(19) 日本国特許庁(JP)

(12) 特許公報(B2)

(11) 特許番号

特許第4507532号

(P4507532)

(45) 発行日 平成22年7月21日(2010.7.21)

(24) 登録日 平成22年5月14日 (2010.5.14)

(51) Int.Cl.			FΙ		
HO1L	33/40	(2010.01)	HO1L	33/00	220
HO1L	33/32	(2010.01)	HO1L	33/00	186
H01L	21/28	(2006.01)	H01L	21/28	301B

請求項の数 6 (全 17 頁)

(21) 出願番号	特願2003-300714 (P2003-300714)	(73)特許権者	者 000226057
(22) 出願日	平成15年8月26日 (2003.8.26)		日亜化学工業株式会社
(65) 公開番号	特開2004-6991 (P2004-6991A)		徳島県阿南市上中町岡491番地100
(43) 公開日	平成16年1月8日 (2004.1.8)	(72)発明者	* 園部 真也
審査請求日	平成18年8月28日 (2006.8.28)		徳島県阿南市上中町岡491番地100
(31) 優先権主張番号	特願2002-246573 (P2002-246573)		日亜化学工業株式会社内
(32) 優先日	平成14年8月27日 (2002.8.27)		
(33)優先権主張国	日本国(JP)	審査官	杉田翠
前置審査			
			最終頁に続く

(54) 【発明の名称】 窒化物半導体素子

(57)【特許請求の範囲】

【請求項1】

少なくともn型窒化物半導体層とp型窒化物半導体層とを有する窒化物半導体素子にお いて、前記p型窒化物半導体層に、少なくともロジウムとイリジウムとを含有する電極が 形成されており、

前記電極は、前記 p 型窒化物半導体層に接して前記ロジウムが積層され、その上に前記 イリジウムが積層された少なくとも 2 層構造を有し、

前記ロジウムの膜厚は10~1000オングストロームであり、

前記電極は、前記ロジウムの上に前記イリジウムが積層された後に、400 ~650 の範囲においてアニーリングされていることを特徴とする窒化物半導体素子。

【請求項2】

前記イリジウムの膜厚が10~1000オングストロームであることを特徴とする請求 項1に記載の窒化物半導体素子。

【請求項3】

前記電極は、前記イリジウムの上にさらにPt、Ti、Zr、Hf、V、Nb、Ta、 Mo、Wから選ばれる少なくとも1つが積層されてなることを特徴とする請求項1又は2 に記載の窒化物半導体素子。

【請求項4】

前記電極の上には、最上に金が積層されたパッド電極を有することを特徴とする請求項 1 乃至 3 のいずれかに記載の窒化物半導体素子。

【請求項5】

前記2層構造全体の膜厚は、500~1000オングストロームであることを特徴とする請求項1乃至4のいずれかに記載の窒化物半導体素子。

【請求項6】

前記窒化物半導体素子は、基板側及び素子の端面側から光が取り出されることを特徴と する請求項1乃至5のいずれかに記載の窒化物半導体素子。

【発明の詳細な説明】

【背景技術】

[0001]

室化物半導体は、発光ダイオード(LED)、レーザダイオード(LD)などの発光素 10 子、太陽電池、光センサなどの受光素子、トランジスタ、パワーデバイスなどの電子デバ イスに用いられている。特に、窒化物半導体を用いた発光ダイオードは、信号機、大型デ ィスプレイ、バックライト用光源などに幅広く利用されている。その他には、イメージス キャナー、光ディスク用光源等大容量の情報を記憶するDVD等のメディアや通信用の光 源、印刷機器、照明用光源等に好適に利用できる。特に前記窒化物半導体はAl_×In_y Ga_{1 - × - ッ}N(0 ×、0 y、0 × + y < 1)からなる。

【 0 0 0 2 】

この窒化物半導体発光ダイオードは、基本的に、サファイアなどの絶縁基板の上に n 型 窒化物半導体層と、活性層と、 p 型窒化物半導体層とが順に積層された構成となる。また 、基板の裏面に電極を形成することができないので、 p 型窒化物半導体層側から部分的に エッチングされて露出した n 型窒化物半導体層に n 電極が形成され、エッチングされずに 残った p 型窒化物半導体層に p 電極が形成される。つまり、半導体層が積層された同一面 側に p 電極と n 電極とが配置された構成となる。このような構成によって得られる素子は 、主として 5 5 0 n m より短波長の光を発光する。

[0003]

また、p型窒化物半導体層は、アニーリング、電子線照射などの方法によって低抵抗化 されるが、n型窒化物半導体層と比較すると依然として高抵抗であり、p型窒化物半導体 層において電流が拡散しにくいので、p型窒化物半導体層の全面にp電極が形成される。 これにより、p型窒化物半導体層の全面に電流を拡散させて均一な発光分布を得ている。 また、半導体層が積層された側を発光観測面とする場合は、p電極によって光が遮られる ので、透光性を有する電極がp電極として用いられ、p電極を透過して外部に光が取り出 される。ここで、ニッケル(Ni)と金(Au)とを含有する薄膜電極は、p型窒化物半 導体層との良好なオーミック接触を有すると共に、透光性を有するので、p電極として好 ましく用いられている。

[0004]

【特許文献1】特開2000-299528号公報

【発明の開示】

【発明が解決しようとする課題】

【 0 0 0 5 】

しかしながら、金(Au)を含有する電極は、550nmより短波長の光を吸収する性 40 質があるので、金を含有する電極をp電極として用いる場合は、p電極が透光性を有する が、p電極において大部分の光が吸収されてしまい、外部に光を十分に取り出すことがで きないといった問題があった。

[0006]

このような問題を解決できる可能性のある材料としてロジウム(Rh)をあげることが できる。ロジウムは紫外~赤外領域で良好な反射率を持っていることが知られている。ま た、電気抵抗率が低く、耐熱性、耐食性に優れるなど発光素子及び受光素子の電極として 理想的な物性を有している。しかしながら、ロジウムは窒化物半導体に対する接触抵抗が 大きく、発光素子等に使用するには接触抵抗を改善する必要があった。 【0007】

本発明は、このような課題を解決するために成されたものであり、特に、 p 型窒化物半 導体層に形成される電極における光の吸収を少なくして外部量子効率の良い窒化物半導体 素子を提供することを目的とする。

【課題を解決するための手段】

[0008]

本発明の窒化物半導体素子は、少なくともn型窒化物半導体層とp型窒化物半導体層と を有する窒化物半導体素子において、前記p型窒化物半導体層に、少なくともロジウムと イリジウムとを含有する電極が形成されており、前記電極は、前記p型窒化物半導体層に 接して前記ロジウムが積層され、その上に前記イリジウムが積層された少なくとも2層構 造を有し、前記ロジウムの膜厚は10~1000オングストロームであり、前記電極は、 前記ロジウムの上に前記イリジウムが積層された後に、400~650の範囲におい てアニーリングされていることを特徴とする。

