
United States Statutory Invention Registration (19)

Kun

(54) ISDN D CHANNEL HANDLER
Randall D. Kun, 10 Cyrus Court,
Nepean, Ontario, Canada, K2H9C9

21 Appl. No.: 26,502

76 Inventor:

(22 Filed: Mar. 16, 1987
30 Foreign Application Priority Data
Jun. 20, 1986 (CA) Canada 512045

51) Int. Cl.".. HO4J 3/24
52 U.S. Cl. ... 370/94; 370/92
(56) References Cited

U.S. PATENT DOCUMENTS

4,612,636 9/1996 Grover et al. 370/94
4,621,359 1/1986 McMillen 370/94.
4,646,294 2/1987 Eliscu et al. 370/94

Primary Examiner-Stephen C. Buczinski
Assistant Examiner-Linda J. Wallace

57 ABSTRACT
In an integrated services digital network (ISDN) a tele
phone subscriber is physically connected to a telephone
exchange by a digital signal subscriber loop which pro
vides in time division multiplex (TDM), two B channels
and a D channel. The two B channels are used for voice
and data at a bit rate of sixty-four kilobits per second
each. The D channel is used for packet data and for
telephone signalling and supervision at a bit rate of
sixteen kilobits per second. An ISDN D channel han
dler, in an exchange termination (ET) collects D chan
nel data from and distributes D channel data to various
ISDN subscriber lines. A frame processor, in the D
channel handler, receives D channel information as it
occurs in each of the receive channels. It directs D
channel data to a receive buffer storage location where

H586

Feb. 7, 1989
11 Reg. Number:
43) Published:

it is accessible by a translator. The translator recognizes
information in the data which relates to supervisory and
signalling functions, and passes the information to a
central controller in the ET. Likewise, signalling and
supervisory information destined for an ISDN sub
scriber line is translated into ISDN compatible data
which is stored in transmit buffer storage locations. The
frame processor subsequently pulls this data from the
stroage locations, and formats it according to CCITT
standard, before transmitting it on the appropriate trans
mit D channel of the TDM bit stream to the subscriber.
Packet data received in the D channel is recognized
after it has been stored in the receive buffer storage
location and then is immediately queued for transmis
sion via the frame processor and a digital transmission
link to a separate packet network. Packet data from the
separate packet network is received from the digital
transmission link and stored via the frame processor in
buffer storage locations. Subsequently, the information
bits of each stored data packet are formatted according
to the CCITT standard by the frame processor, and
transmitted to the intended subscriber on the appropri
ate D channel.

11 Claims, 28 Drawing Sheets

A statutory invention registration is not a patent. It has
the defensive attributes of a patent but does not have the
enforceable attributes of a patent. No article or advertise
ment or the like may use the term patent, or any term
suggestive of a patent, when referring to a statutory in
vention registration. For more specific information on the
rights associated with a statutory invention registration
see 35 U.S.C. 157.

U.S. Patent Feb. 7, 1989

: PERPHERAL
MODULES
AREA

ANAOG s
SUBSCRIBER K 0

LINES O

ANALOG
TRUNKS

SERVICE isei
DIGITAL
CARRIER

DIGITAL
CARRIER Facilities 6B

TRUNK
MODULE

CONTROL
SIGNAL -p-
LINKS

"I

Sheet 1 of 28 H586

--/
i 2, -NETWORK AREA

C
- - - -

SWITCHING
NETWORK

4. - 5

Nu-MESSAGE)----
APP D-5iis O CLOCK

REPORT
| ANE L

in in
central DATA

|MAINEANCE |PROCESSING SigE
IADMINISTRATION

AREA | CENTRAL
oems o annum uns o PROGRAM CON

FG. STOREO
PROR ART - - -A- rare -

U.S. Patent Feb. 7, 1989 Sheet 2 of 28 H586

NETWORK LINKS

-2 NT

Aa
(

DIGITAL LINE
LINES MODULE

LINE GROUP
CONTROLLER

a. NT

TE //
PERPHERAL
EQUEPMENT

3O 3/ 26 NETWORK LINKS

DIGITAL PACKET CENTRAL
X.75'-NEwikHTRANSMISSION /15

26/ 27r

?/r REMOTE
PERPHERAL

TE EQUIPMENT

wes

s D CHANNEL DIGITAL
LINES

REMOTE LINEGROUP
FCONTROLER
2/r

N

FG. 2

H586 Sheet 3 of 28 Feb. 7, 1989 U.S. Patent

U.S. Patent Feb. 7, 1989

CONTROL
CIRCUIT

Sheet 4 of 28 H586

SERIAL
BT

STREAM

SERIAL
BIT

STREAM

U.S. Patent Feb. 7, 1989 Sheet 5 of 28 H586

LOCAL ADDRESS BUS

LOCAL DATA BUS
CPU

BUS CONTROL

52.

GLOBAL BUS
NTERFACE

56

ADDRESS

GLOBAL.
DATA GLOBAL

BUS RAM
CONTROL

LOCAL
MEMORY

52

PROCESSOR

5/

FIG. 4b.

U.S. Patent Feb. 7, 1989 Sheet 7 of 28 H586

MUX FRAME Rx CONFIGURATION MEMORY LOGICAL BITSTREAMS

TIME- BIT NO. TIME- CHAN. BIT
SLOT O234567 SLOT NO. MAP ch

ikimnop OOOO OlOOOO ch.
2 drStuVWX 2 OOOO OlOOl O ijiruvw

3 yZABCDEF 3 OOOO OOOOOOl EFUV
4 GHJKLMN 4 OOOOO OOOOO ch. 3

5 OPQRSTUV 5 OOOO OOOOOOl abcdefgh
-emi

TME

BIT POSITON
5 4 3 2 O 9 8 7 6 5 4 3 2 O

LRCSTA RX FCS OAA OFF spare ESSAeol: gris P.E.
FRAME RESIDUE CONTENTS BYTE COUNT 8T COUNT

DATA

S. CPU FELD INSERTION AREA in bytes.

HDLC FRAME CONTENTS FIELD BYTE
(EXCLUDING FLAGS AND FCS) COUNT

RC
(OPTIONAL RX ONLY)

FIG. 7

U.S. Patent Feb. 7, 1989 Sheet 8 of 28 H586

BIT POSITION

15 4 3 2 O 9 8 7 6 5 4 3 2 O

memism.4m3m2ml momelmsm7m6m5Imams maml worDo
rene incoregreemarresteresmamare madmisms mirwORD

ETC.

LAST
WORD

n oooooom gaggagseggs
BIT ALIGNMENT FOR RX FRAME CONTENTS FIELDS, BP = O

FIG. 8

BIT POSITON

14 13 12 || IO 9 8 7 6 5 4 3 2 1 O 5

mammelmsmalms m2 mimic mismansmi2minolmsworDo
24r2|re2m2 remismismrmansmicmasmasmermeemas WORD

ETC.

LAS
WORD

BIT ALIGNMENT FOR RX FRAME CONTENTS FELDS, BP =

FIG. 9

U.S. Patent Feb. 7, 1989 Sheet 9 of 28 H586

B POSITION

15 4 3 2 IO 9 8 7 6 5 4 3 2 O

mem7 mem5 m4 m3m2ml | | | | | | |
menzimztereonisms minismsmansmi2mmons

in t t if | | | | | | | | "assass
BIT ALIGNMENT FOR TX FRAME CONTENTS FIELDS, BP = O

FIG. O

WORD O

WORD

ETC.

LAST
WORD

BIT POSITION

14 3 2 1 O 9 8 7 6 5 4 3 2 O 5

| | | | | | | mem7 mems mansmen WORDO
mism.5m14m3m2minomeranzmare m2 mismism 7 WORD

ETC.

LAST
WORD

Thk n irr in in in r
k-k-2k-3 k-4 k-5 k-6

BIT ALIGNMENT FOR TX FRAME CONTENTS FELDS, BP=

FIG.

H586 U.S. Patent

U.S. Patent

PRODUCER
POINTER

PRODUCER
POINTER

PRODUCER
PONTER

A

A

NULL
NULL

: POINTER

: POINTER

Feb. 7, 1989

ULL

NULL

PONTER

PONTER

CONSUMER
PONTER

CONSUMER
PONTER

A
: CONSUMER
PONTER

F.G. 14

Sheet 12 of 28 H586

EMPTY FULL
TRUE FALSE

QUEUE EMPTY
CONDITION

EMPTY FULL
FALSE FALSE

OUEUE CONTAINNG
ONE ELEMENT

EMPTY Full
FALSE TRUE

QUEUE FULL
CONDITION

U.S. Patent Feb. 7, 1989 Sheet 13 of 28 H586

INTIAL STATE
START
RESET RX
SHIFT DATA

o START OF FRAME
READ RX QUEUE

FNULL THEN SETCUUE NOT FULL
ELSE SE QUEUE FUL

NULL

READ RX SHARED QUEUE
F NULL THEN SET SHARED QUEUE EMPTY ERROR

NOT NULL

WRITE NULL RX SHARED QUEUE

INCREMENT RX SHARED QUEUE POINTER

(NOTEND OFFRAME)
Y V

RECEIVE DATA AND
WRITE DATA To FRAMEBUFFER

(NOTEND OF BUFFER)

(NOT END NNOT END OFFRAME)
OF FRAME) (END OF BUFFER)

(START=O)N(ENDCFBUFFERN (START:)

START = O START =

(END OF FRAME)
(START = O)

STARTs O START =
END is END END= O END =O
WRTE WRITE WRITE WRITE

DESCRIPTOR DESCRIPTOR DESCRIPTOR DESCRIPTOR

LRC
DiSABLED WRITE DESCRIPTOR 2

LRC ENABUED

WRITE POINTER
TO RX CRUEUE
SET QUEUE NOT

EMPTY

NCREMENT RX QUEUE POINTER

F.G. 5

WRITE LRC

U.S. Patent Feb. 7, 1989 Sheet 14 of 28 H586

NITIAL STATE

END=
SEND DLE

TX QUEUE NOT EMPTY -
READ TX QUEUE

SET QUEUE NOT FULL
F NULL THEN SET QUEUE EMPTY
ELSE SET QUEUE NOT EMPTY

NOT NULL

WRITE NULL TO TX QUEUE

NCREMENT TXOUEUE POINTER

465. GS = 1 READDESCRIPTOR SEND FLAG
ENDX-BIT 9 RESET TX

READ DESRIPTOR 2

READ ANDTRANSMIT
FRAME CONTENTS

(NOT END OF BUFFER)

V 1.

(END OF BUFFER)
(END =)

SEND FLAGS)

WRITE POINTER TO TX SHARED QUEUE

NCREMENT TX. SHARED QUEUE POINTER

F.G. 6

(END OF BUFFER)
(END: O)

U.S. Patent Feb. 7, 1989 Sheet 15 of 28 H586

NITIAL STATE

RX QUEUE NOT EMPTY
READ RX QUEUE

NOT NULL

WRITE NULL TO RX QUEUE

INCREMENT RX QUEUE POINTER

SE QUEUE NOT FULL

SET QUEUE EMPTY

READ RX QUEUE

WRITE NULL SETQUEUENOTFULL SEE

SET OUEUE NOTEMPTY

READ/PROCESS FRAME BUFFER NOT DONE

DONE

GIVE POINTERTO
BUFFER POOL PROCESSING

TASK

READ RX SHARED QUEUE

NULL

WRITE PRINTERTO RX SHARED QUEUE

NCREMENT RX SHARED QUEUE POINTER

FIG. 7

NOT NULL

U.S. Patent Feb. 7, 1989 Sheet 16 of 28 H586

NITIAL STATE

X CUEUE NOT FULL

READ TX QUEUE

NOT NULL NULL

OBTAIN BUFFER POINTER FROM
Stroueue FULL BUFFER POOL PROCESSING ASK

NCT
CONE

READ X CUEUE WRITE DATA TO FRAMEBUFFER
DONE NOT NUL.

