wo 2013/070353 A1]I OO R A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

16 May 2013 (16.05.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/070353 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:

KARCZEWICZ, Marta; 5775 Morehouse Drive, San

HO3M 7/40 (2006.01) HO4N 7/30 (2006.01) Diego, CA 92121-1714 (US).
International Application Number: (74) Agent: EVANS, Matthew J.; Shumaker & Sieffert, P.A.,
PCT/US2012/059092 1625 Radio Drive, Suite 300, Woodbury, MN 55125 (US).
International Filing Date: (81) Designated States (unless otherwise indicated, for every
5 October 2012 (05.10.2012) kind of national protection available): AE, AG, AL, AM,
Filing L) Enalish AOQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
Hing Language: neis BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L. HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
Priority Data: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
61/557,325 8 November 2011 (08.11.2011) Us ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
61/561,911 20 November 2011 (20.11.2011) Us NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
13/645,296 4 October 2012 (04.10.2012) Us RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
Applicant: QUALCOMM INCORPORATED [US/US]; M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

Attn: International IP Administration, 5775 Morehouse IM, ZW.

Drive, San Diego, CA 92121-1714 (US). (84) Designated States (unless otherwise indicated, for every

Inventors: CHIEN, Wei-Jung; 5775 Morchouse Drive,
San Diego, CA 92121-1714 (US). SOLE ROJALS, Joel;
5775 Morehouse Drive, San Diego, CA 92121-1714 (US).

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

[Continued on next page]

(54) Title: CONTEXT REDUCTION FOR CONTEXT ADAPTIVE BINARY ARITHMETIC CODING

DETERMINE A FIRST
PREDICTION TYPE FOR A
BLOCK OF VIDEO DATAIN AP
SLICE

| —— 602

{

REPRESENT THE FIRST
PREDICTION TYPE AS A P-
SLIGE PREDICTION TYPE
SYNTAX ELEMENT

| — 604

¥

DETERMINE A SECOND
PREDICTION TYPE FOR A
BLOCK OF VIDEQ DATAINA B
SLICE

| — 606

i

REPRESENT THE SECOND

PREDICTION TYPE AS A B-

SLICE PREDICTION TYPE
SYNTAX ELEMENT

| — 608

!

DETERMINE A P-SLICE
BINARIZATION FOR THE P-
SLICE PREDICTION TYPE
SYNTAX ELEMENT

L~ 610

Y

DETERMINE A B-SLICE
BINARIZATION FOR THE B-
SLICE PREDICTION TYPE
SYNTAX ELEMENT, WHEREIN
THE P-SLIGE PREDIGTION TYPE
SYNTAX ELEMENT AND THE B-
SLICE PREDICTION TYPE
SYNTAX ELEMENT ARE
DETERMINED USING THE SAME
BINARIZATION LOGIC

| ——612

I

ENCODE THE VIDEO DATA
BASED ON THE BINARIZATIONS

L— 614

(57) Abstract: FIG. 6 is a flowchart illustrating an example video encoding method of the
disclosure. The method of FIG. 6 may be implemented by video encoder 20. Video encoder
20 may be configured to determine a first prediction type for a block of video data in a P
slice (602), and to represent the first prediction type as a P-slice prediction type syntax ele-
ment (604). Video encoder 20 may be further configured to determine a second prediction
type for a block of video data in a B slice (606), and to represent the second prediction type
as a B-slice prediction type syntax element (608). The P-slice prediction type syntax ele-
ment and the B-slice prediction type syntax element specify a prediction mode and a parti-
tion type. The prediction mode may include one of inter- prediction and intra-prediction.
The partition type may include one of symmetric partitions and asymmetric partitions.
Video encoder 20 may be further configured to determine a P-slice binarization for the P-
slice prediction type syntax element (610), and to determine a B-slice binarization for the B-
slice prediction type syntax element, wherein the P-slice prediction type syntax element and
the B-slice prediction type syntax element are determined using the same binarization logic
(612). Video encoder 20 may then encode the video data based on the binarizations of the
P-slice prediction type syntax element and the B-slice prediction type syntax element (614).

WO 2013/070353 A1 |00V 00O T

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Published:

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, — before the expiration of the time limit for amending the

GW, ML, MR, NE, SN, TD, TG). claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

WO 2013/070353 PCT/US2012/059092

CONTEXT REDUCTION FOR CONTEXT ADAPTIVE
BINARY ARITHMETIC CODING

[0001] This application claims the benefit of U.S. Provisional Application No.
61/557,325, filed November 8, 2011, and U.S. Provisional Application No. 61/561,911,
filed November 20, 2011, both of which are hereby incorporated by reference in their

entirety.

TECHNICAL FIELD
[0002] This disclosure relates to video coding, and in particular to context adaptive

binary arithmetic coding (CABAC) used in video coding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency
Video Coding (HEVC) standard presently under development, and extensions of such
standards. The video devices may transmit, receive, encode, decode, and/or store digital
video information more efficiently by implementing such video compression
techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.¢., a video picture or a portion
of a video picture) may be partitioned into video blocks, which may also be referred to
as treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded
(D) slice of a picture are encoded using spatial prediction with respect to reference
samples in neighboring blocks in the same picture. Video blocks in an inter-coded (P or

B) slice of a picture may use spatial prediction with respect to reference samples in

WO 2013/070353 PCT/US2012/059092

neighboring blocks in the same picture or temporal prediction with respect to reference
samples in other reference pictures. Pictures may be referred to as frames, and
reference pictures may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY

[0006] In general, this disclosure describes techniques for context adaptive binary
arithmetic coding (CABAC) in a video coding process. In particular, this disclosure
proposes a reduction in the number of CABAC contexts used for one or more syntax
elements, non-limiting examples of which include pred type, merge idx,

inter_pred flag, ref idx Ix, cbf cb, cbf cr, coeff abs level greaterl flag, and
coeff_abs level greater? flag. The modifications may reduce up to 56 contexts with
negligible coding efficiency changes. The proposed context reductions for the syntax
elements may be used alone or in any combination.

[0007] In one example of the disclosure, a method of encoding video may include
determining a first prediction type for a block of video data in a P slice, representing the
first prediction type as a P-slice prediction type syntax element, determining a second
prediction type for a block of video data in a B slice, representing the second prediction
type as a B-slice prediction type syntax element, determining a P-slice binarization for
the P-slice prediction type syntax element, determining a B-slice binarization for the B-
slice prediction type syntax element, wherein the P-slice prediction type syntax element

and the B-slice prediction type syntax element are determined using the same

WO 2013/070353 PCT/US2012/059092

binarization logic, and encoding the video data based on the binarizations of the P-slice
prediction type syntax element and the B-slice prediction syntax element.

[0008] In another example of the disclosure, a method of decoding video may include
mapping a binarized P-slice prediction type syntax element to a prediction type using a
binarization mapping for a block of video data in a P slice, mapping a binarized B-slice
prediction type syntax element to a prediction type using the same binarization mapping
for a block of video data in a B slice, and decoding the video data based on the mapped
prediction types.

[0009] In another example of the disclosure, a method of encoding video data comprises
determining a partition type for a prediction mode for a block of video data, encoding a
partition type bin of a prediction type syntax element for a block of video data using
CABAC with a single context, wherein the single context is the same for any partition
type, and encoding a partition size bin of the prediction type syntax element for the
block of video data using CABAC in bypass mode.

[0010] In another example of the disclosure, a method of decoding video data comprises
receiving a prediction type syntax element for a block of video data that has been coded
using CABAC, the prediction type syntax element including a partition type bin
representing a partition type and a partition size bin representing a partition size,
decoding the partition type bin of the prediction type syntax element using context
adaptive binary arithmetic coding with a single context, wherein the single context is the
same for any partition type, and decoding the partition size bin of the prediction type
syntax element using CABAC in bypass mode.

[0011] In another example of the disclosure, a method of coding video data comprises
coding a Cb chroma coded block flag for a block of video data using CABAC, wherein
coding the Cb chroma coded block flag comprises using a context set including one or
more contexts as part of the CABAC, and coding a Cr chroma coded block flag using
CABAC, wherein coding the Cr chroma coded block flag comprises using the same
context set as the Cb chroma coded block flag as part of the CABAC.

[0012] This disclosure also describes the above techniques in terms of apparatuses
configured to perform the techniques as well as in terms of a computer-readable storage
medium storing instructions that, when executed, cause one or more processors to

perform the techniques.

WO 2013/070353 PCT/US2012/059092

[0013] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0014] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may utilize the techniques described in this disclosure.

[0015] FIG. 2 is a block diagram illustrating an example video encoder that may
implement the techniques described in this disclosure.

[0016] FIG. 3 is a block diagram illustrating an example video decoder that may
implement the techniques described in this disclosure.

[0017] FIG. 4 is a conceptual drawing showing both square and non-square partition
types.

[0018] FIG. 5 a conceptual drawing showing asymmetric partition types.

[0019] FIG. 6 is a flowchart illustrating an example video encoding method of the
disclosure.

[0020] FIG. 7 is a flowchart illustrating an example video decoding method of the
disclosure.

[0021] FIG. 8 is a flowchart illustrating an example video encoding method of the
disclosure.

[0022] FIG. 9 is a flowchart illustrating an example video decoding method of the
disclosure.

[0023] FIG. 10 is a flowchart illustrating an example video coding method of the

disclosure.

DETAILED DESCRIPTION
[0024] This disclosure describes techniques for coding data, such a video data. In
particular, the disclosure describes techniques that may promote efficient coding of
video data using context adaptive entropy coding processes. More specifically, this
disclosure proposes a reduction in the number of CABAC contexts used for coding
syntax elements, such as, pred type, merge_idx, inter _pred flag, ref idx_Ix, cbf cb,
cbf cr, coeff abs_level greaterl flag, and coeff abs level greater? flag. The

modifications reduce up to 56 contexts with negligible coding efficiency changes. This

WO 2013/070353 PCT/US2012/059092

disclosure describes video coding for purposes of illustration. However, the techniques
described in this disclosure may be applicable to coding other types of data as well.
[0025] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may be configured to utilize techniques for context adaptive binary
arithmetic coding (CABAC) in accordance with examples of this disclosure. As shown
in FIG. 1, system 10 includes source device 12 that transmits encoded video to
destination device 14 via communication channel 16. Encoded video data may also be
stored on storage medium 34 or file server 36 and may be accessed by destination
device 14 as desired. When stored to a storage medium or file server, video encoder 20
may provide coded video data to another device, such as a network interface, a compact
disc (CD), Blu-ray or digital video disc (DVD) burner or stamping facility device, or
other devices, for storing the coded video data to the storage medium. Likewise, a
device separate from video decoder 30, such as a network interface, CD or DVD reader,
or the like, may retrieve coded video data from a storage medium and provided the
retrieved data to video decoder 30.

[0026] Source device 12 and destination device 14 may comprise any of a wide variety
of devices, including desktop computers, notebook (i.c., laptop) computers, tablet
computers, set-top boxes, telephone handsets such as so-called smartphones, televisions,
cameras, display devices, digital media players, video gaming consoles, or the like. In
many cases, such devices may be equipped for wireless communication. Hence,
communication channel 16 may comprise a wireless channel, a wired channel, or a
combination of wireless and wired channels suitable for transmission of encoded video
data. Similarly, file server 36 may be accessed by destination device 14 through any
standard data connection, including an Internet connection. This may include a wireless
channel (e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.),
or a combination of both that is suitable for accessing encoded video data stored on a
file server.

[0027] Techniques for CABAC, in accordance with examples of this disclosure, may be
applied to video coding in support of any of a variety of multimedia applications, such
as over-the-air television broadcasts, cable television transmissions, satellite television
transmissions, streaming video transmissions, ¢.g., via the Internet, encoding of digital
video for storage on a data storage medium, decoding of digital video stored on a data

storage medium, or other applications. In some examples, system 10 may be configured

WO 2013/070353 PCT/US2012/059092

to support one-way or two-way video transmission to support applications such as video
streaming, video playback, video broadcasting, and/or video telephony.

[0028] In the example of FIG. 1, source device 12 includes video source 18, video
encoder 20, modulator/demodulator 22 and transmitter 24. In source device 12, video
source 18 may include a source such as a video capture device, such as a video camera,
a video archive containing previously captured video, a video feed interface to receive
video from a video content provider, and/or a computer graphics system for generating
computer graphics data as the source video, or a combination of such sources. As one
example, if video source 18 is a video camera, source device 12 and destination device
14 may form so-called camera phones or video phones. However, the techniques
described in this disclosure may be applicable to video coding in general, and may be
applied to wireless and/or wired applications, or application in which encoded video
data is stored on a local disk.

[0029] The captured, pre-captured, or computer-generated video may be encoded by
video encoder 20. The encoded video information may be modulated by modem 22
according to a communication standard, such as a wireless communication protocol, and
transmitted to destination device 14 via transmitter 24. Modem 22 may include various
mixers, filters, amplifiers or other components designed for signal modulation.
Transmitter 24 may include circuits designed for transmitting data, including amplifiers,
filters, and one or more antennas.

[0030] The captured, pre-captured, or computer-generated video that is encoded by
video encoder 20 may also be stored onto storage medium 34 or file server 36 for later
consumption. Storage medium 34 may include Blu-ray discs, DVDs, CD-ROMs, flash
memory, or any other suitable digital storage media for storing encoded video. The
encoded video stored on the storage medium 34 may then be accessed by destination
device 14 for decoding and playback. Although not shown in FIG. 1, in some
examples, storage medium 34 and/or file server 36 may store the output of transmitter
24.

