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GRAPHICS PROCESSING

Technical Field

[0001] The present invention relates to systems and methods for graphics processing.

Background

[0002] A known graphics processing pipeline involves a texture mapping procedure in which
a texture, which 1s typically two dimensional, 1s applied or mapped onto the surface of a shape
or polygon, which 1s for example three dimensional, before being rendered by a computer
graphics system. This generally allows more realistic or detailed 1mages to be rendered. For
example, detail on an object may be generated by applying a texture to a set of graphics
primitives, such as polygons, representing the object, to give the object the appearance of the
texture.

[0003] Typically, the resolution of the texture 1s different from the resolution of the pixels of
a display device for displaying the rendered image. For example, a size of texture elements,
sometimes referred to as texels (which may represent features or characteristics of the texture,
such as a colour or luminance value) may differ from a pixel size. Thus, there may not be a
one-to-one mapping between a pixel and a texel. For example, one pixel may correspond to
multiple texels or vice versa.

[0004] To compensate for this, the texture mapping procedure may involve texture filtering
to determine a value, for example a texture value, for a position that corresponds to a pixel.
This position may, however, not directly correspond to a texel in a given texture space. For
example, the position may be between two neighbouring texels (for example 1f a pixel 1s smaller
than a texel or 1s misaligned with a texel) or the position may cover an area including multiple
texels (1f a pixel 1s larger than a texel). Texture filtering may thus involve interpolating texels
that surround the position in the texture space to determine the value at that position. For
example, 1f a pixel 1s smaller than a texel, the texture filtering may involve texture minification.
Conversely, 1f a pixel 1s larger than a texel, the texture filtering may involve texture
magnification.

[0005] Such a texture filtering process may i1nvolve performing a weighted sum of texel
values. For example, a texture minification process (sometimes referred to as downscaling),

may involve multiplying each texel surrounding a position at which a value 1s to be calculated



with a weight with a value of between O and 1 and then summing the weighted texels to
calculate the value at the position.
[0006] It 1s desirable to provide systems and methods for graphics processing, for example

for texture mapping, that are more efficient or flexible than known systems and methods.

Brief Description of the Drawings

[0007] Further features will become apparent from the following description, given by way
of example only, which 1s made with reference to the accompanying drawings.

[0008] FIG. 1 shows schematically an example of a graphics processing system according to
examples;

[0009] FIG. 2 shows schematically an example of a graphics processing pipeline according
to examples;

[0010] FIG. 3 shows schematically an example of components of a graphics processor
according to examples;

[0011] FIG. 4 illustrates schematically the calculation of a value at a position 1n a texture
space according to examples;

[0012] FIG. 5 1s a schematic diagram showing internal components of a computing device
according to examples;

[0013] FIG. 6 1s a schematic diagram showing internal components of a computing device
according to further examples; and

[0014] FIG. 7 1s a flow diagram illustrating a method of texture mapping for a graphics

processing pipeline according to examples.

Detailed Description

[0015] Details of the systems and methods according to examples will become apparent from
the following description, with reference to the figures. In this description, for the purpose of
explanation, numerous specific details of certain examples are set forth. Reference in the
specification to "an example" or similar language means that a particular feature, structure, or
characteristic described in connection with the example 1s included 1n at least that one example,
but not necessarily 1in other examples. It should further be noted that certain examples are
described schematically with certain features omitted and/or necessarily simplified for ease of

explanation and understanding of the concepts underlying the examples.
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[0016] Examples described herein provide a graphics processing system including storage for
storing texture data representative of a plurality of texels in a texture space and a graphics
processor coupled to the storage. The graphics processor includes a texture mapping unit
operable to receive request data to request the calculation of a value at a position in the texture
space using an interpolation process, the request data including weight data representative of
weights for input to the interpolation process. The texture mapping unit 1s further operable to
process the weight data with the texture data to perform the interpolation process, thereby
calculating the value at the position in the texture space. The graphics processor includes a
shader processing unit configured to transmit the request data to the texture mapping unit to
instruct the texture mapping unit to perform the interpolation process.

[0017] By passing the weight data to the texture mapping unmit with the request data, the
weight data can be pre-calculated rather than calculated by the texture mapping unit i1tself. This
provides more flexibility as different weights, for example to implement different interpolation
algorithms, can be passed to the texture mapping umt straightforwardly, without having to
reconfigure the texture mapping unit. Thus the texture mapping unit can be used to perform a
variety of different interpolation algorithms, without needing to include different hardware
support for each of the different algorithms. This can therefore reduce the area overhead to
implement the texture mapping unit 1n hardware compared to a texture mapping unmt that
includes dedicated hardware support for a variety of different interpolation algorithms, for
computing the weights internally to the unit.

[0018] Providing the weight data to the texture mapping unit may also improve the efficiency
of the graphics processing system by reducing the amount of data transferred between various
components of the graphics processing system, such as between a texture mapping unit of a
graphics processor and a programmable shader core of the graphics processor, which may for
example be considered to correspond to a shader processing unit. For example, fetching each
of a plurality of texels from storage of the texture mapping unit to the shader core for processing
1in order to calculate weights and perform the interpolation typically involves a fetch operation
for each of the texels. This 1s generally less efficient than the systems and methods described
herein 1n which, for example, a single fetch 1s performed to transfer pre-calculated weights to

the texture mapping unit, which can itself perform the interpolation process.



[0019] To put the systems and methods according to examples into context, a graphics
processing system 100 and a graphics processing pipeline 200 for use with these systems and

methods will first be described with reference to FIGS. 1 and 2.




[0020] FIG. 1 shows schematically an example of a graphics processing system 100. In the
agraphics processing system 100 of FIG. 1, an application 102, such as a game, executing on a
host processor 104, which 1s for example a central processing unit (CPU), requests graphics
processing operations to be performed by an associated graphics processor, which 1n this
example 1s a graphics processing unit (GPU) 106. To do this, the application 102 generates
application programming interface (API) calls that are interpreted by a programming interface,
which 1n this example 1s a driver 108 for the GPU 106. The driver 108 runs on the host
processor 104. The driver 108 generates appropriate commands to the GPU 106 to generate the
graphics output requested by the application 102. A set of commands 1s provided to the GPU
106 1n response to the commands from the application 102. The commands may be to generate
a frame to be displayed on a display device coupled to or in communication with the host
processor 104 and/or the GPU 106.

[0021] FIG. 2 shows schematically an example of a graphics processing pipeline 200. The
graphics processing pipeline 200 indicates a sequence of actions that may be performed by a
agraphics processor such as a GPU.

[0022] In this example, the GPU 1s a tile-based renderer. The GPU therefore produces tiles
of a render output data array to be generated. The render output data array may be an output
frame. Tile-based rendering differs from immediate mode rendering in that, rather than the
entire render output being processed in one go, the render output 1s divided into a plurality of
smaller sub-regions (or ‘areas’). Those sub-regions are referred to herein as tiles. Each tile 1s
rendered separately. For example, each tile may be rendered one after another. The rendered
tiles are then recombined to provide the complete render output for display. In tile-based
rendering, the render output may be divided into regularly sized and shaped tiles. The tiles may
be square or another shape.

