58) Field of Search:

KA10 6QU, United Kingdom Other: No search performed: Section 17(5)(b)
(72) Inventor(s):

David Irvine
(74) Agent and/or Address for Service:

David Irvine

82a Portland Street, TROON, Ayrshire,

KA10 6QU, United Kingdom
(54) Abstract Title: Secure, decentralised and anonymous peer-to-peer network
(57) This invention is a network that is defined by its novel Figure 5 - Data Assurance Event Sequence

approach to privacy, security and freedom for its users.
Privacy by allowing access anonymously, security by
encrypting and obfuscating resources and freedom by
allowing users to anonymously and irrefutably be seen
as genuine individuals on the network and to
communicate with other users with total security and to
securely access resources that are both their own and
those that are shared by others with them. Further, this
invention comprises a system of self healing data,
secure messaging and a voting system to allow users
to dictate the direction of development of the network,
whereby adoption or denial of proposed add-ons to the
network will be decided. System incompatibilities and
security breaches on networks and the Internet are
addressed by this invention where disparity and
tangents of development have had an undue influence.
The functional mechanisms that this invention provides
will restore open communications and worry-free
access in a manner that is very difficult to infect with
viruses or cripple through denial of service attacks and
spam messaging, plus, it will provide a foundation
where vendor lock-in need not be an issue. Possible
features include a distributed or peer-to-peer system
which provides: secure communications; data storage
and shared resources; anonymous backing-up and
restoration of data; sharing of private files and secure
data in a decentralized manner; anonymous
authentication of users; transaction approval based on
digital currency; and CPU sharing via anonymous
voting.

User's PC

Data Assurance

HOwW

Data PC
To guarantee
accessibility to
the user's data

Managed by
super node

30 10 20

The data is copied to at Ren?t;‘ned The disparate leaf nodes
least three disparate wi
hash of
leaf nodes.
contents

store the data with
Local copy of
data

appendices that point to all
other similar data chunks.

]
L 3
Remotely stored
data

60

Single leaf node failure initiates
replacement copy of data being

made on another disparate but
equivalent leaf node

|
Remaining copies of data]

updated to reflect the newly
added replacement leaf node

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

Original Printed on Recycled Paper

V 66} 9%F ¢ 99O

Worldwide Voting
System

Cyber Cash PT7

PT6

ms Messenger

PT8

Maidsafe.net PT2 Self Encryption

PTS

SharedAccess to
Private Files

Perpetual Data

PT1

PT3

DataMap

PT4

Anonymous
Authentication

suoneI20SSe Jaurajespiew — el ainbi4

8z/1

2/28

Figure 1b - maidsafe.net associations

[ojuod %
Old | uoisiAey
vd
Hunu9 leAsiIneN
6d| Amudpi oBeiols
so|ld ,
od| Bupos d Qku..«.ﬁ% T
uopdAsaQ | 5
8d | juondAsoua Zd | BullesH JIeS T
Bupjuey |
viLd | uoueplieA | Ld 1004

eieqeniediod & jourajespien

tid

3/28

Figure 1c — maidsafe.net associations

€id

sijed Aoy
O UO|SIACId

€d

AjliqelieAy
AuUndes

8d

syunyd
ARuUPp|

uopdA1deQ
juondAidoug

vd

[eAdI 13O
pue oBei0ls

cd

BujjeaH JIeS

Sd

[eAoway
ejedjidnQ

Tl

Bupunyd [

"

salid oc__o«mT

uopdAiou3z Jies

¢ld

]a%_az

4/28

Figure 1d — maidsafe.net associations

Sd

jeAowe)

6d

SHUNYD
Auep|

o

Old

[oQuod
uojsiAey

eyeadnQg
ld | Bupjunyd
od | selldBupols
vd E__ao>oowuwm~m
Sid | dewepero

olid llews

Lid

A10A I

-

ejeq AJpuspl

e—

sdep ejeq

€id

5/28

Figure 1e — maidsafe.net associations

uopdAioveQq

Zid uoBo
sijed Ao
€ld | jouojsiroid

—

vid

uonep|ieA

e—

8d | juopdAiouz
Bujubis
6ld | juswndoQ
aisland
Lid | Jouojsinoid
gupjuey
id 199d
suopyoesuel
¥2d | snowAuouy
gzd | AnwAuouy

eed o
LA X]
se

e o
(XXX]

snowAuouy

uogedguewyIny |

vid

Jou-ejespieiN _

6/28

Figure 1f — maidsafe.net associations

L\d

olid
lews A19A
yimeleQd
Auap|

8ld

suopeduNWwWod |
peydAidug

Sid

Lid

aidiand
30 UO|S|A0Id

sde jo

depy e18e4)

Tll

9id

sdejy 21eys Tllll

S9]i4 3eAud 0}
$$099Y paleys

sid

yousjespieiN

7 PTé6
I Malds%ms Messenger
Contract P20
> Conversations
Document | P19
Signing
Encrypted
> Communications P18
; Provision of
| PublicID ‘P"

| Provision of
Key Pairs P13
Share Maps | P16
Proven
Individuals | P28
Interface
withNon- | P23
Anonymous

Systems

suoneldosse Jau-ajesprew — 6}, ainbi4

8¢/L

PT7

CyberCash

I Maidsafe.net ' aI

E Counterfeit
Protection

\ﬁ

P21
Allow selling of
Machine P22
Resources
Interface with
Non- |
Anonymous | P23 Provislon of ['5 5
Systems PublicID
Anonymous "oy validation | P14

Transactions

suonerdosse Jouajespiew ~ yj ainbi4

8¢/8

9/28

Figure 1i — maidsafe.net associations

e

o | ot [~ paaks
124 | pesn BujeqaloA
40 uopEp|ieA
pa| e | —{sza] mompa |
21d | uonepiien &—] gzd | Auwkuouy je——

wesAs Bupoa |
APIMPUOM

8id

wuejesplen

10/28

Figure 2 - Self Authentication Detail

juo pabboj Jou 1asn 3|
Aoy @1eALd QIINd Yim paubis
Aax3qnd-QInd-AagqndaIW-aIX P!QINd
Aaxqnd aInWd J0 ysey=piaInd
pa4031s 9q 0S|e P|NOYS YdIym
unyd> QInd 243 3se3j 3e Jou
AXALIDQIW YUm paubis |1y
Aygndaiid-AangndaIw-aI PIQIW
Aaqnd GINW Jo ysey=piain

4

AIVW S! siyy
13U U0 3I03S

©

anjeA Aa)

am
dar 1Hd

@ Ecutom_m
ailg und

Jied Aay
QQIRED)

@ woJdj uu m.._uuxw

M

>_m>_u8wﬁ_ 18U
woJd) ginl 389

QI @21e3ld

uid +
piasn

JOAUDS UNYD +

jau‘ajespiewd

smojje

\ ©®

—
SJOYI0 WOJ SUOIIDNIISUI BARID3) g

ued gId Yiim osje
suonsanb asuodal
/abuajjeyd Jamsue 't
ajespiew 0} QIW
eyl 40y Buuunl
se J|1asil
ajeonuayine

| MOU UBD WIISAS

\]

Jied Aa) 0}
ssad0e aAey asayl

©)

mmmuoa b;uum\su

11/28

Figure 3 — Peer to Peer Schematic

— ‘I—/

saly

/Sunyd paAdldlad i 6
SUO011BD0| Hunyd

. \E 0 oo A.le

@ \rﬁumhc w>m_bw‘_w

uonelauab

@\r\. —~ ﬁ

abeuols
p10234 uonepljea

@ 7

Bmu_u:mcu:u

&

o/

Q
&

12/28

Figure 4 — Authentication Flowchart

User's PC Verifying PC Data PC

registered email address anc
maldsafe PIN creates

P

‘hello’ code)

v (54

via User ID Key
Internet recognised
o

then locates

¥ +
e oo SER via A)
N nput pass—phrase)fIntemet—@matlon record)

SHAT hash created
as hello.packet
i.e. User ID Key + hello

8

(XXX) 1
decryption of
K *c ‘validation record') @

o

¢ extraction of via req uests existence check vt': ;"::;it
. 1% data chunk details/ Internet on 1% chunk of data a dsress

svese via via
. verified J‘_lnte met—@ns UserID Kea‘-lnternet—(*yes” got it
<> ‘

user proceeds to construct
their maidsafe.net database @
from the data chunk details

already known to it

&>

13/28

Figure 5 — Data Assurance Event Sequence

User’'s PC Data PC
To guarantee
accessibility to Data Assurancﬂ
the user's data T
HOW
|
Managed by
super node s
30 10 20 / N
. - Renamed The disparate leaf nodes
The data Is cqpued to at with store the data with
least three disparate . .
leaf nodes hash of appendices that point to all
i contents other similar data chunks.

d

Local copy of Remotely stored
data data

50

Fail

l 60

Single leaf node failure initiates)

replacement copy of data being

made on another disparate but
equivalentleaf node)

i 10

Remaining copies of data
updated to reflect the newly
added replacement leaf nodL

14/28

Figure 6 — Chunking Event Sequence

To provide manageable sized data
elements and to enable a
complimentary data structure for
compression and encryption.

All operations

seees conducted within
. the user’s local
system. No data is
presented

externally.

User's PC

file_chunking)

T
HOW

/ USER pre-selection /Z——v[

(files) are passed to the

\ 4
Nominated data elements
‘chunking process

80

The data element is split
into small chunks

90
The data chunks are
encrypted

l 100

[

locally ready for network

The data chunks are stored
transfer of copies.

(XX K]
. .

14/28

Figure 6 — Chunking Event Sequence

To provide manageable sized data
elements and to enable a
complimentary data structure for
compression and encryption.

All operations
conducted within
the user’s local
system. No data is
presented
externally.

User's PC

file_chunking)

T
HOW

/ USER pre-selection /L—>[

(files) are passed to the

\ 4
Nominated data elements
‘chunking process

80

[The data element is split]

into small chunks

90
The data chunks are
encrypted
100

(

The data chunks are stored
locally ready for network
transfer of copies.

user's
normal file
system

structure

example.doc

SMb

through
__chunking
process
becomes

512Kb

512Kb

S12Kb

768Kb

768Kb

768Kb

768Kb

135Kb

135Kb

135Kb

PASS
PHRASE
used

'

all chunks
may
be
“compressed
and AES
encrypted

> 512Kb

> 512Kb

> 768Kb

> 768Kb

> 768Kb

> 768Kb

> 135Kb
> 135Kb

> 135Kb

I
IR e

e 9

.
L X]

L]

[]

L]
XXX]
oo o
[
e o9

chunks
individually
- hashed and -
given hashes
as names

AHHHHRHE

names of
hashed
chunks are
brought
together. e.g. in
empty version of
original flie
This 1s the
database record
(actually a file)

example.doc

CAEEHI, t1, 12, t3
C2HHHE, 11, 12, 13
C3HHIHNS, 11,12, 13
cAshtittng, t1, 12, t3
CSHIHIIEE, t1, 12, 13
COMIHIINE, t1, 12, t3
CTHIHMHNE, t1, 2, t3
CBRIHIHNE, t1, 12, 13
CORIHIIAE t1, £2, t3
CAFIHHIH, 11, 82, 13

A

sent to the
‘transmission
queue’in the |
storage space
allocated to the
client application

ajdwex3 6upjuny) - £ ainbig

8¢/SL

16/28

Figure 8 — Self Healing Event Sequence

To guarantee availability
of accurate data

User's PC

why—{ Self Healing)
1

/ USER pre-selection /L-D

All operations
conducted within
the user’s local
system. No data is
presented
externally.

how
\ 110
4 "
Data chunks fail integrity test.
\. __/

l 120

(The location of the failing data)
chunks is assessed as
unreliable and further data

 from that leaf node is ignored.)

130

A ‘Good Copy' from a ‘known

good’ data chunk is recreated

in a new and equivalent leaf
node

140
The leaf node with the failing
data chunks is marked as
unreliable and the data therein
as ‘dirty’

150

Peer leaf nodes become
aware of this unreliable leaf
node and add its location to a
watch list.

17128

Figure 9 — Peer Ranking Event Sequence

0ce

oLe

00¢

4 ™\
Auip, se payJew apou jes| ayj uo

paIO0}S BJep uO JNO PalLIED SYO3YD |BUOIIPPY

X y
1

4 "Spjoy } ejep ayy Jo Apibajul A
ay} uo syoayo Jayun} Buuinbas se J ylew o)
_SSaIppE 9pou jes| o) papuadde snjels ,Auip,)

1

,AUip, se paylew apou jean

*alyyel} obessaw 1o} Jdaoxa

YOM}BU 8y} WIOJj paAowal s| apou ‘ Auip,

8q 0} punoj ejep Jo 9, pauiuuajap-aid j|

0€c

‘sjeadal 81942 Bupjoayo ejeq

*

ey e}

apou sadns e ela
apou Bunebiysul ay) Aq
pa)oayo si ejeq

ssed

apou Jadn
elA sapou Jaupyed
(Jeay) Aq payosyo
s| ejeq

ssed

iej

j1lesu
apou abeios
(Jeay) ay} Aq paxdayd " ¢ced
sI ejeqg

SHO3HO ALIMO3LNI VLVQ

Qw —‘ ‘dnoib apou Jadns Buuojuow e jo snsuasuod Aq ssalppe apou
abeio)s (Jes)) ay) o) papuadde si Bupjues Ajjiqejreae payenb vy

‘J13asn 3y} 1o}
papi1093s uocijoeiaju; pasjuesenb
10 |2A8| 3y} J0) aouewopad pue
asuodsai Jua)sisuos ainsua o)

‘palopuctu Ajjuejsuoo Buiaq
apou abeiojs (Jea)) yoea jo uoipuoD 8y} JIBpUN

MOH

>I\S\|.m Bupjuey 1984

)

o o0
e oo
(X LX)
o0l

LX]
(L XX]

18/28

Figure 10 — Duplicate Removal Event Sequence

paiuap
SS90

e}

apou
Buijebisul o} yoeq aseqejep pue
Koy paiseys sassed apou abeiols

0.2 a

apou abeiojs
0})oeq passed)nsai paubis

1

ssed

pajsanbai
393yo Ajuoyjne ssaooe

092

‘apou Bunebijsut
0} joeq passed aouajsixa
Key paieys Jo uoneosyijoN

aoeds ysip
JO s jJualolyd ay) asiwixew o}

sjsix@

Aay paseys anbiun
Buisn dn payoeq ejep

A
1SIX@ Jou saop

)JoM}au 3y} uo
paiojs saysey jsuiebe yojew
e 10} payo3yo ysey Juajuod
pajesauab Ajjeusaju|

SJUBJUOD ejep
pajoajoid-uou 10 pajosjoid

10j N0 paLues 3o9yo
082 } Ino p X098y

ssaooid dnyoeq
ejep ay} jo uoleniul 8y} o} Joud
(Ajjeuonipuog)

7'y

>I>>\ﬁ

jeaoway ayeandnQg

\—/

paioub
ssaooud Buneys

e oo

[
(XXX J

[XX XX]
L)

Figure 11 — Perpetual Data

19/28

File chunked @

request sent on net

'

search for chunk 1D (CID)
bit first

10

y

not found

I need to store
x bytesin TZ y
(Time Zone)

‘

Supernode net picks up

!

a node with same rank and
enough space

Supernode in TZ Y identifies @

!

challenge response
between
the nodes

:

chunk stored
giving us PMID of
storage node

adding and removing
signature from chunk
identifier

is done via challenge
/ response

!

then

'

Key.value pair of

chunkid.public key of initiator

written to net
creating a Chunk ID
(CID)

allowing —%

found @

—

this is searched by any
other initiator prior to
requesting storage
and is updated
with their public key
ie

Lchunkname.keyl-keyz etc

"

[Perpetual Data] A Chunk Described
Called the hash of the data

@ contains the data
Chunk 1 Plus the first 10 signatures

/ of people watching it
_J

Chunk n

0O

Chunk 2

randomly checks

s)23Yy) Nuny) - Z} anbig

82/0¢

A forget request only made
by a signed participant
This request is accepted and their sig removed
randomly checks Another node randomly checks a chunk and notes
less than 10 sigs - adds theirs
when one sig left forget request is accepted
the sig is removed and chunk will be deleted in
60 days - chunks continue perpetual checks

randomly checks

@ . Users will be checking chunks at least every 40 days

Storing the other identical chunks Storage MID 1
- perpetual data searches for chunk ID (CID)
bit first
ensure theres no CID on net retrieve
if so shift again —
* shift left last bit of chunk name
this give us
I need to store Chunkname.keyl..
X bytesin TZ y @
(Time Zone)
S d t pick eventually be calculated on W
upernode net picks up chunk popularity - extra copies in many locations
+ for speed of access
Poor Rank
Supernode in TZ Y Identifies Many chunks to make up for poor rank - i.e. if
a node with same rank and a machine is off 16 hours a day then we need more chunks
enough space so they're always available
This will be an algorithm - so poor rank means
+ giving up more space to make up for it.
N -

challenge response
between T
the nodes .
+ @ number of copies
chunk stored] @

-) CID chunk2nd-name.MID (stored at)key...
gws'gfr:;eprggeoj updated *(chunk3rd-name.MlD (stored at)key...

syuny9 jeuonippy jo abeioys - g} ainbiy

8¢/L¢c

22/28
Figure 14 - Self Healing Event Sequence

this CID is called the chunk name and contains
chunk2nd-name.MID (stored at)key... @
chunk3rd-name.MID (stored at)key...

