
(19) United States
US 2010.0312748A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0312748 A1
Dickerman et al. (43) Pub. Date: Dec. 9, 2010

(54) MULTIDIMENSIONAL CUBE FUNCTIONS

Howard J. Dickerman, Bellevue,
WA (US); Brian W. Boon,
Redmond, WA (US); Charles D.
Ellis, Seattle, WA (US); Kaicheng

(75) Inventors:

Hu, Bellevue, WA (US); Robert G.
Hawking, Seattle, WA (US)

Correspondence Address:
MERCHANT & GOULD (MICROSOFT)
P.O. BOX 2903
MINNEAPOLIS, MN 55402-0903 (US)

MICROSOFT CORPORATION,
Redmond, WA (US)

(73) Assignee:

(21) Appl. No.: 12/852,235

(22) Filed: Aug. 6, 2010

Related U.S. Application Data
(63) Continuation of application No. 1 1/251,598, filed on

Oct. 14, 2005, now Pat. No. 7,805,433.
Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/602; 707/E17.005
(57) ABSTRACT

Cube functions may be used to obtain data from a multidi
mensional database. The cube functions may be contained
within one or more cells of a spreadsheet. These cube func
tions behave similarly to the standard functions that may be
included within a spreadsheet. Exemplary cube functions
include obtaining: a cube member, a cube value, a cube set, a
ranked member, a KPI, a member property and a count relat
ing to a set. The cube functions within the spreadsheet may
access the cube data from one or more multidimensional
databases. Using the cube formulas in individual cells allows
the user to add/delete rows and/or columns from within the
spreadsheet.

? 200

204

MULTIDIMENSIONAL

SERVER

214

CubePunction (Connection ...)

DATABASE

Cube Function

206 string r"Nara N-216

CLIENT

218

Spreadsheet

208

Patent Application Publication Dec. 9, 2010 Sheet 1 of 7 US 2010/0312748A1

18

CENTRAL NETWORK
INPUIT/OUITPLIT

PROCESSING INTERFACE CONTROLLER
LINIT LINIT

OPERATING

RANDOM SYSTEM MASS STORAGE
ACCESS DEVICE
MEMORY

Spreadshee t Calculation
READ Application Engine
ONLY Program

MEMORY
DOCUMENT

Fig. 1

Patent Application Publication Dec. 9, 2010 Sheet 2 of 7 US 2010/0312748A1

-20
204

202

MULTIDIMENSIONAL
DATABASE

SERVER

214

CubePunction(Connection ...)

CLIENT Spreadsheet

208

Fig. 2

Patent Application Publication Dec. 9, 2010 Sheet 3 of 7 US 2010/0312748A1

? 300

302

304

OLAP Cubes

310

306

311

312

314

Fig. 3

Patent Application Publication Dec. 9, 2010 Sheet 4 of 7 US 2010/0312748A1

so

Aggregated Value

CubeValue (Connection Name1 Name2... NameN)

CubeMember (Connection, Name Caption)
420

CubeSet (Connection, Expression LCaption LSortOrder LSortBy)

430 Ny

Set

CubeRanked Member (Connection, Set, Rank LCaption)
440

N/

Rank Member of Set

CubeKPIMember (Connection, KPIName, KPIComponent Caption)
450

CubeMemberProperty (Connection, Name, Property)
460

1NJ

Value of Property

CubeSetCount(Connection, Set)
470

1NJ

Number of Items in Set

Patent Application Publication

Define a ution l,51 O
al database

Create a
Spreadsheet 520

including Cube
Functions

Couple the
Spreadsheet to ~5 3O
the database

Create Queries
for Cube
Functions

540

Fetch Data from 550
Database ?\V

Display Results
within cells of
Spreadsheet

560

Fig. 5

Dec. 9, 2010 Sheet 5 of 7 US 2010/0312748A1

Patent Application Publication Dec. 9, 2010 Sheet 6 of 7 US 2010/0312748A1

600

S& &

Patent Application Publication Dec. 9, 2010 Sheet 7 of 7 US 2010/0312748A1

700

SSSSSSSSSSSSSSSSSSSSSS & & SS &

Sy:Syr's SSS.S.S.S

Fig. 7

US 2010/0312748 A1

MULTIDIMENSIONAL CUBE FUNCTIONS

BACKGROUND

0001 Spreadsheet software applications are used by many
different users for manipulating data. Typical spreadsheet
applications simulate physical spreadsheets by capturing,
displaying, and manipulating data arranged in rows and col
umns. In addition to using spreadsheet applications, many
users also store and utilize enormous amounts of data stored
in multidimensional databases. These multidimensional data
bases are also known as OLAP cubes. These OLAP cubes are
architecturally different from relational databases or object
oriented databases and the language used to query and
describe elements within the OLAP cubes is the Multi-Di
mensional eXpression (MDX) language. OLAP systems ana
lyze data drawn from other databases, often large relational
databases such as data warehouses, or other multidimen
sional databases. The purpose of such analysis is to aggregate
and organize business information into a readily accessible,
easy to use multidimensional structure. Placing this multidi
mensional data within a Pivot Table report within a spread
sheet is limiting because PivotTable reports are restrictive in
their layout.

