«» UK Patent Application «.GB 2 313757 .. A

(43) Date of A Publication 03.12.1997

(21) Application No 9712513.2 {81) INTCL®

HO3M 7/30 , HO4N 1/41 7/50

(22) Date of Filing 25.06.1996

(52) UK CL (Edition O

Date Lodged 16.06.1997 H4P PDCFT PDCFX

H4F FD12X FD3R FD3T FD3X FD30B FD30K FRW

{30) Priority Data
(31} 08498036 (32) 03.07.1995 {33y US (56) Documents Cited

None

(62) Divided from Application No 9613320.2 under Section
15(4) of the Patents Act 1977 (58) Field of Search

UK CL (Edition O) H4F FRW , H4P PDCFT PDCFX

INT CL® HO3M 7/30 , HO4N 1/41 7/30 7/50

(77) Applicant(s) Online : WP1, INSPEC, JAPIO
Ricoh Company,Ltd
{incorporated in Japan) (74) Agent and/or Address for Service
J A Kemp & Co
3-6,1-chome,Nakamagome, Ota-ku, Tokyo 143, Japan 14 South Square, Gray's Inn, LONDON, WC1R 5LX,
United Kingdom

(72) Inventor(s)
Ahmad Zandi
Edward L Schwartz
Michael Gormish
Martin Boliek

(54) Method using an embedded codestream

(57) A target device (eg. a monitor) is identified to receive data in an embedded codestream, and each
bit-plane is decoded to provide data to the target device, each bit-plane being truncated in accordance with a
marker or pointer in each coding unit denoting the location where truncation can occur. Prior to decoding, the
resolution of the target device is identified and decoding is then truncated to decode only the data necessary
to support the target device.

Fig.34.

HIGH END PRINTER
MEDICAL MONITOR

>

STANDARD MONITOR

LOW END
THUMBNAIL PRINTER

INCREASING PIXEL DEPTH

—>

INCREASING SPATIAL
RESOLUTION

V [SLELEC 9D

1/23

Fig.1.

IMAGE
INPST CODE
DATA COEFFICIENT STREAM
101 DATA 107
REVERSIBLE ORDERING ENTROPY {
ol WAVELETS |—» AND —» CODER
102 MODELLING 104
103
Fig.2.
o | e seeee
UENCY
WAVELET Mé@ggg_?g CONTEXT BITS TO
COEFFICIENTS o MODEL CODER
201 202
Fig.3A.
vo(n) v/0(n)
—» ho(n) | ¥2 _’0%88%2/;2——’ A2 go(n)
x(n)— ANALYSIS SYNTHESIS x(n)
Vi [copers V10
hi(n) o ¥2 —>DECODER " 42 |»ig1(n)

2/23

Fig.3B.

INPUT DATAﬁ.

NON-MINIMAL LENGTH
REVERSIBLE FILTERS
(FORWARD)

COEFFICIENTS

COEFFICIENTS |

NON-MINIMAL LENGTH
REVERSIBLE FILTERS
(INVERSE)

Fig.4.

1-D

REVERSIBLE
B f__ _ FILTERS

1-D

|
(@-T%| FILTER [™ROUNDING [TT™ FILTER
I

RECONSTRUCTED DAT&

1-D I
— ROUNDING [T

2-D REVERSIBLE FILTERS

Vo

N

1-D

1-D

2-D

(b)—» FILTER }—»{ FILTER }—ROUNDING |—»

401

402

403

3/23

0H

OH7

gy

~—

'vG b4

f JOVINI TVNIODIHO

4/23

Fig.5B.
LL1 LH1
LHQ
HL 4 HH 1
HLo HHQ
LL1)
o N,
LL2
—
LH2
LH1
HL2 [HH2
LHo
HL 1 HH1
LHo HHo

LL1
sl Nar—
L3 52 LH3
S 4
HL3 LH2
= LH1
HH3 | Hio | HHo
LHo
HL1 HH4
HLo HHo
Fig.6.
P
EY
C D
\ H
F G
X N
| J

6/23

(OH) (u)}H/ <

(IH) (U)1z -

(CH) (u)im <

(U)hy

//Nom

(€7) (U)OMm «—

.A:_¢co~
(u)Oy

24 [1 (uly .;;
\ziz Nouz

2 |

Ny 602

Z4 e (uky .44
\goz “goz

2 b [+

\z0L NS0z

A

(u)Oy

N0z

(u)x

7/23

VOILH3A

OHH <
07H -
OH -
AVOILLHI3A
lHH <+— 2 4 <« 1y
AVLNOZIHOH
MH«+—] 24 [« Oy 24 |+ W
lHY <+ 24 [« My Z24 |e— Oy
T o]
1N <« z4 [<+—] Oy 8'bld

c4 ly e

TV.INOZIHOH
c4 Oy [« 24 [« Wy
A ly (<71 24 [+ Oy
z 4 Oy |

e

e

iD
FILTER

8/23

Fig.9.
ID PB——>LL1
FILTER }— LH4
iD
FILTER D HL 1
ID L FILTER | —» HH1
FILTER ’
H » L HQ
L > HLQ
ID H
FILTER » HHp

9/23

aar®

SH3L4 ONISN
<1 NOILISOdWOO3d
3SH3ANI

1IN ONIH3 L4
HO LN3IW3IONVHNI

SH3L4 3189ISHIN3Y
A3ddVvIH3A0 ‘HLONT

41 IVININIW-NON ONISN

NOLLISOdWODO3a
TVOIHOHVHAIH

-«

AmZO_._.,A~~mu_u__mw<._o
SNOISIO3a

1INN SISATVNY

<]

INE

SH31 4 319ISH3IA3Y
A3ddVIH3A0 ‘HLONI

IVWININ-NON ONISN [¢—

NOILISOdWOO3d
1VOIHOHVH3IH

SH3L4 ONISN
NOILISOdWOD3A e
JSHIANI

HOSS3IHANOO3A

HOSS3IHdWOOD

'01°b14

SH31Td 319I1SHIAIY
A3ddVv1H3A0 ‘HLONT
IVWININ-NON ONISN
NOILISOdWOJ3d
TVOIHOHVH3IH

10/23

Fig.12A.
b {b+2
b+2
b+2 [b+4
b+2 b+4
Fig.12B.
16
16(8 4
8
4 2

11/23

Fig.13.

ACQUIRE INPUT DATA FOR CODING UNIT

1301
|~

!

1302

APPLY REVERSIBLE FILTER

ANOTHER LEVEL
OF DECOMPOSITION

APPLY REVERSIBLE FILTER
TO LL COEFFICIENTS

DESJ)RED

CONVERT COEFFICIENTS TO SIGN/
MAGNITUDE FORM

1305

v

SET BITPLANE,S, TO MOST SIGNIFICANT
BITPLANE

1306

v

INITIALISE ENTROPY CODER (OPTIONAL)

1307

v

MODEL EACH BIT OF EACH COEFFICIENT
WITH CONTEXT hégBEL AND ENTROPY

1308

v

TRANSMIT OR STORE DATA

1309

YES

CODING UNITS

IN IMAGE
?

\ 1304

D™ Fig1s

1401
RETRIEVE CODED DATA FOR ONE |

CODING UNIT

SET BITPLANE.S, TO MOST SIGNIFICANT | 1402
BIT e

+ 1403
INITIALISE ENTROPY CODER (OPTIONAL) | &

SET INITIAL VALUE OF EACH 1404
COEFFICIENT TO O L

v

MODEL EACH BIT OF EACH COEFFICIENT | 1405
WITH CONTEXT MODEL AND ENTROPY | /

DECODE
1406
CONVERT COEFFICIENTS TO PROPER
FORM FOR FILTERING L/

APPLY INVERSE REVERSIBLE FILTER 1407
FROM COEFFICIENTS FROM COARSEST | /
LEVEL OF DECOMPOSITION

APPLY INVERSE FILTER TO
THE HIGHEST LEVEL OF
DECOMPENSATION

LEVELS INVERS
FILTERED
?

~~ 1409

YES

1
STORE/TRANSMIT RECONSTRUCTED DATA /410

YES~ CODING UNITS

IN IMAGE
?

13/23

Fig.15.

START
1501

SET C =FIRST COEFFICIENT |

-

YES

1504
A\

APPLY TEMPLATE FOR HEAD
BITS

v

CODE BIT S OF C

1502
NO

1503
L

CODE BIT S OF C USING
MODEL FOR TAIL BITS

1505/ 1506
IS
BIT S OF C N0 >
ON?
CODE SIGN BIT
1507] >

S=S-1

/1 509

C=NEXT
COEFFICIENT

IS

S THE LAST

BITPLANE
?

H310vH19NS 904

T
ol oz €0L}
8047 p A/V
2X
W I i L O SUB ey pams [T 5, (DK
Auiavx dinofe— + mm%
¢
o 7 0¢ < I I A coLL~N L04bN ; (0)u4
61 |
w3aav oz’ = I . ¢ [Fo/ @x
HILOVHLIANS YOLI G| =1 1diHs Am” L «
NP@_H_ /lm\ (0)x
. HILOVHIENS 1OL}
&
)
8091 (0)u4
Az v091
W N
e
H3aQv 9091 " le (bX) v [Fg/ (o
£09k~ \ <z LdHS [] .
8l . i, -g/ (e
)] | + |6t < HILOVHLIENS 2091
W P (e*) v [o/ (ox
+ < | 14IHS <
HILOVHLENS 5094 M
- eogt” LI] o/ (6
g 'QL'DI4 u3aav o9 ool

r——eo—o—o> X

0 3
SPATIAL
\Y \Y
37 ¢ 3f °
1 e O o o o
: e ©o o o o o o
o; o——@ = - o——0—> || OI ——0—0—> ||
‘) o e c e ¢ o o ’
e o o * o
-3 | ° -3 P
RATIONAL HADAMARD S-TRANSFORM
Fig.20.
ORIGINAL TS TS TS TS

IMAGE HORIZONTAL VERTICAL-1 HORIZONTAL VERTICAL-2

TS S TS S

HORIZONTAL VERTICAL-3 HORIZONTAL VERTICAL-4
.

-

16/23

Fig.19A.
CONDITIONING
HANDLED BY LUT ABOVE (NE
o - (NE)
CURRENT (E)
? P B
BELOW (S)
p
[10
NTEXT BIT
PARENT CONTEXT [»len/DECODE
ABOVE (NE) \ \
> LT 1902
A
BELOW (S) > PARENT CONTEXT
1901 WITHQUT
| - PARENT
8
D)
Fig.19B.
[10
CONTEXT BIT
—»EN/DECODE
ABOVE (NE)
2 LUT
CURRENT (E) (5] FOR
SAME

BELOW(S) | PARENT

| > 1903

103-»

17/23

Fig.21.
S s =
LL HL
LEVEL 4
43 43 | LEVEL 3
o] | o]
LEVEL 2
LH HH
LEVEL 1
Fig.22.
~— HIGH PASS TS FILTER
8
16 LINES
LINES
VERTICAL LEVEL 2
______ - SEGMENT OF A
- ___ VERTICAL LEVEL 1
1o - T ==>X- /SEGMENT OF A CODING
LINES = —————— UNIT

VERTICAL IMAGE SEGMENT
OF A CODING UNIT

Fig.23
1 SN
"""" : - VERTICAL
20 20 > === LOW PASS
VERTICAL
\ HIGH
r----o-- By it . 81 81 PASS
: 3 LEVEL 2
LEVEL 0 (HORIZONTAL LEVEL 1
TRANSFORM)
Fig.24A.
CODING
HEADER 2401 UNITS 2402
ONE CODING UNIT
LLIN FIRSTBIT- SECOND BIT- LAST BIT-
RASTER PLANEIN PLANE IN RASTER PLANE IN
ORDER RASTER ORDER 2405 RASTER
2403 ORDER 2404 ORDER 2406
Fig.24B.
HEADER CODING UNITS
ONE CODING UNIT
LLIN FIRST BIT- FIRST BIT-PLANE LAST BIT-PLANE
RASTER PLANE IN OF HIGH OF HIGH
ORDER LOW RESOLUTION RESOLUTION
RESOLUTION COEFFICIENTS COEFFICIENTS

COEFFICIENTS

19/23

'a9zg b4

(SL18 2) NOILLYWHOANI NO-TIVL =0
(L1 1) 119 NO-IVL =X

| |
| |
_ “
d _ d 10O _ d mzu MS
| |
O | RS
| _ Can MN
O" O“ O
IN3IHvVd \ 1N3Hvd \ hzmm«i\
'09¢g b1 ‘g9z 614 'voz 614
s S MS
3 d M
N N MN mN@_H_

20/23

Fig.27.
2700w rgAg
MAGS 'wajuoe SIGN
NI o—
—™| FORMAT oy 2703 1T
109
TAIL
2704
 SAVED STATES (OPTIONAL)
CODER
RESET
CONTROL
(OPTIONAL) INITIAL STATES
109 :
N Fig.28.
COEFFICIENT[16..0] .
[_.. MUXE—_
=™ 1802
COEFFICIENT[17] 1801 f SIGN
Fig.29.

CURRENT 0

> U

CURRENT 1

REGISTER
FILE

CURRENT 2b—F

FREE | [~~~~—--

L o o
|

- d

NN

MEMORY

21/23

T1INNVHO Ol 1Nnd1ino

OL L3XOVd IN3HHND cOLE

/ O/l T3NNVHO
HOd4 S13XOvd
3Z21S d3xXid

———— (HYINOHI0)
AHOW3W Y3d4-4ng

- Lo § > — >

HO4 3ZIS WNWIXVYI

1IN3HHNO ¢-N 3L 101E
N-37L I-N 3L SINIWO3S
‘1614
| AHOWIW |
H1dIMANvd “ H344N9g “
d3aiinn b e 4
¥00¢E £00€ c00¢ 100E
T3INNVHO HIOVNVIN 13Ad0NW WHO4SNvdl
1NdLnO TANNVHO 1X3LINOD 1ITIAVM

"0g°014

~——

22/23

Fig.32.

BAND 1 BAND 2 BAND 3 BAND 4

-l
-

B |
POINTERS U 5_/

SEGMENT 1 SEGMENT 2 SEGMENT 3 SEGMENT 4 SEGMENT 4

Fig.33.

CODED DATA
3301 |

OPTIONAL POINTER(S) OR ID 33027
LEVEL OF MOST IMPORTANT DATA IN SEGMENT

23/23

Fig.34.

A HIGH END PRINTER

MEDICAL MONITOR O

STANDARD MONITOR

LOW END
THUMBNAIL PRINTER

O

INCREASING SPATIAL
RESOLUTION

INCREASING PIXEL DEPTH

>

Fig.35.

A. LOSS LESS — | PARSER | o | 0ssy
BITSTREAM 3501 BITSTREAM

B. LOSSY — » PARSg'ER I » LOSSY
BITSTREAM 1 3502 BITSTREAM 2

BITRATE > BITRATE

2313757

-1 -

METHOD USING AN EMBEDDED CODESTREAM

The present invention relates to the field of data
compression and decompression systems; particularly, the
present invention relates to a method using an embedded

codestreanm.

Data compression is an extremely useful tool for storing and
transmitting large amounts of data. For example, the time required to
transmit an image, such as a facsimile transmission of a document, is
reduced drastically when compression is used to decrease the number of
bits required to recreate the image.

Many different data compression techniques exist in the prior art.
Compression techniques can be divided into two broad categories, lossy
coding and lossless coding. Lossy coding involves coding that results in
the loss of information, such that there is no guarantee of perfect
reconstruction of the original data. The goal of lossy compression is that
changes to the original data are done in such a way that they are not

objectionable or detectable. In lossless compression, all the information is

10

20

25

-
retained and the data is compressed in a manner which allows for perfect
reconstruction.

In lossless compression, input symbols or intensity data are
converted to output codewords. The input may include image, audio,
one-dimensional (e.g., data changing spatially or temporally), two-
dimensional (e.g., data changing in two spatial directions (or one spatial
and one temporal dimension)), or multi-dimensional /multi-spectral data.
If the compression is successful, the codewords are represented in fewer
bits than the number of bits required for the uncoded input symbols (or
intensity data). Lossless coding methods include dictionary methods of
coding (e.g., Lempel-Ziv), run length encoding, enumerative coding and
entropy coding. In lossless image compression, compression is based on
predictions or contexts, plus coding. The JBIG standard for facsimile
compression and DPCM (differential pulse code modulation - an option in
the JPEG standard) for continuous-tone images are examples of lossless
compression for images. In lossy compression, input symbols or intensity
data are quantized prior to conversion to output codewords. Quantization
is intended to preserve relevant characteristics of the data while
eliminating unimportant characteristics. Prior to quantization, lossy
compression system often use 2 transform to provide energy compaction.
JPEG is an example of a lossy coding method for image data.

Recent developments in image signal processing continue to focus
attention on a need for effident and accurate forms of data compression
coding. Various forms of transform or pyramidal signal processing have
been proposed, including multiresolution pyramidal processing and

wavelet pyramidal processing. These forms are also referred to as subband

10

15

20

25

3

processing and hierarchical processing. Wavelet pyramidal processing of
image data is a specific type of multi-resolution pyramidal processing that
may use quadrature mirror filters (QMFs) to produce subband
decomposition of an original image. Note that other types of non-QMF
wavelets exist. For more information on wavelet processing, see
Antonini, M., et al., "Image Coding Using Wavelet Transform”, IEEE

Transactions on Image Processing Vol. 1, No. 2, April 1992; Shapiro, J.,

"An Embedded Hierarchical Image Coder Using Zerotrees of Wavelet
Coefficients”, Proc. IEEE Data Compression Conference pgs. 214-223, 1993.