[0031] File server 36 may be any type of server capable of storing encoded video and
transmitting that encoded video to destination device 14. Example file servers include a
web server (e.g., for a website), an FTP server, network attached storage (NAS) devices,
a local disk drive, or any other type of device capable of storing encoded video data and
transmitting it to a destination device. The transmission of encoded video data from file

server 36 may be a streaming transmission, a download transmission, or a combination

WO 2013/070353 PCT/US2012/059092

of both. File server 36 may be accessed by destination device 14 through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, Ethernet, USB,
etc.), or a combination of both that is suitable for accessing encoded video data stored
on a file server.

[0032] Destination device 14, in the example of FIG. 1, includes receiver 26, modem
28, video decoder 30, and display device 32. Receiver 26 of destination device 14
receives information over channel 16, and modem 28 demodulates the information to
produce a demodulated bitstream for video decoder 30. The information communicated
over channel 16 may include a variety of syntax information generated by video encoder
20 for use by video decoder 30 in decoding video data. Such syntax may also be
included with the encoded video data stored on storage medium 34 or file server 36.
Each of video encoder 20 and video decoder 30 may form part of a respective encoder-
decoder (CODEC) that is capable of encoding or decoding video data.

[0033] Display device 32 may be integrated with, or external to, destination device 14.
In some examples, destination device 14 may include an integrated display device and
also be configured to interface with an external display device. In other examples,
destination device 14 may be a display device. In general, display device 32 displays
the decoded video data to a user, and may comprise any of a variety of display devices
such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

[0034] In the example of FIG. 1, communication channel 16 may comprise any wireless
or wired communication medium, such as a radio frequency (RF) spectrum or one or
more physical transmission lines, or any combination of wireless and wired media.
Communication channel 16 may form part of a packet-based network, such as a local
areca network, a wide-area network, or a global network such as the Internet.
Communication channel 16 generally represents any suitable communication medium,
or collection of different communication media, for transmitting video data from source
device 12 to destination device 14, including any suitable combination of wired or
wireless media. Communication channel 16 may include routers, switches, base
stations, or any other equipment that may be useful to facilitate communication from
source device 12 to destination device 14.

[0035] Video encoder 20 and video decoder 30 may operate according to a video

compression standard, such as the High Efficiency Video Coding (HEVC) standard

WO 2013/070353 PCT/US2012/059092

presently under development by the Joint Collaboration Team on Video Coding (JCT-
VC) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Motion Picture
Experts Group (MPEQG). A recent draft of the HEVC standard, referred to as “HEVC
Working Draft 6” or “WD®6,” is described in document JCTVC-H1003, Bross et al.,
“High efficiency video coding (HEVC) text specification draft 6,” Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, 8th Meeting: San Jose, California, USA, February, 2012, which, as
of June 1, 2012, is downloadable from http://phenix.int-

evry.fr/jct/doc_end user/documents/8 San%20Jose/wgl1/JCTVC-H1003-v22.zip.
[0036] Alternatively, video encoder 20 and video decoder 30 may operate according to
other proprietary or industry standards, such as the ITU-T H.264 standard, alternatively
referred to as MPEG 4, Part 10, Advanced Video Coding (AVC), or extensions of such
standards. The techniques of this disclosure, however, are not limited to any particular
coding standard. Other examples include MPEG-2 and ITU-T H.263.

[0037] Although not shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0038] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0039] Video encoder 20 may implement any or all of the techniques of this disclosure
for CABAC in a video coding process. Likewise, video decoder 30 may implement any
or all of these techniques for CABAC in a video coding process. A video coder, as

described in this disclosure, may refer to a video encoder or a video decoder. Similarly,

WO 2013/070353 PCT/US2012/059092

a video coding unit may refer to a video encoder or a video decoder. Likewise, video
coding may refer to video encoding or video decoding.

[0040] In one example of the disclosure, video encoder 20 may be configured to
determine a first prediction type for a block of video data in a P slice, represent the first
prediction type as a P-slice prediction type syntax element, determine a second
prediction type for a block of video data in a B slice, represent the second prediction
type as a B-slice prediction type syntax element, determine a P-slice binarization for the
P-slice prediction type syntax element, determine a B-slice binarization for the B-slice
prediction type syntax element, wherein the P-slice prediction type syntax element and
the B-slice prediction type syntax element are determined using the same binarization
logic, and encode the video data based on the binarizations of the P-slice prediction type
syntax element and the B-slice prediction syntax element.

[0041] In another example of the disclosure, video decoder 30 may be configured to
map a binarized P-slice prediction type syntax element to a prediction type using a
binarization mapping for a block of video data in a P slice, map a binarized B-slice
prediction type syntax element to a prediction type using the same binarization mapping
for a block of video data in a B slice, and decode the video data based on the mapped
prediction types.

[0042] In another example of the disclosure, video encoder 20 may be configured to
determine a partition type for a prediction mode for a block of video data, encode a
partition type bin of a prediction type syntax element for the block of video data using
CABAC with a single context, wherein the single context is the same for any partition
type, and encode a partition size bin of the prediction type syntax element for the block
of video data using CABAC in bypass mode.

[0043] In another example of the disclosure, video decoder 30 may be configured to
receive a prediction type syntax element for a block of video data that has been coded
using CABAC, the prediction type syntax element including a partition type bin
representing a partition type and a partition size bin representing a partition size,
decoding the partition type bin of the prediction type syntax element using CABAC
with a single context, wherein the single context is the same for any partition type, and
decoding the partition size bin of the prediction type syntax element using CABAC in
bypass mode.

[0044] In another example of the disclosure, both video encoder 20 and video decoder

30 may be configured to code a Cb chroma coded block flag for a block of video data

WO 2013/070353 PCT/US2012/059092
10

using CABAC, wherein coding the Cb chroma coded block flag comprises using a
context set including one or more contexts as part of the CABAC, and code a Cr chroma
coded block flag using CABAC, wherein coding the Cr chroma coded block flag
comprises using the same context set as the Cb chroma coded block flag as part of the
CABAC.

[0045] The JCT-VC is working on development of the HEVC standard. The HEVC
standardization efforts are based on an evolving model of a video coding device referred
to as the HEVC Test Model (HM). The HM presumes several additional capabilities of
video coding devices relative to existing devices according to, e.g., I[TU-T H.264/AVC.
For example, whereas H.264 provides nine intra-prediction encoding modes, the HM
may provide as many as thirty-three intra-prediction encoding modes. The following
section will discuss certain aspects of the HM in more detail.

[0046] In general, the working model of the HM describes that a video frame or picture
may be divided into a sequence of treeblocks or largest coding units (LCU) that include
both luma and chroma samples. A treeblock has a similar purpose as a macroblock of
the H.264 standard. A slice includes a number of consecutive treeblocks in coding
order. A video frame or picture may be partitioned into one or more slices. Each
treeblock may be split into coding units (CUs) according to a quadtree. For example, a
treeblock, as a root node of the quadtree, may be split into four child nodes, and each
child node may in turn be a parent node and be split into another four child nodes. A
final, unsplit child node, as a leaf node of the quadtree, comprises a coding node, i.c., a
coded video block. Syntax data associated with a coded bitstream may define a
maximum number of times a treeblock may be split, and may also define a minimum
size of the coding nodes.

[0047] A CU includes a coding node and prediction units (PUs) and transform units
(TUs) associated with the coding node. A size of the CU generally corresponds to a size
of the coding node and must typically be square in shape. The size of the CU may range
from 8x8 pixels up to the size of the treeblock with a maximum of 64x64 pixels or
greater. Each CU may contain one or more PUs and one or more TUs. Syntax data
associated with a CU may describe, for example, partitioning of the CU into one or
more PUs. Partitioning modes may differ between whether the CU is skip or direct
mode encoded, intra-prediction mode encoded, or inter-prediction mode encoded. PUs

may be partitioned to be non-square in shape. Syntax data associated with a CU may

WO 2013/070353 PCT/US2012/059092
11

also describe, for example, partitioning of the CU into one or more TUs according to a
quadtree. A TU can be square or non-square in shape.

[0048] The emerging HEVC standard allows for transformations according to TUs,
which may be different for different CUs. The TUs are typically sized based on the size
of PUs within a given CU defined for a partitioned LCU, although this may not always
be the case. The TUs are typically the same size or smaller than the PUs. In some
examples, residual samples corresponding to a CU may be subdivided into smaller units
using a quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the
RQT may be referred to as transform units (TUs). Pixel difference values associated
with the TUs may be transformed to produce transform coefficients, which may be
quantized.

[0049] In general, a PU refers to data related to the prediction process. For example,
when the PU is intra-mode encoded, the PU may include data describing an intra-
prediction mode for the PU. As another example, when the PU is inter-mode encoded,
the PU may include data defining a motion vector for the PU. The data defining the
motion vector for a PU may describe, for example, a horizontal component of the
motion vector, a vertical component of the motion vector, a resolution for the motion
vector (e.g., one-quarter pixel precision or one-eighth pixel precision), a reference
picture to which the motion vector points, and/or a reference picture list (e.g., List 0,
List 1, or List C) for the motion vector.

[0050] In general, a TU is used for the transform and quantization processes. A given
CU having one or more PUs may also include one or more transform units (TUs).
Following prediction, video encoder 20 may calculate residual values from the video
block identified by the coding node in accordance with the PU. The coding node is then
updated to reference the residual values rather than the original video block. The
residual values comprise pixel difference values that may be transformed into transform
coefficients, quantized, and scanned using the transforms and other transform
information specified in the TUs to produce serialized transform coefficients for entropy
coding. The coding node may once again be updated to refer to these serialized
transform coefficients. This disclosure typically uses the term “video block™ to refer to
a coding node of a CU. In some specific cases, this disclosure may also use the term
“video block” to refer to a treeblock, i.e., LCU, or a CU, which includes a coding node

and PUs and TUs.

WO 2013/070353 PCT/US2012/059092
12

[0051] A video sequence typically includes a series of video frames or pictures. A
group of pictures (GOP) generally comprises a series of one or more of the video
pictures. A GOP may include syntax data in a header of the GOP, a header of one or
more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each slice of a picture may include slice syntax data that describes an encoding
mode for the respective slice. Video encoder 20 typically operates on video blocks
within individual video slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks may have fixed or varying
sizes, and may differ in size according to a specified coding standard.

[0052] As an example, the HM supports prediction in various PU sizes. Assuming that
the size of a particular CU is 2Nx2N, the HM supports intra-prediction in PU sizes of
2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or
NxN. The HM also supports asymmetric partitioning for inter-prediction in PU sizes of
2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU
is not partitioned, while the other direction is partitioned into 25% and 75%. The
portion of the CU corresponding to the 25% partition is indicated by an “n” followed by
an indication of “Up”, “Down,” “Left,” or “Right.” Thus, for example, “2NxnU” refers
to a 2Nx2N CU that is partitioned horizontally with a 2Nx0.5N PU on top and a
2Nx1.5N PU on bottom.

[0053] FIG. 4 is a conceptual drawing showing both square and non-square partition
types for intra-prediction and inter-prediction. Partition 102 is a 2Nx2N partition and
may be used for both intra-prediction and inter-prediction. Partition 104 is an NxN
partition and may be used for both intra-prediction and inter-prediction. Partition 106 is
a 2NxN partition and is currently used in HEVC for inter-prediction. Partition 108 is an
Nx2N partition and is currently used in HEVC for inter-prediction.

[0054] FIG. 5 a conceptual drawing showing asymmetric partition types. Partition 110
is a 2NxnU partition and is currently used in HEVC for inter-prediction. Partition 112 is
a 2NxnD partition and is currently used in HEVC for inter-prediction. Partition 114 is
an nLx2N partition and is currently used in HEVC for inter-prediction. Partition 116 is
an nRx2N partition and is currently used in HEVC for inter-prediction.

[0055] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,
e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a

vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an

WO 2013/070353 PCT/US2012/059092
13

NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0056] Following intra-predictive or inter-predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data to which the transforms specified by TUs
of the CU are applied. The residual data may correspond to pixel differences between
pixels of the unencoded picture and prediction values corresponding to the CUs. Video
encoder 20 may form the residual data for the CU, and then transform the residual data
to produce transform coefficients.

[0057] Following any transforms to produce transform coefficients, video encoder 20
may perform quantization of the transform coefficients. Quantization generally refers to
a process in which transform coefficients are quantized to possibly reduce the amount of
data used to represent the coefficients, providing further compression. The quantization
process may reduce the bit depth associated with some or all of the coefficients. For
example, an n-bit value may be rounded down to an m-bit value during quantization,
where n is greater than m.

[0058] In some examples, video encoder 20 may utilize a predefined scan order to scan
the quantized transform coefficients to produce a serialized vector that can be entropy
encoded. In other examples, video encoder 20 may perform an adaptive scan. After
scanning the quantized transform coefficients to form a one-dimensional vector, video
encoder 20 may entropy encode the one-dimensional vector, e.g., according to context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), Probability
Interval Partitioning Entropy (PIPE) coding or another entropy encoding methodology.
Video encoder 20 may also entropy encode syntax elements associated with the encoded
video data for use by video decoder 30 in decoding the video data.

[0059] To perform CABAC, video encoder 20 may assign a context within a context
model to a symbol to be transmitted. The context may relate to, for example, whether
neighboring values of the symbol are non-zero or not. To perform CAVLC, video
encoder 20 may select a variable length code for a symbol to be transmitted.

Codewords in VLC may be constructed such that relatively shorter codes correspond to

more probable symbols, while longer codes correspond to less probable symbols. In

WO 2013/070353 PCT/US2012/059092
14

this way, the use of VLC may achieve a bit savings over, for example, using equal-
length codewords for each symbol to be transmitted. The probability determination
may be based on a context assigned to the symbol.