SUMMARY

0002. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.
0003 Cube functions may be used to obtain data from a
multidimensional database. The cube functions may be con
tained within one or more cells of a spreadsheet and/or may be
accessed through an API. The cube functions behave simi
larly to the standard functions that may be included within
cells of a spreadsheet. Exemplary cube functions include,
obtaining: a cube member, a cube value, a cube set, a ranked
member, a KPI, a member property and a count of items in a
set. Data may be obtained from one or more multidimensional
databases. The cube functions may be executed asynchro
nously such that a user may continue to interact with the
spreadsheet while the requested data is being obtained from
one or more of the multidimensional databases. The cube
functions may take parameters that may include other spread
sheet cell references as well as other cube functions. The use
of the cube functions enables the spreadsheet program to be
used as a reporting tool for multidimensional (OLAP) data
stores. Using the cube formulas in individual cells allows the
user to add/delete rows and/or columns from within the
spreadsheet.

BRIEF DESCRIPTION OF THE DRAWINGS

0004 FIG. 1 illustrates an exemplary computing architec
ture for a computer;
0005 FIG. 2 illustrates an overview of a spreadsheet sys
tem for accessing multidimensional data through the use of
cube functions;
0006 FIG. 3 illustrates a system for interfacing with
OLAP cubes from cells of a spreadsheet application;
0007 FIG. 4 illustrates cube functions that may be utilized
to connect with a multidimensional database;

Dec. 9, 2010

0008 FIG. 5 displays an operational flow for using cube
functions within a spreadsheet; and
0009 FIGS. 6 and 7 show an exemplary spreadsheet that
includes cube functions before evaluation and after evalua
tion, in accordance with aspects of the present invention.

DETAILED DESCRIPTION

(0010 Referring now to the drawings, in which like numer
als represent like elements, various aspects of the present
invention will be described. In particular, FIG. 1 and the
corresponding discussion are intended to provide a brief,
general description of a suitable computing environment in
which embodiments of the invention may be implemented.
(0.011 Generally, program modules include routines, pro
grams, components, data structures, and other types of struc
tures that perform particular tasks or implement particular
abstract data types. Other computer system configurations
may also be used, including hand-held devices, multiproces
sor systems, microprocessor-based or programmable con
sumer electronics, minicomputers, mainframe computers,
and the like. Distributed computing environments may also
be used where tasks are performed by remote processing
devices that are linked through a communications network. In
a distributed computing environment, program modules may
be located in both local and remote memory storage devices.
(0012. Throughout the specification and claims, the fol
lowing terms take the meanings explicitly associated herein,
unless the context clearly dictates otherwise. The term
“MDX” refers to the MultiDimensional eXpressions lan
guage. The term “KPI” refers to a Key Performance Indicator.
The term “MDX Name” is a name as defined by MDX. The
MDX unique name of a member is generally in the form
Dimension. Hierarchy. Level.&MemberKey wherein

all of these components are required. Non-unique names
could have several other forms including Member or Di
mension. Member or Dimension).&98765. The term
“caption” refers to a non-unique friendly name to be dis
played in the spreadsheet. The term "connection” refers to the
name of a data connection that has been stored within a
spreadsheet workbook. Connection names are strings that
uniquely identify connections within the workbook in which
they are used. The term “cube' refers to the multi-dimen
sional OLAP database from which data is retrieved. The term
“member is a value along one of the cube's dimensions. For
example, a member of a Time dimension might be 'June
2003. A member of a customers dimension might be 'John
Doe.” The term “tuple' is the intersection of one or more
members in a cube, with only one member from each dimen
sion. The tuple represents the slice of the cube that includes
the specified members. When a tuple contains only one mem
ber then that member and the tuple are identical to each other.
The MDX Name for a tuple is of the form (<member1 >.
<member2> . . . <memberND) where each <member is
replaced with the MDX name of that member. When the
spreadsheet refers to a range of cells that contain members (or
tuples) these ranges are interpreted as tuples. For example, if
cells A10 thru A13 of a spreadsheet contain members, then
the cube function=CubeValue (“MyConnection'. SA10:
SA13, DS2) has a tuple as its second argument. The term "set”
is an ordered collection of one or more members (or tuples).
(0013 Briefly described, cube functions may be used to
access data from a multidimensional database. According to
embodiments, users can enter one or more cube functions into
one or more of the spreadsheet cells, specify a multidimen