[0023] Other terms that may be used for "tiling" and "tile-based" rendering include
"chunking”, where the rendering tiles are referred to as "chunks", and "bucket" rendering. The
terms "tile" and "tiling" will be used hereinafter for convenience, but 1t should be understood
that these terms are intended to encompass all alternative and equivalent terms and techniques.
[0024] The render output data array may be an output frame intended for display on a display
device, such as a screen or printer. The render output may also, for example, comprise
intermediate data intended for use 1n later rendering passes. An example of this 1s a "render to

texture" output.



[0025] When a computer graphics image 1s to be displayed, 1t may first be defined as a set of
geometries, for example as a series of primitives. An example of a primitive 1s a polygon. The
geometries are then divided into graphics fragments 1n a rasterization process. This 1s followed
by graphics rendering. During a graphics rendering operation, the renderer may modify data
associated with each fragment so that the fragments can be displayed correctly. Examples of
such data include the colour and transparency. Once the fragments have fully traversed the
renderer, then their associated data values are stored in memory, ready for output.

[0026] FIG. 2 shows various elements and pipeline stages associated with a graphics
processing pipeline 200 according to examples. There may however be other elements and
stages of the graphics processing pipeline that are not illustrated in FIG. 2.

[0027] As shown in FIG. 2, the graphics processing pipeline 200 includes a number of stages,
including a vertex shader 202, a hull shader 204, a tesselator 206, a domain shader 208, a
geometry shader 210, a tiler 212, a rasterization stage 214, a fragment shading stage 216, a
texture mapping stage 218, a blending stage 220, a tile buffer 222 and a downsampling and
writeout stage 224. Other arrangements for a graphics processing pipeline are however
possible.

[0028] The vertex shader 202 receives input data values associated with the vertices defined
for the output to be generated. The vertex shader 202 processes those data values to generate a
set of corresponding, vertex-shaded, output data values for use by subsequent stages of the
graphics processing pipeline 200.

[0029] Each primitive to be processed may be defined and represented by a set of vertices.
Each vertex for a primitive may have associated with 1t a set of attributes. A set of attributes 1s
a set of data values for the vertex. These attributes may include location data and other, non-
location data (or ‘varyings’). The non-location data may represent, for example, colour, light,
normal and/or texture coordinates for the vertex in question.

[0030] A set of vertices 1s defined for a given output to be generated by the graphics
processing pipeline. The primitives to be processed for the output include given vertices 1n the
set of vertices. The vertex shading operation transtorms the attributes for each vertex into a
desired form for subsequent graphics processing operations. This may include, for example,
transforming vertex location attributes from the world or user space for which they are initially

defined to the screen space in which the output of the graphics processing system 1s to be



displayed. This may also include, for example, modifying the input data to take account of the
effect of lighting in the image to be rendered.

[0031] The hull shader 204 performs operations on sets of patch control points and generates
additional data known as patch constants.

[0032] The tessellation stage 206 subdivides geometry to create higher-order representations
of the hull.

[0033] The domain shader 208 performs operations on vertices output by the tessellation
stage, 1n a similar manner to the vertex shader 202.

[0034] The geometry shader 210 processes entire primitives such as a triangles, points or
lines.

[0035] The vertex shader 202, hull shader 204, tesselator 206, domain shader 208 and
geometry shader 210 perform the geometry operations, such as transformation and lighting
operations, and primitive setup, to setup the primitives to be rendered, 1n response to commands
and vertex data provided to the graphics processing pipeline 200.

[0036] Once all the primitives to be rendered have been appropriately set up, the tiler 212
then determines which primitives are to be processed for each tile that the render output has
been divided into for processing purposes. To do this, the tiler 212 compares the location of
each primitive to be processed with the tile locations, and adds the primitive to a respective
primitive list for each tile that 1t determines the primitive could potentially fall within. Any
suitable and desired technique for sorting and binning primitives into tile lists, such as exact
binning, or bounding box binning or anything in between, can be used for the tiling process.
[0037] Once lists of primitives to be rendered (or ‘primitive lists’) have been prepared for
each rendering tile 1n this way, the primitive lists are stored for use. The primitive lists allow
the system to identify which primitives are to be considered and rendered when the tile 1n
question 1s rendered.

[0038] Once the tiler 212 has prepared all of the tile lists, then each tile can be rendered. To
do this, each tile 1s processed by the graphics processing pipeline stages that follow the tiler
212.

[0039] When a given tile 1s being processed, each primitive that 1s to be processed for that
tile 1s passed to the rasterizer 214. The rasterizer 214 of the graphics processing pipeline 200
operates to rasterize the primitives into individual graphics fragments for processing. To do

this, the rasterizer 214 rasterizes the primitives to sampling points and generates graphics



fragments having appropriate locations for rendering the primitives. The fragments generated
by the rasterizer 214 are then sent onwards to the rest of the graphics processing pipeline 200
for processing.

[0040] In examples, a Z (or ‘depth’) test may be performed on fragments received from the
rasterizer 214 to see 1f any fragments can be discarded (or ‘culled’) at this stage (not shown in
FIG. 2). To do this, an early Z and stencil test stage may compare the depth values of fragments
1ssued by the rasterizer 214 with the depth values of fragments that have already been rendered.
The depth values of fragments that have already been rendered may be stored 1in a depth bufter
that 1s part of a tile buffer 222 (described further below). The comparison performed by the
early Z and stencil test stage 1s to determine whether or not the new fragments will be occluded
by fragments that have already been rendered. At the same time, an early stencil test may be
carried out, in which a stencil value of a fragment 1s compared against a value 1n a stencil
buftfer. If the test 1s failed, the fragment may be culled. In other examples, though, the early Z
and stencil test stage may be omitted.

[0041] The fragment shading stage 216 performs the appropriate fragment processing
operations on fragments 1t receives from the rasterizer 214 to generate the appropriate rendered
fragment data. This fragment processing may include any suitable fragment shading processes,
such as executing fragment shader programs on the fragments to generate the appropriate
fragment data, applying textures to the fragments, applying fogging or other operations to the
fragments, etc. The fragment shading stage 216 may be a programmable fragment shader.
[0042] In the example of FIG. 2, the fragment shader 216 passes the fragments to a texture
mapper 218, which applies a texture to the fragments. The textured fragments are then passed
back to the fragment shader 216.

[0043] As can be seen from FIG. 2, the graphics processing pipeline 200 includes a number
of programmable processing or "shader" stages, namely the vertex shader 202, the hull shader
204, the domain shader 208, the geometry shader 210, and the fragment shader 216 (which 1n
this example includes the texture mapper 218 stage). These programmable shader stages
execute respective shader programs that have one or more input variables and generate sets of
output variables. The shader program 1n question may be executed for each work item to be
processed, for example for each vertex 1n the case of the vertex shader 202. An execution thread
may be 1ssued for each work 1tem to be processed, and the thread then executes the instructions

1in the shader program to produce the desired, shaded, output data.