[0060] This disclosure is related techniques for context adaptive binary arithmetic
coding (CABAC) entropy coders or other entropy coders, such as probability interval
partitioning entropy coding (PIPE) or related coders. Arithmetic coding is a form of
entropy coding used in many compression algorithms that have high coding efficiency,
because it is capable of mapping symbols to non-integer length codewords. An example
of an arithmetic coding algorithm is Context Based Binary Arithmetic Coding
(CABAC) used in H.264/AVC.

[0061] In general, coding data symbols using CABAC involves one or more of the
following steps:

(1) Binarization: If a symbol to be coded is non-binary valued, it is mapped to a
sequence of so-called “bins.” Each bin can have a value of “0” or “1.”

(2) Context Assignment: Each bin (in regular mode) is assigned to a context. A
context model determines how a context for a given bin is calculated based on
information available for the bin, such as values of previously encoded symbols or bin
number.

(3) Bin encoding: Bins are encoded with an arithmetic encoder. To encode a
bin, the arithmetic encoder requires as an input a probability of the bin’s value, i.c., a
probability that the bin’s value is equal to “0,” and a probability that the bin’s value is
equal to “1.” The (estimated) probability of each context is represented by an integer
value called a “context state.” Each context has a state, and thus the state (i.e.,
estimated probability) is the same for bins assigned to one context, and differs between
contexts.

(4) State update: The probability (state) for a selected context is updated based
on the actual coded value of the bin (e.g., if the bin value was “1,” the probability of
“1’s” is increased).

[0062] It should be noted that probability interval partitioning entropy coding (PIPE)
uses principles similar to those of arithmetic coding, and can thus also utilize the
techniques of this disclosure.

[0063] CABAC in H.264/AVC and HEVC uses states, and each state is implicitly
related to a probability. There are variants of CABAC, in which a probability of a

symbol (“0” or “1”) is used directly, i.c., the probability (or an integer version of it) is

WO 2013/070353 PCT/US2012/059092
15

the state. For example, such variants of CABAC are described in “Description of video
coding technology proposal by France Telecom, NTT, NTT DOCOMO, Panasonic and
Technicolor,” JCTVC-A114, 1 JCT-VC Meeting, Dresden, DE, April 2010, referred to
as “JCTVC-A114” hereinafter, and A. Alshin and E. Alshina, “Multi-parameter
probability update for CABAC,” JCTVC-F254, 6" JCT-VC Meeting, Torino, IT, July
2011, referred to as “JCTVC-F254” hereinafter.

[0064] In this disclosure, a reduction in the number of binarizations and/or contexts
used in CABAC is proposed. In particular, this disclosure proposes techniques that may
lower the number contexts used in CABAC by up to 56. With 56 less contexts,
experimental results show 0.00%, 0.01% and -0.13% bit-distortion (BD) rate changes in
high efficiency intra-only, random access and low-delay test conditions, respectively.
As such, a reduction in the number of contexts needed reduces storage needs at both the
encoder and the decoder without materially affecting coding efficiency.

[0065] In this disclosure, a reduction in the number of CABAC contexts used for the
syntax elements, pred type, merge idx, inter _pred flag, ref idx_Ix, cbf cb, cbf cr,
coeff _abs level greaterl flag, and coeff abs level greater? flag, is proposed. The
modifications reduce up to 56 contexts with negligible coding efficiency changes. The
proposed context reductions for the syntax elements above may be used alone or in any
combination.

[0066] The syntax element pred type includes a prediction mode (pred mode_flag) and
a partition type (part_mode) for each coding unit. The syntax element pred mode flag
equal to 0 specifies that the current coding unit is coded in inter-prediction mode. The
syntax element pred mode_flag equal to 1 specifies that the current coding unit is coded
in intra-prediction mode. The syntax element part mode specifies partitioning mode of
the current coding unit.

[0067] The syntax element merge_idx [x0] [y0] specifies the merging candidate index
of the merging candidate list where x0, y0 specify the location (x0, y0) of the top-left
luma sample of the considered prediction block relative to the top-left luma sample of
the picture. When merge idx[x0][y0] is not present, it is inferred to be equal to 0. A
merge candidate list is a list of adjacent coding units to a current units from which
motion information may be copied.

[0068] The syntax element inter pred flag[x0][yO] specifies whether uni-prediction,

or bi-prediction is used for the current prediction unit. The array indices x0, y0 specify

WO 2013/070353 PCT/US2012/059092
16

the location (x0, y0) of the top-left luma sample of the considered prediction block
relative to the top-left luma sample of the picture.

[0069] The syntax element ref idx Ix refers to specific reference picture within a
reference picture list.

[0070] The syntax elements cbf cb, cbf cr indicate whether or not chroma (Cb and Cr,
respectively) transform blocks contain non-zero transform coefficients. The syntax
element cbf cb[x0][yO][trafoDepth] equal to 1 specifies that the Cb transform block
contains one or more transform coefficient levels not equal to 0. The array indices x0,
y0 specify the location (x0, y0) of the top-left luma sample of the considered transform
block relative to the top-left luma sample of the picture. The array index trafoDepth
specifies the current subdivision level of a coding unit into blocks for the purpose of
transform coding. The array index trafoDepth is equal to 0 for blocks that correspond to
coding units. When cbf cb[x0][y0][trafoDepth] is not present and the prediction
mode is not intra-prediction, the value of cbf” cbh[x0][yO][trafoDepth] is inferred to
be equal to 0.

[0071] The syntax element cbf cr| x0][yO][trafoDepth] equal to 1 specifies that the
Cr transform block contains one or more transform coefficient levels not equal to 0.
The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the
considered transform block relative to the top-left luma sample of the picture. The array
index trafoDepth specifies the current subdivision level of a coding unit into blocks for
the purpose of transform coding. The array index trafoDepth is equal to 0 for blocks
that correspond to coding units. When cbf cr[x0][y0][trafoDepth] is not present and
the prediction mode is not intra-prediction, the value of cbf cr[x0][y0][trafoDepth]
is inferred to be equal to 0.

[0072] The syntax element coeff abs level greaterl flag[n] specifies for the scanning
position n whether there are transform coefficient levels greater than 1. When
coeff_abs level greaterl flag[n] is not present, it is inferred to be equal to 0.

[0073] The syntax element coeff abs level greater? flag[n] specifies for the scanning
position n whether there are transform coefficient levels greater than 2. When
coeff_abs level greater? flag[n] is not present, it is inferred to be equal to 0.

[0074] In one proposal for HEVC, different binarizations on syntax element pred type
are used in P and B slices as shown in Table 1. This disclosure proposes using the same
binarizations for P and B slices. Examples are shown in Tables 2-4. Table 5 shows the

coding performance impact on P slice under common test conditions (e.g., see F.

WO 2013/070353

17

PCT/US2012/059092

Bossen, “Common test conditions and software reference configurations,” JCTVC-

F900).
Bin string
cLog2CUSize > cLog2CUSize = = Log2MinCUSize
Slice | Value of PredMode PartMode | Log2MinCUSize
type | pred_type " Log2CUSize ==3 && | cLog2CUSize>3 ||
linter 4x4 enabled flag | inter 4x4 enabled flag
@) (3)

0 MODE_INTRA | PART 2Nx2N | - 1 1

: 1 MODE_INTRA | PART NxN | - 0 0
0 MODE_INTER | PART 2Nx2N | 01 01 01
1 MODE_INTER | PART 2NxN | 0011 001 001
2 MODE_INTER | PART Nx2N | 00011 000 0001
4 MODE_INTER | PART 2NxnU | 0 0100 - -
5 MODE_INTER | PART 2NxnD | 00101 - -

’ 6 MODE_INTER | PART nLx2N | 000100 - -
7 MODE_INTER | PART nRx2N | 000101 - -
3 MODE_INTER | PART NxN | - - 0 000
4 MODE_INTRA | PART 2Nx2N | 1 11 11
5 MODE_INTRA | PART NxN | - 10 10
0 MODE_INTER | PART 2Nx2N | 1 1 1
1 MODE_INTER | PART 2NxN | 011 01 01
2 MODE_INTER | PART Nx2N | 0011 001 001
4 MODE_INTER | PART 2NxnU | 0100 - -
5 MODE_INTER | PART 2NxnD | 0101 - -

. 6 MODE_INTER | PART nLx2N | 00100 - -
7 MODE_INTER | PART nRx2N | 00101 - -
3 MODE_INTER | PART NxN | - - 0001
4 MODE_INTRA | PART 2Nx2N | 000 000 0 0000 0
5 MODE_INTRA | PART NxN | - 000 1 0000 1

Table 1. Binarization for pred type in one proposal for HEVC

[0075] As can be seen in Table 1, I slices (e.g., slices that only include intra-predicted

blocks), include two different prediction types (pred type). One bin string

(binarization) is used for an intra-predicted block with a 2Nx2N partition type, and

WO 2013/070353 PCT/US2012/059092
18

another bin string is used for an intra-predicted block with an NxN partition type. As
shown in Table 1, the bin string used for I slices are not dependent on CU size.

[0076] For P and B slices, in Table 1, different bin strings are used for each value of
pred type. Again, the value of pred type depends on both the prediction mode (inter-
prediction or intra-prediction) and the partition type used. For P and B slices, the actual
bin string used further depends on the size of the CU being coded and whether or not
inter-prediction is enabled for a 4x4 block size.

[0077] The first column under bin string applies for the situation where the logarithmic
function of the CU size of the CU being coded is greater than the logarithmic function
of the minimum allowable CU size. According to one example in HEVC, the first
column of bin strings is used if cLog2CUSize > Log2MinCUsize. The logarithmic
function is used to create a smaller number so that a smaller consecutive index may be
used.

[0078] If the logarithmic function of the CU size of the CU being coded is equivalent to
the logarithmic function the minimum allowable CU size (i.e., cLog2CUSize = =
Log2MinCUSize) then one of columns 2 and 3 under bin string in Table 1 is used to
select the binarization. Column 2 is used when the logarithmic function of the CU size
of the CU being coded is equivalent to 3 and inter-prediction for a 4x4 CU is not
enabled (i.e., cLog2CUSize = =3 && linter 4x4 enabled flag). Column 3 is used
when the logarithmic function of the CU size of the CU being coded is greater than 3 or
when inter-prediction for a 4x4 CU is enabled (i.e.,

cLog2CUSize > 3 | | inter_4x4 enabled flag).

[0079] Table 2 below shows example binarizations where P and B slices use the same
bin strings, in accordance with one or more examples described in this disclosure. As
shown in Table 2, P slices use the same binarizations used for B slices in Table 1. In
this way, it is not necessary to store and use a separate set of contexts for both P and B
slices. As such, the total number of contexts needed to code the pred type syntax
element is reduced. Furthermore, only one mapping (instead of two) between the bin

string logic (shown in columns (1) — (3)) and the actual bin string need be stored.

WO 2013/070353 19 PCT/US2012/059092
Bin string
Value ¢Log2CUSize > cLog2CUSize = = Log2MinCUSize
Slice pr‘gl PredMode PartMode | Log2MinCUSize : _
type - a cLog2CUSize==3&& | cLog2CUSize >3 ||
type linter 4x4 enabled flag | inter 4x4 enabled flag
@) (3)
0 MODE_INTRA | PART 2Nx2N | - 1 1
: 1 MODE_INTRA | PART NxN - 0 0
0 MODE_INTER | PART 2Nx2N | 1 1 1
1 MODE_INTER | PART 2NxN | 011 01 01
2 MODE_INTER | PART Nx2N | 0011 001 001
4 MODE_INTER | PART 2NxnU | 0100 - -
Por 5 MODE_INTER | PART 2NxnD | 0101 - -
B 6 MODE_INTER | PART nLx2N | 00100 - -
7 MODE_INTER | PART nRx2N | 00101 - -
3 MODE_INTER | PART NxN - - 0001
4 MODE_INTRA | PART 2Nx2N | 000 000 0 0000 0
5 MODE_INTRA | PART NxN - 000 1 0000 1

Table 2. Binarization for pred type in one example of the disclosure

[0080] Table 3 below shows another example of a binarization for pred type. In this

example, B slices use the same binarizations as P slices from Table 1. Table 4 below

shows an additional example where P slices and B slices use the same binarizations.

Tables 2-4 are only meant to show examples of shared binarizations between P and B

slices. Any binarization or binarization rules may be used so that the pred type syntax
elements for both P and B slices share the same binarizations.

[0081] Video encoder 20 and video decoder 30 may store the same mapping rules and
mapping tables (e.g., as shown in Tables 2-4) for use with both P and B slices. CABAC
encoding and decoding may be applied to the pred type syntax element using these
mappings.

[0082] In this way, video encoder 20 may be configured to determine a first prediction
type for a block of video data in a P slice, represent the first prediction type as a P-slice
prediction type syntax element, determine a second prediction type for a block of video
data in a B slice, represent the second prediction type as a B-slice prediction type syntax
element, determine a P-slice binarization for the P-slice prediction type syntax element,

determine a B-slice binarization for the B-slice prediction type syntax element, wherein

WO 2013/070353 PCT/US2012/059092
20

the P-slice prediction type syntax element and the B-slice prediction type syntax
element are determined using the same binarization logic, and encode the video data
based on the binarizations of the P-slice prediction type syntax element and the B-slice
prediction syntax element.

[0083] Video encoder 20 may be further configured to binarize the P-slice prediction
type syntax element with the determined P-slice binarization, binarize the B-slice
prediction type syntax element with the determined B-slice binarization, apply context
adaptive binary arithmetic coding (CABAC) to the binarized P-slice prediction type
syntax element, and apply context adaptive binary arithmetic coding (CABAC) to the
binarized B-slice prediction type syntax element.

