
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0268010 A1

Garney et al.

US 2004O268O1 OA1

(43) Pub. Date: Dec. 30, 2004

(54)

(76)

(21)

(22)

(63)

TRANSACTION SCHEDULING FOR A BUS
SYSTEM

Inventors: John Garney, Portland, OR (US); John
S. Howard, Portland, OR (US)

Correspondence Address:
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD
SEVENTH FLOOR
LOS ANGELES, CA 90025-1030 (US)

Appl. No.: 10/888,665

Filed: Jul. 8, 2004

Related U.S. Application Data

Continuation of application No. 09/361,677, filed on
Jul. 27, 1999, now Pat. No. 6,792,495.

MEMORY

i. CONTROL
CONTROLLER UNT

186 187

120
/

HOST CONTROLLER
-HUB CONTROLLER

ROUTIN LOGIC

Publication Classification

(51) Int. Cl. ... G06F 13/36
(52) U.S. Cl. .. 710/310

(57) ABSTRACT

A method of and apparatus for communicating data using a
hub. The method includes the step of buffering a single
transfer request received at a hub during a transaction
between the hub and a host controller, where the single
transfer request is to be performed between the hub and an
agent to generate a result. The method then includes the Step
of determining whether a transfer inquiry received at the hub
from the host controller corresponds to the result.

TO HOST
CONTROLLER

188 139

US 2004/0268010 A1

OÇ? OZI . NO 10:0^-^--(~~~80|| NGHISdn~^· `N0|10}}||0 00||-WEISNM00
Patent Application Publication Dec. 30, 2004 Sheet 1 of 11

Patent Application Publication Dec. 30, 2004 Sheet 2 of 11 US 2004/0268010 A1

150

152
START SPLT
TRANSACTION

ANOTHER
TRANSACTION

154

COMPLETE SPLT
TRANSACTION

FIG.1B

156

60

START-SPLT
foN SEN-162

START-SPUT - 164
DATA PHASE

HANDSHAKE PHASE

r FIG.1C
TOKEN PHASE

174 COMPLETE-SPLIT
HANDSHAKE PHASE

FIG.1D

§§ 8}| 191 991

US 2004/0268010 A1

01001 QN|In08

HET108||ÍN00 INBOW-8nH

}}ETTO?IN00 ISOH 01 .

Patent Application Publication Dec. 30, 2004 Sheet 3 of 11

Patent Application Publication Dec. 30, 2004 Sheet 4 of 11

l? 200
IMMEDIATE XIN & Errg3 Ce2

HOST RETRY

OK DATAx, Not opplicable OD STATUS
for control-setup

Some dev/endpt &
readypending stotus

DIFF dev/endpt &
readypending status

se5 TimeOut
Or DATAX

ch5 ch4 ch2
ACKNAKSTALL

ch XIN,
PENDING
STATUS

ch3 ch4 ch2

FIG.2B

US 2004/0268010 A1

Patent Application Publication Dec. 30, 2004 Sheet 5 of 11 US 2004/0268010 A1

ErrC5 --/ immediate
host retry

DATAx w/
CRC OK,
stotus=pending

sel TimeOut
Se2 or DATAx

w/bad CRC
ch5 ch2

NAKACK
STALLINYET

chi ch4, ch.5 XIN, set ready ->old
diff old/(nok, Ock, stall, t.o.) status
ep
ch4 ch3 ch2 ch1 ch5

FIG.3B

Patent Application Publication Dec. 30, 2004 Sheet 6 of 11 US 2004/0268010 A1

400

XOUT-end st4 DATAx w/
CRC OK

Sh Wait for
DATAx w/ first doto

Accept
doto

XOUT-middle

XOUT-oll, st
XOUT-begin
st2 XOUT-all, st 1.

XOUT-begin st2

TimeOut
or DATAx w/bad
CRC

XOUT-middle, st3
XOUT-end st4 CD Nerror Z. y XOUT-begin

st2

Patent Application Publication Dec. 30, 2004 Sheet 7 of 11

ENOPOINT 500
se5 HALT

Errx=3
Cell TimeOut or

DATAx w/

XOUT, Some
dev/endpt
& reOdy/pending
stOtus

XOUT, Diff dev/endpt
&
readypending stotus sh2 ACK,

Occept xOct sh.3

XOUT, old stotus

cd XIN,

St. status
XIN,
old/(nok, stol) status

ch2 ch

US 2004/0268010 A1

Patent Application Publication Dec. 30, 2004 Sheet 8 of 11 US 2004/0268010 A1

l/ 600
DATAx=toggle,

ce TimeOut or doto
DATAx w/

XIN,
old/t.O. status st XOUT

ch4 cd XIN,
old/doto stotus

XN,
diff old/(nok, stol) stolus
ep.
ch3 chi ch2

FIG.6B

Patent Application Publication Dec. 30, 2004 Sheet 9 of 11 US 2004/0268010 A1

700
1N

TimeOut cel
or DATAx w/Bad CRC ce5, ce6
or NYET ce5, ce4
Or NAK Ce2

Record
error

(1 No more
Scheduled XINs

XIN,
status old/bodcrc
Ce2

XN, stotus st
diff or old/to XOUT
O.

p Ce3 cd XIN, status
Ce4 old/lost

XN, stotus
old/more

Cd2

FIG.7B

US 2004/0268010 A1

988088918
Patent Application Publication Dec. 30, 2004 Sheet 10 of 11

US 2004/026801.0 A1

TRANSACTION SCHEDULING FOR A BUS
SYSTEM

FIELD OF THE INVENTION

0001. The present invention pertains to the field of data
communication in a digital System. More particularly, the
present invention relates to host controllers and hubs used to
transfer information on a bus.

BACKGROUND OF THE INVENTION

0002. A computer or similar device typically has a bus
that connects devices to the computing System. Due to a
variety of advances (e.g., computing power) in computing
Systems and devices, the amount of data that can be
eXchanged between a computing System and its attached
devices has increased, requiring a concomitant increase in
the bandwidth of the bus. Part of this increased demand for
bandwidth has come from multi-media applications that
require data to be transferred at regular time intervals
(isochronous) either from the device to the computing
System (in) via the bus, or in the opposite direction (out).
Examples of devices requiring Significant bandwidth include
cameras, compact disc players, Speakers, microphones,
Video display devices, Scanners, and joy-Sticks and mice,
among other devices.

0003. The bandwidth available on a bus architecture is
partly determined by three factors: transmission medium,
topology, and the protocol used to control access to the
medium. The protocol and topology partly determine the
nature of the relationship between a device and a computing
System. One possible relationship is a master-Slave relation
ship. In a master-Slave relationship the computing System
initiates typically all data transactions between the comput
ing System and a device; i.e., the device only responds to
requests from the computing System but never initiates a
transaction. A benefit of the master-Slave relationship is a
bus architecture having relatively low cost and Simplicity.
The Universal Serial Bus (USB) Specification Revision 1.1,
Sep. 23, 1998, is an example of a popular bus architecture
having a master-Slave relationship between elements con
nected by the bus. Unfortunately, many of today's devices
and computing Systems have bandwidth requirements (or
data rates) that cannot be Supported by existing master-Slave
bus standards, Such as the USB Standard.