10

【0009】

また、電極は、 p 型窒化物半導体層に接してロジウムが積層され、その上にイリジウム が積層された少なくとも 2 層構造を有することを特徴とする。

【 0 0 1 0 】

また<u>イ</u>リジウムの膜厚が10~1000オングストロームの範囲であることを特徴とする。

また電極は<u>、前</u>記イリジウムの上にさらにPt、Ti、Zr、Hf、V、Nb、Ta、 ²⁰ Mo、Wから選ばれる少なくとも1つが積層されてなることを特徴とする。

ま<u>た電</u>極の上には、最上に金が積層されたパッド電極を有することを特徴とする。

___また前記 2 層構造全体の膜厚は、5 0 0 ~ 1 0 0 0 オングストロームであることを特徴 とする。

また窒化物半導体素子は、基板側及び素子の端面側から光が取り出されることを特徴と する。また電極は、<u>前記ロジウムの上に前記イリジウムが積層された後に、</u>300 以上 においてアニーリングされていることを特徴とする。

【発明の効果】

[0011]

30

40

以上説明したように、本発明によれば、p型窒化物半導体層に形成される電極が少なく ともロジウムとイリジウムとを含有することにより、p型窒化物半導体層と良好なオーミ ック接触を有すると共に、高反射率を有するので、電極における光及び電力の損失を少な くして外部量子効率の良い窒化物半導体素子を提供することができる。

【発明を実施するための最良の形態】

【0012】

[実施形態1]以下、本発明の実施形態について詳細に説明する。

本発明の窒化物半導体素子は、少なくともp型窒化物半導体層を有する窒化物半導体素 子において、p型窒化物半導体層に、少なくともロジウム(Rh)とイリジウム(Ir) とを含有する電極が形成されていることを特徴とする。本発明において、少なくともロジ ウムとイリジウムとを含有する電極とは、ロジウムとイリジウムとを含有する合金、ある いは層構造のことであり、電極とp型窒化物半導体層とのオーミック接触、電極の反射率 などに悪影響を及ぼさない範囲であれば、他の材料を含有することもできる。ロジウム、 イリジウムのいずれか一方を含有する電極は、高反射率を有するものの、p型窒化物半導 体層との十分なオーミック接触を得られないので、ロジウム、イリジウムの双方を組み合 わせて用いる必要がある。このような構成によって得られる電極は、p型窒化物半導体層 との良好なオーミック接触を得られると共に、高反射率を有するので、電極における光の 吸収が少なくなり、外部量子効率の良い窒化物半導体素子を提供することができる。 【0013】

また、金を含有する電極は、550nmより短波長の光を吸収する性質があり、電極の 50

10

20

50

反射率を低下させるので、電極材料として含有しないことが好ましい。また、ニッケルを 含有する電極は、p型窒化物半導体層との良好なオーミック接触を有するが、ロジウム、 イリジウムに加えてニッケルを含有する電極は、p型窒化物半導体層との十分なオーミッ ク接触が得られず、電極の反射率も低下させるので、電極材料として含有しないことが好 ましい。同じ理由において、コバルト、チタンなども電極材料として含有しないことが好 ましい。但し、Rh / Ir で形成した電極の上にパット電極として形成する場合には特に 限定されない。

【0014】

また、本発明において、電極は、p型窒化物半導体層に接してロジウムが積層され、その上にイリジウムが積層された少なくとも2層構造を有することが好ましい。この構成において、電極とp型窒化物半導体層との最も良好なオーミック接触が得られる。また、ロジウムの反射率がイリジウムよりも高いので、p型窒化物半導体層に接してロジウムを積層することにより、電極の反射率をより高くすることができる。 【0015】

ここで、ロジウムの膜厚としては、特に限定されないが、好ましくは10~1000オ ングストロームの範囲、さらに好ましくは100~500オングストロームの範囲に調整 する。また、イリジウムの膜厚としては、特に限定されないが、好ましくは10~100 0オングストロームの範囲、さらに好ましくは100~500オングストロームの範囲、 最も好ましくは300~500オングストロームの範囲に調整する。このような範囲に調 整すると、電極とp型窒化物半導体層との良好なオーミック接触が得られると共に、電極 の反射率が高くなるので好ましい。また、電極全体の膜厚は、p型窒化物半導体層上にロ ジウム / イリジウムの2層構造で形成する場合には500~1000オングストロームの 範囲に調整することが好ましい。これよりも薄いと電極における光の吸収が大きくなる傾 向があり、これよりも厚いと電極とp型窒化物半導体層とのオーミック接触が不十分にな る傾向がある。この場合、p電極を透過させて光を取り出すことはできないが、基板側及 び素子の端面側から光が取り出されるので、p電極における光の吸収を少なくする方が結 果として光取りだし効率が向上する。さらにはデバイス工程上、半導体層と前記電極との 界面で剥がれるおそれがある。

【0016】

その他には、前記 p 型窒化物半導体層の上に前記 p 電極を 3 層以上で形成する場合の電 30 極全体の膜厚は、500~3000オングストローム、好ましくは800~2000オン グストロームの範囲に調整することが好ましい。この電極構造は大電流の投入が可能であ る対向電極構造をした半導体素子において用いることができる。一例としては、p 型窒化 物半導体層 / ロジウム / イリジウム / 白金(Pt)とする。この白金の代替材料としては 、その他の白金族元素や高融点材料を用いることができる。前記高融点材料とは、Ti、 Zr、Hf、V、Nb、Ta、Mo、Wから選ばれる少なくとも1つである。ここで、半 導体素子における光取り出し面は n 型窒化物半導体層側とする。

【0017】

さらに、本発明において、電極は、300 以上においてアニーリングされていること が好ましい。これにより、電極とp型窒化物半導体層との接触抵抗をさらに低くすること 40 ができ、オーミック接触がより良好になると共に、電極とp型窒化物半導体層との密着力 が強くなる。アニーリングする雰囲気としては、特に限定されず、窒素、酸素、あるいは アルゴンなどの不活性ガス、その他には大気条件などを好適用いることができる。 【0018】

本発明の窒化物半導体素子において、p型窒化物半導体層以外の構成としては、特に限定されず、全部を窒化物半導体で構成することもでき、窒化物半導体以外の材料で構成することもできる。窒化物半導体としては、GaN、AlN、InN、あるいはこれらの混晶であるIn_XAl_YGa_{1-X-Y}N(0 X、0 Y、X+Y 1)からなる半導体を用いることができ、またこれに加えて、III族元素としてBを用いることもでき、V族元素としてNの一部をP、Asで置換することもできる。

【0019】

また、本発明において、 p 型窒化物半導体層とは、 p 型導電性を示す窒化物半導体層の ことであり、不純物をドープしない (アンドープの)窒化物半導体層は、 n 型導電性を示 すので、 p 型不純物をドープして p 型導電性を示すようになった窒化物半導体層がこれに 含まれる。 p 型不純物としては、特に限定されないが、マグネシウム (Mg)、 亜鉛 (Z n)、カドミウム (Cd)などの2族元素を好適に用いることができる。特に、マグネシ ウムは、低抵抗の p 型窒化物半導体層が得られ易いので好ましい。しかし、 p 型窒化物半 導体層は、成長中に水素が取り込まれて p 型不純物と結合し、 p 型不純物が不活性化され 、 n 型窒化物半導体層と比較すると高抵抗であり、実質的に水素を含まない雰囲気におい てアニーリングするなどの方法によって p 型窒化物半導体層から水素を追い出し、 さらに 低抵抗化することが好ましい。また、電極を形成してからアニーリングする場合は、低抵