One problem associated with much of prior art wavelet processing
is that a large memory is required to store all of the data while it is being
processed. In other words, in performing wavelet processing, all of the
data must be examined before encoding is performed on the data. In such
a case, there is no data output until at least one full pass has been made
through all of the data. In fact, wavelet processing typically involves
multiple passes through the data. Because of this, a large memory is often
required. It is desirable to utilize wavelet processing, while avoiding the
requirement of a large memory. Furthermore, it is desirable to perform
wavelet processing using only a single pass through the data.

Many wavelet or subband transform implementations require
filters in a particular canonical form. For example, low and high-pass
filters must be the same length, the sum of the squares of the coefficients
must be one, the high-pass filter must be the time and frequency reverse of
the low-pass filter, etc. (See U.S. Patent No. 5,014,134 issued May 1991 to
Lawton et al.). It is desirable to allow a wider class of filters. That is, it is

desirable to provide wavelet or subband transform implementations that

- 4 -
use low and high-pass filters that are not the same length,
the sum of the squares of the coefficients need not be one,
the high-pass filter need not be the time frequency reverse
of the low-pass filter, etc.

A compression and decompression system is described.
The compression system includes an encoder that encodes input
data into a compressed data stream. The entropy coder said
coder comprises a reversible wavelet filter, an ordering and
modeling mechanism and a binary entropy coder. The
reversible wavelet filter transforms input data into
coefficients using a pyramidal decomposition. The ordering
and modeling mechanism generates an embedded codestream from
the coefficients by ordering the coefficients and binary
values within the coefficients. The binary entropy coder
operable to binary entropy code the embedded codestream to
produce the compressed data stream.

The present invention provides: a method of using an
embedded codestream comprising: identifying a target device
to receive data in the embedded codestream;

decoding each bit-plane to provide data to the
target device, said step of decoding comprising the step of
truncating each bit-plane in the embedded codestream for data
necessary to support the target device.

The present invention will be understood more fully
from the detailed description given below and from the
accompanying drawings, in which:-

Figure 1 is a block diagram of one example of an

o

-5 -

encoding portion of a coding system described for reference.

Figure 2 is a block diagram of one example of the
coefficient data ordering and modeling of the reference

system.

Figure 3A is a block diagram of a wavelet

analysis/synthesis system.

Figure 3B illustrates forward and reverse
representations of transform systems for filtering with non-

overlapped minimal length reversible filters.

Figure 4 is a block diagram illustrating alternative

examples of a 2-D reversible filter.

Figures 5 illustrate results of performing a four level

decomposition.

Figure 6 illustrates the parental relationship between

two consecutive levels.

Figure 7 is a block diagram of a three-level pPyramidal

transform.

Figure 8 is a block diagram of a two-dimensional, two

level transform.

- 6 -
Figure 9 is a block diagram illustrating one-
dimensional filters performing a multi-resolution

decompression.

Figure 10 is a block diagram of a system using

reversible wavelets.

Figure 11 are block diagrams of enhancement and

analysis systems using reversible wavelets.

Figure 12A illustrates coefficient size in the

reference system.

Figure 12B is one embodiment of the multipliers for the
frequency band used for coefficient alignment in the

reference system.

Figure 13 is a flow chart of one example of the

encoding process of the reference system.

Figure 14 is a flow chart of one example of the

decoding process of the reference system.

Figure 15 is a flow chart of the modeling process of

the reference system.

Figure 16 is one example of the forward wavelet filter

—

X

of the reference system.

Figure 17 is a block diagram of one example of a

reverse wavelet filter of the reference system.

Figure 18 illustrates the coefficient range of various

transforms.

Figure 159A and 19B illustrate two examples of context

models using look-up tables.

Figure 20 illustrates one example of a wavelet

decomposition stage.

Figure 21 illustrates one coding unit.

Figure 22 illustrates vertical passes with the TS-

transform.

Figure 23 illustrates buffering and coefficient

computation.

Figure 24A illustrates one embodiment of a codestream

configuration.

Figure 24B illustrates one embodiment of a codestream

configuration for a low resolution target.

- 8 -
Figure 25 illustrates the neighboring relationship
among coefficients (or pixels).

Figures 26A-D illustrate examples of context models.

Figure 27 is a block diagram of one example of the

context model of the reference system.

Figure 28 is a block diagram of one example of the

sign/magnitude unit of the reference system.

Figure 29 illustrates the dymamic allocation of coded

data memory for one pass operation.

Figure 30 illustrates one example of a channel manager.

Figure 31 illustrates memory utilization in the

reference system.

Figure 32 illustrates a bitstream in the reference

system.

Figure 33 illustrates the structure of a segment.

Figure 34 illustrates target devices versus a parameter

space.

- 9 -
Figures 35A and 35B illustrate various embodiments of

the parser of the present invention.

- 10 -
A method and apparatus for compression and

decompression is described.

Some portions of the detailed descriptions which follow are
presented in terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These algorithmic
descriptions and representations are the means used by those skilled in the
data processing arts to most effectively convey the substance of their work
to others skilled in the art. An algorithm is here, and generally, conceived
to be a self-consistent sequence of steps leading to a desired result. The
steps are those requiring physical manipulations of physical quantities.
Usually, though not necessarily, these quantities take the form of electrical
or magnetic signals capable of being stored, transferred, combined,
compared, and otherwise manipulated. It has proven convenient at
times, principally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers, or the like.

It should be borme in mind, however, that all of these and similar
terms are to be associated with the appropriate physical quantities and are

merely convenient labels applied to these quantities. Unless specifically

10

15

20

25

S

stated otherwise as apparent from the following discussions, it is
appreciated that throughout the present invention, discussions utilizing
terms such as “processing” or "computing” or "calculating” or
"determining” or "displaying" or the like, refer to the action and processes
of a computer system, or similar electronic computing device, that
manipulates and transforms data represented as physical (electronic)
quantities within the computer system's registers and memories into
other data similarly represented as physical quantities within the
computer system memories or registers or other such information storage,
transmission or display devices.

The apparatus for performing the
operatons herein ‘may be specially constructed for the
required purposes, or it may comprise a general purpose computer
selectively activated or reconfigured by a computer program stored in the
computer. The algorithms and displays presented herein are not
inherently related to any particular computer or other apparatus. Various
general purpose machines may be used with programs in accordance with
the teachings herein, or it may prove convenient to construct more
specialized apparatus to perform the required method steps. The required
structure for a variety of these machines will appear from the description

below. 1In addition, the reference system is not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings as described herein.

The following terms are used in the description that follows. A

definition has been included for these various terms. However, the

10

20

25

- -

definition provided should not be considered limiting to the extent that

the terms are known in the art. These definitions are provided to help in

the understanding of the present invention.

bit-significance:

coding unit:

context model:

A number representation, similar to sign
magnitude, with head bits, followed by the sign bit,
followed by tail bits, if any. The embedding encodes
in bit-plane order with respect to this
representation. .
Unit of coefficients that are coded together and can
be in arbitrary order. In one embodiment, a coding
unit comprises one or more trees arranged in a
rectangle. A coding unit may consist of an entire
image, set of images or other data set. The coding
unit has 2 significant impact on the buffer size
needed for computing a transform. Also, in one
embodiment, no contents can be derived from
coefficients outside the current coding unit.
However, the entropy codes may be reset within a
coding unit or after many coding units. The coding
unit is not necessarily randomly addressable.
Available information relative to the current bit to
be coded that give historically learned information
about the current bit. This enables conditional

probability estimation for entropy coding.

10

15

20

25

trees:

band:

decomposition level:

embedded guantization:

entropy coder:

fixed-rate:

-3 -
The coefficients, and the pixels, that are related to a
single coefficient in the LL of the highest level
wavelet decomposition. The number of coefficients
is a number of the number of levels.
The coefficients, and the pixels, that are related to a
single row or line of coefficients in the LL of the
highest level wavelet decomposition for two-
dimensional data. Bands are similarly defined for
data of other dimensions. ,
A location in the wavelet decomposition pyramid.
Quantization that is implied by the codestream. For
example, if the importance levels are placed in
order, from the most important to the least, then
quantization is performed by simple truncation of
the codestream. The same functionality is available
with tags, markers, pointers, or other signaling.
A device that encodes a current bit based on its
context. The context allows probability estimation
for the best representation of the current bit (or
multiple bits).
An application or system that maintains a certain
pixel rate and has a limited bandwidth channel.
This requires achieving local average compression
rather than a global average compression. Example:

MPEG.

5

10

15

20

25

fixed-size:

fixed-length:

Horizon context model;

head:

overlapped transform:

progressive:

- jLe -
An application or system that has a limited size
buffer. In such a case, a global average compression
is achieved, e.g., a print buffer. (An application can
be both fixed-rate and fixed-size or either.)

A system that converts a specific block of data' to a
specific block of compressed data, e.g., BTC. Fixed-
length codes serve fixed-rate and fixed-size
applications; however, the rate-distortion
performance is often poor compared with variable
rate systems.

A context model for use with an entropy coder

defined herein

In bit-significance representation, the head bits are
the magnitude bits from the most significant up to
and including the first non-zero bit

A transform where a single source sample point
contributes to multiple coefficients of the same
frequency. Examples include many wavelets and
the Lapped Orthogonal Transform.

A codestream that is ordered, such that a coherent
decompressed result is available from part of the
coded data which can be refined with more data. A
codestream that is ordered with deepening bit-

planes of data; in this case, it usually refers to

wavelet coefficient data.

pyramidal:

reversible transform:

5
S-transform:
tail:
10
tall information:
15
tail-on:
TS-transform:
20
unified lossless/lossy:
25

-5 -
Succession of resolutions where each lower
resolution is a linear factor of two greater (a factor
of four in area).

An efficient transform implemented with integer
arithmetic that has exact reconstruction.

A specific reversible wavelet filter pair with a 2-tap
low pass and a 2-tap high pass filter.

In bit-significance representation, the tail bits are
the magnitude bits with less significance than the
most significant non-zero bit.

In one exam;;le, four states possible for a
coefficient represented in bit-significance
representation. It is a function of the coefficient
and the current bit-plane, and is used for the
Horizon context model.

In on; examéle, two states depending on
whether the tail information state is zero or non-
zero. It is used for the Horizon context model.
Two-Six transform, a specific wavelet filter pair
with a 2-tap low pass and a é-tap high pass filter.
The same compression system provides a coded

data stream capable of lossless or lossy
reconstruction. As will be described below,

this codestream is capable of both without

settings or instructions to the encoder.

10

15

20

25

- b -

visual importance levels: By definition of the specific system, the input data

wavelet filters:

wavelet transform:

(pixel data, coefficients, error signals, etc.) is divided
logically into groups with the same visual impact.
For example, the most significant bit-plane, or
planes, is probably more visually important than
lessor planes. Also low frequency information is
generally more important than high frequency.

Most working definitions of “"visual significance”

are with respect to some error metric. Better visual -

metrics, however, could be incorporated in the
system definition of visual importance. Alternate
data types have alternate importance levels, for
example, audio data has audio importance levels.
The high and low pass synthesis and analysis filters
used in wavelet transform.
A transformation with both “frequency” and "time
(or space)” domain constraints. In a described
example, it is a transform consisting of a high
pass filter and a low pass filter. The resulting
coeffidients are decimated by two (critically filtered)
and the filters are applied to the low pass

coefficients.

e d

- 17 -

The reference compression/decompression system has an
encoding portion and a decoding portion. The encoding
portion is responsible for encoding input data to create
compressed data, while the decoding portion is responsible
for decoding previously encoded data to produce a
reconstructed version of the original input data. The input
data may comprise a variety of data types, such as image
(still or videoc), audio, etc. In one example, the data is
digital signal data; however, analog data digitized, text
data formats, and other formats are possible. The source of
the data may be a memory or channel for the encoding portion
and/or the decoding portion.

In the reference system, elements of the encoding
portion and/or the decoding portion may be implemented in
hardware or software, such as that used on a computer system.
The reference system provides a lossless
compression/decompression system, but may also be configured
to perform lossy compression/decompression.

Figure 1 is a block diagram of one example of the
encoding portion of the system. Note the decoding portion of
the system operates in reverse order, along with the data
flow. Referring to Figure 1, input image data 101 is
received by wavelet transform block 102. The output of
wavelet transform block 102 is coupled to coefficient data
ordering and modeling block 103. 1In response to the output
from wavelet transform block 102, the ordering/modeling block

103 produces at least one bit stream that is received by an

- 18 -

entropy coder 104. In response to the input from
ordering/modeling block 103, entropy coder 104 produces code
stream 107.

In one example, the ordering/modeling block 103
comprises a sign/magnitude formatting unit 201 and a joint
space/frequency context model 202, such as shown in Figure 2.
In one example, the joint space/frequency context model 202
comprises a horizon context model, as is described below.
The input of the sign/magnitude unit 201 is coupled to the
output of the wavelet transform coding block 102. The output
of sign/magnitude unit 201 is coupled to joint
space/frequency modeling block 202. The output of JSF
context model 202 is coupled to the input of entropy coder
104 which produces the output code stream 107.

Referring back to Figure 1, the image data 101 is
received and transform coded using reversible wavelets in
wavelet transform block 102, as defined below, to produce a
series of coefficients representing a multi-resolution
decomposition of the image. The reversible wavelet
transforms are not computationally complicated. The
transforms may be performed in software or hardware with no
systematic error. Furthermore, the wavelets are excellent
for energy compaction and compression performance. These
coefficients are received by the ordering/modeling block 103.

The ordering/modeling block 103 provides coefficient
ordering and modeling. The coefficient ordering provides an

embedded data stream. The embedded data stream allows a

g

Al

- 19 -
resulting codestream to be quantized at encode time,
transmission time, or decode time. In one example,
ordering/modeling block 103 orders and converts the
coefficients into sign-magnitude format and, based on their
significance (as described below later), the formatted
coefficients are subjected to the embedded modeling method.
In one example, the formatted coefficients are subjected to
joint spatial/frequency modeling.

The results of ordering and modeling comprise decisions
(or symbols) to be coded by the entropy coder. 1In one
example, all decisions are sent to a single coder. 1In
another example, decisions are labeled by significance, and
decisions for each significance level are processed by
different (physical or virtual) multiple coders.

Referring back to Figure 2, the bit stream(s) resulting
from JSF context model block 201 are encoded in order of
significance using entropy coder 104. In one example,
entropy coder 104 comprises one or more binary entropy
coders.

Wavelet Decomposition

The reference system initially performs decomposition
of an image (in the form of image data) or another data
signal using reversible wavelets. A reversible wavelet
transform comprises an implementation of an exact-
reconstruction system in integer arithmetic, such that a
signal with integer coefficients can be losslessly recovered.

By using reversible wavelets, it is possible to provide

- 20 -
lossless compression with finite precision arithmetic. The
results generated by applying the reversible wavelet
transform to the image data are a series of coefficients.
The reversible wavelet transform may be implemented
using a set of filters. 1In one example, the filters are a
two-tap low-pass filter and a six-tap high-pass filter. 1In
one example, these filters are implemented using only

addition and subtraction.

10

15

20

25

21

operations (plus hardwired bit shifting). Also, the high-
pass filter generates its output using the

results of the low-pass filter. The resulting high-pass coefficients are only
a few bits greater than the pixel depth and the low-pass coefficients are the
same as the pixel depth. Because only the low-pass coefficients are
repeatedly filtered in a pyramidal decomposition, coefficient resolution is
not increased in multi-level decompositions.

In alternate examples, the low-pass filter output coefficients
could increase in size, instead of high-pass filter output coefficients.

A wavelet transform system is defined by a pair of FIR analysis
filters hp (n), hy (n), and a pair of FIR synthesis filters go(n), g1(n). In the
present inverntion, kg and gp are the low-pass filters and h; and g1 are the
high-pass filters. A block diagram of the wavelet system is shown in
Figure 3A. Referring to Figure 3A, for an input signal, x(n), the analysis
filters ho and h; are applied and the outputs are decimated by 2 (critically
subsampled) to generate the transformed signals yo(n) and y;(n), referred
to herein as low-passed (smooth) and high-passed (detail) coefficients
respectively. The analysis filters and their corresponding dedmation, or
subsampling, blocks form the analysis portion of the wavelet transform
system. The coder/decoder contain all the processing logic and routines
performed in the transformed domain (e.g., prediction, quantization,
coding, etc.). The wavelet system shown in Figure 3A also includes a
synthesis portion in which the transformed signals are upsampled by 2
(e-g., 2 zero is inserted after every term) and then passed through synthesis
filters, go(n) and g1(n). The low-passed (smooth) coefficients yo(n) are
passed through the low-p?ss synthesis filter ggp and the high-passed (detail)

10

15

20

22

coefficients y1(n) are passed through the high-passed filter g;. The output
of filters go(n) and gi(n) are combined to produce X(n).

While downsampling and upsampling are performed in some
embodiments, in other embodiments, filters are used such that
computations which are unneeded due to downsampling and upsampling
are not performed.

The wavelet system may be described in terms of the Z-transform,
where X(2), X(Z) are the input and output signals respectively, Yo(Z),
Y;(Z) are the low-passed and high-passed transformed signals, Ho(Z), Hi(2)
the low-pass and the high-pass analysis filters and finally Go(Z), Gi(Z) are
the low-pass and the high-pass synthesis filters. If there is no alteration or
quantization in the transform domain, the output 5((2) in Figure 3, is
given by

X(Z) = =[Ho(2)G,(2)+H,(Z)G,(D)]X(Z)+

1
2
-;-[Ho(-Z)Go(Z) +H,(-2)G,(D)]X(-2).