0004. Even though USB does not support relatively high
data rates, it has a relatively large base of users, and Supports
two data rates: 12 Mb/s (“full-speed”) and 1.5 Mb/s (“low
speed”). USB allows multiple data rates on a bus because
Some devices do not require high data rates and can achieve
Significant cost Savings by taking advantage of relatively
low-cost, low data-rate drivers and cabling.

0005. However, the USB protocol that allows the com
puting System to communicate at low-Speed with low data
rate devices and alternatively at full-speed with high data
rate devices (speed-shifting) results in the amount of data
actually transmitted over the bus (effective throughput)
being less than that achievable by limiting the bus to
full-speed transactions. In other words, Speed shifting results
in less bandwidth being available for higher speed (e.g.,
full-speed) devices, especially when there is a relatively
large number of low-Speed devices attached to the comput

Dec. 30, 2004

ing System. The effect of Speed shifting on throughput is
exacerbated where the ratio of high data rate to low data rate
is relatively large.
0006 Another possible bus protocol would require the
host to (1) transmit at a high data rate a packet to a hub, (2)
wait for the hub to forward at the low data rate the packet to
the agent, (3) wait for the agent to respond at the low data
rate to the hub, and (4) receive from the hub at a high data
rate the agent's response to the packet. When the ratio of the
high data rate to the low data rate is relatively large, this bus
protocol may also result in a low effective throughput or
bandwidth because of the need to wait for the hub to forward
the packet at the low data rate and for the agent to respond
at the low data rate.

0007 Another popular bus technology is defined by
“Firewire” or Institute of Electrical and Electronics Engi
neers (IEEE) Standard 1394 for a High Performance Serial
Bus, 1995. IEEE 1394 supports multiple data rates, up to
400 Mb/s. While the aggregate bandwidth is substantially
higher than USB, IEEE 1394 employs wasteful speed shift
ing and is a relatively costly technology.
0008. The performance of a bus can be significantly
affected by Speed-shifting, waiting for a hub to perform
transactions at a lower data rate than a host data rate, and the
ratio of the host's data rate to the agent's data rate. Thus, it
is desirable to have a host controller and/or hub that allow
communication at the higher data rates required by today's
bandwidth intensive systems while allowing backward com
patibility with pre-existing Solutions, Such as USB, and
without having to pay the penalties imposed by Speed
shifting and the other disadvantages of the prior art.
0009. One issue faced by high data rate systems commu
nicating with low data rate devices has been described
above. Another issue faced by computing Systems arises
from the multiplicity of bus protocols (or standards) that are
available. Typically, a device manufactured to operate in
accordance with a bus protocol will not operate in accor
dance with a different bus protocol. It may be wasteful to
require a user to own largely duplicate devices simply
because of differences in the protocol. Where there is a large
base of devices being used that have a Significant economic
life, it may be desirable to allow such devices to be used with
a computing System that has a host controller and/or an
associated hub that provides backward compatibility to the
protocol of the legacy devices.

SUMMARY OF THE INVENTION

0010. According to an embodiment of the invention a
method for communicating data using a hub is described.
The method includes the Step of buffering a Single transfer
request received at a hub during a transaction between the
hub and a host controller, where the Single transfer request
is to be performed between the hub and an agent to generate
a result. The method then includes the Step of determining
whether a transfer inquiry received at the hub from the host
controller corresponds to the result.

BRIEF DESCRIPTION OF THE DRAWINGS

0011. The present invention is illustrated by way of
example, and not limitation, in the figures of the accompa
nying drawings in which like references denote similar
elements, and in which:

US 2004/026801.0 A1

0012 FIGS. 1a illustrates a block diagram of a digital
System using a protocol in accordance with the present
invention;

0013 FIGS. 1b, 1c & 1d each illustrates a process
showing a method in accordance with this invention for
communicating between a host controller and a hub;

0.014 FIG. 1e illustrates a hub in accordance with the
present invention;

0.015 FIGS. 2a & 2b illustrate state machine diagrams
for a host controller and a hub, respectively, performing a
transfer in accordance with this invention;

0016 FIGS. 3a & 3b illustrate state machine diagrams
for a host controller and a hub, respectively, performing
another transfer in accordance with this invention;

0017 FIGS. 4a & 4b illustrate state machine diagrams
for a host controller and a hub, respectively, performing
another transfer in accordance with this invention;

0018 FIGS. 5a & 5b illustrate state machine diagrams
for a host controller and a hub, respectively, performing
another transfer in accordance with this invention;

0019 FIGS. 6a & 6b illustrate state machine diagrams
for a host controller and a hub, respectively, performing
another transfer in accordance with this invention;

0020 FIGS. 7a & 7b illustrate state machine diagrams
for a host controller and a hub, respectively, performing
another transfer in accordance with this invention;

0021 FIGS. 8a & 8b illustrate best case and worst case
frames for data transferS in accordance with the present
invention; and

0022 FIG. 9 illustrate timing diagrams for host control
ler-hub transactions and hub-agent transactions.

DETAILED DESCRIPTION

0023. A method and apparatus for communicating
between a host and a peripheral (agent) is described, where
the agent communicates at a different Speed and/or protocol
than the host. In the following description, for purposes of
explanation, numerous specific details are Set forth in order
to provide a thorough understanding of the present inven
tion. It will be evident, however, to one skilled in the art that
the present invention may be practiced in a variety of bus
Systems, especially Serial buses, without these specific
details. In other instances well known operations, Steps,
functions and devices are not shown in order to avoid
obscuring the invention.
0024 Parts of the description will be presented using
terminology commonly employed by those skilled in the art
to convey the Substance of their work to others skilled in the
art, Such as device or controller drivers, bus or host con
trollers, hubs, buS agents or agents, and So forth. Also, parts
of the description will also be presented in terms of opera
tions performed through the execution of programming
instructions or initiating the functionality of Some electrical
component(s) or circuitry, using terms Such as, performing,
Sending, processing, packaging, Scheduling, transmitting,
configuring, and So on. AS well understood by those skilled
in the art, these operations take the form of electrical or

Dec. 30, 2004

magnetic or optical signals capable of being Stored, trans
ferred, combined, and otherwise manipulated through elec
trical components.

0025 Various operations will be described as multiple
discrete Steps performed in turn in a manner that is most
helpful in understanding the present invention. However, the
order of description should not be construed as to imply that
these operations are necessarily performed in the order that
they are presented, or even order dependent. Lastly, repeated
usage of the phrases "in one embodiment,”“in an embodi
ment,”“an alternative embodiment,” or “an alternate
embodiment” does not necessarily refer to the same embodi
ment, although it may.