SET queue NOTEMPTY SETQUELENOT FULL WRITE POINTER TO TX QUEUE

SET QUEUE NOTEMPTY

NCREMENT TXQUEUE POINTER

READ TX SHARED QUEUE NULL

NOT NULL

WRITE NULL TO TX SHARED QUEUE

NCREMENT TX. SHARED QUEUE POINTER

GIVE POINTER TO BUFFER POOL
PROCESSING TASK

FIG. 8

U.S. Patent Feb. 7, 1989

SYSTEM BUS

56- -37
DO-D15 Al-A22
BUS CONTROL

CIRCUIT

ADDRESS
GENERATOR

OUEUE 3
STATUS as a

DESCRIPTORS 2 -
fi g it

5 O O
9 - TRANSMITTERH-5

2
2 :

He
s CONTEXT

SWITCHER

25O 2// 2/O

2/2

22O

CONEXT
MEMORY TRANSMIT

SERIA DAA

27O

DATA

Sheet 17 of 28 H586

NTERRUPT TO CPU

NT
NTERRUPT

CONTROL CRCU
3/O

BUS

GENERATOR

3 QUEUE
at 2 STATUS
it u DESCRIPTORS

L
ne 2
2 2
O e
o 5
S g RECEIVER

; :
a

CONTEXT
SWITCHER

W/O //2 A// /3O

SERAL
DAA
QUEUE

/2O

CONTEXT
MEMORY RSCEVE

SERIA DATA

770

FIG. I9

U.S. Patent Feb. 7, 1989 Sheet 18 of 28 H586

QUEUE 8BIT PARALE
STATUS FRAME SLOT TIME-SOT DATA

/37/257

ACCESS
LS

TME
SO

COUNTER

DATA/A

ADDR/A
MULTIPLEXER

FRAME
COUNTER

COMPARE
LOGIC

MUTPUEXER
FRAME

COUNTER

DUAL PORT
MEMORY

ADDR/B
TME
SLOT

COUNTER
LS
ACCESS

8-BIT
FRAME TME PARALEL

SLOT TME-SOT
DATA

F.G. 2O

U.S. Patent Feb. 7, 1989 Sheet 19 of 28 H586

DATA CHANNEL CONTEXT SERIAL
BUS NUMBER BUS DATA

//O/2/O
/O/ //2/2/2 /36

24/ /42/

CONTEXT

/3/

TIME-SOT BIT MAP BT
SELECTOR

TIME-SOT
CONFIGURATION

MEMORY
////2//

MAXIMUM
TIME-SOT
COUNT

TIME-SOT
/34

INCR

/33/233 /37/257

/5O/23O FRAME SLOT NERNAL
emomania BT STREAM

CLOCK

8 ST PARALLE
TMESOT DATA

FIG. 2

U.S. Patent Feb. 7, 1989 Sheet 20 of 28

RECEIVE CONTEXT BUS //O

catales -o

/43 FCS
CHECKER

OPEN
FLAG CLOCK

DETECT GENERATION

SERIAL
DATA

CLOSE FLAG DETECT
8 BT

ABORT. DETECT SHIFT REGISTER

/42 NTERNAL RECEIVE
DAA DAA
CLOCK

FIG.22

H586

U.S. Patent Feb. 7, 1989 Sheet 21 of 28 H586

DATA BUS /O/

COUNTER
NUMBER OF
BITS N

6

AST DATA
WORD

SELECT SELECT

PARALEL/SERA
CONVERTER

TRANSMT
BT STREAM

ZERO DELETED
2/O CLOCK

TRANSMIT CONTEX BUS

TRANSMT INTERNAL
DATA DAA

240 COCK

FIG. 23

U.S. Patent Feb. 7, 1989 Sheet 22 of 28 HS86

ADDRESS

SELECT

INPUT NO.
MS LS INPUT NO.2 INPUT NO.3 INPUT NO.4

ADDER OVERLAP
CIRCUIT MS is Ms LS "EN"

REACHED

PONTER
COUNTER

6 BT
BUFFER DATA

OFFSET FQINTER RESTER REGISTER

//2/2/2

CONTEXT BUS //O/2/O

FIG. 24

U.S. Patent Feb. 7, 1989 Sheet 23 of 28 H586

PART OF
ADDRESS DATA INTERRUPT
BUS 57 R/W BUS TO CPU 52

DECODE TO 6 BT DATABUS

NTERRUPT
MASKS

A50/250

FLP-FLOP ARRAY A56

2/55
DECODE O 2. BIT DATA BUS

//2/2/2

CHANNEL RD/WR QUEUE CRUEUE
NUMBER FULL EMPY

FIG. 25

U.S. Patent Feb. 7, 1989 Sheet 24 of 28 H586

DO-D15 Al-A22

6 22

ADDRESS BUS

ADDRESS
3O6 BUFFERS

DATA BUS

LATCHES

LOA 3O7

22 DATA ADDRESS BUS
BUFFERS 3O2

5O2

ATCHES

DIRECTION
CONTROL

DIRECTION
CONTROL

OD

NULL

FIG. 26

U.S. Patent Feb. 7, 1989 Sheet 25 of 28 H586

INTERRUPT
TO CPU

3/6

STATUS REGISTER

iNTERRUPT

PRORITY ENCODER

NTERRUPT REGISTER

4. 3/

"HATED INTERRUPT
STATUS SIGNALS

3/O
5/3 MASKED -

INTERRUPT
SGNALS

3/2

CONTROL REGISTER ERROR REGISTER

3/7

/O/ ERROR
SGNALS

INTERRUPT CONTROL
SIGNALS SIGNALS

DATA BUS

FIG. 27

U.S. Patent Feb. 7, 1989 Sheet 26 of 28 H586

NITIAL STATE

SO: WAIT FOR EXTERNAL
FFO TO BE READY

FIFO READY

S : OAD CHANNE
CONTEXT

NEXT
MULTIPLEXER

FRAME

NOT NEXT
MULTIPLEXER
FRAME

S3: SAVE CONTEXT
S2: STEP RECEIVER/TRANSMTER

STATE MACHINE UNL TIME
SLOT PROCESSING IS COMPLETE

NEXT TIME-SLOT

FG, 28

U.S. Patent Feb. 7, 1989 Sheet 27 of 28 H586

NITIAL STATE

SO: INITIALIZE RECEIVER;
SCAN FOR OPENING FLAG

OPEN FLAG

S: SHIFT DATA

6 BTS
RECEIVED

S2, SCAN
RX QUEUE

NOT FULL

ABORT OR OPEN FLAG

Se: SETQUEUE NOTEMPTY

S5 CLEAR START S3: SET RX
QUEUEFULL

NOT (END END OR
OR OVOR OV OR
ABORT ABORT)

S4: WRITE BUFFER PTR TO RX QUEUE,
INCREMENT QUEUE POINTER

S4: READ POINTER FROM RX SHARED QUEUE;

NOTQUEUE EMPTY

S6: WRITE NULLPTRTO RX-SHARED QUEUE;
NCREMENT OUEUE POINTER

S7; SHIFT DATA

S3: INCRWORD COUNT,
WRITE RC

LRC ON

Si2: WRITE DESCRIPTOR ;
WRITE DESCRIPTOR 2

6 BTS SI: WRITEDATA WORD;
NOT RECEIVED . SET END END
OF

MESSAGE
BUFFER

SO: SE OVERFLOW

BUF COUNT BUF COUNT
= MAX NOT = MAX

S9: INCRBUFFER COUNT

S8: UPDATE LRC REGISTER;
WRITE DATA WORD;
NCR WORD COUNT
RESET SERAL/PARALE

END OF MESSAGE BUFFER

FIG. 29

U.S. Patent Feb. 7, 1989 Sheet 28 of 28 H586

NITIAL STATE

SO: RESET TRANSMITTER
TRANSMT DLE

S2: SE QUEUE EMPTY
SET OUEUE NOT FULL

S READ TX QUEUE

NOTEMPTY
MULT
BUFFER
MESSAGE S3: WRITENULL POINTER,

NCR QUEUE PTR

S5: WRITE PTR TO
TX SHARED QUEUE;
NCR OUEUE POINTER S4: READ DESCRIPTOR;

READ DESCRIPTOR 2
READ FIRSTDATAWORD;

SEND FLAG

DATA OFFSET
LSB co

S6:SHIFTDAA

6 BITS TRANSMITTED

MITTED S12, TRANSMIT COSEFLAG
S8 READ DATA WORD TRANSMI FCS

MESSAGE BUFFER
NOT TRANSMITTED TRANSMITTED

AND END

MSG BUFFER

S7: NCREMENT WORD COUNT

DAA OFFSET
LS3s FUL

S3: SCAN TX SHARED QUEUE S5:SHIFT DATA

8 BTS

PARTIAL MSG, BUFFER
LAST WORD RANSMITTED

MSG BUFFER AND END
TRANSMITTED S9: SHIFTDATA
AND NOT END

MSG BUFFER
TRANSMITTED
AND NOT END

SIO. SCANTX QUEUE
S SET OVERFOW
TRANSMTABORT

FIG. 3O

H586
1.

ISDN D CHANNEL HANDLER

The invention is in the field of telephone switching
systems and more particularly relates to D channel
handling in integrated services digital networks more
commonly referred to as ISDNs.

BACKGROUND OF THE INVENTION

Traditionally telephone services have been provided
by telephone switching systems each being linked to a
multitude of telephone station sets via telephone lines
which carry direct operating current and alternating
currents of voice band frequencies and lower. These
telephone services are limited to those communication
services providable within the voice bandwidth. Some
time ago, it became common practice to provide long
distance digital trunks between various switching sys
tems by means of pulse code modulated time division
multiplexed (PCM TDM) carrier, for example T1 car
rier which provides twenty-four digital signal channels

10

15

20

each of sixty-four kilobits per second. This required
multiplexing and demultiplexing, and encoding and
decoding of each analog voice band signal for transmis
sion and reception.

Recently PCM TDM telephone switching systems
having been installed to the extent that about forty
percent of the telephone switching facilities in North
America are of the digital type. Typically in such sys
tems each subscriber telephone line carries analog sig
nals and is connected to the telephone switch by a line
interface circuit. Each line interface circuit includes a
CODEC which performs analog to digital signal con
version and digital to analog signal conversion. Each
line interface circuit also includes signalling and super
vision circuitry for detecting ON HOOK and OFF
HOOK conditions. Some examples of such PCMTDM
telephone systems ar those manufactured by the as
signee and sold under the registered trademarks SL and
DMS. These systems are representative of an evolution
in telephony which has increased the quality and effi
ciency of telephone services. However, despite the
digital capability of modern telephone exchanges, avail
able telephone services generally continue to be limited
to those providable within the voice band available on
analog telephone lines.

Recently, digital telephone service for voice and data
has been available in some private branch exchanges
(PBX) digital systems, via proprietary digital telephone
lines and interface circuits. One problem with propri
etary digital telephone lines is that corresponding pro
prietary station or terminal apparatus are required in
order to compatibly communicate via the switching
system. In the realm of private branch exchanges
(PBXs) and private networks, this restrictive require
ment has proven to be inconvenient. However, in the
realm of public telephone networks, the inability to
communicate digitally via apparatus of different manu
facture and hence different protocol requirements has
rendered many potential advanced telephone services
to be simply impractical.
This impracticality has long bedeviled the telephone

industry. It was only in 1984 that The International
Telegraph and Telephone Consultative Committee
(CCITT) of the International Telecommunication
Union established recommendations for a standard Inte
grated Services Digital Network (ISDN). This recom
mendation was published in Geneva Switzerland in

25

30

35

45

50

55

60

65

2
1985 with an identification number ISBN 92-61-02081
X.
ISDN is an all-digital network standardized concept

intended to provide end-to-end digital connectivity to
support a wide range of voice services and non-voice
services, for example, data and video services. These
recommendations are the basis for the ISDNs currently
being planned for deployment. ISDN subscribers will
have access to these services through a number of inter
nationally standardized, multi-purpose user network
interfaces. ISDNs are evolving from existing digital
telecommunications networks, by progressively incor
porating additional functions and network features so as
to provide users with a standard integrated access to
both existing and new services. Various manufacturers
of fully digital telecommunications equipment are about
to, or have, supplied equipment for ISDN field trials
and are committed to build equipment for full scale
deployment. This equipment is typically based upon
functional integrations of existing digital circuit
switches and packet switches.
FIG. 1 of the accompanying drawings illustrates one

prior art example of a typical time division switching
system which is readily adaptable to serving as an ex
change termination (ET) in an integrated services digi
tal network (ISDN) by means of a D channel handler.
This switching system is described in U.S. Pat. No.
4,213,201.

Briefly, the system illustrated in FIG. 1 includes four
principal areas, namely, a peripheral modules area 1, a
network area 2, a central control complex area 3, and a
maintenance and administration area 4. The switching
network contained in the network area 2 is a so-called
folded network. The switching network is duplicated
for reliability as illustrated by identical networks la
belled as "plane 0' and "plane 1'. The peripheral mod
ules area 1 contains three kinds of peripheral modules.
For example, the line module serves local telephone
lines carrying analog speech signals which are digitized
and grouped into time division multiplex groups of
thirty-two channels, of which thirty channels in each
group are used for communication with the duplicated
switching network planes via network links. The line
module can be regarded as a stage of time division
switching because it provides concentration in contrast
to a trunk module which normally connects thirty
trunks to thirty duplicated network link channels on a
non-blocking basis. Both the line and trunk modules
also provide conversion for analog and pulse code mod
ulated signal formats in contrast to the digital carrier
module which merely provides a reframing interface
between digital carrier facilities and the switching net
work planes.
The central control area 3 of the switching system,

like the network area 2, contains facilities all of which
are duplicated for reliability in the system. As shown in
FIG. 1, central message controllers (CMCs) are con
nected by control signal links to both of the network
planes. Likewise two central processing units are each
connected by parallel buses to both of the CMCs. Data
stores 0 and 1 and program stores 0 and l are connected,
as shown, to the central processing units. The CMCs are
each connected a to network module controller (NMC),
not shown, in the switching network planes 0 and 1 by
the control signal links. Equipment of the maintenance
and administration area 4 are interconnected with the
equipment of the central control area 3 through the
CMCs.

H586
3

Call processing is hierarchically distributed between
the central control (CC) area 3 and the peripheral mod
ule (PM) areas 1. For example, translation is done in the
CC area 3, while digit collection and call supervision
are handled in the PMs area 1.

In operation of the switching system in FIG. 1, the
CPUs of the CC area 3 are responsive to signals re
ceived from at least one of the PMs to set up and tear
down communications channels between various of the
lines and trunks served by the line, trunk and carrier
modules in the PMs 1. Signals representing requests for
service, and subsequent call progress and control of the
switching network, are passed through the network 2
on at least one of the two remaining channels of the
thirty-two channels of each time division group. One
example of an analog subscriber interface circuit which
communicates signalling and supervision messages via a
signalling channel is described by Harold Harris in an
article titled "The Line Card” published by Bell-North

10

15

ern Research Ltd. in TELESIS, the fourth issue of 20
1980. The CMCs function is to both assemble messages
from the signalling channels for presentation to the
central processing units and to distribute messages from
the central processing units to the appropriate signalling
channels.
The principles of the present invention as embodied

in the ISDN D channel handler and its application, are
useful in an adaptation of virtually any TDM PCM
telephony switching system to ISDN, as well as being
applicable to designs of future switching systems.
The CCITT recommendation for ISDNs defines

several layers of standard protocols, which when ad
hered to, permit open digital communication between
terminal and station apparatus of various equipment
manufacture via circuit switched digital telephone sys
tems. The ISDN basic interface protocol defines a sig
nal format for a subscribed loop. The signal format
includes two sixty-four kilobits per second channels,
termed B channels, and a sixteen kilobits per second
channel, termed a D channel. The B channels are used
for encoded voice and for data and are normally in
tended to be circuit switched in an exchange termina
tion (ET), for example an associated TDM switching
facility. The D channel is available for at least two uses,
one being an exchange of supervisory and signalling
information between a subscriber terminal or telephone
station set and the ET, and the other being communica
tion of packet data via the ET and a packet communica
tion network, which is linked to the ET.

