US 20180083930A1

a2y Patent Application Publication o) Pub. No.: US 2018/0083930 A1

a9y United States

Baptist et al.

43) Pub. Date: Mar. 22, 2018

(54) READS FOR DISPERSED COMPUTATION
JOBS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Andrew D. Baptist, Mt. Pleasant, W1
(US); Greg R. Dhuse, Chicago, 1L
(US); Wesley B. Leggette, Chicago, IL.
(US); Jason K. Resch, Chicago, I,
(US)

(21) Appl. No.: 15/824,433

(22) Filed: Nov. 28, 2017

Related U.S. Application Data

(63) Continuation-in-part of application No. 15/418,164,
filed on Jan. 27, 2017, which is a continuation of
application No. 13/917,017, filed on Jun. 13, 2013,
now Pat. No. 9,674,155, which is a continuation-in-
part of application No. 13/707,428, filed on Dec. 6,

2012, now Pat. No. 9,298,548.

Provisional application No. 61/569,387, filed on Dec.
12, 2011, provisional application No. 61/679,007,
filed on Aug. 2, 2012.

g
T l enmc@g\ % | data malrix (DM)

i matrix (M)

}

(60)

Publication Classification

(51) Int. CL
HO4L 29/06 (2006.01)
HO4L 29/08 (2006.01)
HO4L 9/08 (2006.01)
GOGF 11/10 (2006.01)
(52) US.CL
CPC ... HO4L 63/0428 (2013.01); HO4L 67/10

(2013.01); HO4L 9/0825 (2013.01); HO4L
2463/061 (2013.01); GOGF 11/1076 (2013.01);
GOGF 2211/1028 (2013.01); HO4L 67/1097
(2013.01)

(57) ABSTRACT

A method for execution by one or more processing modules
of one or more computing devices of a dispersed storage
network (DSN). The method begins by receiving, by a first
processing module, an encoded data slice and an associated
partial task. The method continues by identifying a data
record associated with the encoded data slice. The method
continues by generating a slice request for a data record that
includes at least one additional encoded data slice not
received by the first processing module and outputting the
slice request to a second processing module. The method
continues by receiving, by the first processing module, the at
least one additional encoded data slice from the second
processing module and performing the associated partial
task on the encoded data slice and the at least one additional
encoded data slice to produce at least partial results.

P S P 5l SN = slice name
ET EDS = encoded data slice
coded mairix T
[CM) i

s |

US 2018/0083930 A1

Mar. 22, 2018 Sheet 1 of 6

Patent Application Publication

({3
aBeiols pes

(NSO} NioMBY

sadsip 10 ‘panglasp

b Ol

[59

g wun
Guifeueud

T7 9100
Bugnduwios

£t svejiog]

»

72 AoWwsl N](

T un sbeios

Al

vl

80P Bugnduwios

R

d

888

77 womasu

{7 wun
Buissesoud Auban

nsiuwna

o

b

2l

el

O

(‘;‘3

Bugnduios

i
{
!
! §7 aloa
f
{
I
!

77558

]

A

.|

O¢ 8loo
Bunnduwion

0 erep

!

A EHE m w

SRR

;
Haj

l !

& aINpow
JUE HRNG]

07 2103 Bugnduwod

37 aoinap Bunndwos

\ 2

¢t Sdeielul

&

%
¢ sinpow

wae sa

§7 2109 Bugnduiod

7T somap Bulnduwios

US 2018/0083930 A1

Mar. 22, 2018 Sheet 2 of 6

Patent Application Publication

¢ 9l
G7 anpow 57 s|npoul 77 ejnpowl aeLieu a7 einpow 70 gnpoiy 4G einpoiy
SUBHSIU NSG oSN (14 ysey SOELIAIUEOMBY SoeLEH YaH soeLS a3N
F-y & kw w 3 &
w 3 ¥ ¥ M.
85 808l [Dd ¥8 SO
i Nod
&
VT . 20 gjnpoeu
0G J3RCAUD g aoeLsl SoepO
Oi N Oi e e
-3
— A ——
7y A g sinpow
Aowiaul ulew P elosau00 Ao & Buissao0id

B

¥
GG Bun Buisssaoid

soideif oapin

87 sioo Bugndwion

US 2018/0083930 A1

Mar. 22, 2018 Sheet 3 of 6

Patent Application Publication

§ "ol
DJilE "AGY qiloslgo ep |) unea _ # wewbes gep # xyd
{33 sweu a4s
G oid
EEE! yeX £SX 28X 16X 0 y W
R ASE WX EPX ZFX 1P L i 3 i
esaa | (o | X EEX 2EX X cid g oa - sa Iy
= , = | 80 0 81 5@ *
AN yIX EIX 7ZX X J) D
W PIX X X LIX Wa ot <d 1d 9 g e
ST oS — — — — —
T o) T
“ o) - ! _
801IS Bl PRDOILS = ST SN PR R .
aUIRU 89))S = NS o 7 e e] e g e » T
A 6803 AvS A €503 A 2803 A Lsa3 & jusibas
A GNS A VNS AENS AZNS AINS AH_?_E@ Eep
8 ® ® ® ® % Buioys ® OF yoelgo
® H b e e ‘Bupoous o AH 2ep
: 0US Gunusiubas

