

(19) United States(12) Patent Application Publication

Scherer et al.

(10) Pub. No.: US 2010/0248235 A1 (43) Pub. Date: Sep. 30, 2010

(54) BIOMARKERS FOR AUTISM SPECTRUM DISORDERS

(76) Inventors: Stephen W. Scherer, Toronto (CA); John B. Vincent, Toronto (CA)

> Correspondence Address: VALENTINE A COTTRILL SUSAN TANDAN 50 QUEEN STREET NORTH, STE. 1020, P.O. BOX 2248 KITCHENER, ON N2H6M2 (CA)

- (21) Appl. No.: 12/681,229
- (22) PCT Filed: Oct. 3, 2008
- (86) PCT No.: **PCT/CA08/01767**

§ 371 (c)(1),
(2), (4) Date: Jun. 11, 2010

Related U.S. Application Data

(60) Provisional application No. 60/960,572, filed on Oct.
 4, 2007, provisional application No. 61/008,294, filed on Dec. 20, 2007.

Publication Classification

- (51) Int. Cl. *C12Q 1/68* (2006.01)
- (52) U.S. Cl. 435/6

(57) **ABSTRACT**

Methods of determining the risk of ASD in an individual are provided which comprise identifying the presence of one or more genomic mutations in one or more of the genes, PTCHD1, SHANK3, NFIA, DPP6, DPP10, DYPD, GPR98, PQBP1, ZNF41 and FTSJ1.

Figure 1

Patent Application Publication

.

.