In the ET, ISDN formatted signals received from an
ISDN subscriber line are separated into the B and D
channel components. One or both of the B channels
may be circuit switched in the ET. The D channel may
be communicated to a packet network or alternately
any supervisory and signalling information in the D
channel is ultimately communicated to a central con
troller of the ET. Likewise D and B channel informa
tion destined for the ISDN subscriber are assembled
within the ET in the prescribed ISDN signal format for
transmission via the ISDN subscriber's line.
One of the problems in adapting existing digital cir

cuit switching systems to the ET function in ISDN
service is that of handling the D channel signalling and
supervision information. In addition, packet switch
destined data must be so identified and thereafter for
warded to an associated packet network. Signalling and
supervision information destined for the controller in
the digital circuit switch must be collected and trans

25

30

35

40

45

50

55

60

65

4.
lated into the appropriate format. Likewise signalling
and supervision information destined for the ISDN
subscriber must be translated into the ISDN protocol.
Traditionally, the corresponding functions for analog
telephones connected to a digital circuit switch have
been performed in line interface circuits, there being
one for each telephone line, for example as described by
Harold Harris in the previously mentioned publication
in TELESIS.
One of the problems in handling a D channel is the

variable rate at which D channel information may oc
cur. This information may have to be handled at the full
sixteen kilobits per second rate in both transmit and
receive directions. However, in contrast there may be
no D channel information at all for significant periods
of time. This variable rate dictates that either very fast
signal processing apparatus be provided or alternately
that a very large buffer memory be provided, on a per
ISDN telephone line basis. One way or the other, the
effective peak information capacity of the D channel
handler is seldom ever used and frequently the D chan
nel handler is inactive for extended periods of time.
Provision for ISDN subscriber signalling and supervi
sion in the line circuit, as suggested by tradition, prom
ises to be expensive.

SUMMARY OF THE INVENTION

It is an object of the invention to provide a D channel
handler for digital circuit switching systems which will
reduce the cost of adapting present switching systems to
be exchange terminations (ETs), compatible with the
CCITT recommendation for ISDNs.

It is an object of the invention to provide a D channel
handler for an ISDN, wherein the D channel handler is
shared between numerous ISDN subscriber line termi
nations at an ET.

In accordance with the invention, a D channel han
dler in an exchange termination, collects data from and
distributes data to various ISDN subscriber lines associ
ated with corresponding channels in a TDM bit stream.
A frame processor in the D channel handler directs D
channel data related to signalling and supervision to a
large buffer storage location which is accessible by a
translator. D channel packet data information is recog
nized and routed to an associated packet network.
The invention is a method for exchange terminating

D channelized informations originating at ISDN sub
scriber terminals. Bit states of prearranged bit position
occurrence in a bit stream are received from ISDN
subscriber digital line associated time division multi
plexed channels. In relation to each of said channels,
start flags and stop flags, as indicated by an occurrence
of a predetermined exclusive series of said bit state oc
currences are detected. A start address is selected for
defining the first of a series of storage locations for
storing bit states, of a channel, which occurred between
the start and stop flags. The bit states are stored at the
series of storage locations defined by incrementing the
start address by a factor related to the number of bits
between the start and stop flags and the start address is
stored in a predefined input address queue for subse
quent use in accessing said series of storage locations.

In a frame processor apparatus for an ISDN D chan
nel handler, the invention is also an asynchronous inter
face means comprising receive and transmit data
queues. The receive data queue includes an input port
for receiving data from an incoming TDM signal
stream. A queue input control means is responsive to an

H586
5

incoming control means for specifying storage locations
in the receive data queue for temporarily storing the
received data. A queue output control means is respon
sive to an input control time slot signal for specifying
storage locations in the receive data queue from whence
data is output via an output port, and a receive compar
ing means is responsive to the specifications of storage
locations for indicating one of a close proximity and an
overlap of specified storage locations, whereby a rate of
data output via the output port may be accelerated by
increasing a rapidity of the control time slot signal to
prevent an overrun of the temporarily stored data. In
the transmit data queue, a queue input control means is
responsive to an output control time slot signal for spec
ifying storage locations in the transmit data queue in
which data received via an input port is temporarily
stored. An output port provides for transmission of data
in a TDM signal stream. A queue output control means
is responsive to an output clock time slot signal, similar
to said input clock time slot signal, for specifying stor
age locations in the transmitted data queue from
whence data is output via said output port, and a trans
mit comparing means is responsive to the specifications
of storage locations for indicating one of a close proxim
ity and an overlap of specified storage locations,
whereby the rate of the data input via the input port
may be accelerated by increasing the rapidity of the
output control time slot signal to prevent and empty
occurrence in the transmit data queue.
BRIEF DESCRIPTION OF THE DRAWINGS

An example embodiment is described, in contrast
with prior art switching systems as hereinbefore dis
cussed with reference to FIG. 1, and with reference to
the remainder of the accompanying drawings in which:

FIG. 2 is a block schematic diagram illustrative of an
adaptation of a prior art time division switching system,
as exemplified in FIG. 1 in accordance with the inven
tion to provide an ISDN exchange termination (ET);
FIG. 3 is an illustration of the ISDN standard proto

col layers 1, 2 and 3;
FIGS. 4a and 4b are block schematic diagrams of two

embodiments of a D channel handler, suitable for use in
a D channel handler pool in FIG. 2;
FIG. 5 is a state diagram which illustrates operative

modes of a frame processor in FIGS. 4a abd 4b.
FIG. 6 illustrates allocation of configuration memory

space in the frame processor in FIGS. 4a and 4b;
FIG. 7 illustrates a data structure in a frame buffer

resident in a RAM in FIGS. 4a and 4b.
FIGS. 8 to 11 illustrate bit alignments in receive and

transmit frame contents of the frame buffer in FIG. 7;
FIG. 12 illustrates a queueing interface used to com

municate via the RAM in FIGS. 4a and 4b.
FIG. 13 illustrates a structure of receive (RX) and

transmit (TX) channel queues used in FIG. 12;
FIG. 14 illustrates three possible states of a channel

queue in FIG. 13;
FIGS. 15 to 18 are state diagrams illustrative of frame

processor and CPU queue access algorithms used in the
D channel handler of FIG. 4a
FIG. 19 is a block schematic diagram of a frame

processor used in the D channel handlers in FIGS. 4a
and 4b.
FIGS. 20 to 27 are block schematic diagrams which

structurally illustrate functional circuit blocks shown in
FIG. 19; and

O

15

20

25

30

35

45

50

55

60

65

6
FIGS. 28, 29 and 30 are state diagram illustrations of

the operation of the frame processor in FIG. 19.
DESCRIPTION OF THE EXAMPLE

EMBOEDIMENT

In FIG. 2, a time division telephony switching system
is represented by a switching network 12 connected
with a central control 13 to provide telephone service
to subscribers connected to peripheral equipment 11
and to remote peripheral equipment 11 r. In contrast to
the previously discussed prior art ISDN subscribers are
served via digital lines in contrast to analog lines. How
ever, this does not preclude the illustrated system from
connecting with other peripheral equipment for serving
analog telephone lines as well, for example as illustrated
in FIG. 1.
Up to eight units of terminal equipments, each labeled

TE, are connectable to a single network termination,
labeled NT1, via a so called passive bus operative in
accordance with the CCITT ISDN layer 1 protocol
recommendations, as shown in FIG. 3. Up to thirty
digital lines connect corresponding network termina
tion, NT1s, to the exchange termination ET via a line
module 21 in the peripheral equipment 11. One or more
so called DS30 link at 23 each provide thirty clear sixty
four kilobits per second channels for duplicated cou
pling of the D channels via a line group controller 22 to
the switching network 12 via network links at 12a. The
line module also couples D channels, one allocated for
each of the digital lines to a D channel handler pool 25.
The D channel handlers operate on incoming time divi
sion multiplexed D channel bit streams, in order to
capture and collect the D channel message frames in a
large shared buffer memory, not shown in FIG. 2. The
format of the D channel message frames is shown in
FIG. 3. The buffer memory is accessed by a processor
which determines the purpose of the D channel infor
mation by examination of a portion or field of the frame,
termed a Service Access Point Identifier (SAPI). A
SAPI value of zero indicates that the information in a
message frame pertains to signalling and supervision of
a related B channel. On the other hand a SAPI value of
sixteen indicates that the message frame is packetized
data. In the case of the zero valued SAPI, subsequent
information elements in the frame as shown in FIG. 3,
layer 3 are read from the buffer memory and thereafter
translated into the protocol of the central control 13.
Once translated, the data is communicated to the cen
tral control 13 by the switching network as illustrated in
FIG. 2. Alternately the data may be communicated
directly to the central control, whichever is more con
venient within the architecture of a particular switching
system. In the case of a sixteen valued SAPI, the entire
message frame is read from the buffer memory and
transmitted via the line group controller 22 on a digital
link 26 via a digital transmission unit 31 to a packet
network 30. The digital link 26 in this embodiment is a
T1 standard link as it is well known and was conve
niently available. However, only some of the bits of
each channel of the T1 link 26 are used for D channel
information such that the standard T1A and B signal
ling bits operation does not corrupt any of the D chan
nel information. Packet data destined for one of the TEs
is transmitted from the packet network 30 via digital
transmission unit 31 and the digital link 26 to a D chan
nel handler in the line group controller. The D channel
handler merges the packet data into the appropriate D
channel for receipt by an associated digital line via the

H586
7

line module 21. Signalling and/or supervision informa
tion originating in the central control in relation to one
of the TEs, traverses the switching network, being
eventually translated into the ISDN protocol to include
a value zero SAPI and be stored in the shared buffer
memory. Thereafter one of the D channel handlers
reads the information bits from the shared buffer mem
ory and sequentially inserts the information bits into bit
positions of a channel dedicated to that digital line.
FIG. 2 also illustrates a remote peripheral equipment

11r which includes a remote line module 21r which is
transmission standard DS30 linked at 23r to a remote
line group controller 22r. The remote line group con
troller 22r is coupled to a D channel handler pool 25r
and to a trunk controller 24 and the packet network via
T1 links at 27r and 26r respectively. It should be noted
that in this example the remote line group controller 22r
is substantially the same as the controller 22. It could
just as well be coupled via DS3.0 links at 27r and 26r.
However as T1 transmission facilities are commonly in
place in North America, remote line controllers for use
in North America are T1 compatible. Aside from the
fact that the peripheral equipment 11r is remote it oper
ates in a manner identical to that previously discussed in
regard to the peripheral equipment 11 with the minor
exception that T1 links are used at 27r. The trunk con
troller 24 provides an interface to the DS30 input/out
put operating signal format of the switching network
12.

It is preferred that a D channel handler pool includes
at least two D channel handlers however the required
functionality is providable by a single D channel han
dler albeit with less certainty as to long term service
reliability. Two examples of D channel handler systems
are illustrated in the FIGS. 4a and 4b. The functions and
structures of these examples are discussed in the follow
ing functional description.

System. Overview
In FIGS. 4a and 4b many of the elements are inter

changeable between the figures and are thus identified
by labels which are similar or the same.

Referring to FIG. 4a, at a time of initialization, a
frame processor 51 receives information from a CPU
52, which defines receive and transmit bit stream multi
plexing formats. Once defined, all succeeding multiplex
ing frames in a given direction are assumed to have the
same format until the format is redefined by the CPU
52. The frame processor 51 handles physical multiplex
ing of frame formats with up to twenty-four eight-bit
time slots via a receiver circuit 61 and a transmitter
circuit 62. Bit states in each time slot can be mapped to
any of up to twenty-four logical channels. None, some
or all of a time slot's eight bits can be defined as being
significant, that is, being part of channel's bandwidth.
The significant bits of a time slot are known collectively
as a bit block. This allows the definition of subrates and
super-channels. For example, if a given channel's band
width is defined as all eight bits of a single time slot in
a multiplexing frame, and the multiplexing frame period
is one hundred and twenty-five microseconds, the bit
rate for that channel would be sixty-four kilobits per
second. A sixteen kilobits per second channel, for exam

O

15

25

30

35

40

45

SO

55

60

ple a D channel, is obtained by defining a bit block of 65
two bits in an eight bit time slot. Since one or more time
slots are assignable to a single logic channel, any bit rate
that is a multiple of the base rate is obtainable, up to a

8
maximum bit rate corresponding to the transmission
rate of the multiplexing system.

In a receive direction, each channel's logical bit
stream, appearing on leads RXD 0-7 is scanned for
starting flags. Once a starting flag of a frame is encoun
tered, the logical bit stream is scanned for a stop flag
while words of data are accumulated and written to a
frame buffer in shared random access memory (RAM)
55 until the stop flag is encountered. Thereafter a
header containing frame status information is written to
the frame buffer. An address pointer to the frame buffer
which now contains the frame contents is then placed in
a receive queue for that channel. The receive queue in
this example also resides in the RAM 55.

In a transmit direction, the CPU 52 informs the frame
processor 51 when it has placed an address pointer to
the frame buffer in a transmit queue, which also resides
in the RAM 55. Data from the frame buffer is read and
then mapped into the bit block of the appropriate time
slots via leads TXD 0-7. Transmission of the data is
preceded by transmission of the starting flag and fol
lowed by transmission of the stop flag. If there is no
pending data to be transmitted on a particular channel,
that channel's bandwidth is filled with idle code for
example, continuous one state bits.