10

【0020】

また、 p 型窒化物半導体層の組成としては、特に限定されないが、好ましくはA 1 _Z G a_{1 Z} N(0 Z 1)、さらに好ましくはG a N である。 A 1 _Z G a_{1 Z} N(0 Z 1)は、結晶性よく形成でき、特に、 G a N は、 p 型窒化物半導体のなかでも容易に 低抵抗に形成できるため、電極とのオーミック接触が得られ易い。

【0021】

また、本発明において、電極の上にさらにパッド電極を形成することもできる。パッド 電極の材料としては、特に限定されないが、パット電極の最上に金が積層されていること ²⁰ が好ましい。これにより、ワイヤーボンディングにより形成されるボールなどとの優れた 密着性が得られる。

【0022】

電極の形成方法としては、特に限定されないが、CVD、蒸着、スパッタリングなどを 好適に用いることができる。また、フォトリソグラフィーを用いたエッチング、リフトオ フなどにより所望の位置、形状に形成することもできる。p型窒化物半導体層は、n型窒 化物半導体層と比較すると高抵抗であり、p型窒化物半導体層において電流が拡散しにく いので、電極は、p型窒化物半導体層の全面に形成することが好ましい。これにより、p 型窒化物半導体層の全面に電流が拡散して、均一な発光分布が得られる。また、本発明に おいて、電極の膜厚をあまり薄くできないので、電極を透過して水素が抜けにくいので、 電極をドット状、ストライプ状、格子状に形成して開口部から水素が抜けるようにするこ とによって、p型窒化物半導体層が低抵抗化し易いので好ましい。また、開口部を透過し て光が取り出されるので、さらに光取り出し効率が良くなる。

【0023】

本発明において、窒化物半導体の成長方法としては、特に限定されないが、MOVPE (有機金属気相成長法)、MOCVD(有機金属化学気相成長法)、HVPE(ハイドラ イド気相成長法)、MBE(分子線エピタキシー法)など、窒化物半導体の成長方法とし て知られている全ての方法を好適に用いることができる。特に、MOCVDは結晶性良く 成長させることができるので好ましい。また、窒化物半導体は、種々の窒化物半導体の成 長方法を使用目的により適宜選択して成長させることが好ましい。

【0024】

本発明の各構成、工程について詳細を以下に示す。基板1は、窒化物半導体をエピタキ シャル成長させることができる基板であればよい。この基板としては、C面、R面、及び A面のいずれかを主面とするサファイアやスピネル(MgA1₂O₄)のような絶縁性基板 、また炭化珪素(6H、4H、3C)、シリコン、ZnS、ZnO、Si、GaAs、ダ イヤモンド、及び窒化物半導体と格子接合するニオブ酸リチウム、ガリウム酸ネオジウム 等の酸化物基板が挙げられる。また、デバイス加工が出来る程度の厚膜(数十µm以上) であればGaNやA1N等の窒化物半導体基板を用いることもできる。前記基板はオフア ングルしていてもよく、サファイアC面を用いる場合には、オフ角を0.01°~3.0 。、好ましくは0.03°~0.5°の範囲とする。

[0025]

前記基板には、凹部及び / 又は凸部を形成することができる。この凹部及び / 又は凸部 の外周の平面形状は多角形、円形であって、好ましくは円形、三角形、平行四辺形又は六 角形とする。上記半導体素子に該基板を採用することで光取り出し効率が向上する。また 前記平面形状で凹部や凸部を形成するとピット等が発生することを抑制できる。より好ま しくは正三角形、菱形又は正六角形とする。また円形も好ましい。円形であればピットを 大幅に抑制することができる。また、凹凸の平面形状は、幾何学的に完全な多角形である 必要はなく、加工上の理由等から角が丸みを帯びていても良い。

(6)

【0026】

上記凹部の深さ又は凸部の段差は100 以上、好ましくは1000~10000 と ¹⁰ する。少なくとも発光波長(例えば、AlGaInN系の発光層の場合、206nm~6 32nm)を としたとき、 /4以上の深さ又は段差がないと、十分に光を散乱又は回 折することができない一方、凹部の深さ又は凸部の段差が上記範囲を越える寸法の場合に は、電流が積層構造内の横方向に流れにくくなり、発光効率が低下するからである。また 前記凸部を形成する傾斜面の傾斜角 は、好ましくは45°以上80°以下、より好まし くは50°以上70°以下とする。

【0027】

前記室化物半導体は、一般式がIn_× А 1_y G a 1 · × · y N(0 × 、0 y、× + y 1)であって、BやP、Asを混晶してもよい。また、 n型の窒化物半導体層、及び p型の窒化物半導体層は単層、多層を適宜選択することができる。また、窒化物半導体層 には各層の機能に応じてn型不純物、p型不純物を適宜含有させる。 n型不純物としては 、Si、Ge、Sn、S、O、Ti、Zr等のIV族、若しくはVI族元素を用いること ができ、好ましくはSi、Ge、Snを、最も好ましくはSiを用いる。また、p型不純 物としては、Be、Zn、Mn、Cr、Mg、Caなどが挙げられ、好ましくはMgが用 いられる。これにより、各導電型の窒化物半導体を形成することができる。前記窒化物半 導体層には活性層を有し、該活性層は単一(SQW)又は多重量子井戸構造(MQW)と する。

[0028]

以下に窒化物半導体の構成を示す。前記基板の上に成長させる窒化物半導体はバッファ 層2を介して成長する。バッファ層としては、一般式Al。Ga₁₋ N(0 a 0. 8)で表される窒化物半導体、より好ましくは、Al_aGa_{1 - a}N(0 a 0.5) で示される窒化物半導体を用いる。バッファ層の膜厚は、好ましくは0.002~0.5 μ m、より好ましくは 0 . 0 0 5 ~ 0 . 2 μ m、さらに好ましくは 0 . 0 1 ~ 0 . 0 2 μ mである。バッファ層の成長温度は、好ましくは200~900 、より好ましくは40 0~800 である。これにより、窒化物半導体層上の転位やピットを低減させることが できる。さらに、前記基板上にELO(Epitaxial Lateral Overgrowth)法によりA1、 Ga1 _ _ N (0 X 1)層3を成長させてもよい。このELO(Epitaxial Lateral Overgrowth)法とは窒化物半導体を横方向成長させることで貫通転位を曲げて収束させる ことにより転位を低減させるものである。本発明の半導体素子は、前記バッファ層とEL O層を組み合わせることで高出力のレーザーダイオードを提供することができる。前記バ ッファ層は多層構成としてもよく、低温成長バッファ層と、その上に高温成長層を形成し てもよい。高温成長層としては、アンドープのGaN又はn型不純物をドープしたGaN を用いることができる。高温成長層の膜厚は、1µm以上、より好ましくは3µm以上で ある。、また、高温成長層の成長温度は、900~1100 、好ましくは1050 以 上である。前記バッファ層 2 や A l _x G a _{1 - x} N (0 X 1)層 3 は基板 1 によって は省略することができる。