In the reference system, the second term of X(Z), referred to
as the "aliasing" term, is cancelled because the synthesis
filters are defined to be the quadrature mirror of the

analysis filters, i.e.,

Go(z) = Hl(-z)
G,(2)=-Hy(-2)

In terms of the filter coefficients,

80 (n)=(-1 hl(n)
g,(n) = ~(-1)Rhy(m)

~—

10

15

20

2.5

Therefore, for a quadrature mirror filter pairs, after substitution, the

output is:

X(z)= %[Ho (Z)H,(-Z)-H,(Z)H,(-Z)]X(Z).

Thus, in the quadrature mirror system of the reference
system, the output is defined in terms of the analysis
filters only. The wavelet transform is applied recursively
to the transformed signals in that the outputs generated by
the filters are used as inputs, directly or indirectly, into
the filters. 1In the described system, only the low-passed
transformed component yp(n) is recursively transformed such that the
system is pyramidal. An example of such a pyramidal system is shown in
Figure 6.
The Z transform is a convenient notation for expressing the
operation of hardware and/or software on data. Multiplication by Z-m
models a m clock cycle delay in hardware, and an array access to the mth
previous element in software. Such hardware implementations include
memory, pipestages, shifters, registers, etc.
In the reference system, the signals, x(n)and X(n), are identical up
to a multiplicative constant and a delay term, i.e. in terms of the Z-
transform,

X(2) = cZ"®X(2).

This is called an exact reconstruction system. Thus, the wavelet
transform initially applied to the input data is exactly

reconstructible.

10

15

20

- 24 -

One example of the reference system using the Hadamard

Transform is an exact reconstruction system, which in normalized form

has the following representation in the Z-domain:

1 -
Hy(2) = q_z.(hz 1y
H.(Z) = —(1-z-1
1(2) ﬁ()

After substitution, the output is

X(2) =27X(Z),
which is clearly an exact-reconstruction. For more information on the
Hadamard Transform, see Anil K. Jain, Fundamentals of Image
Processing, pg. 155.

A reversible version of the Hadamard Transform is referred to
herein as the S-transform. For more information on S-transform, see
Said, A. and Pearlman, W. "Reversible Image Compression via
Multiresolution Representation and Predictive Coding,” Dept. of
Electrical, Computer and Systems Engineering, Renssealaer Polytechnic
Institute, Troy, NY 1993. Since the Hadamard Transform is an exact
reconstruction transform, the following unnormalized version (which
differs from the Hadamard Transform by constant factors) is also an exact
reconstruction transform:

ho(2) = %(1+z-1)
hy(2) = 1-271
Given the samples of the input signal as xq, x1, the S-transform is a

reversible implementation of this system as,

10

15

20

25

|(x(03+x(1))/2]
x(0) - x(1)

¥o(0)
¥,

The S-transform may be defined by the outputs with a generic index, n,

as follows:

s (n)= [x(2n) +;(2n + I)J

d(n)=x(2n)-X(2n+1)

Note that the factor of two in the transform coefficients addressing is the

result of an implied subsampling by two. This transform is reversible and the

inverse 1s:

(

x(2n)= s(n)+l.

x(2n+1)=s(n)- [ééi)J

d(n)+1J
2

<

\

The notation |.] means to round down or truncate and is
sometimes referred to as the floor function. Similarly, the ceiling function
[.] means round up to the nearest integer.

The proof that this implementation is reversible follows from the
fact that the only information lost in the approximation is the least
significant bit of x(0)+x(1). But since the least significant bits of x(0)+x(1)
and x(0)-x(1) are identical, this can be recovered from the high-pass output
y1(0). In other words,

10

15

20

x(0)
x(1)

The S-transform is a2 non-overlapping transform using minimal

YO (y;(0#1)/2]
yo(0-{(y;(0>-1)/2]

length reversible filters. Minimal length filters comprise a pair of filters,
where both filters have two taps. Minimal length transforms do not
provide good energy compaction. Minimal length filters implement a
non-overlapped transform because the length of the filters is equal to the
number of filters. Overlapped transforms use at least one filter which has
lengih greater than the number of filters. Overlapped transforms using

longer (non-minimal length) filters can provide better energy compaction.

The reference system provides non-minimal length reversible

filters which permits an overlapped transform.

Another example of an exact-reconstruction system comprises the

Two/Six (TS)-Transform which has the Z-domain definition,

1 -
Hy(2) =-ﬁ(1+z 1)

1
H.(Z)=—— _1.z—l+5z—2_3z-3+z—4+z-5
1() 82 ()
After substitution, the output is

X(Z) = 2Z°X(Z),

which is an exact-reconstruction transform.

The rational unnormalized version of the TS-transform comprises:

ho(2)
hy(2)

%(1+Z‘1)
18~(-1-z-1+sz-2-sz-3+z-4+z-5)

10

15

21

If x(0), x(1), . . . x(5) are six samples of the signal, then the first three
low-passed coefficients yo(0), yo(1), yo(2) and the first high-passed

coefficient y1(0) are given by:

¥o(0) = [(x(0)+x(1))/2]
vo() = [(x(2)+x(3))/2]
¥o(2) = [(x(4)+x(5))/2]

¥,(0) =| (=(x(0)+x(1)))+ 8(x(2)- x(3))+ (x(4) + x(5)) /8.
However, the straight forward implementation of the rational
unnormalized version of the TS-transform is not reversible. The
following example shows that the implementation is non-reversible
locally. A longer sequence can be constructed as an example for the global
case. Since —(x(0)+x(1))+(x(4)+x(5)) # = y,(0)+y,(2) because of
rounding to compute yo(0) and yo(2), this transform is not reversible using

local information.

For example, if x(0)=1,x(1)=1, x(2)=3,x(3)=1,x(4) =1, x(5) =1, then

L(1+1)/2]=1
yo()=|(3+1)/2)=2
Vo(2)=[(1+1)/2])=1
y,(O)=[_[—(1+1)+8(3-1)+(1+1)]/8_’=[_(—2+16+2)/8J=2
and if x(0}=1,x(1)=2,x(2)=4,x(3)=1,x(4)=1,x(5)=1, then

Yo(0)

Yo(0)=[(1+2)/2]=1

Voll)=[(4+1)/2]=2

Yo(2)=[(1+1)/2]=1
y,(0)=|[-(1+2)+8(4-1)+(1+1)]|/8=[(-3+24+2)/8]=|23/8]=2

10

15

20

23

Since y0(0), yo(1), yo(2) and y1(0) are the same for two different sets of
inputs x(0) ... i(5), the transform is not reversible, since given yo(0),. . .
y1(0) it cannot be determined from this local information which of the two
sets were input. (Note that it can be proved that the transform is not
reversible using global information from all coefficients.) _

Now consider a reversible TS-transform, which is referred to herein
as an RTS-transform, which provides a different high-pass filtering
operation.

If x(0), x(1), x(2), x(3), x(4), x(5) are 6 samples of the signal, then the
first three low-passed coefficients yo(0), yp(1), yo(2) and the first high-passed

coefficient v1(0) are given by,

Yo(0) = L[(x(0)+x(1)/2]
yo{) = [(x(2)+x(3))/2]
¥ol2) = [(x(4)+x(5))/2]
v,(0) = [(-[(x(0)+x(1))/ 2+ 4(x(2) - x(3)) + | (x(4) + x(5)) / 2]+ 2) / 4]
= [(-y,(0)+ 4(x(2) - x(3)) +y,(2)+2) / 4].
Since

x(2) = x(3) = y,(0) = [~(yo(0) -y,(2) +2) / 4]
then x(2)-x(3) is completely known. With y,(1)=|(x(2)+x(3))/2]and x(2)-x(3)
and x(2)-x(3) defined above, x(2) and x(3) may be recovered because the least
significant bits of x(0)+(1) and x(0)-x(1) are identical.

Specifically, let

d(0) = x(2)- x(3) = y,(0)= | (- Yo(0) + yo(2)+2) / 4]

x(2) = yo(1)+| (d(0)+1)/ 2]

x(3) = yo(1)+ [(d(0)-1)/2]

10

15

20

25

- 29 -

In one example of the RTS-transform, as well as that of the S-

wransform, a divide-by-eight is implemented as a divide-by-two and then a divide-
by-four in order to provide additional accuracy. Note that mathematically the

equation

-2zt e8z?-8Z7+ 27427 +4)

and the equation
1(1 . 2 oy 1 .
Z(E('l'z N+4(27-2 ’)+5(z-‘+z 5)+2)

are the same when performed with infinite precision arithmetic. The reason the
second eguation represents a feversible filter is apparent when physically
implemented with integer arithmetic. Exemplary hardware implementations of
the low-pass filter and the high-pass filter are described in conjunction with
Figures 16 and 17.

Note that in both the S-transform and the RTS-transform, the low-
pass filter is implemented so that the range of the input signal x(n)is the
same as the output signal y,(n). For example, if the signal is an 8bit
image, the output of the low-pass filter is also 8 bits. This is an important
property for a pyramidal system where the low-pass filter is successively
applied because in prior art systems the range of the output signal is
greater than that of the input signal, thereby making successive
applications of the filter difficult. In addition, the low-pass filter has only
two taps which makes it a non-overlapping filter. This property is
important for the hardware implementation, as is described below later.

In a more generic format, the reversible TS-transform is defined by the

expression of the two outputs of a low-pass and a high-pass filter:

10

15

[s(n) - x(2n)+ x(2n + I)J
L . 2

2

d(n)=|- 2

) [x(2n)+x(2n+1)J+4(x(2n+2)_x(2n+3))+[x(2n+4)+x(2n+5))

J

4

The expression for d(n) can be simplified and written with the use of s(n)

(moreover the integer division by 4 can be rounded by adding a 2 to the

numerator). These result in:

s(n) = [x(2n)+;(2n+ I)J

d(n)= x(2n+2)_(2n+3)+[—s(n)+s‘(1n+2)+2J

The TS-transform is reversible and the inverse is:

x(2n)=s(n)+ l‘P(nzﬁJ

x(2n+1)=s(n) -[P%J

where p(n) must first be computed by,

p(n)=d(n- 1)_l-s(n-1) +4s(n +1)+2 J

10

15

20

25

3l

The results from the low-pass filter may be used twice (in the first
and third terms) in the high-pass filter. Therefore, only two other
additions need to be performed to arrive at the results of the high-pass
filter.

The TS-transform, in addition to being reversible, is also efficient.
Hence, it lends itself quite well to lossless compression. The TS-transform
(like the S-transform) has no growth in the smooth output, i.e., if the input
signal is b bits deep, so is the smooth output. This is useful for in pyramidal
systems, defined in the next section, where the smooth output is decompose'd

rther. There is no systemic error due to rounding in the integer
implementation of the transform, so all error in a lossy system can be
controlled by quantization.

Among the four filters participating in a wavelet transform, the
low-pass synthesis filter is the most important because it combines the
quantized coefficients and also smooths the artifacts. This fact has led to
the choice of a relatively long (six-tap) and particularly well behaved filter
for the low-pass synthesis filter in the present invention. Note that in a
QMF system, there are only two independent filters.

Many overlapped, non-minimal length reversible filters may be
used in the present invention. Such forward and inverse representations
of the transform system for filtering with non-overlapped minimal length
reversible filters is shown in Figure 3B. For instance, the following class of

filters may be used, ~ ForanintegerL 22,

d(0)=x(2(Ly2[+1))-x{2(L/2]+1)+ 1)

and

10

15

32

yo(0) = (x(0)+x(1))/ 2]
yo(1) = (x(2)+x(3))/ 2]
Yo(L-1)=|(x(2[(L-1)/2))+x(2[(L-1)/2]+1))/ 2]
and
(L) ' L-1 K
2 2.yo(i)+bd(0)+ Lgkzciyo(j),u[ﬂ
Y:(O) = "
The length of the high-pass filter is 2L. If L is odd, the filter may be

closer to a symumetric filter. If a;, b, ¢; and k are integers and ks<b, then the
filter is reversible. If aj, b, ¢;, and k are powers of two (or the negative or
complement of a power of two), then the implementation of the filter may
be simplified. If k = b (regardless of the values of a; and ¢;) then the range
of the output of the high-pass filter y; is minimized. For each a;, if there is
exactly one ¢; where a; = -¢j, then the high-pass filter will have no response
to a constant input. If aj = -¢; when j-(L-1)=i, then the filter may be closer
to a svmmetric filter.

Another useful property is

Lgu?[(al)(21)T + (2,)(2i + 1)"] + (b)(Z(]_l/z_j + 1))m
m 153 L) m
~(b)(2(Ly2]+1)+1) +H§bz[c,(z,) +6(z,+1)"]=0
This makes the high-pass filter have no response to a linearly
changing input when m=1 and a quadratically changing input when m=2,
etc., where m is the moment condition. This property is the principle
reason that the RTS-transform has better energy compaction than the

S-transform.

10

15

20

25

33

While filters must meet the minimum constraints for reversibility,

for different applications, filters mav be used that meet none, some or all

of the other properties. In some examples, one of the following
high-pass filters is used. The filters are listed in a notation
that just lists the integer coefficients of the rational version of

the filter, to avoid obscuring the invention.

11-4-416-1644-1-1
11-3-38-833-1-1
-1-10016-160011
-1-144-16-16256-2561616-4 411
33-22-22 128 -128 22 22 -3 -3
The last filter is referred to as the (Two/Ten) TT-filter, and it has the
preperty that it has no response to a cubically increasing function. Note -
that since 22=16+2x3 and 3=2+1, this filter can be implemented with a total
of seven additions and subtractions.
The filters can be combined and applied to a
block, such that both the horizontal and the vertical passes are performed
in one operation. Figure 4 illustrates the filters to perform the combined
operation. Configuration (a) shows the use of two separate 1-D reversible
filters, one for each pass, that include a 1-D filter and 1-D rounding.
Configuration (b) shows a 1-D filter 401, followed by another 1-D filter 402,
ending with a 2-D rounding operation 403. This configuration produces
more precise results in that it allows for better rounding.
The strict reversibility requirements for filters can be relaxed by
noting the following. High pass coeffidents are encoded and decoded in
the some order. Pixel values corresponding to previously decoded high

10

15

20

25

3ip

pass coefficients are known exactly, so they can be used in current high
pass filtering. For example, the following filter can be used when a raster

order is used.

}{1(2)=BQ-%(1+2-‘)J+H(a(z2 -z7%)+(2" +z-=))J+2)J
The use of a single fixed high-pass filter is not required. Adaptive
filters mayv be used or multiple filters may be used. The data used to adapt
or select among multiple filters must be restricted to data that is available
in the decoder prior to a particular inverse filtering operation.

One way to use multiple filters is to process the high-pass
coefficients progressively. Alternate high-pass filtering operations (v1(0),
v12), vy 44, -) may be processed first with a reversible filter such as the

RTS high-pass filter. The remaining processing (yl(l), y1(3), yl(S), ...)may

use a non-reversible filter of up to six taps, because the exact values of the
inputs to the overlap portion of the filter are known. For example, any of
the following filters may be used.

-13-31

1441

-38-83

1-510-105-1

14884-1

Note that QMF filters are not used in some examples.
The high pass filter may be replaced with a

prediction/interpolation operation. A predictor/interpolator may predict

the difference between a pair of inputs using any data that is available in

10

15

20

25

39

the decoder prior to a particular prediction/interpolation operation. The
predicted difference is subtracted from the actual difference of the inputs
and the result is outputted. In one example, prior art prediction
methods used in DPCM, progressive coding or spatial domain coding are

used.

Non-linear filters may also be used, such as morphological
filters (e.g. a median filter). 1In one example, the 1,1

filter is used in conjunction with a different filter for the highpass. Such a
filter system must be able to transmit the difference between two pixels.
Based on any data the decoder has, a prediction can be made as to what the

difference should be. A non-linear morphological filter may be used to do

the estimate. The reference system computes the median around a
pixel using the actual pixels on the causal side of the window and
inputting them into the filter. On the non-causal side of the
filter, the low pass coefficients are used instead of pixel values.

wo-Di i Wavelet

Using the low-pass and high-pass filters of the reference system, a

multi-resolution decomposition is performed. The number of levels of
composition is variable and may be any number; however, currently the
number of decomposition levels equals from two to five levels.

The most common way to perform the transform on two-
dimensional data, such as an image, is to apply the one-dimensional filters
separately, i.e., along the rows and then along the columns. The first level
of decomposition leads to four different bands of coefficients, referred to
herein as LL, HL, LH, anfl HH. The letters stand for low (L) and high (H)

10

20

25

corresponding to the application smooth and detail filters defined above
respectively. Hence, the LL band consist of coefficients from the smooth
filter in both row and column directions. It is common practice to place
the wavelet coefficients in the format as in Figures 5A-5D.

Each subblock in a wavelet decomposition can be further
decomposed. The most comumon practice is to only decompose the LL
subblock further, but this can be done a number of times. Such a multiple
decomposition is called pyramidal decomposition (Figures SA-5D). The
designation LL, LH, HL, HH and the decomposition level number denote
each decomposition. Note that with either filters, S or TS, of the present
invention, pyramidal decomposition does not increase the coefficient size.

For example, if the reversible wavelet transform is recursively
applied to an image, the first level of decomposition operates on the finest
detail, or resolution. At a first decomposition level, the image is
decomposed into four sub-images (e.g., subbands). Each subband
represents a band of spatial frequencies. The first level subbands are
designated LLg, LHg, HLg and HHQ. The process of decomposing the
original image involves subsampling by two in both horizontal and
vertical dimensions, such that the first level subbands LLg, LHp, HLg and
HH(each have one-fourth as many coefficients as the input has pixels (or
coefficients) of the image, such as shown in Figure 5A.

Subband LLg contains simultaneously low frequency horizontal and
low frequency vertical information. Typically a large portion of the image
energy is concentrated in this subband. Subband LHQ contains low
frequency horizontal and high frequency vertical information (e-g-
horizontal edge information). Subband HL(contains high frequency

10

15

20

25

31

horizontal information and low frequency vertical information (e.g.,
vertical edge information). Subband HHQ contains high frequency
horizontal information and high frequency vertical information (e.g.,
texture or diagonal edge information).

