(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2005/043302 A2

(51) International Patent Classification’: GO6F (81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

(21) International Application Number: AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

PCT/US2004/034621 CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, F,

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,

(25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(43) International Publication Date

12 May 2005 (12.05.2005)

(22) International Filing Date: 20 October 2004 (20.10.2004)

26) Publication L : English
(26) Publication Language NEns (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTPO (BW, GH,

(30) Priority Data: GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
10/691,109 20 October 2003 (20102003) USsS ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
(71) Applicant (for all designated States except US): TRAN- FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SWITCH CORPORATION [US/US]; 3 Enterprise Drive, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Shelton, CT 06484 (US). GW, ML, MR, NE, SN, TD, TG).
Published:

(72) Inventors: CONTA, Alex; 329 Dundee Road, Stamford,
CT 06903 (US). VARADA, Shrihari; 60 Heather Ridge,
Shelton, CT 06484 (US).

— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agents: GORDON, David, P. et al.; 60 Long Ridge Road, ance Notes on Codes and Abbreviations" appearing at the begin-
Suite 407, Stamford, CT 06902 (US). ning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND APPARATUS FOR IMPLEMENTING MULTIPLE TYPES OF NETWORK TUNNELING IN A
UNIFORM MANNER

7043302 A2 | IO R A

iy (57) Abstract: A uniform method for implementing multiple tunneling protocols in a switch or router is disclosed. The method is
& based on the realization that although the tunneling protocols are very different, they do share a similar overall structure which can
& be exploited to create a unified method of dealing with multiple protocols. By using similar data structures to implement multiple
protocols, the invention makes data management and programming simple and, therefore, cost effective. According to the invention,
all tunneling protocols are abstracted as the mapping of input L2 or L3 streams with output L2 or L3 streams. Mapping is provided
by a finite set of tunnel interfaces. The tunnel interfaces map the input streams to output interfaces. As traffic streams flow through
g these interfaces, they are processed according to defined attributes of these interfaces.

WO 2005/043302 PCT/US2004/034621

METHODS AND APPARATUS FOR IMPLEMENTING MULTIPLE TYPES OF
NETWORK TUNNELING IN A UNIFORM MANNER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to datacommunications. More particularly, the invention relates
to methods and apparatus for tunneling different types of data packets over different types
of networks.

2. State of the Art

Tunneling is a process whereby a data packet is encapsulated in another packet before
traversing a network. There are two primary uses for tunneling. One use is to transport one
type of packet over a network designed for another type of packet, e.g. Ethernet over ATM.
Another application for tunneling is referred to as Virtual Private Networking, a process
whereby a secure encrypted (or non-secure) connection is created across a public network
through the use of tunneling.

Currently there are a wide variety of tunneling protocols. Some are platform and/or
network dEpendent. Among the most popular protocols are: IP (Internet Protocol) over IP,
IP over MPLS (multiprotocol label switching), Ethernet over MPLS, and L2TP (layer two
tunneling protocol). ‘

A Virtual Private Netwofk (VPN) consists of two or more nodes connected by
“virtual links”, i.e. tunnels, through a public network such as the Internet. From the point of
view of the nodes, the tunnel operates as a point to point link and the tunneling protocol
operates as a link layer protocol.

By definition, a tunnel exists between two nodes. One node is referred to as the entry
node and the other is referred to as the exit node. A tunnel is unidirectional. Bi-directional
tunneling is achieved by pairing two tunnels. These are referred to as the “direct tunnel” and
the “reverse tunnel”. The two tunnels may traverse different nodes in the network or the
tunnels may be symmetrical, i.e. traverse the same nodes in both directions.

Generally speaking, the tunneling process involves the processing of headers attached
to data packets. For example, at the entry node one or more tunnel headers are pre-pended to

the data packet. As the packet traverses the tunnel, intermediate nodes in the tunnel process

WO 2005/043302 PCT/US2004/034621

the packet according to the tunneling protocol. For example, in IP over IP tunneling,
intermediate nodes perform IP header processing and IP packet forwarding. In an MPLS
tunnel, intermediate nodes perform MPLS label processing and MPLS packet forwarding. At
the exit node, destination node processing is performed. For example, in an IP over IP tunnel,
the exit node reassembles IP packet fragments and processes the reassembled packets
according to their original (inner) headers. The processing of headers or other packet
information is performed with the aid of a database. The header information is used as a key
to lookup a matching entry in the database to yield an output port. The following is a more

detailed explanation of how IP, MPLS, and L2TP tunneling operate.

IP over IP Tunneling
Each node in an IP tunnel maintains a “Forwarding Information Base” (FIB) which

contains a plurality of entries. Each entry includes an IP address of a host or an IP prefix of
one or more networks as well as information about the “Next Hop Routers” through which
the destination host or network can be reached. (As used herein, the term router is meant to
include switches as well as routers.) The Next Hop information consists of an IP address of
the Next Hop router, the IP interface on which the Next Hop Router is reachable, and
possibly more information such as a Layer 2 address. The FIB entries are typically built
based on routing information disseminated dynamically by IP Routing Protocols. However,
entries can also be built based on information statically configured into the router. Some
routers may have multiple FIBs.

IP packet forwarding is performed hop by hop. Each router in the tunnel uses the
FIB information to find the best possible Next Hop router to forward an IP packet on its way
to the final destination. The identity of the best possible Next Hop Router for forwarding an
IP packet is determined by comparing the packet’s destination IP address with the IP
addresses and prefixes in the FIB. The FIB entry having the IP address or prefix which
matches or most closely matches the destination IP address of the packet identifies the best
possible Next Hop router. This comparison is referred to as the Longest Prefix Match. The
Longest Prefix Match yields an output “IP interface” which is used to forward the packet.

The “IP interface” (IF) is an abstraction of the IP functions on a physical or logical
port of a router or switch. It leads to the identification of the egress port through the binding
relation with the Layer 2 interface and performs the needed IP functions to pass the packet

WO 2005/043302 PCT/US2004/034621

3

through the port. The IF is usually configured by the router operator with information which
is relevant to the IP protocol processing performed by the router.