L $sa3 WENE HE WAE AEYeE BUEITHES

G NS U7 NS NS U TNS INS | e

TF 5# NS T NS WEHNS NS T NS gr T Z] somep Buanduios

US 2018/0083930 A1

Mar. 22, 2018 Sheet 4 of 6

Patent Application Publication

8 Sid
‘ (o) (,-3) xew
a WOy apeweep | = 4 KLU PAROD ¥ - a
FAIE!
INEGE IR INCEE I AE FSERE A JUSUIBES
A GNS A 7 NS A ENS A NS A INS ﬂvm%ou% Elep
: : : : : R —
@ & ® ®) 2 Buisep) UGG P
LGE ETHE WEE WAE WEGE RUETHES
G NG Uy NG NS "2 NS TS — elep
T oHNS S NS W e#NS o NS O NS STTFT eonep bugndwioo

US 2018/0083930 A1

Mar. 22, 2018 Sheet 5 of 6

Patent Application Publication

¥eL
158nbay
20lIS

| TE LU UORNISX3 190w
i
i _ »
| 007 synsad geiued I
- I
w 0o sinpouty | TRT Aowsw | |
yopnaaxa [T . g I
| .“E 7 syserjenied | se} Bugndwios | 2 syse) ped
i I
w » {07 Aowssw | w
| 7 801IS BIED eas 1 | ¢ 29is elep
i !
A I
L Uwwneepoae sa B
i
i -
w 07 sunsed eied | ”
e |
w 06 sty 707 Aowsi 1
| UORRIZX8 1 aycer epied ysey Bugndwios | L 5ysel
“ 10 | eied
| zooiserp | go7 Aowow | !
w L 2015 e12p sogs | 190 ejep
i !
Lo e oo o e o o o o e o 7o o o |

Gi wun
Buissasod

184

804

Synsai jeased

kA

A

%€l 107 3 elep

g7 1senbas

FT aoiaap
Jash

US 2018/0083930 A1

Mar. 22, 2018 Sheet 6 of 6

Patent Application Publication

v6 "Old

synsal eiued sonposd 0} 801S Blep Jaylo sy}
DUB 801iS BIBD U] U0 use] eued sy} twiousd

05 1

BOHS EIRP JSUI0 B4} SAIRGS)

(s o
e
[

1

HUD LORNO8XS
1867 Jsyjoue o1 1senbal 8015 ay) indine

L
o
I~

1

158nbai 805 seleusb ‘|0l
BIep JSUI0UR S3PNIOUI DICDSI BIED B4 UBYM

i f

2018
I SUI Y)IM PRIBISOSSE PI0DSI BIEP B Ajusp

TN

521 1

se)
fenued pejeioosse ue pue S0IiS BIep & SAIR09;

i) T

US 2018/0083930 Al

READS FOR DISPERSED COMPUTATION
JOBS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present U.S. Utility patent application claims
priority pursuant to 35 U.S.C. § 120 as a continuation-in-part
of U.S. Utility application Ser. No. 15/418,164, entitled
“ENCRYPTING SEGMENTED DATA IN A DISTRIB-
UTED COMPUTING SYSTEM” filed Jan. 27, 2017, which
is a continuation of U.S. Utility application Ser. No. 13/917,
017, entitled “ENCRYPTING SEGMENTED DATA IN A
DISTRIBUTED COMPUTING SYSTEM”, filed Jun. 13,
2013, issued as U.S. Pat. No. 9,674,155 on Jun. 6, 2017,
which is a continuation-in-part of U.S. Utility application
Ser. No. 13/707,428, entitled “DISTRIBUTED COMPUT-
ING IN A DISTRIBUTED STORAGE AND TASK NET-
WORK?”, filed Dec. 6, 2012, issued as U.S. Pat. No. 9,298,
548 on Mar. 29, 2016, which claims priority pursuant to 35
U.S.C. § 119(e) to U.S. Provisional Application No. 61/569,
387, entitled “DISTRIBUTED STORAGE AND TASK
PROCESSING?, filed Dec. 12, 2011, all of which are hereby
incorporated herein by reference in their entirety and made
part of the present U.S. Utility patent application for all
purposes.

[0002] U.S. Utility application Ser. No. 13/917,017 also
claims priority pursuant to 35 U.S.C. § 119(e) to U.S.
Provisional Application No. 61/679,007, entitled “TASK
PROCESSING IN A DISTRIBUTED STORAGE AND
TASK NETWORK?™, filed Aug. 2, 2012, which is hereby
incorporated herein by reference in its entirety and made
part of the present U.S. Utility patent application for all
purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0003] Not applicable.

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT

DISC
[0004] Not applicable.
BACKGROUND OF THE INVENTION
Technical Field of the Invention
[0005] This invention relates generally to computer net-

works and more particularly to dispersing error encoded
data.

Description of Related Art

[0006] Computing devices are known to communicate
data, process data, and/or store data. Such computing
devices range from wireless smart phones, laptops, tablets,
personal computers (PC), work stations, and video game
devices, to data centers that support millions of web
searches, stock trades, or on-line purchases every day. In
general, a computing device includes a central processing
unit (CPU), a memory system, user input/output interfaces,
peripheral device interfaces, and an interconnecting bus
structure.

Mar. 22, 2018

[0007] As is further known, a computer may effectively
extend its CPU by using “cloud computing” to perform one
or more computing functions (e.g., a service, an application,
an algorithm, an arithmetic logic function, etc.) on behalf of
the computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop is an
open source software framework that supports distributed
applications enabling application execution by thousands of
computers.