Each of the succeeding second, third and fourth lower
decomposition levels is produced by decomposing the low frequency LL
subband of the preceding level. This subband LLg of the first level is
decomposed to produce subbands LL1, LH1, HL1 and HH1 of the moderate
detail second level, as shown in Figure 5B. Similarly, subband LL1] is
decomposed to produce coarse detail subbands LL2, LH2, HL7 and HH? of
the third level, as shown in Figure 5C. Also, subband LL2 is decomposed
to produce coarser detail subbands LL3, LH3, HL3 and HH3 of the third
level, as shown in Figure 5D. Due to subsampling by two, each second
level subband is one-sixteenth the size of the original image. Each sample
(e.g., pel) at this level represents moderate detail in the original image at
the same location. Similarly, each third level subband is 1/64 the size of
the original image. Each pel at this level corresponds to relatively coarse
detail in the original image at the same location. Also, each fourth level
subband is 1/256 the size of the original image.

Since the decomposed images are physically smaller than the
original image due to subsampling, the same memory used to store the
original image can be used to store all of the decomposed subbands. In
other words, the original image and decomposed subbands LLg and LL}
are discarded and are not stored in a three level decomposition.

Although only four subband decomposition levels are shown,

additional levels could be developed in accordance with the requirements

10

15

20

25

33

of a particular system. Also, with other transformations such as DCT or
linearly spaced subbands, different parent-child relationships may be
defined.

There is a natural and useful tree structure to wavelet coefficients in a
pyramidal decomposition. Note that there is a single LL subblock
corresponding to the last level of decomposition. On the other hand, there
are an many LH, HL, and HH bands as the number of levels. The tree
structure defines the parent of a coefficient in a frequency band to be a
coefficient in a same frequency band at a lower resolution and related to the
same spatial locality. Figure 6 shows the parental relationship between two
consecutive levels.

Referring to Figure 6, the coefficient at A is the direct parent to B, C,
and D but is also parent to the coefficients that have B, C and D as parents.
Specifically, B is parent to the four coefficients around E and the sixteen
coefficients around H, etc.

The process of multi-resolution decomposition may be performed
using a filtering system, such as that depicted in Figure 7. An input signal
representing a one-dimensional signal with length L is low-pass and high-
pass filtered by filter units 701 and 702 before being subsampled by two via
units 703 and 705. A subsampled output signal from unit 703 is low-pass
and high-pass filtered by units 705 and 706 before being subsampled by two
via units 707 and 708, respectively. Subband components L and H appear
at respective outputs of units 707 and 708. Similarly, the output signal
from unit 705 is low-pass and high-pass filtered by units 709 and 710 before
being subsampled by units 711 and 712, respectively. Subband components
L and H appear at respecﬁvé outputs of units 711 and 712. As described

- 39 -
above, the filters used in subband decomposition may be
digital quadrature mirror filters for splitting the
horizontal and vertical frequency bands into low frequency
and high frequency bands.

Figure 8 illustrates a two-dimensional, two-level
transform. Figure 9 also illustrates a two-dimensional, two-
level transform implemented using one-dimensional filters,
such as those shown in Figure 16 and 17. The one-dimensional
filters are applied at every other position, to avoid
computation rendered unnecessary by subsampling. One-
dimensional filters may share computation between low-pass
and high-pass computation.

Therefore, the reference system for compression and
decompression uses non-minimal length, overlapped reversible
filters. Figure 10 is a block diagram of one example of such
a system. Referring to Figure 10, hierarchical decompression
is initially performed. The results of the hierarchical
decomposition are sent to a compressor for compression. The
compression performed may include vector quantization, scalar
quantization, zero run length coding, Huffman coding,
Tunstall, etc. The output of the compressor compresses data
representing a compressed version of the original input data.
A decompressor may receive the data at sometime in the future
and decompress the data. The reference system then performs
an inverse decomposition using non-minimal length, overlapped
reversible filters to generate a reconstructed version of the
original data. Note that the non-minimal length, overlapped
reversible filters comprise non-S transform filters.

10

15

20

25

4C

The reversible wavelet filters may also be

used in exemplary analysis and enhancement systems, such as shown in

Figure 11. Referring to Figure 11, hijerarchical decomposition is performed

on input data using non-minimal length, overlapped reversible wavelet

flters. The analysis unit receives the coefficients generated by the filters

and classifies them into decisions, €.g., rather than encoding the

coeféicients completely, only relevant information is extracted. For

example, in a document archiving system, blank pages might be

recogrized using only the coarsest low-pass subband. Another example

would be to only use high pass :nformation from a particular subband to

distinguish between image of

hierarchical decomposition m

text and images of natural scenes. The

ay be used for registering multiple images,

such that coarse regisrration is done first with coarse subbands. In arother

embodiment, the coefficients

undergo enhancement OT filtering followed

by inverse decomposition. Sharpening, edge enhancements, noise

control, etc. may be performe

d using a hjerarchical decomposition. Thus,

the present invention provides a wavelet transform for use in joint

time/space and frequency domain analysis and filtering /enhancement

systems.

e adeing fhs Cosfiens T

In the reference system,

the coefficients generated as a result of

the wavelet decomposition are entropy coded. The

coefficients initially undergo embedded coding in which the coefficients

are ordered in a visually significant order or, more generally, ordered with

respect to some error metric (e.g., distortion metric). Error or distortion

- 41 -

metrics include peak error, and mean squared error (MSE).
Additionally, ordering can be performed to give preference to
bit-significance spatial location, relevance for data base
querying, and directly (vertical, horizontal, diagonal,
etc.).

The ordering of the data is performed to create the
embedded quantization of the codestream. Two ordering
systems are used: a first for ordering the coefficients and a
second for ordering the binary values within a coefficient.
The ordering produces a bitstream that is thereafter coded
with a binary entropy coder.

The coefficient ordering and modeling may comprise
M-ary coding. Alternatively, it may be embedded by band
only, instead of by bit. Also, for lossless coding or single
quality lossy coding (e.g. quantization specified at the
encoder), non-embedded coding may be used in the coefficient
ordering and modeling.

Coding Unit

A coding unit is a rectangular set of trees that are
coded independently of the rest of the image. The coding
unit represents the smallest unit of coded data (although
there are quantization options that would allow partial
coding units to be decoded). All of the data in a coding
unit is available to the encoder at one time, e.g. buffered
in memory.

The choice of a coding unit is implementation
dependent. The coding unit may be defined as the entire
image (or other data set) or a single tree or any rectangle
in between. 1In one example, the choice of a coding unit may

entail a compromise between compression efficiency and memory
usage.

10

15

20

25

42

In one example, all the coefficients within a coding unit are

available in random access memory. Since all coefficients within a coding
unit are available in random access mer;tory, the embedding order between
the coefficients within a coding unit can be any arbitrary order. This order is
known to both the encoder and the decoder. But since the entropy coder is
causal with respect to this ordering, the order has a significant impact on the

compression and is chosen with care. One example of particular
ordering is described below.

Modeling

Joint spatial/frequency modeling
comprises an embedded coding system used to encode the coefficients
gerierated by the wavelet transform ef-the-present invention. The joint

space/ frequency modeling takes advantage of both the known frequency

bands and the neighboring pixels (or data). One example of the
joint space/frequency modeling is referred to herein as horizon

modeling.
The data is initially formatted in sign magnitude format, which is

followed by the data being sorted based on significance. In another
embodiment, to further reduce workspace memory, the coefficients could
be stored in a magnitude/mantissa form instead of a sign/magnitude.
After the data is sorted with respect to the given significance metric,
the data is encoded.
Assuming a digital signal, x(n), for each x(n) is represented with R
bits of precision, then the embedded coding
encodes the most significant bit (or bits) of every x(n) of the signal, then

the next significant bit (or bits) and so on. For example, in the case of

10

15

20

25

43

visually defined ordering, an image that requires better quality in the
center than along the corners or near the edges (such as some medical
images) may be subjected to encoding such that the low-order bits of the

central pixels might be coded prior to the higher-order bits of the boundary

pixels.

In one example, the embedded order used for binary values within
a coefficient is by bit-plane. The coefficients are expressed in bit-significance
representation. Bit-significance is a sign-magnitude representation where the
sign bit, rather than being the most significant bit (MSB), is encoded with the
firs: non-zero magnitude bit.

There are three types of bits in a number represented in bit-significance
form: head, tail, and sign. The head bits are all the zero bits from the MSB to
the first non-zero magnitude bit plus the first non-zero bit. The bit-plane
where the first non-zero magnitude bit occurs defines the significance of the
coefficient. The bits after the first non-zero magnitude bit to the LSB are the
tail bits. The sign bit simply denotes the sign. A number with a non-zero bit
as the MSB has only one head bit. A zero coeffident has no tail or sign bits.

In the case where the values are non-negative integers, such as
occurs with respect to the intensity of pixels, the order that may be used is
the bitplane order (e.g., from the most significant to the least significant
bitplane). Where two’s complement negative integers are
also allowed, the embedded order of the sign bit is the same as the first
non-zero bit of the absolute value of the integer. Therefore, the sign bit is

10

20

25

4k

not considered until a non-zero bit is coded. For example, using sign
magnitude notation, the 16-bit number -7 is:

1000000000000111
On a bit-plane basis, the first twelve decisions will be "insignificant” or
zero. The first 1-bit occurs at the thirteenth decision. Next, the sign bit -
('negative”) will be coded. After the sign bit is coded, the tail bits are

processed. The fifteenth and sixteenth decisions are both "1".

fficient Alignment

The coefficients in the different subblocks represent different
frequencies similar to the FFT or the DCT. The quantization is performec by
aligning coefficients with respect to each other before the bit-plane encoding.
The less heavily quantized coefficients will be aligned toward the earlier bit-
planes (e.g., shifted to the left). Thus, if the stream is truncated, these
coefficients will have more bits defining them than the more heavily
quantized coefficients.

In one example, the coefficients are aligned for the best rate-
distortion performance in terms of SNR or MSE. Alternately, the alignment
could allow a physchovisual quantization of the coefficient data. The
alignment has significant impact on the evolution of the image quality (or in
other words on the rate-distortion curve), but has negligible impact on the
final compression ratio of the lossless system.

The bit depths of the various coefficients in a two-level TS-transform
decomposition from an input image with b bits per pixel are shown in Figure

12. To align the coeffidents, the 1-HH coefficent size is used as a reference,

4,5

and shifts are given with respect to this size. Table 1 shows an example of this
alignment process.
Table 1 - Example of coefficient alignment, b=8

1-HH Reference 1019 |18 |7 [6 |54 |3 |2]1 |0
x-HL or x-LH Left3 817 [6[5]413[2]1]0

x-HLorx-LH Left2 8 [7 |6 [543 (2 |1]0

x-HL or x-LH Left1 B 1716 {5143 (2]1]0
x-HLorx-LH none 8|7 [6[5]4 ({32110
x-HLorx-LH Right1 8 (7 (6|54 |3]|2]1]|C

Note the sign bit is not the MSB and is encoded with the first tail bit. It is
Important to note that the aligrunent simply controls the order the bits are
sent to the entropy coder. Actual padding, shifting, storage, or coding of extr

zero bits is not performed.

Context Model

One example of the Horizon context model is described
below. This model uses bits within a coding unit based
on the spatial and spectral dependencies of the coefficients. The available
binary values of the neighboring coefficients, and parent coefficients can be
used to create contexts. The contexts, however, are causal for decodability and

in small numbers for efficient adaptation.

Entropy Coding

10

15

20

25

4o

In one example, the entropy coding performed by the
reference system is performed by binary entropy coders. Entropy
coder 104 comprises a Q-coder, a QM-coder, a finite state machine

coder, a high speed parallel coder, etc. A single coder may be used to
produce a single output code stream. Alternately, multiple (physical or
virtual) coders may be employed to produce multiple (physical or virtual)
data streams.

In one example, the binary entropy coder
comprises 2 Q-coder. For more information on the Q-coder, see Pennebaker,’

W.B,, et al., "An Overview of the Basic Principles of the Q-coder Adaptive
Binary Arithmetic,” [BM Journal of Research and Development Vol. 32, pg.

717-26, 1988. In an alternate example, a binary entropy coder uses
a QM-coder, which is a well known and efficient binary entropy
coder. It is particularly efficient on bits with very high

probability skew. The QM-coder is used in both the JPEG and JBIG
standards.

The binary entropy coder may comprise a finite state machine (FSM)

coder. Such a coder provides the simple conversion from a probability and an
outcome to a compressed bit stream. A finite state

machine coder is implemented using table look-ups for both decoder and
encoder. A variety of probability estimation methods may be used with such
a finite state machine coder. Compression is excellent for probabilities close
to 0.5. Compression for highly skewed probabilities depends on the size of the
lookup table used. Like the QM-coder, it is useful with embedded bit streams
because the decisions are coded in the order of occurrence. There is no
possibility for “carry-over” problems because the outputs are defined by a
lookup table. In fact, there is a maximum delay between encoding and the

- 47 -

production of a compressed output bit, unlike the Q and QOM
coders. The finite state machine coder may comprise a B-
coder defined in US Patent No. 5,272,478, entitled "Method
and Apparatus for Entropy Coding®, issued December 21, 1993.
The binary entropy coder may comprise a high speed
parallel coder. Both the QM-coder and the FSM coder require
that one bit be encoded or decoded at a time. The high-speed
parallel coder handles several bits in parallel. The high speed

parallel coder is implemented in VLSI hardware or multi-processor ,
computers without sacrificing compression performance. One

“high speed parallel coder that may be used is
described in U.S. Patent No. 5,381,145, entitled "Method and Apparatus for
Paraliel Decoding and Encoding of Data”, issued January 10, 1995.

Most efficient binary entropy coders are limited in speed by
fundamental feedback loops. A possible solution is to divide the incoming
data stream into multiple streams and feed these to parallel encoders. The
output of the encoders are multiple streams of variable-length coded data.
One problem with this type of approach is how to transmit the data on a
single channel. The high speed parallel coder described in U.S. Patent No.
5,381,145 solves this problem with a method of interleaving these coded data
streams.

Many of the contexts ' are fixed
probability, which makes a finite state machine coder, such as the B-coder
especially useful. Note when a system using probabilities close to 0.5, both
high speed parallel coder disclosed above and the finite state machine coder

10

15

20

25

43

operate with more efficiency than the Q-coder. Thus, both have a potential

compression advantage with the context model,

ncoding and

The following flow charts, Figures 13-15, depict one example
of the encoding and decoding processes of the reference system.
These processes may be performed in software or with hardware. 1In

either case, references have been made to processing logic, which
may represent either.

Figure 13 illustrates one example of the encoding process.

[

Referring to Figure 13, the encoding process begins by
having processing logic acquiring an input data for a coding unit
(processing block 1301). Next, processing logic applies reversible filter(s) to
the input data unit of the coding unit (processing block 1302).

A test then determines if another level of decomposition is desired
(processing block 1303). If so, processing logic applies the reversible filter
to all the LL coefficients (processing block 1304), and the process loops back
and continues at processing block 1303. If another level of decomposition
is not desired, processing continues at processing block 1305 where
processing logic converts the coeffidents to sign/magnitude form.

After converting coeffidents to the sign/magnitude form, a bitplane
variable, S, is set to the most significant bitplane (processing block 1306).
Then, the processing logic optionally initializes the entropy coder
(processing block 1307).

Once the entropy coder has been initialized, processing logic models

each bit of each coeffident with the context model and entropy codes the

10

15

20

25

49

bits (processing block 1308). After entropy coding the bit, the data is either
transmitted or stored (processing block 1309).

Thereafter, a test determines if there are any more coding units in
the image (processing block 1310). If there are more coding units,
processing continues to processing block 1301. On the other hand, if there
are no more coding units, then processing ends.

Figure 14 illustrates one example of the decoding process.
Referring to Figure 14, the process begins by processing
logic retrieving coded data for one coding unit (processing block 1401).
Next, 2 variable S is set to the most significant bitplane (processing block
1402). After setting the bitplane variable S to the most significant bitplare,
processing logic optionally initializes the entropy coder (processing block
14C3).

After the entropy coder has been initialized, processing logic sets the
initial value of each coefficient to zero (processing block 1404). Then the
processing logic models each bit of each coefficient with a context model
and entropy decoder (processing block 1405) and converts coefficients to
proper form for filtering (processing block 1406). This conversion may
convert from bit significance to two's compliment form. Thereafter, the
processing logic applies an inverse filter(s) on the coefficients starting from
the highest level of decomposition (processing block 1407).

A test then determines if all the levels have been inverse filtered
(processing block 1408). If all the levels have not been inverse filtered,
processing logic applies the inverse filter(s) on the coefficients from the
next highest level of decomposition (processing block 1409), and
processing continues at processing block 1408. If all the levels have been

10

15

20

25

S0

inverse filtered, processing continues at processing block 1410 where the
reconstructed data is either stored or transmitted. After storing the
transmitted reconstructed data, a test determines if there are more coding
units (processing block 1411). If there are more coding units, processing
loops back and continues at processing block 1401 where the process is

repeated. If there are no more coding units, the process ends.

Figure 15 illustrates one example of the process for

modeling bits. Referring to Figure 15, the process

for modeling bits begins by setting a coefficient variable C to the first
coefficient (processing block 1501). Then, a test determines if 1c!>25. If yes,
processing continues at processing block 1503 where processing logic codes
bit S of coefficient C using the mode! for tail bits and processing continues
at processing block 1508. The model for tail bits may be a stationary (non-
adaptive) model. If fc! is not greater that 25, then processing continues at
processing block 1504 where processing logic applies a template for head
bits (i.e., the initial zeros and the first on "1" bit). After applying the
template, processing logic codes bit S of coefficient C (processing block
1505). Possible templates are shown in Figures 26A-C. Templates may be
implemented with LUTs, as shown in Figures 19A and 19B.