• .•

	COTOTACCAT	CORCOCCA	C10000000000000000	CCCCCBBCAC	CACCRCRMAC	50	
	TCCCCCCCTCC	CCCACTTCAT	TCCCDCTCDCA	CCRCRCRCRRCR	TCCCCTCCCC	100	
	CCCCCGGCICG	ATCTCCATCC	TECTECACIÓN	CACCERTCACC	CCCTACCACC	150	
	TCCACCACAC	COMPONENCE			CONCOCONSC	200	
	TCGAGGAGAG	ACCECCEEND N		CCCABCACAG	CORCONNEC	200	
	COCREMENT	TCCCC CONCOMPC	ACACCOCCCCC	CCCGGICAACC	GCICCARGCA	200	
	MCACCRCCMM	CCACAAACCIGC	AGALCECEGG	BCGCIACGGC	CACCCACCTC	300	
	ATCTTA AACT	TECATECTEC	TOTOTOTO	ATCCAGCATCA	CARCEGREEIG	400	
	TTTTTATTA	ACGTTTCCCC	атататстат	CCTCAATAAT	CATABCACTT	450	
	COMPCOTCO	TCACATACTC	CACGTCCTCC	DACACCTADA	CAATGCTCCC	500	
	CCCACCAATC	CCACCAATT	TCCTATCACA	TACCCAATCA	CTCACTTAAA	550	
	GGACGGGAGG	CCTCTCTACA	ATCCCCACCA	CCTTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GTCACTCACT	600	
	ACAGCAAAGA	CCGGGTGAAA	TCTGCAGAGG	CCATCCAGCT	CACCTACTAC	650	
	CTGCAGTCAA	TCAACAGTCT	CAATGACATG	GTGGCTGAGA	GGTGGGAGTC	700	
	CAGCTTCTGC	GACACTGTCA	GACTGTTTCA	GAAATCCAAC	AGCAAAGTCA	750	
	AAATGTACCC	TTACACGTCC	TCCTCACTGA	GGGAAGATTT	CCAGAAGACC	800	
	AGCCGCGTAT	CAGAACGTTA	CCTGGTCACC	AGCCTGATTC	TGGTGGTTAC	850	
	CATGGCCATC	CTGTGTTGCT	CTATGCAGGA	CTGCGTCCGC	AGCAAACCCT	900	
	GGCTAGGCCT	GCTCGGATTG	GTGACCATAA	GCCTGGCCAC	TCTCACTGCA	950	
	GCCGGGATCA	TCAATCTTAC	TGGTGGGAAA	TATAATTCCA	CCTTCCTGGG	1000	•
	AGTCCCTTTC	GTCATGCTAG	GTCATGGATT	ATATGGGACT	TTTGABATGT	1050	
	TATCCTCCTG	GAGGAAAACT	ACACAACACC	ААГАТСТТАА	ACACACAACT	1100	
-	GCAGCAGTCT	ATGCAGACTC	CATGCTCTCC	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CCACTGCCAT	1150	
	GTACCTGGTC	ACCTTTGGCA	TAGGGGCCAG	CCCTTTCACG	AACATTGAGG	1200	
	CAGCCAGGAT	TTTCTGCTGC	AATTCCTGTA	TTGCAATCTT	CTTCAACTAC	1250	
	CTCTATGTAC	TCTCGTTTTA	TGGTTCCAGC	CTAGTGTTCA	CTGGCTACAT	1300	
	AGAAAACAAT	TACCAGCATA	GTATCTTCTG	TAGAAAAGTC	CCAAAGCCTG	1350	
	AGGCATTGCA	GGAGAAGCCG	GCATGGTACA	GGTTTCTCCT	GACGGCCAGA	1400	
	TTCAGTGAGG	ACACAGCTGA	AGGCGAGGAA	GCGAACACTT	ACGAGAGTCA	1450	
	CCTATTGGTA	TGTTTCCTCA	AACGCTATTA	CTGTGACTGG	ATAACCAACA	1500	
	CCTATGTCAA	GCCTTTTGTA	GTTCTCTTTT	ACCTTATTTA	TATTTCCTTT	1550	
• • •	GCCTTAATGG	GCTATCTGCA	GGTCAGTGAA	GGGTCAGACC	TTAGTAACAT	1600	
	TGTAGCAACC	GCGACACAAA	CCATTGAGTA	CACTACTGCC	CAGCAAAAGT	1650	
	ACTTCAGCAA	CTACAGTCCT	GTGATTGGGT	TTTACATATA	TGAGTCTATA	1700	
	GAATACTGGA	ACACTAGTGT	CCAAGAAGAT	GTTCTAGAAT	ACACCAAGGG	1750	
	GTTTGTGCGG	ATATCCTGGT	TTGAGAGCTA	TTTAAATTAC	CTTCGGAAAC	1800	
	TCAATGTATC	CACTGGCTTG	CCTAAGAAAA	ATTTCACAGA	CATGTTGAGG	1850	
	AATTCCTTTC	TGAAAGCCCC	ТСААТТТТСА	CATTTTCAAG	AGGACATCAT	1900	
	CTTCTCTAAA	AAATACAATG	ATGAGGTCGA	TGTAGTGGCC	TCCAGAATGT	1950	
	TTTTGGTGGC	CAAGACCATG	GAAACAAACA	GAGAAGAACT	CTATGATCTC	2000	
	TTGGAAACCC	TGAGGAGACT	TTCTGTCACC	TCCAAGGTGA	AGTTCATCGT	2050	
	CTTCAATCCG	TCCTTTGTAT	ACATGGATCG	ATATGCCTCC	TCTCTGGGAG	2100	
	CCCCCCTGCA	CAACTCCTGC	ATCAGTGCTT	TGTTCCTGCT	CTTCTTCTCG	2150	
	GCATTCCTGG	TGGCAGATTC	ACTGATTAAC	GTCTGGATCA	CTCTCACAGT	2200	
	TGTGTCCGTG	GAGTTTGGAG	TGATAGGTTT	CATGACATTA	TGGAAAGTAG	2250	
•	AACTGGACTG	CATTTCTGTG	CTATGCTTAA	TTTATGGAAT	TAATTACACA	2300	
· ·	ATTGACAATT	GTGCTCCAAT	GTTATCCACA	TTTGTTCTGG	GCAAGGATTT	2350	
	CACAAGAACT	AAATGGGTAA	AAAATGCCCT	GGAAGTGCAT	GGGGTAGCTA	2400	
	TTTTACAGAG	TTACCTCTGC	TATATTGTTG	GTCTGATTCC	TCTTGCAGCT	2450	
	GTGCCTTCAA	ATCTGACCTG	TACACTGTTC	AGGTGCTTGT	TTTTAATAGC	2500	· ·
	ATTTGTCACC	TTCTTTCACT	GCTTTGCCAT	TTTACCTGTG	ATACTGACTT	2550	
•	TCCTGCCACC	CTCTAAGAAA	AAAAGGAAAG	AGAAGAAAAA	TCCTGAGAAC	2600	
	CGGGAGGAAA	TTGAGTGTGT	AGAAATGGTA	GATATCGATA	GTACCCGTGT	2650	
	GGTTGACCAA	ATTACAACAG	TGTGATAATG	TCTGCTTGGC	ATATTTTCAC	2700	• •
			r:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
			Г	gure /A			

.