[0008] In addition to cloud computing, a computer may
use “cloud storage” as part of its memory system. As is
known, cloud storage enables a user, via its computer, to
store files, applications, etc. on an Internet storage system.
The Internet storage system may include a RAID (redundant
array of independent disks) system and/or a dispersed stor-
age system that uses an error correction scheme to encode
data for storage.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

[0009] FIG. 1 is a schematic block diagram of an embodi-
ment of a dispersed or distributed storage network (DSN) in
accordance with the present invention;

[0010] FIG. 2 is a schematic block diagram of an embodi-
ment of a computing core in accordance with the present
invention;

[0011] FIG. 3 is a schematic block diagram of an example
of dispersed storage error encoding of data in accordance
with the present invention;

[0012] FIG. 4 is a schematic block diagram of a generic
example of an error encoding function in accordance with
the present invention;

[0013] FIG. 5 is a schematic block diagram of a specific
example of an error encoding function in accordance with
the present invention;

[0014] FIG. 6 is a schematic block diagram of an example
of'a slice name of an encoded data slice (EDS) in accordance
with the present invention;

[0015] FIG. 7 is a schematic block diagram of an example
of dispersed storage error decoding of data in accordance
with the present invention;

[0016] FIG. 8 is a schematic block diagram of a generic
example of an error decoding function in accordance with
the present invention;

[0017] FIG. 9 is a schematic block diagram of another
embodiment of a distributed computing system in accor-
dance with the present invention; and

[0018] FIG. 9A is a flowchart illustrating an example of
obtaining a data record in accordance with the present
invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0019] FIG. 1 is a schematic block diagram of an embodi-
ment of a dispersed, or distributed, storage network (DSN)
10 that includes a plurality of computing devices 12-16, a
managing unit 18, an integrity processing unit 20, and a
DSN memory 22. The components of the DSN 10 are
coupled to a network 24, which may include one or more
wireless and/or wire lined communication systems; one or

US 2018/0083930 Al

more non-public intranet systems and/or public internet
systems; and/or one or more local area networks (LAN)
and/or wide area networks (WAN).

[0020] The DSN memory 22 includes a plurality of stor-
age units 36 that may be located at geographically different
sites (e.g., one in Chicago, one in Milwaukee, etc.), at a
common site, or a combination thereof. For example, if the
DSN memory 22 includes eight storage units 36, each
storage unit is located at a different site. As another example,
if the DSN memory 22 includes eight storage units 36, all
eight storage units are located at the same site. As yet
another example, if the DSN memory 22 includes eight
storage units 36, a first pair of storage units are at a first
common site, a second pair of storage units are at a second
common site, a third pair of storage units are at a third
common site, and a fourth pair of storage units are at a fourth
common site. Note that a DSN memory 22 may include
more or less than eight storage units 36. Further note that
each storage unit 36 includes a computing core (as shown in
FIG. 2, or components thereof) and a plurality of memory
devices for storing dispersed error encoded data.

[0021] Each of the computing devices 12-16, the manag-
ing unit 18, and the integrity processing unit 20 include a
computing core 26, which includes network interfaces
30-33. Computing devices 12-16 may each be a portable
computing device and/or a fixed computing device. A por-
table computing device may be a social networking device,
a gaming device, a cell phone, a smart phone, a digital
assistant, a digital music player, a digital video player, a
laptop computer, a handheld computer, a tablet, a video
game controller, and/or any other portable device that
includes a computing core. A fixed computing device may be
a computer (PC), a computer server, a cable set-top box, a
satellite receiver, a television set, a printer, a fax machine,
home entertainment equipment, a video game console, and/
or any type of home or office computing equipment. Note
that each of the managing unit 18 and the integrity process-
ing unit 20 may be separate computing devices, may be a
common computing device, and/or may be integrated into
one or more of the computing devices 12-16 and/or into one
or more of the storage units 36.

[0022] Each interface 30, 32, and 33 includes software and
hardware to support one or more communication links via
the network 24 indirectly and/or directly. For example,
interface 30 supports a communication link (e.g., wired,
wireless, direct, via a LAN, via the network 24, etc.)
between computing devices 14 and 16. As another example,
interface 32 supports communication links (e.g., a wired
connection, a wireless connection, a LAN connection, and/
or any other type of connection to/from the network 24)
between computing devices 12 & 16 and the DSN memory
22. As yet another example, interface 33 supports a com-
munication link for each of the managing unit 18 and the
integrity processing unit 20 to the network 24.

[0023] Computing devices 12 and 16 include a dispersed
storage (DS) client module 34, which enables the computing
device to dispersed storage error encode and decode data as
subsequently described with reference to one or more of
FIGS. 3-9A. In this example embodiment, computing device
16 functions as a dispersed storage processing agent for
computing device 14. In this role, computing device 16
dispersed storage error encodes and decodes data on behalf
of computing device 14. With the use of dispersed storage
error encoding and decoding, the DSN 10 is tolerant of a

Mar. 22, 2018

significant number of storage unit failures (the number of
failures is based on parameters of the dispersed storage error
encoding function) without loss of data and without the need
for a redundant or backup copies of the data. Further, the
DSN 10 stores data for an indefinite period of time without
data loss and in a secure manner (e.g., the system is very
resistant to unauthorized attempts at accessing the data).
[0024] In operation, the managing unit 18 performs DS
management services. For example, the managing unit 18
establishes distributed data storage parameters (e.g., vault
creation, distributed storage parameters, security param-
eters, billing information, user profile information, etc.) for
computing devices 12-14 individually or as part of a group
of'user devices. As a specific example, the managing unit 18
coordinates creation of a vault (e.g., a virtual memory block
associated with a portion of an overall namespace of the
DSN) within the DSTN memory 22 for a user device, a
group of devices, or for public access and establishes per
vault dispersed storage (DS) error encoding parameters for
a vault. The managing unit 18 facilitates storage of DS error
encoding parameters for each vault by updating registry
information of the DSN 10, where the registry information
may be stored in the DSN memory 22, a computing device
12-16, the managing unit 18, and/or the integrity processing
unit 20.