Typical System Configurations
The frame processor 51 in a preferred embodiment is

manifest within a very large scale integrated (VLSI)
circuit chip and fits into a system with a minimum of
additional support circuitry. Frame processor systems
are configurable in either a local or a global bus mode.
A typical local bus mode system is that shown in FIG.
4a,

In FIG. 4a, a receiver 61, multiplexes serial bit
streams into the appropriate multiplexing frame format
and provides timing signals for the frame processor 51.
A transmitter 62, demultiplexes the output of the frame
processor into the appropriate serial bit streams and also
provides timing signals to the frame processor 51. In a
receive portion, internal to the frame processor, frames
are recovered from the incoming bit streams and writ
ten into the RAM 55. In a transmit portion, internal to
the frame processor, messages are read out of the RAM
55 one word at a time and the message is bit encoded
according to the CCITT recommendations. These bits
are transmitted during the appropriate time slots via the
transmitter 62.

In order to access the RAM 55, the frame processor
51 must request and be granted data and address buses
56 and 57 by a bus arbiter. In FIG. 4a, bus arbitration is
performed by an MC68452 bus arbitration module
(BAM) 53 operating in a local bus mode. FIG. 4a shows
connections required to support two of the frame pro
cessors. Control access to the memory is performed by
a bus control circuit 54. In a system where only the
CPU 52 and frame processor(s) 51 access the RAM 55,
the bus control circuit is merely a hardwire connection
of the signal leads shown.
The system can also be arranged in a global configu

ration by connecting the BR outputs to the BG inputs of
the BAM 53 together, as illustrated in FIG. 4b. In this
configuration, the CPU 52 has a private bus 52' which is
used for code and scratch pad memory and input/out
put devices. The CPU accesses the global bus under the
same arbitration protocol as used by the frame proces
sors, by generating bus request, (BR) and bus grant
acknowledge (BGACK) signals, and accepting as an

H586
9

input a bus grant (BG) from the BAM 53. A global bus
interface 59 includes internal tri-state buffers for the
address bus and bus control signals, tri-state transceiv
ers for the data bus, and address decode logic for gener
ating bus arbitration signals and device select signals.

D Channel Handler Operation
At any instant in time, a frame processor 51 operates

in one of four different modes: idle, active, master or
slave. The relationship between the various modes is
shown in FIG. 5. The idle mode is entered upon reset or
halt conditions. In this mode, no frame processing is
performed, and the frame processor is inactive on the
system bus, which is composed of the data and address
buses 56 and 57. The only functions performed in the
active mode are those of responding to slave mode
accesses, and receiving and transmitting data via the
receiver 61 and the transmitter 62. The active mode is
the normal operating mode of the frame processor 51, in
which data is shifted through the internal frame re
ceiver and frame transmitter circuits. The frame proces
sor is idle relative to the system bus while it is in the
active mode. In the master mode, the frame processor
has control of the system bus. The master mode is used
to transfer data to and from the RAM 55. In the slave
mode, the CPU 52 has control of the system bus. The
slave mode is used by the CPU 52 to directly access the
frame processor to transfer control or status informa
tion therebetween.
A more detailed discussion of the operation of the D

channel handler is introduced by a functional descrip
tion of the frame processor's input and output leads and
the signals carried thereon. The input and output are
functionally grouped for illustration. The address bus 57
includes leads A1 through A22. This is a tri-state bus
which allows the frame processor to address up to four
Megawords of memory while in the master mode. The
leads A1 through A9 are bidirectional, allowing the
CPU 52 to write and read a variety of frame processor
internal registers in order to select or determine the
status of the frame processor. The data bus 56 includes
leads D0-D15 and is a bidirectional, tri-state bus which
is used for data transactions. Data transactions are al
ways on a sixteen-bit word basis. Asynchronous bus
control relates to asynchronous data transfers which are
controlled by a combination of signals on the following
leads which are illustrated in the FIG. 4a: an address
strobe lead AS, a read/write lead R/W, data strobe lead
DS and a data transfer acknowledge lead DTACK. In
the master mode, the address strobe AS is used by the
frame processor to indicate a valid address on the ad
dress bus 57. In the other modes, the AS is used as an
input strobe to monitor activity on the data and address
buses. The read/write lead R/W is a bidirectional, tri
state lead used to define a data bus transfer as a read
cycle or a write cycle. The data strobe lead DS is a
unidirectional, tristate lead used by the frame processor
to control data transfers in the direction specified by a
read/write signal on the R/W lead. The data transfer
acknowledge lead DTACK is a bidirectional, tri-state
lead used in both the master and slave modes to deter
mine or indicate when a data transfer is completed.
Assertion of a signal on an interrupt lead INT indicates
that at least one interrupt source in the frame processor
is active. An interrupt acknowledge (INTACK) signal
on an INTACK lead is used by the CPU 52 to acknowl
edge an interrupt from the frame processor 51.

10

15

20

25

30

35

45

50

55

65

10
In operation of the BAM 53, bus arbitration control

signals are provided on three signal leads BR, BG and
BGACK. Bus request BR, bus grant BG and bus grant
acknowledge BGACK signals are carried on these leads
and are compatible with the Motorola 68000 family
asynchronous bus arbitration protocol, which is avail
able in a publication by Motorola Corp., of 1303 East
Algonquin Road, Roselle, Ill., 60196, U.S.A. The bus
request BR signal is asserted by the frame processor 51
to indicate that it requires control of the address and
data buses. The BR signal is negated when the frame
processor enters the master mode with the BGACK
lead being asserted. The bus grant BG signal is asserted
to indicate that the frame processor 51 may gain control
of the bus at the end of the current bus cycle. The bus
grant acknowledge BGACK is a bidirectional signal
which is asserted by the frame processor to indicate that
it is currently in control of the bus. This signal is not
asserted unless the BG signal is asserted and the AS,
DTACK, and BGACK signals are negated, indicating
that all other devices are off the bus. The BGACK
signal is negated when the frame processor's bus access
is complete.

Interfaces to the receive circuit 61 and the transmit
circuit 62 are defined by clock, and next vector signals.
The data signals are carried on the leads RXD 0-7 and
TXD 0-7. These are two eight-bit buses which are used
for parallel transfers of data bit blocks to and from a
frame processor 51. A receive clock RCLK and a trans
mit clock TCLK are used to receive data on the leads
RXD 0-7 and to transmit data on the leads TXD 0-7
respectively. Signals on receive next vector RNV and
transmit next vector TNV leads are used to inform the
frame processor of the start of the current receive and
transmit multiplexer frames. In this example, these are
T1 frames.

Transfers of information between the frame proces
sor 51 and the line modules 21 or 21r, as before men
tioned, require mapping of bits between switching sys
tem time slots and subscriber interface D channel bit
streams. In the receive direction, internal frame proces
sor bit stream circuitry recovers the data that is con
tained in the D channel by first reassembling the D
channel bit stream from the bits of the multiplexer frame
time slots, and then offering these bits to internal on
following circuitry. In the transmit direction, the trans
mit side bit stream circuitry takes encoded bit streams,
from internal preceding circuitry, and maps them into
the appropriate bits of the TXT1 frame. Internal RX
and TX configuration memories provide a flexible
means of specifying these mappings. The discussion
which follows restricts itself to the receive side map
ping of time slots to channel bit streams. It suffices to
note that the transmit side configuration memory is
similar to the receive side configuration memory, and
that the transmit side mapping performs the reverse
operation of the receive side mapping, the reverse oper
ation being mapping from channel bit streams into the
time slots of Tl frames.
The multiplexing formats of the receive and transmit

side bit stream interfaces are stored independently in the
respective internal RX and TX configuration memories
in the frame processor. Each word in a configuration
memory contains a channel number field and a bit map
field. There is one configuration word for each time
slot. The channel number field allows each time slot of
the multiplexing frame format to be identified with a
logical channel number. The bit map field allows from

H586
11

zero to eight of the time slot's bits to be tagged as signif.
icant, that is part of a channel's bandwidth.

In an illustrative receive side bit mapping example: a
multiplexing frame format consists of six time slots,
containing logical bit streams of four channels. FIG. 6
shows how the configuration memory is used to extract
logical bit streams from the T1 frame. The bits of the T1
frame format are identified in FIG. 6 by upper and
lower case letters so that the bit mapping can be more
easily traced. Each bit of a time slot's bit map that is set
to “1” indicates that the corresponding bit of the time
slot is part of the channel's logical bandwidth, and will
be processed by the on following receiver circuitry. If a
bit map bit is "0", the corresponding time slot bit is
ignored. FIG. 6 also demonstrates the order in which
data bits appearing on RXD 0-7 are shifted through the
receiver circuitry. Data bits received on RXD 0-7 are
shifted into the receiver circuitry in order of increasing
time slot bit number, so that the internal bit order is time
slot 0-bit 0, time slot 0-bit 1, ... time slot 0-bit 7, time
slot 1-bit 0, etcetera. Of course the bit map determines
whether a bit of a particular time slot is actually trans
ferred or not. In the transmit direction, parallel data is
transmitted such that the bit order of the message is time
slot 0-bit 0, time slot 0-bit 1, ... timesiot 0-bit 7, time
slot 1-bit 0, etcetera. The bit map determines whether
a particular bit of the time slot is filled with channel
data.

Frame Processor/CPU Interface

This section discusses a queueing interface between
the frame processor 51 and the CPU 52. This interface
is contained in the stored buffer memory within the
RAM 55. The data structure used to pass messages
between the frame processor 51 and the CPU 52 is
described first, followed by a description of how point
ers to these data structures are organized into queues on
a per channel basis.
A frame buffer data structure is shown in FIG. 7. A

frame buffer has its first word, descriptor 1, beginning
on a memory word boundary and followed by its sec
ond word, descriptor 2.

Descriptor 1.
Descriptor 1 contains a data offset field which occu

pies the least significant seven bits of descriptor 1. The
data offset field specifies a byte offset from the start
address of the frame buffer where the message frame
contents field begins. In the receive direction, this field
is always a word offset (i.e. bit 0 will be “0”) whose
value is determined by the contents of a data offset
register (described with reference to FIG. 24). In the
transmit direction, the frame contents field can start on
a memory byte boundary. It is not restricted to being
word aligned as shown in FIG. 7. A data offset of less
than two words (four bytes) is not allowed, since it
would cause the frame contents field to overlap with
the descriptor words. A frame check sequence (FCS)
result occupies bit position 7 of descriptor and is used in
the receive direction to indicate the status of the frame
checking sequence (described with reference to FIG.
22). If “0” the FCS check was passed, if “1” the FCS
check was failed. In either case, the complete frame
contents reside in a frame contents field.
An abort ABT field occupies bit position 8 of descrip

tor 1 and is only used in the receive direction. If '1', an
abort sequence "1111111' was detected inside the
frame, causing the frame processor to abort reception of

5

O

15

20

25

30

35

40

45

50

55

60

65

12
the frame. In the event of such occurrence, the frame
contents field contains the portion of the frame which
was received before the abort sequence was detected.
A receiver overflow RXOV field occupies bit posi

tion 9 of descriptor 1, and is only used in the receive
direction. The frame processor will set this bit to "1" if
an incoming frame fills the number of buffers specified
by a predetermined maximum before the entire frame
has been received. In this case, the frame processor
aborts or concludes storage of the frame in its buffer
space. The frame contents field thus contains the por
tion of the frame recovered up to that moment. If RX
OV is "0", this indicates that the closing flag of the
frame occurred before a full count in a maximum buffer
count register was exceeded, and therefore the message
was received successfully.
An end of message field END occupies bit position 10

of descriptor 1, and is set to "1" if the current frame
buffer contains the end contents of a frame. In the re
ceive direction, this bit will be "0" if the frame proces
sor has filled the frame contents field of the current
frame buffer without detecting the frame's closing flag.
The frame processor will then fetch a new frame buffer
field and continue to write the frame's contents, until
the frame terminates with a closing flag or an abort.
Alternately, in an extreme occurrence wherein a maxi
mum allowable number of buffers per frame has been
reached, this causes a receiver overflow. Hence the
END bit is "0"the FCS result bit and descriptor 2 will
not be valid. In this event, the frame processor 51 will
not write descriptor 2, as the length of the buffer is
assumed to be the maximum and a new buffer for the
frame is presumed to follow. This is termed as chaining.

In the transmit direction, the END bit is set by the
CPU to indicate to the frame processor that the frame
does not continue in another frame buffer. There is no
enforcement of maximum buffer counts per frame in the
transmit direction. The frame contents field of a buffer
can be any size as specified by a descriptor 2 regardless
of whether or not chaining is employed.
A start of message field START occupies bit position

11 of descriptor 1, and if set to “1” indicates that the
frame contents field of the frame buffer contains the
start of a new frame. If equal to "0", this frame contains
intermediate or end contents of the frame. A frame
buffer with both the START and END bits set to “1”
indicates that a complete frame is contained in the frame
contents field of the frame buffer. A frame may be
chained over a plurality of frame buffers. A frame
which is chained over several frame buffers consists of
an initial frame buffer having a START="1",
END as "O'", followed by zero or more intermediate
buffers with START =“0”, END="0", followed by a
final frame buffer with START = 'O' and END “1.
Any other sequence indicates a possible data loss on the
associated channel.

In the transmit direction, START may be used to flag
the start of a new frame, however, the frame processor
transmitter circuitry only looks at the value of the frame
buffer END bits to determine when to start and end
transmitted frames.
A longitudinal redundancy check (LRC) enable field

occupies bit position 12 of descriptor 1. In the receive
direction, all receive side frame buffers have this bit
equal to the value of an "LRC' bit of an internal control
register (not shown). Hence if the LRC is enabled for all
receive side channels, this field will be 'l' in all receive
side frame buffers, and "0" if LRC is disabled. In the

H586
13

transmit direction, this bit is used to indicate that the
LRC is to be computed on the outgoing message.
Hence, if a message is chained over several buffers, all
buffers associated with the message have the same value
in the LRC enable field.
There are three spare bits, occupying bit positions

thirteen through fifteen of descriptor 1. These are un
used by the frame processor. They are written as zeroes
by the frame processor in the receive direction, and are
ignored in the transmit direction.