US 2010/0312748 A1

sional database, query a selected database, and then return the
data to be used within the cell(s) of the spreadsheet. Accord
ing to one embodiment, the data may be an aggregated value,
a dimension member, a KPI, or a member property. The use of
these cube functions enables the spreadsheet program to be
more easily used as a reporting tool for multidimensional
OLAP data stores. Using the cube functions within the indi
vidual cells of the spreadsheet provides far greater layout and
formatting flexibility than using other methods which enforce
limitations on the layout of the spreadsheet.
0014 Referring now to FIG. 1, an exemplary computer
architecture for a computer 2 utilized in various embodiments
will be described. The computer architecture shown in FIG. 1
may be configured in many different ways. For example, the
computer may be configured as a server, a personal computer,
a mobile computer and the like. As shown, computer 2
includes a central processing unit 5 (“CPU”), a system
memory 7, including a random access memory 9 (“RAM)
and a read-only memory (“ROM) 11, and a system bus 12
that couples the memory to the CPU 5. A basic input/output
system containing the basic routines that help to transfer
information between elements within the computer, such as
during startup, is stored in the ROM 11. The computer 2
further includes a mass storage device 14 for storing an oper
ating system 16, application programs, and other program
modules, which will be described in greater detail below.
0015 The mass storage device 14 is connected to the CPU
5 through a mass storage controller (not shown) connected to
the bus 12. The mass storage device 14 and its associated
computer-readable media provide non-volatile storage for the
computer 2. Although the description of computer-readable
media contained herein refers to a mass storage device. Such
as a hard disk or CD-ROM drive, the computer-readable
media can be any available media that can be accessed by the
computer 2.
0016. By way of example, and not limitation, computer
readable media may comprise computer storage media and
communication media. Computer storage media includes
volatile and non-volatile, removable and non-removable
media implemented in any method or technology for storage
of information Such as computer-readable instructions, data
structures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EPROM,
EEPROM, flash memory or other solid state memory tech
nology, CD-ROM, digital versatile disks (“DVD'), or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by the computer 2.
0017. According to various embodiments, the computer 2
operates in a networked environment using logical connec
tions to remote computers through a network 18. Such as the
Internet. The computer 2 may connect to the network 18
through a network interface unit 20 connected to the bus 12.
The network interface unit 20 may also be utilized to connect
to other types of networks and remote computer systems.
0018. The computer 2 may also include an input/output
controller 22 for receiving and processing input from a num
ber of devices, such as: a keyboard, mouse, electronic stylus
and the like. Similarly, the input/output controller 22 may
provide output to a display Screen, a printer, or some other
type of device (not shown).
0019. As mentioned briefly above, a number of program
modules and data files may be stored in the mass storage

Dec. 9, 2010

device 14 and RAM 9 of the computer 2, including an oper
ating system 16 Suitable for controlling the operation of a
networked computer, such as: the WINDOWS XP operating
system from MICROSOFT CORPORATION: UNIX;
LINUX and the like. The mass storage device 14 and RAM 9
may also store one or more program modules. In particular,
the mass storage device 14 and the RAM 9 may store a
spreadsheet application program 10. Such as the
MICROSOFTR EXCEL spreadsheet application. According
to one embodiment, the spreadsheet application 10 is opera
tive to provide functionality for interacting with an OLAP
data store through the use of cube functions that are entered
into one or more cells of spreadsheet application 10. The
spreadsheet may generate one or more requests to fetch data
from an OLAP cube identified by the cube function contained
within the cell and populate a cell when there are cube func
tions contained within one or more cells of the spreadsheet.
0020. The spreadsheet application 10 is configured to
receive user input. For example, a user enters item data into a
spreadsheet via a graphical user interface. The user input can
be item data, item metadata, function information, cube func
tion information, or other data. The user input may be direct
input created by the user typing, pasting, or other deliberate
action entering data into the spreadsheet or indirect input that
may be generated by another program.
0021 Calculation engine 26 performs operations relating
to the cells within the spreadsheet. According to one embodi
ment, calculation engine 26 is a component within the spread
sheet application 10. The calculation engine 26, however,
may be located externally from the spreadsheet application
10. The operations performed by calculation engine 26 may
be mathematical, such as Summation, division, multiplica
tion, etc., or may include other functions or features. Such as
interacting with a multidimensional data store. Calculation
engine 26 may be configured to perform many different
operations.
0022 FIG. 2 illustrates an overview of a spreadsheet sys
tem 200 for accessing multidimensional data through the use
of cube functions, in accordance with aspects of the inven
tion. As illustrated, system 200 includes a server 202, which
includes and/or is coupled to a multidimensional database
204, such as an OLAP data store. Server 202 is coupled to
client 206 through a network connection. Client 206 includes
a spreadsheet application 208. Spreadsheet application 208
includes spreadsheet cells 210. Typically, an active cell 212,
which is highlighted by the dark border, is the cell within the
spreadsheet that is currently being acted upon. For example,
the user is entering a cube function into the cell. Zero or more
of the spreadsheet cells may contain a cube function which is
directed at interacting with and retrieving data from the mul
tidimensional database 204. According to one embodiment,
each cube function includes a Connection parameter 214 that
identifies the multi-dimensional database to access. Accord
ing to one embodiment, the user may select a UI element,
Such as a dropdown, to choose from a list of available con
nections to OLAP cubes. The selected value is then included
within the cube function.