[0025] The DSN managing unit 18 creates and stores user
profile information (e.g., an access control list (ACL)) in
local memory and/or within memory of the DSN memory
22. The user profile information includes authentication
information, permissions, and/or the security parameters.
The security parameters may include encryption/decryption
scheme, one or more encryption keys, key generation
scheme, and/or data encoding/decoding scheme.

[0026] The DSN managing unit 18 creates billing infor-
mation for a particular user, a user group, a vault access,
public vault access, etc. For instance, the DSTN managing
unit 18 tracks the number of times a user accesses a
non-public vault and/or public vaults, which can be used to
generate per-access billing information. In another instance,
the DSTN managing unit 18 tracks the amount of data stored
and/or retrieved by a user device and/or a user group, which
can be used to generate per-data-amount billing information.
[0027] As another example, the managing unit 18 per-
forms network operations, network administration, and/or
network maintenance. Network operations includes authen-
ticating user data allocation requests (e.g., read and/or write
requests), managing creation of vaults, establishing authen-
tication credentials for user devices, adding/deleting com-
ponents (e.g., user devices, storage units, and/or computing
devices with a DS client module 34) to/from the DSN 10,
and/or establishing authentication credentials for the storage
units 36. Network administration includes monitoring
devices and/or units for failures, maintaining vault informa-
tion, determining device and/or unit activation status, deter-
mining device and/or unit loading, and/or determining any
other system level operation that affects the performance
level of the DSN 10. Network maintenance includes facili-
tating replacing, upgrading, repairing, and/or expanding a
device and/or unit of the DSN 10.

[0028] The integrity processing unit 20 performs rebuild-
ing of ‘bad’ or missing encoded data slices. At a high level,
the integrity processing unit 20 performs rebuilding by
periodically attempting to retrieve/list encoded data slices,
and/or slice names of the encoded data slices, from the DSN

US 2018/0083930 Al

memory 22. For retrieved encoded slices, they are checked
for errors due to data corruption, outdated version, etc. If a
slice includes an error, it is flagged as a ‘bad’ slice. For
encoded data slices that were not received and/or not listed,
they are flagged as missing slices. Bad and/or missing slices
are subsequently rebuilt using other retrieved encoded data
slices that are deemed to be good slices to produce rebuilt
slices. The rebuilt slices are stored in the DSTN memory 22.

[0029] FIG. 2 is a schematic block diagram of an embodi-
ment of a computing core 26 that includes a processing
module 50, a memory controller 52, main memory 54, a
video graphics processing unit 55, an input/output (TO)
controller 56, a peripheral component interconnect (PCI)
interface 58, an IO interface module 60, at least one 10
device interface module 62, a read only memory (ROM)
basic input output system (BIOS) 64, and one or more
memory interface modules. The one or more memory inter-
face module(s) includes one or more of a universal serial bus
(USB) interface module 66, a host bus adapter (HBA)
interface module 68, a network interface module 70, a flash
interface module 72, a hard drive interface module 74, and
a DSN interface module 76.

[0030] The DSN interface module 76 functions to mimic
a conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS),
disk file system (DFS), file transfer protocol (FTP), web-
based distributed authoring and versioning (WebDAV), etc.)
and/or a block memory interface (e.g., small computer
system interface (SCSI), internet small computer system
interface (iSCSI), etc.). The DSN interface module 76 and/or
the network interface module 70 may function as one or
more of the interface 30-33 of FIG. 1. Note that the 1O
device interface module 62 and/or the memory interface
modules 66-76 may be collectively or individually referred
to as 10 ports.

[0031] FIG. 3 is a schematic block diagram of an example
of dispersed storage error encoding of data. When a com-
puting device 12 or 16 has data to store it disperse storage
error encodes the data in accordance with a dispersed
storage error encoding process based on dispersed storage
error encoding parameters. The dispersed storage error
encoding parameters include an encoding function (e.g.,
information dispersal algorithm, Reed-Solomon, Cauchy
Reed-Solomon, systematic encoding, non-systematic encod-
ing, on-line codes, etc.), a data segmenting protocol (e.g.,
data segment size, fixed, variable, etc.), and per data seg-
ment encoding values. The per data segment encoding
values include a total, or pillar width, number (T) of encoded
data slices per encoding of a data segment i.e., in a set of
encoded data slices); a decode threshold number (D) of
encoded data slices of a set of encoded data slices that are
needed to recover the data segment; a read threshold number
(R) of encoded data slices to indicate a number of encoded
data slices per set to be read from storage for decoding of the
data segment; and/or a write threshold number (W) to
indicate a number of encoded data slices per set that must be
accurately stored before the encoded data segment is
deemed to have been properly stored. The dispersed storage
error encoding parameters may further include slicing infor-
mation (e.g., the number of encoded data slices that will be
created for each data segment) and/or slice security infor-
mation (e.g., per encoded data slice encryption, compres-
sion, integrity checksum, etc.).