Descriptor 2
Descriptor 2 is a sixteen-bit value for specifying the

size of the frame contents field. It includes a frame
contents byte count thirteen bit field which specifies the
number of complete bytes in the message frame con
tents field. This is followed by a residue bit count three
bit field that occupies the least significant bit positions
of descriptor 2. It indicates that there is zero to seven
bits of message data in the frame contents field in addi
tion to those accounted for in the frame contents byte
COunt.

A CPU field insertion area follows the descriptor
portions. Typical uses of this field include adding ex
tended addressing information to the front of a message,
or storing maintenance information to keep track of
unacknowledged messages. The size of this field is de
termined for all receive side frame buffers by the data
offset register (FIG. 24), and is determined for transmit
side buffers on a per buffer basis based on the value of
the data offset field (bits 0 to 6) of the descriptor 1. Its
maximum size is one hundred and twenty-two bytes
(sixty-one words) in the receive direction, and one hun
dred and twenty-three bytes in the transmit direction.
A message frame contents field follows the CPU field

insertion area. This field contains all the frame informa
tion to be transmitted or which was received except for
the opening and closing flags and the FCS. Its starting
point is determined by the value of the data offset field
and the base address of the frame buffer.
A logical redundancy check (LRC) field of sixteen

bits appears in receive side frame buffers whose corre
sponding channels have the LRC enabled. The LRC
field consists of parallel exclusive-ORing of the words
in the frame contents field of the frame buffer. Since the
last word of the frame contents field may contain from
one to sixteen message bits, non-message bits in the last
word of the frame contents field are zeroed to avoid
corrupting the LRC. The LRC can be used to protect
the message from software errors. If an incoming frame
is chained over more than one frame buffer, the LRC
will only appear in the frame buffer containing the end
of the frame. The frame contents byte count and residue
bit count in descriptor 2 do not reflect the presence of
the one word LRC.
The LRC is used to protect a message from software

errors while the message is in the shared memory and
not protected by a FCS. When such a message is for
warded via the transmit side of a frame processor, the
LRC is recomputed as the message is transmitted. If the
parallel exclusive-OR of the words of the message con
tents field(s) and the LRC previously computed by the
receive side is not zero, the frame processor will replace
the FCS and the closing flag of the frame with an abort.
The CPU 52 is responsible for updating the LRC of a
message while it is in memory if the CPU adds addi
tional words to the message.

5

O

15

25

30

35

40

45

50

55

60

65

14

Frame Content Justification and Alignment in Buffer
Memory

The frame processor 51 interprets the words of the
frame contents field with respect to the order in which
they are received or transmitted at the bit stream inter
face as illustrated in the FIGS. 8 to 11.

In the receive side, encoded n-bit messages consist of
the bits b1, b2, b3. ..., bn which reside in a frame as
shown in layer 2 of FIG. 3. The bit b1 is the first bit of
the message received, followed by b2, b3 and so on.
After the opening and closing flags and the FCS bits are
stripped off, and any inserted zeroes are deleted, the
illustrated k-bit message m1, m2, m3 . . ., mk remains.
This is a subset of the general expression b1 ... bn, and
maintains the same relative bit order, that is m1 was
received before m2. In order to support different pro
cessors as well as byte or word memory accesses by the
CPU, the relative ordering of the least and most signifi
cant bytes within the words of the frame contents field
is selectable. The selection is defined by specifying the
BP (byte position) bit, in an internal control register
(not shown). FIGS. 8 and 9 show how (m1 . . . mk)
appear formatted into memory words in the message
frame contents field of a frame buffer for different val
ues of the BP bit. The word offsets shown along the
right of the figure are relative to the frame contents
field only not the frame buffer as a whole. The actual
format of the last word of the frame contents field will
of course depend on the number of bytes in the message.
In general, words are filled in order of increasing word
offset number. Within a word, the byte which was re
ceived first will appear in bit positions 0 through 7 if
BP="0", and in bit positions 8 through 15 if BP="1".

In the transmit side, a k-bit message (m1 ... mk), with
m1 being the first bit of the message, is formatted into an
encoded message (b1 ...bn), with b1 being the first bit
transmitted. If the frame contents field begins with a
complete word, the outgoing message can be stored in
the frame contents field as shown in FIGS. 8 and 9,
depending on the value of the byte position BP bit. If
the first word of the frame contents field only holds one
byte of data, the first byte of data must be positioned as
shown in FIGS. 10 or 11 depending on the value of the
BP bit.

Overview of Oueueing Interface
An overview of the queueing interface between the

CPU 52 and the frame processor 51 is shown in FIG. 12.
Queues and associated frame buffers are all located in
the RAM 55 and the set of queues shown exist on a per
frame processor basis, that is each frame processor
maintains a separate queueing interface with the CPU
52. All queues contain sixteen bit buffer pointers. The
physical twenty-two-bit base address of a frame buffer
is obtained by concatenating six "O's onto the least
significant end of the buffer pointer. Hence, for exam
ple, if a pointer had a hex value of 32BF, descriptor 1 of
the associated frame buffer would be found at address
OCAFCO. A null value (0000) is used in all queues to
mark empty queue spaces. There is one receive (RX)
queue and one transmit (TX) queue, for each logical
channel. The CPU 52 initialized these queues as empty,
that is all nulls.
The receiver side of the frame processor recovers

messages from multiplexed input channels and places
the messages in message frame buffers in the RAM 55.
Once the frame processor has completed work on a

H586
15

particular message frame buffer, for example when a
message frame buffer becomes full, an end of message is
found or an abort is detected, the pointer to the message
frame buffer is placed in an appropriate RX channel
queue. The CPU 52, acting as a consumer of the RX
channel queues, retrieves the enqueued pointers and
processes the correspondingly identified message frame
buffers. As it removes pointers from the RX queues, the
CPU 52 replaces the removed pointers with the null
value, thereby freeing up elements of the queues for use
by the frame processor.
A receive shared (RXS) queue is used to pass "free'

buffer pointers to the frame processor. The CPU 52,
acting as the producer for the RXS queue, attempts to
keep this queue relatively full of pointers which point to
message frame buffers available for use by the frame
processor 51. The RXS queue is shared in the sense that
it is used to acquire buffer pointers for any channel
whose traffic requires the use of a new frame buffer. As
a consumer of the RXS queue, the frame processor
overwrites each buffer pointer removed from the queue
with the null value.
The TX queues are used by the CPU 52 to pass point

ers to message frame buffers to the frame processor 51
for transmission of messages contained therein across
the T1 output channels. A frame processor 51 is a con
sumer for these queues, and thus overwrites consumed
pointers from these queues with the null value.
A transmit shared (TXS) queue is used by the frame

processor 51 to return used message frame buffer point
ers to the CPU 52, that is those pointers which identify
corresponding message frame buffers which have had
their contents completely transmitted by the frame pro
cessor. The CPU 52 acts as a consumer for the TXS
queue, and overwrites consumed pointers with the null
value. A frame transmit processing task in the CPU 52
holds on to these used pointers for a time so that the
buffer contents can be retransmitted in case the original
transmission was not acknowledged. When a transmit
ted message is acknowledged via a received message,
the associated message frame buffer pointer is available
for re-use.
The frame processor 51 operates in accordance with

the various queueing condition occurrences. For exam
ple, the frame processor 51 only removes a pointer from
the RXS queue when there is at least one empty element
in the RX queue for which the pointer is destined. The
frame processor 51 does this by reading the queue at an
element position where it would normally insert the
new pointer. If the reading is not the null value, the
queue is full. If the reading is the null value, the RX
queue has at least one free element position to which the
pointer from the RXS queue is subsequently written.
The frame processor 51 checks to see if an RX queue

is full when it detects an opening flag in the associated
channel bit stream. If the RX queue is full, the message
is abandoned and the bit stream is searched for a new
start flag. On start, a flag is defined as a flag followed by
eight bits which contain neither a flag nor an abort
pattern.

If a null pointer is pulled from the RXS queue, an
"RX Shared Queue Empty" error is flagged, and the
current frame is abandoned. The frame processor 51
then scans the associated channel bit stream for a new
starting flag.

If the TXS queue is full, the TXS queue is allowed to
be prematurely overwritten. No checking is performed
on the TXS queue to see if it is full before writing a used

O

15

25

30

35

40

45

50

55

60

65

16
pointer to it. If the CPU 52 allows this queue to fill up,
the frame processor 51 overwrites pointers in the queue
with the pointers of more recently transmitted frame
buffers.
Upon initialization, the frame processor 51 set all of

its channel queue and shared queue pointers to the base
address of the respective queue. Subsequent queue ele
ment addresses are obtained by incrementing a queue
pointer counter (163b in FIG. 24), the output of which
provides the least significant bits of the queue address.

FIG. 13 shows the structure of the RX and TX chan
nel queues. Each queue is implemented as a circular
array with elements consisting of sixteen bit pointers
pointing to message frame buffers. Both the CPU 52 and
the frame processor 51 maintain queue pointers into
each queue, so that each may insert or remove elements
based on their producer and consumer algorithms. The
frame processor 51 maintains two status bits per channel
queue-a queue full bit and a queue empty bit. These
bits are read and updated by both the CPU 52 and the
frame processor, allowing a high level means of com
municating queue status information between the two
entities.
FIG. 14 shows the three possible states of a channel

queue, and the corresponding values of the queue status
bits. The channel queue status bits are used to deter
mined if a queue is empty, full, or neither empty nor full.
The middle of FIG. 14 shows a queue with one element
position occupied by a pointer and is representative of
this latter condition.

Queue Access Algorithms
This section defines the frame processor and CPU

queue access algorithms in terms of state diagrams in
FIGS. 15 to 18. The access algorithms are required to
ensure that the queue status bits reflect the true state of
the RX and TX channel queues.

Frame Processor Queue Access Algorithms
The state diagrams of FIGS. 15 and 16 illustrate the

overall operation of the frame processor receiver and
transmitter portions. The diagrams are intended to
broadly convey selection and sequencing of functions
by transmit and receive controllers in the frame proces
sor. An exemplary structure of such a controller is not
shown as such structures as are suitable for implement
ing the illustrated sequence of functions in the frame
processor are merely a matter of convenient design
choice for a person of typical skill in the art of digital
electronics as applied in digital telephone systems.
The following state diagram notation is used in FIGS.

15 and 16. Rectangles with sharp corners are used to
denote states in which shared memory accesses are
performed by the frame processor. A shared memory
access occurs during a single bus cycle. Hence the
frame processor 51 updates queue descriptor bits during
read cycles without interference from the CPU 52.
Rectangles with rounded corners are used to denote bit
stream operations. Ellipses are used to denote opera
tions which do not fall into the above two categories,
for example an internal counter increment. If a transi
tion condition is not valid, the current state is re
executed. If a state has an explicit loopback transition, it
is to highlight the fact that the work performed in the
state may take a significant amount of time to complete,
relative to the other states. The algorithms shown are
applied as necessary to all channels supported by the
frame processor.

H586
17

A receive side queue access state diagram for the
frame processor is shown in FIG. 15. When an opening
flag is detected on a channel bit stream, an appropriate
RX channel queue is read to determine if the queue is
full or not. This updates the queue full bit for that
queue. If the queue is full, the opening flag is ignored
and a search for a new start of frame begins. This pro
cess continues until a start of frame and non-full RX
channel queue are identified one after the other. At this
moment, a pointer is read from the RXS queue so that
the frame contents are placed in a frame buffer. If the
RXS queue is empty, there is no room for the frame
contents in the shared RAM 55, the frame is abandoned
and the initial state returns. The pointer removal opera
tion consists of three steps-read pointer, write null
(effectively eliminating the pointer from the queue), and
increment queue pointer. Acquisition of a message
frame buffer pointer is followed by a retrieval of frame
data from the channel of the bit stream storage in the
message frame buffer. This involves both bit stream and
memory operations.
When either the end of the message frame occurs or

the message frame buffer is filled, the descriptors are
written into the head of the message frame buffer. An
end of frame can result from a stop flag or an abort flag
being detected in the bit stream, or by a receiver over
flow condition, in which case the end of message frame
is forced by the frame processor. An end of message
frame buffer occurs when the current frame buffer is
full of data, resulting in data chaining. The value of the
START and END bits written in descriptor 1 is indi
cated in each case. START is also used by the frame
processor as an internal flag, indicating whether or not
the current frame buffer is the first for the associated
frame. Once the message frame buffer accesses are com
pleted, the message buffer pointer is written to the ap
propriate RX channel queue and the RX queue pointer
is incremented. The queue empty bit of the appropriate
RX channel queue is only cleared when a pointer,
whose associated message frame buffer contains an end
of frame bit, is written to the RX channel queue.
A transmit side queue access state diagram for the

frame processors is shown in FIG. 16. When a TX
channel queue has a non-empty status, the TX channel
queue is read to determine if the TX channel queue is
empty or not. The TX channel queue may in fact be
empty if a message frame buffer pointer removed previ
ously was the last one in the TX channel queue. The
pointer read updates the queue empty bit for that queue.
If the TX channel queue was empty, the initial state
returns. If a pointer was read, the queue status is non
empty and a queue removal operation is completed by
writing a null to the location where the pointer was
found and by incrementing the queue pointer. Based on
the value of an internal END flag, the data in a new
message frame buffer is assumed to be the start of a new
message frame or a continuation of the one in progress.
Either way, the END flag is updated to the value of the
END bit in descriptor 1 of the frame buffer. Once the
frame contents of the buffer are transmitted, the frame is
followed by the FCS and closing bits, but only if the
END bit is "1". The message frame buffer pointer is
then returned to the TXS queue by writing it and incre
menting the TXS queue pointer.