[0044] After the fragment shader 216, there may then be a late fragment Z and stencil test
stage (not illustrated in FIG. 2), which carries out, amongst other things, an end of pipeline
depth test on the shaded fragments to determine whether a rendered fragment will actually be
seen 1n the final image. This depth test typically uses a Z-buffer value for the position of the
fragment that 1s stored 1n the Z-bufter 1n the tile buffer 222 to determine whether the fragment
data for the new fragments should replace the fragment data of the fragments that have already
been rendered. This may 1involve comparing the depth values of the fragments 1ssued by the
fragment shader 216 with the depth values of fragments that have already been rendered, as
stored 1n the Z-bufter. This late fragment depth and stencil test stage may also carry out late
alpha and/or stencil tests on the fragments.

[0045] The textured fragments outputted from the texture mapper 218 may then be subjected,
1n the blender 220, to any blending operations with fragments that are already stored in the tile
buffer 222. Any other remaining operations necessary on the fragments, such as dither, etc.
(not shown) may also be carried out at this stage.

[0046] Finally, the output fragment data (or ‘values’) are written to the tile buffer 222. The
depth value for an output fragment 1s also written appropriately to a buffer within the tile buffer
222. The tile buffer 222 stores colour and depth buftfers that store an appropriate colour, etc.,
or depth, respectively, for each sampling point that the buftfers represent. These buffers store
an array of fragment data that represents part, in this example a tile, of the overall render output
with respective sets of sample values in the buffers corresponding to respective pixels of the
overall render output. For example, each 2 x 2 set of sample values may correspond to an output
pixel, where 4x multisampling 1s used.

[0047] The tile butfer 222 may be provided as part of random access memory (RAM) that 1s
local to the graphics processing pipeline 200. In other words, the tile buffer 222 may be
provided 1n on-chip memory.

[0048] The data from the tile buffer 222 1s input to a downsampling write out-unit 224, and
then output (or ‘written back’) to an external memory output buffer, such as a framebutter 226
of a display device (not shown). The display device could include, for example, a display
including an array of pixels, such as a computer monitor or a printer.

[0049] The downsampling and writeout unit 224 downsamples the fragment data stored in

the tile buffer 222 to the appropriate resolution for the output buffer and device, such that an
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array of pixel data corresponding to the pixels of the output device 1s generated. This results 1n
output values in the form of pixels for output to the output framebuftfer 226.

[0050] Once a tile of the render output has been processed and its data exported to a main
memory for storage, for example to the frame buffer 226 in a main memory, the next tile 1s
then processed, and so on, until sufficient tiles have been processed to generate the entire render
output. The process 1s then repeated for the next render output and so on.

[0051] FIG. 3 shows schematically an example of part of a graphics processing system for
implementing the graphics processing pipeline 200 of FIG. 2. In the example of FIG. 3, a
graphics processor 228 1s configured to implement the rasterizer 214, the fragment shader 216,
the texture mapper 218 (which may be referred to interchangeably as a texture mapping unit
218) and the blender 220. These modules may be implemented in hardware of the graphics
processor 228, 1n software or a combination of hardware or software. For example, the graphics
processor 228 may be instructed to implement these modules via graphics computer program
code, which may be received by the graphics processor 228 via a suitable programming
interface. This 1s described 1n further detail below with reference to FIG. 5. The graphics
processor 228 may be any appropriately programmed or configured graphics processor 228
such as the Arm® Mali'™-G51 GPU, available from ARM Limited, 110 Fulbourn Road,
Cambridge, CB1 9NJ, United Kingdom.

[0052] Graphics fragments generated by the rasterizer 214 are received by a fragment front
end 217 of the fragment shader 216. The fragment shader 217 sends request data 230 to the
texture mapping unit 218. In examples such as FIG. 3, the graphics processor 228 includes a
shader processing unit (sometimes referred to as a shader core) for processing or implementing
the 1nstructions corresponding to the fragment shader 217 stage. In such cases, the shader
processing unit may be configured to transmit the request data 230 to the texture mapping unit
218 to 1nstruct the texture mapping unit 218 to perform the interpolation process.

[0053] The request data 230 for example 1includes weight data representative of weights for
input to an interpolation process. The weight data 1s for example calculated by an arithmetic
unit 219 of the fragment shader 216. Calculation of the weight data 1s described further below.
The request data 230 may be considered to correspond to a texturing request message to instruct
the texture mapping unit 218 to calculate a value at a position 1n a texture space using the
interpolation process. The request data 230 i1s then passed to the texture mapper 218 for

example via a network 221. The weight data of the request data 230 1s for example written into
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weight storage 238 of the graphics processor 228 when the request data 230 1s received by the
texture mapper 218. In the example of FIG. 3, the texture mapper 218 includes the weight
storage 238, although 1n other examples the weight storage 238 may be located differently
within the graphics processor 228.

[0054] The weight storage 238 may be considered to be a local storage of the graphics
processor 228. For example, the weight storage 238 may include at least one of an on-chip
memory or buffer of the graphics processor 228. The weight storage 238 may, however, be any
suitable local memory of or accessible to the graphics processor. For example, the weight
storage 238 may be or include a Random Access Memory (RAM) of the graphics processor
228 or an embedded Dynamic Random Access Memory (eDRAM), which may be integrated
on the same chip as other components of the graphics processor 228.

[005S] The weight storage 238 1n the example of FIG. 3 includes a so-called “weights bufter”
for storing the weight data received as part of the request data 230. The weights buffer may be
considered to be storage or memory for storing the weight data temporarily. The weights buffer
1s for example a Random Access Memory (RAM). As the weights buffer of the weight storage
238 1n FIG. 3 1s included 1n the texture mapper 218 rather than 1n an external location such as
a main or system memory, the weight data may be retrieved more rapidly from the weights
butfer (and hence from the weight storage 238) than from the main memory.

[0056] The texture mapping unit 218 1n the example of FIG. 3 responds with a texturing
response message, which for example includes a value representative of a filtered sample at the
position 1n the texture space, which 1s interpolated from the texture data using the weight data.
For example, the filtered sample may be a filtered colour in examples in which the texture
represents a colour distribution 1n the texture space. The texture mapping unit 218 may be a
co-processor to the fragment shader 216, which may correspond to a graphics processor shader
core. Alternatively, the texture mapping unit 238 may be a co-processor to a central processor
of a computer device including the graphics processor 228.

[0057] In addition to including the weight data, the request data 230 may also include position
data representative of the position 1n the texture space at which the value 1s to be interpolated.
For example, the position data may represent coordinates of the position in the texture space or
coordinates at which the texture 1s to be sampled. The position data may also be stored in the

first storage 238, for example in the weights buffer or 1n a separate or different butfer or cache.
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[0058] The texture mapping unit 218 in this example begins by looking up a texture descriptor
and a sampler descriptor using an input parameter fetching unit 232. The texture descriptor and
the sampler descriptor may for example be fetched from other storage accessible to or included
within the graphics processor 228 (not 1llustrated separately in FIG. 4). For example, there may
be a texture descriptor cache for storing the texture descriptor and a sampler descriptor cache
for storing the sampler descriptor. The texture descriptor typically includes information related
to characteristics of the texture itself, such as texture size (in texels), dimensionality (such as
one, two or three dimensions), or texel format. The sampler descriptor for example includes
information relating to parameters or characteristics of the interpolation process. Such
characteristics may 1nclude a texture filtering mode, a coordinate wrap mode, which for
example indicates how edges of the texture are to be handled, or a LOD (level of detail)
computation parameter.