Mar. 22, 2018

[0032] In the present example, Cauchy Reed-Solomon has
been selected as the encoding function (a generic example is
shown in FIG. 4 and a specific example is shown in FIG. 5);
the data segmenting protocol is to divide the data object into
fixed sized data segments; and the per data segment encod-
ing values include: a pillar width of 5, a decode threshold of
3, a read threshold of 4, and a write threshold of 4. In
accordance with the data segmenting protocol, the comput-
ing device 12 or 16 divides the data (e.g., a file (e.g., text,
video, audio, etc.), a data object, or other data arrangement)
into a plurality of fixed sized data segments (e.g., 1 through
Y of a fixed size in range of Kilo-bytes to Tera-bytes or
more). The number of data segments created is dependent of
the size of the data and the data segmenting protocol.
[0033] The computing device 12 or 16 then disperse
storage error encodes a data segment using the selected
encoding function (e.g., Cauchy Reed-Solomon) to produce
a set of encoded data slices. FIG. 4 illustrates a generic
Cauchy Reed-Solomon encoding function, which includes
an encoding matrix (EM), a data matrix (DM), and a coded
matrix (CM). The size of the encoding matrix (EM) is
dependent on the pillar width number (T) and the decode
threshold number (D) of selected per data segment encoding
values. To produce the data matrix (DM), the data segment
is divided into a plurality of data blocks and the data blocks
are arranged into D number of rows with Z data blocks per
row. Note that Z is a function of the number of data blocks
created from the data segment and the decode threshold
number (D). The coded matrix is produced by matrix
multiplying the data matrix by the encoding matrix.
[0034] FIG. 5 illustrates a specific example of Cauchy
Reed-Solomon encoding with a pillar number (T) of five and
decode threshold number of three. In this example, a first
data segment is divided into twelve data blocks (D1-D12).
The coded matrix includes five rows of coded data blocks,
where the first row of X11-X14 corresponds to a first
encoded data slice (EDS 1_1), the second row of X21-X24
corresponds to a second encoded data slice (EDS 2_1), the
third row of X31-X34 corresponds to a third encoded data
slice (EDS 3_1), the fourth row of X41-X44 corresponds to
a fourth encoded data slice (EDS 4_1), and the fifth row of
X51-X54 corresponds to a fifth encoded data slice (EDS
5_1). Note that the second number of the EDS designation
corresponds to the data segment number.

[0035] Returning to the discussion of FIG. 3, the comput-
ing device also creates a slice name (SN) for each encoded
data slice (EDS) in the set of encoded data slices. A typical
format for a slice name 60 is shown in FIG. 6. As shown, the
slice name (SN) 60 includes a pillar number of the encoded
data slice (e.g., one of 1-T), a data segment number (e.g., one
of 1-Y), a vault identifier (ID), a data object identifier (ID),
and may further include revision level information of the
encoded data slices. The slice name functions as, at least part
of, a DSN address for the encoded data slice for storage and
retrieval from the DSN memory 22.

[0036] As aresult of encoding, the computing device 12 or
16 produces a plurality of sets of encoded data slices, which
are provided with their respective slice names to the storage
units for storage. As shown, the first set of encoded data
slices includes EDS 1_1 through EDS 5_1 and the first set
of' slice names includes SN 1_1 through SN 5_1 and the last
set of encoded data slices includes EDS 1_Y through EDS
5_Y and the last set of slice names includes SN 1_Y through
SN 5_Y.

US 2018/0083930 Al

[0037] FIG. 7 is a schematic block diagram of an example
of dispersed storage error decoding of a data object that was
dispersed storage error encoded and stored in the example of
FIG. 4. In this example, the computing device 12 or 16
retrieves from the storage units at least the decode threshold
number of encoded data slices per data segment. As a
specific example, the computing device retrieves a read
threshold number of encoded data slices.

[0038] To recover a data segment from a decode threshold
number of encoded data slices, the computing device uses a
decoding function as shown in FIG. 8. As shown, the
decoding function is essentially an inverse of the encoding
function of FIG. 4. The coded matrix includes a decode
threshold number of rows (e.g., three in this example) and
the decoding matrix in an inversion of the encoding matrix
that includes the corresponding rows of the coded matrix.
For example, if the coded matrix includes rows 1, 2, and 4,
the encoding matrix is reduced to rows 1, 2, and 4, and then
inverted to produce the decoding matrix.

[0039] In one embodiment, during a dispersed computa-
tion job, a data record may cross boundaries of a slice
stream, and require reading from adjacent DST units. To
limit potential harm, a DST may enforce restrictions regard-
ing how much adjacent data a neighboring DST may read of
its data. For example, if records are known to never exceed
1 MB, a DST may limit the ability of an adjacent DST to
read more than 1 MB of data. FIGS. 9 and 9A, describe a
system and method for handling these adjacent reads (prox-
ied reads) to complete tasks (e.g., partial tasks).

[0040] FIG. 9 is a schematic block diagram of another
embodiment of a distributed computing system that includes
a user device 14 (computing device), a distributed storage
and task (DST) processing unit 16 (computing device), and
at least two DST execution units 36 (storage units). Each
DST execution unit 36 and the at least two DST execution
units 36 includes a slice memory 700, a computing task
memory 702, and a distributed task (DT) execution module
90. The system functions to generate data slices for partial
task execution to produce partial results 708.

[0041] The DS processing unit 16 receives data 40 and/or
a task request 38 and encodes data 40 to produce at least two
groups of data slices 1-2 and produces at least two groups of
partial tasks 1-2 associated with the task request 38. The data
40 may include a plurality of data records. The DST
processing unit 16 may encode a data record of the plurality
of data records to produce a last slice of a first group of data
slices 1 and a first slice of a second group of data slices 2.
A first group of partial tasks 1 may include a partial task
associated with the data record. The DST processing unit 16
sends the at least two groups of data slices 1-2 and at least
two groups of partial tasks 1-2 to a first DST execution unit
36 of the at least two DST execution units 36. The first DST
execution unit 36 stores data slices 1 in the slice memory
700 of the first DST execution of 36 and stores the partial
tasks 1 in the computing task memory 702 of the first DST
execution unit 36.