CPU Queue Access Algorithms
The state machine description which follow shows

receive and transmit side algorithms for the CPU ex

O

15

20

25

30

35

45

50

55

60

65

18
pressed to illustrate the principles involved rather than
a detailed implementation. The sequence of queue ac
cesses and queue descriptor bit updates is followed as
shown, to ensure that the queue descriptors contain
correct data. In the state diagram notation used in
FIGS. 17 and 18, rectangles with sharp corners are used
to denote states in which queues or frame buffers in
shared memory are accessed by the CPU. Rectangles
with rounded corners are used to denote CPU 52 ac
cesses of the frame processor 51 to update queue status
bits. Ellipses are used to denote operations which do not
fall into the above two categories, such as internal regis
ter increments or accesses to memory private to the
CPU 52. If a transition condition is not valid, the cur
rent state is reexecuted. If a state has an explicit loop
back transition, it is to highlight the fact that the work
performed in the state may take a significant amount of
time to complete, relative to the other states. The algo
rithms shown are applied as necessary to all channels
supported by the frame processor 51.
The receive side queue access state diagram for the

CPU 52 is shown in FIG. 17. If an RX channel queue
has a non-empty status, it is read, and if a message frame
buffer pointer is obtained, the pointer removal opera
tion is completed by writing a null value into the queue
element position and incrementing the queue pointer. If
a null value was read, the queue status is updated to
empty, then the RX queue is read again to check if the
frame processor 51 has inserted a message frame buffer
pointer into the queue after the first read by the CPU 52.
After this the CPU 52 will either return to the initial
state or, if a message frame buffer pointer was found,
complete the pointer removal operation. After an in
coming message frame buffer is processed, the pointer
to the message frame buffer is returned to a buffer man
ager in the CPU 52, which is responsible for maintain
ing an adequate supply of message frame buffer pointers
in the RXS queue.
The transmit side queue access state diagram for the

CPU 52 is shown in FIG. 18. If the CPU 52 has data for
transmission on a particular channel, the CPU 52 reads
the appropriate TX channel queue when the queue's
status is non-full. Based on whether a message frame
buffer pointer or a null value is read, the queue status
will either be set to full or remain unchanged. If the
queue status is set to full, the TX queue is read again
after updating the status bit to check if the frame proces
sor has removed a pointer from the TX queue. If a
message frame buffer pointer is again read, the queue
full status remains and the initial state returns. If a null
is read, the queue is in a non-full state, and thus a buffer
pointer is obtained from the buffer manager in the CPU
52 and data is placed in the associated message frame
buffer. When this is completed, the message frame
buffer pointer is inserted into the TX queue. If the mes
sage frame buffer associated with the pointer contains
an end of message (END="1'), the TX queue status is
updated to non-empty. The buffer manager in the CPU
52 is responsible for removing used message frame
buffer pointers returned by the frame processor 51 from
the TXS queue. This pointer removal procedure can
also be performed, as shown, at the end of every chan
nel queue insertion. The CPU 52 is responsible for en
suring that the TXS queue never overflows, since this
would result in lost message frame buffer pointer and a
consequent reduction of temporary storage capacity in
the RAM 55.

H586
19

The Frame Processor

The structure and internal functions of the frame
processor 51 are discussed with reference to FIG. 19
which illustrates the major functional circuit blocks and 5
with reference to FIGS. 20 to 27 which illustrate each
of the functional circuit blocks in more detail. In the
interest of emphasizing the structural and functional
aspects of the frame processor 51, the provisions for
power, ground, clock signals, control signals and timing 10
signals are generally not shown in the FIGS. 19 to 27.
However, the sequential timing aspects of the frame
processor 51 are later discussed with reference to FIGS.
28 to 30 which are state diagrams illustrative of the
operation of the frame processor. 15
The frame processor in FIG. 19 includes a receive

portion having circuit blocks and elements labelled with
identifying numbers between 110 and 170 and a transmit
portion having circuit blocks and elements labelled with
identifying numbers between 210 and 270. The receive 20
and transmit portions are connected via a data bus 101
and an address bus 102, common to both portions, to an
interface circuit which includes a bus control circuit
300. An interrupt control circuit 310 is also connected
to the data bus 101. The receive portion includes a serial 25
data queue 120, a context switcher 130, a receiver 140,
queue status descriptors 150, an address generator 160
and a context memory 170. The transmit portion in
cludes similar elements which are similarly labelled
with the distinction that the most significant digit is a 30
"2'. As the functional blocks of the transmitter and
receiver portions are structurally similar, the following
description is directed primarily to the elements of the
receive portion, except where there are significant dif
ferences as for example between the receiver 140 and 35
the transmitter 240.

Serial Data Queue
The serial data byte queue (120/220) in FIG. 20 is a

dual port memory 121 arranged to receive bytes at a 40
data port B and to transmit bytes from a data port A. An
addressing circuit at 123 utilizes synchronous external
frame and time slot signals associated with an incoming
T1 bit stream, to operate the data port B. Another ad
dressing circuit at 125 utilizes internal frame and byte 45
slot signals which need not be synchronous. A compare
logic circuit monitors the more significant bits of the
addresses provided by the addressing circuits to pro
vide indications of the fullness or emptiness of the dual
port memory. These indications are useful in circuitry 50
to be described later to accelerate or decelerate data
flow via the data port A to prevent overwriting data not
yet read and to prompt efficient data flow through the
frame processor.
Although the same basic circuitry is used for both the 55

queues 120 and 220 on the receive and transmit sides of
the message frame processor, there are some functional
differences. Namely, the message frame processor keeps
the receive serial data queue 120 as empty as possible. A
serial data queue status lead 127a when asserted repre- 60
sents a queue empty signal. In contrast, the message
frame processor also keeps the transmit serial data
queue 220 as full as possible. A serial data queue status
lead 227a when asserted, represents a queue full signal.
Of course the direction of received data flow is from 65
data port B to data port A, that is opposite to the direc
tion of the transmitted data flow which is from data port
A to data port B.

20
Context Switcher

In FIG. 21, the context switcher (130/230) includes a
bit selector 131 which is a serial/parallel converter
being controllable to extract certain predetermined bit
states from a byte stream 111 and insert these in a speci
fied order into a serial bit stream 141. In the context
switcher 230, the reverse operation is performed be
tween a serial stream 241 and a byte stream 211.
The CPU 52 sets up the configuration of the time

slots which includes specifying the time slot to logical
channel mapping as well as the time slot bit map as was
previously described with reference to FIG. 6. There is
a configuration memory 132 having a separate configu
ration memory address location for each time slot. The
configuration memory is addressed by a time slot
counter 133. The configuration memory depth defines
the maximum number of time slots that can be pro
cessed by the message frame processor. There are two
outputs from the configuration memory 132; namely a
channel number output 112/212, that maps a time slot
into a particular logical bit stream, and a time slot bit
map, which defines which bits contain data. The time
slot bit map, in the memory 132, drives the bit selector
circuit 131 which contains the data of the time slot
currently being processed. The bit selector circuit 131
hunts through the bit map using combinational logic to
generate a data bit for every serial data clock pulse
occurrence on an internal bit stream clock lead. In a
receive process of generating data bits, this circuit 131
removes all unmapped bits. These bits correspond to
unused bandwidth. This circuit also generates a slot
signal 137/237 that indicates that all data bits in the time
slot have been found. This causes the memory 121 to
provide the next time slot. The slot signal is responsible
for triggering all context switching operations. The
time slots are identified by the time slot counter 133.
The maximum number of time slots per multiplexer
frame is determined by the value contained in a maxi
mum timeslot count register 135 which is controlled by
the CPU 52. A comparator 134 generates a frame signal
on a frame lead 138/238 in response to the content of
the register 135 and the output of the time slot counter
133 being the same. A context memory 136 is addressed
by the channel numbers generated by the configuration
memory 132. Every channel requires separate storage in
the context memory 136. The output of the context
memory 136 maps onto every storage bit of context
registers (not shown) in the frame receiver 140, the
frame transmitter 240, the receive address generator
160, and the transmit address generator 260. The indi
vidual circuit context sizes in this example are summa
rized below. The width of the actual context memory
provided must accommodate at least the sum total of
the bits.

frame receiver context 84 bits
frame transmitter context 44 bits
receiver address generator context 42 bits
transmitter address generator context 54 bits

TOTAL 224 bits

Frame Receiver

The frame receiver 140, in FIG. 22, gets serial data on
the lead 141 from the context switcher 130 (FIG. 21). In
FIG. 22 a connecting line with a slash across it and a

H586
21

number next to the slash indicates a plural lead conduc
tor, the plurality of leads being indicated by the number.
As flag and abort detection operations must occur be
fore the bit stream has been modified in any way, the
data is captured in an eight bit shift register 141a. Abort
and close flag detect circuits 147 and 147a, each parallel
monitor the contents of the shift 141a. An open flag
detector 146 is connected, as shown, to monitor a serial
output of the shift register 141a. An assertion of a signal
at the output of the abort detect circuit 147 is used to
terminate frame reception. An abort flag circuit 148 also
responds by causing bit position 8 in descriptor 1 of
FIG. 7 to be set to "1". The open and close flag detect
circuits 146 and 147a both detect the standard 0.111110
flag sequence, however they operate on different parts
of the data which is delayed by the shift register 141a.
This allows the signals to be correctly time aligned with
a FCS register not shown in a FCS checker circuit 149,
in order to provide FCS-reset and FCS-status-valid
signals. The open flag detect circuit 146 generates an
open flag detect signal to indicate that a D channelized
message is potentially starting. This signal is asserted
immediately before the first bit of the message enters the
FCS checker circuit 149. Thus this signal is used to
cause a reset of the FCS checker circuit 149. The close
flag detector circuit 147a generates a close flag signal to
indicate that the message currently being received is
finished. When this signal is asserted, the last bit of the
message has been shifted into the FCS checker circuit
149, and the FCS status is then valid.
The serial data bit stream must have any inserted

zeroes removed before FCS processing and serial to
parallel conversion. This is done in a zero deleted clock
generation circuit by detecting a zero inserted condi
tion, and deleting a clock pulse from the internal data
clock pulse stream. This clock is referred to as the re
ceiver Zero-deleted clock and it drives subsequent
stages in the bit stream processing. The serial data from
the shift register 141a is delayed further by a sixteen bit
shift register 142 before being converted from serial to
parallel form in a serial to parallel demultiplexer 143.
This allows the message frame processor to retain the
FCS for every received message, without otherwise
having to store it at the end of each message. The serial
to parallel conversion operation must occur before the
data can be written to a message frame buffer via the
system data bus D0-D15. This function might well be
normally implemented with a shift register however in
this application, there is a problem which occurs when
ever the length of the bit stream is not an even multiple
of sixteen bits. This occurs when there is an odd number
of bytes or when there are residual bits in the message.
If a shift register is used, the bits will not be justified to
the least significant position since the bit stream must be
shifted in from the most significant end of the shift
register. A technique that avoids this problem is to use
a bit counter 145a, that is clocked by the receiver zero
detected clock, to address the serial to parallel demulti
plexer 143 that loads a parallel register array of internal
flip-flops (not shown) in the required order. The advan
tage of this technique is that the bits are directly loaded
into the parallel register one bit at a time without shift
ing, and all the bits are always justified to the least
significant position. The number of residual bits is con
tained in the bit counter 145a when the frame processor
senses a flag detect condition. A word counter 162b in
FIG. 24 and a bit counter 145a (FIG. 22) are concate
nated and written to descriptor 2 in the message frame

10

5

25

30

35

45

50

55

60

65

22
buffer data structure, previously discussed. This concat
enated quantity specifies the total number of bits in the
message, of which the least significant three bits are
residual bits.
The FCS checker circuit 149 is a serial circuit that

implements an FCS-CCITT standard. The output of the
FCS checking circuit 149 is a binary signal and is used
to update the FCS status field in the descriptor of the
message buffer data structure. This information is
passed along with the contents of the message frame
buffer to the CPU 52.
A Longitudinal Redundancy Check (LRC) generator

144 performs a parallel parity check on the data being
written via the data bus 10l. The output of the LRC
generator is written to a message frame buffer in the
RAM 55 as the last word of a message when the CPU
52 has enabled the LRC feature. The LRC computation
starts with all zeroes, and exclusive-OR's every subse
quent data word to an internal LRC register not shown.
A receiver context bus 110 provides a link to every

storage element in the frame processor in order to com
pletely capture the context. The amount of context
storage required for the frame receiver is summarized
below:

FCS register (149) 16 bits
LRC register (144) 16 bits
serial to parallel register (143) 16 bits
data delay register (142) 6 bits
bit count (145a) 4 bits
open flag detect (146) 4 bits
zero-deleted clock generation (145) 3 bits
close flag/abort detect (via 141a) 8 bits
abort flag (148) 1 bit

TOTAL 84 bits

The frame transmitter 240, shown in FIG. 23, per
forms the function of transforming a message that is
offered to the transmitter as a sequence of sixteen bit
words, into a message frame format encoded bit stream
on a transmit data lead 241. Plural conductor connec
tions are represented in a manner similar to that in FIG.
22.
A transmit bit stream formatter 242 performs the

functions of flag generation, zero insertion, abort/idle
generation and transmitter zero-deleted clock genera
tion. A transmitter zero-deleted clock 249 is an internal
transmit data clock with removed clock pulses that
correspond to the zero inserted bits. This clock there
fore clocks only the data bits, and is used to clock a
transmit data bit counter 246, a parallel to serial con
verter 243 and a FCS standard generator circuit 245.
The parallel to serial converter 243, in this example, is

implemented with a shift register. In the frame transmit
ter, this is possible because all of the bits to be transmit
ted including residual bits have been justified to the
least significant position by the CPU 52. There is one
parallel bidirectional connection between the context
bus 210 and the parallel to serial converter 210 and there
are two parallel inputs to the parallel to serial converter
243, one which allows data words to be loaded from the
data bus 110, and another which allows loading from an
FCS circuit 245. The inputs are selected via a select
circuit 244. The FCS circuit 245 implements the FCS
CCITT standard specification. The number of residual
bits is specified by the least significant three bits of
descriptor 2 in the message buffer data structure.