Next, a test determines if bit S of coefficient C is on (processing block
1506). If bit S of coeffident C is not on, processing continues at processing
block 1508. On the other hand, if bit S of coefficient C is on, processing
continues at processing block 1507 where processing logic codes the sign
bit. Thereafter, processing continues at processing block 1508.

At processing block 1508, a test determines if coefficient C is the last

coefficient. If coefficient C is not the last coeffident, processing continues

10

15

20

25

5i

at processing block 1509 where the coefficient variable C is set to the next
coefficient and processing continues at processing block 1502. On the other
hand, if coefficient C is the last coefficient, processing continues at
processing block 1510 where a test determines if S is the last bitplane. If S
is not the last bitplane, bitplane variable S is decremented by 1 (processing
block 1511) and processing continues at processing block 1501. If S is the

last bitplane, processing ends.

The reference system may be implemented in hardware
and/or software. A hardware implementation requires

impiementation of the wavelet filters, memory/data flow management to
provide the data for the filters, a context model to control the embedded
coding of the present invention, memory/data flow management to

provide the data for the context model, and a binary entropy coder.

Wavelet Filters

One example of a forward wavelet filter

is shown in Figure 16. The wavelet filter shown in Figure 16

accommodates 4 16-bit two's complement input pixels, shown as x(2)-x(5).

Referring to Figure 16, the two tap "1 1" low-pass filter uses one
16-bit adder 1601. The outputs are called S and D, respectively. The output
of the adder (S) is truncated to 16 bits using shift-by-1 block 1603. The shift-
by-1 block 1603 performs a divide-by-2 function by shifting its 17-bit input

to the right one bit.

10

20

25

S

The six tap "-1-1 8 -8 1 1" high-pass filter requires the computation
of -Sg + 4D + S2. The function S2- Sg is computed with 16-bit subtractor
1605 receiving the output of shift-by-1 block 1603 and the Y0(0). The 4D1
term is computed using subtractor 1602, shift-by-2 block 1604 and adder
1608. The output produced by 16-bit subtractor 1602 is shifted to the left
two places by shift-by-two block 1604, thereby effectively multiplying its
output by four. The output of block 1604 is added to 2 by adder 1608. Note
that because of the shift by 2, adder 1608 may be replaced by wiring.
Adding the 4D, output from adder 1608 to the output of subtractor 1605 is
performed by 20-bit adder 1606. The output of the adder 1606 is truncated
to 18 bits using shift-by-2 block 1607. Shift-by-2 block 1607 performs a
divide-by-4 function by shifting its 20 bit input to the right two bits.

Thus, the total computational hardware required (not counting
registers for storing temporary results) is:

e 1@ 16-bit adder,
e 2 @ 16-bit subtractors,
e 1@ 19-bit adder.
Note that shifting (and adder 1608) is performed by the wiring, such that

no logic is needed.

In other examples for inputs of size N, one N-bit adder, two
N-bit subtractors and one (N+3) bit adder may be used.

Due to the extremely low hardware cost of these adders/subtractors,
parallel implementations of the filters can be used if desired.

Note that alternatively, instead of subtracting X(3) and X(2),
X(4)-X(5) can be computed and saved until needed later as X(2)-X(3) for the
next shift or application Qf the filter. Both the forward filter (and the

7

10

15

20

25

53

inverse filter described below) may be pipelined to achieve higher
throughput.

The inverse wavelet filter is shown in Figure 17. The inputs of
Y0(0) and Y((2) are subtracted by subtractor 1701. Two (2) is added from the
output of subtractor 1701 by adder 1709. The result of the addition is
shifted to the right two bits by shift-by-2 block 1702. This effectively
divides the output of the subtractor by 4. A subtraction is performed
between the output of shift-by-2 block 1704 and the Y1(0) input. The input
Y0(1) is shifted one bit to the left by shift-by-1 block 1703, thereby
multiplying the input by two. After Yo(1) is shifted by 1 (multiplied by
two), the LSB of the shifted value is the LSB taken from the output of
subtractor 1704 and combined with the 16 bits output from shift-by-1 block

703 to form an input for adder 1705 and subtractor 1706. The other input
for adder 1705 and subtractor 1706 is the output of subtractor 1704. The
outputs of adder 1705 and subtractor 1706 may subsequently undergo
clipping.

A choice of two clip operations may be used. In both cases, the 20-bit
value is shifted by 1 (divided by 2), to a 19-bit value. For a system that only
performs lossless compression, the least significant 16 bits can be output
(the remaining 3 bits can be ignored). In a lossy system (or a lossy/lossless
system), the 19-bit value is set to zero if it is negative or set to 216-1 if it is
greater than 21¢-1; otherwise, the least significant 16 bits can be output.

For inputs of size N bits, one N-bit subtractor, one (N+1) bit adder,
one (N+2) bit subtractor, one (N+3) bit adder and one (IN+3) bit subtractor

may be used, and the clip unit outputs N bits.

10

15

20

25

- 54 -

In one example of the wavelet transform, Monte Carlo
division is used in the transform computations, wherein a
pseudo random generator is used and based on its output, the

results of a transform operation are either

rounded up or down. Such an implementation may be used as long as a
decoder is aware of the rounding being performed (i.e., uses the same random

generator starting at the same point).

morv Usage f ata Flow a t Wav ilt
With respect to memory and data flow management for the wavelet ,
filters) for images where a full frame can fit in
memory, memory/data flow management is not a difficult issue. Even for
1024 X 1024 16-bit medical images (e.g., 2 Mbytes in size), requiring a full
t-ame buffer is reasonable for many applications. For larger images (e.g.,
A4, 400 DPI 4-color images are about 50 Mbytes in size), performing the
wavelet transform with a limited amount of line buffer memory is
desirable.
Note that a full frame buffer is not necessary
'to implement a one-pass system. Because of this, the memory
required may be reduced by about a factor of 100 (compared to using a full
frame buffer for large images). The one-pass system i
'is described later.

The data stored in the filter memory is a series of coeffidents that

are to be subjected to the embedded coding and binary entropy coding. The
embedded coding uses a context model to coordinate the use of horizon

coding, and to provide data in the proper order. The context model

operates in conjunction with a memory management scheme. For

10

15

20

25

55

systems with a full frame buffer, providing data in the proper order is not
difficult.

For systems with a finite amount of workspace memory, in one
embodiment, different height transforms are used to reduce the number
of workspace lines of memory needed for storage. Thus, if 2 wider image
is encountered, it may be compressed efficiently within the allotted .
workspace memory. For instance, the S-transform may be used vertically
tc reduce the number of lines.

Memory is required to buffer raster data, so a wavelet transform can be
performed. In some applications, minimizing this memory is important for

reducing cost. A technique for accomplishing this is described below.

One example of the wavelet 2-D transform described
herein is designed for a one-pass implementation and
restricted memory usage. In one example, the wavelet
transforms applied to achieve the pyramidal decomposition are
only TS and S transforms. In this example, there are four
levels of separable pyramidal decompositions. In one example,
a four level decomposition is performed using the S and TS
transforms. In one example, in the horizontal (row-wise)
decomposition, solely the TS-transform is used, i.e, the
horizontal decomposition is formed of TS-TS-TS-

TS. In the vertical (column-wise) decomposition, the S-transform and the
TS-transform are both used in the form of TS-TS-5-S. Two of the TS-
transforms are replaced by S-transform at a small cost to the compression, but
significant impact on the memory usage. The horizontal and vertical
transforms are applied alternatively as usual (Figure 20).

Note that any combination of the S and TS transforms may be used

to implement the horizontal and vertical transforms. Note that although

10

15

20

25

Sb

the orders of the transforms may be mixed, the decoder must be aware of

the order and must perform a reverse operation in the reverse order to be

fully reversible.

Coefficient Trees

In a pyramidal system, the coefficients can be grouped into sets
using a tree structure. The root of each tree is a purely low-pass coefficient.
Figure 6 illustrates the tree structure of one purely low-pass coefficient of
the transformed image. Fora two-dimensional signal such as an image,
the root of the tree has three "children” and the rest of the nodes have
four children each. The tree hierarchically is not limited to two
dimensional signals. For example, for a one dimensional signal, a root
has one child and non-root nodes have two children each. Higher
dimensions follow from the one-dimensional and two-dimensional cases.

The tree structure is also apparent from the operation of the filters
shown in Figures 7-9. The operation of the pairs of filters with
subsampling causes the previously described coefficients to be related.

In one example, the coefficients are coded in a bit
significance, or bit-plane embedded system. Since the
coefficients are coded from most significant bitplane to
least significant bitplane, the number of bitplanes in the
data must be determined. This is accomplished by finding an
upper bound on the magnitudes of the coefficient values
calculated from the data or derived from the depth of the
image and the filter coefficients. For example, if the upper
bound is 149, then there are 8 bits of significance or 8
bitplanes. For speed in software, bitplane coding may not be

used. In an alternate example, a

R

10

15

20

25

57

bitplane is coded only when a coefficient becomes significant as a binary
number.
The horizon context model may comprise the bit-

significance embedded encoding of the wavelet coefficients

that feeds a binary entropy coder.

text ! t v

Once the decomposition has been completed and the data
coefficients ordered, the context model 1s used to
encode the coefficients. There are various context models that may be
used. Decisions may be conditioned on spatial location, level, and/or bit
pesition. Decisions may also be conditioned on previously decoded data
that is close to the current data in spatial location, level, and/or bit
position.

Some examples are as follows. The most significant tail bit (and
therefore most easily predicted) could use a different context than the rest
of the tail bits. Head bits can be conditioned on the same bit for spatially
close previous coefficients at the same transform level. Similarly, the sign
bits for significant coefficients might be conditioned on the sign of
spatially close previous coefficients at the same level or the sign of the
coefficient of the parent.

Context model improvements might be espedially important when
compressing images that have spatial or multi-resolution structure.
Grayscale images of line drawings or text are an example of images with

both of these types of structure. Improvements are also important for

10

15

20

25

52

compressing files that already have to be compressed and decompressed

with a specified peak error.

when encoding in software, a large amount of time is
expended to obtain bits for contexts because the bits are
required for conditioning (e.g. every head bit). A software
implementation may be speeded up using look-up tables (LUTs).
This avoids separate bit extraction operations for the North
(N), Northwest (NW) , West (W) and Southwest (SW) pixels
that are used as contexts.

Figures 19A and 19B illustrate a state machine for head bit
conditioning. Referring to Figure 194, a LUT
1901 for a new parent is shown coupled to an encode/decode block 19C2.

LUT 1901 is coupled to receive bits indicative of a parent, bits representing

the above (NE) coefficients, the current (E) coefficient and the coefficient
pelow (S). The parent input and current input

comprise two bits each. Other inputs to LUT 1901 include all or part of the

context output from LUT 1901 and the output of encode/decode block

1902, as feedbacks. 8 of 10 bits output as a context by

LUT 1901 are fed back to an input of LUT 1901.

The NE, E and S coefficients are used because they represent the
leading edge of template information which comprises coefficient
information associated with the previous bit-planes. Note that the
Southeast (SE) coeffident may be used instead of the South (S) coefficient

In one example, if the template ig outside the coding unit,
the outside conditioning bits may be replaced with bits from

the current pixel.

10

15

20

25

o9

Figure 19B illustrates state machine conditioning using a LUT for
the same parent. In such a case, the entire context is fed back as an input to
LUT 1903.

Where data is processed in raster order, using a LUT reduces the
number of memory accesses because the same memory used to generate
the last context does not have to be reloaded.

To reduce the size of LUT memory, alternatively the parent
conditioning can be done separately by ORing with the output of a LUT
which only handles the other conditioning.

A slightly larger LUT table can also provide most of the
conditioning for the next bitplane also. Another smaller LUT could take
the state information from the current context LUT and combire it with
the newly available data from the next bitplane. This may especially be
useful if coding one tree at a time.

As described above “efficient”
may be defined to mean the transform has determinant of 1. In such a
case, code space is not wasted by saving room to code low probability
events when the low probability is zero. However, 8-bit coefficients are
still input and produce an 8-bit coefficient and one 9-bit coefficient.
Therefore, effidency may still be improved. The added inefficiency is due
to the rotation of the space of possible coefficients.

It should be noted that certain results of the transform operations
uniquely identify numbers used in the computations. This occurs when
the results are near the bounds of those ranges of possible results. This is
exemplified by Figure 18, wherein u represents the low-pass and v

represents the high-pass. Because the values of u and v are not

- 60 -

independent, these numbers may also be easier to entropy code
taking joint information into account. This is because, as
shown in Figure 18, for most low pass values, some code space
for the high pass is not used. In many applications there is
little advantage because the probability assigned to these
impossible pairs is low. However, there might be a
worthwhile gain in some applications. To speed operations,
more bits of the LL coefficients could be sent prior to the
LH, HL and HH coefficients. This may make bounding easier.

In some examples, after each coding unit has been
coded, everything is reset, all the statistics and
probabilities are reset when coding the second unit. Some of
the statistics or all may be saved. These then act as the
initial statistics when coding of a later coding unit begins.
The statistics may be saved at a predetermined point in the
coding of the first or previous coding unit. For example,
after coding the third bit plane, the statistics used by code
the current coding unit are saved and act as the statistics
for the beginning of coding of the following coding unit or
later coding unit. The classes for all images may be
evaluated and a hard coded set of statistics are determined.
Then coding is performed using these hard coded statistics as
a default. Statistics may be saved for each bit plane, such
that when coding in the similar bit plane in another tile,
the statistics are used.

In one example, there is no coding until the first one
bit. At the occurrence of the first one bit in the
coefficient, the sign is encoded. Although the head bits are
image/region dependent, the tail bits are more uniform across

different images and regions. Based on how far the tail bits

10

15

20

25

Gl

are from the initial one bit (in the head bit), certain probability classes are
used to encode the bits in the tail. In one embodiment, the first tail bit in a
coefficient is coded with a probability class including 0.7. The second and
third tail bits are coded with a probability class including 0.6. Lastly, the
fourth and further tail bits are coded with probability classes that includes
0.5.

A Performing the Wavelet Transform

In the one-pass system, the wavelet transform performed is a

compromise between compression performance and the amount of memery
used. The coding unit size is chosen for the least memory usage with the
fewest line buffers (assuming the image is delivered in raster order). The
intermediate coefficients of the wavelet transform are stored in the same

memory replacing the input as appropriate.

Choice of Wavelet Transform Filters

The wavelet 2-D transform described herein is designed for a one-pass
implementation and restricted memory usage. There are four levels of
separable pyramidal decompositions. In the horizontal decomposition, solely
the TS-transform is used, i.e., the horizontal decomposition is formed of TS-
TS-TS-TS. In the vertical decomposition, the S-transform and the TS-
transform are both used, and the vertical decomposition is formed of TS-TS-
S-S. The horizontal and vertical transforms are applied alternatively. Figure
20 illustrates the horizontal and vertical decompositions.

Two of the TS-transforms are replaced by S-transform at a small cost to

the lossless compression, but significant impact on the memory usage. The

10

15

20

25

b2

choice of using the S-transform in the last two vertical passes is solely to use
less memory. The usage of the S-transform saves approximately 32 lines of
coefficient buffer (e.g., 16 lines down from 48 lines). Note that using the TS-
transform for all the decompositions does provide better compression

performance.

Coding Unit Definition

In one example, the coding unit is defined by one line of trees (a

line of LL coefficients and all their descendants. With four levels of
decomposition, this implies that in the spatial domain, a coding unit is 16
lines by the width of the image. Figure 21 illustrates one coding unit. Note
that Figure 21 is not to scale. The level 1 block is the image after one 2-D
decomposition. To reiterate, the names LL(low-low), LH (low-high), HL
(high-low), and HH (high-high) are used to address a subblock and are applied
to all the level 1-4 blocks. Level 2 block is the result of the 2-D decomposition
of the subblock LL in the level 1 block. Similarly, blocks 3 and 4 are 2-D
decompositions of the subblocks LL in level 2 block and level 3 block
respectively.

A coding unit is 8 lines high for the HH, HL, and LH coefficients in
level 1, 4 lines high in level 2, 2 lines high in level 3, and 1 line in level 4 and
the LL subblock. Notice that as the resolution decreases at each step, the
length as well as the number of rows halve. Each coefficient in the LL of the

level 4 block is the top parent of a tree.

Buffering and Coeffident Computation

10

15

20

25

()

In order to generate one coding unit described in Figure 21, a workspace
buffer of size 2¢wem, where w is the width of the image, and m is the
maximum coefficient size in bits, may be used. Because of the nature of the
wavelet filters chosen for the vertical transform (i.e., column-wise) passes, the
workspace memory requirement is approximately 18-20 lines. Each
horizontal transform (i.e., row-wise) pass, all of which are TS-transforms, is
computed one line (row) at a time and the new coefficients replace the old
coefficients or pixels.

The first two vertical transform passes use the TS-transform filters.
Because of the six-tap high pass filter, each high pass coefficient in the vertical
pass depends on six lines of either pixel of coefficient data. A high pass TS
coefficient generated is related to the top two lines with four lines below for
overlap. This is shown in Figure 22. Referring to Figure 22, a vertical image
segment of a coding unit is shown. The vertical image segment of the coding
is the result of the original image being transformed by a horizontal pass of
the TS-transform. A vertical level 1 segment of a coding unit is shown and is
the first level 2-D transform of the image. The vertical level 1 segment is
obtained by performing a horizontal pass with a TS-transform. A vertical
level 2 segment of a coding unit is also shown and results from applying the
TS transform on the LL subblock of the level 1 block on both dimensions.