0023 Communication between the spreadsheet applica
tion and the OLAP database 204 may be accomplished using
MDX. Any other language, however, may be utilized that can
communicate with an OLAP database. Furthermore,
although the application is described herein as a spreadsheet,
it will be appreciated that other applications, such as word
processing applications that include spreadsheet cells, as well

US 2010/0312748 A1

as other applications utilizing cells, may utilize the cube
functions described herein. According to another embodi
ment, the cube functions may be maintained separately from
an application and may be accessed through an API.
0024 Generally, a user may enter cube functions within
one or more of the cells within spreadsheet 208 to fetch data
from the OLAP database 204. The queries to retrieve the data
from the OLAP cube(s) that are sent may be MDX expres
sions. Each of the cube functions includes connection infor
mation that specifies the appropriate database.
0025. The cells within the spreadsheet that contain cube
functions appear to the user to behave as any other cell within
the spreadsheet that contains a formula. Generally, formulas
within the spreadsheet can include the following: cube func
tions as defined herein that directly query an OLAP cube:
dependent cube functions that query an OLAP cube but that
also require the results of a different query as one of their
arguments; standard spreadsheet functions that have a depen
dency on the values returned by the cube functions; and
standard spreadsheet functions that have no dependency.
0026. If each of these cube functions is independently
executed within the spreadsheet then there may be a large
number of small queries against the OLAP server. This could
result in diminished performance for the spreadsheet appli
cation. According to one embodiment, the queries are com
bined into fewer queries such that fewer queries are made to
the OLAP server.
0027. The spreadsheet cell calculations may be performed
asynchronously. In other words, while data is being fetched
from the OLAP server the calculations may continue within
the other cells. Therefore, the calculations proceed for the
cells that have no dependency on the result set, but are delayed
for cells that are dependent. If the cell has no dependency on
a query, the cell will get its value right away (218). If the cell
has a dependency on a query, the cell is filled with a temporary
error value of “HGETTING DATA...” (216) and the calcu
lation proceeds to the next cell in the chain. This error shows
the user that an action is being performed that relates to the
cell.

0028. When all of the cells have been evaluated, the
spreadsheet triggers the aggregated query(s) needed to obtain
data. This query is run asynchronously whenever possible.
Asynchronous query processing may be desired so that the
query won’t block the spreadsheet applications UI thread and
users can continue to work with the UI and can even abort the
query when it's taking too long. As the values arrive for the
cells that display the #GETTING DATA . . . 216 error mes
sage, the error message is replaced with the fetched external
data values and the calc is triggered for the cells that were
dependent on the value that came in.
0029 FIG. 3 illustrates a system 300 for interfacing with
OLAP cubes from cells of a spreadsheet application, in accor
dance with aspects of the invention. System 300 in this
embodiment includes a server 302 which correspondingly
has one or more databases stored thereupon 304. System 300
may optionally include a network 306 such as a LAN, WAN,
the Internet or other network which server 302 may be
coupled to.
0030 System 300 includes client 308. Client 308 includes
a communication module 310 that is coupled to a spreadsheet
application 312. Furthermore, communication module 310 is
coupled to the network 306. Communication module 310
may also be directly coupled to server 302 and/or directly to
OLAP cube(s) 304.

Dec. 9, 2010

0031 Whena user configures a new spreadsheet in spread
sheet application 312, they may chose from a list of OLAP
cubes 304 to which it may connect. Alternatively, the user
may type in the location of an OLAP cube to be connected.
This link may then be given a connection name. Such that this
name is used by a query module 311 to construct a query for
the named OLAP cube. Query module 311 is configured to
receive the cube function(s) from one or more cells within the
spreadsheet application and then construct an MDX query
that will be passed on to server 302 (via communication
module 310) to be interpreted. The appropriate cube 304 is
then queried and, in response to the query, returns data from
the database relating to the query to communication module
310. Communication module 310 then passes the data to the
spreadsheet application 312, which in turn fills in the cell(s)
with the data. When other cells within the spreadsheet depend
upon the returned data, those cells may then be updated.
0032 Communication module 310 may be located on cli
ent 308, however it may also be included on server 302 or may
be included in cube(s) 304, among other locations. Commu
nication module 310 is typically provided by cube(s) 304
such that the client 308 and spreadsheet application 312 may
communicate with the cube(s)304. In one embodiment, com
munication module 310 may comprise a dynamic-link library
(DLL) that is provided (and configured) by the particular
linked cube.
0033 While query module 311 is shown as being separate
from spreadsheet application 312, it may be included within
the spreadsheet application 312. The location of query mod
ule 311 may also be other than in the client 308, such as within
the server 302, or at some remote location.
0034 FIG. 4 illustrates cube functions that may be utilized
to connect with a multidimensional database, in accordance
with aspects of the invention.
0035. As illustrated, FIG. 4 includes the following cube
functions: cube value function 410; cube member function
420; cube set function 430; cube ranked member 440; cube
KPI member 450; cube member property 460; and cube set
count 470.