Each router used in IP over IP tunneling also maintains an “IP Tunnel Interface” (TIF)
for each tunnel serviced by the router. The TIF is an abstraction of IP over IP tunnel
functions on a physical or logical port of a router. It identifies the entry and exit nodes for
the tunnel. Usually, it is configured by the router operator.

Tunnels may be static or dynamic. A static tunnel uses the same set of routers and
takes the same route through the network all the time. A dynamic tunnel can take different
routes through the network based on network conditions or tunnel programming. Most IP
tunnels are dynamic and use the best route available based on network congestion or time of
day.

When a packet reaches its final destination, the exit node outer strips the tunnel
header(s) from the packet. The remaining inner header is an IP header, and therefore, the
packet is passed to an IP processing engine which performs an IP lookup on the inner IP
header, i.e. the IP destination address. This lookup may yield an outgoing interface, if the
packet is to be forwarded, or may indicate local consumption, if the router itself is the final
destination. The router itself may be the final destination when the packet contains

command/control information.

MPLS Tunnelin
The key concept in MPLS tunneling is identifying and marking packets with labels

and forwarding them to a router which then uses the labels to forward the packets through the
network. The labels are created and assigned to packets by a Label Distribution Protocol
(LDP) based upon the information gathered from existing routing protocols or some other
method.

An MPLS tunnel includes a plurality of interconnected Label Switch Routers (LSRs).
At least some of the LSRs are coupled to Label Edge Routers (LERs). An MPLS tunnel is
also referred to as a Label Switched Path (I.SP) from an input LER through LSRs to an output
LER. When a packet arrives at an LER, the LER extracts the datagram (the data portion of a
packet) and the routing information from the packet and assigns a label to the datagram based
on routing information. The datagram with the label is then sent to an LSR based on the label.

The LSR which receives the datagram forwards it on through the network based on the label.

WO 2005/043302 PCT/US2004/034621

4

An LSP is a set of LSRs that packets belonging to a certain FEC (forwarding
equivalence élass) travel in order to reach their destination. Each LER in an MPLS tunnel
(LSP) has an Incoming Label Map (ILM). The ILM specifies the action to take when a
labeled packet is received. Each entry defines an incoming label, a label operation, and a link
to a Next Hop Label Forwarding Entry (NHLFE). The ILM is built based on label
distribution information disseminated by a Label Distribution Protocol (LDP) engine.

Each LER in the MPLS tunnel (LSP) has an FEC-to-NHLFE Map (FIN). The FTN
specifies the action to take when an unlabeled packet is received. Each entry in the FTN
defines a set of characteristics used to categorize the packet, and a link to an NHLFE. The
FTN is also built based on information disseminated by a Label Distribution Protocol (LDP)
engine.

An NHLFE specifies “how to” forward a packet. It defines an outgoing label, a label
operation, a next hop IP address, and an output interface. It may also specify an MPLS label
stack. The label stack identifies a series of labels to push on a labeled packet in the process of
forwarding the packet on an LSP segment. The NHLFE is built based on label distribution
information disseminated by a Label Distribution Protocol (LDP) engine.

Simple label forwarding is realized by pointing an ILM entry to an NHLFE, and
applying a label swap. This is referred to as the MPLS label swapping/forwarding function.
An LSP is originated by pointing an FTN entry to a NHLFE, and applying a label push. This
is referred to as the LSP entry function. An LSP is terminated by not pointing an ILM entry
to any NHLFE, and applying a label pop at input. Terminating the LSP does not guarantee
that the packet will be consumed by the local node. The packet is forwarded using the
exposed label or IP header. The collection of ILMs and related NHLFEs are collectively
called the MPLS Label Information Base or LIB.

L2TP Tunnelin:
The L2TP (layer two tunneling protocol) is an extension to PPP (point-to-point

protocol) that enables ISPs to operate Virtual Private Networks (VPNs). L2TP works with
UDP (user datagram protocol) and IP drivers. L2TP uses a “tunnel list” which is analogous
to an MPLS LIB. When a packet is received from a PPP link, part of the PPP header is
stripped off and replaced with an L2TP header which includes tunnel and session IDs. The
packet is sent to an L2TP tunnel by writing to a UDP driver with IP interface data and the

WO 2005/043302 PCT/US2004/034621

end point IP address. At the end of the tunnel, data is read from a UDP port. The tunnel ID,
session ID, and packet flags are extracted. The data is then formatted and written to a PPP
link associated with the session. L2TP provides a “one hop” virtual PPP link which spans a
multi-hop IP path.

From the foregoing it will be appreciated that the different tunneling protocols process
packets in very different ways. State of the art routers which are intended to support
different types of tunneling have separate processing engines for each supported tunneling
protocol. Depending on the number of tunneling protocols to be implemented, the router

may not be cost effective from the perspective of resources, design time and maintainability.

)

SUMMARY OF THE INVENTION

It is therefore an object of the invention to implement multiple tunneling protocols in
a switch or router.

It is also an object of the invention to implement multiple tunneling protocols in a
switch or router in a cost effective way.

It is another object of the invention to implement multiple tunneling protocols in a
switch or router using the fewest possible resources.

It is still another object of the invention to implement multiple tunneling protocols in
a switch or router with efficient design time.

It is also an object of the invention to implement multiple tunneling protocols in a
switch or router which is easy to maintain.

Another object of the invention is to implement multiple tunneling protocols in a
switch or router using a single general processing engine.

In accord with these objects which will be discussed in detail below, the present
invention provides a uniform method for implementing multiple tunneling protocols in a
switch or router. The invention is based on the realization that although the tunneling
protocols are very different, they do share a similar overall structure which can be exploited
to create a unified method of dealing with multiple protocols. By using similar data structures -
to implement multiple protocols, the invention makes data management and programming

simple and, therefore, cost effective.

WO 2005/043302 PCT/US2004/034621

6

According to the invention, all tunneling protocols are abstracted as the mapping of
input L2 or L3 streams with output L2 or L3 streams. An L2 or L3 interface is an abstraction
of a physical or logical port in a router. According to the inventioﬁ, mapping is provided by a
finite set of tunnel interfaces. Each tunnel interface is a logical entity that is characterized by
a set of tunnel specific attributes; these attributes include, for example, the parameters
identifying tunnel end points. At the tunnel origination or termination point in the network,
incoming streams arriving on an input port are mapped to tunnel interfaces. The tunnel
interfaces, in turn, map the streams to output interfaces. As traffic streams flow through
these interfaces, they are processed according to defined attributes of these interfaces. The
interface attributes are tunnel end-point specific (i.e., start or end of a tunnel). Mapping is
performed by using context data in an arriving packet as a search key to a database.