[0059] Processing then continues in the coordinate computation unit 234 of the texture
mapping unit 218. In this example, the request data includes position data and the coordinate
computation unit 234 converts the position data into an appropriate format for accessing the
texture data for the interpolation from storage. For example, where the position data 1s 1n a
floating-point format, and 1s representative of coordinates in the texture space, the position data
may be converted by the coordinate computation unit 234 to a texel index. However, the
position may not directly correspond to a texel in the texture space. For example, if a first texel,
with 1index O, 1s located at coordinates (O, 0), a second texel, with index 1, 1s located at
coordinates (1, 0), a third texel, with index 2, 1s located at coordinates (0, 1), a fourth texel,
with index 3, 1s located at coordinates (1, 1) and the position data represents coordinates (0.5,
0.5), the position data corresponds to a location between the first, second, third and fourth
texels. Thus, 1t may not be possible to identify an integer texel index for the position data. In
such cases, though, the coordinate computation unit 234 may be used to calculate the texel
indices for a plurality of texels that correspond to an area in the texture space that includes the
position. The number of texels 1n the plurality of texels for example depends on at least one of
the parameters obtained by the input parameter fetching unit 232. In this simple example,
1llustrated further in FIG. 4, the number of texels 1n the plurality of texels 1s four, although
other numbers are possible in other examples. The coordinate computation unit 234 may
therefore be used to 1dentify texel indices for the four texels with the coordinates (0, 0), (1, 0),

(0, 1) and (1, 1), which span the area that includes the position (0.5, 0.5). The texel indices may
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subsequently be used for computing the memory addresses of the texture data representative
of the plurality of texels.

[0060] In the example of FIG. 3, a data fetching unit 236 1s used to read the texture data. In
this example, the data fetching unit 236 1includes a texture cache lookup unit 237 that reads the
texture data from first storage 240 of the texture mapping unit 218, which 1n the example of
FIG. 3 forms part of the data fetching unit 236. As will be appreciated, in other examples,
though, the first storage 240 may be located within a different component or unit of the texture
mapper 218 or of the graphics processor 228. The first storage 240 may be a cache, such as a
so-called “texture cache” for storing the texture data. A cache may be considered to be storage
or memory for storing data to enable more rapid retrieval of the data 1n the future. For example,
a cache may store a duplicate of data that 1s also stored 1n a main memory but may be a smaller
or faster memory, located closer to a processor, than the main memory. Thus, 1t may take less
time to access data from the cache than from the main memory. The first storage 240 maybe a
RAM or an eDRAM and may be considered to be on-chip memory of the graphics processor
228. The first storage 238 1s typically accessible by components of the texture mapper as
indicated by the line 223 1n FIG. 3. The first storage 240 may include a plurality of storage
components such as a plurality of caches of the graphics processor 228. While in some cases
(such as the example of FIG. 3), the first storage 240 may be dedicated to the graphics processor
228, 1n other cases, the first storage 240 may be part of storage that 1s shared with other
processors. For example, the first storage 240 may form part of a main system RAM that 1s
also accessible to a host central processor or central processing unit (CPU). In such cases, the
first storage 240 may be considered to be the part of shared storage that 1s accessible or visible
to the graphics processor 228. The texture cache lookup unit 237 typically locates the texture
data 1n the first storage 240 based on the memory addresses calculated using the coordinate
computation unit 234.

[0061] The graphics processing system of FIG. 3 also includes second storage 242, which in
th1s example 1s external to the graphics processor 228. For example, the second storage 242
may be system storage, for example primary storage, or a main memory of a host system
running the graphics processing system. The second storage 242 may be or include at least one
of volatile memory, such as a Random Access Memory (RAM), for example Static RAM
(SRAM) or Dynamic RAM (DRAM) and non-volatile memory, such as Read Only Memory
(ROM) or a solid state drive (SSD) such as Flash memory. The second storage 242 in examples
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may 1nclude further storage devices, for example magnetic, optical or tape media, compact disc
(CD), digital versatile disc (DVD) or other data storage media. The second storage 242 may be
removable or non-removable from the graphics processing system.

[0062] In the example of FIG. 3, the data fetching unit 236 1s also operable to 1dentify, from
the position data, the plurality of texels corresponding to the area 1n the texture space including
the position and determine that a portion of the texture data representative of at least one of the
plurality of texels 1s absent from the first storage 240. In other words, there may be a cache
mi1ss, where there 1s a failed attempt to read the entirety of the texture data from the first storage
240, for example from the texture cache of the first storage 240. For example, there may be a
cache miss by the texture cache lookup unit 237 of the data fetching unit 236. If the data
fetching unit 236 determines that the portion of the texture data 1s not present 1n the first storage
240, the data fetching unit 236 fetches the portion of the texture data from the second storage
242 and stores the portion of the texture data in the first storage 240. In the example of FIG. 3,
a main memory lookup unit (not shown separately 1n FIG. 3) of the data fetching unit 236
fetches the portion of the texture data from the second storage 242.

[0063] In some examples, the request data 1s first request data, the value 1s a first value, the
position 1s a first position, the weight data 1s a first weight data, the weights are first weights,
the texture data 1s first texture data and the plurality of texels 1s a first plurality of texels. In
these examples, the texture mapping unit 218 may be operable to, while the portion of the first
texture data 1s being fetched from the second storage 242, receive second request data to request
the calculation of a second value at a second position 1n the texture space using the interpolation
process, the second request data including second weight data representative of second weights
for input to the interpolation process, process the second weight data with the second texture
data to perform the interpolation process, thereby calculating the second value at the second
position 1n the texture space, and, after the portion of the first texture data 1s stored in the first
storage 240, process the first weight data with the first texture data to perform the interpolation
process, thereby calculating the first value at the first position in the texture space.

[0064] In other words, if the first request data processed by the texture mapping unit 218
triggers a cache miss (for example if the first texture data 1s not present 1n the first storage 240),
the texture mapping unit 218 can process further texturing messages, such as the second request
data. For example, the texture cache lookup unit 237 can fetch the second texture data from the

first storage 240 (for example from the texture cache). In such cases, the first request data may
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be stored 1n third storage of the graphics processor 228 (not illustrated in FIG. 3). For example,
the first request data may be stored in a buffer such as a parking buffer, which may be
considered to be storage or memory for storing pending memory access requests, while
requested data 1s being moved from one location to another, such as from one storage to
another. The parking buffer may form part of the weight storage 238 or may be a further or
separate buffer. Once the missing portion of the first texture data 1s retrieved from the second
storage 242, which 1s for example a system or main memory, the state of the corresponding
cache lines may be changed to VALID. Upon determining this, the first request data may be
transferred from the buffer to a texture filtering unit 244 for further processing.