[0084] Similarly, video decoder 30 may be configured to map a binarized P-slice
prediction type syntax element to a prediction type using a binarization mapping for a
block of video data in a P slice, map a binarized B-slice prediction type syntax element
to a prediction type using the same binarization mapping for a block of video data in a B
slice, and decode the video data based on the mapped prediction types.

[0085] Video decoder 30 may be further configured to receive a context adaptive binary
arithmetic coded P-slice prediction type syntax element which indicates the prediction
type for the block of video data in a P slice, receive a context adaptive binary arithmetic
coded B-slice prediction type syntax element which indicates the prediction type for the
block of video data in a B slice, decode the P-slice prediction type syntax element to
produce the binarized P-slice prediction type syntax element, and decode the B-slice
prediction type syntax element to produce the binarized B-slice prediction type syntax

element.

WO 2013/070353

21

PCT/US2012/059092

Bin string

cLog2CUSize >

cLog2CUSize = = Log2MinCUSize

tSyl;)c: p\r[:(llliiy(;)fe PredMode PartMode LogZM(iI:)C e cLog2CUSize ==3 && | cLog2CUSize >3 ||
linter 4x4 enabled flag | inter 4x4 enabled flag
@ 3
0 MODE_INTRA | PART 2Nx2N | - 1 1
I 1 MODE_INTRA | PART NxN | - 0 0
0 MODE_INTER | PART 2Nx2N | 0 1 01 01
1 MODE_INTER | PART 2NxN | 0011 001 001
2 MODE_INTER | PART Nx2N | 00011 000 0001
4 MODE_INTER | PART 2NxnU | 0 0100 - -
P or 5 MODE_INTER | PART 2NxnD | 0 0101 - -
B 6 MODE_INTER | PART nLx2N | 0 00100 - -
7 MODE_INTER | PART nRx2N | 0 00101 - -
3 MODE_INTER | PART NxN | - - 0 000
4 MODE_INTRA | PART 2Nx2N | 1 11 11
5 MODE_INTRA | PART NxN | - 10 10

Table 3. Binarization for pred type in another example of the disclosure

Slice

Value of

Bin string

cLog2CUSize >

cLog2CUSize = = Log2MinCUSize

type | pred_type | redMode PartMode LogZM(T)C e cLog2(USize = =3 && | cLog2CUSize>3 ||
linter 4x4_enabled flag | inter 4x4_enabled flag
@ 3
0 MODE_INTRA | PART_2Nx2N | - 1 1
I 1 MODE_INTRA | PART NxN | - 0 0
0 MODE_INTER | PART_2Nx2N | 1 1 1
1 MODE_INTER | PART 2NxN | 011 01 01
2 MODE_INTER | PART_Nx2N | 001 00 001
4 MODE_INTER | PART_2NxnU | 0100 - -
Por 5 MODE_INTER | PART_2NxnD | 0101 - -
B 6 MODE_INTER | PART_nLx2N | 0000 - -
7 MODE_INTER | PART_nRx2N | 0001 - -
3 MODE_INTER | PART NxN | - - 000
4 MODE_INTRA | PART_2Nx2N | 000 000 0 0000 0
5 MODE_INTRA | PART NxN | - 000 1 0000 1

Table 4. Binarization for pred type in another example of the disclosure

WO 2013/070353 PCT/US2012/059092
22

[0086] Table 5 below shows the coding performance using the shared binarization for P
and B slices shown in Table 2. As can be seen in Table 5, little to no coding efficiency
is lost using the shared binarizations. Low delay P HE (High Efficiency) is a common
test condition for uni-directionally predicted (P) slice binarizations. Classes A-E
represent different frame resolutions. Class A is a 2k x 4k resolution. Class B is a 1920
x 1080 resolution. Class C is a WVGA resolution. Class D is a WQVGA resolution.
Class E is a 720P resolution. A 0.1 to 0.2 percent change in Low delay P HE test

condition is generally considered to be insignificant.

Low delay P HE
BD-rate
Y U \
Class A
Class B
0.02% 0.16% 0.26%
Class C 0.01% 0.05% -0.12%
Class D -0.02% -0.10% -0.12%
Class E 0.02% 0.03% 0.05%
All 0.01% 0.04% 0.03%
Enc T[%)]
Dec T[%]

Table 5. Coding performance for unified binarization on pred type

[0087] Optionally, the same binarizations (not limited to Tables 2-4) for prediction type
(includes prediction size and/or prediction mode) can be shared in two and more
different types of inter prediction slices. The inter prediction slices may include, but are
not limited to:

a. P slice: slice only supports uni-directional motion prediction

b. B slice: slice supports uni-directional and bi-direction motion prediction

c. Inscalable video coding: enhancement layer can share the same binarizations
with the base layer.

d. In multiview coding: different views may share the same binarizations.
[0088] When asymmetric partitioning is enabled, four contexts, equally divided into
two context sets, are used for CABAC on the last two bins for signaling the pred type
syntax element for asymmetric partitions (i.c., PART 2NxnU, PART 2NxnD,
PART nLx2N, PART nRx2N). Depending on whether the partition is divided along

the horizontal direction or the vertical direction, one context set is applied. The second

WO 2013/070353 PCT/US2012/059092
23

to last bin (i.e., the partition type bin; part_mode) specifies whether the current CU has
symmetric partitions or asymmetric partitions. The last bin (i.e., the partition size bin;
part_mode) specifies whether the size of the first partition is one-fourth or three-fourth
of the CU size. Table 6 shows an example of contexts the second to last (partition type)

and last (partition size) for the pred type syntax element.

Bin Context
Partition Type (Symmetric or Context Set 1 (2 Contexts, one for
Asymmetric) vertical partitioning, 1 for

horizontal partitioning)

Partition Size (First partition is %4 | Context Set 2 (2 Contexts, one for
CU or % CU) ¥4 CU and one for % CU)

Table 6. Contexts for Last Two Bins of the Pred Type Syntax Element

[0089] This disclosure proposes to use one context for the second to last bin (i.c., the
partition type bin) and to use bypass mode on the last bin (i.e., the partition size bin).

As a result, the number of contexts is reduced from 4 to 1. Table 7 shows an example
of context used according to this example of the disclosure. Table 8 shows the coding
performance associated with the proposed modifications. Random access high
efficiency (HE) is a test condition with random access frames. Low delay B HE is a test

condition that allows bi-direction prediction.

Bin Context
Partition Type (Symmetric or Context Set 1 (1 Contexts)
Asymmetric)

Partition Size (First partition is ¥4 | Bypass Mode (No Contexts)
CU or % CU)

Table 7. Contexts for Last Two Bins of the Pred Type Syntax Element According to an

Example of this Disclosure.

WO 2013/070353 PCT/US2012/059092

24
All Intra HE Random access HE Low delay B HE
BD-rate
Y u Vv Y U v Y U v
Class A 0.03% -0.17% -0.29%
Class B
0.02% -0.03% 0.04% 0.01% 0.00% 0.24%

Class C -0.01% -0.03% -0.02% -0.01% -0.03% 0.02%
Class D 0.01% 0.07% -0.05% 0.01% 0.06% 0.03%
Class E 0.30% 0.39%
All 0.01% -0.04% -0.07% 0.00% 0.06% 0.01%
Enc T[%]
Dec T[%]

Table 8. Coding performance of the proposed method for pred type

[0090] In this way, according to this example, video encoder 20 may be configured to
determine a partition type for a prediction mode for a block of video data, encode a
partition type bin of a prediction type syntax element for the block of video data using
context adaptive binary arithmetic coding with a single context, wherein the single
context is the same for any partition type, and encode a partition size bin of a prediction
type syntax for the block of video data using context adaptive binary arithmetic coding
in bypass mode.

[0091] Similarly, according this example, video decoder 30 may be configured to
receive a prediction type syntax element for a block of video data that has been coded
using context adaptive binary arithmetic coding (CABAC), the prediction type syntax
element including a partition type bin representing a partition type and a partition size
bin representing a partition size, decoding the partition type bin of the prediction type
syntax element using context adaptive binary arithmetic coding with a single context,
wherein the single context is the same for any partition type, and decoding the partition
size bin of the prediction type syntax for a block of video data using context adaptive
binary arithmetic coding in bypass mode.

[0092] In another example, when coding a rectangle partition type, bypass mode or a
single context can be used for the bin which indicates whether the partition mode is
PART nLx2Nor PART nRx2N, or whether the mode is PART 2NxnU,

PART 2NxnD. Using bypass mode or a single context is applicable because the chance
of either partition mode being used is close to 50%. Also optionally, bypass mode or a
single context may be used for the bin which indicates whether the mode is a symmetric

partition or an asymmetric partition.

WO 2013/070353 PCT/US2012/059092
25

[0093] The next example of the disclosure relates to signaling in a “merge” mode of
inter-prediction. In merge mode, the encoder instructs a decoder, through bitstream
signaling of prediction syntax, to copy a motion vector, reference index (identifying a
reference picture, in a given reference picture list, to which the motion vector points)
and the motion prediction direction (which identifies the reference picture list (List 0 or
List 1), i.e., in terms of whether the reference frame temporally precedes or follows the
currently frame) from a selected candidate motion vector for a current portion of the
picture that is to be coded. This is accomplished by signaling in the bitstream an index
into a candidate motion vector list identifying the selected candidate motion vector (i.c.,
the particular spatial motion vector predictor (MVP) candidate or temporal MVP
candidate).

[0094] Thus, for merge mode, the prediction syntax may include a flag identifying the
mode (in this case “merge” mode) and an index (merge idx) identifying the selected
candidate motion vector. In some instances, the candidate motion vector will be in a
causal portion in reference to the current portion. That is, the candidate motion vector
will have already been decoded by the decoder. As such, the decoder has already
received and/or determined the motion vector, reference index, and motion prediction
direction for the causal portion. As such, the decoder may simply retrieve the motion
vector, reference index, and motion prediction direction associated with the causal
portion from memory and copy these values as the motion information for the current
portion. To reconstruct a block in merge mode, the decoder obtains the predictive block
using the derived motion information for the current portion, and adds the residual data
to the predictive block to reconstruct the coded block.

[0095] In HM4.0, one of the five merge candidates are signalled when the current PU is
in merge mode. A truncated unary code is utilized to represent the syntax element
merge_idx. In one proposal for HEVC, for CABAC, each bin uses one context. This

disclosure proposes using one context repeatedly in all four bins, as shown in Table 9.

Bin Context
Bin 0-3 for merge_idx Context Set 1 (same context set for
all bins)

Table 9. Contexts for Last Two Bins of the Pred Type Syntax Element

[0096] Table 10 shows the coding performance associated with this example.

WO 2013/070353 PCT/US2012/059092

26
All Intra HE Random access HE Low delay B HE
BD-rate
Y U vV Y U A% Y U A%
Class A 0.00% -0.20% -0.07%
Class B 0.01% 0.03% 0.03% 0.01% -0.08% -0.22%
Class C 0.00% 0.04% 0.00% 0.00% -0.08% -0.09%
Class D 0.05% -0.24% 0.44%
Class E -0.14% 0.08% 0.78%
All 0.01% -0.05% -0.02% | -0.01% -0.09% 0.17%
Enc T[%]
Dec T[%]

Table 10. Coding performance of the proposed method on merge idx

[0097] Optionally, more than one context may be used in merge index coding, with
some bins sharing the same context and some bins using other contexts. As one
example, only the consecutive bins share the same context. For example, bin2 and bin3
can share one¢ context; bin2 and bin4 cannot share the same context unless bin3 is also
sharing the context.
[0098] As another example, assume the total number of bins of the merge index is N
(first bin is bin0, the last bin is bin N-1). Y thresholds, thres; i=1,...,y, are used to
determine the context sharing in merge index coding. In this example, the following
rules indicate how contexts are shared between bins:

1. O<Y<N (there are fewer thresholds than bins)

2. thres; < thres;i;

3. O<thres;

4. thresy =N

5. bin; will share one context where i={ thresy, ..., thres; -1}
[0099] Based on these rules, the previous method in which one context is repeatedly
used in all four bins, can be viewed as one case where N=4, Y=1, thres; =4. Therefore,
bin 0 to bin 3 are sharing the same context.
[0100] Another example includes setting N=4, Y=2, thres; =2, thres, =4. In this
example, bin0 and binl share the same contexts and bin2 and bin3 share the same
contexts.
[0101] The inter-prediction flag (inter_pred flag) specifies whether uni-prediction, or

bi-prediction is used for the current PU. In some examples, the context index for the

WO 2013/070353 PCT/US2012/059092
27

inter-prediction flag is equal to the current CU depth. As there are four possible CU
depths (0 — 3), there are four possible contexts for coding the inter pred flag.

[0102] This disclosure proposes that the context index used to select a context for
coding the inter pred flag is equal to the current CU depth (e.g., the level quadtree
decomposition for CUs), but is capped at a chosen threshold (i.e., is the lesser of the
current CU depth or a threshold). The threshold may be chosen to be 2 in one example.
Alternatively, the context index may be equal to the maximum CU depth minus the
current CU depth and capped at a chosen threshold. Alternatively, a predefined
mapping table can be design to select context index by a given CU depth. The mapping
table can be implemented as a set of logic. As a result, 3 contexts are used to code the
syntax element inter pred flag.

[0103] Table 11 shows the coding performance when the initialization table is changed,
but the number of contexts is not changed. Table 12 shows the coding performance of

the proposed technique which reduces the number of contexts from 4 to 3.