All nodes have copy of CID _ so know location of each other @

\
4—-—@-[\———> MID 3 (3rd chunli)J @

MID 1 (first chunk)

\/

[MID 2 (second chunk) '

*etee’ then MID 2 crashes

sese, or underperforms

.. (XX]

[} (X

*.0.. @ (MID 1 (first chunkgé—--»(MID 3 (3rd ChUﬂQ@

.:-..': The first node 6

. to notice carries out a 1 need to store

soecer challenge response to second then —=pp1 x bytesin TZ y

node informing them and

(Time Zone)
confirming renewal procces

Supernode net picks up

chunk stored challenge response Supegnodihm 12Y Idel:mﬂes @
wing us MID of ¢ between a node wi s:me rank and
° storage node the nodes enough space

23/28
Figure 15 - Aput

Receive signed message)?:xi:’ 2: sna;lde
from put machine to aput |€~— with p|\g410
chunk of data — but you save

this yyy chunk
(yyy Is 75% of
XXX size)

please save chunk
XXXX S|gned put MID

respond with
ok message signed

¢ awalt locations

receive locations and names ('f required)
of identical of other identical chunks
LN chunks chunk stored
*etee’ Send back confirmation
e signed by PMID
(XX L) .:

contact each storage node

!

exchange public

. . keys (actually PMID ID)

[chunk checking process){— begin whic is checked by getting PMID
chunk from net

®

[a

signed MID
request

@ Please forget this chunk

O

chunkserver 1
(us)

Then

T~

(chunkserver 2)

o~

request passed on
to all chunkservers

User MID

removed from list

of users of chunk

N

check =——p>

@

~a

©®

(chunkserver ﬂ

then

J

Chunk delete
timer begins
only MID

yob10}y — 9} a.nbig

8c/ve

.: o o o o
M o oo e o o
o v e L 3 e & o o
b4 . o @ e o o o
® eeoe o L .

File (F Hash &
Rename _’
hashed / h
Hash &
@ ()t s ()
Chunked
& —b c3

@ / Obfuscated
chunk 1 byte 1 swapped with bytel of chunk 2 \.

chunk 2 byte 2 swapped with byte 1 chunk 3
chunk 3 byte 2 swapped with byte 2 of chunk 1
This repeats until all bytes swapped
and then repeats the same number of times
as there are chunks with each itereation
making next chunk first one
i.e. second time round chunk 2 is starting position

Chunk size determination
if filesize < 1024
P = filesize / 5
Q = filesize / 3
else
P =512
Q = 1024
Chunk size will be sum of first 4 bytes of Hf if answer Is X
whileP> X : X=X +P OR whileX>Q:X=X-P

i.e answer is between 512K and 1Mb or between 1/3 and 1/5
of filesize for smaller files

i.e if Hf Is 123493583af sum of first 4 bits is 10

Hash &

H
rename —’e
(1)

Hash &
CS -» Rename —b@

®

Hash &
rename

Encrypt with
H2b and bits H3b_’
reHash
Encrypt with
H3b and bits H4b P>
reHash

©

Check existance
of chunk of
on net

\

yes

Check all

Note
We may decide
that this requires to be done
X times to flood whole file
with random data
we need to test for speed
against maximum security

chunks exist

Map of F

HXf (revision x)
HX1 , HXc1
HX2 , HXc2

B

then

Has been added
and represented by the X
in the map

Revision Control :

(Abort backup and alter chunk sizes (Collision)) @

sa|14 6undAioug jj9s - L4 ainbigy

8¢/sc

(User (Ul) log in]

then —>(10 Authenticated)

®

1: Sends join share
request (signed)

2: Signed acceptance of
join share

ﬁser (U2) iog inJ

then —)00 Authenticated)

Creates file F1 —}{ii‘t’ev‘:itisan:;ggl] @

4: creates share
i.e empy map

Each person added

Adds file F1 data by instigator has
to map

Read and/or
Add and/or

Delete and/or
Edit
rights to the files in the share

3: share (map) RSA encrypted
and sent to U2

People with all rights are admin
of the shares and there can
be multiple admins.

@

®,

At this point maidsafe.net stores
share information on each node. Any person updating
the files in the share leaves a3 message
for the others there's an updated share map
When others log in (or in real time) the
share map is updated on their machine. This includes

as with normal files any updates (revision history) of the files.

Share file looks like
1D - Ox1 (rights)

filename

H1f (revision 1)
Hii, Hicl
H12 , H1c2

H2f (revision 2)
H21 , H2cl
H22 , H2c2

.. etc. as per normal file
but duplicated

filename
HXf
HX1 , HXcl1
HX2 , HXc2
etc..
each entry may be a new
file or a revision
of an existing file

S9|14 3JeALd O} SS90V paseys — g| a4nbid4

82/9¢

L]
[L XXX N4
.
(A XX R X]
[XN 2]
.
(Y]
[XN X
(XA X)
oo o
o o

i - save message to
if user on line he randomly created id RSA encypted. This

gets random id is passed between consenting
(Non Public ID] or it's buffered for p~———p> users who communicate also

his last transrnitted to prevent snooping or @
@ random iD at least make 1t very difficult indeed
A\
,
@ / @ user can automatically W

\,

creates alter ID in maidsafe
@ done by without affecting anything.
An id change will be passed

@ / to known partnerstSt:::h

buff looks like as messenger contacts

public ID uffer message on (who can be removed
and key pair network as easily as added)

/ L V.

Jobuassap sw - g} ainbi4

user on line
/ 1 [

@ importantly link may be created to id.1 (first message)]

th send / receive another node - randomly changing. id.2 (second message)

can then ——| messages from Files / messages sent / recieved id.3 (third message)
other public id's via other node acting as etc.
proxy - to mask private id these are merely files
public id link stored as any other on the net
L v \. J
done by

irrefutable
id's such as 'can i speak to with reciever's public also allows —b[signing as per EU |aws]— May require —pp| proof of

handshake between alt messages encrypted Document or message

you' key identity

8C/LC

28/28

(39>ed papooua Ajjeibip e)
Jaded jo0jjeq SapoI3p T 930A 3yy Joy Jied Ad) + QI Jaded j0)eq
auiydew sJasn M3U nbjun s3Je3LD J3sn uayI—p yum Aoyine 03

paubis juas ajoa

49AJ3s woJy 3daraa pue
9]0A J0j pasn aied A3) ‘ 30A @

INIWISURI] SIY MOUS UeD 13sh)
pan! sy 4 Al 3yl yum paidAioua Axoud
Jaded 10/jeq € %00 | e 31 ybnouyy puas
@ spuas Ajoyane BuRoA) %
‘ @
Ajuoyine buioa
uonebpnsanul 0} 2eq 132ed 3J0A |Im |
)) wWa3sAs paubis e yoeq spuas
SIY W01y 3J0A JO S3de] \ 6uUNO 10) 3oeq
|1e dA0Wal Aew J3sn 2]0A spuas

390A U0 pade(d

paAaLI3DL 330A

Ajjeuondo \ /
% (paywana Ajqissod)

Maje Juelsu

S3ABLIJA. pue a1 snowAuoue
o alay s1 ssaippe 321n0s SI1Y3 AQ S310A 10} UOU 13430 10 QIdW
£ 0u H S1y sainsud pue Jis) 3y3 SJ0}IUCLU JBJIWIS J0 Y3m Jau ojul pabbo;
° SRR/ (aIw) 13U o pabboy 13sn snowAuoue uou
> 9 3ulyoew suasn J3sh snowAuoue J2u Uo
@ 1nd 1danas pue
T @ paAnaIdas 3)0A
3
S
N sdeysad uayy
W 0A 3Y) saypuapi
| WidNSAS 0) WSAS uo
- e isespeouq yunyd g
N 18YM 10§ POIOA
ol oym saysignd Aysoyne (paubis) g1 umouy
W. WOy WaIISAS U0
- 3de|d a30
i Aleury d— F pRJeIC 3300
[] L] o cee 00~
a © & o e o L] L []
e ¢ s O @ o een ° .
Y e ® oo L] L .
[] e & o L] [X] [X J
. L] L 13 L] []

19
20
21
22
23

24
25
26
27

28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43

2446199

STATEMENT OF INVENTION:

An issue with today's networks is a combination of vendor lock in,
imposed vendor based controls and lack of standards. The present
invention allows users to take charge of a new global network in a
manner that will maintain effectiveness and promote the setting and

attaining of common goals.

Another issue with today's networks is the security and privacy of data,
this invention allows a secure private and free network where users can
enjoy an efficiently managed working environment that presents a

guaranteed level of private and securely protected activity.

Also today, many computer resources are underutilised to a great
degree, including disk space, memory, processing power and any other
attached resources, this is inefficient and environmentally detrimental.
The present invention seeks to maximise these resources and share
them globally to people who purchase them or to people or
organisations who are deemed appropriate to benefit from them, such
as children in poorer countries, science labs etc. Allocation from these
resource pools, together with other resources, will be decided by the

users of the system.

BACKGROUND:

Digital data is often stored on the hard disks of individual PCs which
invariably have memory and operational overhead restrictions. Storage
on distributed systems such as the internet is also possible but requires
specific storage servers to be available. In addition to these physical
systems, data management elements such as security, repair,
encryption, authentication, anonymity and mapping etc. are required to

ensure successful data transactions and management via the Internet.

44
45
46
47

48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70

71

T

Systems of messaging and voting exist today but do not allow either
authentication on what was voted for or on line anonymity. There have
been some attempts as listed below, but none of these systems operate

as maidsafe.net does.

Listed below is some prior art for these individual elements, of which we
have analysed and rejected as true prior art, where necessary we

indicate why it is not prior art for our invention:

PERPETUAL DATA

Most perpetual data generation is allocated with time & calendar etc.
(US62669563, JP2001100633). This is not related to this current
invention as we have no relation to calendaring, which demonstrates
perpetual generation time related data. However, External devices as
communication terminal (JP2005057392) (this is a hardware device not
related to this present invention) have been used for plurality of packet
switching to allow perpetual hand-ff of roaming data between networks
and battery pack (EP0944232) has been used to around-the-clock
accessibility of customer premises equipment interconnected to a
broadband network is enhanced by perpetual mode operation of a
broadband network interface. In addition, perpetual data storage and
retrieval in reliable manner in peer to peer or distributed network The
only link here is these devices are connected to Internet connections

but otherwise presents no prior art.

DATABASES & DATA STORAGE METHODS

Patents W09637837, TW223167B, US6760756 and US7099898
describe methods of data replication and retention of data during failure.
Patent WO200505060625 discloses method of secure interconnection

when failure occurs.

AUTHENTICATION

72
73
74
75
76
77
78
79
80
81
82

83
84
85
86
87
38
89
90
91

92
93
94
95
96
97
98
99
100
101

3

Authentication servers are for user and data transaction authentication
e.g. JP2005311545 which describe a system wherein the application of
‘a digital seal’ to electronic documents conforms to the Electronic
Signature Act. This is similar to the case of signing paper documents
but uses the application of an electronic signature through an electronic
seal authentication system. The system includes: client computers, to
each of which a graphics tablet is connected; an electronic seal
authentication server and a PKI authentication server, plus the
electronic seal authentication server. US2004254894 discloses an
automated system for the confirmed efficient authentication of an

anonymous subscriber's profile data in this case.

JP2005339247 describes a server based one time ID system and uses
a portable terminal. US2006136317 discloses bank drop down boxes
and suggests stronger protection by not transmitting any passwords or
IDs. Patent US2006126848 discloses a server centric and deals with a
one time password or authentication phrase and is not for use on a
distributed network. Patent US2002194484 discloses a distributed
networks where all chunks are not individually verified and where the
manifest is only re-computed after updates to files and hashes are

applied and are for validation only.

SELF-AUTHENTICATION

This is mostly used in biometric (WO2006069158). System for
generating a patch file from an old version of data which consists of a
series of elements and a new version of data which also consists of a
series of elements US2006136514). Authentication servers (therefore
not a distributed networking principle as per this invention) are
commonly used (JP2006107316, US2005273603, EP1548979).
However, server and client exchange valid certificates can be used
(US2004255037). Instead of server, uses of information exchange

system (semantic information) by participant for authentication can be

102
103

104
105
106
107
108
109
110
11
112
113
114
115
116

117
118
119
120
121
122
123
124
125
126

127
128
129
130
131

LP \

used (JP2004355358), again this semantic information is stored and

referenced unlike this present invention.

Concepts of identity-based cryptography and threshold secret sharing
provides for a distributed key management and authentication. Without
any assumption of pre-fixed trust relationship between nodes, the ad
hoc network works in a self-organizing way to provide the key
generation and key management service, which effectively solves the
problem of single point of failure in the traditional public key
infrastructure (PKI)-supported system (US2006023887). Authenticating
involves encryption keys for validation (W02005055162) These are
validated against known users unlike the present invention. Also, for
authentication external housing are used (W02005034009). All of
these systems require a lost or (whether distributed or not) record of
authorised users and pass phrases or certificates and therefore do not

represent prior art.

Ranking, hashing for authentication can be implemented step-by-step
and empirical authentication of devices upon digital authentication
among a plurality of devices. Each of a plurality of authentication
devices can unidirectionally generate a hash value of a low experience
rank from a hash value of a high experience rank, and receive a set of
high experience rank and hash value in accordance with an experience.
In this way, the authentication devices authenticate each other's
experience ranks (US2004019788). This is a system of hashing access
against known identities and providing a mechanism of effort based

access. This present invention does not rely or use such mechanisms.

QUICK ENCIPHERING

This is another method for authentication (JP2001308845). Self-
verifying certificate for computer system, uses private and public keys ~
no chunking but for trusted hardware subsystems (US2002080973) this

is a mechanism of self signing certificates for authentication, again

132
133
134
135
136
137
138
139
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154

155
156

157
158
159

S j

useful for effort based computing but not used in this present invention.
Other authentication modes are, device for exchanging packets of
information (JP2001186186), open key certificate management data
(JP10285156), and certification for authentication (WO96139210).
Authentication for Peer to Peer system is demonstrated by digital rights
management (US2003120928). Digital rights management and CSC
(part of that patent s a DRM container) issues which are based on
ability to use rather than gaining access to network or resources and

therefore not prior art.

Known self-healing techniques are divided broadly into two classes.
One is a centralized control system that provides overall rerouting
control from the central location of a network. In this approach, the
rerouting algorithm and the establishing of alarm collection times
become increasingly complex as the number of failed channels
increases, and a substantial amount of time will be taken to collect
alarm signals and to transfer rerouting information should a large
number of channels of a multiplexed transmission system fail. The other
is a distributed approach in which the rerouting functions are provided
by distributed points of the network. The following papers on distributed
rerouting approach have been published: (these are all related to self
healing but from a network pathway perspective and therefore are not
prior art for this invention which deals with data or data chunks self

healing mechanisms.

Document 1: W. D. Grover, "The Selfhealing Network", Proceedings of
Grobecom '87, November 1987.

Document 2: H. C. Yang and S. Hasegawa, "Fitness: Failure
Immunization Technology For Network Service Survivability”,
Proceedings of Globecom '88, December 1988.

160
161
162

163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

Document 3: H. R. Amirazizi, "Controlling Synchronous Networks With
Digital Cross-Connect Systems", Proceedings of Globecom '88,
December 1988.

Document 1 is concerned with a restoration technique for failures in a
single transmission system, and Document 2 relates to a "multiple-
wave" approach in which route-finding packets are broadcast in multiple
wave fashion in search of a maximum bandwidth until alternate routes
having the necessary bandwidth are established. One shortcoming of
this multiple wave approach is that it takes a long recovery time.
Document 3 also relates to fault recovery for single transmission
systems and has a disadvantage in that route-finding packets tend to

form a loop and hence a delay is likely to be encountered.

SELF-HEALING

This is demonstrated by a system and method of secure and
tamperproof remote files over distributed system, redirects integrity
check fail data to install module for repairing (W0O20566133) This
discloser relies on testing data from a central location and not
distributed chunking as with the present invention. It also does not allow
for multiple access and sharing of the testing and ownership of chunks.
Server are used for self-healing (US2004177156), effectively removing
these from a prior art claim. Self-repairing is conducted by data overlay
is built as a data structure on top of a logical space defined by a
distributed hash table (DHT) in a peer-to-peer (P2P) network
environment (US2005187946) This Microsoft patent is a patent to DT
networks which is peculiar as these exist in some quantity and have
done for many years, however there is no claim made to self repair data
as is in this present invention but to self repair data storage locations
(i.e. in p2p terms find nearest node). This is not self healing data but
merely a description of a typical DHT and the availability of routes to

data and providing multiple routes. This is not prior art for this present

190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

-3

inventions but very likely not enforceable as there are many cases of

prior art against this Microsoft patent.

Identical communicating node elements are used for power delivery
network for self-repairing (US2005043858). Self-healing also relates to
distributed data systems and, in particular, to providing high availability
during performance of a cluster topology self-healing process within a
distributed data system cluster. A cluster topology self-healing process
may be performed in response to a node failure in order to replicate a
data set stored on a failed node from a first node storing another copy
of the data set to a second non-failed node (US2004066741). An
apparatus and method for self-healing of software may rely on a
distribution object in a directory services of a network to provide data for
controlling distribution of software and installation of files associated
therewith (US6023586). A technique for the substantially instantaneous
self-healing of digital communications networks. Digital data streams
from each of N nearby sources are combined and encoded to produce
N+M coded data streams using a coding algorithm. The N+M coded
data streams are then each transmitted over a separate long haul
communications link to a decoder where any N of the N+M coded data
streams can be decoded uniquely to produce the original N data steams
(EP0420648. To provide a self-healing communications network which
can be recovered from a failure in a short period of time even if the
failure has occurred in a multiplexed transmission line (US5235599)
The above patents and inventions are based on clustering technology
and not distributed computing or Internet based computing. The cluster
is simply many machines connected to create a larger machine. It is
treated as a single machine with known user access etc. and not prior
art to this present invention. The N + M coding schemes discussed are
patents based on digital communications and reception links and are
not related to this present invention although at first glance they appear

to have the same language in areas.