0026 FIG. 1a illustrates a block diagram of a bus using
a protocol in accordance with the present invention. Bus 100
includes a system 102 having a host controller 110 which is
coupled to hub 120 which is in turn coupled to agent 130.
Host controller 110 has an associated device driver 105 that
executes on System 102. Examples of agents include cam
eras, compact disc players, Speakers, microphones, video
display devices, Scanners, and joy-Sticks and mice, among
other devices. System 102 can include any digital System
capable of digital communication, especially laptop com
puters, desktop computers, Servers, Set-top boxes, entertain
ment Systems, and game machines. Consequently, this
invention can be practiced with a variety of digital devices
using digital communication.

0027. Two arrows 101a and 101b are drawn in FIG. 1a
to provide a frame of reference as to the direction of
communication among the host, hub and agent. The direc
tion from the agent to the hub and on to the host is referred
to as the upstream direction or upstream (in). The direction
from the host to the hub and on to the agent is referred to as
the downstream direction or downstream (out).
0028. Host controller driver 105 facilitates communica
tions or transactions between along bus 100 (e.g., on behalf
of an application executing on System 102) by processing
packets of information destined for agent 130 and schedul
ing the packets for transmission by controller 110. Host
controller 110 sends data to and receives data from agent 130
data via hub 120. Agent 130 communicates at a different or
lower data rate (agent data rate) than the data rate of host
controller 110 (host data rate). While only one agent is
shown coupled to hub 120, it should be apparent that
additional agents (not shown) can be attached to hub 120 or
to other hubs (not shown). These additional agents may
communicate at the host data rate or the agent data rate.
Furthermore, while agent 130 is shown coupled to hub 120,
it may be coupled to hub 120 through at least one conven
tional repeater type hub that operates at the agent data rate.
A conventional repeater type hub repeats signals it receives
on its upstream Side on its downstream ports, and Vice versa.
The conventional repeater type hub may in turn have one or
more agents 130 attached to it.

0029) Host controller 110 and agent 130 have a master
Slave relationship which means that the host initiates typi
cally all data transactions between the host and an agent; i.e.,
the agent only responds to requests from the host but never
initiates a transaction. Hub 120 has store-and-forward buff
ers (not shown) that allow hub 120 to temporarily store
downstream information received from host controller 110

US 2004/026801.0 A1

and destined for agent 130, and to temporarily Store
upstream information received from agent 130 and destined
for host controller 110.

0030 Since agent 130 and host controller 110 commu
nicate at different data rates, it is desirable to enhance the
effective throughput on the buS by providing a protocol that
would allow host controller 110 to both (1) communicate at
its higher data rate and (2) not have to wait for responses
from agent 130 before engaging in another transaction. The
protocol of the present invention allows host controller 110
to take advantage of the Store-and-forward characteristic of
hub 120 to allow the host controller 110 to communicate at
its higher data rate and to engage in another transaction
instead of waiting for a response from agent 130, if a
response is required. The protocol of the present invention
also provides robustneSS and reliability to transactions per
formed between controller 110 and hub 120. Additionally,
the host controller and/or hub of the present invention allow
increased effective throughput on the buS and provide
increased responsiveness to agents (not shown) that com
municate at the host data rate and that are attached to hub
120 or other hubs.

0031 FIG.1b illustrates a process 150 showing a method
in accordance with this invention for communicating with an
agent having a lower (or different) data rate, than the data
rate of a host controller. The agent may also have a different
protocol than the host controller. Process 150 can be used to
effect a variety of information transfers between host con
troller 110 and agent 130. For ease of understanding process
150 will only be described here with regards to a bulk out
transfer. However, process 150 can be used with other
information transfers described herein, below. In a bulk out
transfer data is transferred from host controller 110 to agent
130 via hub 120. The bulk out transfer is defined according
to an embodiment of this invention as an asynchronous
transfer type. However, it should not be concluded from this
definition that any bulk and/or out transfer need be asyn
chronous.

0032. At step 152 in process 150 a start split transaction
is performed. The Start split transaction communicates
downstream information from host controller 110 to hub
120. Some of the downstream information communicated to
hub 120 is temporarily buffered in hub 120. The buffers in
hub 120 largely behave in a first-in-first-out (FIFO) manner,
and are described in greater detail below. Some time after the
downstream information is buffered, hub 120 performs a
hub-agent transaction (not shown) with agent 130 based on
Some of the buffered downstream information. The relative
timing of the hub-agent transaction need not be described
herein because one of ordinary skill in the art would recog
nize that this is an application or implementation detail for
which there are many possibilities. The hub-agent transac
tion may result in upstream information being buffered in
hub 120. Some time after the downstream information is
buffered, at Step 154 a complete Split transaction is per
formed. The complete Split transaction communicates buff
ered upstream information from hub 120 to host controller
110. The relative timing of the complete split transaction
need not be described herein because one of ordinary skill in
the art would recognize that this is an application or imple
mentation detail for which there are many possibilities.
0033) A benefit of the split transaction protocol is that it
allows controller 110 to initiate communication (start-split

Dec. 30, 2004

transaction) with agent 130, engage in another function, or
engage in another communication with another agent (low
data rate or high data rate agent), and then return to complete
the communication that was initiated earlier with the low
data rate agent. By communicating using Split-transactions,
controller 110 communicates at high data rates without
Speed-shifting and does not sit idle while waiting for hub
120 to communicate with agent 130. The time that would
have been spent being idle can be used to communicate with
another agent. In an alternative embodiment in accordance
with the present invention, controller 110 may engage in
Speed-shifting with Some agents while engaging in Split
transaction communication with other agents.

0034. The start split and the complete split transactions
(split transactions) described above may be used to imple
ment a variety of transfer types (e.g., read or write) for
communicating data between controller 110 and agent 130.
In an embodiment of this invention four transfer types (or
transfer requests) are defined: bulk out/in, control out/in,
interrupt, isochronous. It should be apparent to one of
ordinary skill in the art that the Spirit and Scope of this
invention includes other embodiments with fewer, more or
different transfer types. Each of the transfer types provides
different levels of robustness, reliability, Synchronization,
asynchronous operation, error detection and correction of
the communication flow, and other characteristics that
should be apparent to one of ordinary skill in the art. For
example, bulk out/in provides large asynchronous data
transfers from controller 110 to agent 130 or in the opposite
direction. Control out/in also provides asynchronous data
transfer from controller 110 to agent 130 or in the opposite
direction, but the data is typically control information used
to control the operation of elements (e.g., a tape drive) in
agent 130 or system 100. Interrupt provides a periodic data
transfer from controller 110 to agent 130 or in the opposite
direction. If the transfer is not successful, controller 110 may
try again in an embodiment in accordance with this inven
tion. Isochronous transfer provides a data transfer once
every predetermined time interval. According to an embodi
ment of the present invention, the transfer may occur at any
time during the time interval. If the transfer is not Successful,
controller 110 will not repeat the transfer. In an alternative
embodiment in accordance with the present invention, the
isochronous transfer may provide for repeat transferS.