Random access

All Intra HE Low delay B HE
HE
BD-rate Y u VI]Y U v Y U A%
Class A 0.03% -0.15% -0.11%
Class B
-0.03% 0.01% -0.03% 0.03% -0.02% 0.11%
Class C 0.00% -0.12% 0.06% -0.03% -0.16% 0.01%
Class D -0.01% -0.04% 0.01% -0.09% 0.51% 0.20%
Class E -0.03% 0.65%
All -0.01% -0.07% -0.02% 0.00% 0.07% 0.14%
Enc T[%]
Dec T[%]

Table 11. Coding performance of HM4.0 with modified CABAC initialization on
inter_pred flag.

WO 2013/070353 PCT/US2012/059092

28
All Intra HE Random access HE Low delay B HE
BD-
rate Y VIY U A% Y U A%
U
Class A 0.05% -0.11% -0.14%
Class B)
-0.01% -0.03% 0.02% 0.00% -0.01% 0.15%
Class C)
-0.02% -0.14% -0.02% | 0.01% 0.01% 0.03%
Class D)
0.03% -0.01% -0.01% | -0.09% -0.12% 0.01%
Class E 0.08% 0.45%
All 0.01% -0.07% -0.03% | -0.04% -0.01% 0.03%
Enc T[%]
Dec T[%]

Table 12. Coding performance of the proposed context reduction technique on infer pred flag.

[0104] The reference frame index (ref idx Ix) is signalled by using a truncated unary
code with respect to the active reference frame in the associated list (e.g., List 0 or List
1). Three contexts are used to code the reference frame index. One context for bin 0,
one context for bin 1, and one context is used on the rest of the bins. Table 13 shows an

example of context assignments for the bins of the unary code for ref idx Ix.

Bins of ref idx_Ix unary code Context

Bin 0 Context 1
Bin 1 Context 2
Bins 2-N (N is total number of bins) Context 3

Table 13. Context assignment for bins of ref idx Ix

[0105] This disclosure proposes using two contexts to code the unary code for

ref idx Ix; one context on bin 0 and another context on the rest of the bins. Table 14
shows an example of context assignment for the bins of the unary code for ref idx Ix
according this example of the disclosure. Table 15 shows the coding performance

associated to the proposed modifications.

Bins of ref idx_Ix unary code Context
Bin 0 Context 1
Bins 1-N (N is total number of bins) Context 2

Table 14. Context assignment for bins of ref idx Ix

WO 2013/070353 - PCT/US2012/059092
All Intra
Random access HE Low delay B HE
BD-rate HE
Y U V1Y U v Y U v

Class A -0.01% -0.11% -0.16%
Class B -0.01% 0.00% -0.01% 0.01% -0.12% 0.01%
Class C -0.01% 0.02% 0.03% -0.04% -0.14% -0.07%
Class D 0.03% 0.06% 0.11% -0.06% 0.19% -0.09%
Class E -0.06% -0.34% 0.48%
All -0.03% -0.09% 0.05%
Enc T[%)]
Dec T[%]

Table 15. Coding performance of the proposed method on ref idx Ix.

[0106] For the chroma coded block flag syntax elements (chf cb and cbf cr), two

different context sets (5 contexts in each context set) are used for CABAC. The index

of the actual context used in each set is equal to the current transform depth associated

with chroma coded block flag. being coded. Table 16 shows the context sets for the
cbf cb and cbf cr chroma coded block flags.

Chroma Coded Block Flag Context Set
Cbf cb Context Set 1 (5 contexts)
Cbf cr Context Set 2 (5 contexts)

Table 16. Context Sets for cbf cb and cbf cr

[0107] This disclosure proposes that cbf” cb and cbf cr share one context set. The index

of the actual context used in each set may still be equal to the current transform depth

associated with the chroma coded block flag being coded. Table 17 shows the context

sets for the cbf cb and cbf cr chroma coded block flags according to examples of this

disclosure. Table 18 shows the coding performance associate to the proposed

modifications.

Chroma Coded Block Flag Context Set

Cbf cb Context Set 1 (5 contexts)
Cbf cr Context Set 1 (5 contexts)

Table 17. Context Sets for cbf cb and cbf cr according to examples of this disclosure

WO 2013/070353 PCT/US2012/059092
30

All Intra HE Random access HE Low delay B HE

BD-rate

Y U \' Y U \' Y U \'
Class A 0.01% 0.59% -1.06% | 0.02% 056% -1.71%
Class B

0.00% 0.59% -1.07% | -0.01% 0.68% -1.32% 0.01% 1.06% 1.89%
Class C

-0.01% 0.17% -0.75% | 0.00% 0.09% -0.63% -0.01% 0.21% 0.97%
Class D

0.00% 0.17% -0.51% | 0.04% -0.23% -0.80% 0.04% -0.36% 0.45%
Class E

0.00% 0.36% 0.24% 0.36% 0.40%

All

0.00% 0.21% -0.70% | 0.01% 0.30% -1.13% 0.02% 0.36% 0.87%
Enc T[%]
Dec T[%]

Table 18. Coding performance of the proposed method on cbf c¢b and cbf cr.

[0108] In this way, according to this example, both video encoder 20 and video decoder
30 may be configured to code a Cb chroma coded block flag for a block of video data
using context adaptive binary arithmetic coding (CABAC), wherein CABAC uses a
context set including one or more contexts, and code a Cr chroma coded block flag
using CABAC, wherein CABAC uses the same context set as the Cb chroma coded
block flag. Video encoder 20 and video decoder 30 may be further configured to select
a context from the one or more contexts based on a transform depth of a transform unit
associated with the block of video data.

[0109] In one proposal for HEVC, there are twelve context sets for both the

coeff abs level greaterl flag and the coeff abs level greater2 flag. The

coeff abs level greaterl flag indicates if a transform coefficient has an absolute value
greater than 1. The coeff abs_level greater2 flag indicates if a transform coefficient
has an absolute value greater than 2. The context sets are equally assigned for the luma
and chroma component, i.c., 6 context sets for luma and 6 contexts for chroma. Each
context set consists of 5 contexts. The index of the context set, ctxSet, is selected based
on the previous coeff abs level greater]l flag. For coeff abs level greaterl flag, the
index of the context within a context set, greater1 Ctx, is determined based on the

trailing ones to a maximum of 4. The context index can be represented as:

ctxldx level greaterl = (ctxSet * 5) + Min(4, greater1Ctx) (1)

WO 2013/070353 PCT/US2012/059092

31

[0110] For coeff abs level greater2 flag, the index of the context within a context set,

greater2Ctx, is based on the number of coeff abs level greaterl flag being 1to a

maximum of 4. The context index can be represented as:

ctxldx level greater2 = (ctxSet * 5) + Min(4, greater2Ctx) (2)

greater 1Ctx based on the number for the significant coefficients and the number of the

coefficients that are greater than 1. On the other hand, greater2Ctx based on the number

of the coefficients that are greater than 1.

[0111] In some examples, a different number of contexts may be used in different

context sets, including, for example:

1.

Context sets for level greater than 1 or for level greater than 2 could have
different number of contexts. For example, context set 0 and 3 could have 5
contexts and the rest of the context sets could have 2 contexts.

Context sets for luma coefficient can have different number of contexts
compared to context sets for chroma component. For example, the context set 0
for luma can have 5 contexts and the context set 0 for chroma could have 4
contexts.

Context set for level greater than 1 can have different contexts number than the
context set for level greater than 2. For example, context set 0 for level great
than 1 could have 5 contexts and context set 0 for level greater than 2 could only

have 3 contexts.

[0112] In other examples, a different number for context sets may be used for coding of

greater than 1 or greater than 2, including, for example:

1.

Context sets for luma coefficient can have different number of contexts set to the
context sets used for chroma component. For example, the luma could use 6
contexts and the chroma could use 4 contexts.

Context sets for greater than 1 can have different number of contexts set to the
context sets used greater than 2. For example, the greater than 1 could use 6

contexts and the greater than 2 could use 4 contexts.

[0113] Optionally, a metric is used to determine which context is being used in a

context set and the range of value of the metric is greater than the number for the

contexts in the context set. In one such aspect, one context could be associated to one or

WO 2013/070353 PCT/US2012/059092
32

more values of the metric. The context sharing is preferably limited to continuous
values. For example, let the value of the metric be y. y=2 is associated to the context 3,
and y=1 and y=4 can also be associate to the context 3. However, if y=3 is associate to
the context 4, y=4 cannot be associated to the context 3.

[0114] For example, for coeff abs level greaterl flag, context set 0 and 3 have 5
contexts and context set 1, 2, 4 and 5 have 2 contexts. For

coeff abs level greater2 flag, context set 0, 1, and 2 have 5 contexts and context set 3,

4, and 5 have 2 contexts. It can be represented as:

ctxldx_level greaterl = (ctxSet * 5) + Min(Thres greaterl , greaterlCtx) (3)
if ctxSet =0 or ctxSet =3, Thres_ greaterl = 4;

otherwise, Thres greater]l = 1.

ctxldx_level greater2 = (ctxSet * 5) + Min(Thres greater2, greater2Ctx) (4)
if ctxSet <3, Thres_ greater2 = 4;

otherwise, Thres greater2 = 1

Thres greater]l and Thres greater2 can be chosen differently based on the following
situations:
1. Luma or chroma component
2. Context sets
[0115] As another example, for coeff abs level greater]l flag, context set 0 and 3 have
5 contexts and context set 1,2,4 and 5 have 3 contexts. For
coeff abs level greater2 flag, context set 0,1, and 2 have 5 contexts and context set
3,4, and 5 have 2 contexts. It can be represented as:
ctxldx_level greater]l = (ctxSet * 5) + greater]lCtx_mapped (3)
ctxldx level greater2 = (ctxSet * 5) + greater2Ctx_mapped (4)

[0116] In such examples, the map can be as shown in Tables 19 and 20:

greater] Ctx 0 1 2 3 >3
ctxSet 0 0 1 2 3 4
ctxSet 1 0 1 1 2 2
ctxSet 2 0 1 1 1 2
ctxSet 3 0 1 2 3 4
ctxSet 4 0 1 2 2 2

WO 2013/070353 33 PCT/US2012/059092
ctxSet 5 0 1 1 2 2
Table 19
greater2Ctx 0 1 2 3 >3
ctxSet 0 0 1 2 3 4
ctxSet 1 0 1 1 1 1
ctxSet 2 0 1 1 1 1
ctxSet 3 0 1 2 3 4
ctxSet 4 0 1 1 1 1
ctxSet 5 0 1 1 1 1
Table 20

[0117] The CABAC initialization tables of coeff abs level greaterl flag and

coeff abs level greater2 flag are also modified for the context sets for Thres greaterl

or Thres greater2 equal to 1. The modifications move the initialization of the fifth

context ahead to be the initialization of the second context. This proposed method

reduces the number of the contexts from 120 to 78.

Low delay B
All Intra HE Random access HE

BD-rate HE

Y U A\ Y U A\ Y U A\
Class A -

0.00% 0.04% 0.03% 0.05% 0.31% -0.35%
Class B)

0.01% 0.04% 0.03% 0.01% 0.03% -0.09% 0.00% -0.15% 0.23%
Class C)

0.00% 0.05% 0.00% 0.03% 0.06% 0.06% 0.00% 0.23% 0.23%
Class D 0.00% 0.01% -0.03% 0.01% 0.22% 0.04% -0.01% 0.26% 0.24%
Class E)

0.00% 0.02% 0.03% -0.52% 0.16%
All)

0.00% 001% 0.01% 0.02% 0.15% -0.09% 0.01% -0.02% 0.04%
Enc T[%]
Dec T[%]

Table 21. Coding performance of the proposed method on coeff abs level greater! flag and

coeff abs level greater? flag.

[0118] Table 21 lists the number of the contexts for all the syntax elements mentioned

in previous sections. The total reduction is 56 contexts.

WO 2013/070353 PCT/US2012/059092

34

of Contexts HM4.0 Proposed method
pred_type 10 6

merge_idx 4 1
inter_pred_flag 4 3

ref_idx lc, ref idx 10, ref idx 11 3 2

cbf cb, cbf cr 10 5

coeff _abs level greaterl flag 60 36

coeff _abs level greater2 flag 60 42

Total 151 95

Table 22. Comparison of number of contexts in the proposed method and HM4.0

[0119] FIG. 2 is a block diagram illustrating an example video encoder 20 that may
implement the techniques described in this disclosure. Video encoder 20 may perform
intra- and inter-coding of video blocks within video slices. Intra-coding relies on spatial
prediction to reduce or remove spatial redundancy in video within a given video frame
or picture. Inter-coding relies on temporal prediction to reduce or remove temporal
redundancy in video within adjacent frames or pictures of a video sequence. Intra-mode
(I mode) may refer to any of several spatial based compression modes. Inter-modes,
such as uni-directional prediction (P mode) or bi-prediction (B mode), may refer to any
of several temporal-based compression modes.

[0120] In the example of FIG. 2, video encoder 20 includes a partitioning unit 35,
prediction unit 41, reference picture memory 64, summer 50, transform unit 52,
quantization unit 54, and entropy encoding unit 56. Prediction unit 41 includes motion
estimation unit 42, motion compensation unit 44, and intra prediction unit 46. For video
block reconstruction, video encoder 20 also includes inverse quantization unit 58,
inverse transform unit 60, and summer 62. A deblocking filter (not shown in FIG. 2)
may also be included to filter block boundaries to remove blockiness artifacts from
reconstructed video. If desired, the deblocking filter would typically filter the output of
summer 62. Additional loop filters (in loop or post loop) may also be used in addition
to the deblocking filter.