%

221 Attempts to moving towards attaining some limited aspects of self-

222 encryption are demonstrated by

223 (a) US2003053053625 discloser shows limitation of asymmetrical and
224 symmetrical encryption algorithms, and particularly not requiring

225 generating a key stream from symmetric keys, nor requiring any time
226 synchronising, with minimal computational complexity and capable of
227 operated at high speed. A serial data stream to be securely transmitted
228 is first demultiplexed into a plurality N of encryptor input data stream.
229 The input data slices are created which have cascade of stages, include
230 mapping & delay function to generate output slices. These are

231 transmitted though a transmission channel. Decryptor applies inverse
232 step of cascade of stages, equalizing delay function and mapping to
233 generate output data slices. The output data streams are multiplexed.
234 The encryptor and decryptor require no synchronizing or timing and
235 operate in simple stream fashion. N:N mapping does not require

236 expensive arithmetic and implemented in table lookup. This provides
237 robust security and efficiency. A significant difference between this
238 approach and prior cipher method is that the session key is used to
239 derive processing parameters (tables and delays) of the encryptor and
240 decryptor in advance of data transmission. Instead of being used to
241 generate a key stream at real-time rates. Algorithm for generating

242 parameters from a session key is disclosed This patent is based on
243 data communications and encrypting data in transit automatically and
244 decrypting automatically at the remote end, this is not related to this
245 present invention.

246 (b) US2002184485 discloser addresses secure communication, by
247 encryption of message (SSDO-self signing document objects), such
248 that only known recipient in possession of a secret key can read the
249 message and verification of message, such that text and origin of

250 message can be verified. Both capabilities and built into message that

251 can be transmitted over internet and decrypted or verified by computer

252
253
254
255
256
257
258
259
260
261
262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

0‘

implementing a document representation language that supports
dynamic content e.g. any standard web browser, such that elaborate
procedures to ensure transmitting and receiving computers have same
software are no longer necessary. Encrypted message or one encoded
for verification can carry within itself all information needed to specify
the algorithm needed for decryption. This is a patent describing a key
pair encryption and validation of same software. This is not used by the
present invention where key pairs are used for asymmetric encryption
of some data but this is used with the RSA (now out of patent)
encryption ciphers and not in the manner described above which is

more for validation.

A range of limited methods for self-encryption have been developed
e.g. system for radomisation-encryption of digital data sequence with
freely selectable (EP1182777) (this is a key generating patent and not
self encryption as this current invention shows), use of code key
calculation encryption mode but using server (CN1658553), uses self-
test mode (US6028527), encryption system for randomising data signal
for transmission (not storing) and reproducing information at a receiver
(US4760598), uses private encryption keys into components and
sending them to trusted agents (rather than self encryption as per this
present invention) (JP2005328574), cryptographic system with key
escrow feature, rather than self encryption as described in this present
invention (US6009177), steps of first encoding one set of message
signal with first keyed transformation (US6385316), self-modifying fail-
safe password system (US6370649), time-based encrypting method
involves splitting voice signal into time intervals, random permutations
etc. (RU2120700), uses hardware decryption module (HDM)
(US2003046568), realizing data security storage and algorithm storage
by means of semiconductor memory device (US2006149972), use
certificate from certificate server (US20020428080), use certificates for
encryption of communications (EP1422865), use self-service terminal
for encryption and transmission of data (US2006020788), method for

284
285
286
287
288
289
290
291
292

293
294
295

296
297
298
299
300
301
302
303
304
305
306

307
308
309
310
311
312
313

(O

implementing security communication by encryption algorithm
(US2005047597), method of data encryption — block encryption variable
length (BEVL) encoding, overcomes weakness of CMEA algorithm)
(US2004190712), encrypted cipher code for secure data transmission
(CN1627681) method and system for encrypting streamed data
employing fast set-up single use key and self-synchronising
(US2005232424) and for security, generate MAC for data integrity,
placing electronic signature, use TREM software module
(US2004199768)

None of the above systems utilise self encryption as per the present
invention and are related to voice and data transmissions, or include

hardware controllers or servers.

PRIVATE SHARED FILES

US6859812 discloses a system and method for differentiating private
and shared files, where clustered computers share a common storage
resource, Network-Attached Storage (NAS) and Storage Area Network
(SAN), therefore not distributed as in this present invention. US5313646
has a system which provides a copy-on-write feature which protects the
integrity of the shared files by automatically copying a shared file into
user's private layer when the user attempts to modify a shared file in a
back layer, this is a different technology again and relies on user
knowledge - not anonymous. WO02095545 discloses a system using a

server for private file shanng which is not anonymous.

DisTRIBUTED NETWORK SHARED MAPS

A computer system having plural nodes interconnected by a common
broadcast bus is disclosed by US5117350. US5423034 shows how
each file and level in the directory structure has network access
privileges. The file directory structure generator and retrieval tool have a
document locator module that maps the directory structure of the files

stored in the memory to a real world hierarchical file structure of files.

314
315
316

317
318
319
320
321
322
323
324
325
326
327

328
329
330
331
332
333
334
335
336
337
338
339
340

341
342

(R

Therefore not distributed across public networks or anonymous or self
encrypting, the present inventions does not use broadcasting in this

manner.

SECURITY

Today systems secure transactions through encryption technologies
such as Secure Sockets Layer (SSL), Digital Certificates, and Public
Key Encryption technologies. The systems today address the hackers
through technologies such as Firewalls and Intrusion Detection
systems. The merchant certification programs are designed to ensure
the merchant has adequate inbuilt security to reasonably assure the
consumer their transaction will be secure. These systems also ensure
that the vendor will not incur a charge back by attempting to verify the
consumer through secondary validation systems such as password
protection and eventually, Smart Card technology.

Network firewalls are typically based on packet filtering which is limited
in principle, since the rules that judge which packets to accept or reject
are based on subjective decisions. Even VPNs (Virtual Private
Networks) and other forms of data encryption, including digital
signatures, are not really safe because the information can be stolen
before the encryption process, as default programs are allowed to do
whatever they like to other programs or to their data files or to critical
files of the operating system. This is done by (CA247150) automatically
creating an unlimited number of Virtual Environments (VEs) with virtual
sharing of resources, so that the programs in each VE think that they
are alone on the computer. The present invention takes a totally
different approach to security and obviates the requirement of much of
the above particularly CA2471505.

US6185316 discloses security via fingerprint imaging testing bit of code
using close false images to deter fraudulent copying, this is different

343
344

345
346
347
348
349
350
351
352
353
354

355
356
357
358
359
360
361
362

363
364
365

366
367
368
369
370
371

(- -

from the present invention in that we store no images at all and certainly

not in a database.

SECURITY & STORAGE SYSTEMS

There are currently several types of centralised file storage systems
that are used in business environments. One such system is a server-
tethered storage system that communicates with the end users over a
local area network, or LAN. The end users send requests for the
storage and retrieval of files over the LAN to a file server, which
responds by controlling the storage and/or retrieval operations to
provide or store the requested files. While such a system works well for
smaller networks, there is a potential bottieneck at the interface

between the LAN and the file storage system.

Another type of centralised storage system is a storage area network,
which is a shared, dedicated high-speed network for connecting storage
resources to the servers. While the storage area networks are generally
more flexible and scalable in ter'ms of providing end user connectivity to
different server-storage environments, the systems are also more
complex. The systems require hardware, such as gateways, routers,
switches, and are thus costly in terms of hardware and associated

software acquisition.

Yet another type of storage system is a network attached storage
system in which one or more special-purpose servers handle file

storage over the LAN.

Another file storage system utilizes distributed storage resources
resident on various nodes, or computers, operating on the system,
rather than a dedicated centralised storage system. These are
distributed systems, with the clients communicating peer-to-peer to
determine which storage resources to allocate to particular files,

directories and so forth. These systems are organized as global file

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

387
388
389
390
391

392
393
394
395
396
397
398
399
400
401
402

'y i

stores that are physically distributed over the computers on the system.
A global file store is a monolithic file system that is indexed over the
system as, for example, a hierarchical directory. The nodes in the
systems use Byzantine agreements to manage file replications, which
are used to promote file availability and/or reliability. The Byzantine
agreements require rather lengthy exchanges of messages and thus
are inefficient and even impractical for use in a system in which many
modifications to files are anticipated. US200211434 shows a peer-to-
peer storage system which describes a storage coordinator that
centrally manages distributed storage resources. The difference here is
the requirement of a storage broker, making this not fully distributed.
The present invention also differs in that the present invention has no
central resources for any of the system and we also encrypt data for
security as well as the self healing aspect of our system which is again
distributed.

US7010532 discloses improved access to information stored on a

storage device. A plurality of first nodes and a second node are coupled
to one another over a communications pathway, the second node being
coupled to the storage device for determining meta data including block

address maps to file data in the storage device.

JP2003273860 discloses a method of enhancing the security level
during access of an encrypted document including encrypted content. A
document access key for decrypting an encrypted content within an
encrypted document is stored in a management device, and a user
device wishing to access the encrypted document transmits its user 1D
and a document identification key for the encrypted document, which
are encrypted by a private key, together with a public key to the
management device to request transmission of the document access
key. Differing from this invention in that it never transmit user id or login
in the network at all. Also it does not require management devices of

any form.

403
404
405
406
407
408
409
410

411
412
413
414

415
416
417
418
419
420
421
422
423

424
425
426
427
428
429

(¢

JP2002185444 discloses improves security in networks and the
certainty for satisfying processing requests. In the case of user
registration, a print server forms a secret key and a public key, and
delivers the public key to a user terminal, which forms a user ID, a
secret key and a public key, encrypts the user ID and the public key by
using the public key, and delivers them to the print server. This is not
linked at all to this invention and is a system for a PKIl infrastructure for

certificate access to network nodes.

The private and public keys of users are used in US6925182, and are
encrypted with a symmetric algorithm by using individual user
identifying keys and are stored on a network server making it a different

proposition from a distributed network

US2005091234 describes data chunking system which divides data into
predominantly fixed-sized chunks such that duplicate data may be
identified. This is associated with storing and transmitting data for
distributed network. US2006206547 discloses a centralised storage
system, whilst US2005004947 discloses a new PC based file system.
US2005256881 discloses data storage in a place defined by a path
algorithm. This is a server based duplicate removal and not necessarily
encrypting data, unlike the present invention which does both and

requires no servers.

SECURITY & ENCRYPTION

Common email communications of sensitive information is in plain text
and is subject to being read by unauthorized code on the senders
system, during transit and by unauthorized code on the receiver's
system. Where there is a high degree of confidentially required, a

combination of hardware and software secures data.

430
431
432
433
434
435
436
437
438
439
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454

455
456
457
458
459
460

'S

A high degree of security to a computer or several computers
connected to the Internet or a LAN as disclosed in US2002099666.
Hardware system is used which consists of a processor module, a
redundant non-volatile memory system, such as dual disk drives, and
multiple communications interfaces. This type of security system must
be unlocked by a pass phrase to access data, and all data is
transparently encrypted, stored, archived and available for encrypted
backup. A system for maintaining secure communications, file transfer
and document signing with PKI, and a system for intrusion monitoring
and system integrity checks are provided, logged and selectively

alarmed in a tamper-proof, time-certain manner.

ENCRYPTION

WO02005093582 discloses method of encryption where data is secured
in the receiving node via private tag for anonymous network browsing.
However, other numerous encryption methods are also available such
as (i) implantation of Reed Solomon algorithm (W002052787), which
ensures data is coded in parabolic fashion for self-repairing and
storage, (ii) storage involves incremental backup (W0O02052787), (ii)
uses stenographic (US2006177094), (iv) use cipher keys (CN1620005),
encryption for non text (US2006107048) and US2005108240 discloses
user keys and randomly generated leaf node keys. The present
invention uses none of these methods of encryption and in particular
ensures all chunks are unique and do not point to another for security
(an issue with Reed Solomon and N + K implementations of parabolic

coding)

ENCRYPTED DOCUMENT SIGNING

WO02005060152 discloses a digital watermark representing the one-
way hash is embedded in a signature document is used for electronic
signing. Mostly encrypted document signing is associated with legal
documents, e.g. on-line notary etc. e.g. US2006161781, signature
verification (US6381344). WO0182036 discloses a system and method

461
462
463
464
465
466
467
468

469
470
471
472
473
474
475

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

RV i

for signing, storing, and authenticating electronic documents using
public key cryptography. The system comprises a document service
computer cluster connected to user computers, document owner server
computers, and registration computers via a network such as for
example, the internet or the world wide web. WO0013368 discloses
both the data object and the signature data are encrypted. None of
these systems are designed or allow for distributed signing networks

unlike the present invention.

US6912660 discloses a method for parallel approval of an electronic
document. A document authentication code (DAC 0) is generated,
linked to the original document. Subsequent approvals of the document
generate a DAC x related to that specific approval. This is not linked to
the present invention as it's a document approval system - i.e. one
which allows a document to have multiple signatories to authenticate
approval, the present invention does not do this at all.

US6098056 discloses a system and method for controlling access
rights to and security of digital content in a distributed information
system, e.g., Internet. The network includes at least one server coupled
to a storage device for storing the limited access digital content
encrypted using a random-generated key, known as a Document
Encryption Key (DEK). The DEK is further encrypted with the server's
public key, using a public/private key pair algorithm and placed in a
digital container stored in a storage device and including as a part of the
meta-information which is in the container. The client's workstation is
coupled to the server (one of the many difference’s from the present
invention) for acquiring the limited access digital content under the
authorized condition. A Trusted Information Handler (TIH) is validated
by the server after the handler provides a data signature and type of
signing algorithm to transaction data descriptive of the purchase
agreement between the client and the owner. After the handier has
authenticated, the server decrypts the encrypted DEK with its private

492
493
494
495
496
497
498

499
500
501
502
503
504
505
506
507

508
509
510
511

512
513
514
515

516
517
518

@

key and re-encrypts the DEK with the handler's public key ensuring that
only the information handler can process the information. The encrypted
DEK is further encrypted with the client's public key personalizing the
digital content to the client. The client's program decrypts the DEK with
his private key and passes it along with the encrypted content to the
handler which decrypts the DEK with his private key and proceeds to
decrypt the content for displaying to the client.

US5436972 discloses a method for preventing inadvertent betrayal by a
trustee of escrowed digital secrets. After unique identification data
describing a user has been entered into a computer system, the user is
asked to select a password to protect the system. US5557518 discloses
a system to open electronic commerce using trusted agents.
US5557765 discloses a system and method for data recovery. An
encrypting user encrypts a method using a secret storage key (KS) and
attaches a Data Recovery Field (DRF), including an Access Rule index
(ARI) and the KS to the encrypted message.

US5590199, discloses a system for authenticating and authorizing a
user to access services on a heterogeneous computer network. The
system includes at least one workstation and one authorization server

connected to each other through a network.

US2006123227 and WO0221409 describe trust based effort measuring
techniques to validate signatures without the requirement for a central
body or central messaging entity. This is an interesting new concept but

not used in the current invention.

SELF-ENCRYPTION
Attempts to moving towards attaining some limited aspects of self-
encryption are demonstrated by:

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
541
542
543
544
545
546
547
548
549

(%

(a) US2003053053625 discloses limitation of asymmetrical and
symmetrical encryption algorithms, and particularly not requiring
generation of a key stream from symmetric keys, nor requiring any time
synchronizing, with minimal computational complexity and capable of
operating at high speed. A serial data stream to be securely transmitted
is first demultiplexed into a plurality N of encryptor input data stream.
The input data slices are created which have a cascade of stages,
include mapping & delay functions to generate output slices. These are
transmitted though a transmission channel. Decryptor applies inverse
step of cascade of stages, equalizing delay function and mapping to
generate output data slices. The output data streams are multiplexed.
The encryptor and decryptor require no synchronizing or timing and
operate in simple stream fashion. N:N mapping does not require
expensive arithmetic and implemented in table lookup. This provides
robust security and efficiency. A significant difference between this
approach and prior cipher method is that the session key is used to
derive processing parameters (tables and delays) of the encryptor and
decryptor in advance of data transmission. Instead of being used to
generate a key stream at real-time rates. Algorithm for generating
parameters from a session key is disclosed. This is a data

communications network and not related to current invention.

(b) US2002184485 addresses secure communication, by encryption of
message (SSDO-self signing document objects), such that only known
recipient in possession of a secret key can read the message and
verification of message, such that text and origin of message can be
verified. Both capabilities are built into message that can be transmitted
over internet and decrypted or verified by computer implementing a
document representation language that supports dynamic content e.qg.
any standard web browser, such that elaborate procedures to ensure
transmitting and receiving computers have same software are no longer

necessary. Encrypted message or one encoded for verification can

550
551

552
553
554
555
556
557
558
559
560
561
562
563

564
565
566
567
568
569
570
571
572
573
574

575
576
51
578
579

&

carry within itself all information needed to specify the algorithm needed

for decryption.

ANONYMOUS TRANSACTIONS & INTERFACES

US2004117303 discloses an anonymous payment system and is
designed to enable users of the Internet and other networks to
exchange cash for electronic currency that may be used to conduct
commercial transactions world-wide through public networks.
US2005289086 discloses an anonymity for web registration which
allows payment system. US2002073318 describe use of servers where
the system is effort based trust on combination of anonymous keys to
transact and public key to buy non anonymous credits. Each of these is
a centrally controlled system and do not provide a mechanism to
transfer credits or cash to anonymous accounts. Many of these actually

require user registration on a web site.

US2003163413 discloses a method of conducting anonymous
transactions over the Internet to protect consumers from identity fraud.
The process involves the formation of a Secure Anonymous
Transaction Engine to enable any consumer operating over an open
network, such as the Internet to browse, collect information, research,
shop, and purchase anonymously. The Secure Anonymous Transaction
Engine components provide a highly secure connection between the
consumer and the provider of goods or services over the Internet by
emulating an in store anonymous cash transaction although conducted
over the Internet. This again is server based and requires user

registration.