[0065] The texture filtering unit 244 performs the interpolation process by processing the
weight data with the texture data. The texture filtering unit 244 for example reads the weight
data from the weight storage 238 (e.g. from the weights buffer) and reads the texture data from
the first storage 240 (e.g. the texture cache). The various components of the texture mapper are
typically interconnected as indicated by the line 223 1n FIG. 3. This allows data to be transferred
between the various components, for example the weight data may be transterred from the
weight storage 238 and the texture data may be transferred from the first storage 240 to the
texture filtering unit 244. In the example of FIG. 3, the weights used for the interpolation
process are computed externally to the texture mapping unit 218 rather than being calculated
by the texture mapping unit 218 itself. In this case, the weights (represented by the weight data)
are instead provided 1n the texturing request message (represented by the request data, which
includes the weight data). The weight data may be stored in storage of the graphics processor
228 while the texture data are fetched, such as the weights storage 238 described above, which
may be or include a weights buffer. The weights buffer may be a pre-existing buffer of the
agraphics processor 228, such as the shadow reference mapping buffer. Thus, the methods
described herein may be implemented by altering the configuration of pre-existing graphics
processors, for example using graphics computer program code associated with a programming
interface for the graphics processor, without having to alter the underlying hardware of the
agraphics processor. In other examples, though, the hardware of the graphics processor may be
modified for use with the methods described herein. For example, a size of a pre-existing buffer
for storing the weight data may be increased, for example by around 10%, to enable storage of

the weight data.
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[0066] A schematic example of the interpolation process 1s 1llustrated in FIG. 4. FIG. 4 shows
the calculation of a value at a position 246 1n texture space which does not correspond with a
texel position. Thus, the position 246 1s for example located at a non-integer coordinate in the
texture space, where texels may generally be represented by integer coordinates 1n the texture
space. In FIG. 4, the texture data represents four texels 248a, 248b, 248c¢, 248d that correspond
to an area 1n the texture space that includes the position 246. For example, the area may be
considered to be a two dimensional region surrounded or bounded by a perimeter of a region
formed by a combination of the plurality of texels (in this case, the four texels 248a, 248b,
248c¢, 248d). The texture data representative of the plurality of texels 248a, 248b, 248c, 248d
can for example be obtained from the first storage 238 of the graphics processor 228 based on
the position data, for example by fetching texture data corresponding to the plurality of texels
248a, 248b, 248c, 248d with positions, for example coordinates, that are the same as or within
a fixed or predetermined range to an integer part of the coordinates of the position 246.
Referring to the simple example above, 1n which the position 246 has the coordinates (0.5, 0.5),
the first, second, third and fourth texels 248a, 248b, 248c, 248d have the coordinates (0, 0), (1,
0), (0, 1) and (1, 1) respectively, the integer part of the coordinates of the position 246 may be
taken as (0, 0). In this case, the plurality of texels may be taken as those four texels that are
within O and 1 units of the integer part of the coordinates of the position 246, 1.e. (0, 0), (1, 0),
(0, 1) and (1, 1). As the skilled person will appreciate though, the texture data representative
of the plurality of texels 248a, 248b, 248c, 248d may be fetched using other methods 1n other
examples. The plurality of texels may include any number of texels and may therefore occupy
any size of area in the texel space. Typically, though, the plurality of texels 1s four texels, 1n a
two texel by two texel block.

[0067] Using the texture data representative of the plurality of texels, an interpolation can be
performed to calculate a value for the position. The value for the position may then be mapped
appropriately to a pixel for display by a display device.

[0068] The interpolation process takes as an input the weight data, which 1s representative of
weights. The weights for example have a one-to-one mapping with a corresponding texel
represented by the texture data. For example, each texel may have a corresponding weight. In
other examples, though, there may be a one-to-many or many-to-one mapping between the

weights and the texels. The interpolation process may be any suitable interpolation process,
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which may be referred to as a filtering process, such as bilinear interpolation, bicubic
interpolation, bilateral filtering, Lanczos filtering or Sinc filtering.
[0069] As an example, the weights may be independent of the position 1n the texture space.
For example, where the interpolation process 1s a downscaling, each of the four weights may
be equal to 0.25. Thus, the weights may be represented by a vector or array w':

w = (0.25,0.25,0.25, 0.25)
[0070] In this case, the weights may be pre-calculated by the fragment shader 216, for
example using the shader core of the graphics processor, which 1s for example a shader
processing unit, and transferred to the texture mapping unit 218 with the request data 230 as
described above, rather than being calculated by the texture mapping unit 218,
[0071] In other examples, though, the weights may not be a constant. For example, the
weights may depend on parameters or characteristics of a pixel corresponding to a position at
which the value 1s to be calculated by the interpolation process. For example, the weights may
depend on a depth value of the pixel corresponding to the position at which the value 1s to be
calculated or a function of the depth value of the pixel such as a function of the depth difference
between a high resolution depth value of the pixel and a low resolution depth value of the pixel
(for example based on the depth data stored 1n the Z-buftfer). This may be the case for example
where the interpolation process involves bilateral upscaling. Alternatively, the weights may be
based on a formula, such as a trigonometric formula (as 1s the case for Lanczos and Sinc
filtering).
[0072] Regardless of how the weights are calculated, in examples each of the four texels
248a, 248b, 248c, 248d may be multiplied or weighted by a corresponding element of the array
w, and then the weighted texel values may be added or summed together to calculate the value
at the position. For example, where the texel values for a top left, top right, bottom left and
bottom right texel are represented as 77, 1>, 13, 14 respectively) and the weight array 1s
represented as:

W = (W, Wy, W3, Wy)

the output texel value, 7our, at the position in the texel space may be calculated as:

TOUT — T]_Wl T2W2 + T3W3 + T4W4
[0073] As explained above, passing the weight data to the texture mapping unit with the
request data allows the weight data to be pre-calculated rather than calculated by the texture

mapping unit itself. This provides more flexibility as different weights, for example to
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implement different interpolation algorithms, can be passed to the texture mapping unit without
having to reconfigure the texture mapping unit. This allows the texture mapping unit to be used
for a variety of different interpolation algorithms, without needing to include different
hardware support for each of the different algorithms.

[0074] In this example, the weight data 1s representative of a plurality of weight values with
a sum of the plurality of weight values being equal to one. However, in other examples, the
texture filtering unit 244 may be configured to accept weight values that do not satisty this
condition. For example, a sum of the plurality of weight values may be smaller than zero or
larger than one, or the sum of the plurality of weight values may be between zero and one or
equal to zero. This provides further flexibility to the interpolation processes that may be
performed by the texture filtering unit 244,

[007S] Similarly, although 1n this example the weight data 1s representative of a positive
number, 1n other examples the weight data may be representative of at least one weight with a
negative value.