It should be noted that since the TS-transform is overlapped by four
pixels (or coefficients), four lines of data are saved at the end of a coding unit
to be used in the computation of the coeffidents of the next coding unit. In
other words, to create the level 1 coefficients, two extra lines of pixels are
needed at both the top and the bottom or four extra lines are needed at the

bottom. To create the level 2 coefficients, two extra lines of level 1 coefficients

10

15

20

25

ol

are needed at both the top and the bottom, or four are needed at the bottom.
To generate these extra level 1 coefficients, another two lines of pixels are
required on both the top and the bottom or four are needed at the bottom.
Thus, each coding unit spans 28 vertical lines.

Importantly, however, no extra computation is required to generate
these "extra” level 1 coefficients since they will be used in the coding units
above and below the current one. Also note that only 20 lines of storage are
required because only the level 2 coefficients are stored.

The final two vertical passes are S-transforms that have no overlap in

the low pass and, thus, do not require extra lines.

Memory for the Transform Computation

Given pixel values or coefficient values of size b bits (in the range of
-2b-1 0, ...2b-1.1) the smooth outputs, s(.), of both the S-transform and the
TS-transform are also b bits. In other words, they have the same range as the
input. However, the one-dimensional detail outputs, d(.), of the S-transform
and TS-transform will take b+1 and b+2 bits to express respectively.

Figure 23 illustrates some of the line buffering needed in addition to
the coding unit. The gray areas and arrows are the coefficients which are part
of the current coding unit and need to be saved in memory for the current
coding. The dashed arrows are the temporary coefficients which are needed
to compute the coefficients in the coding unit. These are overwritten by the
new coefficients. The solid arrows are the coefficients which are the by-
products of the computation of the current coding unit coefficients and are

saved to be part of the next coding unit.

10

15

20

25

LS

The final level (level 4) of coefficients is a single line in all four
subblocks (LL, LH, HL, HH). Referring only to the vertical transform, to
calculate level 4 from level 3, the S-transform is used so all subblocks require
only two lines of coefficients in level 3. Likewise, to calculate level 3 from
level 2 requires four lines of coefficients in level 2. All of these coefficients
are part of the current coding unit.

To calculate the vertical passes of level 2 and 1, the TS-transform is
used. Because of the overlapped nature of the six-tap high pass overlapped
filter, these levels require data from the next coding unit. That data is used to
calculate the coefficients in the current coding unit and then are stored for use
in the next coding unit.

To calculate the high pass subblocks in level 2 (LH, HH) from level 1, 12
lines are needed (8 lines to 4 lines from downsampling and 4 extra lines for
the overlap). These lines are shown in low pass subblocks of level 1 (LL, HL)
of Figure 23 as the 8 lines that are part of the current coding unit and 4 lines
that are part of the next.

To calculate the 12 lines in the low pass subblocks of level 1 (LL, HL), 24
lines are needed from level 0. These 24 lines at level 0 can create the 10 lines
in the high pass subblocks of level 1 (16 lines to 8 lines from downsampling
and 4 extra lines for the overlap). It is most efficient to calculate all 10 of these
lines and store them at level 1 even though only 8 are needed for the current
coding unit. Thus, only the 4 extra lines used for the overlap need be saved at
level 0.

Starting from an image of pixel depth b, for a separable 2-D transform,
for the case that both row and column transforms are TS, the ranges of the

coefficients are b, b+2, b+4 for LL, HL, LH, HH (Figure 12) subblocks

10

15

24

respectively. In the case the separable 2-D transform consists of horizontal TS
and vertical S transforms, the ranges of the coefficients are, b, b+1, b+2, b+3 for
LL, HL, LH, HH respectively. Tables 2, 3,4, 5, and 6 illustrate the calculation
for the memory required by each block. Note that the calculation is done in

terms of size in bits for an image of width w, one for each block:

Table 2 - Memory cost for Level 0

Subblock L H

Memory 4ebew/2 4e(b+2)ow /2

Table 3 - Memory cost for Level 1

Subblock LL HL LH HH

Memory |4ebew/2 10e(b+2)ew/2 |12¢(b+2)ew/2 |10 (b+d)ew/2

Table 4 - Memory cost for Level 2

Subblock LL HL LH HH

Memory QOebew/4 4e(b+2)ew/4 | 4o(b+2)ew/4 [4o(b+d)ew/4

Table 5 - Memory cost for Level 3

Subblock LL HL LH HH

Memory Oebew/8 2¢(b+1)ew/8 |2¢(b+2)ew /8 |2¢(b+3)ew/8

Table 6 - Memory cost for Level 4

Subblock LL HL LH HH

Memory lebew/16 le(b+1)ew/16{ 1o (b+2)ew/16| 1o (b+3)ew/16

A\l

10

15

20

25

o

Adding all of the above numbers equals (26b + 55%)- w bits, which rounded

is(26b+56)e w bits. A two line computational buffer of the largest size, b + 4
bits, adds 2« (b+4)e w bits leading to a total memory cost of (28b +64) ¢ w bits,
For example, for an 8-bit 512 pixel wide image, 147,456 bits or about 18K bytes
of memory is required.

In one example, the size of the transform is selected
based on the width of the image and the fixed size of the
memory available. 1In other words, an image of a particular
may be input into the system, and due to a limited amount of

available transform memory, the

number of levels of decomposition are reduced. If more memory is availa:le,
then the number of decomposiﬁon levels are increased. Note that this may
occur dynamically as the image is being received into the system. If enough
memory is available, the LL coefficients are fed through wavelet filters to
perform the additional level of decomposition. Note that an effect of
decreasing or increasing the number of levels is to decrease or increase,

respectively, the amount of compression that may be achieved.

B Embedded Order
Ordering of the Codestream

Figure 24A illustrates the ordering of the codestream and the ordering
within a coding unit. Referring to Figure 24A, the header 2401 is followed by
the coding units 2402 in order from top to bottom. Within a coding unit, the
LL coefficients 2403 are uncoded in raster (line) order. Following the LL

coefficients is entropy coded data one bit-plane at a time, starting from the

10

15

20

25

%

most significant bit-plane to the least significant bit-plane. Then the first bit-

plane from every coefficient is coded followed by the second bit-plane, etc.

Alignment of the Coefficients

In one example of the reference system, the context model

uses an unnormalized 1 + Z-1 low-pass filter. However, the context model

may be used with normalized filters, such as
1+2°1

2

In order to use normalized filters, an alignment unit between the

forward wavelet filter 1600 and the context model 105, can be used to
compensate for the energy gained (or alternatively, lost) from the
unnormalized filter, which improves compression. Because alignment
allows non-uniform quantization for lossy operation, alignment can
enhance the visual quality of lossy image reconstructions. In the one-
dimensional case, coefficients from each level of the tree would have

different alignment (divisors = \/_2-, 2, 2\/3, 4, multipliers = 2\/3, 2, \5 1).

In the two-dimensional case, the divisors would be 2, 4, 8, 16 and the

multipliers would be 8, 4,2, 1.

Since the alignment is only for grouping similar binary dedsions
for coding, using the exact normalization value is not critical. The
alignment must be inverted during decoding, so both multiplication and
division are required. Using factors/divisors that are powers of two would
allow hardware efficent shifting to be performed instead. When
coefficients are multiplied by a power of two, the lessor significant zero bits
added do not have to be coded. |

- 69 -

Coefficient alignment can be used for tuning and for
finer and non-uniform quantization. In case of images (two
dimensional signals), one example of the RTS-transform aligns
the coefficients by multiplying the frequency band by the
numbers depicted in Figure 12B. Multiplying these numbers
results in the RTS-transform being a very close approximation
of the exact reconstruction wavelets of the TS-transforms.

This one-pass system uses only one alignment that is optimal

with respect to MSE for the filter pairings. Table 7 illustrates the alignment
numbers. The coefficients are coded by bit-significance where the first bit-
plane is the left most magnitude bit of all the coefficients. The sign bit for
each coefficient is not coded until the highest bit-plane where that coefficient
has a non-zero magnitude bit. In other words, the sign bit is encoded right
after the first "on-bit" is coded. This has the advantage of not coding a sign bit
for any coefficient that has zero magnitude, and not coding a sign bit until the
point in the embedded codestream where the sign bit is relevant. For an
image of pixel depth b, the largest possible coefficient magnitude is 2b+3-1, e,
a b+3 bit number. Therefore, every coefficient is encoded in b+3 binary

decisions plus an additional one for the sign bit, if needed.

Table 7 - Coefficient alignment

1-HH 1-HL,1-LH 2-HH 2-HL,2-LH 3-HH 3-HL,3-LH 4-HH 4-HL 4-LH

reference | Left 1 Left 1 Left 2 Left 2 Left 3 Left 3 Left 4

The alignment of different sized coefficients is known to both the coder

and the decoder and has no impact on the entropy coder effidency.

10

15

20

25

70

Note also that every subblock of every block of a coding unit has its
own possible largest magnitude range, which is known to the coder and the
decoder. For most subblocks, there are several completely deterministic
binary zero values that are skipped by the entropy coder for the sake of
efficiency.

The order that the coefficients during each bit-plane are processed are
from the low resolution to the high resolution and from low frequency to the
high frequency. The coefficient coder within each bit-plane is from the hugh
level (low resolution, low frequency) to the low level (high resolution, high ,
frequency) as follows:

411, 4HL, 41H, 4HH, 3-HL, 3-LH, 3-HH, 2-HL, 2-LH, 2-HH, 1-HL, 1-LH. 1-HA

Within each subblock, the coding is in raster scan order.
Note that coding units of the same data set may have different

alignments. The alignment may be specified in a header,
such as header 2401 in Figure 24A.

The Horizon Context Model

Figure 25 shows the neighborhood coefficients for every coefficient of a
coding unit. Referring to Figure 25, the neighborhood coefficients are
denoted with the obvious geographical notations (e.g., N=north,
NE=northeast, etc).

Given a coefficient, such as P in Figure 25, and a current bit-plane, the
context model can use any information from all of the coding unit prior to
the given bit-plane. The parent coefficient of the present coefficient is also

used for this context model.

(/

10

15

T

Rather than using the neighborhood or parent coefficient values to

determine the context for the present bit of the present coefficient, the

information is reduce to two bits referred to herein as tail-information. This

information can be stored in memory or calculated dynamically from the

oefficient. The tail-information relates whether or not

erved (e.g., whether the first

neighbor or parent ¢
the first non-zero magnitude bit has been obs

“on-bit" has been observed) and, is so, about how many bit-planes ago. Tazie

8 describes the tail-information bits.

Table 8 - Definition of the tail information

Tail Definition

0 no on-bits is observed yet

1 the first on-bit was on the last bit-plane

2 the first on-bit was two or three bit-planes ago

3 the first on-bit was more than three bit-planes ago

From the 2-bit tail information, a “tail-on" bit of information indicates

whether the tail information is zero or not. In one example
the tail-information and the tail-on bits are updated
jmmediately after the coefficient has been coded. 1In another

example, updating occurs later to allow
parallel context generation.
As an example, Table 9 shows the tail-on bit, as a function of bit-plane,

for a coeffident with the magnitude exprssed in binary as follows (“*” means

it does not matter whether it is 0 or 1):

10

15

20

pA

Table 9 - Table if tail information for the example context coefficient

Bit-plane 1 2 3 4 5 6 7 8

Prior to the occurrence of the 0 0 0 1 2 2 3 3

example coefficient

Subsequent to the occurrence 0 0 0 0 1 2 2 3

of the example coefficient

A third type of context information is the sign bit. Since the sign-bit is coded
right after the first on-bit, the tail indicates whether the sign informaticn :s
known or not. Therefore, the sign-bit has no information context uriess the
tail is non-zero (recall that there are three possibilities for the sign. positive,
negative, or unknown).

The context model of the system uses up to 11 bits to described the
context. This number is not fully specified: only 1030 or 1031 contexts are
actually used, including the sign bit contexts. The meaning of every bit
position depends on the previous binary values. One example follows
these rules:

If the tail-on bit of the present coefficient is zero (for head bits), then
1024 contexts from the tail-information bits of the parent and W coefficient
and the tail-on bit of the NW, N, NE, E, SW, and S coefficients respectively.

Adaptive coding may be used for head bits. In some examples,
a single context is used to provide some "run coding" of head
bits. If the next 16 bits to be coded are all head bits and
their N, S, E and W neighbors and parent all have tail-
information 0, a single decision will be

LS.

o

10

15

20

25

73

coded. This decision indicates if any of the 16 bits to be coded has a one bit at
the current bitplane. If there is no one bit, the 16 decisions normally coded
can be skipped. If any of the next 16 coefficients contain their first significant
bit, then 16 decisions are used one for each bit. This "look ahead" results in
fewer calls to the binary entropy coder which results in higher speed and
higher compression. |

If the tail-on bit of the present coefficient is one (for tail bits), then three
contexts from the tail-information bits present coefficient. Fixed probability
coding may be used as discussed previously.

If the present bit of the present coefficient is the first non-zero
magnitude bit, then the sign bit of the present coefficient is encoded
immediately after. The context for the sign bit is 3 contexts from the N_tail-
on bit and the N_sign bit, where if the N_tail-on bit is zero, then the N_sign
bit is unknown. If the N_ sign bit is unknown, the sign is coded with the
probability 0.5. Otherwise, the sign is coded adaptively.

In summary, an 11 bit number is created denoting the context from the
information available from the current, neighboring, and parent coefficients
in the same coding unit.

Figures 26A-D illustrate causal and non-causal coefficients that may
be used to condition a coefficient P. Each of the templates illustrated
include the use of both tail-on bits and tail-on information. While the
tail-on bit of each coefficient provides 1 bit, the tail-on information of each
coefficient comprises 2 bits. In Figure 26A, the total number of bits
provided by the template is 8. In Figures 26B and 26C, the total number of
bits provided by the template is 10.

10

15

20

25

74

Additional bits may be used to condition the head bits of coefficient

P. In one embodiment, two additional bits may specify bit position as

follows:

00 first bit (MSB) and second bit

01 third bit and fourth bit

10 fifth bit and sixth bit

11 other bits

It should be noted that other templates may be designed based on
neighboring and parent coefficients. Furthermore, in one example, the
coefficients used to condition coefficient P are causal, if not by position by bit
piane.

In one embodiment, the S-transform parents are used for
conditioning, not TS-transform parents. This reduces buffering needed for
conditioning by saving low pass lines before continuing to code the next
one. This is not advantageous where the order of entropy coding is
important and encoder memory is not important.

Note that there is a tradeoff between having more contexts to create

more skewed data and the adaptation efficiency as a result of less data within

a context.

The tail bits that do not need conditioning do not
have to be buffered (for conditioning). They can be coded immediately as
soon as they are available. In such a case, the channel manager may send the
bits out immediately to the channel.

.Rather than coding the coefficients on the

lowest level of the decomposition in the same way as the other coefficients

10

15

20

25

15

or not coding them at all, the coefficients may be coded using prediction

coding, such as DPCM.
For tail coding bits, either fixed probabilities or adaptive ones may

be used.

With respect to conditioning, the last bit may be conditioned, in
part, on the second-to-last bit. Also, bits after the first "on" bit may be

conditioned on how far they are from the first “on” bit.

In one example, some tail bits are coded adaptively. For

example, when there are fewer than T tail bits in a coefficient (e.g. T=2,

T=3), adaptive coding is used. The context for these bits include the bit

position and any previously coded tail bits in the current coefficient. This

is similar to the M-ary coding of centers taught by Langdon for DPCM data.

In an alternative example, SOme OF all data is coded with a M-

ary entropy coder instead of a binary entropy coder. M-ary coders include

Tunstall, fixed Huffman, Adaptive Huffman, etc. For example, one

Huf fman code could be used for head bits. Instead of coding

" head bits one bit at a time, a priority encoder may be used

‘to determine the position of the first "on" bit. The bits in

the binary representation of the position are then coded with

a binary entropy coder.

Horizon Context Model

The context model . s shown in block
diagram form in Figure 27. Context model 2700 contains the
sign/magnitude unit 109 (Figure 2), and three units for processing the
different bits in the coefficient. Based on the bit being coded, one of the

three units is selected. A switch may be included to facilitate the switching

10

15

20

Jo

between the units in a hardware implementation. These units include a
head bit block 2701, a sign bit block 2702, and a tail bit block 2703. The head
bit block 2701, a sign bit block 2702, and a tail bit block 2703 model the head
bits, the sign and the tail bits, respectively, as described above. The output
of these three units is sent to the entropy coder 104 (Figure 1).

The coder may include optional control that saves states (optiona.l),
provides initial states and resets the coder (for instance, at the end of a
coding unit).

The contexts defined above are used with an adaptive binary entropy
coder with a few exceptions. The contexts of the head bits (present coefficient
tail-on bit =0) and the sign bits when N_tail-on =1 are allowed to adapt.

However, the bits after tail-on = 1 and the sign bits when N_tail-on =0
are modeled by a stationary source. In these cases, the adaptation feature of
the entropy coder is not necessary and, in fact, can be a source of compression
inefficiency. For the following contexts a fixed (non-adaptive) state, described

in terms of the states of the Q-coder is used.

Statistical models

The context is for coding the sign bit when N_tail-on = 0 (the sign of
the N-coefficient is not known) is coded at the fixed Q-coder state 0 -
probability approximately 0.5.

The context is for coding the first binary value after the first non-zero
(tail-information = 1)) bit is coded at the fixed Q-coder state 4 - probability
approximately 0.7.

-—

10

15

20

25

77

The context is for coding the second and the third binary values after
the first non-zero bit (tail information = 2) is coded at the fixed Q-coder state 3
- probability approximately 0.6.

The context is for coding the fourth and later binary values after the
first non-zero bit (tail-information = 3) is coded at the fixed Q-coder state O -
probability approximately 0.5.