With regard to cash transfers, a truly anonymous purchase is one in
which the purchaser and seller are unknown to each other, the
purchase process is not witnessed by any other person, and the
exchange medium is cash. Such transactions are not the norm. Even

cash transactions in a place of business are typically witnessed by

580
581
582
583
584
585
586
587
588
589
590
591
592

593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608

7©

salespersons and other customers or bystanders, if not recorded on
videotape as a routine security measure. On the other hand, common
transaction media such as payment by personal check or credit card
represent a clear loss of anonymity, since the purchaser's identity as
well as other personal information is attached to the transaction (e. g.,
driver's license number, address, telephone number, and any
information attached to the name, credit card, or driver’s license
number). Thus, although a cash transaction is not a truly anonymous
purchase, it provides a considerably higher degree of purchase
anonymity than a transaction involving a personal check or credit card,
and affords perhaps the highest degree of purchase anonymity
achievable in the present. The use of cash, however, has limitations,

especially in the context of electronic commerce.

WO00203293 discloses methods, systems, and devices for performing
transactions via a communications network such as the Internet while
preserving the anonymity of at least one of the parties. A transaction
device is linked to an anonymous account to allow a party to preserve
an equivalent level of anonymity as the use of cash when making a
transaction at a traditional brick-and-mortar business as well as in the
virtual world of electronic commerce. As such, the transaction device
may be considered equivalent to a flexible and versatile cash wallet. In
this way, combines the desirable features of cash (anonymity, security,
and acceptance) and of electronic commerce (speed, ease, and
convenience). This like the next invention requires a hardware based

device unlike the present invention.

EP0924667 is based on a distributed payment system for cash-free
payment with purse chip cards using the Net. The system consists of a
client system which is, for example, installed at the customer site and a

server system which is, for example, installed at the dealer.

609
610
611
612
613
614
615
616
617

618
619
620
621
622
623
624

625
626
627
628
629

630
631
632
633
634
635
636
637
638

2\

US6299062 discloses an electronic cash system for performing an
electronic transaction using an electronic cash, comprises at least one
user apparatus each capable of using the electronic cash; an
authentication centre apparatus, for receiving a user identity
information, a corresponding public key along with a certificate issue
request from one of the user apparatus and for issuing a certificate for
the user apparatus's public key after confirming the identity of the
corresponding user. This again requires hardware and user registration

to the system

US2004172539 discloses method for generating an electronic receipt in
a communication system providing a public key infrastructure,
comprising the steps of receiving by a second party a request message
from a first party, the request message comprising a transaction request
and a first public key based on a secret owned by the first party and
wherein the secret is associated with at least the secret of a further

public key of the first party. (server based)

WO00219075 discloses publicly-accessible, independent, and secure
host internet site that provides a downloadable agent program to any
anonymous client PC, with the agent program generating within the
client PC a registration checksum based upon the document to be

registered.

ANONYMOUS VOTING

US2003159032 discloses automatically generating unique, one-way
compact and mnemonic voter credentials that support privacy and
security services. Discloses any voting system, voting organization, or
voting game wherein participants need to be anonymous and/or must
exchange secrets and/or make collective decisions. US2002077887
(requires registration and initial knowledge of the person who receives
the ballot, and requires a server) discloses an architecture that enables

anonymous electronic voting over the Internet using public key

639
640
641
642
643
644
645

646
647
648
649
650
651
652
653
654
655
656
657
658
659

660
661

662
663
664
665
666
667

-

technologies. Using a separate public key/private key pair, the voting
mediator validates the voting ballot request. (Hardware device)

DE 10325491 discloses that the voting method has an electronic ballot
box for collecting encoded electronic voting slips and an electronic box
for collecting the decoded voting slips. The voter fills out his voting slip
at a computer and authenticates his vote with an anonymous signature

setting unit.

US2004024635 (hardware based, requiring servers) discloses a
distributed network voting system; a server for processing votes cast
over a distributed computing network. The server includes memory
storage, data identification, an interested party and a processor in
communication with the memory. The processor operates to present an
issue to a user of a client computer, receive a vote on the issue from
the user, and transmit data relating to the vote to the interested party
based upon the data identifying the interested party stored in the
memory. The processor further operates to generate a vote status
cookie when the user submits the vote, transmit the vote status cookie
to the client for storage, and transmit data to the user that prompts the
user to provide authentication data relating to the user, who then
receives authentication data relating to the user and authenticate the

user based onthe authentication data.

WQO03098172 discloses modular monitoring and protection system with

distributed voting logic.

MAPPING

US2006112243 discloses a hard disk mapping where the data is copied
locally and then the machine decides it can use either copy and
whether or not update the other one. EP1049291 discloses a remote
device monitoring using pre-calculated maps of equipment locations.

These are hardware based data mapping systems and not related.

668
669
670
671
672
673
674
675
676

5

As above prior art highlights separate existence of elements such as
storage, security, repairing, encryption, authentication, anonymity,
voting and mapping etc. for data transaction and storage via internet.
There is some limited linkage between a few of the individual elements,
but none are inter-linked to provide comprehensive solution for secure
data storage and transmittance via internet utilisation. The inventions
below list solutions to address the vacuum and provide an inexpensive
solution for secure internet data storage and transmittance with other
added benefits.

677

678
679

680
681
682
683
684
685
686
687

688

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

N

Summary of Invention

The main embodiments of this invention are as follows:

A system of sharing access to private files which has the functional

elements of:

Perpetual Data

Self encryption

Data Maps

Anonymous Authentication
Shared access to Private files
ms Messenger

Cyber Cash

Worldwide Voting System

© N O Ok N =

.. with the additionally linked functional elements of:

Peer Ranking

Self Healing

Security Availability
Storage and Retrieval
Duplicate Removal
Storing Files

Chunking

Encryption / Decryption
Identify Chunks

10. Revision Control
11.Identify Data with Very Small File
12.Logon

© ® N OO0 b N2

13.Provide Key Pairs
14.Validation
15.Create Map of Maps

704
705
706
707
708
709
710
711
712
713
714
715
716

717

718
719
720
721
722
723
724

725
726
727

728
729
730

15

16. Share Map

17.Provide Public ID

18.Encrypted Communications

19. Document Signing

20.Contract Conversations
21.Counterfeit Protection

22. Allow Selling of Machine Resources
23.Interface with Non-Anonymous Systems
24. Anonymous Transactions

25. Anonymity

26.Proven Individual

27.Validation of Vote Being Used
28.Distributed Controlled Voting

A distributed network system and product which provides:

secure communications

store data & share resources

anonymous backing and restoring data

share private files & secure data without using server

anonymous authentication of users

-~ 0 a0 T oo

approve transaction based on digital currency

CPU sharing via anonymous voting system

Qe

A method of allowing users to securely store data and share resources
across a distributed network by utilising anonymously shared computer

resources.

A method to allow secure communications between users by utilising
public ID's linked to anonymous ID's to authenticate users as well as

allowing contract signed conversations.

731
732
733

734
735

736
737

738
739
740

741
742

743

744
745
746

747
748
749
750
751
752

753
754
755

16

A method to allow sharing and allocation of resources globally by
utilising effort based testing and anonymously authenticated users in a
global distributed network.

A method specifically to backup and restore data anonymously in a

distributed network with guarantees on integrity and recovery times..

A method to share private and secured data without the use of file

servers or any controlling body or centralised resource.

A method to approve the exchange of resources and other transactions
based on a digital currency which utilises links with non anonymous

payment systems.

A method to allow data to be described decoded and identified using

very small data map files.

A method to allow anonymous authentication of users on a network.

A method of above to allow sharing of CPU power globally and to
contribute to systems based on users input from a worldwide secure

and anonymous voting system.

A method where a person’s computer operating system and related
computer program may be held on a removable disk (such as a USB
stick optionally with biometric recognition to evade keyloggers) and
used to boot any compatible computer with a known virus / trojan horse
free system to access their data remotely and securely without worrying

about the integrity of host machine they are using.

At least one computer program comprising instructions for causing at
least one computer to perform the method, system and product

according to any of above.

N

756 That at least one computer program of above embodied on a recording
757 medium or read-only memory, store.

~4

DESCRIPTION
Detailed Description:

758 (References to IDs used in descriptions of the system’s functionality)
759 MID - this is the base ID and is mainly used to store and forget files.
760 Each of these operations will require a signed request. Restoring may
761 simply require a request with an ID attached.
762 PMID — This is the proxy mid which is used to manage the receiving of
763 instructions to the node from any network node such as get/ put / forget
764 etc. This is a key pair which is stored on the node - if stolen the key pair
765 can be regenerated simply disabling the thief's stolen PMID — although
766 there's not much can be done with a PMID key pair.
767 CID — Chunk Identifier, this is simply the chunkid.KID message on the
768 net.
769 TMID — This is today's ID a one time ID as opposed to a one time
770 password. This is to further disguise users and also ensure that their MID
771 stays as secret as possible.
772 MPID — The maidsafe.net public ID. This is the ID to which users can add
773 their own name and actual data if required. This is the ID for messenger,
774 sharing, non anonymous voting and any other method that requires we
775 know the user.
776 MAID - this is basically the hash of and actual public key of the MID. this
777 ID is used to identify the user actions such as put / forget / get on the
778 maidsafe.net network. This allows a distributed PKI infrastructure to exist

779 and be automatically checked.

780
781
782
783
784

785
786
787

788
789
790
791
792
793

794
795
796
797
798
799
800

801
802
803
804
805

1A

KID - Kademlia ID this can be randomly generated or derived from
known and preferably anonymous information such as an anonymous
public key hash as with the MAID.. In this case we use kademlia as the
example overlay network although this can be almost any network

environment at all.

MSID - maidsafe.net Share ID, an ID and key pair specifically created for
each share to allow users to interact with shares using a unique key not

related to their MID which should always be anonymous and separate.

Anonymous Authentication Description

Anonymous authentication relates to system authentication and, in
particular, authentication of users for accessing resources stored on a
distributed or peer-to-peer file system. Its aim is to preserve the
anonymity of the users and to provide secure and private storage of data
and shared resources for users on a distributed system. It is a method of

authenticating access to a distributed system comprising the steps of;

e Receiving a user identifier;

¢ Retrieving an encrypted validation record identified by the user
identifier;

o Decrypting the encrypted validation record so as to provide
decrypted information; and ...

e Authenticating access to data in the distributed system using the

decrypted information.

Receiving, retrieving and authenticating may be performed on a node in
the distributed system preferably separate from a node performing the
step of decrypting. The method further comprises the step of generating
the user identifier using a hash. Therefore, the user identifier may be

considered unigue (and altered if a collision occurs) and suitable for

806
807
808
809
810
811
812

813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828

829

830

831
832
833

834

0 ”

identifying unique validation records. The step of authenticating access
may preferably further comprise the step of digitally signing the user
identifier. This provides authentication that can be validated against
trusted authorities. The method further comprises the step of using the
signed user identifier as a session passport to authenticate a plurality of
accesses to the distributed system. This allows persistence of the

authentication for an extended session.

The step of decrypting preferably comprises decrypting an address in the
distributed system of a first chunk of data and the step of authenticating
access further comprises the step of determining the existence of the first
chunk at the address, or providing the location and names of specific
data elements in the network in the form of a data map as previously
describe. This efficiently combines the tasks of authentication and
starting to retrieve the data from the system. The method preferably
further comprises the step of using the content of the first chunk to obtain
further chunks from the distributed system. Additionally the decrypted
data from the additional chunks may contain a key pair allowing the user
at that stage to sign a packet sent to the network to validate them or

additionally may preferable self sign their own id.

Therefore, there is no need to have a potentially vulnerable record of the
file structure persisting in one place on the distributed system, as the
user's node constructs its database of file locations after logging onto the

system.
There is provided a distributed system comprising;

¢ a storage module adapted to store an encrypted validation record;

e aclient node comprising a decryption module adapted to decrypt an
encrypted validation record so as to provide decrypted information;

and

¢ a verifying node comprising:

835

836
837

838
839

840
841
842

843
844
845
846
847
848
849
850
851
852
853

854
855
856
857
858

859
860
861
862
863

3\

¢ areceiving module adapted to receive a user identifier;

¢ a retrieving module adapted to retrieve from the storage module an

encrypted validation record identified by the user identifier;

* a transmitting module adapted to transmit the encrypted validation

record to the client node; and

¢ an authentication module adapted to authenticate access to data in
the distributed file system using the decrypted information from the

client node.

The client node is further adapted to generate the user identifier using a
hash. The authentication module is further adapted to authenticate
access by digitally sign the user identifier. The signed user identifier is
used as a session passport to authenticate a plurality of accesses by the
client node to the distributed system. The decryption module is further
adapted to decrypt an address in the distributed system of a first chunk of
data from the validation record and the authentication module is further
adapted to authenticate access by determining the existence of the first
chunk at the address. The client node is further adapted to use the
content of the first chunk to obtain further authentication chunks from the

distributed system.

There is provided at least one computer program comprising program
instructions for causing at least one computer to perform. One computer
program is embodied on a recording medium or read-only memory,
stored in at least one computer memory, or carried on an electrical

carrier signal.

Additionally there is a check on the system to ensure the user is login
into a valid node (software package). This will preferably include the
ability of the system to check validity of the running maidsafe.net
software by running content hashing or preferably certificate checking of

the node and also the code itself.

864
865

866
867
868
869
870
871
872
873
874

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890

'~>’L

Linked elements for maidsafe.net (Figure 1)

The maidsafe.net product invention consists of 8 individual inventions,
which collectively have 28 inter-linked functional elements, these are:.

The individual inventions are:

PT1 - Perpetual Data

PT2 - Self encryption

PT3 - Data Maps

PT4 — Anonymous Authentication
PTS — Shared access to Private files
PT6 — ms Messenger

PT7 - Cyber Cash

PT8 — Worldwide Voting System

The inter-linked functional elements are:
P1 — Peer Ranking

P2 — Self Healing

P3 - Security Availability

P4 - Storage and Retrieval

P5 - Duplicate Removal

P6 — Storing Files

P7 - Chunking

P8 — Encryption / Decryption

P9 - Identify Chunks

P10 - Revision Control

P11 - Identify Data with Very Small File
P12 - Logon

P13 — Provide Key Pairs

P14 - Validation

P15 - Create Map of Maps

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

907
908
909
910

911
912
913
914
915

916
917

%Y

P16 — Share Map

P17 — Provide Public ID

P18 — Encrypted Communications

P19 — Document Signing

P20 - Contract Conversations

P21 — Counterfeit Prevention

P22 - Allow Selling of Machine Resources
P23 - Interface with Non-Anonymous Systems
P24 — Anonymous Transactions

P25 - Anonymity

P26 — Proven Individual

P27 — Validation of Vote Being Used

P28 — Distributed Controlled Voting

(description of figure 1 here ****)

Self Authentication Detail (Figure 2)

1.

A computer program consisting of a user interface and a chunk server (a
system to process anonymous chunks of data) should be running, if not
they are started when user selects an icon or other means of starting the

program.

A user will input some data known to them such as a userid (random ID)
and PIN number in this case. These pieces of information may be
concatenated together and hashed to create a unique (which may be
confirmed via a search) identifier. In this case this is called the MID

(maidsafe.net ID)

A TMID (Today's MID) is retrieved from the network, the TMID is then

calculated as follows:

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

933
934
935

936
937

938
939
940
941
942
943
944

945
946

7,

The TMID is a single use or single day ID that is constantly changed.
This allows maidsafe.net to calculate the hash based on the user ID pin
and another known variable which is calculable. For this variable we use
a day variable for now and this is the number of days since epoch
(01/01/1970). This allows for a new ID daily, which assists in maintaining
the anonymity of the user. This TMID will create a temporary key pair to
sign the database chunks and accept a challenge response from the
holder of these db chunks. After retrieval and generation of a new key
pair the db is put again in new locations — rendering everything that was
contained in the TMID chunk useless. The TMID CANNOT be signed by
anyone (therefore hackers can't BAN an unsigned user from retrieving
this — in @ DOS attack)- it is a special chunk where the data hash does
NOT match the name of the chunk (as the name is a random number
calculated by hashing other information (i.e. its a hash of the TMID as

described below)

o take dave as user ID and 1267 as pin.

e dave + (pin) 1267 = dave1267 Hash of this becomes MID

e day variable (say today is 13416 since epoch) = 13416

e so take pin, and for example add the number in where the pin states
ie.

e 613dav41e1267

¢ (6 at beginning is going round pin again)

e 5o this is done by taking 1st pin 1 - so put first day value at position 1

¢ then next pin number 2 - so day value 2 at position 2

e then next pin number 6 so day value 3 at position 6

¢ then next pin number 7 so day value 4 at position 7

o then next pin number is 1 so day value 5 at position 1 (again)

e so TMID is hash of 613dav41e1267 and the MID is simply a hash of
dave1267

947
948

949
950
951
952
953
954

955
956

957
958
959

960
961
962

963
964

965
966

967
968

~S

(This is an example algorithm and many more can be used to enforce

further security.)

From the TMID chunk the map of the user's database (or list of files
maps) is identified. The database is recovered from the net which
includes the data maps for the user and any keys passwords etc.. The
database chunks are stored in another location immediately and the old
chunks forgotten. This can be done now as the MID key pair is also in

the database and can now be used to manipulate user’s data.

The maidsafe.net application can now authenticate itself as acting for
this MID and put get or forget data chunks belonging to the user.

The watcher process and Chunk server always have access to the PMID
key pair as they are stored on the machine itself, so can start and

receive and authenticate anonymous put / get / forget commands.

A DHT ID is required for a node in a DHT network this may be randomly
generated or in fact we can use the hash of the PMID public key to
identify the node.

When the users successfully logged in he can check his authentication

validation records exist on the network. These may be as follows:

MAID (maidsafe.net anonymous ID)

This is a data element stored on net and preferably named with the hash
of the MID public Key.

It contains the MID public key + any PMID public keys associated with

this user.

969

970
971
972
973
974
975
976

977
978
979
980

981
982

983
984

985
986

987
988
989
990

e

This is digitally signed with the MID private key to prevent forgery.

Using this mechanism this allows validation of MID signatures by
allowing any users access to this data element and checking the
signature of it against any challenge response from any node pertaining
to be this MID (as only the MID owner has the private key that signs this
MID) Any crook could not create the private key to match to the public
key to digitally sign so forgery is made impossible given today's

computer resources.