[0076] The weight data may be 1n what may be considered to be a medium precision format,
such as the fp16 format (sometimes referred to as a half-precision floating-point format). This
for example allows the texture mapping process to be performed sufficiently quickly but
without suffering from a reduced quality of display output. In other examples, though, the
weight data may be 1n a higher precision format, such as the fp32 format (sometimes referred
to as a single-precision floating-point format). In yet further examples, the weight data may be
an integer. For example, the weight may be 1n a signed integer format or an unsigned integer
format, for example 1n an 8-bit signed or unsigned integer format.

[0077] A schematic diagram of internal components of a computing device 300 for use with
the graphics processing pipelines described above with reference to FIGS. 1 to 4 1s illustrated
1in FIG. 5. Features of FIG. 5 that are the same as corresponding features of the previous FIGS.
are labelled with the same reference numerals; corresponding descriptions are to be taken to
apply.

[0078] The computing device 250 1s for example any electronic device with suitable
processing capabilities to implement the graphics processing pipeline described herein. The
computing device 250 may be or include, amongst others, a cell phone, 1.e. a mobile phone, for
example a smartphone, a tablet, laptop or personal computer, a personal digital assistant, as

well as various other electronic devices such as a game console.
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[0079] In the example of FIG. 5, the computing device 250 1s coupled to a display device
252, for displaying the 1mage resulting from the graphics processing pipeline. The display
device 252 may be internally coupled to the computing device 250, with the display device 252
forming part of the computing device 250 1tself. For example, the display device 252 may be a
display screen of a computing device 250 such as a smartphone; tablet, laptop or desktop
computer; or personal digital assistant. Alternatively, the display device 252 may be an external
device coupled to the computing device 250, for example a television screen or a computer
monitor coupled to a laptop, desktop computer or game console via a High-Definition
Multimedia Interface (HDMI®) cable. The display device 250 may be any suitable display
device such as a transmissive or transflective display device such as liquid crystal display
(LCD) device, an electrowetting display device or an electrophoretic display device.
Alternatively, the display device may be a display device in which pixels or picture elements
of the display device generate light, such as an organic light emitting diode (OLED) display
device or a plasma display device.

[0080] The computing device 250 includes a graphics processor 328 and a second storage
342, which may be similar to or the same as the graphics processor 228 and the second storage
242 described with reference to FIG. 3. A central processor 254 1s communicatively coupled
to the second storage 242 1n the computing device 250 of FIG. 5, which 1n this example 1s a
main memory of the computing device 250. The computing device 250 may also include at
least one further processor (not 1llustrated). The central processor 250 1n the example of FIG.
5 may include a microprocessor, a general purpose processor, a digital signal processor (DSP),
an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or
other programmable logic device, a discrete gate or transistor logic, discrete hardware
components, or any suitable combination thereof designed to perform the functions described
herein. A processor may also be implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of microprocessors, one or more
microprocessors in conjunction with a DSP core, or any other such configuration.

[0081] Some components of the graphics processor 328 of FIG. 5 are omitted, for clarity.
Nevertheless, a fragment shader 316 and a texture mapping unit 318 of the graphics processor
328 of FIG. 5 may be similar to or the same as the fragment shader 216 and the texture mapping
unit 218 described with reference to FIG. 3. In this example, however, the fragment shader 316

includes a weight selection module 256 operable to select the weight data from a plurality of
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sets of weight data, 1n this example a first set of weight data 258, a second set of weight data
260 and an #th set of weight data 262. The plurality of sets of weight data may be stored by
storage of or accessible to the graphics processor 328, for example 1n a look-up table. In this
example, the weight selection module 256 1s represented by weight selection computer program
code associated with a programming interface 264 for the graphics processor 328. The
programming interface 264 may be used, for example by an application, such as application
102 described above with reference to FIG. 2, to provide shader programs to be executed as
part of the graphics processing pipeline, such as a texture mapping program, using a high-level
shader programming language, such as OpenGL® Shading Language (GLSL), High-level
Shading Language (HLSL), Open Computing Language (OpenCL'™), etc. For example, the
application 102 may instruct the graphics processor 328 to implement the weight selection
module 256 as part of the graphics processing pipeline, via the programming interface 264.
The weight selection computer program code 1s therefore operable to instruct the graphics
processor 328 to implement the weight selection module 256 when processed by the graphics
processor 328. In other words, 1n this example, the weight selection module 256 1s implemented
1in software. The weight selection module 256 of FIG. 5 1s a software routine associated with
the fragment shader. Thus, 1in this example, the weight selection computer program code 1s
executed by a graphics processor shader core, which may be referred to herein as a shader
processing unit, of the graphics processor 328. The graphics processor shader core 1s for
example hardware of the graphics processor 328 for executing stages of the graphics processing
pipeline relating to shading, such as the fragment shader 316 stage. Thus, 1n FIG. 5, the shader
processing unit 1S a processor or processors for executing the instructions to implement the
fragment shader 316. The weight selection computer program code may be executed by or as
part of the arithmetic unit of the fragment shader 316 (not shown in FIG. 5), which may 1n turn
be executed by or using the shader processing unit. In other examples, though, the weight
selection module may be implemented 1n hardware or a combination of hardware and software.
For example, a shader processing unit of the graphics processor 328 may be configured to
implement the weight selection module 256 1n hardware, without being configured or otherwise
instructed via software.

[0082] The weight selection module 256 may be operable to select the weight data based on
an 1input, which may for example be set to a default or predetermined value to select a default

set of weight data or which may be altered. For example, a user or a developer configuring the
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graphics processing pipeline for a particular purpose or for use with a particular application
may select the weight data to be used, by appropriately configuring the weight selection module
256 to select the desired weight data. The selected weight data may then be transferred to the
texture mapper 318 as part of the texturing request message (for example via the request data),
and stored in the weight storage 338 of the graphics processor 328, for example 1n a weights
butfer of a texture mapping unit 318 of the graphics processor 328.

[0083] In this and other examples, the graphics processing system may include graphics
computer program code associated with the programming interface 264, the graphics computer
program code operable to instruct the graphics processor 328 to perform the interpolation
process based on the request data including the weight data, via the programming interface 264.
The graphics computer program code may therefore include texture mapping computer
program code operable to receive, as an input, the texture data, position data representative of
the position in the texture space, and the weight data, the texture mapping computer program
code operable to instruct the graphics processor 328 to perform the interpolation process, via
the programming interface 264.

[0084] As an illustrative example, pseudo-code representative of the texture mapping

computer program code may be set out as:

vecd result = TEX WEIGHTS(texture, sampler, tex coord, weights)

where “result” 1s the output of the interpolation process, “TEX WEIGHTS” represents the
instruction to the graphics processor 328 to perform the interpolation process using the weights,
“texture” 1ndicates the texture that 1s to be interpolated, “sampler” indicates how the texture 1s
to be interpolated and for example provides various parameters to be used as part of the texture
mapping process such as whether the coordinates are normalised, how edges are to be handled
and so forth, “tex coord” indicates where 1n the texture to sample, and “weights” represents
the weight data that 1s provided as part of the request data.