【0029】

次に、 n 型窒化物半導体層を成長させる。まず n 型コンタクト層 4 を成長させる。 n 型コンタクト層としては、活性層のバンドギャップエネルギーより大きくなる組成であり、 A 1 _i G a _{1 - i} N (0 j < 0 . 3)が好ましい。 n 型コンタクト層の膜厚は特に限定 20

30

されるものではないが、好ましくは 1 µ m 以上、より好ましくは 3 µ m 以上である。次に 、前記 n 型コンタクト層上に第 1 の n 型窒化物半導体層 5 、第 2 の n 型窒化物半導体層 6 を成長する。第 1 の n 型窒化物半導体層 5 は A 1 x G a 1 x N (0 X 1)から成る 窒化物半導体を単層で形成する他には、前記単層をノンドープ層や n 型不純物をドープし た層、又はこれらの多層構造とする。次に第 2 の n 型窒化物半導体層 6 は組成は特に限定 しないが超格子層とすることが好ましい。 n 型不純物濃度は特に限定されるものではない が、好ましくは 1 × 1 0¹⁷ ~ 1 × 1 0²⁰ / c m³、より好ましくは 1 × 1 0¹⁸ ~ 1 × 1 0¹⁹ / c m³ である。また、 n 型不純物濃度に傾斜をつけても良い。 【 0 0 3 0 】

- 本発明に用いる活性層 7 は、少なくとも、AlaInbGaleab N(0 a 1 10、0 b 1、a+b 1)から成る井戸層と、AlcIndGalecab N(0 c 1、0 d 1、c+d 1)から成る障壁層と、を含む量子井戸構造を有する。活性層に用いられる窒化物半導体は、ノンドープ、n型不純物ドープ、p型不純物ドープのいずれでも良いが、好ましくは、ノンドープもしくは、又はn型不純物ドープの窒化物半導体を用いることにより発光素子を高出力化することができる。さらに好ましくは、井戸層をアンドープとし、障壁層をn型不純物ドープとすることで、発光素子の出力と発光効率を高めることができる。また発光素子に用いる井戸層にAlを含ませることで、従来のInGaNの井戸層では困難な波長域、具体的には、GaNのバンドギャップエネルギーである波長365nm付近、もしくはそれより短い波長も得ることができる。
- 井戸層の膜厚は、好ましくは1nm以上30nm以下、より好ましくは2nm以上20 nm以下、さらに好ましくは3.5nm以上20nm以下である。1nmより小さいと井 戸層として良好に機能せず、30nmより大きいとInAlGaNの4元混晶の結晶性が 低下するからである。また、2nm以上では膜厚に大きなむらがなく比較的均一な膜質の 層が得られ、20nm以下では結晶欠陥の発生を抑制して結晶成長が可能となる。さらに 膜厚を3.5nm以上とすることで出力を向上させることができる。これは井戸層の膜厚 を大きくすることで、大電流で駆動させるLDのように多数のキャリア注入に対して、高 い発光効率及び内部量子効率により発光再結合がなされるものであり、特に多重量子井戸 構造において効果を有する。また、単一量子井戸構造では膜厚を5nm以上とすることで 上記と同様に出力を向上させる効果が得られる。また、井戸層の数は特に限定されないが
- 、4以上の場合には井戸層の膜厚を10nm以下として活性層の膜厚を低く抑えることが 好ましい。活性層を構成する各層の膜厚が厚くなると、活性層全体の膜厚が厚くなりV_f の上昇を招くからである。また、障壁層は、井戸層の場合と同様に、好ましくはp型不純 物又はn型不純物がドープされているか又はアンドープであること、より好ましくはn型 不純物がドープされているか又はアンドープであることである。例えば、障壁層中にn型 不純物をドープする場合、その濃度は少なくとも5×10¹⁶/cm³以上が必要である 。例えば、LEDでは、5×10¹⁶/cm³以上2×10¹⁸/cm³以下が好ましい 。また、高出力のLEDやLDでは、5×10¹⁷/cm³以上1×10²⁰/cm³以 下、より好ましくは1×10¹⁸/cm³以上5×10¹⁹/cm³以下である。この場 合、井戸層はn型不純物を実質的に含有しないか、あるいはアンドープで成長させること が好ましい。また、障壁層にn型不純物をドープする場合、活性層内のすべての障壁層に ドープしても良く、あるいは、一部をドープする場合、活性層内でn型層側に配置された 障壁層にドープすることが好ましい。

【 0 0 3 1 】

次に、前記活性層上にp型窒化物半導体層 8 を形成する。 p 型窒化物半導体層 8 として はA1 _k Ga_{1 - k} N(0 k < 1)が用いられる。特に L D 素子に用いる場合には、活 性層のバンドギャップエネルギーより大きくなる組成であり、活性層へのキャリアの閉じ 込めができるものであって、A1 _k Ga_{1 - k} N(0 < k < 0 . 4)が好ましい。この膜 厚は特に限定されないが、好ましくは0 . 0 1 ~ 0 . 3 µm、より好ましくは0 . 0 4 ~ 0 . 2 µmである。またp型不純物濃度は、1 × 1 0 ^{1 8} ~ 1 × 1 0 ^{2 1} / cm³、好ま 30

40

しくは1×10¹⁹~5×10²⁰ cm³である。 p型不純物濃度が上記の範囲にあると、結晶性を低下させることなくバルク抵抗を低下させることができる。前記 p型半導体層は、単一層でも多層膜層(超格子構造)でも良い。多層膜層の場合、上記のA1_kGa_{1-k}Nと、それよりバンドギャップエネルギーの小さい窒化物半導体層とからなる多層膜層であれば良い。例えば p型半導体層を超格子構造とする場合には、A1_kGa_{1-k}N(0
(0 < k < 0 . 4)とIn₁Ga₁₋₁N(0
1 < 0 . 2)との超格子構造とすることで結晶性をよくすることができる。超格子構造を形成する各層の膜厚は、一層の膜厚が好ましくは100 以下、より好ましくは70 以下、さらに好ましくは10~40 とすることができる。また、バンドギャップエネルギーの大きい層及び小さい層の両方にドープする場合は、ドープ量は同一でも異なっても良い。