[0121] As shown in FIG. 2, video encoder 20 receives video data, and partitioning unit
35 partitions the data into video blocks. This partitioning may also include partitioning
into slices, tiles, or other larger units, as wells as video block partitioning, ¢.g.,

according to a quadtree structure of LCUs and CUs. Video encoder 20 generally

WO 2013/070353 PCT/US2012/059092
35

illustrates the components that encode video blocks within a video slice to be encoded.
The slice may be divided into multiple video blocks (and possibly into sets of video
blocks referred to as tiles). Prediction unit 41 may select one of a plurality of possible
coding modes, such as one of a plurality of intra coding modes or one of a plurality of
inter coding modes, for the current video block based on error results (e.g., coding rate
and the level of distortion). Prediction unit 41 may provide the resulting intra- or inter-
coded block to summer 50 to generate residual block data and to summer 62 to
reconstruct the encoded block for use as a reference picture.

[0122] Intra prediction unit 46 within prediction unit 41 may perform intra-predictive
coding of the current video block relative to one or more neighboring blocks in the same
frame or slice as the current block to be coded to provide spatial compression. Motion
estimation unit 42 and motion compensation unit 44 within prediction unit 41 perform
inter-predictive coding of the current video block relative to one or more predictive
blocks in one or more reference pictures to provide temporal compression.

[0123] Motion estimation unit 42 may be configured to determine the inter-prediction
mode for a video slice according to a predetermined pattern for a video sequence. The
predetermined pattern may designate video slices in the sequence as P slices, B slices or
GPB (generalized P/B) slices. Motion estimation unit 42 and motion compensation unit
44 may be highly integrated, but are illustrated separately for conceptual purposes.
Motion estimation, performed by motion estimation unit 42, is the process of generating
motion vectors, which estimate motion for video blocks. A motion vector, for example,
may indicate the displacement of a PU of a video block within a current video frame or
picture relative to a predictive block within a reference picture.

[0124] A predictive block is a block that is found to closely match the PU of the video
block to be coded in terms of pixel difference, which may be determined by sum of
absolute difference (SAD), sum of square difference (SSD), or other difference metrics.
In some examples, video encoder 20 may calculate values for sub-integer pixel positions
of reference pictures stored in reference picture memory 64. For example, video
encoder 20 may interpolate values of one-quarter pixel positions, one-eighth pixel
positions, or other fractional pixel positions of the reference picture. Therefore, motion
estimation unit 42 may perform a motion search relative to the full pixel positions and
fractional pixel positions and output a motion vector with fractional pixel precision.
[0125] Motion estimation unit 42 calculates a motion vector for a PU of a video block

in an inter-coded slice by comparing the position of the PU to the position of a

WO 2013/070353 PCT/US2012/059092
36

predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in reference picture memory 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

[0126] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation, possibly performing interpolations to sub-pixel precision. Upon
receiving the motion vector for the PU of the current video block, motion compensation
unit 44 may locate the predictive block to which the motion vector points in one of the
reference picture lists. Video encoder 20 forms a residual video block by subtracting
pixel values of the predictive block from the pixel values of the current video block
being coded, forming pixel difference values. The pixel difference values form residual
data for the block, and may include both luma and chroma difference components.
Summer 50 represents the component or components that perform this subtraction
operation. Motion compensation unit 44 may also generate syntax elements associated
with the video blocks and the video slice for use by video decoder 30 in decoding the
video blocks of the video slice.

[0127] Intra-prediction unit 46 may intra-predict a current block, as an alternative to the
inter-prediction performed by motion estimation unit 42 and motion compensation unit
44, as described above. In particular, intra-prediction unit 46 may determine an intra-
prediction mode to use to encode a current block. In some examples, intra-prediction
unit 46 may encode a current block using various intra-prediction modes, ¢.g., during
separate encoding passes, and intra-prediction unit 46 (or mode select unit 40, in some
examples) may select an appropriate intra-prediction mode to use from the tested
modes. For example, intra-prediction unit 46 may calculate rate-distortion values using
a rate-distortion analysis for the various tested intra-prediction modes, and select the
intra-prediction mode having the best rate-distortion characteristics among the tested
modes. Rate-distortion analysis generally determines an amount of distortion (or error)
between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bit rate (that is, a number of bits) used to
produce the encoded block. Intra-prediction unit 46 may calculate ratios from the
distortions and rates for the various encoded blocks to determine which intra-prediction

mode exhibits the best rate-distortion value for the block.

WO 2013/070353 PCT/US2012/059092
37

[0128] In any case, after selecting an intra-prediction mode for a block, intra-prediction
unit 46 may provide information indicative of the selected intra-prediction mode for the
block to entropy coding unit 56. Entropy coding unit 56 may encode the information
indicating the selected intra-prediction mode in accordance with the techniques of this
disclosure. Video encoder 20 may include in the transmitted bitstream configuration
data, which may include a plurality of intra-prediction mode index tables and a plurality
of modified intra-prediction mode index tables (also referred to as codeword mapping
tables), definitions of encoding contexts for various blocks, and indications of a most
probable intra-prediction mode, an intra-prediction mode index table, and a modified
intra-prediction mode index table to use for each of the contexts.

[0129] After prediction unit 41 generates the predictive block for the current video
block via either inter-prediction or intra-prediction, video encoder 20 forms a residual
video block by subtracting the predictive block from the current video block. The
residual video data in the residual block may be included in one or more TUs and
applied to transform unit 52. Transform unit 52 transforms the residual video data into
residual transform coefficients using a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform. Transform unit 52 may convert the residual
video data from a pixel domain to a transform domain, such as a frequency domain.
[0130] Transform unit 52 may send the resulting transform coefficients to quantization
unit 54. Quantization unit 54 quantizes the transform coefficients to further reduce bit
rate. The quantization process may reduce the bit depth associated with some or all of
the coefficients. The degree of quantization may be modified by adjusting a
quantization parameter. In some examples, quantization unit 54 may then perform a
scan of the matrix including the quantized transform coefficients. Alternatively, entropy
encoding unit 56 may perform the scan. As one example, the coding techniques
described in this disclosure may be performed fully or partially by entropy encoding
unit 56. However, aspects of this disclosure are not so limited. For example, the coding
techniques described in this disclosure may be performed by a component of video
encoder 20 not shown in FIG. 2, such as a processor or any other component. In some
examples, the coding techniques of this disclosure may be performed by one of the other
units or modules illustrated in FIG. 2. In yet some other examples, the coding
techniques of this disclosure may be performed by a combination of units and modules
of video encoder 20. In this way, video encoder 20 may be configured to perform the

example techniques described in this disclosure.

WO 2013/070353 PCT/US2012/059092
38

[0131] Following quantization, entropy encoding unit 56 entropy encodes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy encoding methodology or
technique. Following the entropy encoding by entropy encoding unit 56, the encoded
bitstream may be transmitted to video decoder 30, or archived for later transmission or
retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode the
motion vectors and the other syntax elements for the current video slice being coded.
[0132] In one example of the disclosure, entropy encoding unit 56 may be configured to
determine a first prediction type for a block of video data in a P slice, represent the first
prediction type as a P-slice prediction type syntax element, determine a second
prediction type for a block of video data in a B slice, represent the second prediction
type as a B-slice prediction type syntax element, determine a P-slice binarization for the
P-slice prediction type syntax element, determine a B-slice binarization for the B-slice
prediction type syntax element, wherein the P-slice prediction type syntax element and
the B-slice prediction type syntax element are determined using the same binarization
logic, and encode the video data based on the binarizations of the P-slice prediction type
syntax element and the B-slice prediction syntax element.

[0133] In another example of the disclosure, entropy encoding unit 56 may be
configured to determine a partition type for a prediction mode for a block of video data,
encode a partition type bin of a prediction type syntax element for the block of video
data using context adaptive binary arithmetic coding with a single context, wherein the
single context is the same for any partition type, and encode a partition size bin of a
prediction type syntax for the block of video data using context adaptive binary
arithmetic coding in bypass mode.

[0134] In another example of the disclosure, entropy encoding unit 56 may be
configured to code a Cb chroma coded block flag for a block of video data using context
adaptive binary arithmetic coding (CABAC), wherein CABAC uses a context set
including one or more contexts, and code a Cr chroma coded block flag using CABAC,
wherein CABAC uses the same context set as the Cb chroma coded block flag. Video
encoder 20 and video decoder 30 may be further configured to select a context from the
one or more contexts based on a transform depth of a transform unit associated with the

block of video data.

WO 2013/070353 PCT/US2012/059092
39

[0135] Inverse quantization unit 58 and inverse transform unit 60 apply inverse
quantization and inverse transformation, respectively, to reconstruct the residual block
in the pixel domain for later use as a reference block of a reference picture. Motion
compensation unit 44 may calculate a reference block by adding the residual block to a
predictive block of one of the reference pictures within one of the reference picture lists.
Motion compensation unit 44 may also apply one or more interpolation filters to the
reconstructed residual block to calculate sub-integer pixel values for use in motion
estimation. Summer 62 adds the reconstructed residual block to the motion
compensated prediction block produced by motion compensation unit 44 to produce a
reference block for storage in reference picture memory 64. The reference block may
be used by motion estimation unit 42 and motion compensation unit 44 as a reference
block to inter-predict a block in a subsequent video frame or picture.

[0136] FIG. 3 is a block diagram illustrating an example video decoder 30 that may
implement the techniques described in this disclosure. In the example of FIG. 3, video
decoder 30 includes an entropy decoding unit 80, prediction unit 81, inverse
quantization unit 86, inverse transformation unit 88, summer 90, and reference picture
memory 92. Prediction unit 81 includes motion compensation unit 82 and intra
prediction unit 84. Video decoder 30 may, in some examples, perform a decoding pass
generally reciprocal to the encoding pass described with respect to video encoder 20
from FIG. 2.

[0137] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 80 of video decoder 30 entropy
decodes the bitstream to generate quantized coefficients, motion vectors, and other
syntax elements. Entropy decoding unit 80 forwards the motion vectors and other
syntax elements to prediction unit 81. Video decoder 30 may receive the syntax
elements at the video slice level and/or the video block level.

[0138] As one example, the coding techniques described in this disclosure may be
performed fully or partially by entropy decoding unit 80. However, aspects of this
disclosure are not so limited. For example, the coding techniques described in this
disclosure may be performed by a component of video decoder 30 not shown in FIG. 3,
such as a processor or any other component. In some examples, the coding techniques
of this disclosure may be performed by one of the other units or modules illustrated in

FIG. 3. In yet some other examples, the coding techniques of this disclosure may be

WO 2013/070353 PCT/US2012/059092
40

performed by a combination of units and modules of video decoder 30. In this way,
video decoder 30 may be configured to perform the example techniques described in
this disclosure.

[0139] In one example of the disclosure, entropy decoding unit 80 may be configured to
map a binarized P-slice prediction type syntax element to a prediction type using a
binarization mapping for a block of video data in a P slice, map a binarized B-slice
prediction type syntax element to a prediction type using the same binarization mapping
for a block of video data in a B slice, and decode the video data based on the mapped
prediction types.

[0140] In one example of the disclosure, entropy decoding unit 80 may be configured to
receive a prediction type syntax element for a block of video data that has been coded
using context adaptive binary arithmetic coding (CABAC), the prediction type syntax
element including a partition type bin representing a partition type and a partition size
bin representing a partition size, decoding the partition type bin of the prediction type
syntax element using context adaptive binary arithmetic coding with a single context,
wherein the single context is the same for any partition type, and decoding the partition
size bin of the prediction type syntax for a block of video data using context adaptive
binary arithmetic coding in bypass mode.

[0141] In another example of the disclosure, entropy decoding unit 80 may be
configured to code a Cb chroma coded block flag for a block of video data using context
adaptive binary arithmetic coding (CABAC), wherein CABAC uses a context set
including one or more contexts, and code a Cr chroma coded block flag using CABAC,
wherein CABAC uses the same context set as the Cb chroma coded block flag. Video
encoder 20 and video decoder 30 may be further configured to select a context from the
one or more contexts based on a transform depth of a transform unit associated with the
block of video data.

[0142] When the video slice is coded as an intra-coded (I) slice, intra prediction unit 84
of prediction unit 81 may generate prediction data for a video block of the current video
slice based on a signaled intra prediction mode and data from previously decoded blocks
of the current frame or picture. When the video frame is coded as an inter-coded (i.e.,
B, P or GPB) slice, motion compensation unit 82 of prediction unit 81 produces
predictive blocks for a video block of the current video slice based on the motion
vectors and other syntax elements received from entropy decoding unit 80. The

predictive blocks may be produced from one of the reference pictures within one of the

WO 2013/070353 PCT/US2012/059092
41

reference picture lists. Video decoder 30 may construct the reference frame lists, List O
and List 1, using default construction techniques based on reference pictures stored in
reference picture memory 92.

[0143] Motion compensation unit 82 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax elements,
and uses the prediction information to produce the predictive blocks for the current
video block being decoded. For example, motion compensation unit 82 uses some of
the received syntax elements to determine a prediction mode (e.g., intra- or inter-
prediction) used to code the video blocks of the video slice, an inter-prediction slice
type (e.g., B slice, P slice, or GPB slice), construction information for one or more of
the reference picture lists for the slice, motion vectors for each inter-encoded video
block of the slice, inter-prediction status for each inter-coded video block of the slice,
and other information to decode the video blocks in the current video slice.