At tunnel origination, e.g., the tunnel entry-point node, for all types of tunnels
considered by this invention, a first database lookup identifies a tunnel interface appropriate
for the packet processing. Once the tunnel interface is selected, the processing continues
according to information associated with the tunnel interface. In the case where the tunnel is
layered over IP, there are two options. In the first option, the output interface information is
cached. Caching the output interface information requires a refresh, in case forwarding
information base updating results in changing the path to a different next hop router. In the
second optioh, a second database lookup is employed, on an FIB associated with the tunnel
interface, to find the best choice for the outgoing IP interface. In cases where applicable and
necessary, I[P segmentation and re-assembly of packets is performed to meet the MTU
(maximum transmission unit) requirements of the interface.

At tunnel termination, e.g., the tunnel exit-point node, for all types of tunnels
considered by this invention, a first database lookup identifies the end of the tunnel and an
interface associated with the type of processing of the inner header remaining after tunnel
header decapsulation. The inner header of the packet, and a database associated with the
interface identified by the first database lookup may be used to perform a second lookup,
yielding the outgoing interface for the packet.

The methods of the invention provide similar structuring of processing engines for all
supported tunneling protocols. For example, for each supported protocol, the invention
provides an input interface, an output interface, an information base, a mapping tunnel

interface and a mapping information base.

WO 2005/043302 PCT/US2004/034621

7

The invention also provides an API for programming the host processor of a router or

switch to perform the methods of the invention.
Additional objects and advantages of the invention will become apparent to those

skilled in the art upon reference to the detailed description taken in conjunction with the

provided figures.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a high level schematic diagram illustrating the mapping of input, output and

tunnel interfaces according to the invention;

Figure 2 is a high level schematic diagram illustrating tunnel origination processing

according to the invention;

Figure 3 is a high level schematic diagram illustrating tunnel termination processing

according to the invention;

Figure 4 is a table comparing the interfaces and information databases for the transmit

side of four types of tunnels; and

Figure 5 is a table comparing the interfaces and information databases for the receive

side of four types of tunnels.

BRIEF DESCRIPTION OF THE APPENDIX
The appendix includes a source code description of an API useful for implementing

the methods of the invention.

/*

** This header file defines typedefs, constants, and functions

*% that apply to the Transwitch Tunnel Interface Management API.
*/

#ifndef TXC TUNNEL H_

#define TXC TUNNEL H

#ifdef cplusplus

extern "C"

#endif

/*

*# Transwitch definitions

*/

typedef char TXC char8 t;
typedef unsigned char TXC uchar8 t;

typedef char TXC int8 t;

WO 2005/043302 PCT/US2004/034621

typedef short TXC intl6_t;
typedef int TXC int32 t;
typedef long long int TXC_int64 t;
typedef unsigned char TXC uint8 t;
typedef unsigned short TXC uintl6 t;
typedef unsigned int TXC uint32 t;
typedef unsigned long long long long int TXC uint128 t;
/*

** API function call return code

*/
typedef TXC uint32 t TXC_error_t;

/*

* Interface ID

*/
typedef TXC uint32 t TXC_IfID t;
/*

** Information Base (FIB, LIB, TSIB, SIB) Identifier

*/
typedef TXC uint32 t TXC_InfoBaselD t;
/*

** IPv4 and IPv6 Addresses

*/
typedef TXC uint32 t TXC _IPv4Address t;
typedef TXC unitl128 t TXC _IPv6Address t;
/*

** MPLS Label Stack

*/
typedef struct {
TXC int32_t numLabels; /* Number of labels */
TXC int32 t *labelStack; /* Stack of labels */

} TXC_MPLS_LabelStack t;

/*
** Tunnel Interface Attributes
*/
typdef struct {
TXC IfType t Interface_type;
union {
TXC_IfTunnellPv4 t TunnellPv4; /*IPv4 in IPv4 */

TXC_IfTunnellPv6 t TunnellPv6; /*IPv6 in IPv6 */
TXC_IfTunnellPMpls_t TunnellMPLS;/* IP over MPLS*/
TXC_IfTunnelEthernetMPLS_t TunnelEMPLS;/* Ethernet/MPLS */
JRR

}f TunnelGeneric t;

/*

bk IPv4 Tunnel Interface attributes.
*/

typedef struct {

WO 2005/043302 PCT/US2004/034621

9

uint8_tTunnelProtocol; /* IPv4 in IPv4 Protocol */

uintl6_t mtu; /* Tunnel Max Transmission Unit */
/* IPv4 MTU - IPv4 header size*/
uint8_t NumberHops; /* IPv4 Tunnel Number of Hops*/

[Pv4Addr t Tunnel IPv4SrcAddr;
/* Tunnel Entry Node Address */
IPv4Addr_t Tunnel IPv4DstAddr;
/* Tunnel Entry Node Address *

} TXC_IfTunnellPv4 t;

/*
ok IPv6 Tunnel Interface attributes.
*/
typedef struct {
TXC uint8_t TunnelProtocol; /* IPv6 in IPv6 Protocol */
TXC uintl6 t mtu; /* Tunnel Max Transmission Unit */
: /* IPv6 MTU - IPv6 header size*
TXC uint8 t NumberHops; /* IPv6 Tunnel Number of Hops*/

TXC IPv6Addr t Tunnel IPv6SrcAddr;
/* Tunnel Entry Node Address */
TXC IPv6Addr t Tunnel IPv6DstAddr;
/¥ Tunnel Entry Node Address */
} TXC IfTunnellPv6_t;
/*
** MPLS Tunnel Interface attributes.
*/
typedef struct {
TXC uintl6 t mtu; /* Tunnel Max Transmission Unit */
/* MTU - MPLS header size*
TXC_uint8_t NumberHops; /* MPLS Tunnel Number of Hops*/
TXC _MPLS_ LabelStack t LabelStack;
/* MPLS Label Stack */
} TXC IfTunnelMPLS