次に前記 p 型半導体層上に p 型コンタクト層 9 を形成する。 p 型コンタクト層は、 A 1 f G a 1 f N (0 f < 1)が用いられ、特に、 A 1 f G a 1 f N (0 f < 0.3))で構成することによりオーミック電極である p 電極と良好なオーミックコンタクトが可 能となる。 p 型不純物濃度は 1 × 1 0¹⁷/cm³以上が好ましい。また、 p 型コンタク ト層は、導電性基板側で p 型不純物濃度が高く、かつ、 A 1 の混晶比が小さくなる組成勾 配を有することが好ましい。この場合、組成勾配は、連続的に組成を変化させても、ある いは、不連続に段階的に組成を変化させても良い。例えば、 p 型コンタクト層を、オーミ ック電極と接し、 p 型不純物濃度が高く A 1 組成比の低い第 1 の p 型コンタクト層と、 p 型不純物濃度が低く A 1 組成比の高い第 2 の p 型コンタクト層とで構成することもできる 。第 1 の p 型コンタクト層により良好なオーミック接触が得られ、第 2 の p 型コンタクト 層により自己吸収を防止することが可能となる。

[0033]

以上より窒化物半導体を基板上に成長させた後、ウェハーを反応装置から取り出し、その後、酸素及び / 又は窒素を含む雰囲気中で400 以上で熱処理をする。これによりp 型層に結合している水素が取り除かれ、p型の伝導性を示すp型の窒化物半導体層を形成 する。

【0034】

その後、前記 p 型コンタクト層の表面にオーミック接触が得られる p 電極10を形成す 30 る。 p 電極の形成方法はCVD法、スパッタ法、蒸着法等がある。

【0035】

p電極は矩形状や縞状、正方形、格子状等がある。その他のp電極は、p型半導体層の 全面に形成したもの(図4)、ドット状に空洞を有するもの、菱形、平行四辺形、メッシ ュ形状(図6A)、ストライプ形状、くし形、1つから複数に分岐した枝状(図6B)、 電気的に繋がった複数の枝電極をストライプ形状に有しており、且つ該p電極には空洞を 有する形状(図6C)、円形状等にパターン形成する。これらのp電極構造は上記基板と の組み合わせによって、光の取り出し効率をさらに向上することができる。上記p電極、 又はn電極の上には保護膜31を形成してもよい。

【0036】

複数の開口部は、各開口部がほぼ同じ形状であることが好ましく、これにより、開口部の形成が容易であるとともに、発光の面内分布が均一となる。また、複数の開口部は、ほぼ同じ面積であることが好ましく、これによっても発光の面内分布が均一となる。

【0037】

また前記 n 型コンタクト層の表面には n 電極12を形成する。 n 電極にはW / A 1、T i / A 1、T i / A 1 / N i / A u、W / A 1 / W / P t / A u、A 1 / P t / A u など を用いる。 n 電極の膜厚は0.1~1.5µmとする。 n 電極については、ボンディング 用のパット電極と、 n 側層とオーミック接触するオーミック用の電極とをほぼ同一の形状 として同時に形成してもよい。また、オーミック電極を n パット電極兼用としても良い。 【0038】 10

前記p電極10は、p型窒化物半導体層の表面で該p型層とオーミック接触して素子内 部に電流を注入するためのオーミック電極である。通常、窒化物半導体素子では、このオ ーミック用のp電極とは別に、例えば、ワイヤーボンディングにより接続するボンティン グ用のpパット電極11を形成して、そのpパッド電極をオーミック電極であるp電極と 電気的に接続する。このpパット電極は、p側層の上に設ける形でも良く、メタル配線し て p 側層の外部、例えば n 側電極形成面に絶縁膜を介して設けることもできる。 p パット 電極をp側層の上に形成する場合には、pパット電極をp電極の一部が重なるように形成 してもよいし、p電極の上にpパット電極を形成してもよい。pパット電極はワイヤ等と 実装するための電極であるので、実装時に半導体素子を傷めない程度の膜厚があれば特に 限定されない。pパット電極の形成面側から光を取り出す場合には、pパット電極はでき るだけ小さく形成することが必要である。

[0039]

p パット電極11の材料は、密着性が高いものを選択する。具体的な材料としては、例 えばCo、Fe、Rh、Ru、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、R e、Mn、Al、Zn、Pt、Au、Ru、Pd、Rhを用いることができる。好ましく は、Ag、A1、Pt、Cu、Ni、Ti、Au、W、Nb、Mo、Hf、Rhからなる 群から選ばれる少なくとも1種及びこれらの酸化物、窒化物等を用いることであり、更に 好ましくはAg、A1、Ptからなる群から選ばれる少なくとも1種を用いる。pパット 電極は単層、合金、或いは多層膜を用いることができる。また、これらの材料はpパット 電極のみならずnパット電極にも用いることができる。

[0040]

電極を窒化物半導体層の表面に形成した後、熱処理を行うことで、合金化されると共に 、半導体層と良好なオーミック接触を得ることができ、また半導体層と電極との接触抵抗 を低下させることができる。熱処理温度としては、300 ~1200 の範囲が好まし く、更に300 ~900 が好ましく、特に好ましくは400 ~650 の範囲であ る。上記以外の熱処理の条件としては、雰囲気ガスを酸素、及び / 又は窒素を含有する雰 囲気とする。また不活性ガス、例えばアルゴンを含有する雰囲気や大気条件での熱処理も 可能である。

[0041]

本発明の半導体素子は、窒化物半導体層が積層された素子の側面に連続してSiO。、 ZrO₂、TiO₂、Al₂O₃、またはV、Zr、Nb、Hf、Taよりなる群から選 択された少なくとも一種の元素を含む酸化物、SiN、BN、SiC、A1N、A1Ga N等の保護膜13を形成してもよい。この保護膜は絶縁性を有する膜であることが好まし く、信頼性の高い半導体素子が得られる。とくに、この絶縁性を有する保護膜はp型層の 表面の電極非形成部に設けることで、電極の腐食を効果的に抑えることができる。前記窒 化物半導体素子をスクライブ、ダイシングなどでチップ状の半導体素子となる(図2)。 この窒化物半導体素子の平面図は図3に示すようにp型窒化物半導体層の上のほぼ全面に p 電極10が形成されている。該窒化物半導体素子の斜視図を図4に示す。前記p 電極を R h / I r で形成した半導体素子は、 V f を 3 . 4 以下にすることができ、 N i / A u や Rh等の電極と比較して接触抵抗比を1/10以下とすることができる。 [0042]

「実施形態2]実施形態1は窒化物半導体層の電極形成面を光取り出し面としたが、実施 形態2では基板側を光取り出し面とすることもできる(図5)。窒化物半導体素子の電極 を形成した面を除いて保護膜13を形成しており、パッド電極11の上に、ワイヤーでは なく、外部電極等と接続させるためのメタライズ層(バンプ)14を形成させたフェイス ダウン構造とする。メタライズ層14は実装基板23に装備されているリード電極22と 電気的に接触している。前記窒化物半導体素子を1mm²以上のサイズで作製するには図 7に示すように p パッド電極11および n 電極12を複数の位置に形成する。この p パッ ド電極11とn電極12はメタライズ層14を形成する領域が部分的に広く形成されてい る。また p パッド電極11と n 電極12とのメタライズ層14を形成する領域は対向して