[0144] Motion compensation unit 82 may also perform interpolation based on
interpolation filters. Motion compensation unit 82 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 82
may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0145] Inverse quantization unit 86 inverse quantizes, i.c., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
80. The inverse quantization process may include use of a quantization parameter
calculated by video encoder 20 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied. Inverse transform unit 88 applies an inverse transform, e.g., an inverse DCT,
an inverse integer transform, or a conceptually similar inverse transform process, to the
transform coefficients in order to produce residual blocks in the pixel domain.

[0146] After motion compensation unit 82 generates the predictive block for the current
video block based on the motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks from inverse transform
unit 88 with the corresponding predictive blocks generated by motion compensation
unit 82. Summer 90 represents the component or components that perform this
summation operation. If desired, a deblocking filter may also be applied to filter the

decoded blocks in order to remove blockiness artifacts. Other loop filters (either in the

WO 2013/070353 PCT/US2012/059092
42

coding loop or after the coding loop) may also be used to smooth pixel transitions, or
otherwise improve the video quality. The decoded video blocks in a given frame or
picture are then stored in reference picture memory 92, which stores reference pictures
used for subsequent motion compensation. Reference picture memory 92 also stores
decoded video for later presentation on a display device, such as display device 32 of
FIG. 1.

[0147] FIG. 6 is a flowchart illustrating an example video encoding method of the
disclosure. The method of FIG. 6 may be implemented by video encoder 20. Video
encoder 20 may be configured to determine a first prediction type for a block of video
data in a P slice (602), and to represent the first prediction type as a P-slice prediction
type syntax element (604). Video encoder 20 may be further configured to determine a
second prediction type for a block of video data in a B slice (606), and to represent the
second prediction type as a B-slice prediction type syntax element (608). The P-slice
prediction type syntax element and the B-slice prediction type syntax element specify a
prediction mode and a partition type. The prediction mode may include one of inter-
prediction and intra-prediction. The partition type may include one of symmetric
partitions and asymmetric partitions.

[0148] Video encoder 20 may be further configured to determine a P-slice binarization
for the P-slice prediction type syntax element (610), and to determine a B-slice
binarization for the B-slice prediction type syntax element, wherein the P-slice
prediction type syntax element and the B-slice prediction type syntax element are
determined using the same binarization logic (612). Video encoder 20 may then encode
the video data based on the binarizations of the P-slice prediction type syntax element
and the B-slice prediction syntax element (614).

[0149] Encoding the video data may comprise binarizing the P-slice prediction type
syntax element with the determined P-slice binarizations, binarizing the B-slice
prediction type syntax element with the determined B-slice binarizations, applying
context adaptive binary arithmetic coding (CABAC) to the binarized P-slice prediction
type syntax element, and applying context adaptive binary arithmetic coding (CABAC)
to the binarized B-slice prediction type syntax element.

[0150] FIG. 7 is a flowchart illustrating an example video decoding method of the
disclosure. The method of FIG. 7 may be implemented by video decoder 30. Video
decoder 30 may be configured to receive a context adaptive binary arithmetic coded P-

slice prediction type syntax element which indicates the prediction type for the block of

WO 2013/070353 PCT/US2012/059092
43

video data in a P slice (702), and to receive a context adaptive binary arithmetic coded
B-slice prediction type syntax element which indicates the prediction type for the block
of video data in a B slice (704). The P-slice prediction type syntax element and the B-
slice prediction type syntax element specify a prediction mode and a partition type. The
prediction mode may include one of inter-prediction and intra-prediction. The partition
type may include one of symmetric partitions and asymmetric partitions.

[0151] Video decoder 30 may be further configured to decode the P-slice prediction
type syntax element to produce a binarized P-slice prediction type syntax element (706),
and to decode the B-slice prediction type syntax element to produce a binarized B-slice
prediction type syntax element (708). Video decoder 30 may be further configured to
map the binarized P-slice prediction type syntax element to a prediction type using a
binarization mapping for a block of video data in a P slice (710), and to map the
binarized B-slice prediction type syntax element to a prediction type using the same
binarization mapping for a block of video data in a B slice (712). Video decoder 30
may then decode the video data based on the mapped prediction types (714).

[0152] FIG. 8 is a flowchart illustrating an example video encoding method of the
disclosure. The method of FIG. 8 may be implemented by video encoder 20. Video
encoder 20 may be configured to determine a partition type for a prediction mode for a
block of video data (802) and to encode a partition type bin of a prediction type syntax
element for the block of video data using context adaptive binary arithmetic coding
(CABAC) with a single context (804). The single context is the same for any partition
type. In one example, the partition type is an asymmetric partition and the partition type
bin indicates whether the asymmetric partition is vertically partitioned or horizontally
partitioned. For example, the partition size bin indicates whether a first partition is one-
quarter of a size of the block of video data or whether the first partition is three-quarters
of the size of the block of video data.

[0153] Video encoder 20 may be further configured to encode a partition size bin of the
prediction type syntax element for the block of video data using CABAC in bypass
mode (806).

[0154] FIG. 9 is a flowchart illustrating an example video decoding method of the
disclosure. The method of FIG. 9 may be implemented by video decoder 30. Video
decoder 30 may be configured to receive a prediction type syntax element for a block of
video data that has been coded using context adaptive binary arithmetic coding

(CABAC), the prediction type syntax element including a partition type bin representing

WO 2013/070353 PCT/US2012/059092
44

a partition type and a partition size bin representing a partition size (902). In one
example, the partition type is an asymmetric partition and the partition type bin
indicates whether the asymmetric partition is vertically partitioned or horizontally
partitioned. For example, the partition size bin indicates whether a first partition is one-
quarter of a size of the block of video data or whether the first partition is three-quarters
of the size of the block of video data.

[0155] Video decoder 30 may be further configured to decode the partition type bin of
the prediction type syntax element using CABAC with a single context, wherein the
single context is the same for any partition type (904), and to decode the partition size
bin of the prediction type syntax element using CABAC in bypass mode (906).

[0156] FIG. 10 is a flowchart illustrating an example video coding method of the
disclosure. The method of FIG. 10 may be implemented by either video encoder 20 or
video decoder. For the purposes of FIG. 10, video encoder 20 and video decoder 30
will be referred to, collectively, as a video coder. In accordance with techniques of FIG.
10, a video coder may be configured to code a Cb chroma coded block flag for a block
of video data using context adaptive binary arithmetic coding (CABAC), wherein
coding the Cb chroma coded block flag comprises using a context set including one or
more contexts as part of the CABAC (1002), and to code a Cr chroma coded block flag
using CABAC, wherein coding the Cr chroma coded block flag comprises using the
same context set as the Cb chroma coded block flag as part of the CABAC (1004). In
one example, the context set includes 5 contexts.

[0157] In one optional example of the disclosure, a video coder may be further
configured to select a context from the one or more contexts based on a transform depth
of a transform unit associated with the block of video data (1006).

[0158] When operating as a video encoder, a video coder may be further configured to
signal the coded Cb chroma coded block flag in an encoded video bitstream, and to
signal the coded Cr chroma coded block flag in the encoded video bitstream. When
operating as a video decoder, a video coder may be further configured to receive the
coded Cb chroma coded block flag in an encoded video bitstream, and to receive the
coded Cr chroma coded block flag in the encoded video bitstream.

[0159] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,

a computer-readable medium and executed by a hardware-based processing unit.

WO 2013/070353 PCT/US2012/059092
45

Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0160] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0161] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAS), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the

functionality described herein may be provided within dedicated hardware and/or

WO 2013/070353 PCT/US2012/059092
46

software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0162] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0163] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2013/070353 PCT/US2012/059092
47

WHAT IS CLAIMED IS:

1. A method of encoding video data comprising:
determining a first prediction type for a block of video data in a P slice;
representing the first prediction type as a P-slice prediction type syntax element;
determining a second prediction type for a block of video data in a B slice;
representing the second prediction type as a B-slice prediction type syntax
clement;
determining a P-slice binarization for the P-slice prediction type syntax element;
determining a B-slice binarization for the B-slice prediction type syntax element,
wherein the P-slice prediction type syntax element and the B-slice prediction type
syntax element are determined using the same binarization logic; and
encoding the video data based on the binarizations of the P-slice prediction type

syntax element and the B-slice prediction syntax element.

2. The method of claim 1, wherein encoding the video data comprises:

binarizing the P-slice prediction type syntax element with the determined P-slice
binarization;

binarizing the B-slice prediction type syntax element with the determined B-
slice binarization;

applying context adaptive binary arithmetic coding (CABAC) to the binarized P-
slice prediction type syntax element; and

applying context adaptive binary arithmetic coding (CABAC) to the binarized

B-slice prediction type syntax element.

3. The method of claim 1, wherein the P-slice prediction type syntax element and

the B-slice prediction type syntax element specify a prediction mode and a partition

type.

4. The method of claim 3, wherein the prediction mode includes one of inter-

prediction and intra-prediction.

5. The method of claim 3, wherein the partition type includes one of symmetric

partitions and asymmetric partitions.

WO 2013/070353 PCT/US2012/059092
48

6. A method of decoding video data comprising:

mapping a binarized P-slice prediction type syntax element to a prediction type
using a binarization mapping for a block of video data in a P slice;

mapping a binarized B-slice prediction type syntax element to a prediction type
using the same binarization mapping for a block of video data in a B slice; and

decoding the video data based on the mapped prediction types.

7. The method of claim 6, further comprising:
receiving a context adaptive binary arithmetic coded P-slice prediction type
syntax element which indicates the prediction type for the block of video data in a P
slice; and
receiving a context adaptive binary arithmetic coded B-slice prediction type
syntax element which indicates the prediction type for the block of video data in a B
slice,
wherein decoding the video data further comprises:
decoding the P-slice prediction type syntax element to produce the
binarized P-slice prediction type syntax element; and
decoding the B-slice prediction type syntax element to produce the

binarized B-slice prediction type syntax element.

8. The method of claim 6, wherein the P-slice prediction type syntax element and

the B-slice prediction type syntax element specify a prediction mode and a partition

type.

9. The method of claim 8, wherein the prediction mode includes one of inter-

prediction and intra-prediction.

10. The method of claim 8, wherein the partition type includes one of symmetric

partitions and asymmetric partitions.

WO 2013/070353 PCT/US2012/059092
49

11. An apparatus configured to encode video data comprising:

means for determining a first prediction type for a block of video data in a P
slice;

means for representing the first prediction type as a P-slice prediction type
syntax element;

means for determining a second prediction type for a block of video data in a B
slice;

means for representing the second prediction type as a B-slice prediction type
syntax element;

means for determining a P-slice binarization for the P-slice prediction type
syntax element;

means for determining a B-slice binarization for the B-slice prediction type
syntax element, wherein the P-slice prediction type syntax element and the B-slice
prediction type syntax element are determined using the same binarization logic; and

means for encoding the video data based on the binarizations of the P-slice

prediction type syntax element and the B-slice prediction syntax element.

12. The apparatus of claim 11, wherein the means for encoding the video data
comprises:

means for binarizing the P-slice prediction type syntax element with the
determined P-slice binarization,;

means for binarizing the B-slice prediction type syntax element with the
determined B-slice binarization;

means for applying context adaptive binary arithmetic coding (CABAC) to the
binarized P-slice prediction type syntax element; and

means for applying context adaptive binary arithmetic coding (CABAC) to the

binarized B-slice prediction type syntax element.

13. The apparatus of claim 11, wherein the P-slice prediction type syntax element

and the B-slice prediction type syntax element specify a prediction mode and a partition

type.

14. The apparatus of claim 13, wherein the prediction mode includes one of inter-

prediction and intra-prediction.

WO 2013/070353 PCT/US2012/059092
50

15. The apparatus of claim 13, wherein the partition type includes one of symmetric

partitions and asymmetric partitions.

16. An apparatus configured to decode video data comprising:
means for mapping a binarized P-slice prediction type syntax element to a
prediction type using a binarization mapping for a block of video data in a P slice;
means for mapping a binarized B-slice prediction type syntax element to a
prediction type using the same binarization mapping for a block of video data in a B
slice; and

means for decoding the video data based on the mapped prediction types.

17. The apparatus of claim 16, further comprising:
means for receiving a context adaptive binary arithmetic coded P-slice
prediction type syntax element which indicates the prediction type for the block of video
data in a P slice; and
means for receiving a context adaptive binary arithmetic coded B-slice
prediction type syntax element which indicates the prediction type for the block of video
data in a B slice,
wherein the means for decoding the video data further comprises:
means for decoding the P-slice prediction type syntax element to produce
the binarized P-slice prediction type syntax element; and
means for decoding the B-slice prediction type syntax element to

produce the binarized B-slice prediction type syntax element.

18. The apparatus of claim 16, wherein the P-slice prediction type syntax element

and the B-slice prediction type syntax element specify a prediction mode and a partition

type.

19. The apparatus of claim 18, wherein the prediction mode includes one of inter-

prediction and intra-prediction.

20. The apparatus of claim 18, wherein the partition type includes one of symmetric

partitions and asymmetric partitions.

WO 2013/070353 PCT/US2012/059092
51

21. An apparatus configured to encode video data comprising:

a video encoder configured to:

determine a first prediction type for a block of video data in a P slice;

represent the first prediction type as a P-slice prediction type syntax
clement;

determine a second prediction type for a block of video data in a B slice;

represent the second prediction type as a B-slice prediction type syntax
clement;

determine a P-slice binarization for the P-slice prediction type syntax
clement;

determine a B-slice binarization for the B-slice prediction type syntax
element, wherein the P-slice prediction type syntax element and the B-slice
prediction type syntax element are determined using the same binarization logic;
and

encode the video data based on the binarizations of the P-slice prediction

type syntax element and the B-slice prediction syntax element.