This mechanism also allows a user to add or remove PMIDS (or chunk
servers acting on their behalf like a proxy) at will and replace PMID's at
any time in case of the PMID machine becoming compromised.
Therefore this can be seen as the PMID authentication element.

PMID (Proxy MID)

1.

This is a data element stored on the network and preferably named with
the hash of the PMID public key.

it contains the PMID public key and the MID ID (i.e. the hash of the MID
public key) and is signed by the MID private key (authenticated).

This allows a machine to act as a repository for anonymous chunks and

supply resources to the net for a MID.

When answering challenge responses any other machine will confirm the
PMID by seeking and checking the MIAD for the PMID and making sure
the PMID is mentioned in the MAID bit — otherwise the PMID is

considered rouge.

991
992
993
994

995
996
997

998
999

1000
1001

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

1012
1013
1014
1015
1016

b -

The key pair is stored on the machine itself and may be encoded or
encrypted against a password that has to be entered upon start-up
(optionally) in the case of a proxy provider who wishes to further

enhance PMID security.

The design allows for recovery from attack and theft of the PMID key pair
as the MAID data element can simply remove the PMID ID from the

MAID rendering it unauthenticated.

Figure 3 illustrates, in schematic form, a peer-to-peer network in

accordance with an embodiment of the invention; and

Figure 4 illustrates a flow chart of the authentication, in accordance with

a preferred embodiment of the present invention.

With reference to Figure 3, a peer-to-peer network 2 is shown with nodes
4 to 12 connected by a communication network 14. The nodes may be
Personal Computers (PCs) or any other device that can perform the
processing, communication and/or storage operations required to
operate the invention. The file system will typically have many more
nodes of all types than shown in Figure 3 and a PC may act as one or
many types of node described herein. Data nodes 4 and 6 store chunks
16 of files in the distributed system. The validation record node 8 has a
storage module 18 for storing encrypted validation records identified by a

user identifier.

The client node 10 has a module 20 for input and generation of user
identifiers. It also has a decryption module 22 for decrypting an encrypted
validation record so as to provide decrypted information, a database or
data map of chunk locations 24 and storage 26 for retrieved chunks and

files assembled from the retrieved chunks.

~4

1017 The verifying node 12 has a receiving module 28 for receiving a user
1018 identifier from the client node. The retrieving module 30 is configured to
1019 retrieve from the data node an encrypted validation record identified by
1020 the user identifier. Alternatively, in the preferred embodiment, the

1021 validation record node 8 is the same node as the verifying node 12, i.e.
1022 the storage module 18 is part of the verifying node 12 (not as shown in
1023 Figure 3). The transmitting module 32 sends the encrypted validation
1024 record to the client node. The authentication module 34 authenticates
1025 access to chunks of data distributed across the data nodes using the
1026 decrypted information.

1027 With reference to Figure 4, a more detailed flow of the operation of the
1028 present invention is shown laid out on the diagram with the steps being
1029 performed at the User’s PC (client node) on the left 40, those of the

1030 verifying PC (node) in the centre 42 and those of the data PC (node) on
1031 the right 44.

1032 A login box is presented 46 that requires the user's name or other detail
1033 Preferably email address (the same one used in the client node software
1034 installation and registration process) or simply name (i.e. nickname) and
1035 the user’s unique number, preferably PIN number. If the user is a ‘main
1036 user’ then some details may already be stored on the PC. If the user is a
1037 visitor, then the login box appears.

1038 A content hashed number such as SHA (Secure Hash Algorithm),

1039 Preferably 160 bits in length, is created 48 from these two items of data.
1040 This ‘hash’ is now known as the ‘User ID Key’ (MID), which at this point is
1041 classed as ‘unverified’ within the system. This is stored on the network as
1042 the MAID and is simply the hash of the public key containing an

1043 unencrypted version of the public key for later validation by any other

1044 node. This obviates the requirement for a validation authority

1045
1046
1047

1048
1049
1050
1051
1052
1053
1054
1055

1056
1057
1058

1059
1060
1061
1062
1063
1064
1065

1066
1067

1068
1069
1070
1071
1072

ZA

The software on the user's PC then combines this MID with a standard
‘hello’ code element 50, to create 52 a ‘hello.packet’. This hello.packet is

then transmitted with a timed validity on the Internet.

The hello.packet will be picked up by the first node (for this description,
now called the ‘verifying node’) that recognises 54 the User ID Key
element of the hello.packet as matching a stored, encrypted validation
record file 56 that it has in its storage area. A login attempt monitoring
system ensures a maximum of three responses. Upon to many attempts,
the verifying PC creates a ‘black list’ for transmission to peers.
Optionally, an alert is returned to the user if a ‘black list’ entry is found

and the user may be asked to proceed or perform a virus check.

The verifying node then returns this encrypted validation record file to the
user via the internet. The user’s pass phrase 58 is requested by a dialog
box 60, which then will allow decryption of this validation record file.

When the validation record file is decrypted 62, the first data chunk
details, including a ‘decrypted address’, are extracted 64 and the user PC
sends back a request 66 to the verifying node for it to initiate a query for
the first ‘file-chunk ID’ at the ‘decrypted address’ that it has extracted
from the decrypted validation record file, or preferably the data map of
the database chunks to recreate the database and provide access to the
key pair associated with this MID.

The verifying node then acts as a ‘relay node’ and initiates a ‘notify only’

query for this ‘file-chunk ID’ at the ‘decrypted address'.

Given that some other node (for this embodiment, called the ‘data node’)
has recognised 68 this request and has sent back a valid ‘notification
only’ message 70 that a ‘file-chunk ID’ corresponding to the request sent
by the verifying node does indeed exist, the verifying node then digitally
signs 72 the initial User ID Key, which is then sent back to the user.

1073
1074
1075
1076
1077
1078
1079
1080
1081

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

On reception by the user 74, this verified User 1D Key is used as the
user's session passport. The user's PC proceeds to construct 76 the
database of the file system as backed up by the user onto the network.
This database describes the location of all chunks that make up the
user’s file system. Preferably the ID Key will contain irrefutable evidence
such as a public/private key pair to allow signing onto the network as
authorised users, preferably this is a case of self signing his or her own
ID — in which case the ID Key is decrypted and user is valid — self

validating.

Further details of the embodiment will now be described. A ‘proxy-
controlled’ handshake routine is employed through an encrypted point-to-
point channel, to ensure only authorised access by the legal owner to the
system, then to the user’s file storage database, then to the files therein.
The handshaking check is initiated from the PC that a user logs on to
(the ‘User PC’), by generating the ‘unverified encrypted hash’ known as
the ‘User ID Key’, this preferably being created from the user's
information preferably email address and their PIN number. This ‘hash’
is transmitted as a "hello.packet’ on the Internet, to be picked up by any
system that recognises the User ID as being associated with specific
data that it holds. This PC then becomes the ‘verifying PC’ and will
initially act as the User PC's ‘gateway’ into the system during the
authentication process. The encrypted item of data held by the vernfying
PC will temporarily be used as a ‘validation record’, it being directly
associated with the user’s identity and holding the specific address of a
number of data chunks belonging to the user and which are located
elsewhere in the peer-to-peer distributed file system. This ‘validation
record’ is returned to the User PC for decryption, with the expectation
that only the legal user can supply the specific information that will allow

its accurate decryption.

1102
1103
1104
1105

1106
1107
1108
1109

1110
1111
1112
1113
1114
1115
1116
117
1118
1119
1120

1121
1122
1123
1124
1125
1126

1127
1128

<A

Preferably this data may be a signed response being given back to the
validating node which is poésible as the id chunk when decrypted
(preferably symmetrically) contains the users public and private keys
allowing non refutable signing of data packets.

Preferably after successful decryption of the TMID packet (as described
above) the machine will now have access to the data map of the
database and public/private key pair allowing unfettered access to the

system.

It should be noted that in this embodiment, preferably no communication
is carried out via any nodes without an encrypted channel such as TLS
(Transport Layer Security) or SSL (Secure Sockets Layer) being set up
first. A peer talks to another peer via an encrypted channel and the other
peer (proxy) requests the information (e.g. for some space to save
information on or for the retrieval of a file). An encrypted link is formed
between all peers at each end of communications and also through the
proxy during the authentication process. This effectively bans snoopers
from detecting who is talking to whom and also what is being sent or
retrieved. The initial handshake for self authentication is also over an

encrypted link.

Secure connection is provided via certificate passing nodes, in a manner
that does not require intervention, with each node being validated by
another, where any invalid event or data, for whatever reason (fraud
detection, snooping from node or any invalid algorithms that catch the
node) will invalidate the chain created by the node. This is all transparent

to the user.

Further modifications and improvements may be added without departing

from the scope of the invention herein described.

1129
1130

1131
1132

1133

1134

1135

1136

1137
1138
1139
1140
1141
1142

1143
1144
1145

1146
1147
1148
1149

1150
1151

L

Figure § illustrates a flow chart of data assurance event sequence in

accordance with first embodiment of this invention

Figure 6 illustrates a flow chart of file chunking event sequence in

accordance with second embodiment of this invention

Figure 7 illustrates a schematic diagram of file chunking example
Figure 8 illustrates a flow chart of self healing event sequence

Figure 9 illustrates a flow chart of peer ranking event sequence
Figure 10 illustrates a flow chart of duplicate removal event sequence

With reference to Figure 5, guaranteed accessibility to user data by data
assurance is demonstrated by flow chart. The data is copied to at least
three disparate locations at step (10). The disparate locations store data
with an appendix pointing to the other two locations by step (20) and is
renamed with hash of contents. Preferably this action is managed by

another node i.e. super node acting as an intermediary by step (30).

Each local copy at user's PC is checked for validity by integrity test by
step (40) and in addition validity checks by integrity test are made that
the other 2 copies are also still ok by step (50).

Any single node failure initiates a replacement copy of equivalent leaf
node being made in another disparate location by step (60) and the other
remaining copies are updated to reflect this change to reflect the newly
added replacement leaf node by step (70).

The steps of storing and retrieving are carried out via other network

nodes to mask the initiator (30).

1152
1153

1154
1155
1156

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

1168
1169
1170

1171
1172
1173

1174
1175

1176
1177
1178

N

The method further comprises the step of renaming all files with a hash

of their contents.

Therefore, each file can be checked for validity or tampering by running a
content hashing algorithm such as (for example) MD5 or an SHA variant,

the result of this being compared with the name of the file.

With reference to Figure 6, provides a methodology to manageable sized
data elements and to enable a complimentary data structure for and
compression and encryption and the step is to file chunking. By user’'s
pre-selection the nominated data elements (files are passed to chunking
process. Each data element (file) is split into small chunks by step (80)
and the data chunks are encrypted by step (90) to provide security for the
data. The data chunks are stored locally at step (100) ready for network
transfer of copies. Only the person or the group, to whom the overall data
belongs, will know the location of these (100) or the other related but
dissimilar chunks of data. All operations are conducted within the user’s

local system. No data is presented externally.

Each of the above chunks does not contain location information for any
other dissimilar chunks. This provides for, security of data content, a

basis for integrity checking and redundancy.

The method further comprises the step of only allowing the person (or
group) to whom the data belongs, to have access to it, preferably via a

shared encryption technique. This allows persistence of data.

The checking of data or chunks of data between machines is carried out
via any presence type protocol such as a distributed hash table network.

On the occasion when all data chunks have been relocated (i.e. the user
has not logged on for a while,) a redirection record is created and stored

in the super node network, (a three copy process — similar to data)

1179
1180

1181
1182

1183
1184
1185
1186
1187
1188
1189
1190
1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

1204
1205

¥

therefore when a user requests a check, the redirection record is given to
the user to update their database.

This efficiently allows data resilience in cases where network churn is a

problem as in peer to peer or distributed networks.

With reference to Figure 7 which illustrates flow chart example of file
chunking. User’'s normal file has 5Mb document, which is chunked into
smaller variable sizes e.g. 135kb, 512kb, 768kb in any order. All chunks
may be compressed and encrypted by using Pass phrase. Next step is to
individually hash chunks and given hashes as names. Then database
record as a file is made from names of hashed chunks brought together
e.g. in empty version of original file (C1####HHHEHHE 1 12 13:

C2#HHERHRHAE U 12,13 etc), this file is then sent to transmission queue in

storage space allocated to client application.

With reference to Figure 8 provides a self healing event sequence
methodology. Self healing is required to guarantee availability of accurate
data. As data or chunks become invalid by failing integrity test by step
(110). The location of failing data chunks is assessed as unreliable and
further data from the leaf node is ignored from that location by step (120).
A ‘Good Copy’ from the ‘known good’ data chunk is recreated in a new
and equivalent leaf node. Data or chunks are recreated in a new and
safer location by step (130). The leaf node with failing data chunks is
marked as unreliable and the data therein as ‘dirty’ by step (140). Peer
leaf nodes become aware of this unreliable leaf node and add its location
to watch list by step (150). All operations conducted within the user's
local system. No data is presented externally.

Therefore, the introduction of viruses, worms etc. will be prevented and

faulty machines/ equipment identified automatically.

1206
1207

1208
1209
1210
1211
1212

1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

1223
1224
1225
1226
1227
1228

1229
1230
1231
1232
1233

«S

The network will use SSL or TLS type encryption to prevent unauthorised

access or snooping.

With reference to Figure 9, Peer Ranking id required to ensure consistent
response and performance for the level of guaranteed interaction
recorded for the user. For Peer Ranking each node (leaf node) monitors
its own peer node's resources and availability in a scaleable manner,

each leaf node is constantly monitored.

Each data store (whether a network service, physical drive etc.) is
monitored for availability. A qualified availability ranking is appended to
the (leaf) storage node address by consensus of a monitoring super node
group by step (160). A ranking figure will be appended by step (160) and
signed by the supply of a key from the monitoring super node; this would
preferably be agreed by more super nodes to establish a consensus for
altering the ranking of the node. The new rank will preferably be
appended to the node address or by a similar mechanism to allow the
node to be managed preferably in terms of what is stored there and how

many copies there has to be of the data for it to be seen as perpetual.

Each piece of data is checked via a content hashing mechanism for data
integrity, which is carried out by the storage node itself by step (170) or
by its partner nodes via super nodes by step (180) or by instigating node
via super nodes by step (190) by retrieval and running the hashing
algorithm against that piece of data. The data checking cycle repeats

itself.

As a peer (whether an instigating node or a partner peer (i.e. one that
has same chunk)) checks the data, the super node querying the storage
peer will respond with the result of the integrity check and update this
status on the storage peer. The instigating node or partner peer will
decide to forget this data and will replicate it in a more suitable location.

1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244

1245
1246
1247

1248
1249

1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

1261
1262

A%

If data fails the integrity check the node itself will be marked as 'dirty’ by
step (200) and ‘dirty’ status appended to leaf node address to mark it as
requiring further checks on the integrity of the data it holds by step (210).
Additional checks are carried out on data stored on the leaf node marked
as ‘dirty’ by step (220). If pre-determined percentage of data found to be
‘dirty’ node is removed from the network except for message traffic by
step (230). A certain percentage of dirty data being established may
conclude that this node is compromised or otherwise damaged and the
network would be informed of this. At that point the node will be removed
from the network except for the purpose of sending it warning messages
by step (230).

This allows either having data stored on nodes of equivalent availability
and efficiency or dictating the number of copies of data required to

maintain reliability.

Further modifications and improvements may be added without departing

from the scope of the invention herein described.

With reference to Figure 10, duplicate data is removed to maximise the
efficient use of the disk space. Prior to the initiation of the data backup
process by step (240), internally generated content hash may be
checked for a match against hashes stored on the internet by step (250)
or a list of previously backed up data (250). This will allow only one
backed up copy of data to be kept. This reduces the network wide
requirement to backup data which has the exact same contents.
Notification of shared key existence is passed back to instigating node by
step (260) to access authority check requested, which has to pass for
signed result is to be passed back to storage node. The storage node
passes shared key and database back to instigating node by step (270)

Such data is backed up via a shared key which after proof of the file
existing (260) on the instigating node, the shared key (270) is shared with

1263
1264

1265
1266
1267

1268
1269
1270

1271
1272
1273
1274
1275
1276

1277
1278
1279

1280
1281
1282
1283
1284
1285
1286
1287

N\

this instigating node. The location of the data is then passed to the node

for later retrieval if required.

This maintains copyright as people can only backup what they prove to
have on their systems and not publicly share copyright infringed data
openly on the network.

This data may be marked as protected or not protected by step (280)
which has check carried out for protected or non-protected data content.

The protected data ignores sharing process.

Perpetual Data (Figure 1 - PT1 and Figure 11)

According to a related aspect of this invention, a file is chunked or
split into constituent parts (1) this process involves calculating the chunk
size, preferably from known data such as the first few bytes of the hash
of the file itself and preferably using a modulo division technique to
resolve a figure between the optimum minimum and optimum maximum

chunk sizes for network transmission and storage.

Preferably each chunk is then encrypted and obfuscated in some manner
to protect the data. Preferably a search of the network is carried out

looking for values relating to the content hash of each of the chunks (2).

If this is found (4) then the other chunks are identified too, failure to
identify all chunks may mean there is a collision on the network of file
names or some other machine is in the process of backing up the same
file. A back-off time is calculated to check again for the other chunks. If
all chunks are on the network the file is considered backed up and the
user will add their MID signature to the file after preferably a challenge
response to ensure there a valid user and have enough resources to do
this.

1288
1289
1290

1291
1292

1293
1294

1295
1296
1297
1298
1299

1300

1301

1302
1303

1304
1305
1306

1307
1308

w4

If no chunks are on the net the user preferably via another node (3) will
request the saving of the first copy (preferably in distinct time zones or

other geographically dispersing method).

The chunk will be stored (5) on a storage node allowing us to see the

PMID of the storing node and store this.