10

30

20

いる。更にpパッド電極及び / 又はn電極は、それぞれが対向する側面方向に枝状に延び て形成されている(図6C、図7)。以上より1mm²以上のサイズで形成した窒化物半 導体素子においても大電流を全面に均一に流すことができる。図7に示す窒化物半導体素 子をフェイスダウン実装したものを図8に示す。基板側を光取り出し面とすることで光取 り出し効率が向上する。例えばパッド電極を楕円形状で形成する。このメタライズ層とし ては、Ag、Au、Sn、In、Bi、Cu、Zn等の材料から成る。フェイスダウンで 用いる場合、パッド電極に熱が加わるが、その際に、体積が大きくなり、また、圧力が加 わることでパッド電極材料が側面方向に流出しやすくなる。しかしながら、本実施形態の 窒化物半導体発光素子では、前記電極を用いることで合金化するために不具合は抑制する ことができる。また本実施形態の構造であれば、放熱性がよく信頼性が向上する。 【0043】

[実施形態3]本実施形態における窒化物半導体素子は、支持基板上に導電層、p電極 を介してp型窒化物半導体層、活性層、n型窒化物半導体層を有し、その上にn電極を形 成した構成である。該窒化物半導体素子はp電極とn電極が窒化物半導体層を挟んで向か い合う対向電極構造となる(図9)。

【0044】

前記室化物半導体素子は、n電極側が光取り出し面となる。窒化物半導体(特にGaN 系半導体)はn型層の抵抗が低いため、n電極のサイズを小さくできる。光の取り出し効 率の向上はn電極を小さくすることで光を遮る領域を低減できるからである。

【0045】

以下に本実施形態に係る窒化物半導体素子の製造工程を図面を用い示す。

まず基板1上に少なくともn型窒化物半導体層、活性層、p型窒化物半導体層を有する 窒化物半導体20を成長させる。その後、p型窒化物半導体層上に前記p電極10を形成 する。p電極を矩形状や縞状、正方形、格子状、ドット状、菱形、平行四辺形、メッシュ 形状、ストライプ形状、網目状、格子状の1つから複数に分岐した枝状等にパターン形成 することで光の取り出し効率を上げることができる。好ましくは中央部には格子状、その 外周を2つのL字で囲む形状とする。これによって大電流の投入が可能となる。

【0046】

次に、前記 p 電極の開口部であって、前記室化物半導体の露出部に第1の保護膜103 を形成する。次に前記 p 電極、及び第1の保護膜の形成面の上に貼導電層102を形成す る。この導電層の形成面で支持基板を貼り合わせる。導電層は密着層、バリア層、共晶層 から成る3層構造が好ましい。他方、支持基板101を用意する。この支持基板の表面に も導電層102を形成することが好ましい。

[0047]

前記導電層をPt、Au、Sn、Pd、In、Ti、Ni、W、Mo、Au-Sn、S n-Pd、In-Pd、Ti-Pt-Au、Ti-Pt-Sn、Ti-Pt-Pd又はT i-Pt-AuSn、Ti-Pt-AuSn-Au、W-Pt-Sn、RhO-Pt-S n、RhO-Pt-Au、RhO-Pt-(Au、Sn)等で形成する。複数層の導電層 においては、p電極側から形成している。この導電層は低温で共晶が可能で、共晶後の融 点が上がるためp電極への拡散は抑制することができる。また、上記導電層によって支持 基板側に発生した熱を効率よく逃がすことができる。

【0048】

前記窒化物半導体素子に貼り合わせる支持基板101は、線熱膨張係数が4~10(× 10⁻⁶/K)であって、好ましくは前記支持基板はCu、Mo、Wから成る群から選ば れる少なくとも1つを含有している。前記支持基板にCuを含有する場合には50%以下 とする。Moを含有する場合には、その含有量は50%以上とする。前記支持基板にWを 含有する場合には含有量は70%以上である。支持基板の具体例は、Cu-W、Cu-M o、AlSiC、AlN、Si、SiC、Cu-ダイヤ等の金属とセラミックの複合体な どである。また、一般式をCu_xW_{1-x}(0 × 30)やCu_xMo_{1-x}(0 × 50)のように示すことができる。AlNを支持基板とすれば絶縁性基板であるのでプ 10

20

リント基板などの回路上にチップを載せるときに有利である。またSiを用いる利点は安価でチップ化がしやすい点である。支持基板の好ましい膜厚としては50~500μmである。前記範囲に支持基板を薄くすることで放熱性が良くなる。

【0049】

その後、窒化物半導体素子と支持基板とを加熱圧接により貼り合わせる。貼り合わせ面 を導電層同士として合金化させる。具体的にはプレスをしながら150 以上の熱を加え る。前記貼り合わせ工程は加熱圧接によって行われることを特徴とする。加熱圧接の温度 は150 ~350 が好ましい。150 以上とすれば、導電層の金属の拡散が促進さ れ均一な密度分布の共晶が形成され、窒化物半導体素子と支持基板との密着性を向上させ ることができる。350 より大きいと、拡散範囲が接着領域にまで及び、密着性が低下 してしまう。貼り合わせ時にはp電極/Ti Pt AuSn Pt Ti/支持基板、 その他にはp電極/RhO-Pt-AuSn Pt Ti/支持基板、p電極/Ti P t AuSn Au/支持基板、p電極/Ti Pt PdSn Pt Ti/支持基板 、p電極/Ti Pt AuSn Pt RhO/支持基板となる。これにより剥がれに くい合金が形成される。導電層を共晶とすることで低温での貼り合わせが可能となり、ま た接着力も強力になる。上記温度で貼り合わせることで反りの緩和効果を有する。

その後、基板1を除去する。基板の除去方法としては基板側からエキシマレーザを照射 するか、又は研磨、研削、ケミカルポリッシュ等によって行う。上記工程により、鏡面で ある窒化物半導体の露出面を形成する。

【0051】

その後、窒化物半導体素子をチップ化するためRIE等で外周エッチングを行い、外周 の窒化物半導体層を除去する。その後、窒化物半導体層をチップ状に分割するために、チ ップ間に溝を形成し、n型窒化物半導体層の露出面にn電極12を形成する。n電極には 前述した電極の他にTi-A1-Ni-Au、W-A1-W-Pt-Au、A1-Pt-Auなどがある。n電極は膜厚を0.1~1.5µmとする。ここで、n電極を形成した 以外のn型窒化物半導体層の露出面には凹凸を形成してもよい。前記凹凸形成の断面形状 はメサ型、逆メサ型があり、平面形状は丸形状、または六角形状や三角形状、島状形状、 格子状、矩形状、円状、多角形状がある。凹部の深さは0.2~3µmであって、より好 ましくは1.0µm~1.5µmである。この理由は凹部深さが0.2µmより浅すぎる と光取り出し向上の効果はなく、上記範囲より深くなると横方向の抵抗が上がってしまう 。さらに、凹部の形状を丸状や多角形状として抜き取った場合には低抵抗値を維持して出 力を向上させることができる。