0036 CubeValue (Connection Namel Name2 . . .
NameN) function 410 returns an aggregated value from the
OLAP cube specified by the connection parameter. The
"Name' parameter is an optional parameter that may appear
any number of times within the CubeValue function call. For
example, one cube value function call may contain only one
name, while another cube value function call may contain
many names, separated by commas. According to one
embodiment, each name is the MDX name of a member or
tuple (or tuple) within the cube. Alternatively, the name could
be a Set as defined by a CubeSet function as described below.
The provided names are used as slicers to define the portion of
the cube for which an aggregated value is to be returned.
According to one embodiment, if a Name is not Supplied for
any particular hierarchy, then the default member for that
hierarchy is used. Similarly, when a Name is not supplied for
any measure, then the default measure for the cube is used.
The Name parameter may also be a cell reference to another
cell in the spreadsheet that contains a unique MDX name in
the cell's MDX property. Any cells that contain the Cube
Member() function evaluate to a caption plus a unique MDX
name in the cell's MDX property.
0037 According to one embodiment, the tuple associated
with any CubeValue is stored. This increases the efficiency to
communicate with the OLAP server about the portion of the

US 2010/0312748 A1

cube that's associated with the desired value. The following
are some illustrative examples of the CubeValue() function:
CubeValue (“SALES”, “Measures. Profit”, “Time).
1999, “All Product. Beverages'); CubeValue (SAS1,
“Measures. Profit, DS12, SA23); and CubeValue
(“SALES, SBS7, DS12, SA23).
0038. The CubeMember (Connection, Name Caption)
function 420 returns a fully qualified unique MDX member
name, or MDX tuple, as well as the user-friendly caption for
that member. According to one embodiment, when a tuple is
returned, the user-friendly caption is the caption of the last
member in the tuple. Evaluating this function causes the cell
to display the caption, while the cell’s MDX property is set to
the unique MDX member name or MDX expression for the
tuple. The CubeMember function returns an error (#N/A)
when the specified Name is not found within the specified
cube. The Name parameter is a string containing the MDX
member name of a member within the cube. The CubeMem
ber function validates that the provided name exists within the
cube and then returns the unique member name associated
with this member as the MDX property along with that mem
ber's caption as the function's value. This argument may also
represent a tuple. When the argument is a tuple, the user
specifies an array of members using the spreadsheet's array
Syntax. The name argument may also be a reference to a cell
that contains a member, or a cell that contains a string which
evaluates to a unique MDX name, or a range of cells which
will evaluate to a tuple. The Caption parameter is an optional
string to be used as the caption in place of any caption that we
obtain from the cube.
0039. The following are some illustrative examples of the
CubeMember() function: CubeMember (“conn”, “Custom
ers. USA); and CubeMember(“Finance'. Account. Ac
counts.NetIncome. Operating Profit. Gross Margin.Net
Sales. Gross Sales).
0040. The CubeSet (Connection, Expression Caption
SortOrder SortBy) function 430 defines a set that is to be

built for the spreadsheet by the OLAP server. The CubeSet
function sends the Expression to the OLAP server defined by
the specified Connection. The server then creates a set by
evaluating the Expression and returns that set to the spread
sheet program. The spreadsheet then uses the Caption as the
function's display value, while also setting the function's
MDX (value) metadata to the MDX Expression that was sent
to the OLAP Server.
0041. The Expression parameter is a string containing any
arbitrary MDX expression that can be evaluated by the OLAP
server which results in a set of members or a set of tuples. An
expression can also be a cell reference to a range that contains
one or more cube members or tuples or sets. The Expression
argument defines the items that are to be included in the set.
0042. The Caption parameter is the optional string to be
used as the caption that describes the set being created. When
the caption is not provided, then the caption is set to a null
String.
0043. The SortOrder parameter is an optional integer
argument whose value, according to one embodiment, is one
of the following:

O = SORT NONE Leaves the Set in its
existing order
Sorts Set in ascending
order by SortBy field

1 = SORT ASCENDING

Dec. 9, 2010

-continued

2 = SORT DESCENDING Sorts Set in descending
order by SortBy field
Sorts Set in Alpha
ascending order
Sorts Set in Alpha
descending order
Sorts Set in Natural
ascending order
Sorts Set in Natural
descending order

3 = SORT ALPHA. ASCENDING

4 = SORT ALPHA DESCENDING

5 = SORT NATURAL ASCENDING

6 = SORT NATURAL DESCENDING

0044) The SortBy parameter is an optional expression
string that defines the values on which sorting is to be done.
For example, if a user would want to obtain the city with the
highest sales, then the Expression parameter defines a set of
cities, and the SortBy parameter is the sales measure. If the
user wants to obtain the city with the highest population, then
the Expression parameter defines a set of cities, and the
SortBy parameter is the population measure. The CubeSet
function results in a set containing the items defined by the
Expression parameter in the specified SortOrder by SortBy.
0045. The following are some illustrative examples of the
CubeSet() function: CubeSet(“Finance”, “Order(Product.
Product. Product Category. Members, Measures. Unit
Sales), ASC)”, “Products”); and CubeSet(“Sales”, “Prod
uct. All Products.Children, “Products, 1, “Measures.
Sales Amount').
0046. The CubeRankedMember (Connection, Set, Rank
Caption) function 440 returns the Nth (Rank) cube member