0035. The split transactions may include a number of
phases depending on the transfer type being implemented.
Each of the Split transactions may have up to three phases:
token, data, and handshake. However, depending on the
transfer being performed, Some transactions may have fewer
phases. In an embodiment of the present invention, bulk and
control can use the same phases in each of their respective
Split transactions. The phases for each of the transfer types
described above are shown in Table 1, below. Presence of an
“X” in a cell of the table indicates that the split transaction
for the transfer type has the phase indicated at the top of the
column in which the cell resides. While in this embodiment
the token and data phases are Separate for each of the
transfer types, in alternative embodiments the token and data
phases may be combined. It should be apparent that in
alternative embodiments transfer types may have fewer,
more, or even different phases than those shown in Table 1
without departing from the Scope and Spirit of the present
invention.

US 2004/026801.0 A1

TABLE 1.

Complete
Start-Split Transaction Split Transaction

Hand- Hand
Transfer Type Token Data shake Token Data shake

Bulk-Control Out X X X X X
Bulk-Control In X X X X X
Interrupt Out X X X X
Interrupt In X X X
Isochronous Out X X
Isochronous In X X X

0.036 FIG. 1c illustrates in greater detail a process 160
showing a start Split transaction for a bulk out transfer in
accordance with an embodiment of this invention. At Step
162 a token packet including hub identification information,
agent and endpoint identification information, transfer type,
indicator for specifying direction of transfer (in or out), and
data rate identification is sent from host controller 110 to hub
120. Hub identification information, and agent and endpoint
identification information, and direction are together com
monly referred to here as transaction addressing informa
tion. The agent identification information identifies the par
ticular agent with which the host is attempting to
communicate. The endpoint identification information iden
tifies a particular portion in the agent with which the host is
attempting to communicate. Examples of endpoints include:
left Speaker and right Speaker of a Speaker hub, or Speaker
and microphone of telephone handset. The transfer type in
the transaction addressing information is not limited to the
types described herein (e.g., bulk out, interrupt, isochronous,
control), but can include other types known in the art
without departing from the Spirit and Scope of this invention.
Data rate identification specifies the data rate with which the
hub-agent transaction described in connection with proceSS
150 above will be performed. For an embodiment in which
the hub-agent transaction is performed in accordance with
the USB standard, data rate identification will specify either
12 Mb/s (full-speed) or 1.5 Mb/s (low-speed). At step 164,
a data packet is sent from host controller 110 to hub 120. At
Step 166, a first acknowledgement is received by host
controller 110 from hub 120, if the data packet was decoded
properly by hub 120. The first acknowledgement indicates
whether the data was decoded properly by hub 120 or
whether hub 120 wants to be tried later (e.g., hub 120 had
full buffers and was not able to accept the data).
0037 FIG. 1d illustrates in greater detail a process 170
showing a complete split transaction for a bulk out transfer
in accordance with an embodiment of this invention. At Step
172, a Second token packet including transaction addressing
information is sent from the host to the hub. At step 174, a
second acknowledgement is received by host controller 110
from hub 120, where the second acknowledgement can
either (1) include handshake information received by hub
120 from agent 130 during the hub-agent transaction
described above in connection with FIG. 1b or (2) indicate
that hub 120 does not yet have information based on the
hub-agent transaction to forward to host controller 110 (e.g.,
the hub-agent transaction has not yet been completed). The
handshake information indicates whether (1) agent 130
properly received data during the hub-agent transaction
(ACK), (2) agent 130 indicated that it is not able to operate

Dec. 30, 2004

normally (STALL), or (3) agent 130 indicated that it wanted
to be tried later (NAK). While the first and second acknowl
edgements and the handshake information have been
described as Specifying certain indicators, it should be
apparent to one of ordinary skill in the art that these
acknowledgements and handshakes and other ones
described herein may represent other indications. Addition
ally, acknowledgements and handshakes different from or
additional to the ones described herein may be added in an
alternative embodiment without departing from the Spirit
and Scope of the invention.
0038 While the above description has generally been
presented in the context of agent 130 and hub 120 commu
nicating at a lower data rate than the data rate between hub
120 and host controller 110, those skilled in the art will
appreciate that the present invention may be practiced to
bridge a lower data rate to a higher data rate instead, or even
equal data rates but different protocols.

0039 While in FIG. 1 only one hub was shown in
between the agent and the host there can be multiple hubs
between any particular agent and the host. While only six
transfer types have been described, those skilled in the art
will appreciate that other types can be used without depart
ing from the Scope or Spirit of this invention.

0040. Each of FIGS. 2a, 2b, 3a, 3b, 4a, 4b, 5a, 5b, 6a, 6b,
7a & 7billustrates a State machine diagram for performing a
transfer using a host controller and a hub in accordance with
this invention. Figures with an “a” as a suffix show the state
machine diagram for a host controller; the State machine
may be performed on host controller 110 described above in
connection with FIG. 1a. Figures with a “b” as a suffix show
the State machine diagram for a hub; the State machine may
be performed on hub 120 described above in connection
with FIG. 1a. The state machines illustrated in these figures
show processes having multiple Steps. It should be apparent
that Some of the Steps may be divided into more numerous
Steps or combined into fewer Steps without departing from
the Scope and Spirit of this invention. The State machines are
not described in great detail because their operation should
be apparent to one of ordinary skill in the art. For ease of
understanding, the processes performed by the State
machines are not described Separately. Since the processes
performed by the State machines operate in tandem (i.e.,
each process has steps whose execution depends on the
occurrence of events or Steps in the other process), the
description of the processes are interleaved to facilitate
understanding.

0041 FIGS. 2a & 2b illustrate state machine diagrams
for a host controller and a hub, respectively, performing a
transfer in accordance with this invention, Specifically a split
out bulk/control transfer. Process 200 and process 260 show
the State machine for a host controller and a hub, respec
tively. Process 200 includes start split transaction, having a
token phase (XOUT) and a data phase (DATAX), which may
be repeated up to three times by the host controller when
timeouts occur during the phases of a transaction attempt
between the host controller and the hub. In response to the
Start split transaction, process 260 will either propagate
through states that will accept the data (ACK), respond to a
host controller retry after a communication failure of a hub
handshake to the host controller (ACK, don’t accept data),
request a host controller retry due to lack of Space to hold the

US 2004/026801.0 A1

Start transaction information (NAK), or timeout up to three
times. Process 200 shows the host controller response to a
complete split transaction (XIN) when the transaction
between the hub and agent was Successfully processed
(Advance), resulted in a NAK from the agent (NAK),
received an indication that the agent was not able to function
normally (STALL), was not yet completed by the hub or
agent (NYET), or the XIN or its response had some com
munication failure and resulted in up to three timeouts
between the host controller and hub. In response to the
complete split transaction, proceSS 260 will either indicate
that the transaction between the hub and the agent has not
finished (NYET) or will provide an indication (ACK, NAK,
STALL) of what transpired during the transaction between
the hub and the agent.
0.042 FIGS. 3a & 3b illustrate state machine diagrams
for a host controller and a hub, respectively, performing
another transfer in accordance with this invention, Specifi
cally a split out interrupt transfer. Process 300 and process
360 shows the state machine for a host controller and a hub,
respectively. Process 300 includes a start split transaction,
having a token phase (XOUT) and a data phase (DATAX),
which is not repeated by the host controller because accord
ing to an embodiment the interrupt out transfer is time
Sensitive and need not be repeated if it is not Successful on
the first try. In response to the Start split transaction, proceSS
360 will either accept the data (ACK), or do nothing. Process
300 shows the host response to a complete split transaction
(XIN) when the transaction between the hub and agent was
Successfully processed (Advance), received an indication
that the agent was not able to function normally (STALL),
was not yet completed by the hub or agent (NYET), or the
XIN or its response had Some communication failure and
resulted in up to three timeouts between the host controller
and hub. In response to the complete split transaction,
process 360 will either indicate that the transaction between
the hub and the agent has not finished (NYET) or will
provide an indication (ACK, NAK, STALL, NYET) of what
transpired during the transaction between the hub and the
agent.