【 0 0 5 2 】

その後、ワイヤーボンディング領域を除いて窒化物半導体素子の上面を第2の保護膜1 10で覆い、ダイシングによりチップ化することで窒化物半導体素子とする(図9A)。 この図9Aに示す窒化物半導体素子の断面図を図9Cに示す。また、前記第2の保護膜に 凹凸形状を形成してもよい(図9B)。これにより光取り出し効率が向上する。該第2の 保護膜110はSiO₂、SiN、Si_xO_yN_{1-x-y}、Nb₂O₅、Al₂O₃、 ZrO₂、TiO₂などの絶縁膜である。

【0053】

[実施形態4]前記実施形態において、チップ化した窒化物半導体素子の表面に蛍光体 を樹脂と混合させて形成することで、高出力の白色発光素子を得ることがでる。 【0054】

前記蛍光体の一例を以下に示す。緑色系発光蛍光体としては、SrA1₂O₄:Eu、 Y₂SiO₅:Ce,Tb、MgA1₁₁O₁₉:Ce,Tb、Sr₇A1₁₂O₂₅: Eu、(Mg、Ca、Sr、Baのうち少なくとも1以上)Ga₂S₄:Euがある。ま た、青色系発光蛍光体としてはSr₅(PO₄)₃C1:Eu、(SrCaBa)₅(P O₄)₃C1:Eu、(BaCa)₅(PO₄)₃C1:Eu、(Mg、Ca、Sr、B aのうち少なくとも1以上)₂B₅O₉C1:Eu,Mn、(Mg、Ca、Sr、Baの 10

20

うち少なくとも1以上)(PO₄)₆Cl₂:Eu,Mnがある。さらに、赤色系発光蛍 光体としてはY₂O₂S:Eu、La₂O₂S:Eu、Y₂O₃:Eu、Gd₂O₂S: Euがある。特にYAGを含有させることで、白色光を発光することができ、照明用光源 など用途も格段に広がる。YAGは、(Y_{1 - x}Gd_x)₃(Al_{1 - y}Ga_y)₅O₁ ₂:R(Rは、Ce、Tb、Pr、Sm、Eu、Dy、Hoから選ばれる少なくとも1以 上である。0 < R < 0.5 である。)、例えば、(Y_{0 8}Gd_{0 2})₃Al₅O₁₂ :Ce、Y₃(Al_{0 8}Ga_{0 2})₅O₁₂:Ceである。

本実施の形態において、赤味を帯びた光を発光する蛍光体として、特に窒化物系蛍光体 を使用するが、本発明においては、上述したYAG系蛍光体と赤色系の光を発光可能な蛍 光体とを備える発光装置とすることも可能である。このような赤色系の光を発光可能な蛍 光体は、波長が400~600nmの光によって励起されて発光する蛍光体であり、例え ば、Y₂O₂S:Eu、La₂O₂S:Eu、CaS:Eu、SrS:Eu、ZnS:M n、ZnCdS:Ag,A1、ZnCdS:Cu,A1等が挙げられる。このようにYA G系蛍光体とともに赤色系の光を発光可能な蛍光体を使用することにより発光装置の演色 性を向上させることが可能である。

以上のような蛍光体を選択することで、種々の発光波長を持った光取り出し効率の高い 発光素子を得ることができる。

【 0 0 5 5 】

「実施例1]

以下、図1に示す発光ダイオード素子を元に実施例1について説明する。

なお、本発明はこれに限定されるものではなく、 p 型窒化物半導体層に電極を形成する 全ての窒化物半導体素子(レーザダイオード、太陽電池、光センサ、トランジスタ、パワ

- デバイスなど)に適用することができる。

【0056】

まず、サファイア(C面)からなる基板1をMOCVDの反応容器内にセットし、容器 内を水素で十分に置換した後、水素を流しながら基板の温度を1050 まで上昇させ基 板のクリーニングを行う。なお、本実施例ではサファイア(C面)を用いているが、基板 としては、GaN、A1N、A1GaNなどの窒化物半導体基板、あるいは窒化物半導体 とは異なる異種基板を用いることができる。異種基板としては、例えばC面、R面、A面 のいずれかを主面とするサファイア、スピネル(MgA12O4)などの絶縁基板、ある いはSiC(6H、4H、3Cを含む)、Si、ZnO、GaAs、ZnSなどの半導体 基板、ZrB2などの金属結晶を用いることができ、好ましくはサファイア、スピネルを 用いる。また、異種基板はオフアングルしていてもよく、特に、ステップ状にオフアング ルしたものを用いると、窒化物半導体からなる下地層が結晶性よく成長されるので好まし い。

【0057】

続いて、温度を510 まで下げ、キャリアガスに水素、原料ガスにTMG(トリメチ ルガリウム)とアンモニアとを用い、基板1の上にGaNからなるバッファ層(図示せず)を約100オングストロームの膜厚で成長させる。なお、このバッファ層は、基板の種 類、成長方法によっては省略できる。また、このバッファ層は、A1の割合の小さいA1 GaNを用いることもできる。

【0058】

次に、バッファ層を成長後、TMGのみを止めて、温度を1050 まで上昇させる。 1050 になったら、同じく原料ガスにTMG、アンモニアガスを用い、アンドープG aN層2を1µmの膜厚で成長させる。

【0059】

続いて、1050 で、同じく原料ガスにTMG、アンモニアガス、不純物ガスにシランガスを用い、Siを4.5×10¹⁸/cm³ドープしたGaNからなるn側コンタクト層3を5µmの膜厚で成長させる。なお、本実施例ではSiを用いているが、n型不純物としては、特に限定されないが、Si、Ge、Sn、S、O、Ti、ZrなどのIV族元

10

20

30

素、あるいはⅥ族元素などを好適に用いることができ、好ましくはSi、Ge、Sn、さ らに好ましくはSiを用いる。

(13)

【0060】

次に、シランガスのみを止め、1050 で、TMG、アンモニアガスを用い、アンド ープGaNからなる下層を3000オングストロームの膜厚で成長させ、続いて、同温度 で、シランガスを追加して、Siを4.5×10¹⁸/cm³ドープしたGaNからなる 中間層を300オングストロームの膜厚で成長させ、更に続いて、シランガスのみを止め 、同温度で、アンドープGaNからなる上層を50オングストロームの膜厚で成長させ、 3層からなるn側第1多層膜層4を3350オングストロームの膜厚で成長させる。 【0061】

次に、同温度で、アンドープGaNからなる窒化物半導体層を40オングストロームの 膜厚で成長させ、次に、温度を800 にして、TMG、TMI(トリメチルインジウム)、アンモニアを用い、アンドープIN_{0.1}Ga_{0.9}Nからなる窒化物半導体層を2 0オングストロームの膜厚で成長させる。これらの操作を繰り返し行い、交互に10層ず つ積層し、さらにアンドープGaNからなる窒化物半導体層を40オングストロームの膜 厚で成長させた超格子構造のn側第2多層膜層5を640オングストロームの膜厚で成長 させる。