(or tuple) in a Set, with the Caption as the display value, and
a unique MDX name as the cells MDX property. The Set is an
expression that evaluates to a set within an OLAP cube. In
order to obtain this set, the CubeSet() function may be used.
This means that Set may be a reference to a cell that contains
a CubeSet() function. In some OLAP servers, such as
MICROSOFT CORPORATIONS Analysis Services a set
may be defined by an expression within curly braces: Such as
“{Item 1...children”. The CubeRanked Member function
returns one of the elements within the Set. The Rank param
eter is an integer that determines the element within the set to
return. When the Rank parameter is set to one then the
CubeRanked Member function returns the first value. When
the Rank parameter equals two then the second value is
returned, and so on. For example, calling this function five
different times with the Rank parameter set to 1 thru 5 is one
way to obtain the “Top 5' items from an OLAP cube. The
Caption parameter is an optional string to be used as the
caption in place of the member caption as obtained from the
OLAP cube.
0047. The following are some illustrative examples of the
CubeRanked Member() function: CubeRanked Member
(SDS4, 1, “Top Month''); and CubeRanked Member (CubeSet
(“SALES”, “Summer”, “1999)|June, “1999)|July,
“1999. August), 1, “Top Month').
0048. The CubeKPIMember (Connection, KPIName,
KPIComponent Caption) function 450 returns the KPI
specified by the KPI name and the KPI Component. Accord
ing to one embodiment, this KPI includes a fully qualified
unique MDX expression as well as the user-friendly caption
for that KPI. Evaluating CubeKPIMember function causes
the cell's value within the spreadsheet to be set to the caption,
while the cell's MDX property is set to the unique MDX
expression for the requested KPI. The CubeKPIMember

US 2010/0312748 A1

function returns an empty string caption and has a NULL
MDX property when the specified KPIName is not found
within the specified OLAP cube. The KPIName is the name of
the KPI in the cube that is to be queried. The KPIComponent
is one of the following values: 1—KPIValue; 2 KPIGoal;
3–KPIStatus; 4 KPITrend: 5 KPIWeight; and 6 KPI
CurrentTimeMember. These are the components (properties)
that make up a KPI. This Caption is an optional string to be
used as the caption in place of any caption that is obtained
from the cube. To obtain the value of a KPI member with
additional slicers as appropriate, the user may use the CubeV
alue function, and references this KPI just as if it were a
member of any hierarchy in the cube.
0049. The following are some illustrative examples of the
CubeKPIMember() function: CubeKPIMember (“Sales',
“MySalesKPI'', 1); and CubeKPIMember (“Sales',
“MySalesKPI’, 2, “Sales KPI Goal').
0050. The CubeMemberProperty (Connection, Name,
Property) function 460 returns the value of a member prop
erty in the cube. The Name is the MDX unique name of a
member within the cube. The CubeMemberProperty function
validates that the name exists within the cube and then returns
the specified property for this member. The Property is the
MDX name of the property to be returned or a reference to a
cell that contains the name of the property.
0051. The following are some illustrative examples of the
CubeMemberProperty() function: CubeMemberProperty
(“Sales”, “Time. Fiscal. 1999, SAS3); and CubeMem
berProperty (“Sales”, “Store. MyFavoriteStore”, “Store.
Store Name. Store Sqft').
0052. The CubeSetCount(Connection, Set) function 470
returns the number of items in the Set. The Set is an expres
sion that evaluates to a set as defined by the CubeSet function.
In many cases, the cell will contain a CubeSet function. The
following are some illustrative examples of the CubeSet
Count() function: CubeSetCount (A3) and CubeSetCount
(CubeSet (connection1, expression1, caption)).
0053. When the Cube function is CubeSet or CubeSet
Count, the MDX property is the MDX expression that is sent
to the server for evaluation. It is the same as the Expression
argument for the CubeSet function. For example: Cell C3
contains: =CubeSet(“conn”, “Customers.children'); Cell
C4 contains: =CubeSetCount(C3): Range (“C3). MDX="
Customers.children' and Range (“C4''). MDX="Custom
ers. children.”
0054 When the Cube function is CubeMember, CubeR
ankedMember, CubeValue, CubeKPIMember or CubeMem
berProperty, then the MDX property provides a tuple as
returned from the server representing the unique name of the
member or tuple defined by the function. For example: Cell
C3 contains: =CubeMember ("conn”, “Customers. USA
''); Cell C4 contains: =CubeValue(“conn”, “Bicycles”,
“IWA); Range (“C3). MDX=(<unique member name for
USA>) as returned by server; and Range (“C4''). MDX=
(<tuple containing unique member names for Bicycles and
WA>).
0055 When reading the discussion of the routines pre
sented herein, it should be appreciated that the logical opera
tions of various embodiments are implemented (1) as a
sequence of computer implemented acts or program modules
running on a computing system and/or (2) as interconnected
machine logic circuits or circuit modules within the comput
ing system. The implementation is a matter of choice depen
dent on the performance requirements of the computing sys