0.043 FIGS. 4a & 4b illustrate state machine diagrams
for a host controller and a hub, respectively, performing
another transfer in accordance with this invention, Specifi
cally a split out isochronous transfer. Process 400 and
process 460 shows the state machine for a host controller
and a hub, respectively. Process 400 includes a start split
transaction, having a token phase (XOUT) and a data phase,
neither of which is repeated. Process 400 does not include a
complete Split transaction according to an embodiment.
Process 460 allows the hub to agent transaction data to be
subdivided into multiple sections to minimize buffering
required in the hub; the host controller can Send the next
section of data just before the hub needs to send it to the
agent. In this case each split Start transaction is marked with
ALL, BEGIN, MIDDLE or END So that the hub can detect
when a communication failure has caused it to not receive a
data Section in the correct Sequence. In response to the Start
Split transaction, process 460 will accumulate a data payload
having one data section (ALL), two data sections (BEGIN,
END), or three or more data sections (BEGIN, MIDDLE...
MIDDLE, END).
0044 FIGS. 5a & 5b illustrate state machine diagrams
for a host controller and a hub, respectively, performing

Dec. 30, 2004

another transfer in accordance with this invention, Specifi
cally a split in bulk/control transfer. Process 500 and process
560 shows the state machine for a host controller and a hub,
respectively. Process 500 includes start split transaction,
having a token phase (XOUT), which is repeated up to three
times by the host controller when timeouts occur during
transaction attempts between the host controller and the hub.
In response to the start split transaction, process 560 will
either acknowledge and accept the transaction (ACK, accept
Xact), respond to a host controller retry after a communica
tion failure of a hub handshake to the host controller (ACK,
ignore xact), or request a host controller retry due to a lack
of Space to hold the Start transaction information. Process
500 shows the host controller response to a complete split
transaction (XIN) when the transaction between the hub and
agent was successfully processed (Advance), received an
indication that the endpoint is unable to function normally
(STALL), was not yet completed by the hub or agent
(NYET), ignores data received from the hub because it is
corrupted, or the XIN or its response had Some communi
cation failure and resulted in up to three timeouts between
the host controller and hub. In response to the complete Split
transaction, process 560 will either indicate that the trans
action between the hub and the agent has not finished
(NYET) or will provide an indication (NAK, STALL) of
what transpired during the transaction between the hub and
the endpoint, or Send the data received from the agent by the
hub to the host controller.

004.5 FIGS. 6a & 6b illustrate state machine diagrams
for a host controller and a hub, respectively, performing
another transfer in accordance with this invention, Specifi
cally a split in interrupt transfer. Process 600 and process
660 shows the state machine for a host controller and a hub,
respectively. Process 600 includes a start split transaction,
having a token phase (XOUT). In response to the start split
transaction, process 660 will accept the transaction (accept
xact). Process 600 shows the host response to a complete
split transaction (XIN) when the transaction between the hub
and agent was Successfully processed (Advance), received
an indication that the endpoint is not able to function
normally (STALL), was not yet completed by the hub or
agent (NYET), received a NAK from the agent (NAK),
retries token phase if data received is an agent retry of the
previous transaction request (ignore data), or the XIN or its
response had Some communication failure and resulted in up
to three timeouts before the host controller gives up com
municating with the agent. In response to the complete Split
transaction, proceSS 660 will indicate that a timeout occurred
when the hub was communicating with the agent (NYET),
or the hub didn't received the start transaction for this
request and had no corresponding response information
(STALL) or provide an indication (NAK, STALL) of what
transpired during the transaction between the hub and the
agent, or Send the data to the host controller.
0046 FIGS. 7a & 7b illustrate state machine diagrams
for a host controller and a hub, respectively, performing
another transfer in accordance with this invention, Specifi
cally a split in isochronous transfer. Process 700 and process
760 shows the state machine for a host controller and a hub,
respectively. Process 700 includes a start split transaction,
having a token phase (XOUT). In response to the start split
transaction, process 760 will accept the transaction (accept
xact). Process 700 shows the host response to a complete
split transaction (XIN) when the transaction between the hub

US 2004/026801.0 A1

and agent was Successfully processed and all the data has
been returned (TAadvance) or there is more data to return
(DAadvance) or an error occurred (record error) due to a
communication failure between the host and hub (timeout or
bad cyclic redundancy check) or the agent (NAK) or a hub
problem with the agent (NYET). In response to the complete
split transaction (XIN), process 660 will indicate that data
received from the agent had a bad cyclic redundancy check
(NAK) or the agent didn't respond (NYET) or the hub had
no information about this complete-split, or Send the data to
the host controller either indicating all the data has been
returned (DATAO) or more data is to be returned (MDATA).
0047. It is useful at this point to Summarize the descrip
tion of the above protocol before describing the remaining
apparatus and methods of the present invention. The proto
col described above allows a host controller to transfer data
to or receive data from an agent via a hub. The protocol
allows the host controller to engage in a first transaction
(start split transaction) in which a transfer request is com
municated to the hub. After the host controller performs the
first transaction, it may engage in an intermediate transac
tion with the same hub or another hub without waiting for
the hub and agent to perform the transfer request (i.e.,
engage in the transfer of data to or from the agent). The
intermediate transaction may include a transfer request for
the agent, another agent on the same hub as the agent, or
another agent on yet another hub. After the hub engages in
the transfer of data to or from the agent, the host controller
performs a complete split transaction (or Second transaction)
to get the result (e.g., data or handshake Sent from the agent
to the hub) of the transfer performed between the hub and
the agent. By allowing the host controller the capacity to
engage in an intermediate transaction, instead of waiting for
the hub to perform the transfer request (or third transaction)
with the agent, the effective throughput of a bus using a
protocol in accordance with this invention can be signifi
cantly greater than buses which involve speed-shifting or
which require the host controller to wait for the hub to
perform the transfer with the agent before initiating another
transfer.