)
ok L2TP Tunnel Interface attributes.
*/
typedef struct {
TXC_uint32 t hellolnterval; /* Hello Interval */
TXC uint32 t idleTimeout; /* Idle Timeout */
TXC_uint32 t receive WindowSize;/* ReceiveWindowSize */*
TXC uint32 t retransMax; /* Max retrans */

TXC uint32 t retransTimeoutMax;/* Max retrans timout*/
TXC uint32 t reasTimeout; /* reassembly timeout */
union {

TXC IfTunnellPv4 t Ipv4lf;
TXC_IfTunnellPv6_t Ipv6lf;

}

WO 2005/043302 PCT/US2004/034621

10

} TXC IfTunnelL2TP
/*
** Tunnel Interface Types
*/
typedef enum {
TXC_IF_TYPE IPVA4Tunnel=1, /* IPv4 Tunnel interface */
TXC_IF_TYPE _IPV6Tunnel=2, /* IPv6 Tunnel interface */
TXC_IF_TYPE IPMPLSTunnel=3, /* IP/MPLS Tunnel interface */
TXC_IF_TYPE EthMPLSTunnel=4 /* Ethernet/MPLS Tunnel interface®/
} TXC IfType_t;
/*
** IPv4 Tunnel Source and Destination Address definitions.
*/
typedef struct {
TXC IPv4Addr t IPv4Tunnel SrcAddr;
TXC IPv4v4Addr t IPv4Tunnel DstAddr;
} TXC IPv4TunnelAddr t;
[
** IPv6 Tunnel Source and Destination Address definitions.
*/
typedef struct {
TXC IPv6Addr t IPv6Tunnel SrcAddr;
TXC Ipv6v4Addr t IPv6Tunnel DstAddr;
} TXC IPv6TunnelAddr t;
typdef struct {
union {
TXC_IPv4TunnelAddr_t IPv4AddrPair;
TXC IPv6TunnelAddr t IPv6AddrPair;
i
} TXC IPTunnelAddr t;
/*
** Function to set an IP (IPv4, or IPv6) Tunnel Source and Destination ** Nodes Address
*/
TXC error t TXC IfTunnellPv4AddrSet(
TXC uint32 t n_interfaces,
TXC_IfID t *if IDArray,
TXC IPTunnelAddr t *if IPTunnelAddrArray);
/*
** Function to set MPLS Tunnel Label Stacks on a set of Interfaces
*/
TXC error_ t TXC IfTunnelMPLSSet(
TXC uint32 t n_interfaces,
TXC IfID t *if IDArray,
TXC_MPLS_LabelStack t *if MPLSLabelStackArray);
/*
** Function to set the Number of Hops of a Tunnel
*/)

WO 2005/043302 PCT/US2004/034621

11

TXC_error_t TXC_IfTunnelNumberHopsSeetSet(
TXC_uint32_t n_interfaces,
TXC_IfID t *if IDArray,
TXC_uint8 t *if TunnelNumberHopsArray);

/*

** Function to associate an IP FIB, an MPLS LIB, TSIB or SIB
*/

TXC error t TXC_ IfInfoBaseSet(
TXC uint32_t n_interfaces,
TXC IfType t *if TypeArray,
TXC IfID t *if IDArray,

TXC Info ID t *if Info IDArray);

/*

** Function to set L2TP interface attributes
*/

TXC error t TXC_IL2TPAttrSet(
TXC IfID t if ID,

TXC uint32 t helloInterval,
TXC uint32 t idleTimeout,
TXC uint32 t receiveWindowSize,
TXC uint32 t retransMax,
TXC uint32_t retransTimeoutMax,

TXC uint32_t reasTimeout);
/*

* Error codes returned to function calls invocations

*/

#define TXC_TUNNEL_BASE_ERR=256

/* Invalid parameter */

#define TXC_IF_E_INVALID PARAM ((TXC_IfErrorType t)
TXC_TUNNEL_BASE ERR-+1)

/* Invalid Interface Type */

#define TXC_IF_E INVALID IF TYPE ((TXC_IfErrorType_t)
TXC_TUNNEL_BASE_ERR+2)

/* Array length <= 0 or too big */

#define TXC_IF_E_BAD ARRAY LENGTH ((TXC IfErrorType t)
TXC_TUNNEL_BASE_ERR+3)

/* Invalid MTU specification */

#define TXC_IF_E_INVALID MTU ((TXC_IfErrorType _t)
TXC_TUNNEL_BASE ERR+4)

/* Invalid FIB ID */

#define TXC_IF_E INVALID FIB ID ((TXC_IfErrorType t)
TXC_TUNNEL_BASE ERR+5)

/* Invalid LIB ID */

#define TXC_IF_E INVALID LIB ID ((TXC_IfErrorType t)
TXC_TUNNEL_BASE ERR+6)

/* Invalid TSIB ID */

WO 2005/043302 PCT/US2004/034621

12

#define TXC_IF_E INVALID_TSIB_ID ((TXC_IfErrorType_t)
TXC_TUNNEL_BASE _ERR+7)

/* Invalid SIB ID */

#define TXC_IF_E INVALID_SIB_ID ((TXC_IfErrorType_t)
TXC_TUNNEL_BASE_ERR+8)

/* Invalid Number of Hops value */

#define TXC _IF_E_INVALID NUMBER_HOPS((TXC_IfErrorType_t)
TXC_TUNNEL_BASE ERR+9)

/* Invalid Tunnel Source Address */

#define TXC_IF_E INVALID TUNNEL_SRCADDR ((TXC_IfErrorType_t)
TXC TUNNEL_BASE ERR+10)

/* Invalid Tunnel Destination Address */

#define TXC IF_E INVALID TUNNEL_DSTADDR ((TXC_IfErrorType_t)
TXC _TUNNEL_BASE_ERR+11)

/* Invalid L2TP Tunnel Interface Attribute */

#define TXC IF_E INVALID L2TP_ATTR ((TXC_IfErrorType_t)

TXC _TUNNEL_BASE_ERR+12)

#ifdef _ cplusplus

}

#endif

#endif /4 TXC_TUNNEL_H_*/
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to Figure 1, input and output streams are mapped to tunnel interfaces
as relational sets. More particularly, input L2 streams iL.21-iL.2n are treated separately from
input L3 streams iL31-iL3n. Separate sets of tunnel interfaces T1-Tm are provided for the
L2 and L3 traffic. Output L2 streams eL.21-eL2n are treated separately from output L3
streams el.31-eL.3n. However, as seen in Figure 1, streams that enter the router as L2 may
exit as L3 streams and vice versa. As shown in Figure 1, input L2 streams are mapped to
tunnel interfaces T by forwarding function f2i and input L3 streams are mapped to tunnel
interfaces T by forwarding function f3i. L2 tunnel interfaces are mapped to L2 output
interfaces eL.21-eL.2n by forwarding function f2e and L3 tunnel interfaces are mapped to L3
output streams by forwarding function f3e. Forwarding function £23e maps input L2 streams
from their tunnel interface to an output L3 stream and forwarding function f32e maps input
L3 streams from their tunnel interface to an output L2 interface.