In some examples,, the entropy coding is reset after each coding
unit, so the adaptation cost for contexts that are allowed to adapt (e.g., contexts
used to encode binary values before the first on-bit) is significant. To keep
this cost to a minimum, a set of initial states may be computed for these
contexts from, for instance, some training data.

The following discussion assumes that the coefficients are 18-bits
and that the input data has undergone a four level decomposition.

One exan;ple or tne sign/magnitude unit 109 is shown in
Figure 28 and converts input coefficients into a sign/magnitude format.
Sign/magnitude unit 109 is coupled to receive 18 bits of the coefficients
and includes an inverter 2801 and a multiplexer (MUX) 2802. The
sign/magnitude unit 109 outputs a significance indication (e.g., a 5-bit
value), the mantissa of the input coeffident, (e.g., 17 bits), the sign of the
input coefficient 1 bit and an index from counter 2804, (e.g., 7 bits.)

MUX 2802 is coupled to receive 17 bits of the coefficient directly
input into sign/magnitude unit 109 and an inverted version of the 17 bits
from two's complementer 2801. Based on the sign bit (coefficient bit 17)
received on the select input of MUX 2802, the positive of the two inputs is

output as the mantissa.

10

15

20

25

73

Coding Alternatives

The binary entropy coder is given a context and the bit to be

encoded.

For bitplane by bitplane coding, the reference system uses a
carry-save style computation (on a general purpose computer)
80 the computation is done with a data format that is
suitable for fast coding by bitplane. For instance, in such
an implementation, a 32 bit processor may compute 1 bit of
each of 32 coefficients in the same bit plane at the same
time, instead of one entire coefficient. Using such an

arrangement results in increased speed when coding by
bitplanes.

Since a coding unit is encoded at a time and all the coefficients in a
coding unit reside in the memory, there is no memory cost for the storage of
context information, except what the adaptive binary entropy coder needs.
For example, the Q-coder needs to keep the binary value of the LPS (least
significant symbol) for all contexts and the current state for each context that
is allowed to adapt. Since Q-coder has 30 states, a 6-bit number (1 bit for the
LPS and 5 bits for states) is needed for each context. Therefore, the memory
cost is 1024 x 5 + 1030 = 6150 bits of memory.

Note that there is no spedal signaling information necessary for the

one-pass system described above. If the number of levels of
decomposition were a variable, that would require at least 3
bits of header information. The header used but not counted

in the compressed bits, is the following:

. Width, 2 bytes,
. Height, 2 bytes,

. Bits per pixel of input image, 1 bytes.

- Y

10

15

20

25

79

Memory Management

Memory management for coded data in the one pass system is
presented for systems that store all of the data in memory and for systems
that transmit data in a channel. In the one-pass system, coded data must
be stored such that it can be accessed in an embedded causal fashion, so .
that less significant data can be discarded without losing more significant

data. Since coded data is variable length, dynamic memory allocation can

be used.

In one example, the embedded coding
scheme uses 18 bitplanes and, thus, assigns 18 levels of significance to the
data. The coder in a one-pass system is "embedded causal.” That is, the
decoding events corresponding to a bitplane do not require information
from lower order bitplanes. In one example, all of the bits from one
tree will be coded before any of the bits in the next tree are coded, so bits of
different significance are not separated. For coders that do not use internal
state, like Huffman coders, this is not a problem. However, many
sophisticated compressors with better compression use internal state.

One way to solve this problem for these coders is to use 18 different
coders, perhaps 18 Q-coder chips. A technique that would allow the use of
9 Q-coder chips is described in U.S. Patent No. 5,097,261 (Langdon, Jr.),
entitled "Data Compression for Recording on a Record Medium," issued
March 17, 1992. A better way uses a pipelined coder to implement
different virtual codes with a single physical coder, such as that described
in US. Patent No. 5,381,145, entitled "Method and Apparatus for Parallel
Decoding and Encoding of Data”, issued January 10, 1995. In such a coder,
the multiple bit generator states for each probability are each assigned to a

10

15

20

25

part of the data. For example, each of 18 states could be assigned to a
particular bitplane for 18 bit data. Registers in the shifter in the coder are
also assigned to each part of the data. In the encoder, no interleaving is
performed; each part of the data is simply bitpacked.

In systems either with multiple physical or virtual coders,
memory is allocated to each part of the data. When compression is
complete, a linked list describing the memory allocated plus the contents
of the allocated memory is the result.

If the memory overflows, the memeory allocation routing causes
more important data to overwrite less important data. For example, the
least significant bit of numeric data might be overwritten first. The
information that describes how memory is allocated must be stored in
addition to the coded data.

Figure 29 shows an example dynamic memory allocation unit for
three categories of significance. Only three categories are described to
avoid obscu;.-ity; typically, a larger number of
categories, such as 8, 16 or 18, would be used. A register file (or other
storage) holds a pointer for each category of significance plus another
pointer for indicating the next free memory location. The memory is
divided into fixed size pages.

Initially, each pointer assigned to a significance category points to
the start of a page of memory and the free pointer points to the next
available page of memory. Coded data, identified with a significance
category, is stored at the memory location addressed by the corresponding

pointer. The pointer is then incremented to the next memory location.

10

15

20

25

- 81 -

When the pointer reaches the maximum for the current
page, the address of the start of the next free page stored
in the free pointer is stored with the current page as a
link. The part of the coded

data memory or a separate memory or register file could be used for this

purpose. Then the current pointer is set to the next free page. The free
pointer is incremented. These steps cause a new page of memory to be .
allocated to a particular significance category and provide links to pages of
memory containing data for a common significance category so that the
order of allocation can be determined during decoding.

When all pages in the memory are in use and there is more cata
that is more significant than the least significant data in memory, memory
reassignment may be performed. Three such reassignment technigues are
described. In all three cases, memory assigned to the least significant data
is reassigned to more significant data and no more least significant data is
stored.

First, the page currently being used by the least significant data is
simply assigned to the more significant data. Since most typical entropy
coders use internal state information, all of the least significant data stored
previously in that page is lost.

Second, the page currently being used by the least significant data is
assigned to the more significant data. Unlike the previous case, the
pointer is set to the end of the page and as more significant data is written
to the page, the corresponding pointer is decremented. This has the
advantage of preserving the least significant data at the start of the page if

the more significant data does not require the entire page.

10

15

20

25

3

Thurd, instead of the current page of least significant data being
reassigned, any page of least significant data may be reassigned. This
requires that the coded data for all pages be coded independently, which
may reduce the compression achieved. It also requires that the uncoded
data corresponding to the start of all pages be identified. Since any page of
least significant data can be discarded, greater flexibility in quantization is
available.

The third alternative might be especially attractive in a system that
achieves a fixed rate of compression over regions of the image. A specified
number of memory pages can be allocated to a region of the image.
Whether lessor significant data is retained or not can depend on the
compression achieved in a particular region. Note that the memory
assigned to a region might not be fully utilized if lossless compression
required less than the amount of memory assigned. Achieving a fixed rate
of compression on a region of the image can support random access to the
image regions.

When compression is complete, the data may be transferred, if
desired, to a channel or storage device in order of significance. The
various links and pointers would then no longer be needed and multi-
pass decoding could be performed. Alternatively, for one-pass decoding,
the pointers to the data for each significance can be kept.

In some applications, some significance categories might not be
used. For example, a 16-bit compressor might be used on a 12-bit medical
image, so significance categories corresponding to bitplanes 15...12 would
be unused. In implementations with large pages and many unused

significance categories, this would waste memory (when the system does

10

15

20

25

83

not know in advance that some categories are unused), since memory
does not have to be allocated to them. Another solution to this memory
waste would be to use a small memory (or register) to hold a count for
each significance category. The count would keep track of the number of
“insignificant” decisions that occur before any other decision occurs. The
memory required to store these counters must be "traded-off” against the
memory used by unused significance categories.

The ability to write data into each page from both ends can be used to
better utilize the total amount of memory available in the system. When all
pages are allocated, any page that has sufficient free space at the end can be
ailocated for use from the end. The ability to use both ends of a page must be
balanced against the cost of keeping track of the location where the two types
of data meet. Note that this is different from the case where one of the data

types was not significant and could simply be overwritten.

Im prgvemgn:g

In one embodiment, the reference system provides

lossless compression with a small memory buffer and is

capable of serving many different application and device environments.
The following describes techniques to implement various features to
enable the system to be more flexible for different
applications and target devices. Note that

choices in resolution, pixel depth, random access, quantization, etc. do not

have to be made at encode time.

Data Arrangement

10

15

20

25

s

With respect to data arrangement, there are a number of options for
arranging the image and coefficient data with the system.

As is discussed in more detail below, these options include,
but are not limited to, the tiling of coded units, the number of levels of
decomposition, the selection of wavelet transform filters, and the
alignment of coefficients. As such, each of these could be a user or syste.m
designer controlled parameter.

As discussed above, one parameter may be the tiling of coded units.
The height and width of the coding unit are defined with respect to trees.

For random access, the start of the coded data for
each coding unit can be designated by pointers or markers in the
codestream or pointers in the header. This would allow access to blocks
not the width of the image.

Another parameter that may be controlled is the number of levels
of decomposition. Varying the number of levels of decomposition varies
the compression performance based on the fact that the more levels of
decomposition results in better compression. Note that varying the
number of decomposition levels also affects the memory requirements, as
more levels requires more line buffers. More levels might be needed to
target a resolution below full resolution. For example, if an original image
is 2000 dpi, five levels of decomposition is needed to achieve about 63 dpi.
This allows a high resolution scan to be displayed at close to real size on a
monitor without decompression and subsampling.

The type of wavelet transform filters for the horizontal and vertical
pass at each level may also be different. This allows for different memory

requirements and compression performance. Note that the coefficient size

10

15

20

25

S

does niot increase with more levels. Also, since the wavelet transform is
an order N transform, and there is less data to transform as the levels

increase, there is little computational cost for more levels.

rget devices for th
There are many possible application targets for a particular

compressed codestream. It might be desirable to have a codestream that
can be sent to a monitor with lower resolution but full pixel depth, a
printer with full resolution but lower pixel depth, a fixed-rate real-time
device with a limited channel, or a fixed-size limited memory device. It is
possible that the same codestream is required to serve all of these needs.
Figure 34 shows a generalization of the relative device characteristics a

single application might serve.

Transmission or Decode Codestream Parser

The system of the present invention with enough speed at the
encoder and decoder and enough bandwidth can extract the required data
from the decompressed image. Furthermore, the encoder can create a
codestream that is intended for one of the above devices. At the encoder,
the image can be quantized or down sampled in the traditional fashion.

However, a virtue of the present invention is that, with the proper
signaling, a codestream can be created that can be parsed before
transmission or decoding without decompression for any of the above
devices. Such a parser may be shown in Figures 35A and B. Referring to
Figure 35A, a parser 3501 is shown receiving a lossless bitstream and

generating a lossy bitstream. Referring to Figure 35B, a parser 3502 is

10

15

20

25

B

shown receiving a lossy bitstream and generating another lossy bitstream;
however, the relationship between the output and the input in Figure 35B
in such that the present invention has the property of being idempotent,
which will be described in further detail below. Note that in the case of
both parsers 3501 and 3502, the bit rate of data received as an input is

greater than that being outputted.

Low Resolution, High Pixel Depth Embedded Target

If the target is a low resolution, high pixel depth embedded target,
this application assurnes that the target device has a lower spatial
resolution than is available but the full pixel depth is required. Examples
of a low resolution, h.igh-pixel depth embedded target are monitors. Using
the codestream shown in Figure 24A, each bit-plane is decoded for as
many higher level coefficients as needed. This requires the parser to
truncate each bit-plane. To assist the parser, each bit-plane of each coding
unit could have markers or pointers denoting the location where the
truncation can occur. In such an embodiment, if more than one target
resolution is desired, more markers or pointers are required. The bit-
planes are coded independently so the entropy coder can be reset for the
next bit-plane.

Another approach is to embed the data differently, such as shown in
Figure 24B. Referring to Figure 24B, the target resolution coefficents
within each coding unit is coded first followed by the bit-planes of the
remaining high resolution coefficients. In this case, there is only one
truncation necessary per coding unit and the entropy coder need not be

reset. Markers or pointers can denote the desired truncation point.

10

15

20

25

£y

High Resolution, Low Pixel Depth Embedded Target

If the target is a high resolution, low pixel depth embedded target,
this application assumes that the target device requires the full resolution
available, or more, but cannot use the full pixel depth. Examples of the
high resolution, low pixel depth embedded target include low end printers
and standard monitors (when images are more than 8 bits/plane). The
codestreamn shown in Figure 24A is embedded in this order. Each coding
unit is truncated at the point at the right number of bit-planes and the
transform is performed on the quantized coefficients. There is a direct
relationshup between coefficient depth and pixel depth. Markers or
pointers can denote the desired truncation point.

Alternately, if the codestream is embedded as shown in Figure 24B,
then two markers or pointers are used to denote truncation, one for the
low resolution bit-planes and one for the high resolution bit-planes. The
two sets of bit-planes are coded independently to allow the entropy coder
to be reset.

Yet another alternative is to decode some or all of the low
resolution coefficients, as described with respect to the low resolution,
high pixel depth embedded target, and possibly some data from the high
resolution coefficients. Then perform the interpolating wavelet transform

described below.

Fixed-Rate Embedded Target
If the target is a fixed-rate embedded target, this application assumes

that a real-time constant pixel output must be maintained while using a

10

15

20

25

%)

constrained channel. In this case, there is a certain maximum codestream
data rate locally in time (minimum compression ratio). To achieve this
goal, first, the coding units are chosen based on the amount of buffering
available at the target device. This defines the locality over which the
average compression ratio is to be achieved. Then each coding unit with
more data than is allowed is truncated.

Note that if the codestream data rate does not exceed the maximum
channel bandwidth the image is recovered losslessly. This is not true of

any other fixed-rate system.

Fixed-size Embedded Target

If the target is a fixed-size embedded target, this application assumes
that a fixed-size frame buffer is available to the compressed image data.
Unlike the fixed-rate application, this requires a minimum compression
rate averaged over the entire image, not just locally. Of course, the fixed-
rate method could be used here, but, by using the concept of averaging
over the entire image rather than locally, better bit allocation and image
quality can be obtained.

If the coding unit contained the entire image, it would be trivial to
truncate the data that overflows the buffer. If coding units are less than
the entire image and all the coding units are truncated to the same
number of bits, there is no guarantee that the truncation has uniformly
removed the lowest importance levels. A simple solution is to record at
encode time (or a later parsing time) the number of coded bits that each
importance level contributes to the codestream for each coding unit or

globally, or both. The recording can be done using simple counters. These

10

15

20

25

®q

numbers are recorded in a header and can be used for deciding how to
truncate each coding unit at transmission or storage time. The header
contains an importance level and its corresponding number of bits. The
header may also contain this information for each of the coding units that
are contained in the stream. When deciding where to truncate, the same
effect on each coding unit. For example, if due to memory constrainst, ii is
determined that one and a half importance levels are to be discarded, then
one and a half importance levels from each coding unit are discarded.
Thus allows the effect of the truncation to be spread across the coding units
in a uniform manner.

Achieving a fixed-size compressed image can be achieved at encode
time as well. The memory is divided into segments for importance levels.
If the memory is about to overflow, lessor important segments are
overwritten with more important data.

Note that if the compressed data does not overflow the memory
buffer the image is recovered losslessly. This is not true of any other fixed-

size system.

Interpolating with the Wavelet Transform

Wavelets can be used to interpolate images to higher resolution.
The results are visually quite comparable to bi-cubic spline techniques. If
the compressed data is already in the form of wavelet coefficients, the
effective additional computation for interpolation is less than bi-cubic
spline.

Imagine that all the coeffidents of N level decomposition are
available. By creating a new lowest level of coefficients, by padding with

10

15

20

25

qe

zeros or some other method, and then performing a N+1 level wavelet
reconstruction, the new image is a 2:1 interpolated version of the original.
This method can also be used with the systems in which there are
target devices for the embedded codestream, espedially for high resolution,
low pixel depth target devices. The coding units are truncated so only the
low resolution coefficients are present (or only the low resolution
coefficients and a few bits of some or all of the high resolution
coefficients). The coefficients are padded to the higher resolution and the

reconstruction is performed.

Using a Channel

In a system where data is transmitted in a channel instead of being
storec in a memory and fixed size pages of memory are used (but only one
page per significance category is needed), when a page of memory is full, it
is transmitted in the channel, and memory location can be reused as soon
as they are transmitted. In some applications, the page size of the memory
can be the size of data packets used in the channel or a multiple of the
packet size.

In some communications systems, for example ATM
(Asynchronous Transfer Mode), priorities can be assigned to packets.

ATM has two priority levels, priority and secondary. Secondary packets
are only transmitted if sufficient bandwidth is available. A threshold can
be used to determine which significance categories are priority and which
are secondary. Another method would be to use a threshold at the
encoder to not transmit significance categories that were less significant

than a threshold.