0.048 While the above protocol defines the sequence of
transactions involved in communicating data acroSS abus, it
does not explicitly describe the timing for the transactions or
transferS which will result in data being Sent to or received
from an agent. However, timing of transferS for agents is
important because agents typically require data to be sent to
or received from the host controller on a periodic (e.g.,
isochronous or interrupt) or asynchronous (e.g., bulk or
control) basis. Additionally, while the above protocol allows
a host controller to perform an intermediate transaction (or
even multiple intermediate transactions) between the start
Split and the complete split transaction, the above protocol
does not explicitly describe how transfer requests are Stored
in the hub and how the hub and agent perform transfer
requests without requiring the host controller to wait for the
transfer request to be performed before engaging in an
intermediate transaction. The issues not addressed by the
above description of the protocol, namely the timing of
transfer requests and the processing (i.e., buffering and
performance) of transfer requests by a hub, are addressed by
the following descriptions of methods and apparatus in
accordance with the present invention. The present inven
tion includes a method and apparatus for Scheduling trans
fers of data to and from an agent and a method and apparatus

Dec. 30, 2004

for processing transfer requests at a hub. The method and
apparatus for Scheduling transfers of data is described first
and then the method and apparatus for buffering and per
forming transfer requests is described Second.
0049 Referring again to FIG. 1, the process of schedul
ing transferS of data first begins when System 102 performs
configuration for agents attached to the bus of the System.
Configuration can occur upon System initialization or boot
up or when an agent is attached to the bus after initialization.
The Scheduling of data transferS depends on the transfer type
associated with an agent (or an endpoint of an agent) and the
amount of data involved in the transfer. The manner in which
agents having associated periodic transferS, Such as isoch
ronous and interrupt, are handled is described first, below,
and then the manner in which agents having associated
asynchronous transferS, Such as bulk and control, are
handled is described next.

0050. During the process of configuration, each endpoint
of each agent informs the System of the endpoints associ
ated maximum data payload size and transfer type (e.g.,
isochronous in/out, interrupt, bulk, control). The manner in
and device by which each agent informs the System is well
understood by those of ordinary skill in the art and need not
be described here. The maximum data payload size is the
largest amount of data that a transfer to or from an agent will
entail. The System relays the data payload size and the
transfer type to the host controller. The manner in which the
System relays the size and transfer type to the host controller
is well understood by those of ordinary skill in the art and
need not be described here. The host controller uses the
aforementioned two pieces of information associated with
each endpoint to generate a budget list for the periodic
transferS of the endpoints. In alternate embodiment, a Soft
ware driver Such as the host controller driver or even a
hardware driver can generate the budget list and perform the
Scheduling operations described below. The budget list gives
the earliest time that a transfer (Sending or receiving a data
packet) may occur as well as the latest time that a result
associated with the transfer may be available. The earliest
time that a transfer can occur depends on the amount of time
taken up by each of the previous transferS assuming that the
previous transferS happened under the best of circumstances
(defined below). The latest time that a result associated with
a transfer may be available depends upon the amount of time
taken up by each of the previous transferS assuming that
previous transferS happened under the worst circumstances
(defined below) and the time required for the transfer under
the worst circumstances. The earliest time that a transfer can
occur is important because the host controller needs to have
the transfer request buffered at the hub before that time so
that as Soon as the hub finishes the transfer request that is
ahead of the buffered request the hub can turn its attention
to the buffered transfer request. The latest time that a result
asSociated with the transfer may be available is important
because after the latest time it is Substantially certain that the
result will be available for the host controller to retrieve. If
the host controller were to try to retrieve the result from the
hub before the latest time, meaning that the result is not
available yet, a less efficient protocol employing multiple
retrievals would be required.
0051 Transfers happen under the best of circumstances
when each transfer involves the maximum data payload and
there is Substantially no bit-stuffing. TransferS happen under

US 2004/026801.0 A1

the worst of circumstances when each transfer involves
maximum data payload and there is maximum bit-Stuffing.
Bit-Stuffing occurs according to an embodiment of the
present invention because the Signals on the bus obey
non-return-to-Zero (NRZ) Signaling. According to an
embodiment of the present invention, bit-Stuffing may
increase the size of the maximum data payload by 16%.
While in an embodiment, the best circumstances and the
Worst circumstances have been defined in terms of bit
Stuffing, it should be apparent that in alternative embodi
ments the circumstances can be described in terms of other
things that can expand or decrease the size (or time) of
transfers, or generate delayS.
0.052 The generation of a budget list in accordance with
the present invention will now be described. While one way
of generating a budget list is described herein, it should be
apparent that the Spirit and Scope of the present invention
encompasses other possible ways. Abudget list is a list of the
allowable periodic transactions that can occur in a particular
frame template. A frame is a continuously occurring period
of time defined as part of the bus specification that is
Sufficient to provide for one or more transactions. In an
embodiment, a 1 millisecond time period is defined for a
frame. A different budget list is constructed for each frame
that has a different Set of allowable periodic transactions. A
frame template is a description of a particular periodically
repeating frame that provides for Some maximum number of
transactions, each transaction having Some maximum data
payload. A frame contains Some number of transactions of
Some actual data payload, while a frame template describes
a potential budgeted frame. Each budget list has an associ
ated best case information and an associated worst case
information. The best case information describes the Situa
tion in which each transaction in the frame template occurs
under the best circumstances. In an alternative embodiment,
transferS rather than transactions are represented by the best
case information and worst case information.

0.053 FIG. 8a illustrates a diagram for a best case frame
template 800 in accordance with the present invention.
Block 805 represents the transfer associated with a first
endpoint, where the transfer happens under the best case.
Block 810 represents the transfer associated with a second
endpoint, where the transfer happens under the best case.
The remaining blocks 815-835 represent similar best case
transferS for other endpoints configured by the System. The
Worst case information describes the Situation in which each
transfer in the frame template occurs under the worst cir
cumstances. FIG. 8b illustrates a diagram for a worst case
frame template 850 in accordance with the present inven
tion. Block 855 represents the transfer associated with the
first endpoint, where the transfer happens under the worst
case. Block 860 represents the transfer associated with the
Second endpoint, where the transfer happens under the worst
case. The remaining blocks 865-885 represent similar worst
case transferS for other endpoints configured by the System.
It should be apparent that the relative sizes of the blocks are
only meant for purposes of illustration.
0.054 The significance of best case frame template 800
and the worst case frame template 850 will now be explained
by examining blocks 805,810,855 and 860. Blocks 805 and
blocks 855 represent the best case and worst case transfer,
respectively, for the first endpoint. The earliest that the
transfer for the first endpoint can finish is Ta. The latest that

Dec. 30, 2004

the transfer for the first endpoint can finish is Tb. The
foregoing Suggests that the transfer associated with the
Second endpoint can begin as early as time Ta or begin as
late as time Tb. Blocks 810 and 860 represent the best case
and worst case transfer times, respectively, for the Second
endpoint. The earliest that the transfer for the second end
point can end is Tc. The latest that the transfer for the second
endpoint can finish is Tcl. The foregoing Suggests that the
information necessary for the Second transaction must be
available to the hub before time Ta and any result due to the
first transfer is substantially certain to be available after time
Tb. Furthermore, it should be apparent that scheduling of a
transfer depends on the time required to perform each of the
previous transfer requests. Additionally, it should be appar
ent that the Scheduling of the complete-split transaction will
depend on the time to perform the present transfer request,
if any, asSociated with a start-split transaction.