【0062】

次に、TMG、アンモニアを用い、アンドープGaNからなる障壁層を250オングス トロームの膜厚で成長させる。続いて、同温度で、TMIを追加して、In_{0.3}Ga_{0 7}Nからなる井戸層を30オングストロームの膜厚で成長させる。これらの操作を繰り 返し行い、交互に6層ずつ積層し、さらにアンドープGaNからなる障壁を250オング ストロームの膜厚で成長させた多重量子井戸構造の活性層6を1930オングストローム の膜厚で成長させる。

【0063】

次に、1050 で、TMG、TMA、アンモニア、Cp₂Mg(シクロペンタンジエ ニルマグネシウム)を用い、Mgを5×10¹⁹/cm³ドープしたAl_{0.15}Ga₀ .85Nからなる窒化物半導体層を40オングストロームの膜厚で成長させ、続いて、温 度を800 にして、TMG、TMI、アンモニア、Cp₂Mgを用い、Mgを5×10¹⁹/cm³ドープしたIn_{0.03}Ga_{0.97}Nからなる窒化物半導体層を25オン グストロームの膜厚で成長させる。これらの操作を繰り返し行い、交互に5層ずつ積層し 、さらにMgを5×10¹⁹/cm³ドープしたAl_{0.15}Ga_{0.85}Nからなる窒 化物半導体層を40オングストロームの膜厚で成長させた超格子構造のp側多層膜層7を 365 の膜厚で成長させる。

[0064]

続いて、1050 で、TMG、アンモニア、Cp₂Mgを用い、Mgを1×10²⁰ / cm³ドープしたGaNからなるp側コンタクト層8を1200オングストロームの膜 厚で成長させる。反応終了後、温度を室温まで下げ、さらに窒素雰囲気中、ウエハを反応 容器内において、600 でアニーリングを行い、p型層をさらに低抵抗化する。

【0065】

アニーリング後、ウエハを反応容器から取り出し、 p 側コンタクト層側からエッチング を行い、露出した n 側コンタクト層にWを100オングストロームの膜厚で積層し、その 上に A 1 を 1000オングストロームの膜厚で積層してW / A 1 からなる n 電極を形成す る。

[0066]

次に、エッチングされずに残った p 型コンタクト層の全面にロジウム(Rh)を400 オングストロームの膜厚で積層し、その上にイリジウム(Ir)を500オングストロー ムの膜厚で積層して Rh / Ir からなる p 電極を形成する。電極形成後、窒素雰囲気にお いて 600 でアニーリングを行う。

[0067]

50

30

40

10

最後に、ウエハを分割して1辺の長さが350µmの発光ダイオード素子を得た。得られた素子は、If(順方向電流)20mAにおいて、Vf(順方向電圧)3.5Vであり、p型窒化物半導体層と電極との良好なオーミック接触が得られた。

[0068]

このときの p 型窒化物半導体層と R h / I r との比接触抵抗を T L M 法を用いて測定し 、 p 型窒化物半導体上に R h、 R h / P t、 R h / R u、 R h / A u、 からなる p 電極を 形成した場合と比較したところ図1のようになった。 p 型窒化物半導体層と接触する電極 として R h のみを用いたものを1として比で表示した。第1層を R h、第2層を I r とし たものに比接触抵抗の低下が確認できる。他に第1層を R h、第2層を A u としたものも 接触抵抗が低下しているが、 R h は A u と合金化し短波長の光に対して吸収が大きくなる ので、窒化物半導体系の L E D に用いるのは好ましくない。

10

20

30

【0069】 [実施例2]

実施例1において、図6Aに示すようにp電極10に開口部を形成する他は、同様にし て発光ダイオード素子を得た。得られた素子は、If20mAにおいて、Vf3.5Vで あり、p型窒化物半導体層と電極との良好なオーミック接触が得られた。発光出力は、電 極の開口部を介して外部に光が取り出されるので実施例1と比較すると約20%増加して いた。

[0070]

[比較例1]

実施例1において、p電極10として、NiとAuとを200オングストロームの膜厚 で積層する他は、同様にして発光ダイオード素子を得た。得られた素子は、p電極10が 透光性を有している。発光出力は、電極における光の吸収により実施例1と比較すると約 20%減少していた。

[比較例2]

実施例1において、p電極10として、NiとPtとを200オングストロームの膜厚 で積層する他は、同様にして発光ダイオード素子を得た。得られた素子は、p電極10が 透光性を有している。発光出力は、電極における光の吸収により実施例1と比較すると約 20%減少していた。

「比較例3]

実施例1において、p電極10として、Rhのみを400オングストロームの膜厚で積層 する他は、同様にして発光ダイオード素子を得た。得られた素子は、p電極10が透光性 を有している。発光出力は、電極における光の吸収により実施例1と比較すると同等であ ったが、Vfが約0.1V上昇した。

【産業上の利用可能性】

[0071]

本発明は、窒化物半導体(In_XAl_YGa_{1-X-Y}N、0 X、0 Y、X+Y 1)からなる素子に係わり、特に、p型窒化物半導体層に形成される電極に関する。 【図面の簡単な説明】

【0072】

40

【図1】TLM法を用いて測定した比接触抵抗(Rhを1としたときの比)である。 【図2】本発明の一実施形態に係る窒化物半導体素子の構造を示す模式断面図である。 【図3】本発明の一実施形態に係る窒化物半導体素子の構造を示す上面から見た平面図で ある。 【図4】本発明の一実施形態に係る窒化物半導体素子の構造を示す斜視図である。

【図5】本発明の一実施形態に係る窒化物半導体素子の構造を示す模式断面図である。

【図6】本発明の一実施形態に係る窒化物半導体素子の電極構造を示す模式図である。

【図7】本発明の一実施形態に係る窒化物半導体素子の構造を示す斜視図である。

【図8】本発明の一実施形態に係る窒化物半導体素子の構造を示す模式断面図である。

【図9】本発明の一実施形態に係る窒化物半導体素子の構造を示す模式図である。

(14)

【符号の説明】

【0073】

1...基板、2...バッファ層、3...AlGaN層、4...n型コンタクト層、5...第1のn型 窒化物半導体層、6...第2のn型窒化物半導体層、7...活性層、8...p型半導体層、9... p型コンタクト層、10...p電極、11...pパッド電極、12...n電極

【図1】

第1層	Rh	Rh	Rh	Rh	Rh
第2層	無し	Ir	Pt	Ru	Au
接触抵抗	比1.00	0.40	1.10	1.00	0.54

【図2】

【図3】

(16)

【図7】

フロントページの続き

(56)参考文献 特開2002-164575(JP,A) 特開2001-84575(JP,A) 特開2000-1845477(JP,A) 特開平11-204887(JP,A) 特開平06-204887(JP,A) 特開平06-204887(JP,A) 特開平10-35705(JP,A) 特開平10-35705(JP,A) 特開平10-247747(JP,A) 特開平10-247747(JP,A)

(58)調査した分野(Int.Cl., DB名)

H01L 21/28-21/288、21/44-21/445、29/40-29/49、 29/872、33/00-33/64、 H01S 5/00- 5/50、 JSTPlus(JDream2)、 CiNii