The relationship of the streams and interfaces shown in Figure 1 can be described as a
relationship between sets as defined by the forwarding functions. For example:

F2i:iL2 maps to T, given iL2 and T don’t belong to null sets;
F2e: T maps to eL.2, given T and eL.2 don’t belong to null sets;

WO 2005/043302 PCT/US2004/034621

13

F23e: T maps to eL3, given T and eL.3 don’t belong to null sets;
F3i:iL.3 maps to T, given iL3 and T don’t belong to null sets;

F3e: T maps to eL3, given T and eL3 don’t belong to null sets; and
F32e: T maps to eL2; given T and eL.2 don’t belong to null sets.

The mapping (forwarding function) is performed with the aid of context data that a
packet (unit of traffic in a stream) carries or is associated with and database information
which is configured and updated by a local host.

Turning now to Figure 2, the tunnel origination processing according to the invention
is illustrated with respect to input and output L2 and L3 interfaces, tunnel interfaces,
associated databases, and forwarding functions (data base lookups). As an IP packet arrives
from an IP interface 10, its destination address is retrieved and used as search key by the
forwarding function IP forwarding Lookup 110 to find the longest prefix match in the
forwarding information base FIB 210. The forwarding information base lookup yields a
particular tunnel interface, e.g. IP in IP tunnel interface 20 or MPLS tunnel interface 22. The
tunnel interface points to either an L3 interface 30 or an L2 interface 32.

In the case of IP in IP tunneling, an IP header (the tunnel header) is constructed based
on information held in the tunnel interface 20. The IP header is prepended to the packet by
the encapsulation engine 21. If the IP output information is cached, the tunnel interface 20
will provide the information pointing to output interface 30, and the packet will be forwarded
directly to that interface. If output interface caching is not used, the tunnel interface 20
provides an association with an FIB. This FIB can be an FIB 220 specific to this interface, or
it can be the FIB 210 used by all IP interfaces 10. The L3 processing employs an IP lookup
mechanism 110 to search this FIB. The IP header information from the tunnel header is used
in this search. This lookup yields the output interface 30 to which the packet is forwarded.

In the case of IP over MPLS, an MPLS header (tunnel header) is prepended to the
packet based on information held in the tunnel interface 22. The tunnel interface 22 provides
the Output Label, or a stack of Output Labels, that are stored in this header by the
encapsulation engine 23. The resulting packets are then forwarded to the L2 Interface 32.

When packets arrive at PPP interface 12, the PPP context information is used as a
search key by the PPP forwarding lookup 112 into the TSIB (tunnel session information
base) 212. This yields an L2TP tunnel interface 24 which points to an L3 output interface

34.

WO 2005/043302 PCT/US2004/034621

14

In the case of L.2TP tunneling, a set of headers, collectively called the L2TP header, is
created based on information from the L2TP tunnel interface 24 and are prepended to the
packet by the encapsulation engine 25. If the L3 (IP) or L2 output interface information is
cached, the L2TP tunnel interface 24 will provide the information pointing to that output
interface 34. If output interface caching is not used, the L2TP tunnel interface 24 provides an
association to the FIB 222, which the L3 forwarding engine IP lookup 110 will search. The
L2TP interface may have its own FIB 222 or there may be only one FIB 210 in the entire
system.

When Ethernet packets arrive at the Ethernet interface 14, the Ethernet MAC and/or
VLAN tag is retrieved and used as search key by the Ethernet forwarding lookup 114 to
search the switching information base SIB 214. This points to an MPLS tunnel interface 26
which points to an L2 interface 36. The MPLS tunnel interface 26 provides the Output Label
or a Stack of Labels, which are filled out in the MPLS header prepended to the packet by the
encapsulation engine 27. The resulting packets are forwarded to the output L2 Interface 36.

As shown in Figure 2, the tunnel interfaces are marked “IP in IP Tunnel Interface”,
“MPLS Tunnel Interface” (for IP), “L2TP Tunnel Interface”, and “MPLS Tunnel Interface”
(for Ethernet). These are just the “type” of interfaces, but for each type, there can be many
interfaces, for example many “IP in IP”, or many “MPLS” interfaces.

Figure 3 illustrates tunnel termination processing according to the invention.

The input interface 50 is the terminus of all IP tunnels and L2TP tunnels. The IP
forwarding lookup 110 uses the received packet header information to perform an IP lookup
of the FIB 250 which yields the tunnel termination interface 60 or 62. If the packet exits the
tunnel through the IP in IP tunnel interface 60, the IP tunnel header is dropped, exposing the
inner IP header. The inner IP header is processed by the decapsulation engine 61. The
Tunnel interface 60 is associated with its own FIB 260, or a single system FIB 210. A
second IP lookup 110 is performed on this FIB, which yields an L3, or L2 output interface 70
on which the packet is forwarded

In the case of L2TP tunnels, the IP forwarding lookup 110 searches the FIB 250 (if a
separate FIB is provided or FIB 210 if a single FIB is shared with other lookup functions),
which yields the L2TP tunnel termination interface 62, and an indication of the L2TP tunnel
termination processing type. The IP header and UDP header are dropped by the

decapsulation engine, exposing the L2TP header. Tunnel ID and Session ID information from

WO 2005/043302 PCT/US2004/034621

15

this header is used to perform a second lookup 162, on the L2TP information data base 262
which yields the PPP output interface 72 to which the packet is forwarded.