0055 Frame template 800 and frame template 850 are
frame templates that are representative of a frame between
the hub and the agent (hub-agent or classic frame). Accord
ing to an embodiment of the present invention, the host
controller and the hub have another frame that is a fraction
of the size (microframe) of the classic frame. More specifi
cally, in an embodiment, eight microframes are equivalent to
a single classic frame. Since the host controller and the hub
communicate using microframes and Since a transfer request
before reaching the hub starts as a start Split transaction, it
is useful to describe the time for performing the Start Split
transaction in terms of microframes. Similarly it is useful to
describe the time for performing the complete split transac
tion in terms of microframes. With regards to the start time
for a start Split transaction, according to an embodiment, a
Start Split transaction should occur one microframe before
the microframe in which the transfer between the hub and
agent can occur according to the best case frame. With
regards to the Start time for a complete Split transaction,
according to an embodiment, a complete split transaction
should occur one microframe after the microframe in which
the transfer of the associated Start Split transaction can finish
according to the worst case frame. According to an embodi
ment of the present invention, the host controller uses the
best case frame and the worst case frame for each frame
template to create a start-split vector and a complete-split
vector for each endpoint in each frame template. The Start
Split vector contains a value indicative of the microframe in
which the Start split transaction for an endpoint should occur
during a classic frame. According to an embodiment, start
Split vector has values ranging from -1 to 6. The complete
Split vector contains a value indicative of the microframe in
which the complete split transaction for an endpoint should
occur during a classic frame. According to an embodiment,
the complete-split vector has values ranging from 1 to 8.

0056. When host controller 110 is tasked by host con
troller driver 105 to perform a transfer in a particular frame
for a particular endpoint, host controller 110 examines the
best case vector that is associated with the endpoint and the
frame template that corresponds to the particular frame. The
value in the Start-split vector for a given endpoint and frame
template indicates the microframe at which a Start Split
transaction is to be performed. Similarly, host controller 110
examines the complete-split case vector to determine the
microframe at which a complete Split transaction is to be
performed.

US 2004/026801.0 A1

0057 FIG. 9 includes a sequence of hub-agent frames (or
classic frames) 900 and a host controller-hub frame 950.
Frames 900 include frames 910-930. Frame 930 has a
transfer 901 which is scheduled to start in microframe Band
is scheduled to end in microframe B. In this illustration,
transfer 901 is an isochronous out transfer, but it should be
apparent that other transferS can be given a similar repre
Sentation. Frame 950 includes frame 960 which has Sub
frames 961 and 963. While transfer 901 is scheduled to
occur in hub 120 in microframe A and end in microframe B
(i.e., in the hub-agent time frame represented by frames
900), the associated start-split transaction occurs in microf
rame A and the associated complete-split transaction occurs
in microframe C. In the host controller-hub time frame
represented by frame 950, the associated start-split transac
tion occurs at time 951 a sometime in Sub-frame 961 and the
asSociated complete-split transaction occurs at time 963a
sometime in Sub-frame 963. Transfer 951 represents transfer
901 in the host controller-hub time frame. Other transfers
and transactions can also occur in Sub-frames 961 and 963.
It should be apparent from FIG. 9, that sub-frames 962-3 are
available for other transfers and transactions with other
agents.
0.058 While the above description has generally been
presented in the context of periodic transactions, the inven
tion is not limited to periodic transaction but also includes
asynchronous transferS Such as the bulk and control transfers
described above. According to an embodiment of the present
invention, ninety percent of a classic frame is Set aside for
periodic transferS. ASynchronous transferS will occur at the
earliest time there is space available for them on the bus
between the hub and the agent. The hub will accept a
transaction during a microframe when it has space available
to hold the Start-split transaction until it can be issued on the
classic bus (i.e., between the hub and an agent). Then the hub
will issue the transaction during a classic frame when it has
no other pending periodic transactions. Once the hub has
accepted a start-split, the host controller will later issue a
complete-split transaction to retrieve the results from the
hub for that transaction on the classic bus. The host con
troller driver issues an asynchronous Split-transaction to the
hub whenever it has no other periodic transactions to issue
during a microframe. The buffering provided by the hub for
bulk/control transactions is distinct and Separate from the
buffering provided by the hub for periodic transactions.
0059 A method and apparatus for buffering periodic
transfer requests and processing them in accordance with
this invention will now be described. FIG. 1e shows in
greater detail hub 120 of FIG. 1a. According to an embodi
ment, hub 120 of the present invention includes a host
controller-hub (or high-speed hub) controller 180, a hub
agent (or low-speed) hub controller 181, a memory 182, a
control unit 183, a clock 183a, a repeater 184, a routing logic
185, and ports 185-189. The controller 180 performs split
transactions between hub 120 and host controller 110.
Whenever a start-split transaction is received by controller
180 from the host controller 110, controller 180 records the
current microframe number in memory 182 as a timestamp
for the transaction. An alternate embodiment would record
the microframe number as a timestamp in the State records
to Separate one group of transactions received by the hub
during one microframe from those transactions received
during another microframe. Controller 181 performs trans
fers between the hub and one or more agents. The transfers

Dec. 30, 2004

performed by controller 181 are received during start split
transactions performed between controller 180 and host
controller 110. Memory 182 is coupled to both high-speed
hub controller 180 as well as low-speed hub controller 181.
Memory includes a pipeline with a plurality of Stages.
According to an embodiment, the pipeline has five Stages.
Each Stage of the pipeline corresponds to a microframe as
defined above. Each Stage of the pipeline has a plurality of
transaction States (or transaction records). According to an
embodiment, a Stage of the pipeline has 19 or fewer trans
action States or records. Each Stage Stores records represen
tative of transferS to be performed. A record may have
Several fields, Such as device and endpoint address, direction
of transfer, transfer type, Status, and data reference. Status
indicates whether the transfer is not ready (prevent the
low-speed hub controller from performing it), pending
(waiting for execution) or ready (has been performed by the
low-speed hub controller). The data reference is a pointer to
a starting address in memory for data received (i.e., in
transfer) from the agent or data to be sent to the agent (e.g.,
out transfer).
0060 Hub 120 includes control unit 183 and clock 183a
coupled to control unit 183. According to an embodiment,
clock 183a generates a microframe indication; i.e., that
one-eighth of the time-duration of the classic frame has
elapsed. Control unit 183 is coupled to the memory and
monitors the records in the Stages and prevents the perfor
mance of a transfer by the low-speed hub controller 181 if
the time at which the transfer is to begin execution at the
low-speed hub controller 181 is past the time the transfer
was Scheduled to be performed or to have completed per
formance. Specifically, according to an embodiment, a
record whose associated time Stamp indicates that it was
received by controller 180 from host controller 110 one
microframe earlier, is Set to a pending Status to allow the
low-speed hub controller 181 to issue the transaction on the
classic bus. A record whose associated timestamp indicates
that it was received more than three microframes before the
current microframe indication but has not yet been per
formed by low speed hub controller 181 is marked as old to
prepare it for a Subsequent corresponding complete-split
transaction by the high speed hub controller 180. A record
whose associated timestamp indicates that it was received
more than four microframes before the current microframe
indication but has not yet been performed or is currently
being performed by low-speed hub controller 181 is aborted
and removed from the pipeline. Clock 183a is also coupled
to the low-speed hub controller 181. Controller 181
Sequences in order through the periodic transaction records
that are marked as pending. According to an embodiment,
controller Sequences 181 through the pending records
received in the earliest microframe before proceeding to the
records received in the next earliest received microframe
and So on. According to an embodiment, controller 181
proceeds to the next earliest received microframe when
control unit 181 receives a microframe indication. When
control unit 181 receives a microframe indication it changes
the Status of the transferS in the next earliest received
microframe from not ready to pending, and flushes out the
transferS that are Stale as described above. To perform a
transfer controller 181 transfers data to routing logic 185
which gives controller 181 access to one of the ports
186-189. Routing logic 185 gives an agent access to either
repeater 184 or controller 181 to allow the transfer of data