H586
23

The transmit data bit counter 246 determines when a
new word must be loaded into the parallel to serial
converter 243. The counter is always loaded with the
value of 16 (decimal) with one exception being a case
when the message is not contained in an integer number
of words. In this case, the number of remaining bits (1 to
15) is loaded into the bit counter 246. This occurs in
three situations, when the data offset is an odd number
and the byte count is an even number, when the data
offset is an even number and the byte count is an odd
number, and when there are residual bits to be transmit
ted.
As before mentioned, the transmit context bus is

mapped onto every transmitter storage element in the
circuit in order to completely capture the context. The
amount of context storage required for the frame trans
mitter is shown below:

FCS register (245) 16 bits
parallel to serial converter (244) 16 bits
last word bit count (248) 4 bits
bit count (246) 4 bits
bit stream formatter (242) 4 bits

TOTAL 44 bits

Address Generator

The address generators 160/260 are used in the trans
mitter and the receiver portions of the frame processor,
and is shown in FIG. 24. The address generator can
generate one of four different address types on the ad
dress bus 102 depending on which address input is spec
ified to the select circuit 169.
A buffer pointer register 161 is connected to a selec

tor input #1 and is used to generate a pointer to a mes
sage frame buffer. The buffer pointer register 161 is
augmented with zeroes in the least significant bits of the
address with the message frame buffer pointer occupy
ing the most significant bits of the address. This address
is used to load the descriptors for new message frame
buffers. The least significant bit of this address is pro
vided by the transmitter or receiver controller (not
shown) and specifies either descriptor 1 or descriptor 2.
A message buffer memory mapper includes circuit

elements 162, 162a, 162b, 165 and 166. The mapper is
connected to selector input #2. The content of a data
offset register 162a, is used in the memory mapper. This
is a six bit word offset that is obtained from the most
significant six bits of the seven bit byte offset specified in
the message frame buffer data structure (FIG. 7). The
content of a word count register 162b is obtained from
the most significant twelve bits of the thirteen bit byte
count specified in the message buffer data structure.
This provides for a maximum buffer size of 4,096 words.

Contents of the maximum count circuit 165 and the
word count register 162b are compared in a digital
comparator 166. The word count is incremented until it
matches the maximum word count which generates a
maximum count reached signal. This signal indicates
that the word count has reached its maximum allowable
value and is used in two ways depending on whether
the address generator is being used by a controller in the
frame receiver or by a controller in the frame transmit
ter. In the receiver, the maximum count register 165 is

10

15

20

25

30

35

40

45

50

55

60

set by the CPU 52 and represents the maximum size of 65
a frame that can be received. In the transmitter, the
maximum count register 165 contains the most signifi
cant twelve bits of the word count from the descriptor

24
2 word of the message frame buffer being transmitted.
The content of this register is channel dependent, that is
to say that it is variable with each channel, and there
fore it is connected to the context bus 210 via a twelve
lead bus 265,
A message queue pointer memory mapper includes

circuit elements 163 through 163f, and is connected to a
selector input #3. Overlapping of the content of a scal
ing register 163e and an instant channel number is im
plemented by masking out one or more of the most
significant bits of the channel number in an overlap
circuit 163c. The overlapping of the channel number
from the overlap circuit 163c and the content of a queue
pointer address counter 163b requires bit masking in an
overlap circuit 163, and barrel shifting in a barrel shifter
circuit 163a, in order to achieve a variable address
space. A reset mechanism is required to compensate for
the fact that the CPU 52 can only reset a particular
channel while that channel is active with its context
having been loaded into the registers of the address
generator. The CPU 52 has the capability to reset the
message queue pointer for a specific channel by loading
the channel number into a reset register 163f The out
put of the reset register 163f is continuously compared
by a digital comparator 163d, to the channel number
that is currently being processed. When a match occurs,
the queue pointer address counter 163b is reset. The
reset signal is also used to set an acknowledge signal in
a reset acknowledge register 167, that informs the CPU
52 that the reset has been completed. The CPU then
loads an unused channel number into the reset register
163f to enable the channel. Every time the reset register
163f is loaded, the reset acknowledge register 167 is
cleared. The reset acknowledge signal is configured as
an interrupt source in order to avoid requiring the CPU
52 to poll the reset acknowledge register 167 until the
reset is completed.
A shared queue pointer circuit 164 is connected to a

selector input #4 and is composed of a set of internal
registers, not shown, that serve all the channels. The
size of this pointer is selectable in order to allow the
queue size to be varied. The most significant bits of the
addresses generated by this pointer are specified by the
CPU 52, in order to allow the queue to be placed any
where in the address space.
As before mentioned, the context bus must be

mapped onto every storage element in the frame proces
sor in order to completely capture the context. The
amount of context storage required for the address gen
erator is shown below:

buffer pointer register (161) 16 bits
data offset register (162a) 6 bits
word count (162b) 12 bits
queue pointer counter (163b) 8 bits

TOTAL 42 bits (receiver version 160)
maximum word count (165) 12 bits

TOTAL 54 bits (transmitter version 260)

Queue Status Descriptors
The queue status descriptors 150/250 are shown in

FIG. 25. Each descriptor includes a dual ported array
of flip-flops 156 that are accessible from the CPU 52 via
a decode to sixteen bit data bus circuit 158, and accessi
ble from the frame processor 51 via a decode to two bit
data bus circuit 155. The CPU 52 is able to read the

H586
25

descriptors in parallel to make the queue polling opera
tion efficient, and also is able to write one bit at a time.
The ability to write one bit at a time eliminates the
possibility of concurrent CPU processes interfering
with each other. This requirement means that the de
coding for read and write from the CPU 52 side are
different one from another.
Each receive message queue has associated with it

two signals that generate an interrupt signal, namely a
queue not empty signal which indicates that the queue
contains at least one element for processing and a queue
full signal which indicates that the queue is near over
flow.
Each transmit message queue has associated with it

two signals that generate an interrupt signal, namely a
queue empty signal which can be used to implement
priority queueing schemes in the CPU by using a trans
mit queue depth of one to provide the CPU 52 with
maximum control of transmit priority and a queue not
full signal which indicates that the queue will accept at
least one position.

In FIGS. 26 and 27, plural conductor leads are shown
in a manner similar to that in FIGS. 22 and 23. Bidirec
tional communication between the data bus 56
(D0-D15) and the data bus 101 is provided by circuit
elements 302, 303 and 304, connected as shown in FIG.
26. Similarly bidirectional communication between the
address bus 57 (A1-A22) and the address bus 102 is
provided by circuit elements 306 and 307 connected as
shown in FIG. 26.

Circuit elements 312, 313 and 314, in FIG. 27, pro
vide for various interrupt priorities directed to the CPU
52. In addition, circuit elements 316 and 317 and the
circuit elements 312 and 314 provide for various control
functions of various of the elements of the frame proces
sor as explained further in relation to FIGS. 28 to 30.

Control Flow

A discussion of the message frame processor control
flow is separated into three components, namely:

1. Context switching, illustrated in the state diagram
in FIG. 28;

2. Message receiving, illustrated in the state diagram
in FIG. 29; and

3. Message transmitting, illustrated in the state dia
gram in FIG. 30.

Context Switching
The context switching state diagram shown in FIG.

28 defines how the message frame processor is shared
between multiple channels.

State 0: In the receive context switcher, this state
waits for multiplexer frame (i.e. T1 frame) to be inserted
into the serial data queue to change the queue status
from empty to not empty. In the transmit context
switcher, this state waits for a multiplexer frame to be
removed from the queue to change the queue status
from full to not full.

State 1: The context for the currently active channel
is loaded into the circuits connected to the context bus.

State 2: Data bits contained in a received time slot are
shifted into the message frame receiver circuit (FIG.22)
via the bit selector 131 (FIG. 21), until the last data bit
in the time slot is processed, which will be signified by
the assertion of the next time slot signal. Transmitted
data bits are serial loaded from the message frame trans
mitter (FIG. 23) via the serial data lead 241 into the bit

10

15

20

25

30

35

40

45

50

55

60

65

26
selector circuit 131 until all of the specified bits for the
channel time slots are in place.

State 3: The channel context is saved in the context
memory 136 after the frame processor has finished pro
cessing a time slot. The context switching controller
must check the queue status of the next multiplexer
frame signal to see if the multiplexer frame has been
completely received or transmitted or not. If not fin
ished, the message frame processor loads the context of
the next time slot in the multiplexer frame (state 1)
otherwise the message frame processor returns to state
0.

Receiving
The receiver state diagram shown in FIG. 29 de

scribes how the message frame receiver interacts with
the frame receiver (FIG.22), the receive address gener
ator (FIG. 24), and the receiver queue status descriptors
(FIG. 25).

State 0: The message frame receiver (FIG.22) is reset
in preparation for receiving a message. The receiver
then starts to serially process the data bits, scanning for
an opening flag indicating the start of a message. The
receiver will allow two consecutive messages to be
separated by a single flag, since the open flag detect
circuit 146 is delayed by eight bits from the close flag
detect circuit 147a.

State 1: Multiple flags will continuously reset the
receiver, until sixteen bits have been received without
detecting an open flag. When this occurs, the data delay
register 142 will contain the sixteen received bits before
they have been converted to a parallel format which
will occur in 143. The same sixteen bits will also have
been shifted through the FCS circuit 149 which was
reset by the opening flag signal.

State 2: The message frame processor must prepare to
buffer the incoming message in the shared system mem
ory RAM 55. The first step is to ensure that the receive
queue contains at least one NULL in which to store a
POINTER to the incoming message. This is accom
plished by scanning the receive queue to check whether
the queue spaces contain at least one NULL. The scan
operation involves a read of the RAM 55. In a scan
operation the data bus is compared to the null value by
the null detector 304. In the event of a null detect, the
full bit of the queue status descriptor (FIG. 25) is set.

State 3: If the queue is full, the queue full status indi
cator will be set accordingly which will alert the CPU
52 that data is being lost for that channel. In this case,
the remainder of the message will be discarded by the
initial state 0 of the receiver.

State 4: If the queue is not full, then the receiver will
obtain an empty frame message buffer by loading a
pointer from receive shared queue (TXS). If the receive
shared queue (TXS) is empty, processing will return to
state 0. This would be a very serious condition, because
all subsequent message arrivals in all channels will be
lost until more pointers to empty message buffers are
placed in the receiver shared queue.

State 5: The frame processor must overwrite the
shared queue location in buffer memory with a null
value to indicate that the original message frame buffer
pointer has been removed. The receive shared queue
pointer is then incremented to point to the next element
of the receive shared queue.

State 6: Received data bits are converted from serial
to parallel until either sixteen data bits are accumulated,
the message ends, or an abort condition is detected. If an

H586
27

abort is detected, the receiver then terminates the recep
tion of the message immediately. The abort detect 147
sets an internal abort flag 148 that is written to the
message buffer in descriptor 1 (FIG. 7) indicating that
the buffer contains an aborted message.

State 7: The received data word (in 143) is used to
update the LRC register 144, and then is written to the
buffer memory RAM 55 using the message frame buffer
address specified by the address generator 162 to 162b
and 169). The word count (162b) in the receive address
generator is incremented to point to the next location in
the message frame buffer data structure (FIG. 7), and
the serial to parallel conversion circuit 143 is reset.

State 8: If the end of the message frame buffer is
reached before the message has been completely re
ceived, the data chaining mechanism will be invoked,
and a buffer count will be incremented. The message
frame processor continues to chain buffers together
using the START/END (FIG. 7) mechanism until ei
ther the message terminates with a stop flag, the mes
sage buffer count for that message exceeds a preset
maximum, or the message transmission is aborted.

State 9: If the maximum buffer count is exceeded,
than the overflow flag RXOV (FIG. 7) is set to indicate
to the CPU 52 that the overflow occurred. All subse
quent data will be discarded.

State 10: If a close flag is detected, then the last data
word is written to the message frame buffer. This word
will contain from one to sixteen valid data bits which
are indicated by the least significant four bits of descrip
tor 2 (FIG. 7) in the message frame buffer data struc
ture. Cases when the last word in the message frame
buffer contains a single byte of data as well as any resid
ual bits will result in a bit count less than sixteen. The
end of message (END) bit will be set to indicate that the
message terminates in the current message buffer.

State 11: The two descriptors for the message buffer
are written back to the shared memory RAM 55.

State 12: If the LRC option is enabled, then the word
count 162 (FIG. 24) will be incremented to generate an
address that points to the location following the last
data word, and the contents of the LRC register are
written to the message buffer. The byte count that is in
descriptor 2 does not include the LRC.

State 13: The last operation to be performed for every
message frame buffer is to signal the CPU 52 that data
has been received. This is done by writing the buffer
pointer (161) to the receive message queue (FIG. 12) for
the currently active channel. The pointer for the re
ceiver queue is then incremented to the next location.

State 14: If the message is still being received using
the data chaining mechanism then the state machine
will continue execution in state 2.

State 15: When the message reception has terminated,
the CPU 52 is signalled by the setting of the queue status
descriptor to indicate that the receive queue (FIG. 12) is
not empty. The receiver will then re-enter state 0 in
preparation for the next message.

Transmitting
The transmitter state diagram, in FIG. 30, shows how

the message frame processor transmit controller inter
acts with the frame transmitter (FIG. 23), the transmit
address generator (FIG. 24), and the transmitter queue
status descriptors (FIG. 25).