[0085] Thus, solely one instruction (the “TEX WEIGHTS” instruction) 1s needed to perform
the 1interpolation process in examples such as this. These examples may therefore be more
efficient than other examples 1n which four instructions are required to fetch the four texels for
the interpolation (e.g. from storage of the graphics processor to a main memory) and four

arithmetic instructions are needed to perform the interpolation based on the four texels.
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[0086] In order to instruct the graphics processor 328 1n this way, the graphics computer
program code may be translated by a shader language compiler to binary code for the target
graphics processing pipeline, for example for execution by the graphics processor 328, for
example by the shader core of the graphics processor 328. This may include creating one or
more 1nternal, intermediate representations of the program within the compiler. The compiler
may, for example, be part of the driver 108 (which may for example be the same as or part of
the programming interface 264 shown 1n FIG. 5), with there being a special API call to cause
the compiler to run. The compiler execution can thus be seen as being part of the draw call
preparation done by the driver 1in response to API calls generated by the application 102. For
example, the graphics computer program code may be compiled at run-time.

[0087] In examples, the graphics computer program code may directly or explicitly instruct
the graphics processor 328 to use the TEX WEIGHTS instruction. However, in other
examples, the graphics computer program code may not explicitly instruct the graphics
processor 328 to use the TEX WEIGHTS 1nstruction. Instead, the compiler may be configured
to select from the TEX WEIGHTS instruction or another instruction or sequence of
instructions for performing the interpolation process (for example, an instruction 1n which the
weight data 1s calculated by the texture mapping unit 318 rather than by the fragment shader
316) during compilation of the graphics computer program code. In these cases, the compiler
may select the TEX WEIGHTS 1nstruction for example where the weight calculation can be
performed as part of the fragment shader 316 stage, for example where the weight data 1s
independent of the texture sampling position, where the texture sampling position for example
corresponds to a position in the texture space at which the value 1s to be interpolated.

[0088] The components of the computing device 250 in the example of FIG. 5 are
interconnected using a systems bus 266. This allows data to be transferred between the various
components. For example, the output of the texture mapping unit 318 may be stored 1nitially
1n the first storage 340 of the graphics processor 328 or 1n a different storage of the graphics
processor 328 and subsequently transmitted via the systems bus 266 from the first storage 340
to a display device interface 268 for transtfer to the display device 252 for display. The display
device interface 268 may include a display port and/or an internal electronics interface, e.g.
where the display device 252 1s part of the computing device 250 such as a display screen of a

smartphone. Therefore, when instructed by a processor of the computing device 250, such as
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the central processor 254, via the display device interface 268, the display device 252 will
display a rendered image.

[0089] Although not shown in FIG. 5, the computing device 250 of FIG. 5 may also include
a network interface for receiving data, such as image data, from a server device. The network
interface of the computing device 250 may include software and/or hardware components, such
as a virtual network 1nterface, an Ethernet port, a software driver and/or communications stack
interacting with network hardware.

[0090] A schematic diagram of internal components of a further example computing device
350 for use with the graphics processing pipelines described above with reference to FIGS. 1
to 4 1s 1llustrated in FIG. 6. Features of FIG. 6 that are similar to corresponding features of FIG.
5 are labelled with the same reference numerals but incremented by 100; corresponding
descriptions are to be taken to apply.

[0091] The computing device 350 of FIG. 6 1s similar to the computing device 250 of FIG. 5
but includes a weight calculation module 270 operable to calculate the weight data based on a
predetermined algorithm. Similarly to the weight selection module 256 of FIG. 5, there may be
weight calculation program code associated with the programming interface 364 for the
agraphics processor 428. The weight calculation computer program code 1s operable to instruct
the graphics processor 428 to implement the weight calculation module 270. Thus, 1n this
example, the weight calculation module 270 1s implemented 1n software. For example, as for
the weight selection module 256, the weight calculation module 270 may be implemented 1n
software, for example as software executed by the graphics processor shader core, which may
be referred to herein as a shader processing unit, for example as part of the fragment shader
416 stage. For example, the weight calculation computer program code may be executed by or
as part of the arithmetic unit of the fragment shader 416 (not shown in FIG. 6), which may in
turn be executed by or using the shader processing unit. In other examples, though, the weight
calculation module 270 may be implemented by a different component or unit of the graphics
processor 428 or may be implemented 1n hardware or a combination of hardware and software.
For example, a shader processing unit of the graphics processor 428 may be configured to
implement the weight selection module 256 1n hardware, without being configured or otherwise
instructed via software.

[0092] The predetermined algorithm may be selected from a plurality of different algorithms.

This 1s shown schematically in FIG. 6, in which the fragment shader 416 includes a first



24

algorithm 272, a second algorithm 274 and an nth algorithm 276 for selection by the weight
calculation module 270. The output of the weight calculation module 270 1s the weight data,
which 1s for example received by the graphics processor 428, via the systems bus 366, as part
of the request data, and stored in the weight storage 438 of the texture mapper 418 of the
graphics processor 428.

[0093] As described above for the weight selection module 256 of FIG. 3, the predetermined
algorithm may be configured by a user or developer of the graphics processing pipeline or
selected 1n dependence on an intended use of the graphics processing pipeline.

[0094] The weight calculation module 270 1s for example operable to determine that a weight
value represented by the weight data 1s outside a predetermined range and process the weight
data to set the weight value to a minimum or a maximum of the predetermined range. For
example, 1f the predetermined range 1s -2 to +2 but a calculated weight 1s +2.5, the calculated
weight may be adjusted to be +2 (the maximum of the predetermined range). In such cases, the
weight value may be set to the minimum or the maximum of the predetermined range
depending on which of the minimum or the maximum 1s closest to the weight value. Thus,
weight values lower than the minimum will be set to the minimum and weight values higher
than the maximum will be set to the maximum.

[009S5] FIG. 7 1s a flow diagram illustrating a method of texture mapping for a graphics
processing pipeline according to examples. The method of FIG. 7 involves, at block 500,
receiving, using a texture mapping unit of the graphics processing pipeline, request data to
request the calculation of a value at a position 1n a texture space using an interpolation process,
the request data including weight data representative of weights for input to the interpolation
process. The method of FIG. 7 further includes, at block 502, processing, using the texture
mapping unit, the weight data with texture data representative of a plurality of texels 1n the
texture space to perform the interpolation process, thereby calculating the value at the position
1n the texture space. The method of FIG. 7 may be implemented using any of the graphics
processing pipelines or systems described herein.

[0096] In further examples, the method of FIG. 7 may include, before the receiving the
request data, selecting the weight data from a plurality of sets of weight data. For example, the
weight data may be selected using a weight selection module such as that described with
reference to FIG. 5. Additionally, the method of FIG. 7 may include calculating a first set of

the plurality of sets of weight data using a first algorithm and calculating a second set of the
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plurality of sets of weight data using a second algorithm different from the first algorithm. The
first and second sets of the plurality of sets of weight data may for example be calculated using
a weight calculation module such as the described above with reference to FIG. 6.