Then preferably a Key.value pair of chunkid.public key of initiator is
written to net creating a Chunk ID (CID) (6)

Storage and Retrieval (Figure 1- P4)

According to a related aspect of this invention, the data is stored in
multiple locations. Each location stores the locations of its peers that hold
identical chunks (at least identical in content) and they all communicate
regularly to ascertain the health of the data. The preferable method is as

follows:

Preferably the data is copied to at least three disparate locations.

Preferably each copy is performed via many nodes to mask the initiator.

Preferably each local copy is checked for validity and checks are made

that the preferably other 2 copies are also still valid.

Preferably any single node failure initiates a replacement copy being
made in another disparate location and the other associated copies are
updated to reflect this change.

Preferably the steps of storing and retrieving are carried out via other

network nodes to mask the initiator.

1309
1310

1311
1312
1313
1314

1315
1316
1317
1318
1319
1320
1321
1322
1323

1324
1325
1326
1327
1328

1329
1330
1331
1332
1333
1334
1335

“A

Preferably, the method further comprises the step of renaming all files

with a hash of their contents.

Preferably each chunk may alter its name by a known process such as a
binary shift left of a section of the data. This allows the same content to
exist but also allows the chunks to appear as three different bits of data

for the sake of not colliding on the network.

Preferably each chunk has a counter attached to it that allows the
network to understand easily just how many users are attached to the
chunk - either by sharing or otherwise. A user requesting a ‘chunk forget’
will initiate a system question if they are the only user using the chunk
and if so the chunk will be deleted and the user’s required disk space
reduced accordingly. This allows users to remove files no longer required
and free up local disk space. Any file also being shared is preferably
removed from the user’s quota and the user’s database record or data

map (see later) is deleted.

Preferably this counter is digitally signed by each node sharing the data
and therefore will require a signed ‘forget’ or ‘delete’ command.
Preferably even ‘store’, ‘put, ‘retrieve’ and ‘get’ commands should also
be either digitally signed or preferably go through a PKI challenge

response mechanism.

To ensure fairness preferably this method will be monitored by a
supernode or similar to ensure the user has not simply copied the data
map for later use without giving up the disk space for it. Therefore the
user’s private ID public key will be used to request the forget chunk
statement. This will be used to indicate the user's acceptance of the
‘chunk forget' command and allow the user to recover the disk space.

Any requests against the chunk will preferably be signed with this key

1336
1337

1338
1339
1340

1341
1342
1343

1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354

1355
1356
1357

1358
1359
1360

%0

and consequently rejected unless the user’s system gives up the space

required to access this file.

Preferably each user storing a chunk will append their signed request to
the end of the chunk in an identifiable manner i.e. prefixed with 80 — or

similar.

Forgetting the chunk means the signature is removed from the file. This
again is done via a signed request from the storage node as with the

original backup request.

Preferably this signed request is another small chunk stored at the same
location as the data chunk with an appended postfix to the chunk
identifier to show a private ID is storing this chunk. Any attempt by
somebody else to download the file is rejected unless they first subscribe
toit, i.e. a chunk is called 12345 so a file is saved called 12345 <signed
store request>. This will allow files to be forgotten when all signatories to
the chunk are gone. A user will send a signed ‘no store’ or ‘forget’ and
their ID chunk will be removed, and in addition if they are the last user
storing that chunk, the chunk is removed. Preferably this will allow a
private anonymous message to be sent upon chunk failure or damage

allowing a proactive approach to maintaining clean data.

Preferably as a node fails the other nodes can preferably send a
message to all sharers of the chunk to identify the new location of the

replacement chunk.

Preferably any node attaching to a file then downloading immediately
should be considered an alert and the system may take steps to slow
down this node’s activity or even halt it to protect data theft.

S

Chunk Checks: (Figure 1 - P9 and Figure 12)

1361 1. Storage node containing chunk 1 checks its peers. As each peer is

1362 checked it reciprocates the check. These checks are split into preferably
1363 2 types:

1364 a. Availability check (i.e. simple network ping)

1365 b. Data integrity check — in this instance the checking node takes a chunk
1366 and appends random data to it and takes a hash of the result. It then
1367 sends the random data to the node being checked and requests the
1368 hash of the chunk with the random data appended. The result is

1369 compared with a known result and the chunk will be assessed as

1370 either healthy or not. If not, further checks with other nodes occur to
1371 find the bad node.

1372 2. There may be multiple storage nodes depending on the rating of

1373 machines and other factors. The above checking is carried out by all

1374 nodes from 1 to n (where n is total number of storage nodes selected for
1375 the chunk). Obviously a poorly rated node will require to give up disk

1376 space in relation to the number of chunks being stored to allow perpetual
1377 data to exist. This is a penalty paid by nodes that are switched off.

1378 3. The user who stored the chunk will check on a chunk from 1 storage

1379 node randomly selected. This check will ensure the integrity of the chunk
1380 and also ensure there are at least 10 other signatures existing already for
1381 the chunk. If there are not and the user’s ID is not listed, the user signs
1382 the chunk.

1383 4. This shows another example of another user checking the chunk. Note
1384 that the user checks X (40 days in this diagram) are always at least 75%
1385 of the forget time retention (Y) (i.e. when a chunk is forgotten by all

1386 signatories it is retained for a period of time Y). This is another algorithm

1387 that will continually develop.

ST

Storage of Additional Chunks: (Figure 12)

1388 1. maidsafe.net program with user logged in (so MID exists) has chunked a
1389 file. It has already stored a chunk and is now looking to store additional
1390 chunks. Therefore a Chunk ID (CID) should exist on the net. This process
1391 retrieves this CID.

1392 2. The CID as shown in storing initial chunk contains the chunk name and
1393 any public keys that are sharing the chunk. In this instance it should only
1394 be our key as we are first ones storing the chunks (others would be in a
1395 back-off period to see if we back other chunks up). We shift the last bit
1396 (could be any function on any bit as long as we can replicate it)

1397 3. We then check we won't collide with any other stored chunk on the net —
1398 i.e. it does a CID search again.

1399 4. We then issue our broadcast to our supernodes (i.e. the supernodes we
1400 are connected to) stating we need to store X bytes and any other

1401 information about where we require to store it (geographically in our case
1402 - time zone (T2))

1403 5. The supernode network finds a storage location for us with the correct
1404 rank etc.

1405 6. The chunk is stored after a successful challenge response i.e. In the

1406 maidsafe.net network. MIDs will require to ensure they are talking or
1407 dealing with validated nodes, so to accomplish this a challenge process
1408 is carried out as follows: sender [S] receiver [R]

1409 ¢ [S] | wish to communicate (store retrieve forget data etc.) and | am MAID

1410
1411
1412
1413
1414
1415
1416

1417
1418
1419

1420
1421
1422
1423
1424

1425
1426
1427
1428

1429
1430
1431

1432
1433

S i

[R] retrieves MAID public key from DHT and encrypts a challenge
(possibly a very large number encrypted with the public key retrieved)
[S] gets key and decrypts and encrypts [R] answer with his challenge
number also encrypted with [R]'s public key

[R] receives response and decrypts his challenge and passes back
answer encrypted again with [S] public key

(Communication is now authenticated between these two nodes.)

. The CID is then updated with the second chunk name and the location it

is stored at. This process is repeated for as many copies of a chunk that

are required.

. Copies of chunks will be dependent on many factors including file

popularity (popular files may require to be more dispersed closer to
nodes and have more copies. Very poorly ranked machines may require
an increased amount of chunks to ensure they can be retrieved at any

time (poorly ranked machines will therefore have to give up more space.)

Security Availability (Figure 1 - P3)

According to a related aspect of this invention, each file is split into
small chunks and encrypted to provide security for the data. Only the
person or the group, to whom the overall data belongs, will know the

location of the other related but dissimilar chunks of data.

Preferably, each of the above chunks does not contain location
information for any other dissimilar chunks; which provides for security of

data content, a basis for integrity checking and redundancy.

Preferably, the method further comprises the step of only allowing the
person (or group) to whom the data belongs to have access to it,

1434
1435

1436
1437
1438

1439
1440
1441
1442
1443
1444
1445
1446

1447
1448
1449

1450
1451
1452
1453
1454
1455

1456
1457

S

preferably via a shared encryption technique which allows persistence of

data.

Preferably, the checking of data or chunks of data between machines is
carried out via any presence type protocol such as a distributed hash
table network.

Preferably, on the occasion when all data chunks have been relocated,
i.e. the user has not logged on for a while, a redirection record is created
and stored in the super node network, (a three copy process — similar to
data) therefore when a user requests a check, the redirection record is
given to the user to update their database, which provides efficiency that
in turn allows data resilience in cases where network churn is a problem
as in peer to peer or distributed networks. This system message can be

preferably passed via the messenger system described herein.

Preferably the system may simply allow a user to search for his chunks
and through a challenge response mechanism, locate and authenticate

himself to have authority to get/forget this chunk.

Further users can decide on various modes of operation preferably such
as maintain a local copy of all files on their local machine, unencrypted or
chunked or chunk and encrypt even local files to secure machine
(preferably referred to as off line mode operation) or indeed users may
decide to remove all local data and rely completely on preferably

maidsafe.net or similar system to secure their data.

Self Healing (Figure 1 - P2)

According to a related aspect of this invention, a self healing network

method is provided via the following process;

1458
1459
1460
1461

1462
1463

1464
1465

1466
1467
1468
1469

1470
1471
1472

1473

1474
1475
1476
1477
1478
1479
1480

SS

¢ As data or chunks become invalid — data is ignored from that location
o Data or chunks are recreated in a new and safer location.
o The original location is marked as bad.

o Peers note this condition and add the bad location to a watch list.

This will prevent the introduction of viruses; worms etc. will allow faulty

machines/ equipment to be identified automatically.

Preferably, the network layer will use SSL or TLS channel encryption to

prevent unauthorised access or snooping.

Self Healing (Figure 13)

1. A data element called a Chunk ID (CID) is created for each chunk. Added

to this is the 'also stored at' MID for the other identical chunks. The other
chunk names are also here as they may be renamed slightly (i.e. by bit
shifting a part of the name in a manner that calculable).

. All storing nodes (related to this chunk) have a copy of this CID file or

can access it at any stage from the DHT network, giving each node

knowledge of all others.

. Each of the storage nodes have their copy of the chunk.

. Each node queries its partner's availability at frequent intervals. On less

frequent intervals a chunk health check is requested. This involves a
node creating some random data and appending this to it's chunk and
taking the hash. The partner node will be requested to take the random
data and do likewise and return the hash result. This result is checked
against the result the initiator had and chunk is then deemed healthy or
not. Further tests can be done as each node knows the hash their chunk

S b

1481 should create and can self check n that manner on error and report a
1482 dirty node.

1483 5. Now we have a node fail (creating a dirty chunk)

1484 6. The first node to note this carries out a broadcast to other nodes to say it
1485 is requesting a move of the data.

1486 7. The other nodes agree to have CID updated (they may carry out their
1487 own check to confirm this).

1488 8. A broadcast is sent to the supernode network closest to the storage node
1489 that failed, to state a re-storage requirement.

1490 9. The supernode network picks up the request.

1491 10.The request is to the supernode network to store x amount of data at a
1492 rank of y.

1493 11.A supernode will reply with a location

1494 12.The storage node and new location carry out a challenge response

1495 request to validate each other.

1496 13.The chunk is stored and the CID is updated and signed by the three or
1497 more nodes storing the chunk.

Peer Ranking (Figure 1 - P1)

1498 According to a related aspect of this invention, there is the addition of

1499 a peer ranking mechanism, where each node (leaf node) monitors its

1500
1501

1502
1503
1504
1505
1506
1507
1508
1509

1510
1511
1512
1513

1514
1515
1516
1517
1518

1519
1520
1521
1522
1523
1524
1525

1526
1527

SN

own peer node’s resources and availability in a scalable manner. Nodes

constantly perform this monitoring function.

Each data store (whether a network service, physical drive etc.) is
monitored for availability. A ranking figure is appended and signed by the
supply of a key from the monitoring super node, this being preferably
agreed by more super nodes to establish a consensus before altering the
ranking of the node. Preferably, the new rank will be appended to the
node address or by a similar mechanism to allow the node to be
managed in terms of what is stored there and how many copies there

has to be of the data for it to be seen as perpetual.

Each piece of data is checked via a content hashing mechanism. This is
preferably carried out by the storage node itself or by its partner nodes
via super nodes or by an instigating node via super nodes by retrieving

and running the hashing algorithm against that piece of data.

Preferably, as a peer (whether an instigating node or a partner peer (i.e.
one that has same chunk)) checks the data, the super node querying the
storage peer will respond with the result of the integrity check and update
this status on the storage peer. The instigating node or partner peer will
decide to forget this data and will replicate it in a more suitable location.

If data fails the integrity check, the node itself will be marked as 'dirty’ and
this status will preferably be appended to the node’s address for further
checks on other data to take this into account. Preferably a certain
percentage of dirty data being established may conclude that this node is
compromised or otherwise damaged and the network would be informed
of this. At that point the node will be removed from the network except for

the purpose of sending it warning messages.

In general, the node ranking figure will take into account at least;

availability of the network connection, availability of resources, time on

1528
1529
1530

1531
1532
1533

1534
1535
1536
1537
1538

1539
1540

1541

1542

1543

1544

1545
1546

1547

1548
1549

< q

the network with a rank (later useful for effort based trust model), amount
of resource (including network resources) and also the connectivity

capabilities of any node (i.e. directly or indirectly contactable)

This then allows data to be stored on nodes of equivalent availability and
efficiency, and to determine the number of copies of data required to

maintain reliability.

Aput: (Figure 15)

Here the MID is the MID of the machine saving data to the net and the
PMID is the ID of the storage node chunk server. The communication is
therefore between a maidsafe.net application with a logged in user (to
provide MID) and a chunking system on the net somewhere (storage

node).

. A message signed with a user's MID (checked by getting the MAID

packet from the net) is received requesting storage of a data chunk.

. This message is a specific message stating the storage node’s ID (PMID)

and the chunk name to be saved and signed (i.e. this is a unique

message)

. The chunk server decides if it will store the chunk.

. A signed message is returned stating if PMID will store this chunk

(chunkID).

. The chunk is stored and checked (SHA check)

. A message is sent back to state that the chunk is saved and is ok. This is

signed by the PMID of the chunk server.

S

1550 7. The chunk server awaits the locations of the other identical chunks.

1551 8. Locations of the identical chunks returned to the chunk server signed with
1552 the MID.

1553 9. Each storage node is contacted and public keys exchanged (PMIDs)

1554 10. The chunk checking process is initiated.

Aforget (Figure 16)

1555 1. A user has requested that a file should be deleted from his backup
1556 (forgotten). The system signs a request using the user MID.

1557 2. The request is sent to a chunk server (storage node).

1558 3. The storage node picks up the request

1559 4. The storage node sends the signed request to the other storage nodes
1560 that have this chunk.

1561 5. The MID is checked as being on the list of MIDs that are watching the
1562 chunk (remember only a few — 20 in our case are ever listed)

1563 6. The other storage nodes are notified of this.

1564 7. If this is the only MID listed then all owners are possibly gone.

1565 8. Chunk delete times begins, this timer will always be higher than a user

1566 check interval - i.e. timer of 60 days — user check interval 40 days.

1567

1568
1569
1570
1571
1572
1573

1574
1575
1576
1577
1578
1579
1580

1581
1582
1583

1584
1585

1586
1587
1588

o

9. This information is also passed to other storage nodes.

Duplicate Removal (Figure 1 - P5)

According to a related aspect of this invention, prior to data being
backed up, the content hash may be checked against a list of previously
backed up data. This will allow only one backed up copy of data to be
kept, thereby reducing the network wide requirement to backup data that
has the exact same content. Preferably this will be done via a simple

search for existence on the net of all chunks of a particular file.

Preferably such data is backed up via a shared key or mechanism of
appending keys to chunks of data. After proof of the file existing on the
instigating node, the shared key is shared with the instigating node and
the storing node issues a challenge response to add their ID to the pool if
it is capable of carrying out actions on the file such as get/ forget (delete).
The location of the data is then passed to the node for later retrieval if

required.

This maintains copyright as people can only backup what they prove to
have on their systems and not easily publicly share copyright infringed
data openly on the network.

Preferably, data may be marked as protected or not protected. Preferably

protected data ignores sharing process.

Chunking (Figure 1 - P7)

According to a related aspect of this invention, files are split

preferably using an algorithm to work out the chunk size into several

component parts. The size of the parts is preferably worked out from

1589
1590
1591
1592
1593

1594
1595
1596
1597

1598
1599
1600
1601

1602
1603

1604

1605
1606
1607

1608
1609

1610
1611

e\

known information about the file as a whole, preferably the hash of the
complete file. This information is run through an algorithm such as adding
together the first x bits of the known information and using modulo
division to give a chunk size that allows the file to preferably split into at

least three parts.

Preferably known information from each chunk is used as an encryption
key. This is preferably done by taking a hash of each chunk and using
this as the input to an encryption algorithm to encrypt another chunk in
the file. Preferably this is a symmetrical algorithm such as AES256.

Preferably this key is input into a password creating algorithm such as
pbkdf and an initial vector and key calculated from that. Preferably the
iteration count for the pbkdf is calculated from another piece of known

information, preferably the sum of bits of another chunk or similar.

Preferably each initial chunk hash and the final hash after encryption are

stored somewhere for later decryption.

Self Encrypting Files (Figure 1 - PT2 and Figure 17)

. Take a content hash of a file or data element

2. Chunk a file with preferably a random calculable size i.e. based on an

algorithm of the content hash (to allow recovery of file). Also obfuscate

the file such as in 3

. Obfuscate the chunks to ensure safety even if encryption is eventually

broken (as with all encryption if given enough processing power and time)

a. chunk 1 byte 1 swapped with byte1 of chunk 2
b. chunk 2 byte 2 swapped with byte 1 chunk 3

b1 |

1612 c. chunk 3 byte 2 swapped with byte 2 of chunk 1

1613 d. This repeats until all bytes swapped and then repeats the same

1614 number of times as there are chunks with each iteration making next
1615 chunk first one

1616 e. - i.e. second time round chunk 2 is starting position

1617 4. Take hash of each chunk and rename chunk with its hash.