State 0: The initial state resets the frame transmitter
(FIG. 23) which causes the selected idle bit pattern to
be transmitted on the lead 241. The bit stream output in

O

15

25

30

35

40

45

50

55

60

65

28
this state is either continuous 1s, or continuous flags,
which is a CPU selected option. The message frame
processor transmit controller checks the queue status
descriptor (FIG. 25) for the currently active channel on
every transmitted bit, to detect whether there is data to
be transmitted.

State 1: When the transmit queue status descriptor
indicates that the queue is not empty, the frame trans
mitter reads the next pointer out of the transmit queue
for the active channel.

State 2: If the transmit queue is empty, then the queue
status descriptor is updated to reflect this condition.
The queue is set to EMPTY, and NOT full.

State 3: The queue location is overwritten with a
NULL to indicate that the pointer has been removed
and the transmit queue pointer (163 to 163b) is incre
mented.

State 4: The two descriptor words for the message
frame buffer are loaded into the message frame proces
sor. The most significant twelve bits of descriptor 2,
which correspond to a word count, are loaded into the
address generator maximum count register 165. The
first data word to be transmitted is then loaded into 243
via 244 using the message buffer address in the address
generator 161 to 162b. An opening flag is transmitted to
begin the serial transmission of the message. There is an
explicit open and close flag transmitted for every mes
sage, rather than allowing adjacent messages to share
opening and closing flags.

State 5: If the data byte offset in descriptor 1 is an odd
number, then the first word of the message buffer con
tains only eight bits.

State 6: The parallel data word (243) is converted to
sixteen serially transmitted bits.

State 7: The word count (162b) is incremented after
every data word has been transmitted until the message
buffer has been completely transmitted.

State 8: If the message frame buffer has not been
completely transmitted, then the next data word is read
from the message frame buffer.

State 9: The message frame buffer data structure
allows any number of bits to be specified for transmis
sion. A condition called a partial last word can occur
depending on the number of residual bits, the byte count
(even or odd), and the data byte offset (even or odd).
The message frame processor detects this condition
with reference to the residual bit count in descriptor 2
and thus transmits only the valid data bits from the
message frame buffer.

State 10: If the message frame buffer did not contain
the entire message due to data chaining, then the mes
sage frame processor will not send the FCS and the
close flag when all the data bits in the message frame
buffer have been transmitted. If the transmit queue
contains another pointer, then the next part of the mes
sage will be transmitted after the pointer to the current
message frame buffer has been placed in the transmit
shared queue (TXS).

State 11: If the transmit queue is empty, an error
condition will be signalled to the CPU 52 by setting the
overflow bit 9 in FIG. 7 in the current message frame
buffer before the pointer is returned to the CPU via the
transmit shared queue. The transmitter will then trans
mit an abort sequence on the serial channel via the lead
241 (FIG. 23) to indicate that an underrun has occurred

State 12: If the message was completely contained in
the current message frame buffer, then the end bit will
indicate this condition. In this case, the transmitted

H586
29

message buffer will be followed by transmitting the
sixteen bit computed FCS followed by a closing flag.

State 13: The transmit shared queue is scanned. If the
queue is full, an error condition has occurred and the
frame processor returns to state 0.

State 14: If the transmit shared queue is not full, then
the pointer to the transmitted message frame buffer is
written to the TXS queue and the transmit shared queue
pointer 164 in FIG. 24 is incremented. If the message
transmission terminates normally, then processing re
turns to state 0. If the transmission of a chained message
was aborted because the look ahead scan in state 10
indicated that the transmit queue did not contain the
remainder of the message, then the queue status must be
updated via state 2. If the scan in state 10 indicated that
there were more message buffers to be transmitted, then
processing of the chained message transmission contin
ues with state 1.
What is claimed is:
1. A method for exchange terminating D channelized

information originating at ISDNintegrated services
digital network (ISDN) subscriber terminals, compris
ing the steps of:

(a) receiving bit states of prearranged bit position
occurrence in a bit stream of ISDN subscriber
digital line associated time division multiplexed
channels;

(b) in relation to each of said channels detecting start
flags and stop flags as indicated by an occurrence
of a predetermined exclusive series of said bit state
occurrence;

(c) selecting a start address defining the first of a
series of storage locations for storing bit states of a
channel which occurred between the start and stop
flags;

(d) storing said bit states at said series of storage loca
tions defined by incrementing the start address by a
factor related to the number of bits between the
start and stop flags; and

(e) storing the start address in a predefined input
address queue for subsequent use in accessing said
series of storage locations.

2. A method for D channelizing informations des
tined for ISDNintegrated services digital network
(ISDN) subscribers' digital lines, comprising the steps
of:

obtaining start addresses from a predefined output
address queue, each start address defining the first
of a series of storage locations wherein bit states
destined for transmission to the ISDN subscriber
digital lines are stored;

reading the storage locations one after another and
distributing the read bit states in sequence into
prearranged bit position occurrences in a bit stream
being received by the ISDN subscribers' digital
lines.

3. A method for handling information relating to one
of telephone call progress and data at an exchange ter
mination in an ISDNintegrated services digital net
work (ISDN). comprising the steps of:

(a) receiving bit states of prearranged bit position a bit
stream of ISDN subscriber digital line associated
time division multiplexed channels;

(b) in relation to each of said channels detecting start
flags and stop flags as indicated by an occurrence
of a predetermined exclusive series of said bit state
Occurrences;

10

15

20

25

30

35

40

45

50

55

60

65

30
(c) selecting a start address defining the first of a

series of storage locations for storing bit states of a
channel which occurred between the start and stop
flags;

(d) storing said bit states at said series of storage loca
tions defined by incrementing the start address by a
factor related to the number of bits between the
start and stop flags; and

(e) storing the start address in a predefined input
address queue for subsequent use in processing;

(f) determinedetermining in relation to each address
in the input queue whether the associated stored
information is at least one of (i) a telephone call
progress, and (ii) a packet of data;

(g) in response to a determination of (i), reading the
series of address locations and translating the read
information from an ISDN protocol to a protocol
of a controller in the exchange termination;

(h) in response to a determination of (ii) transferring
the address to a predefined output queue associated
with a time division group of channels terminated
at a packet switching node;

(i) obtaining a start address from a predefined output
address queue, said start address defining the first
of a series of storage locations wherein bit states
destined for transmission to an ISDN subscriber
digital line are stored; and

(j) reading the storage locations one after another and
distributing the read bit states in sequence into
prearranged bit position occurrence in a bit stream
of ISDN subscriber digital line associated time
division multiplex channels.

4. A method for transporting an ISDNintegrated
services digital network (ISDN) subscriber destined
data packet from a packet switching node to a D chan
nel of the ISDN subscriber, comprising the steps of:

(a) sequentially transmitting bit states of the data
packet in prearranged bit position occurrence in a
channel of a time division multiplex bit stream;

(b) receiving said bit states at an exchange termina
tion and detecting start and stop flags as indicated
by occurrence of a predetermined exclusive series
of said bit state occurrences;

(c) selecting a start address defining the first of a
series of storage locations for storing bit states of
the packet;

(d) storing said bit states at said series of storage loca
tions as determined by incrementing the start ad
dress by a factor related to the number of bits be
tween the start and stop flags; and

(e) storing the start address in a predefined output
address queue for subsequent use in accessing said
series of storage locations;

(f) subsequently obtaining the start address from the
address queue;

(g) reading the storage locations, beginning with the
start address in sequence one after the other and
distributing the read bit states in sequence into
prearranged bit position occurrence in a bit stream
of a channel associated with the ISDN subscriber
D channel.

5. A method for operating a D channel handler which
includes a receiver and a transmitter for depositing data
in and withdrawing data from message buffer frames in
a random access memory (RAM), a method comprising
the steps of:

(a) predefining a plurality of said message frame buff
ers, each message frame buffer being of a predeter

H586
31

mined data storage capacity and being accessible
via a predetermined address pointer;

(b) predefining bit positions for occupancy by said
datas in channels of receive and transmit time divi

ing channelized data messages bounded by start and
stop flags comprising the steps of:

providing a plurality of receive queues, each of said
receive queues corresponding exclusively to a

32
said queue elements being addressable by one of a
sequential series of addresses defining the receive
queue;

providing a plurality of transmit queues, each of said
sion multiplex (TDM) bit streams; 5 transmit queues corresponding exclusively to a

(c) scanning said predefined bit positions of each of channel into which said data is transmittable and
the channels of the receive TDM bit stream for a each of said transmit queues being composed of
predefined sequence of bit states indicating a start queue elements for storing pointers to message
flag, and thereafter; frame buffers containing transmittable data, and

in response to a start flag occurrence scanning said bit 10 each of said queue elements being addressable by
positions of the channel for a predefined sequence one of a sequential series of addresses defining the
of bit states indicating a stop flag, and meanwhile; transmit queue;

collecting words of data being signified by the bit providing a shared receive queue being composed of
states being received between the occurrence of queue elements for storing pointers to vacant mes
the start flag and an occurrence of the stop flag; 15 sage frame buffers which may be used to contain

storing each collected word at an address location received data, and each of said queue elements
within one of the message frame buffers in the being addressable by one of a sequential series of
RAM; and addresses defining the shared receive queue;

writing an address pointer corresponding to the loca- providing a shared transmit queue being composed of
tion of the message frame buffer at a storage loca- 20 queue elements for storing pointers to message
tion of a receive queue for the channel; frame buffers which contain transmittable data, and

(d) writing an address pointer corresponding to a each of said queue elements being addressable by
location a message frame buffer, in the RAM one of a sequential series of addresses defining the
which contains data words destined for transmis- shared transmit queue;
sion via a channel of the transmit TDM bit stream, 25 in response to an occurrence of a start flag in one of
into a storage location of a transmit queue corre- said channels from which said data is receivable, at
sponding to said channel; least one element of the corresponding receive

sequentially reading the data words beginning with a queue having a null value stored therein, and at
start address defined by the address pointer in the least one element of the shared receive queue hav
transmit queue and mapping the bit states of the 30 ing a message frame buffer stored therein, storing
data words into said predefined bit positions of said data from said channel in the message frame buffer
channel and thereafter; identified by the message frame buffer pointer and

deleting said address pointer from the transmit queue. thereafter, transferring the message frame buffer
6. A method as defined in claim 5 wherein a plurality pointer from the shared receive queue into said

of message frame buffers of predetermined maximum 35 receive queue element, and leaving a null value in
number is available as storage locations for received its place in the shared receive queue;
data occurring between said start and stop flags and in in response to each element of a receive queue
a case wherein all of the plurality of message frame wherein a message frame buffer pointer is con
buffers is filled with data prior to an occurrence of the tained, processing the data contained in the corre
stop flag, a predetermined bit storage position within 40 sponding message frame buffer and thereafter
one of the frame message buffers is set to indicate an transferring the message frame buffer pointer from
overflow occurrence. the receive queue, into a null valued element of the

7. A method as defined in claim 5 wherein more than shared receive queue leaving a null value in its
one message frame buffer is available as storage loca- place in the receive queue;
tions for data of a message, and wherein a one of the 45 in response to data having been prepared for trans
message frame buffers contains an end of the message, a mission in one of said channels in which said data is
predetermined bit storage location within the message transmitted, and at least one element of the shared
frame buffer is set to indicate that said message frame transmit queue containing a message frame buffer
buffer contains the end of the message. pointer, writing said prepared data into the mes

8. A method as defined in claim 5 wherein a message 50 sage frame buffer identified by said pointer and
frame buffer containing a beginning of data of a message thereafter transferring the message frame buffer
also includes a predetermined bit storage position which pointer from the transmit shared queue to a null
is set to indicate the start of the message contained in the valued element of the transmit queue correspond
message frame buffer. ing to said one channel, and leaving a null value in

9. A method as defined in claim 5 wherein a predeter- 55 its place in the transmit shared queue;
mined plurality of bit positions in each message frame in response to at least one of the transmit queues
buffer is set to indicate an actual number of bit positions having an element occupied by a message frame
which are occupied by the data of a message contained buffer pointer, transmitting data contained in the
in the message frame buffer. indicated message frame buffer into the channel

10. A method for receiving, processing, and distribut- 60 corresponding to said one transmit quene and
thereafter transferring the message frame buffer
pointer from the transmit queue, into a null valued
element of the shared transmit quenue, and leaving
a null value in its place in the transmit queue.

channel from which said data is receivable, and 65
each of said receive queues being composed of
queue elements for storing pointers to message
frame buffers containing received data, and each of

11. In a frame processor for an integrated services
digital network (ISDN) D channel handler, a synchro
nous interface means comprising:
a receive data queue including;

H586
33

an input port for receiving data from an incoming
TDM signal stream,

a queue input control means being responsive to an
incoming clock time slot signal for specifying stor
age locations in the receive data queue for tempo
rarily storing the received data,

a queue output control means being responsive to an
input control time slot signal for specifying storage
locations in the receive data queue from whence
data is output via an output port, and

a receive comparing means being responsive to the
specifications of storage locations for indicating
one of a close proximity and an overlap of specified
storage locations, whereby a rate of data output via
the output port may be accelerated by increasing a
rapidity of the input control time slot signal to
prevent an overrun of the temporarily stored data;
and

a transmit data queue including;

10

15

20

25

30

35

45

50

55

60

65

34
a queue input control means being responsive to an

output control time slot signal for specifying stor
age locations in the transmit data queue in which
data received via an input portion is temporarily
stored,

an output port for transmitting data in a TDM signal
Stream,

a queue output control means being responsive to an
output clock time slot signal, similar to said input
clock time slot signal, for specifying storage loca
tions in the transmitted data queue from whence
data is output via said output port, and

a transmit comparing means being responsive to the
specifications of storage locations for indicating
one of a close proximity and an overalp of specified
storage locations, whereby the rate of the data
input via the input port may be accelerated by
increasing the rapidity of the output control time
slot signal to reduce the likelihood of an absence of
data occurrence in the transmit data queue.

s s s