10

15

20

25

- 91 -

Thus, the memory manager may control the storage of

compressed data in a fixed size memory.
That is, the memory manager divides the compressed data into different
importance levels. When the memory is full, lessor important data is
overwritten by more important data.
In order to manage a channel using a limited amount of buffer
memory (e.g., a fixed-rate),
all data is transmitted if sufficient bandwidth is available; otherwise, lessor
importance data is discarded and only more important data is transmitted.
Figure 30 illustrates a system utilizing a channel manager.
Referring to Figure 30, wavelet transform 3001 generates coefficients.
These coefficients are subjected to context model 3002. Context mode! 30C2
is coupled to a channel manager 3003 that includes a buffer memory. The
channel manager 3003 is coupled to a limited bandwidth channel 3004.
Channel manager 3003 controls the rate at which data is output to
channel 3004. As data is received into its buffer memory, channe]
manager 3003 determines if the amount of data is greater than the
bandwidth of channel 3004. If the amount of data is not greater, then
channel manager 3003 outputs all of the data. On the other hand, if the
amount of data received into the buffer memory is greater than the
channel bandwidth, then channel manager 3003 discards information in
its buffer memory to match the bandwidth of channel 3004.
Channel 3004 may indicate its bandwidth to channel manager 3003.
In another embodiment, channel manager 3003 may dynamically
determine the bandwidth of channel 3004 based on the amount of time

that it takes channel 3004 to send a predetermined unit (e.g., packet) of data

10

15

20

25

92

through channel 3004. That is, the channel bandwidth can be treated as
dynamic if desired.

Channel manager 3003 operates on an image
that is broken up into tiles (or bands). This is a “tile dominant over
importance” scheme in contrast to the fixed size memory manager where
tiling and importance are somewhat independent. Each tile is separately
coded and divided by importance levels and fixed size pages. Therefore,
all the coded data for each tile is grouped together. Coded data within each
tile is tagged by importance level.

The buffer memory in channel manager 3403 is preferably
at least two (or perhaps three) times the size of the channel's packet size
and several times (perhaps four times) larger than the expected
compressed data size for a tile.

A fixed maximum amount of the buffer memory is assigned to a
tile. The maximum amount is matched to the bandwidth of the channe..
Buffer memory is broken into fixed size segments and allocated as needed.
If the memory usage reaches the maximum allowed, segments are
reassigned as in the management of fixed size memory system.

Figure 31 illustrates an example of buffer memory usage. Referring
to Figure 31, a circular buffer memory has multiple fixed sized segments
3101 that are divided into multiple fixed size packets 3102 for channel
input/output. As shown, different tiles of data may occupy the same
packet of memory. The different tiles may represent
different importance levels. As the packet size amount of buffer space is
used, channel manager 3103 indicates to the context model to output the

data to channel 3104 (Figure 30). As shown, tile N-2 and part of tile N-1

- 93 -

would be output as the current packet. Thus, a packet size
amount of memory is allocated and filed in order to match the
bandwidth of the channel.

If the buffer does not £ill up, the extra memory may be
used for future tiles. In one embodiment, to avoid
noticeable tile boundaries at the start of a difficult to
compress region versus the next block, only some fraction
(1/2, 1/3, etc.) of the extra is used by the next tile.

The channel manager may be used where data can only be
transmitted in a certain period of time. Using such a
channel manager, the data transmission occurs during the time
period regardless of the complexity, because the data is
embedded based on its importance.

Alternate Example of the Channel Manager

One goal of the channel manager is to use minimal memory .
Where the channel manager does not contain buffer memory, the
following may be used:

for each coding unit

for each bitplane do
for each frequency do
for each spatial location do

The coder (or set it to a known state) is reset at the
start of each band. A band may comprise 16 lines for a four
level decomposition if the band memory is to be reduced.

Figure 32 illustrates a bitstream using the above
method. Referring to Figure 32, the bitstream is divided
into fixed size segments, which are

10

135

20

25

M

channel packets, disk sectors or whatever is a reasonable amount of buffer
for the channel. Note that this division may be no more than a logical
division during encoding; the encoder can output using no buffering if
desired. Each fixed size segment includes an indication of the most
important data in the segment.

The structure of a segment is shown in Figure 33. Referring to
Figure 33, the bitstream for one segment includes coded data 3301, an
optional’poimer(s) or ID 3302 and a level of the most important data in the
segment 3303. Bit field 3303 may comprise 2 to 5 bits. If
the most important level is 0 (the most important one), the next to last M
bits of the segment is a pointer that tells where in the segment the level 0
data starts at. Note that the first segment of data can be entirely coded data,
no overhead is needed.

The starting point for each band may be
identified using restart markers, similar to those used in the JPEG
standard. However, the marker used should be that symbol that occurs
least often during coding.

Now again considering Figure 31, assume it is desired to
decompress only some importance levels (perhaps only the most
important level). Decompression starts with the first segment. For
segment 2, the "level of the most important data in segment” is checked,
and perhaps the entire segment can be skipped where the most important
level contained in the segment is less than the level(s) being
decompressed. For the third segment, the pointer is used to find the start

of band 2, and decompression of band 2 can begin.

10

15

20

25

S

Note that to ensure that all the most significant data in a segment is
obtained, it might be required to decompress the entire segment,
particularly when more than one band falls in the segment.

By selectively decompressing only a predetermined number of
significant bands, a preview image maybe obtained. This may be
advantageous when data is in embedded form and lossy versions of
lossless data are desired.

Depending on the desired access and quantization possibilities, and
whether or not the time to decompress an entire band is important, the
optional pointer(s) or ID at the end of the segment can contain:

* A next segment pointer for fixed size memory management.

* An ID for the segment or ID of band(s) contained. (Supports
channel quantization, would indicate if segment 2 were dropped
for example)

* The number of different bands that the segment contains data
for (or at least a bit indicating that a band contains more than
two segments). (Supports not decompressing entire segments
after decompressing the desired data).

An example of the overhead for a band of 512x16 pixels, consider 8-
bit image having 2:1 lossless compression, and a segment size of 512 bytes.
Note that a band typically compresses to 8 segments. For 32 importance
levels, 5 bit tags are used. Assume pointers are on byte boundaries, so 9-bit

pointers are used. Therefore, there are 49 overhead bits/ (32K compressed

bits + 49) representing a total of 0.15%.

Near-lossless

10

15

20

25

de

One concept of near lossless compression is based on absolute error in
the reconstructed pixel values. Hence, in a near-lossless compressed image
with an absolute error of 1 it is guaranteed that no pixel value in the
decompressed image differs from the original by more than 1 unit of pixel
value. This is an absolute definition independent of the pixel depth or the
dynamic range of the image. An obvious and, under some reasonable |
assumptions, optimal to such a system is to keep the
compression/decompression part lossless and use preprocessing and post-
processing schemes to achieve near-lossless. This method has been adopted
in this implementation.

The near-lossless compressed image with an absolute error of e is
achieved by the quantization method that maps every 2e+1 consecutive
integers to their middle integer. For example, for error equal to 3, the pixel
values are quantized such that 0 through 6 is mapped to 3 and 7 through 13 is
mapped to 10, and so on. The quantized image as such is not suited for a
transform-based compression system. Hence, it is mapped one-to-one
(losslessly) into an image of lower dynamic range or depth, called the shallow
image. This is done by mapping the middle values (representative values) to
consecutive integers preserving the order. Mathematically given a pixel

value x, it is quantized to:

q(x)= (‘_Zex-t- lj + 1).e

The one-to-one mapping of the representative values to the shallow image

values is,

10

15

20

25

q7

X
SSHE

The inverse of the one-to-one mapping p which maps the shallow image

values back to representative values is,
plx)=e (x+1)

Quantzation (q(x))) followed by the mapping to the shallow image values
(p(x)) is the pre-processing operation, which proceeds the lossless
compression. The map from the shallow image values to the representative
values form the post-processing operation, which follows the lossless
decompression.

Transform domain quantization can also be used. Many coefficients
have an effect on peak error propagates through multiple levels of the
transform. It is easier to determine the effect on peak error for the high-
pass coefficients that have no children.

Consider a one-dimensional signal which is to be encoded with a
maximum peak error of +E. This can be achieved by quantizing the finest
detail high-pass coefficients to +2E. For a two-dimensional signal, since
there are two applications of the high-pass filter, the finest detail HH
coefficients can be quantized to +4E.

An alternative to using quantization of the input image is to
control the dedisions to the entropy coder. One example is the following.

For each coefficient, if setting the coefficient to zero would not cause the

10

15

20

25

!

error in any pixel affected by that coefficient to exceed the maximum error,
the coefficient is set to zero. In some implementations only particular
coefficients will be tested, perhaps only the AC coefficients that have no
children. Coefficients can be considered with a greedy strategy where one
is considered at a time. Other strategies can consider small groups of
coefficients and choose to zero the largest possible subset of the group.

As described above, quantization is achieved by the embedding

function and is optimized to maximize performance with respect to a

quantitative metric such a RMSE. In one example, the quantization

of the various coefficients is performed to achieve improved results with
respect to the Human Visual System. In such a case, little modification of
the embedding scheme is required. For instance, the coefficients are
shifted to change the relation between them by a factor of two and/or to
represent the number in a different type of numbering system such as
Gray code.

The compressed wavelet system: may be
useful in an image editing situation. In the prior art, applying image
processing functions to a full resolution print image is time consuming
and makes interactive processing difficult.

. If an image editing system saved tiles that are
compressed, it could very quickly apply operations to the scale
representation (the very low pass) for the user to evaluate. This can be
done quickly because only the displayed pixels are operated on. It is ordy
an approximation of the final result since the actual full resolution pixels
affect the output. The user will therefore zoom in (perhaps on some text)

on various portions of the image. As the user does, the image editing

10

15

20

25

1

system applies the operation to that part of the image. To facilitate this, a
tree is stored that contains the compressed coefficients and information
about which processing operations have been applied and which still need
to be applied.

The importance levels may be redefined to permit
lossless compression in a defined window and lossy
compression for the rest of the image. The window could be
fixed or selectable by the user. There could be multiple
windows of different importance. In one example,

the window is as small as 48x48 blocks, although it should be possible to
have much finer occurrence even down to the two pixel level.

A possible application of this is satellite imagery, where satelites
use 2 lossless window on data so that statistical studies are not messed up
with JPEG artifacts, but the lossy compression allows a much wider field of
view than would be possible with lossless compression.

In one system, the user draws arbitrary boxes on an image and
specifies the relative importance of the data in the box. Once a box has
been drawn, software increases the size of the box bigger to the smallest
size which meets the required constraints and contains the user box. The
file header would contain information about the boxes used and the
importance level. The encoder and decoder would then provide more
resolution to the coefficients in the important boxes as coding/decoding
proceeds. For the satellite imagery case, the important window is likely to
be predefined.

Idempotent Operation

For a lossy compressor, in general, idempotent operation as

10

15

20

25

100

DCDCI = DCI, where I is the image, C the compression operation and D the
decompression operation. In the present invention, when data is
compressed to X bits and then decompressed, they should be able to be
recompressed to X bits and have the original X bits. There is an even
stronger version of idempotent for an embedded system. In one
embodiment, an image when compressed to X bits, decompressed and
recompressed to Y bits with Y < X is the same as if the original image is
compressed to Y bits.

This is important because compression and processing causes
images to drift farther from the original. If the compressor is idempotent,
ther multiple lossy compression decompression cycles do not affect the
data. In the present invention, it does not matter how many times data is
compressed and decompressed at the same compression ratio. Also, a
lossy input to a parser subjected to further quantization produces an

identical result to the case when a lossless input is used.
Thus, the reference system comprises a transform-based
idempotent system that includes a wavelet transform, a
context model, and an entropy coder, such that coefficients
are described and stored in an order such that removing
information does not change the description for prior

coefficients.

s policati
The present invention may be used for a number of applications, some
of which are mentioned as examples below. Specifically, high-end
applications with high-resolution and deep pixels and applications that are
artifact intolerant can use the present invention. The present invention

enables high-end applications maintain the highest quality in high-quality

10

15

20

25

o

environments while applications with more limited bandwidth, data storage,
or display capabilities can also use the same compressed data. This is predsely
the device-independent representation that is commonly being required of
modern imaging applications such as web browsers.

The superior lossless compression performance of the present
invention on deep pixel images (10 bits to 16 bits per pixel) is ideal for medical
imagery. In addition to the lossless compression, the present invention is a
true lossy compressor without many of the artifacts known to block-based
compressors. Lossy artifacts derived by using the present invention tend to be
along sharp edges where they are often hidden by the visual masking
phenomena of the Human Visual System.

The present invention may be used in applications involving the pre-
press industry m which the images tend to be very high resolution and have
high pixel depth. With the pyramidal decomposition of the present
invention, it is easy for the pre-press operator to perform image processing
operations on a lower resolution lossy version of the image (on a monitor).
When satisfied, the same operations can be performed on the lossless
version.

The present invention is also applicable for use in facsimile document
applications where the time of transmission required without compression is
often too long. The present invention allows very high image output from
fax machines with different spatial and pixel resolutions. Since transmission
time is a premium in this application, the interpolation feature of the present
invention is useful.

The present invention may be used in image archival systems that

require compression, particularly for increasing storage capacity. The device

)

10

15

20

25

10

independent output of the present invention is useful because the system can
be accessed by systems with different resources in bandwidth, storage, and
display. Also, progressive transmission capabilities of the present invention
are useful for browsing. Lastly, the lossless compression is desirable for
output devices in image archiving systems may be provided by the present
invention.

The hierarchical progressive nature in the lossless or high quality lossy
data stream of the present invention make it ideal for use in the World Wide
Web, particularly where device independence, progressive transmission, high
quality, and open standards are imperative.

The present invention is applicable to satellite images, particularly
those that tend to be deep pixel and high resolution. Furthermore, satellite
imagery applications have limited bandwidth channel. The present
invention allows flexibility and with its progressive transmission qualities, it
may be used to allow humans to browse or preview images.

"Fixed-rate”, limited-bandwidth applications such as ATM networks
need ways of reducing data if it overflows the available bandwidth. However,
there should be no quality penalty if there is enough bandwidth (or the
compression is high enough). Likewise, "fixed-size” applications like limited-
memory frame stores in computers and other imaging devices need a way to
reduce data if the memory fills. Once again, there should be no penalty for an
image that can be compressed losslessly into the right amount of memory.

The embedded codestream of the present invention serves both of
these applications. The embedding is implict to allow the codestream to be
trimmed or truncated for transmission or storage of a lossy image. If no

trimming or truncation is required, the image arrives losslessly.

- 103 -

Lossy compression provided by the present invention is
achieved by embedded quantization. That is, the codestream
includes the quantization. The actual quantization (or
visual importance) levels can be a function of the decoder or
the transmission channel, not necessarily the encoder. 1If
the bandwidth, storage, and display resources allowed it, the
image is recovered losslessly. Otherwise, the image is
quantized only as much as required by the most limited
resource.

The embedding used in the present invention may be
progressive, specifically by bitplane, i.e. MSB followed by
lesser bits. Both the spatial and wavelet domains can be
decomposed progressively, although the present invention is
progressive in the wavelet domain specifically. For
applications that have spatial resolution but lower pixel
resolution, such as printers, the progressive ordering of the
bits in the present invention is ideal. These features are
available with the same codestream.

Reference is directed to copending application no.
9613320.2 (Publication no. 2,303,031) which claims encoders

and methods of encoding described above.

- 104 -

CLAIMS

1. A method of using an embedded codestream
comprising:
identifying a target device to receive data in the
embedded codestream;
decoding each bit-plane to provide data to the
target device, said step of decoding comprising the step of
truncating each bit-plane in the embedded codestream for data

necessary to support the target device.

2. A method according to claim 1, wherein each bit-
plane is truncated based on an indication in each coding unit

denoting a location where truncation may occur.

3. A method according to claim 1, wherein each bit-
plane is truncated based on one of a plurality of indications
in each coding unit denoting locations where truncation may
occur, said step of truncating further comprising the step of

selecting one of the indications based on the target device.

4. A method according to claim 2 or 3, wherein the or

each indication comprises a marker.

5. A method according to claim 2 or 3, wherein the or

each indication comprises a pointer.

- 105 -
6. A method according to any one of the preceding
claims, wherein the step of truncating comprises truncating
target resolution coefficients, coded separately in each

coding unit, from the embedded codestream.

7. A method according to any one of claims 1 to 6,
wherein the target device comprises a low resolution, high
pixel depth embedded target such that the step of decoding
decodes as many higher level coefficients as needed to
achieve full pixel depth and low spatial resolution of the

target device.

8. A method according to any one of claims 1 to 6,
wherein the target device comprises a high resolution, low
pixel depth embedded target and truncating each coding unit
at a number of bit-planes and inverse wavelet transforming
the non-truncated data of each coding unit to achieve the low

pixel depth and high spatial resolution of the target device.

9. A method according to any one of claims 1 to 8,
further comprising the steps of:
selecting coding units based on an amount of
available buffering at the target device; and
truncating each coding unit with more data than

available buffering.

10. A method according to any one of claims 1 to 9,

- 106 -
wherein the step of truncating further comprises the steps
of:-
determining a uniform amount to truncate each
coding unit;

truncating at least a portion of at least one

importance level in each coding unit.

11. A method according to claim 10, wherein the step
of truncation is performed using information in a header of

the codestream setting forth importance level information.

12. A method according to claim 10, wherein the step
of truncation is performed using information in a header of
the codestream getting forth importance level information for

each coding unit in the codestream.

13. A method according to claim 10, 11 or 12, wherein

the steps are performed after encode time.

14. A method of using an embedded codestream
substantially as hereinbefore described with reference to the

accompanying drawings.

Patent
Ofthce
o]

Application No: GB 9712513.2 Examiner: Keith Williams
Claims searched: 1-14 Date of search: 18 September 1997

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections. including GB, EP. WO & US patent specifications. in:
UK CI (Ed.O): H4F (FRW): H4P (PDCFT, PDCFX)

Int CI (Ed.6): HO3M 7/30: HO4N 1/41. 7/30. 7/50

Other:

Online WPI, INSPEC, JAPIO

Documents considered to be relevant:

Cacgory| Identity of document and relevant passage Relevant
to clanms
None
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the an.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date but hefore
with one or more other documents of same category. the filing date of this invention.
E Patent document published on or aficr. but with priority date carlicr
& Member of the same patent tamily than. the filing date of this application.

An Executive Agency of the Department of Trade and Industry