[0097] The above examples are to be understood as 1llustrative examples of the invention.
Further examples are envisaged. In the example of FIG. 3, the texture mapper 218 includes the
weight storage 238 and the first storage 240. However, 1n further examples, one or both of the
weight storage 238 and the first storage 240 may be located within a different component or
unit of the graphics processor 228, or the weight storage 238 and the first storage 240 may be
integrated or form part of the same storage system.

[0098] In the examples above, references to receiving data as an input to computer program
code are also envisaged to include receiving a pointer or reference to the data or an input that
allows the data to be located within memory as the input. As the skilled person will appreciate,
a pointer for example refers or “points” to a particular location or address 1n storage at which
the data 1s stored. Thus, the data can be obtained from the correct address 1n the storage based
on the pointer. For example, the texture mapping computer program code may receive a texture
descriptor pointer as an input rather than a pointer to the texture data or the texture data itself.
As described herein, though, this 1s to be considered analogous or equivalent to receiving the
texture data itself as an input to the texture mapping computer program. Similarly, one or both
of the respective pointers to the position data and the weight data may be received as an input
to the texture mapping computer program code; this 1s to be considered analogous or equivalent
to the texture mapping computer program code recerving the position data and the weight data
directly. In other words, receiving data as an input 1S to be interpreted herein as also
encompassing recetving a pointer or reference to the data.

[0099] It should be noted that the FIGS. are merely schematic, and that, for example, in
practice illustrated functional units 1n the same FIG. may share significant hardware circuits,
even though they may be shown schematically as separate units. It will also be appreciated that
each of the stages, elements and units, etc., of the FIGS. may be implemented as desired and
will accordingly include, for example, appropriate circuitry and/or processing logic, etc., for
performing the associated operation and functions.

[00100] It 1s to be understood that any feature described 1n relation to any one example may
be used alone, or in combination with other features described, and may also be used 1n

combination with one or more features of any other of the examples, or any combination of
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any other of the examples. Furthermore, equivalents and modifications not described above

may also be employed without departing from the scope of the accompanying claims.
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CLAIMS

1. A graphics processing system comprising:
storage for storing texture data representative of a plurality of texels 1n a texture space;
and
a graphics processor coupled to the storage, the graphics processor comprising:
a texture mapping unit operable to:
receive request data to request the calculation of a value at a position 1n
the texture space using an interpolation process,
the request data comprising weight data representative of weights for
input to the interpolation process; and
process the weight data with the texture data to perform the interpolation
process, thereby calculating the value at the position 1n the texture space; and
a shader processing unit configured to transmit the request data to the texture

mapping unit to instruct the texture mapping unit to perform the interpolation process.

2. The graphics processing system according to claim 1, comprising a weight selection

module operable to select the weight data from a plurality of sets of weight data.

3. The graphics processing system according to claim 2, comprising:

a programming interface for the graphics processor; and

weight selection computer program code associated with the programming interface,
the weight selection computer program code operable to instruct the graphics processor to

implement the weight selection module.

4 The graphics processing system according to any one of claims 1 to 3, comprising a
weight calculation module operable to calculate the weight data based on a predetermined

algorithm.

S. The graphics processing system according to claim 4, wherein the predetermined

algorithm 1s selected from a plurality of different algorithms.
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6. The graphics processing system according to claim 4 or claim 5, comprising:

a programming interface for the graphics processor; and

weight calculation computer program code associated with the programming interface,
the weight calculation computer program code operable to mstruct the graphics processor to

implement the weight calculation module.

7. The graphics processing system according to any one of claims 4 to 6, wherein the
welight calculation module 1s operable to:

determine that a weight value represented by the weight data 1s outside a predetermined
range; and

process the weight data to set the weight value to a mimmimum or a maximum of the

predetermined range.

8. The graphics processing system according to any one of claims 1 to 7, wherein the

weight data 1s representative of at least one weight with a negative value.

9. The graphics processing system according to any one of claims 1 to 8, wherein the
weight data 1s representative of a plurality of weight values, a sum of the plurality of weight

values bemg smaller than zero or larger than one.

10. The graphics processing system according to any one of claims 1 to 9, wherein the

weight data 1s independent of the position 1n the texture space.

11. The graphics processing system according to any one of claims 1 to 10, wherein the

weight data 1s in fpl6, fp32, signed integer, or unsigned mteger format.

12. The graphics processing system according to any one of claims 1 to 11, wherein the

request data comprises position data representative of the position 1n the texture space.

13. The graphics processing system according to any one of claims 1 to 12, wherein the

plurality of texels correspond to an area in the texture space, the arca comprising the position.
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space;

15.
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The graphics processing system according to any one of claims 1 to 13, wherein:

the request data comprises position data representative of the position mn the texture

the storage of the graphics processor system 1s first storage of the graphics processor;
the graphics processing system comprises second storage; and
the texture mapping unit comprises:
a data fetching unit operable to:
identify, from the position data, the plurality of texels, the plurality of
texels corresponding to an area in the texture space comprising the position;
determine that a portion of the texture data representative of at Ieast one
of the plurality of texels 1s absent from the first storage;
fetch the portion of the texture data from the second storage; and

store the portion of the texture data in the first storage.

The graphics processing system according to claim 14, wherein the first storage 1s local

storage of the graphics processor and the second storage 1s external to the graphics processor.

16.

The graphics processing system according to claim 14 or claim 15, wherein:
the request data 1s first request data.

the value 1s a first value:

the position 1s a first position;

the weight data 1s first weight data:;

the weights are first weights:

the texture data 1s first texture data;:

the plurality of texels 1s a first plurality of texels; and

the texture mapping unit 1s operable to, while the portion of the first texture data 1s

being fetched from the second storage:

receive second request data to request the calculation of a second value at a
second position 1n the texture space using the interpolation process,
the second request data comprising second weight data representative of second

weights for imnput to the interpolation process;
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process the second weight data with the second texture data to perform the
interpolation process, thereby calculating the second value at the second position 1n the
texture space; and

after the portion of the first texture data 1s stored 1 the first storage, process the
first weight data with the first texture data to perform the mterpolation process, thercby

calculating the first value at the first position in the texture space.

17. A method of texture mappmng for a graphics processing pipeline, the method
comprising:

recerving, from a shader processing unit of the graphics processing pipeline and using
a texture mapping unit of the graphics processing pipeline, request data to request the
calculation of a value at a position 1n a texture space using an interpolation process,

the request data comprising weight data representative of weights for input to the

interpolation process; and
processing, using the texture mapping unit, the weight data with texture data
representative of a plurality of texels 1n the texture space to perform the interpolation process,

thereby calculating the value at the position 1n the texture space.
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18.  The method according to claim 17, comprising, before the receiving the request data,

selecting the weight data from a plurality of sets of weight data.

19.  The method according to claim 18, comprising:
calculating a first set of the plurality of sets of weight data using a first algorithm; and
calculating a second set of the plurality of sets of weight data using a second algorithm,

different from the first algorithm.

20.  The method according to any one of claims 17 to 19, wherein the request data comprises

position data representative of the position 1n the texture space.
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