Dec. 9, 2010

tem implementing the invention. Accordingly, the logical
operations illustrated and making up the embodiments of the
described herein are referred to variously as operations, struc
tural devices, acts or modules. These operations, structural
devices, acts and modules may be implemented in Software,
in firmware, in special purpose digital logic, and any combi
nation thereof.
0056 FIG. 5 displays an operational flow 500 for using
cube functions within a spreadsheet, in accordance with
aspects of the invention. After a start block, the process flows
to define operation 510, which defines a multidimensional
database. A database is defined or created when the particular
coordinates are defined and saved, and the data fields popu
lated. Typically, the multidimensional databases are OLAP
databases that have already been created and populated. In
this case, the selected databases are coupled to the spread
sheet at operation 530.
0057 Moving to operation 520, a spreadsheet is created
that includes cube functions. Generally, a user may create a
spreadsheet from scratch in which all of the cells within the
spreadsheet are defined, but, typically, a user may start with a
spreadsheet that has at least been partially created. According
to one embodiment of the invention, a cell may include Zero
or more of the following cube functions: a cube member
function; a cube value function; a cube set function; a cube
ranked member function; a cubed KPI member function; a
cube member property function; and a cube set count function
as described more fully herein.
0058 Flowing to operation 530, the spreadsheet is
coupled to the database. When the spreadsheet is created and
particular cells are defined within the spreadsheet to include
cube functions, different databases may be linked to the infor
mation in that cell and/or spreadsheet. In this way, each cell
containing a cube function may fetch data from the appropri
ate OLAP data store.
0059 Transitioning to operation 540, queries are created
for the cube functions within the cells of the spreadsheet.
According to one embodiment, the queries are in the form of
MDX queries.
0060 Moving to operation 550, the queries are used to
fetch the data relating to the cube functions from one or more
multidimensional data stores. The cells within the spread
sheet may then be populated with the fetched data.
0061. At operation 560, the results of the queries and any
calculations that were performed may be displayed to the
user. The process then moves to an end block and returns to
processing other actions.
0062 FIGS. 6 and 7 show an exemplary spreadsheet that
includes cube functions before evaluation and after evalua
tion, in accordance with aspects of the invention. FIG. 6
shows the cube function text within the cells. FIG.7 shows the
result of calculating the cube functions.
0063 As illustrated, each cell within spreadsheet 600 and
700 includes a cube function. Including a cube function
within each cell of the spreadsheet is merely for illustrative
purposes. The spreadsheet may have Zero or more cube func
tions contained within the cells. For example, a spreadsheet
may include only a single cube function to obtain a single
value from an OLAP cube.
0064 Referring to a few of the cells within spreadsheet
600 it can be seen that cell A3 includes the cube member
function that connects to the finance database and includes an
MDX expression “Account. Accounts.Net Income. Op
erating Profit. Gross Margin.Net Sales. Gross Sales. As

US 2010/0312748 A1

can be seen referring to spreadsheet 700 in FIG. 7, cell A3 is
displayed as “Gross Sales. Cell B3 includes a cube value
function that obtains the values from the SAS1, SBS1, BS2,
and SA3 that results in an aggregated value of 3,200,477.00 as
displayed in cell B3 of spreadsheet 700. As illustrated each
cube function has connection information to the "Finance'
OLAP cube. As discussed above, however, each spreadsheet
may have Zero or more cube connections. For example, one
cell could include a cube function to obtain data from a first
OLAP cube and another cell could include a cube function to
obtain data from a second store.
0065. Using cube functions within the spreadsheet allows
the users to insert and/or delete rows and columns without
interfering with the data's ability to be refreshed.
0066. The above specification, examples and data provide
a complete description of the manufacture and use of the
composition of the invention. Since many embodiments of
the invention can be made without departing from the spirit
and scope of the invention, the invention resides in the claims
hereinafter appended.

1-26. (canceled)
27. A computer-readable storage medium having com

puter-executable instructions for interacting with an OLAP
cube, comprising:

parsing a cube function having parameters; wherein the
cube function is included within a cell of a spreadsheet
and wherein the cube function is directed at obtaining
data from an OLAP cube; wherein the cube function is
from cube functions comprising: a cube member func
tion that identifies an item in the OLAP cube and returns
a name for the member; a cube value function that iden
tifies an aggregated value from the OLAP cube; a cube
set function that defines a set that is to be built for the
spreadsheet by an OLAP server storing the OLAP cube:
and a member property function that identifies a value of
a member property in the OLAP cube and a count relat
ing to a set within the OLAP cube:

determining an OLAP cube from which to obtain data from
one of the parameters of the cube function; and

fetching the data from the determined OLAP cube in
response to the parameters of the cube function.

28. The computer-readable storage medium of claim 27,
wherein determining the OLAP cube from which to obtain
data comprises locating a connection name that determines
the OLAP cube to obtain data from.

29. The computer-readable storage medium of claim 27,
wherein parsing the cube function comprises parsing the
parameters to locate one or more names, wherein the names
identify at least one of a member and a tuple within the OLAP
cube; and wherein each of the located names is used a slicer
to define a portion of the OLAP cube for which an aggregated
value is to be fetched from the OLAP cube.