US 2004/026801.0 A1

at a high data rate or a low data rate depending on the agent's
configured data rate. Repeater 184 is coupled to controller
180 and routing logic 185. Repeater 184 repeats signals
received from (or destined to) controller 180 and destined to
(or received from) a high speed agent coupled to one of ports
186-189.

0061 While sequencing through the pending records
received in the earliest microframe, controller 181 operates
in accordance with the following rules. First, after perform
ing a transfer between controller 181 and the agent, con
troller 181 will retrieve the next transaction record and
perform the next pending isochronous or interrupt transfer.
Second, if there is no pending isochronous or interrupt
transfers, controller 181 will perform a pending bulk/control
transfer. Third, if there is no pending bulk/control transfer,
controller 181 waits for the high-speed hub controller 180 to
indicate a pending bulk/control or isochronous or interrupt
transfer.

0062) When the low-speed hub controller performs a
transfer a result is stored in the memory 182. The result may
be either a handshake or data received from the agent.
Transfers which have been performed have their status
changed by the low-speed hub controller 181 to ready and
their records are made available to the high-Speed hub
controller 180. When a complete split transaction is received
by the high-speed hub controller 180, the high-speed hub
controller 180 examines the record of the most recently
performed transfer with the same addressing information
and sends a response back to the host controller 110 based
on the result of the most recently performed transfer. If the
complete split transaction is not inquiring about a transac
tion with the same addressing information, the high-speed
hub controller 180 will respond back with a NYET.
0.063 Thus, a method and apparatus for scheduling trans
fers between a host controller and a hub has been described.
Additionally, a method and apparatus for buffering and
performing transferS at a hub has been described. Although
the present invention has been described with reference to
Specific exemplary embodiments, it will be evident to one of
ordinary skill in the art that various modifications and
changes may be made to these embodiments without depart
ing from the broader Spirit and Scope the invention as Set
forth in the claims. Accordingly, the Specification and draw
ings are to be regarded in an illustrative rather than a
restrictive Sense.

1. A method for communicating data using a hub, the
method comprising:

buffering a Single transfer request received at a hub during
a transaction between the hub and a host controller;

wherein the Single transfer request is to be performed
between the hub and an agent to generate a result, and

determining whether a transfer inquiry received at the hub
from the host controller corresponds to the result.

2. The method of claim 1, wherein the single transfer
request is received at a first data rate or a first protocol.

3. The method of claim 1, wherein the single transfer
request is performed at a Second data rate or a Second
protocol.

Dec. 30, 2004

4. The method of claim 3, wherein
the hub includes Storage for buffering transfer requests,

and

at any instant in time transfer requests buffered in the
Storage take up an aggregate Storage Space that is leSS
than an information capacity of three communication
frames between the hub and the agent.

5. The method of claim 3, wherein

at any instant in time transfer requests buffered in the
Storage take up an aggregate Storage Space that is leSS
than an information capacity of a communication frame
between the hub and the agent.

6. The method of claim 1, wherein the single transfer
request is associated with a time Stamp and the Step of
performing includes,

comparing the time Stamp with a time indication, and
performing the Single transfer request when the time

Stamp is within a predetermined time range relative to
the time indication.

7. The method of claim 1, wherein the single transfer
request is associated with a time Stamp and the Step of
performing includes,

comparing the time Stamp with a time indication, and
preventing the host controller from performing the Single

transfer request when the time Stamp is outside a
predetermined time range relative to the time indica
tion.

8. The method of claim 1, wherein the step of buffering
includes,

Storing a transaction record corresponding to the Single
transfer request.

9. The method of claim 6, wherein the step of buffering
includes,

Setting a status field for the Single transfer request to
pending.

10. The method of claim 7, wherein the step of buffering
includes,

defining a data reference field if the Single transfer request
requires data to be received at the hub from the agent
or Sent to the agent.

11. The method of claim 1, further comprising:
Sending from the hub to the host controller a response

based on the result when the result corresponds to
information received in the transfer inquiry.

12. The method of claim 1, wherein the step of determin
ing includes,

comparing a transaction record corresponding to the
Single transfer request with information received in the
transfer inquiry.

13. An input/output device for communicating data, com
prising:

a memory adapted to buffer a single transfer request
received during a transaction between a host controller
and the device;

a hub controller that performs the Single transfer request
between the device and an agent to generate a result;

US 2004/026801.0 A1

wherein the device receives a transfer inquiry from the
host controller; and

a control unit that determines whether the transfer inquiry
corresponds to the result.

14. The device of claim 13, wherein the single transfer
request is received at a first communication Speed or a first
protocol.

15. The device of claim 13, wherein the single transfer
request is performed at a Second communication Speed or a
Second protocol.

16. The device of claim 13, wherein
at any instant in time transfer requests buffered in the
memory take up an aggregate Storage Space that is leSS
than the information capacity of a communication
frame between the hub controller and the agent.

17. The device of claim 16, wherein the aggregate Storage
Space is less than three-fourths of the information capacity
of the communication frame between the hub controller and
the agent.

18. The device of claim 13, wherein the memory has a
plurality of Stages including a first Stage Storing a first
transfer request and an adjacent Second transfer request, an
interval during which transfer requests are not received at
the hub Separates receipt of the first transfer request and the

Dec. 30, 2004

Second transfer request, and the hub controller performs the
first transfer request and the Second transfer request.

19. The device of claim 18, wherein performance of the
first transfer request by the hub controller and performance
of the second transfer request by the hub controller is
divided by a delay less than the interval.

20. The device of claim 16, wherein the memory stores a
transaction record corresponding to the Single transfer
request.

21. The device of claim 16, wherein the memory stores a
Status field corresponding to the Single transfer request and
the Status field is indicative of a pending Status.

22. The device of claim 16, wherein the memory stores a
transaction record at an address indicative of a pending
Status.

23. The device of claim 16, wherein the memory stores a
data reference when the Single transfer request requires data
to be received at the hub from the agent or Sent to the agent.

24. The device of claim 16, wherein the hub controller
Sends from the device to the host a response based on the
result.

23-46. (Cancelled)