22. The apparatus of claim 21, wherein the video encoder is further configured to:

binarize the P-slice prediction type syntax element with the determined P-slice
binarization;

binarize the B-slice prediction type syntax element with the determined B-slice
binarization;

apply context adaptive binary arithmetic coding (CABAC) to the binarized P-
slice prediction type syntax element; and

apply context adaptive binary arithmetic coding (CABAC) to the binarized B-

slice prediction type syntax element.

23. The apparatus of claim 21, wherein the P-slice prediction type syntax element

and the B-slice prediction type syntax element specify a prediction mode and a partition

type.

24. The apparatus of claim 23, wherein the prediction mode includes one of inter-

prediction and intra-prediction.

WO 2013/070353 PCT/US2012/059092

52
25. The apparatus of claim 23, wherein the partition type includes one of symmetric
partitions and asymmetric partitions.
26. An apparatus configured to decode video data comprising:

a video decoder configured to:

map a binarized P-slice prediction type syntax element to a prediction
type using a binarization mapping for a block of video data in a P slice;

map a binarized B-slice prediction type syntax element to a prediction
type using the same binarization mapping for a block of video data in a B slice;
and

decode the video data based on the mapped prediction types.

27. The apparatus of claim 26, wherein the video decoder is further configured to:
receive a context adaptive binary arithmetic coded P-slice prediction type syntax
element which indicates the prediction type for the block of video data in a P slice;
receive a context adaptive binary arithmetic coded B-slice prediction type syntax
element which indicates the prediction type for the block of video data in a B slice;
decode the P-slice prediction type syntax element to produce the binarized P-
slice prediction type syntax element; and
decode the B-slice prediction type syntax element to produce the binarized B-

slice prediction type syntax element.

28. The apparatus of claim 26, wherein the P-slice prediction type syntax element

and the B-slice prediction type syntax element specify a prediction mode and a partition

type.

29. The apparatus of claim 28, wherein the prediction mode includes one of inter-

prediction and intra-prediction.

30. The apparatus of claim 28, wherein the partition type includes one of symmetric

partitions and asymmetric partitions.

WO 2013/070353 PCT/US2012/059092
53

31. A computer-readable storage medium storing instructions that, when executed,
cause one or more processors configured to encode video data to:
determine a first prediction type for a block of video data in a P slice;
represent the first prediction type as a P-slice prediction type syntax element;
determine a second prediction type for a block of video data in a B slice;
represent the second prediction type as a B-slice prediction type syntax element;
determine a P-slice binarization for the P-slice prediction type syntax element;
determine a B-slice binarization for the B-slice prediction type syntax element,
wherein the P-slice prediction type syntax element and the B-slice prediction type
syntax element are determined using the same binarization logic; and
encode the video data based on the binarizations of the P-slice prediction type

syntax element and the B-slice prediction syntax element.

32. The computer-readable storage medium of claim 31, wherein the instructions
further cause the one or more processors to:

binarize the P-slice prediction type syntax element with the determined P-slice
binarization;

binarize the B-slice prediction type syntax element with the determined B-slice
binarization;

apply context adaptive binary arithmetic coding (CABAC) to the binarized P-
slice prediction type syntax element; and

apply context adaptive binary arithmetic coding (CABAC) to the binarized B-

slice prediction type syntax element.

33. The computer-readable storage medium of claim 31, wherein the P-slice
prediction type syntax element and the B-slice prediction type syntax element specify a

prediction mode and a partition type.

34. The computer-readable storage medium of claim 33, wherein the prediction

mode includes one of inter-prediction and intra-prediction.

35. The computer-readable storage medium of claim 33, wherein the partition type

includes one of symmetric partitions and asymmetric partitions.

WO 2013/070353 PCT/US2012/059092
54

36. A computer-readable storage medium storing instructions that, when executed,
cause one or more processors configured to decode video data to:

map a binarized P-slice prediction type syntax element to a prediction type using
a binarization mapping for a block of video data in a P slice;

map a binarized B-slice prediction type syntax element to a prediction type using
the same binarization mapping for a block of video data in a B slice; and

decode the video data based on the mapped prediction types.

37. The computer-readable storage medium of claims 36, wherein the instructions
further cause the one or more processors to:
receive a context adaptive binary arithmetic coded P-slice prediction type syntax
element which indicates the prediction type for the block of video data in a P slice;
receive a context adaptive binary arithmetic coded B-slice prediction type syntax
element which indicates the prediction type for the block of video data in a B slice;
decode the P-slice prediction type syntax element to produce the binarized P-
slice prediction type syntax element; and
decode the B-slice prediction type syntax element to produce the binarized B-

slice prediction type syntax element.

38. The computer-readable storage medium of claim 36, wherein the P-slice
prediction type syntax element and the B-slice prediction type syntax element specify a

prediction mode and a partition type.

39. The computer-readable storage medium of claim 38, wherein the prediction

mode includes one of inter-prediction and intra-prediction.

40. The computer-readable storage medium of claim 38, wherein the partition type

includes one of symmetric partitions and asymmetric partitions.

WO 2013/070353

Page 1/10

PCT/US2012/059092

10

SOURCE DEVICE
12

VIDEO SOURCE
18

VIDEO
ENCODER
20

TRANSMITTER
24

t -

DESTINATION DEVICE
14

DISPLAY DEVICE
32

VIDEO
DECODER
30

MODEM
28

RECEIVER
26

— " ——————— —— — — — — — — — — — — — —— — —— — — — —— — — — — — —)

PCT/US2012/059092

WO 2013/070353

Page 2/10

A ¢ 9Old
- T --—--""-"""""-"-"-""-"-"-"="--"-"-""--""-""-"-"-""-"®""-""-""-"-"="-"="-"="-"-F"-"-"-"+»-"=-"”"-—-»"--—"=-=-=- - - - — -
0z _
¥3IAOONI OFAIN |
29 |
3G 35 09 S)20714 03aIA 79 _
LINN LINN LINN I_I a3aLoNAdLSNOO3Y > ANOWIN |
oNIQ0oNa [¥A° | NOILVZILNVND INJOASNVYHL 3unLoid | !
AdOYINT ISUIANI asyaANl | SH0TE pes g3y | !
ais3y o _
A "NOOIY 1INN _
NOILOIa3¥d _
VHLNI _
— I
147 _
1INN _
NOILVSNIdINOD _
NOILOW |
A _
¢ ¢ Ty _
SLN3W313 XVLNAS 1INN _
) NOILVINILS3 _
NOILOW "
v !
1INN NOILOIa3¥d |
0S I
“WNOJSNYAL v e \ i «
avNnais3y 1INN 1INN SMO0719 03aIA LINN
a3zZILNVNO NOLLVZILNVNO WHO4SNVYL | gy9019 + ONINOILILYVd _ Mwm_m,

‘ais3y

PCT/US2012/059092

WO 2013/070353

Page 3/10

|
_ 76 13 98
_ 1INN 1INN
- AHOWIN | «—
N I4NLOId IWHO4SNVYHL NOILVZILNVNO
a3aooaa | 13y 06 SM0071d 3ISUIANI 3ISUIANI
_ IvNaIS3y 1
|
|
— —
| ¥8
_ 1INN
_ NOILOIa3¥d 44309
| VYLNI ‘ZILNVNO
|
| 4] 08
_ 1INN
— -
_ ZO_._.HOW_"_‘.WUA_"_,_EOO SININITI XVLINAS ONIQ0o3d
" AdO¥YLIN3T
| 18
_ LINN NOILOIa3dd 0%
|

d33d0933d O3dIA

1INN —i

Wv3ylislig
O3daiA
a3aodNd

WO 2013/070353 PCT/US2012/059092

Page 4/10

102 104
4 4

2Nx2N (Intra-Prediction NxN (Intra-Prediction
and Inter-Prediction) and Inter-Prediction)
106 108

4 4

2NxN (Inter-Prediction) Nx2N (Inter-Prediction)

FIG. 4

WO 2013/070353 PCT/US2012/059092

Page 5/10

110 112
4 4

2NxnU (Inter-Prediction) 2NxnD (Inter-Prediction)

114 116

4 4

nLx2N (Inter-Prediction) nRx2N (Inter-Prediction)

FIG. 5

WO 2013/070353 PCT/US2012/059092
Page 6/10

DETERMINE A FIRST

PREDICTION TYPE FOR A _—— 602

BLOCK OF VIDEO DATAINAP
SLICE

v

REPRESENT THE FIRST

PREDICTION TYPE AS A P- _—— 604

SLICE PREDICTION TYPE
SYNTAX ELEMENT

v

DETERMINE A SECOND

PREDICTION TYPE FOR A _—— 606

BLOCK OF VIDEO DATAIN AB
SLICE

v

REPRESENT THE SECOND

PREDICTION TYPE AS A B- _—— 608

SLICE PREDICTION TYPE
SYNTAX ELEMENT

I

DETERMINE A P-SLICE

BINARIZATION FOR THE P- _— 610

SLICE PREDICTION TYPE
SYNTAX ELEMENT

v

DETERMINE A B-SLICE
BINARIZATION FOR THE B-
SLICE PREDICTION TYPE
SYNTAX ELEMENT, WHEREIN
THE P-SLICE PREDICTION TYPE | —— 612
SYNTAX ELEMENT AND THE B-
SLICE PREDICTION TYPE
SYNTAX ELEMENT ARE
DETERMINED USING THE SAME
BINARIZATION LOGIC

:

FIG. 6 ENCODE THE VIDEO DATA _—— 614
) BASED ON THE BINARIZATIONS

WO 2013/070353

FIG. 7

Page 7/10

PCT/US2012/059092

RECEIVE A CONTEXT ADAPTIVE
BINARY ARITHMETIC CODED P-
SLICE PREDICTION TYPE
SYNTAX ELEMENT

_— 702

I

RECEIVE A CONTEXT ADAPTIVE
BINARY ARITHMETIC CODED B-
SLICE PREDICTION TYPE
SYNTAX ELEMENT

v

DECODE THE P-SLICE
PREDICTION TYPE SYNTAX
ELEMENT TO PRODUCE A
BINARIZED P-SLICE
PREDICTION TYPE SYNTAX
ELEMENT

_— 706

y

DECODE THE B-SLICE
PREDICTION TYPE SYNTAX
ELEMENT TO PRODUCE A
BINARIZED P-SLICE
PREDICTION TYPE SYNTAX
ELEMENT

v

MAP THE BINARIZED P-SLICE
PREDICTION TYPE SYNTAX
ELEMENT TO A PREDICTION

TYPE USING A BINARIZATION

MAPPING

L 710

v

MAP THE BINARIZED B-SLICE
PREDICTION TYPE SYNTAX
ELEMENT TO A PREDICTION

TYPE USING THE SAME
BINARIZATION MAPPING

v

DECODE THE VIDEO DATA
BASED ON THE MAPPED
PREDICTION TYPES

—— 714

WO 2013/070353

FIG. 8

PCT/US2012/059092

Page 8/10

DETERMINE A PARTITION TYPE 802
FOR A PREDICTION MODE FOR

A BLOCK OF VIDEO DATA

l

ENCODE A PARTITION TYPE BIN
OF A PREDICTION TYPE
SYNTAX ELEMENT FOR THE
BLOCK OF VIDEO DATA USING | — 804
CABAC WITH A SINGLE
CONTEXT, WHEREIN THE
SINGLE CONTEXT IS THE SAME
FOR ANY PARTITION TYPE

l

ENCODE A PARTITION SIZE BIN
OF THE PREDICTION TYPE

SYNTAX ELEMENT FORTHE | 890

BLOCK OF VIDEO DATA USING
CABAC IN BYPASS MODE

WO 2013/070353

FIG.9

Page 9/10

PCT/US2012/059092

RECEIVE A PREDICTION TYPE
SYNTAX ELEMENT FOR A
BLOCK OF VIDEO DATA THAT
HAS BEEN CODED USING
CABAC, THE PREDICTION TYPE
SYNTAX ELEMENT INCLUDING
A PARTITION TYPE BIN
REPRESENTING A PARTITION
TYPE AND A PARTITION SIZE
BIN REPRESENTING A
PARTITION SIZE

L 902

DECODE THE PARTITION TYPE
BIN OF THE PREDICTION TYPE
SYNTAX ELEMENT USING
CABAC WITH A SINGLE
CONTEXT, WHEREIN THE
SINGLE CONTEXT IS THE SAME
FOR ANY PARTITION TYPE

L 904

l

DECODE THE PARTITION SIZE
BIN OF THE PREDICTION TYPE
SYNTAX ELEMENT USING
CABAC IN BYPASS MODE

_— 906

WO 2013/070353

FIG. 10

Page 10 /10

CODE A Cb CHROMA CODED
BLOCK FLAG FOR A BLOCK OF
VIDEO DATA USING CABAC,
WHEREIN CODING THE Cb

PCT/US2012/059092

CHROMA CODED BLOCK FLAG V1002

COMPRISES USING A CONTEXT
SET INCLUDING ONE OR MORE
CONTEXTS AS PART OF THE
CABAC

l

CODE A Cr CHROMA CODED
BLOCK FLAG USING CABAC,
WHEREIN CODING THE Cr

CHROMA CODED BLOCK FLAG [—— 1004

COMPRISES USING THE SAME
CONTEXT SET AS THE Cb
CHROMA CODED BLOCK FLAG
AS PART OF THE CABAC

SELECT A CONTEXT FROM THE |
ONE OR MORE CONTEXTS |

BASED ON A TRANSFORM |—— 1006

DEPTH OF A TRANSFORM UNIT |
ASSOCIATED WITH THE BLOCK |
OF VIDEO DATA |

	DESCRIPTION
	CLAIMS
	DRAWINGS