[0042] The DT execution module 90 of the first DST
execution unit 36 retrieves data slices 1 from the slice
memory 700 and retrieves partial tasks 1 from the comput-
ing task memory 702. The DT execution module 90 deter-
mines whether the slice memory 700 contains every data
slice required to execute partial tasks 1. When the DT
execution module 90 determines that slice memory does not
contain every data slice required to execute partial tasks 1,

Mar. 22, 2018

the DT execution module 90 identifies at least one other data
slice. For example, the DT execution module identifies a first
slice of the data slices 2 when a data record associated with
a partial task 1 includes a last slice of the data slices 1 and
the first slice of the data slices 2. The DT execution module
90 generates a slice request 734 to obtain the at least one
other data slice from another DST execution unit 36. The
slice request 734 includes one or more of a slice name
associated with the at least one other data slice, a requesting
entity identifier, a copy of the partial task 1, or an access
credential (e.g., a signature, a signed copy of the partial task
1). The DT execution module sends the slice request 734 to
the other DST execution unit 36.

[0043] The DT execution module 90 of the other DST
execution unit 36 receives the slice request 734 and may
authorize the slice request 734 based on the request. For
example, the DT execution module 90 of the other DST
execution of 36 verifies a signature of the slice request 734.
When the request is authorized, the DT execution module 90
of the other DST execution of 36 facilitates sending the at
least one other data slice to the DST execution unit 36. The
DST execution 36 stores the at least one other data slice
(e.g., data slice 2) in the slice memory 700. The DT
execution module 90 may determine whether the slice
memory 700 contains every data slice required to execute
partial tasks 1. When the DT execution module 90 deter-
mines that slice memory 700 contains every data slice
required to execute partial tasks 1, the DT execution module
90 executes one or more partial tasks of partial tasks 1 on
data slices retrieved from the slice memory (e.g., data slices
1, data slices 2) to produce partial results 708. For example,
the DT execution module 90 aggregates data slice 1 and data
slice 2 to reproduce the data record and executes the one or
more partial tasks on the data record to produce the partial
results 708. The DT execution module outputs the partial
results 708 to the DST processing unit 16 and/or the user
device 14. Alternatively, or in addition to, the DT execution
module 90 of the other DST execution unit 36 may perform
a partial task 2 on a data slice 2 to produce partial results
708.

[0044] FIG. 9A is a flowchart illustrating an example of
obtaining a data record. The method begins at step 740
where a processing module (e.g., of a distributed task (DT)
execution module) receives a data slice and an associated
partial task. The method continues at step 742 where the
processing module identifies a data record associated with
the data slice. The identifying may be based on one or more
obtaining a slice name of the data slice, performing a data
record identifier lookup in a slice name to data list, or
extracting a data record identifier from the data slice. When
the data record includes another encoded data slice (at least
one additional encoded data slice), the method continues at
step 744 where the processing module generates a slice
request. The processing module may determine whether the
data record includes the other data slice based on at least one
of performing any data record ID to slice name lookup,
receiving a list of slice names, or a query. The generating of
the slice request includes one or more of identifying a slice
name associated with the other data slice, identifying
another distributed storage and task (DST) execution unit
associated with the other data source, generating a partial
task field entry that includes at least a portion of the
associated partial task, or generating a credential field entry
that includes a signature.

US 2018/0083930 Al

[0045] The method continues at step 746 where the pro-
cessing module outputs the slice request to the other DST
execution unit. The method continues at step 748 where the
processing module receives the other data slice from the
other DST execution unit. The method continues at step 750
where the processing module performs the partial task on the
data slice and the other data slice to produce partial results.
The performing may include one or more of aggregating at
least a portion of the data slice and at least a portion of the
other data slice to produce the data record and executing at
least a portion of the associated partial task on the data
record to produce the partial results.

[0046] The method described above in conjunction with
the processing module can alternatively be performed by
other modules of the dispersed storage network or by other
computing devices. In addition, at least one memory section
(e.g., a non-transitory computer readable storage medium)
that stores operational instructions can, when executed by
one or more processing modules of one or more computing
devices of the dispersed storage network (DSN), cause the
one or more computing devices to perform any or all of the
method steps described above.

[0047] Itis noted that terminologies as may be used herein
such as bit stream, stream, signal sequence, etc. (or their
equivalents) have been used interchangeably to describe
digital information whose content corresponds to any of a
number of desired types (e.g., data, video, speech, audio, etc.
any of which may generally be referred to as ‘data’).
[0048] As may be used herein, the terms “substantially”
and “approximately” provides an industry-accepted toler-
ance for its corresponding term and/or relativity between
items. Such an industry-accepted tolerance ranges from less
than one percent to fifty percent and corresponds to, but is
not limited to, component values, integrated circuit process
variations, temperature variations, rise and fall times, and/or
thermal noise. Such relativity between items ranges from a
difference of a few percent to magnitude differences. As may

2

also be used herein, the term(s) “configured to”, “operably
coupled to”, “coupled to”, and/or “coupling” includes direct
coupling between items and/or indirect coupling between
items via an intervening item (e.g., an item includes, but is
not limited to, a component, an element, a circuit, and/or a
module) where, for an example of indirect coupling, the
intervening item does not modify the information of a signal
but may adjust its current level, voltage level, and/or power
level. As may further be used herein, inferred coupling (i.e.,
where one element is coupled to another element by infer-
ence) includes direct and indirect coupling between two
items in the same manner as “coupled to”. As may even
further be used herein, the term “configured to”, “operable
t0”, “coupled to”, or “operably coupled to” indicates that an
item includes one or more of power connections, input(s),
output(s), etc., to perform, when activated, one or more its
corresponding functions and may further include inferred
coupling to one or more other items. As may still further be
used herein, the term “associated with”, includes direct
and/or indirect coupling of separate items and/or one item
being embedded within another item.