The interface 52 is the terminus of all MPLS tunnels. The decapsulation engine 53
uses the incoming packet’s label information to perform a first (MPLS) lookup 152 on the
LIB 252 associated with the MPLS input interface 52. This yields one of the following:

a virtual connection (VC) ID, and its attached Ethernet interface 62,

a virtual LAN ID, or a destination MAC address, and the attached Ethernet interface
62, or

an IP interface 66.

For Ethernet over MPLS, after popping the MPLS label, the inner Ethernet header is
exposed. The Ethernet interface 62 has an associated data base SIB 262 (or 214, if there is
only one SIB in the system). The information from the Ethernet header is used for a second,
Ethernet, lookup which is performed on this data base 262 or 214. This yields the output
interface 74 to which the packet is forwarded.

For IP over MPLS tunnels, after popping the MPLS label, the inner IP header is
exposed. The information in the IP header is used for a second, IP lookup 110. This is
performed on the FIB 266 associated with the IP interface 66 (or 210 if there is only one FIB
in the system) which points to L3 or L2 output interface 76.

From the foregoing, it will be appreciated that the methods described thus far enable
the implementation of four different kinds of tunnels using similar data structures for each.
Figure 4 and Figure 5 illustrate the corresponding data structures.

As shown in Figure 4, for Tunnel Origination (Tunnel Entry) processing, the
invention provides for each protocol an “input interface”, an “input information database”, a
“mapping transmit interface”, a “mapping information database”, and an “output interface”.
The “mapping transmit interface” is the transmit side of the tunnel interface.

In the case of IP over IP tunnel origination, the input interface is an IP interface, the
input information database is an FIB, the mapping transmit interface is an IP in IP transmit
tunnel interface, the mapping information database is optional and may be an FIB, and the
output interface is an IP or L2 interface.

In the case of L2TP tunnel origination, the input interface is a PPP interface, the input

information database is a TSIB, the mapping transmit interface is an L2TP transmit tunnel

WO 2005/043302 PCT/US2004/034621

16

interface, the mapping information database is optional and may be an FIB, and the output
interface is an IP or L2 interface. .

In the case of IP over MPLS tunnel origination, the input interface is an IP interface,
the input information database is an FIB, the mapping transmit interface is an MPLS transmit
tunnel interface, there is no mapping information database, and the output interface is an L.2
interface.

In the case of Ethernet over MPLS tunnel origination, the input interface is an
Ethernet interface, the input information database is an SIB, the mapping transmit interface is
an MPLS transmit tunnel interface, there is no mapping information database, and the output
interface is an L2 interface.

As shown in Figure 5, for Tunnel Termination (Tunnel Exit) processing, the invention
provides for each protocol an “input interface”, an “input information database”, a “mapping
receive interface”, a “mapping information database” and an “output interface”. The
“mapping receive interface™ is the receive side of the tunnel interface.

In the case of IP over IP tunnel termination, the input interface is an IP interface, the
input information database is an FIB, the mapping receive interface is an IP in IP receive
tunnel interface, the mapping information database is an FIB, and the output interface is an IP
or L2 interface.

In the case of L2TP tunnel termination, the input interface is an IP interface, the input
information database is an FIB, the mapping receive interface is an L2TP receive tunnel
interface, the mapping information database is a TSIB, and the output interface is a PPP
interface.

In the case of IP over MPLS tunnel termination, the input interface is an MPLS
interface, the input information database is an LIB, the mapping receive interface is an IP
interface, the mapping information database is an FIB, and the output interface is an IP or L2
interface.

In the case of Ethernet over MPLS tunnel termination, the input interface is an MPLS
interface, the input information database is an LIB, the mapping receive interface is an
Ethernet interface, the mapping information database is an SIB, and the output interface is an
Ethernet interface.

According to the present implementation of the invention, tunnel interfaces are of two

types. One type is referred to as a “transmit” interface, which is associated with entering the

WO 2005/043302 PCT/US2004/034621

17

tunnel. The other is referred to as a “receive” tunnel interface, which is associated with
exiting the tunnel. Each “end” of a tunnel will use at least a transmit tunnel interface (entry in
tunnel), or a receive tunnel interface (exit from tunnel). Bidirectional tunnels will have both
types of interface at each end.

The transmit tunnel interface is characterized by the following parameters: tunneling
protocol, encapsulation header field values, such as local source address, remote destination
address, hop limit, and tunnel MTU (for IP in IP, or L2TP), or MPLS output label(s), L2TP
header fields.

According to the illustrated embodiment, four protocols are supported: IP in IP
(where IP can be either IPv4 or IPv6), IP over MPLS, Ethernet over MPLS, and L2TP. For
IP in IP (IPv4 and IPv6) and L2TP the local source address is the address of tunnel entry
node, the remote destination address is the address of the tunnel exit node, and the hop limit
is the number of hops or “time to live” set in the tunnel header. The tunnel MTU is the
parent interface MTU less the tunnel header size.

The “receive” tunnel interface requires fewer parameters. The invention provides
similar structuring of Tunnel Interfaces (receive interfaces and transmit interfaces) and similar
logical linking between data structures used for input packet processing. The receive interface
yields the structure used for IP lookup (FIB) or MPLS label mapping (LIB), or L2TP Tunnel
and Session ID mapping (TSIB)), and similar logical linking between data structures used for
output packet processing. The transmit interface provides the information about the
encapsulation of the packet, tunnel IP header source and destination addresses, or MPLS
Labels, or L2TP IP source and destination addresses.

Turning now to the Appendix, the tunnel transmit interface is characterized by the
following basic parameters:

Tunneling protocol - the tunneling protocol can be IPv4 in IPv4, IPv6 in IPv6, GRE,
etc.,...

Local source address — address of tunnel-entry node

Remote destination address — address of tunnel-exit node

Hop limit — the number of hops or time to live set in the tunnel header

Tunnel MTU - the parent interface MTU less the tunnel header size.

IPv4 tunnel interface attributes are illustrated at lines 82-95 of the Appendix and IPv6
tunnel interface attributes are illustrated at lines 96-113 of the Appendix. IPv4 source and

WO 2005/043302 PCT/US2004/034621

18

destination address definitions are illustrated at lines 159-166 and IPv6 source and destination
address definitions are illustrated at lines 167-174 of the Appendix. The function to set IP
source and destination address is illustrated at lines 182-190 of the Appendix.