30. The computer-readable storage medium of claim 27,
wherein parsing the cube function comprises parsing the
parameters to locate a name that identifies a member of the
OLAP cube and using the name to fetch at least one of a
unique MDX member name, a MDX tuple, and a caption for
the member of the OLAP cube.

31. The computer-readable storage medium of claim 27,
wherein parsing the cube function comprises parsing the
parameters to locate an expression that identifies a set that is
at least one of a set of members within the OLAP cube and a
set of tuples within the OLAP cube; and then using the query

Dec. 9, 2010

to fetch the set from the OLAP cube; and when a sort param
eter exists within the parameters; using the sort parameter to
sort the set.

32. The computer-readable storage medium of claim 27,
wherein parsing the cube function comprises parsing the
parameters to locate a set and a rank; wherein the rank is used
to fetch at least one of the elements from the set.

33. The computer-readable storage medium of claim 27,
wherein parsing the cube function comprises parsing the
parameters to locate a KPI name and a KPI component;
wherein the KPI name and the KPI component are used to
fetch a member from the OLAP cube.

34. The computer-readable storage medium of claim 27,
wherein parsing the cube function comprises parsing the
parameters to locate a set and wherein a number of the mem
bers within the set is determined.

35. The computer-readable storage medium of claim 27,
wherein parsing the cube function comprises parsing the
parameters to locate a name and a member, wherein the name
and member are used to obtain a value of a member property
in the OLAP cube.

36. A system for interacting with a multidimensional data
base from a spreadsheet, comprising:

a processor and a computer-readable storage medium; and
a spreadsheet application that is coupled to a network and

is configured to perform steps, comprising:
parsing a cube function having parameters that is located

within a cell of the spreadsheet to generate an MDX
query; wherein the MDX query locates data within a
multidimensional database; wherein the cube func
tion is from cube functions comprising a cube mem
ber function that identifies an item in the multidimen
sional database and returns a name for the member, a
cube value function that identifies an aggregated
value from the multidimensional database; a cube set
function that defines a set that is to be built for the
spreadsheet by an OLAP server storing the multidi
mensional database; and a member property function
that identifies a value of a member property in the
multidimensional database and a count relating to a
set within the multidimensional database;

determining the multidimensional database to query
based on at least one of the parameters of the cube
function;

querying a server identified by the determined multidi
mensional database using the MDX query;

receiving data from the server that is returned in
response to the MDX query; and

updating the cell and any other dependent cells in
response to the received data.

37. The system of claim 36, wherein the MDX query
requests at least one of the following from the multidimen
sional database: a ranked member; a KPI member; a member
property of an item within the multidimensional database and
a count relating to a set within the multidimensional database.

38. The system of claim 37, wherein different cells of the
spreadsheet request data from different multidimensional
databases.

39. The system of claim 37, wherein parsing the cube
function comprises parsing the parameters to locate names,
wherein the names identify a member and a tuple within the
OLAP cube; and wherein each of the located names is used a
slicer to define a portion of the OLAP cube for which an
aggregated value is to be fetched from the OLAP cube.

US 2010/0312748 A1

40. A method for interacting with an OLAP cube, compris
ing:

parsing a cube function having parameters; wherein the
cube function is included within a cell of a spreadsheet
and wherein the cube function is directed at obtaining
data from an OLAP cube; wherein the spreadsheet
includes cells that do not include data from a multidi
mensional database;

determining an OLAP cube from which to obtain the data
by accessing one of the parameters of the cube function;
and

fetching the data from the determined OLAP cube in
response to the parameters of the cube function.

41. The method of claim 40, wherein parsing the cube
function comprises parsing the parameters to locate names
that identify at least one of a member and a tuple within the
OLAP cube; and wherein each of the located names is used a
slicer to define a portion of the OLAP cube for which an
aggregated value is to be fetched from the OLAP cube.

42. The method of claim 40, wherein parsing the cube
function comprises parsing the parameters to locate a name

Dec. 9, 2010

that is used to fetch at least one of a unique MDX member
name, a MDX tuple, and a caption for the member of the
OLAP cube.

43. The method of claim 40, wherein parsing the cube
function comprises parsing the parameters to locate an
expression that identifies a set that is at least one of a set of
members within the OLAP cube and a set of tuples within the
OLAP cube; and then using the query to fetch the set from the
OLAP cube; and when a sort parameter exists within the
parameters; using the sort parameter to sort the set.

44. The method of claim 40, wherein parsing the cube
function comprises parsing the parameters to locate a set and
a rank; wherein the rank is used to fetch at least one of the
elements from the set.

45. The method of claim 40, wherein parsing the cube
function comprises parsing the parameters to locate a set and
wherein a number of the members within the set is deter
mined.

46. The method of claim 40, wherein parsing the cube
function comprises parsing the parameters to locate a name
and a member; wherein the name and member are used to
obtain a value of a member property in the OLAP cube.

c c c c c