1618 5. Take h2 and first x bytes of h3 (6 in our example case) and either use
1619 modulo division or similar to get a random number between 2 fixed

1620 parameter (in our case 1000) to get a variable number. Use the above
1621 random number and h2 as the encryption key to encrypt h1 or use h2 and
1622 the random number as inputs to another algorithm (pdbfk2 in our case) to
1623 create a key and iv.(initialisation vector)

1624 6. This process may be repeated multiple times to dilute any keys

1625 throughout a series of chunks.

1626 7. Chunk name i.e. h1 (unencrypted) and h1c (and likewise for each chunk)
1627 written to a location for later recovery of the data. Added to this we can
1628 simply update such a location with new chunks if a file has been altered,
1629 thereby creating a revision control system where each file can be rebuilt
1630 to any previous state.

1631 8. The existence of the chunk will be checked on the net to ensure it is not
1632 already backed up. All chunks may be checked at this time.

1633 9. If a chunk exists all chunks must be checked for existence.

1634 10. The chunk is saved

1635 11. The file is marked as backed up.

1636
1637
1638
1639
1640
1641
1642
1643

1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656

1657
1658
1659
1660

™

12. If a collision is detected the process is redone altering the original size

algorithm (2) to create a new chunk set, each system will be aware of this
technique and will do the exact same process till a series of chunks do
not collide. There will be a back off period here to ensure the chunks are
not completed due to the fact another system is backing up the same file.
The original chunk set will be checked frequently in case there are false
chunks or ones that have been forgotten. If the original names become

available the file is reworked using these parameters.

Duplicate Removal (Figure 1 - P5)

According to a related aspect of this invention, data chunked and
ready for storing can be stored on a distributed network but a search
should preferably be carried out for the existence of all associated
chunks created. Preferably the locations of the chunks have the same
ranking (From earlier ranking system) as user or better, otherwise the
existing chunks on the net are promoted to a location of equivalent rank
at least. If all chunks exist then the file is considered as already backed
up. If less than all chunks exist then this will preferably be considered as
a collision (after a time period) and the file will be re chunked using the
secondary algorithms (preferably just adjusted file sizes). This allows
duplicate files on any 2 or more machines to be only backed up once,
although through perpetual data several copies will exist of each file, this
is limited to an amount that will maintain perpetual data.

Encrypt — Decrypt (Figure 1 - P8)

According to a related aspect of this invention, the actual encrypting
and decrypting is carried out via knowledge of the file's content and this
is somehow maintained (see next). Keys will be generated and preferably

stored for decrypting. Actually encrypting the file will preferably include a

1661
1662
1663

1664
1665
1666

1667
1668
1669

1670
1671
1672
1673
1674
1675
1676

1677
1678
1679

1680
1681
1682
1683
1684

1685
1686
1687

G

compression process and further obfuscation methods. Preferably the
chunk will be stored with a known hash preferably based on the contents
of that chunk.

Decrypting the file will preferably require the collation of all chunks and
rebuilding of the file itself. The file may preferably have its content mixed

up by an obfuscation technique rendering each chunk useless on its own.

Preferably every file will go through a process of byte (or preferably bit)
swapping between its chunks to ensure the original file is rendered

useless without all chunks.

This process will preferably involve running an algorithm which preferably
takes the chunk size and then distributes the bytes in a pseudo random
manner preferably taking the number of chunks and using this as an
iteration count for the process. This will preferably protect data even in
event of somebody getting hold of the encryption keys — as the chunks
data is rendered useless even if transmitted in the open without

encryption.

This defends against somebody copying all data and storing for many
years until decryption of today's algorithms is possible, although this is

many years away.

This also defends against somebody; instead of attempting to decrypt a
chunk by creating the enormous amount of keys possible, (in the region
of 2754) rather instead creating the keys and presenting chunks to all
keys — if this were possible (which is unlikely) a chunk would decrypt.
The process defined here makes this attempt useless.

All data will now be considered to be diluted throughout the original
chunks and preferably additions to this algorithm will only strengthen the

process.

LS

Identify Chunks (Figure 1 - P9)

1688 According to a related aspect of this invention, a chunk’s original
1689 hash or other calculable unique identifier will be stored. This will be

1690 stored with preferably the final chunk name. This aspect defines that
1691 each file will have a separate map preferably a file or database entry to
1692 identify the file and the name of its constituent parts. Preferably this will
1693 include local information to users such as original location and rights
1694 (such as a read only system etc.). Preferably some of this information
1695 can be considered shareable with others such as filename, content hash
1696 and chunks names.

ID Data with Small File (Figure 1 - P11)

1697 According to a related aspect of this invention; these data maps may
1698 be very small in relation to the original data itself allowing transmission of
1699 files across networks such as the internet with extreme simplicity,

1700 security and bandwidth efficiency. Preferably the transmission of maps
1701 will be carried out in a very secure manner, but failure to do this is akin to
1702 currently emailing a file in its entirety.

1703 This allows a very small file such as the data map or database record to
1704 be shared or maintained by a user in a location not normally large

1705 enough to fit a file system of any great size, such as on a PDA or mobile
1706 phone. The identification of the chunk names, original names and final
1707 names are all that is required to retrieve the chunks and rebuild the file
1708 with certainty.

1709 With data maps in place a user's whole machine, or all its data, can exist

1710 elsewhere. Simply retrieving the data maps of all data, is all that is

1711
1712

1713
1714
1715
1716
1717
1718
1719

1720
1721
1722

1723
1724
1725
1726
1727
1728
1729
1730

(G

required to allow the user to have complete visibility and access to all

their data as well as any shared files they have agreed to.

Revision Control (Figure 1 - P10)

According to a related aspect of this invention, as data is updated
and the map contents alter to reflect the new contents, this will preferably
not require the deletion or removal of existing chunks, but instead allow
the existing chunks to remain and the map appended to with an
indication of a new revision existing. Preferably further access to the file
will automatically open the last revision unless requested to open an

earlier revision.

Preferably revisions of any file can be forgotten or deleted (preferably
after checking the file counter or access list of sharers as above). This

will allow users to recover space from no longer required revisions.

Create Map of Maps (Figure 1 - P15)

According to a related aspect of this invention, data identifiers,
preferably data maps as mentioned earlier, can be appended to each
other in a way that preferably allows a single file or database record to
identify several files in one map. This is known as a share. Such a share
can be private to the individual, thereby replacing the directory structure
of files that users are normally used to, and replacing this with a new
structure of shares very similar to volumes or filing cabinets as this is

more in line with normal human nature and should make things simpler.

Share Maps (Figure 1 - P16)

1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743

1744
1745
1746
1747
1748
1749
1750

1751

1752
1753
1754

1755
1756

L)

According to a related aspect of this invention, this map of maps will
preferably identify the users connected to it via some public ID that is
known to each other user, with the map itself will being passed to users
who agree to join the share. This will preferably be via an encrypted
channel such as ms messenger or similar. This map may then be
accessed at whatever rank level users have been assigned. Preferably
there will be access rights such as read / delete / add / edit as is typically
used today. As a map is altered, the user instigating this is checked
against the user list in the map to see if this is allowed. If not, the request
is ignored but preferably the users may then save the data themselves to
their own database or data maps as a private file or even copy the file to
a share they have access rights for. These shares will preferably also

exhibit the revision control mechanism described above.

Preferably joining the share will mean that the users subscribe to a
shared amount of space and reduce the other subscription, i.e. a 10Gb
share is created then the individual gives up 10Gb (or equivalent
dependent on system requirements which may be a multiple or divisor of
10Gb). Another user joining means they both have a 5Gb space to give
up and S users would mean they all have a 2Gb or equivalent space to

give up. So with more people sharing, requirements on all users reduce.

Shared Access to Private Files (Figure 1 — PT5 and Figure 18)

User 1 logs on to network

2. Authenticates ID - i.e. gets access to his public and private keys to sign

messages. This should NOT be stored locally but should have been
retrieved from a secure location — anonymously and securely.

User 1 saves a file as normal (encrypted, obfuscated, chunked, and

stored on the net via a signed and anonymous ID. This ID is a special

1757
1758
1759
1760
1761
1762

1763
1764

1765
1766

1767

1768
1769

1770
1771

1772
1773
1774

1775
1776
1777
1778
1779
1780

10.

(RS

maidsafe.net Share ID (MSID) and is basically a new key pair created
purely for interacting with the share users — to mask the user’s MID (i.e.
cannot be tied to MPID via a share). So again the MSID is a key pair and
the ID is the hash of the public key - this public key is stored in a chunk
called the hash and signed and put on the net for others to retrieve and
confirm that the public key belongs to the hash.

User creates a share — which is a data map with some extra elements to

cover users and privileges.

File data added to file map is created in the backup process, with one

difference, this is a map of maps and may contain many files — see 14
User 2 logs in

User 2 has authentication details (i.e. their private MPID key) and can

sign / decrypt with this MPID public key.

User 1 sends a share join request to user 2 (shares are invisible on the

net — i.e. nobody except the sharers to know they are there).

User 1 signs the share request to state he will join share. He creates his
MSID key pair at this time. The signed response includes User 2's MSID
public key.

Share map is encrypted or sent encrypted (possibly by secure
messenger) to User 1 along with the MSID public keys of any users of the
share that exist. Note the transmittion of MSID public key may not be
required as the MSID chunks are saved on the net as described in 3 so
any user can check the public key at any time — this just saves the search
operation on that chunk to speed the process up slightly.

1781
1782

1783

1784
1785
1786
1787

1788
1789
1790
1791
1792
1793

1794
1795
1796

1797
1798
1799
1800
1801

1802
1803
1804

(e

11. Each user has details added to the share these include public name

(MPID) and rights (read / write / delete / admin etc.)

12. A description of the share file

Note that as each user saves new chunks he does so with the MSID
keys. this means that if a shares is deleted or removed the chunks still
exist in the users home database and he can have the option to keep the

data maps and files as individual files or simply forget them all.

Note also that as a user opens a file, a lock is transmitted to all other
shares and they will only be allowed to open a file read only — they can
request unlock (i.e. another user unlocks the file — meaning it becomes
read only). Non-logged in users will have a message buffered for them —
if the file is closed the buffered message is deleted (as there is no point

in sending it to the user now) and logged in users are updated also.

This will take place using the messenger component of the system to
automatically receive messages from share users about shares (but
being limited to that).

Provide Public ID (Figure 1 - P17)

According to a related aspect of this invention, a public and Private
key pair is created for a network where preferably the user is
anonymously logged on, and preferably has a changeable pseudo
random private id which is only used for transmission and retrieval of ID

blocks giving access to that network.

Preferably this public private key pair will be associated with a public ID.
This ID will be transmittable in a relatively harmless way using almost

any method including in the open (email, ftp, www etc.) but preferably in

1805
1806
1807
1808

1809
1810
1811
1812
1813
1814

1815
1816
1817
1818

1819
1820
1821
1822
1823
1824
1825
1826
1827

1828
1829
1830

10

an encrypted form. Preferably this ID should be simple enough to
remember such as a phone number type length. Preferably this ID will be
long enough however, to cope with all the world's population and more,

therefore it would be preferably approx 11 characters long.

This ID can be printed on business cards or stationary like a phone
number or email address and cannot be linked to the users private ID by
external sources. However the user’s own private information makes this
link by storing the data in the ID bit the user retrieves when logging in to
the network or via another equally valid method of secure network

authentication.

This ID can then be used in data or resource sharing with others in a
more open manner than with the private id. This keeps the private ID
private and allows much improved inter-node or inter-person

communications.

Secure Communications (Figure 1 - P18)

According to a related aspect of this invention, the communications
between nodes should be both private and validated. This is preferably
irrefutable but there should be options for refutable communications if
required. For irrefutable communications the user logs on to the network
and retrieves their key pair and ID. This is then used to start
communications. Preferably the user’s system will seek another node to
transmit and receive from randomly — this adds to the masking of the
user’s private ID as the private ID is not used in any handshake with

network resources apart from logging in to the network.

As part of the initial handshake between users, a key may be passed.
Preferably this is a code passed between users over another

communications mechanism in a form such as a pin number known only

1831
1832
1833
1834

1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852

1853
1854
1855
1856
1857
1858

~ (

to the users involved or it may be as simple as appending the user’s
name and other info to a communication request packet such as exists in
some instant messaging clients today - i.e. David wants to communicate

with you allow / deny / block.

Unlike many communications systems today, this is carried out on a
distributed server-less network. This however provides the problem of
what to do when users are off line. Today messages are either, stopped
or stored on a server, and in many cases not encrypted or secured. This
invention allows users to have messages securely buffered whilst off line.
This is preferably achieved by the node creating a unique identifier for
only this session and passing that ID to all known nodes in the user’s
address book. Users on-line get this immediately, users off-line have this
buffered to their last known random ID. This ensures that the ability to
snoop on a user’'s messages is significantly reduced as there is no
identifier to people outside the address book as to the name of the
random ID bit the messages are stored to. The random ID bit is
preferably used as the first part of the identified buffer file name and
when more messages are stored then another file is saved with the
random id and a number appended to it representing the next sequential
available number. Therefore a user will log on and retrieve the messages
sequentially. This allows buffered secured and distributed messaging to

exist.

Document Signing (Figure 1 - P19)

According to a related aspect of this invention, a by-product of
securing communications between nodes using asymmetric encryption is
as previously stated, introducing a non-refutable link. This allowé for not
only messages between nodes to be non-refutable but also for
documents signed in the same manner as messages to be non refutable.

Today somebody can easily steal a user's password or purposely attack

1859
1860

1861
1862

1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879

1880
1881
1882

1883
1884

' B

users as they are not anonymous; this invention provides a great deal of

anonymity and backs this up with access to resources.

Documents may be signed and passed as legally enforceable between

parties as a contract in many countries.

Contract Conversations (Figure 1 — P20)

According to a related aspect of this invention, a conversation or
topic can be requested under various contracted conditions. The system
may have a non disclosure agreement as an example and both parties
digitally sign this agreement automatically on acceptance of a contract
conversation. In this case a non disclosure conversation. This will
preferably speed up and protect commercial entities entering into
agreements or where merely investigating a relationship. Preferably other
conditions can be applied here such as preferably full disclosure
conversations, Purchase order conversations, contract signing
conversations etc. This is all carried out via a system preferably having
ready made enforceable contracts for automatic signing. These contracts
may preferably be country or legal domain specific and will require to be
enforceable under the law of the countries where the conversation is
happening. This will require the users to preferably automatically use a
combination of geographic IP status and by selecting which is their home
country and where are they are at that time located and having that

conversation.

Preferably only the discussion thread is under this contract, allowing any
party to halt the contract but not the contents of the thread which is under

contract.

Preferably there can also be a very clear intent statement for a

conversation that both parties agree to. This statement will form the basis

1885
1886
1887
1888
1889
1890
1891
1892
1893

1894
1895

1896
1897
1898
1899

1900
1901
1902

1903
1904
1905
1906
1907
1908
1909
1910

17

of a contract in the event of any debate. The clearer the intent statement
is; the better for enforceability. These conversations are potentially not
enforceable but should lead to simplifying any resolution required at a
later date. Preferably this can be added together with an actual contract
conversation such as a non disclosure agreement to form a pack of
contracts per conversation. Contract conversations will be clearly
identified as such with copies of the contracts easily viewable by both
parties at any time, these contracts will preferably be data maps and be

very small in terms of storage space required.

ms_messenger (Figure 1— PT6 and Figure 19)

1. A non public ID preferably one which is used in some other autonomous

system is used as a sign in mechanism and creates a Public ID key pair.

. The user selects or creates their public ID by entering a name that can

easily be remembered (such as a nickname) the network is checked for a
data element existing with a hash of this and if not there, this name is

allowed. Otherwise the user is asked to choose again.

. This ID called the MPID (maidsafe.net public ID) can be passed freely

between friends or printed on business cards etc. as an email address is

today.

. To initiate communications a user enters the nickname of the person he

is trying to communicate with along with perhaps a short statement (like a
prearranged pin or other challenge). The receiver agrees or otherwise to
this request, disagreeing means a negative score starts to build with
initiator. This score may last for hours, days or even months depending
on regularity of refusals. A high score will accompany any communication
request messages. Users may set a limit on how many refusals a user

has prior to being automatically ignored.

1911
1912

1913
1914

1915
1916
1917
1918
1919
1920

1921
1922
1923
1924

1925
1926

1927
1928

1929
1930
1931
1932

1933
1934
1935

5.

10.

11.

12.

1%

All messages now transmitted are done so encrypted with the receiving

party’s public key, making messages less refutable.

These messages may go through a proxy system or additional nodes to

mask the location of each user.

This system also allows document signing (digital signatures) and
interestingly, contract conversations. This is where a contract is signed
and shared between the users. Preferably this signed contract is equally
available to all in a signed (non changeable manner) and retrievable by
all. Therefore a distributed environment suits this method. These
contracts may be NDAs Tenders, Purchase Orders etc.

This may in some cases require individuals to prove their identity and this
can take many forms from dealing with drivers licenses to utility bills
being signed off in person or by other electronic methods such as

inputting passport numbers, driving license numbers etc.

If the recipient is on line then messages are sent straight to them for

decoding.

If the recipient is not on line, messages are require to be buffered as

required with email today.

Unlike today's email though, this is a distributed system with no servers to
buffer to. In maidsafe.net messages are stored on the net encrypted with
the receiver’s public key. Buffer nodes may be known trusted nodes or

not.