[0049] As may be used herein, the term “compares favor-
ably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has
a greater magnitude than signal 2, a favorable comparison
may be achieved when the magnitude of signal 1 is greater

Mar. 22, 2018

than that of signal 2 or when the magnitude of signal 2 is less
than that of signal 1. As may be used herein, the term
“compares unfavorably”, indicates that a comparison
between two or more items, signals, etc., fails to provide the

desired relationship.
[0050] As may also be used herein, the terms “processing
module”, “processing circuit”, “processor”, and/or “process-
ing unit” may be a single processing device or a plurality of
processing devices. Such a processing device may be a
microprocessor, micro-controller, digital signal processor,
microcomputer, central processing unit, field programmable
gate array, programmable logic device, state machine, logic
circuitry, analog circuitry, digital circuitry, and/or any device
that manipulates signals (analog and/or digital) based on
hard coding of the circuitry and/or operational instructions.
The processing module, module, processing circuit, and/or
processing unit may be, or further include, memory and/or
an integrated memory element, which may be a single
memory device, a plurality of memory devices, and/or
embedded circuitry of another processing module, module,
processing circuit, and/or processing unit. Such a memory
device may be a read-only memory, random access memory,
volatile memory, non-volatile memory, static memory,
dynamic memory, flash memory, cache memory, and/or any
device that stores digital information. Note that if the
processing module, module, processing circuit, and/or pro-
cessing unit includes more than one processing device, the
processing devices may be centrally located (e.g., directly
coupled together via a wired and/or wireless bus structure)
or may be distributedly located (e.g., cloud computing via
indirect coupling via a local area network and/or a wide area
network). Further note that if the processing module, mod-
ule, processing circuit, and/or processing unit implements
one or more of its functions via a state machine, analog
circuitry, digital circuitry, and/or logic circuitry, the memory
and/or memory element storing the corresponding opera-
tional instructions may be embedded within, or external to,
the circuitry comprising the state machine, analog circuitry,
digital circuitry, and/or logic circuitry. Still further note that,
the memory element may store, and the processing module,
module, processing circuit, and/or processing unit executes,
hard coded and/or operational instructions corresponding to
at least some of the steps and/or functions illustrated in one
or more of the Figures. Such a memory device or memory
element can be included in an article of manufacture.

[0051] One or more embodiments have been described
above with the aid of method steps illustrating the perfor-
mance of specified functions and relationships thereof. The
boundaries and sequence of these functional building blocks
and method steps have been arbitrarily defined herein for
convenience of description. Alternate boundaries and
sequences can be defined so long as the specified functions
and relationships are appropriately performed. Any such
alternate boundaries or sequences are thus within the scope
and spirit of the claims. Further, the boundaries of these
functional building blocks have been arbitrarily defined for
convenience of description. Alternate boundaries could be
defined as long as the certain significant functions are
appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality.

[0052] To the extent used, the flow diagram block bound-
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter-

US 2018/0083930 Al

nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claims. One of average skill in the art will also
recognize that the functional building blocks, and other
illustrative blocks, modules and components herein, can be
implemented as illustrated or by discrete components, appli-
cation specific integrated circuits, processors executing
appropriate software and the like or any combination
thereof.

[0053] In addition, a flow diagram may include a “start”
and/or “continue” indication. The “start” and “continue”
indications reflect that the steps presented can optionally be
incorporated in or otherwise used in conjunction with other
routines. In this context, “start” indicates the beginning of
the first step presented and may be preceded by other
activities not specifically shown. Further, the “continue”
indication reflects that the steps presented may be performed
multiple times and/or may be succeeded by other activities
not specifically shown. Further, while a flow diagram indi-
cates a particular ordering of steps, other orderings are
likewise possible provided that the principles of causality
are maintained.

[0054] The one or more embodiments are used herein to
illustrate one or more aspects, one or more features, one or
more concepts, and/or one or more examples. A physical
embodiment of an apparatus, an article of manufacture, a
machine, and/or of a process may include one or more of the
aspects, features, concepts, examples, etc. described with
reference to one or more of the embodiments discussed
herein. Further, from figure to figure, the embodiments may
incorporate the same or similarly named functions, steps,
modules, etc. that may use the same or different reference
numbers and, as such, the functions, steps, modules, etc.
may be the same or similar functions, steps, modules, etc. or
different ones.

[0055] Unless specifically stated to the contra, signals to,
from, and/or between elements in a figure of any of the
figures presented herein may be analog or digital, continu-
ous time or discrete time, and single-ended or differential.
For instance, if a signal path is shown as a single-ended path,
it also represents a differential signal path. Similarly, if a
signal path is shown as a differential path, it also represents
a single-ended signal path. While one or more particular
architectures are described herein, other architectures can
likewise be implemented that use one or more data buses not
expressly shown, direct connectivity between elements, and/
or indirect coupling between other elements as recognized
by one of average skill in the art.

[0056] The term “module” is used in the description of one
or more of the embodiments. A module implements one or
more functions via a device such as a processor or other
processing device or other hardware that may include or
operate in association with a memory that stores operational
instructions. A module may operate independently and/or in
conjunction with software and/or firmware. As also used
herein, a module may contain one or more sub-modules,
each of which may be one or more modules.

[0057] As may further be used herein, a computer readable
memory includes one or more memory elements. A memory
element may be a separate memory device, multiple
memory devices, or a set of memory locations within a
memory device. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-
volatile memory, static memory, dynamic memory, flash

Mar. 22, 2018

memory, cache memory, and/or any device that stores digital
information. The memory device may be in a form a solid
state memory, a hard drive memory, cloud memory, thumb
drive, server memory, computing device memory, and/or
other physical medium for storing digital information.