A tunnel interface for MPLS tunneling can be created only if a layer 2 interface exists,
with at least one child layer 3 interface. For MPLS tunnels, the transmit interface holds the
MPLS encapsulation information — label stack, and actions to be performed. The MPLS
receive interface is associated with !
an LIB. It receives MPLS packets and helps locate the LIB used for Input Label Match. An
MPLS tunnel interface is a logical interface on which MPLS packets are received and
transmitted. MPLS tunnel interface attributes are illustrated at lines 114-128. A function to
set MPLS tunnel label stacks on a set of interfaces is illustrated at lines 192-201.

L2TP tunnel interface attributes are illustrated at lines 133-148 of the Appendix. A
function to set L2TP tunnel interface attributes is illustrated at lines 225-237.

A function to associate an information base with a tunnel interface is illustrated at
lines 211-222 of the Appendix.

Error codes are illustrated at lines 239-294 of the Appendix.

There have been described and illustrated herein a uniform method for implementing
multiple tunneling protocols. While particular embodiments of the invention have been
described, it is not intended that the invention be limited thereto, as it is intended that the
invention be as broad in scope as the art will allow and that the specification be read likewise.
It will therefore be appreciated by those skilled in the art that yet other modifications could

be made to the provided invention without deviating from its spirit and scope as so claimed.

WO 2005/043302 PCT/US2004/034621

19

Claims:

1. A uniform method for implementing multiple tunneling protocols in a switch or router
having a plurality of input interfaces and a plurality of output interfaces, comprising:
a) providing a finite set of tunnel interfaces, each tunnel interface characterized by a set of
tunnel specific attributes;
b) mapping one of the input interfaces to one of said tunnel interfaces; and
¢) mapping said one of said tunnel interfaces to one of the output interfaces.
2. The method according to claim 1, wherein:
said tunnel specific attributes including parameters identifying tunnel end points.
3. The method according to claim 1, wherein:
said step of mapping one of the input interfaces to one of said tunnel interfaces is
performed by using context data in an arriving packet as a first search key to a first database.
4. The method according to claim 3, wherein:
said arriving packet has a header and said context data is obtained from said header.
5. The method according to claim 4, further comprising:
d) processing said header with said one of said tunnel interfaces to obtain a new header,
wherein y
said step of mapping said one of said tunnel interfaces to one of the output interfaces
is performed by using the new header as a second search key to a second database.
6. The method according to claim 1, wherein:
both said step of mapping one of the input interfaces to one of said tunnel interfaces
and said step of mapping said one of said tunnel interfaces to one of the output interfaces are
performed by using context data in an arriving packet as a first search key to a first database.
7. The method according to claim 6, wherein: ‘
said arriving packet has a header and said context data is obtained from said header.
8. The method according to claim 4, wherein:
the one of the output interfaces is one of an L2 and an L3 interface, and
said step of using the new header as a second search key to a second database yields
one of an L2 and an L3 interface.
9. A uniform method for implementing multiple tunneling protocols in a switch or router,

comprising:

WO 2005/043302 PCT/US2004/034621

20

a) associating an input interface, an output interface, and an information database with each
of said multiple tunneling protocols; and
b) uniformly implementing a tunneling protocol by selecting an input interface, an output
interface, and an information database associated with the tunneling protocol to be
implemented.
10. The method according to claim 9, further comprising:
¢) prior to said step of uniformly implementing, associating a mapping interface and a
mapping information base with each of said multiple tunneling protocols
11. The method according to claim 9, wherein:
for IP over IP origination, the input interface is an IP interface, the output interface is
one of an L2 interface and an IP interface, and the information database is a forwarding
information base.
12. The method according to claim 9, wherein:
for IP over MPLS tunnel origination, the input interface is an IP interface, the output
interface is an L2 interface, and the information database is a forwarding information base.
13. The method according to claim 9, wherein:
for L2TP tunnel origination, the input interface is a PPP interface, the output interface
is one of an L2 interface and an IP interface, and the information database is a tunnel and
session information base.
14. The method according to claim 9, wherein:
for ETHERNET over MPLS tunnel origination, the input interface is an ETHERNET
interface, the output interface is an L2 interface, and the information database is a switching
information base.
15. A uniform method for implementing multiple tunneling protocols in a switch or router
having a plurality of input streams and a plurality of output streams, comprising:
a) providing a finite set of tunnel interfaces; and
b) mapping input streams and output streams to tunnel interfaces in a uniform manner.
16. The method according to claim 15, wherein:
some of the input streams are L2 streams and some of the input streams are L3
streams,
said step of providing a finite set of tunnel interfaces includes providing a set of L2

tunnel interfaces for L2 input streams and a set of L3 tunnel interfaces for L3 input streams.

WO 2005/043302 PCT/US2004/034621

21

17. The method according to claim 16, wherein:

input streams are mapped to tunnel interfaces by a forwarding function.
18. The method according to claim 16, wherein:

L2 input streams are mapped to L2 tunnel interfaces by a first forwarding function,
and

L3 input streams are mapped to L3 tunnel interfaces by a second forwarding function.
19. The method according to claim 18, wherein:

some of the output streams are L2 streams and some of the output streams are L3

streams,

L2 tunnel interfaces are mapped to L2 output streams by a third forwarding function,

and

L3 tunnel interfaces are mapped to L3 output streams by a fourth forwarding
function.
20. The method according to claim 19, wherein:

L2 tunnel interfaces are mapped to L3 output streams by a fifth forwarding function,
and

L3 tunnel interfaces are mapped to L2 output streams by a sixth forwarding function.
21. The method according to claim 15, wherein:

the forwarding function performs mapping based on contest data associated with
input packets and database information which is configured and updated by a local host.
22. A uniform method for implementing multiple tunneling protocols in a switch or router,
comprising:

providing a plurality of tunnel interfaces,

each tunnel interface having a plurality of parameters which are described in a uniform
way,

said plurality of parameters including a local source address and a remote destination
address.
23. The method according to claim 22, wherein:

said plurality of parameters includes a hop limit or time to live.
24. The method according to claim 23, wherein:

said plurality of parameters includes a tunnel MTU.