Messages will look like receivers id.message 1.message 2 or simply
be appended to the users MPID chunk, in both cases messages are

signed by the sender. This allows messages to be buffered in cases

1936
1937
1938

1939
1940
1941
1942
1943
1944
1945
1946
1947
1948

1949
1950

1951
1952
1953
1954
1955
1956
1957
1958

1959
1960
1961

1S

where the user is offline. When the user comes on line he will check his
ID chunk and look for appended messages as above ID.message1 etc.

which is MPID.<message 1 data>.<message 2 data> etc.

This system allows the ability for automatic system messages to be sent,
i.e... in the case of sharing the share, data maps can exist on everyone's
database and never be transmitted or stored in the open. File locks and
changes to the maps can automatically be routed between users using
the messenger system as described above. This is due to the distributed
nature of maidsafe.net and is a great, positive differentiator from other
messenger systems. These system commands will be strictly limited for
security reasons and will initially be used to send alerts from trusted
nodes and updates to share information by other shares of a private file

share (whether they are speaking with them or not).

The best way within our current power to get rid of email spam is to get

rid of email servers.

Anonymous Transactions (Figure 1 - P24)

According to a related aspect of this invention, the ability to transact
in a global digital medium is made available with this invention. This is
achieved by passing signed credits to sellers in return for goods. The
credits are data chunks with a given worth preferably 1, 5, 10, 20, 50,
100 etc. units (called cybers in this case). These cybers are a digital
representation of a monetary value and can be purchased as described
below or earned for giving up machine resources such as disk space of
cpu time etc. There should be preferably many ways to earn cybers.

A cyber is actually a digitally signed piece of data containing the value
statement i.e. 10 cybers and preferably a serial number. During a

transaction the seller’s serial number database is checked for validity of

1962
1963
1964
1965
1966
1967

1968
1969
1970
1971
1972
1973
1974

1975
1976
1977
1978
1979

1980
1981
1982
1983
1984
1985
1986
1987

16 T

the cyber alone. The record of the ID used to transact is preferably not
transmitted or recorded. This cyber will have been signed by the issuing
authority as having a value. This value will have been proven and
preferably initially will actually equate to a single currency for instance
linked to a Euro. This will preferably alter through time as the system

increases in capability.

Some sellers may request non anonymous transactions and if the user
agrees he will then use the public ID creation process to authenticate the
transaction and may have to supply more data. However there may be
other sellers who will sell anonymously. This has a dramatic effect on
marketing and demographic analysis etc. as some goods will sell
anywhere and some will not. It is assumed this system allows privacy

and freedom to purchase goods without being analysed.

The process of transacting the cybers will preferably involve a signing
system such that two people in a transaction will actually pass the cyber
from the buyer to the seller. This process will preferably alter the
signature on the cyber to the seller’s signature. This new signature is

reported back to the issuing authority.

Interface with Non-Anonymous Systems (Figure 1 - P23)

According to a related aspect of this invention, people may purchase
digital cash or credits from any seller of the cash. The seller will
preferably create actual cash data chunks which are signed and
serialised to prevent forgery. This is preferably accountable as with
today's actual cash to prevent fraud and counterfeiting. Sellers will
preferably be registered centrally in some cases. The users can then
purchase cybers for cash and store these in their database of files in a

system preferably such as maidsafe.net.

1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

2011
2012
2013
2014

1

As a cyber is purchased it is preferably unusable and in fact simply a
reference number used to claim the cyber's monetary value by the
purchaser’s system. This reference number will preferably be valid for a
period of time. The purchaser then logs in to their system such as
maidsafe.net and inputs the reference number in a secure
communications medium as a cyber request. This request is analysed by
the issuing authority and the transaction process begins. Preferably the
cyber is signed by the issuing authority that then preferably encrypts it
with the purchaser’s public key and issues a signing request. The cyber
is not valid at this point. Only when a signed copy of the cyber is received
by the issuing authority is the serial number made valid and the cyber is

live.

This cyber now belongs to the purchaser and validated by the issuer. To
carry out a transaction this process is preferably carried out again i.e. the
seller asks for payment and a cyber signed by the buyer is presented —
this is validated by checking with the issuer that the serial code is valid
and that the buyer is the actual owner of the cyber. Preferably the buyer
issues a digitally signed transaction record to the issuing authority to
state he is about to alter that cyber’s owner. This is then passed to the
seller who is requested to sign it. The seller then signs the cyber and
requests the issuing authority to accept him as new owner via a signed
request. The authority then simply updates the current owner of the cyber

in their records.

These transactions are preferably anonymous, as users should be using
a private id to accomplish this process. This private ID can be altered at
any time but the old id should be saved to allow cyber transactions to
take place with the old id.

2015
2016
2017
2018

2019
2020
2021
2022
2023
2024
2025

2026
2027
2028
2029
2030

2031
2032
2033
2034

2035
2036
2037
2038

14

Anonymity (Figure 1 - P25)

According to a related aspect of this invention, a system of voting
which is non refutable and also anonymous is to be considered. This is a
requirement to allow free speech and thinking to take place on a global

scale without recrimination and negative feedback as is often the case.

To partake in a vote the user will have to be authenticated as above then
preferably be presented with the issue to be voted on. The user will then
use a private ID key to sign their vote anonymously. Preferably non
anonymous irrefutable voting may also take place in the system by
simply switching from a private ID to a public one. This will preferably
form the basis of a petition based system as an add-on to the voting

system.

The system will require that a block of data can be published (preferably
broadcast to each user via messenger) and picked up by each user of
the system and presented as a poll. This poll will then be signed by the
user and sent back to the poll issuer whose system will count the votes

and preferably show a constant indication of the votes to date.

As there are public and private IDs available, then each vote will require
preferably only ONE ID to be used to prevent double voting. Preferably
geographic IP may be used to establish geographic analysis of the voting

community, particularly on local issues.

Voting System (Figure 1 — PT8 and Figure 20)

1.

A vote is created in a normal fashion; it could be a list of candidates or a
list of choices that users have to select. Preferably this list will always
have an “l do not have enough information” option appended to the

bottom of the list — to ensure voters have sufficient knowledge to make a

2039
2040

2041
2042
2043
2044
2045

2046
2047
2048
2049

2050
2051
2052
2053
2054

2055
2056

2057

2058
2059

2060
2061
2062
2063

14

decision. A limit on the last option should be stipulated as a limit to void

the vote and redo with more information.

. This vote is stored on the system with the ID of the voting authority. This

may be a chunk of data called with a specific name and digitally signed
for authenticity. All storage nodes may be allowed to ensure certain
authorities are allowed to store votes, and only store votes digitally

signed with the correct ID.

. A system broadcast may be used to let everyone interested know that

there is a new vote to be retrieved. This is an optional step to reduce
network congestion with constant checking for votes; other similar
systems may be used for the same ends.

. A non anonymous user logged into the net will pick up the vote. This is a

user with a public ID known at least to the authority. The vote may in fact
be a shared chunk that only certain IDs have access to or know of its
location (i.e. split onto several component parts and a messaging system

used to alert when votes are ready.)

. An anonymous user may be logged onto the net and may in fact use a

random ID to pick up the vote.

. The vote is retrieved.

. The system will send back a signed (with the ID used to pick up the vote)

“I accept the vote”.

. The voting authority will transmit a ballot paper - i.e. a digitally signed

(and perhaps encrypted / chunked) ballot paper. This may be a digitally
signed “authorisation to vote” slip which may or may not be sequentially

numbered or perhaps a batch of x number of the same serial numbers (to

2064
2065

2066

2067
2068
2069

2070
2071

2072
2073

2074
2075
2076
2077

2078
2079

2080
2081

2082

2083
2084
2085
2086

Qo

prevent fraud by multiple voting from one source - i.e. issue 5 same

numbers randomly and only accept 5 votes with that number).

9. User machine decrypts this ballot paper.

10. The users system creates a one time ID + key pair to vote. This public
key can be hashed and stored on the net as with a MAID or PMID so as

to allow checking of any signed or encrypted votes sent back.

11. The vote is sent back to the authority signed and preferably encrypted

with the authority’s public key.

12. In the case of anonymous or non anonymous voting this may be further
masqueraded by passing the vote through proxy machines en route.

13. The vote is received and a receipt chunk put on the net. This is a chunk
called with the user's temp (or voting) ID hash with the last bit shifted or
otherwise knowingly mangled — so as not to collide with the voting ID bit

the user stores for authentication of their public key.

14. The authority can then publish a list of who voted for what (i.e. a list of

votes and the voting ID's)

15. The user’s system checks the list for the 1D that was used being present

in the list and validates that the vote was cast properly.

If this is not the case.

16. The users system issues an alert. This alert may take many forms and
may include signing a vote alert packet; this can be a packed similarly (as
in 13,) altered to be a known form of the vote chunk itself. There are

many forms of raising alerts including simply transmitting an electronic

2087
2088

2089
2090
2091

2092
2093

2094
2095
2096
2097

2098
2099
2100
2101
2102
2103
2104

2105
2106
2107
2108
2109

%\

message through messenger or similar and possibly to a vote

authentication party and not necessarily the voting authority themselves.

17. The user has all the information to show the party investigating voting

authenticity, accuracy, legality or some other aspect, thereby allowing

faults and deliberately introduced issues to be tracked down.

18. The user has the option to remove all traces of the vote from his system

at this time.

Proven Individual (Figure 1 - P26)

According to a related aspect of this invention, using a system of
anonymous authentication preferably as in maidsafe.net, the first stage is
partially complete and individual accounts are authentic but this does not

answer the question of anonymous individuals, this is described here.

Access to a system can be made with information that we possess
(passwords etc.) or something that we physically have (iris/ fingerprint or
other biometric test). To prove an individual’s identity the system will
preferably use a biometric test. This is a key to the voting system as it
becomes more broadly adopted. It is inherent in this system that any
personally identifying data must be kept secret, and also that any

passwords or access control information is never transmitted.

When a user authenticates, the system can recognise if they have done
so biometrically. In this case, the account is regarded as a unique
individual rather than an individual account. This is possible as
maidsafe.net can authenticate without accessing servers or database

records of a biometric nature for example.

2110
2111
2112
2113
2114
2115

2116
2117

2118
2119
2120
2121
2122

2123
2124
2125
2126
2127
2128

2129
2130
2131
2132
2133
2134

G

As a user logs into maidsafe.net through a biometric mechanism then the
state of login is known so no login box is presented for typing information
in to access the system. This allows the system to guarantee that the
user has logged in biometrically. The system on each machine is always
validated by maidsafe.net on login to ensure this process cannot be

compromised.

Preferably some votes will exist only for biometrically authenticated

users.

Distributed Controlled Voting (Figure 1 - P29)

According to a related aspect of this invention, to further manage the
system there has to be a level of control as well as distribution to enable
all users to access it at any time. The distribution of the votes is
controlled as system messages and stored for users using the

messenger system described earlier.

The main issue with a system such as this would be ‘what’ is voted on
and ‘who’ poses the votes and words polls. This is key to the fairness
and clarity of the system and process. This voting system will preferably
always have a 'not enough information' selection to provide a route by
which users are able to access information so that they are well informed

before making any decision.

The system will require a group of individuals, who are preferably voted
into office by the public as the policyholders/ trustees of the voting
system. This group will be known by their public ID and use their public
ID to authenticate and publish a poll. This group will preferably be voted
into office for a term and may be removed at any time via a consensus of

the voting public. For this reason there will be continual polis on line

2135
2136

2137
2138
2139
2140
2141
2142
2143
2144

2145
2146
2147
2148

2149
2150
2151
2152
2153
2154
2155
2156
2157

2158
2159
2160
2161
2162
2163

%>

which reflect how well the policyholders are doing as a group and

preferably individually as well.

According to a related aspect of this invention, users of the system
will input to the larger issues on the system. Macro management should
be carried out via the policyholders of the system, whom as mentioned
previously may be voted in or out at any time, however larger issues
should be left to the users. These issues can preferably be what licenses
are used, costs of systems, dissemination of charitable contributions,
provision to humanitarian and scientific projects of virtual computing

resources on large scales efc.

To achieve this, preferably a system message will be sent out, where it is
not presented as a message but as a vote. This should show up in the
users voting section of the system. User private IDs will be required to

act on this vote and they can make their decision.

There will be appeals on these votes when it would be apparent that
conclusion of the vote is dangerous to either a small community or the
system as a whole. Users will have an option of continuing with the vote
and potential damage but essentially the user will decide and that will be
final. Preferably this system does not have a block vote or any other
system which rates one individual over another at any time or provides
an advantage in any other way. This requires no ability to allow veto on
any decision or casting of votes by proxy so that the authenticated user's

decision is seen as properly recorded and final.

According to a related aspect of this invention, a system of perpetual
data, self encrypting files and data mapping will allow a global
anonymous backup and restore system for data to exist. This system can
be constructed from the previous discussions where data may be made
perpetual on a network and anonymously shared to prevent duplication.

This together with the ability to check, manipulate and maintain revision

2164
2165

2166
2167
2168
2169
2170
2171
2172

2173
2174
2175
2176
2177
2178
2179
2180
2181
2182

2183
2184

2185
2186
2187
2188

2189
2190

G &

control over files adds the capability of a 'time machine' type environment
where data may be time stamped on backup.

This allows a system to rebuild a user’s data set as it was at any time in
history since using maidsafe.net or similar technologies. This may form a
defence at times where in cases like prior art enquiries, insider dealing
etc. is being considered, as the system is secure and validated by many
other nodes etc. It can therefore be shown what knowledge (at least from
the point of view of owning the data pertaining to a subject,) anyone had

of certain circumstances.

According to a related aspect of this invention, preferably using
aspect(s) previously defined or any that may improve this situation.
Taking distributed authentication, backup and restore along with data
map sharing; the system can add to this the ability for granular access
controls. In this case a node entering the network wifl request an
authenticator to authorise its access. In this case the authenticator will be
a manager or equivalent in an organisation (whether matrix managed or
traditional pyramid). This authorisation will tie the public ID of the
authoriser to the system as having access to this node’s data and any

other authorisations they make (in an authorisation chain).

This allows an environment of distributed secure backup, restore and

sharing in a corporate or otherwise private environment.

According to a related aspect of this invention, all of the capabilities
described here with the exception of the above will ensure that a network
of nodes can be created, in which users have security privacy and

freedom to operate.

These nodes will have refutable IDs (MAID, PMID etc.) as well as non

refutable IDs (MPID) for different purposes, just as in human life in

2191
2192

2193
2194
2195
2196
2197
2198
2199

2200
2201
2202
2203
2204
2205

2206
2207
2208

2209
2210
2211
2212

2213
2214
2215
2216
2217

&S

general there is time to be identified and times when it is just best not to
be.

According to a related aspect of this invention, adding the ability of
non refutable messaging allows users to not only communicate genuinely
and securely but also the ability to communicate under contracted terms.
This allows for the implementation of legally kept trade secrets (as
implied with NDA agreements etc.) plus many more contracted
communications. This will hopefully lessen the burden on legal issues

such as litigation etc.

According to a related aspect of this invention, adding the ability to
create two voting systems, anonymous and non-anonymous, allows the
system to provide a mechanism for instant democracy. This is achieved
by allowing a voting panel in a user’s account that is constantly updated
with issues regarding the system and it's improvements initially. These

votes will be anonymous.

In another anonymous voting scenario users may continually vote on
certain subjects (as in a running poll) these subjects could be the leaders

of boards etc.

In a non anonymous voting scenario it may be there's groups of identified
people (via their MPID) who have a common grouping such as a charity
or similar and they may require certain people to vote on certain matters

and be recognised. This is where the MPID is used for voting.

According to a related aspect of this invention, adding to this the
ability to collect and trade credits anonymously allows users to sell
machine resources they are not using, trade on a network with a cash
equivalent and go about there business on a network as they do in real

life.

2218

2219
2220
2221
2222
2223
2224
2225

2226

2227
2228
2229
2230
2231
2232
2233

2234
2235
2236

2237
2238
2239

2240
2241
2242

CLaIMs

1. Adistributed network system which provides;

secure communications

store data & share resources

anonymous backing and restoring data

share private files & secure data without using server

anonymous authentication of users

-~ ® a0 T oW

approve transaction based on digital currency

CPU sharing via anonymous voting system

«

2. Adistributed network product which provides;

secure communications

store data & share resources

anonymous backing and restoring data

share private files & secure data without using server
anonymous authentication of users

approve transaction based on digital currency

@ ~ o a0 T o

CPU sharing via anonymous voting system

3. A method of allowing users to securely store data and share resources
across a distributed network by utilising anonymously shared computer

resources,;

4. A method to allow secure communications between users by utilising
public ID's linked to anonymous ID's to authenticate users as well as

allowing contract signed conversations;

5. A method to allow sharing and allocation of resources globally by utilising
effort based testing and anonymously authenticated users in a global
distributed network;

2243
2244

2245
2246

2247
2248
2249

2250
2251

2252

2253
2254
2255

2256
2257
2258
2259
2260
2261

2262
2263
2264

2265
2266

10.

11.

12.

13.

14.

a N\

A method specifically to backup and restore data anonymously in a

distributed network with guarantees on integrity and recovery times;

A method to share private and secured data without the use of file

servers or any controlling body or centralised resource;

A method to approve the exchange of resources and other transactions
based on a digital currency which utilises links with non anonymous

payment systems;

A method to allow data to be described decoded and identified using

very small data map files;
A method to allow anonymous authentication of users on a network;

A method of claim 4 to allow sharing of CPU power globally and to
contribute to systems based on users input from a worldwide secure and

anonymous voting system

A method where a person’s computer operating system and related
computer program may be held on a removable disk (such as a USB
stick optionally with biometric recognition to evade keyloggers) and used
to boot any compatible computer with a known virus / trojan free system
to access their data remotely and securely without worrying about the

integrity of host machine they are using;

At least one computer program comprising instructions for causing at
least one computer to perform the method, system and product
according to any of claims 1 to 12;

That at least one computer program of claim 13 embodied on a recording

medium or read-only memory, store.

	BIBLIOGRAPHY
	DRAWINGS
	DESCRIPTION
	CLAIMS