[0058] While particular combinations of various functions
and features of the one or more embodiments have been
expressly described herein, other combinations of these
features and functions are likewise possible. The present
disclosure is not limited by the particular examples disclosed
herein and expressly incorporates these other combinations.

What is claimed is:

1. A method for execution by one or more processing
modules of one or more computing devices of a dispersed
storage network (DSN), the method comprises:

receiving, by a first processing module, an encoded data
slice and an associated partial task;

identifying a data record associated with the encoded data
slice;

generating a slice request for a data record that includes
at least one additional encoded data slice not received
by the first processing module;

outputting the slice request to a second processing mod-
ule;

receiving, by the first processing module, the at least one
additional encoded data slice from the second process-
ing module; and

performing the associated partial task on the encoded data
slice and the at least one additional encoded data slice
to produce at least partial results.

2. The method of claim 1, wherein the identifying a data
record associated with the encoded data slice is based on one
or more of: obtaining a slice name of the encoded data slice,
performing a data record identifier lookup in a slice name to
data list, or extracting a data record identifier from the
encoded data slice.

3. The method of claim 1, wherein it is determined that the
data record includes the at least one additional encoded data
slice by at least one of: performing a data record ID to slice
name lookup, receiving a list of slice names, or a query.

4. The method of claim 1, wherein the generating the slice
request includes one or more of: identifying a slice name
associated with the at least one additional encoded data slice,
identifying the second processing module associated with
the at least one additional encoded data slice, generating a
partial task field entry that includes at least a portion of the
associated partial task, or generating a credential field entry
that includes a signature.

5. The method of claim 1, wherein the performing the
associated partial task on the encoded data slice and the at
least one additional encoded data slice to produce at least
partial results includes one or more of: aggregating at least
a portion of the encoded data slice and at least a portion of
the at least one additional encoded data slice to produce the
data record and executing at least a portion of the associated
partial task on the data record to produce the partial results.

6. The method of claim 1, wherein the second processing
module includes a distributed storage and task (DST) execu-
tion unit.

7. The method of claim 1, wherein the second processing
module is included as part of a storage unit.

US 2018/0083930 Al

8. A computing device of a group of computing devices of
a dispersed storage network (DSN), the computing device
comprises:

an interface;

a local memory; and

aprocessing module operably coupled to the interface and

the local memory, wherein the processing module func-

tions to:

receive an encoded data slice and an associated partial
task;

identify a data record associated with the encoded data
slice;

generate a slice request for a data record that includes
at least one additional encoded data slice not
received;

output the slice request to another processing module;

receive the at least one additional encoded data slice
from the another processing module; and

perform the associated partial task on the encoded data
slice and the at least one additional encoded data
slice to produce at least partial results.

9. The computing device of claim 8, wherein the identify
a data record associated with the encoded data slice is based
on one or more of: obtaining a slice name of the encoded
data slice, performing a data record identifier lookup in a
slice name to data list, or extracting a data record identifier
from the encoded data slice.

10. The computing device of claim 8, wherein it is
determined that the data record includes the at least one
additional encoded data slice by at least one of: performing
a data record ID to slice name lookup, receiving a list of slice
names, or a query.

11. The computing device of claim 8, wherein the gen-
erate a slice request includes one or more of: identifying a
slice name associated with the at least one additional
encoded data slice, identifying the another processing mod-
ule associated with the at least one additional encoded data
slice, generating a partial task field entry that includes at
least a portion of the associated partial task, or generating a
credential field entry that includes a signature.

12. The computing device of claim 8, wherein the perform
the associated partial task on the encoded data slice and the
at least one additional encoded data slice to produce at least
partial results includes one or more of: aggregating at least
a portion of the encoded data slice and at least a portion of
the at least one additional encoded data slice to produce the
data record and executing at least a portion of the associated
partial task on the data record to produce the partial results.

13. The computing device of claim 8, wherein the another
processing module includes a distributed storage and task
(DST) execution unit.

14. The computing device of claim 8, wherein the another
processing module is included as part of a storage unit.

Mar. 22, 2018

15. A system, the system comprises:
an interface;
a local memory; and

a processing module operably coupled to the interface and
the local memory, wherein the processing module func-
tions to:

receive an encoded data slice and an associated partial
task;

identify a data record associated with the encoded data
slice;

generate a slice request for a data record that includes
at least one additional encoded data slice not
received;

output the slice request to another processing module;

receive the at least one additional encoded data slice
from the another processing module; and

perform the associated partial task on the encoded data
slice and the at least one additional encoded data
slice to produce at least partial results.

16. The system of claim 15, wherein the identify a data
record associated with the encoded data slice is based on one
or more of: obtaining a slice name of the encoded data slice,
performing a data record identifier lookup in a slice name to
data list, or extracting a data record identifier from the
encoded data slice.

17. The system of claim 15, wherein it is determined that
the data record includes the at least one additional encoded
data slice by at least one of: performing a data record ID to
slice name lookup, receiving a list of slice names, or a query.

18. The system of claim 15, wherein the generate a slice
request includes one or more of: identifying a slice name
associated with the at least one additional encoded data slice,
identifying the another processing module associated with
the at least one additional encoded data slice, generating a
partial task field entry that includes at least a portion of the
associated partial task, or generating a credential field entry
that includes a signature.

19. The system of claim 15, wherein the perform the
associated partial task on the encoded data slice and the at
least one additional encoded data slice to produce at least
partial results includes one or more of: aggregating at least
a portion of the encoded data slice and at least a portion of
the at least one additional encoded data slice to produce the
data record and executing at least a portion of the associated
partial task on the data record to produce the partial results.

20. The system of claim 15, wherein the another process-
ing module is included as part of a storage unit.

#* #* #* #* #*