WO 2005/043302 PCT/US2004/034621

22

25. The method according to claim 22, further comprising:
providing a plurality of tunnel entry node structures and a plurality of tunnel exit
node structures
26. The method according to claim 22, further comprising:
providing an address function to set tunnel interface source and destination addresses.
27. The method according to claim 26, further comprising:
providing a fitst address function for IPv4 interfaces and a second address function for
IPv6 interfaces.
28. The method according to claim 23, further comprising:
i)roviding a hop function to set the hop limit for a tunnel interface.
29. The method according to claim 22, wherein:
said plurality of parameters includes MPLS encapsulation information and actions to
be performed on MPLS packets.
30. The method according to claim 29, further comprising:
providing an MPLS function to associate an MPLS LIB with an MPLS interface.
31. An application programming interface (API) for implementing a plurality of different
tunneling protocols in a switch or router, said API comprising:
a) a tunneling interface data structure having a plurality of parameters; and
b) a plurality of functions for setting the parameters of the tunneling interface data structure,
wherein
a tunneling interface data structure is configurable to implement any one of said
plurality of different tunneling protocols by using at least some of said plurality of functions.
32. The API according to claim 31, wherein:
said plurality of parameters including a local source address and a remote destination
address.
33. The API according to claim 32, wherein:
said plurality of parameters includes a hop limit or time to live.
34. The API according to claim 33, wherein:
said plurality of parameters includes a tunnel MTU.
35. The API according to claim 31, further comprising:
¢) a plurality of tunnel entry node structures; and
d) a plurality of tunnel exit node structures

WO 2005/043302 PCT/US2004/034621

23

36. The API according to claim 31, wherein:

said plurality of functions includes an address function to set tunnel interface source
and destination addresses.
37. The API according to claim 36, wherein:

said plurality of functions includes a first address function for IPv4 interfaces and a
second address function for IPv6 interfaces.
38. The API according to claim 33, wherein:

said plurality of functions includes a hop function to set the hop limit for a tunnel
interface.
39. The API according to claim 31, wherein:

said plurality of parameters includes MPLS encapsulation information and actions to
be performed on MPLS packets.
40. The APT according to claim 39, wherein:

said plurality of functions includes an MPLS function to associate an MPLS LIB with
an MPLS interface.

PCT/US2004/034621

WO 2005/043302

1/5

g1 (10)
swieal}s ¢ J0 198

2z (10)
sweadis
213013188

1 2In31q

o¢}

1 (10) saoepv3Ul
jauunj jo 39S

1%

el

(10) sweans

€130188 e

Z1 (10)
sweal}s

¢130198S

PCT/US2004/034621

WO 2005/043302

¢ 2Ingrg Lt

sursuyg
uonernsdeouy
oorpIOIU] <« SjoxoRd - QoeyIoUI
STdIN J9A0 JOUISYIT ¢
9¢ 71 07 [puuny, STdN Allmuuxon q 908LI9U] sjayoed
V1 jousomyg JouIoy)
1wy WH
(012) 7 S,
‘ omguyg
OI1 10 uonernsdeouy
QoeyIoqu] &Eﬁ Suipremioq d1
€ 7110 a1 sjexoRd pPLARGEL |
- dLz1 g | EUALdLTT CSioyoed
N AR ourdug ddd
deous
90vJI0) So¥oed UOnemS
(43 ..W_ . N STdIN 1940 d1 oorpIur
CC| oumny §7dN
sjayoed
(012) 0 e A
ourduy - dI
: ~ <
011" poyoeo 10 | Uonemsdeoug sjoyoed — syaxoed
0§ SoBHoN] -« sjoxoed Q00T pleMIo df goppispur « a dI
ariodi dlur di [ouuny, gy ur J1
alol-AREd10 | 0¢ oSed uoneuwiIojuy wﬁQﬁH

aseq uoneunoyuy surddey

/9%e1Ijuy nduy
/ooejIuy jrwsuel], Surddey

mdinp

PCT/US2004/034621

WO 2005/043302

¢ am31g

3/5

o
(Ve
™

£5)

9989 : _@u T Mouwﬂwmmooﬂ
O[zT0dl | < sjovoegd 4 STIN
dl sjoyoed SoggISu] _mumxomm
a euuny, STdN STIN
sjo3oRg
QorLIoIU] _ S1aoed i o
VL 1 puihy v\
N o
79t €2
omdug \
uonjensdeoag
e sjoxoed ey | (012) 0ST
L T _ ddd jouuny, dIzT .
g , syoxoed
(012) 09 SN
) oﬁwam/. dl?]
011 uonensdesaq ~ “soed
syooed S
9deJIduU] OMO@ Q AHH
OLzreod | . dru g
aseq uoneworuy ndu
aoeJI01ul Mding | d uoh JHL AU
aseq uorneuoju] surdden JaoejIu] nduyg

JAOBJINU 9A1009Y] Jurddey

WO 2005/043302 PCT/US2004/034621

45 P

o PR N 8

9 1 ¢ ;

m &

m g .ﬁ

@& | N
g g 58 o
- E o o
ffa |BE% s %
TSR SE | & o 5

w85 2 S A a =

2 88 TEo g |
°3’+§«['£‘ R g = ~ 8
T)év mgcﬁ 5 : - 8
5 o R o 5 5 ‘
= 4 S S &8 I\ &
=& m R E R & A

IP orl2
interface

0CO

rot
nter}

;, g 51

A
Looke KL

F

i

WO 2005/043302 PCT/US2004/034621

43 g
".La‘."-«.Af-,_q_c,{.,
Selbey

Switching
Information Base

e

o 45
St
5 5]

SRR
AT s
S

LR
|

WA

: =
" ! p— .9
o 72] .
‘ B 70’8]'"301 o
¥ Q — 8 o
a S L g\"/ @
, &I SR = 5 g h =R
= 588 |ES8 |eE -
= H K E e 8m ~E

Receive Tunnel

) o emrogey
R
kiR

B A
T agihas
ey

¢

Rl
t

K

. ;'“Flf\i;-‘r)

P
i

==}

5 a0 o
s T

ar ¥ G e
RSP e

Figure 5

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