-	CTTAGGTCTT	ATCAAGACCA	AAGAGATTAT	GTTAATGAAA	CAATTAAATT	2750	
	CAAAGTTCTT	CCCTTTTTTA	AAGATAGGAA	ACAGGCATTG	ССАААААААА	2800	
	АААААААААА	ÁAAAGGAAAG	GACAGTGGGG	AGAAATGGGC	CTGGCATATT	2850	
	TTCAGTCTTT	AAAACAAAGG	AGTTGTTATG	AGAATTCACA	CACACATAGA	2900	
	CACACACACA	CACACACACA	CACACACACA	CACACACACA	CCCTGGGAGA	2950	
	CCTATAGTCT	СТТАААСТАА	GATCAAGTAG	AAGAAAGCTT	ATTAACAAGC	3000	
	AGGATCCTGC	CTTATCCAAA	CTGCAGATGT	TGCTGGCATT	GTGACAAAAC	3050	
	CCACTGATTG	AAAGGTCAAC	TGCCAAGGCA	GAAACACCTT	TAAGCATTGT	3100	
	TCAAACAATA	AGGCTTCCAG	AACTTCTGTA	GAGCAGTAGC	TCCAGTCATG	3150	•
	GTCTGTGGTT	TGAGGTTTTA	GCTGTCTCAC	CTAGCTCCCT	AACACTGAAG	3200	
	GAGATACTTG	TGAAAGTTCT	GACCAGCAAA	AGCAAGCCAG	AGCCTTGGAA	3250	
	ACTGATATGT	GGTAGAGTGG	CCATCACTCA	TGGACTAAAA	TTGATTCACC	3300	
	GCTAAATTTA	CCCAGGTGAA	GCAGTTTCGT	TGTCTAGAAT	GAAATTATCA	3350	
	TATTCCGCCA	TTGGTATGCC	TTTAACATTT	GTATAGTTTG	GTTTGCTTAA	3400	
	AACACCTTAA	AACCAATGAC	AGCTCCAGCA	CTGCAGAATT	GGTGTGATTC	3450	
	TACTTTGGAA	TAGCTTGTCA	CTTGTCACCA	AATGGGTCTG	CTTTATTAGT	3500	
	TACAGCTCTT	GGCAGGAGGA	TCCAGGGACC	CAAAACCACA	GGGCCAAACC	3550	
	CAAATACCTG	GCATGATGGA	GCAAAAGCAG	GTGTCTACTT	GGACCCAGAT	3600	
	ATAGTGTCTC	CATTTTAACA	ACAACAACAA	AATAGCCAGC	TGGTACAGCT	3650	
	GTTTGCATTG	GCCCTACATG	CATTTTTTGC	ATGGATATCC	AGAAACATCT	3700	
	GCCCACACAA	AACTGCGGGG	AAAAAAAATG	AACACTGAAA	TAGTTATTTG	3750	
	CTGTTGCTTC	CAACTTGTAG	TGCCAGTCTG	CCTTTGCTGT	GAAACACACC	3800	
	TGCTCAGAGA	CAGAGAGGGG	AAGAAGATCT	TTGGTAAGTC	TAAGTCCTGA	3850	
	CGCTGAGAAG	CTTTGTAAAA	GTGCAGGGAG	ATAAAGGGCC	AAAAGGGAGA	3900	
	TAGATGGAAA	ACACTGGAAA	AAGTATTCAC	TGATACAAAT	CTATCAATGA	3950	
	TGGCAGTCCA	ATTCTCTTGC	TAAAGTGGCT	GCACCTCACC	TTGCTGGTCC	4000	
	CCCCCACACC	TTTTTTGATG	TCCTTCTGCG	TCATCATAGC	AAGGCCCTTC	4050	
	TGTAAATTAA	CAAGCCTAGA	TATTTATACT	CTTGACTTCC	AGTATCTACA	4100	
	GAAGAATGGT	TCATAGATCT	AAACAGAAAT	GGTTTAGATC	TAAAAAGGCT	4150	
	GTATACGTTG	CCCAGGCCCC	TGCATTTCTT	TAAATTTATA	AAAATGAAGC	4200	
	TAAAACCTGG	TTACATTTGA	AGCAAATATC	TACAGTATTT	TTCCCTTTTA	4250	
	GAGATGTAGC	TTCCTTAGAC	ATCTGTAGTG	GTAAGCATTT	CCCAAAAGCA	4300	
	TCTTACCTTT	CTGAACCTTA	GCAGACATAC	TGTGCAGCTT	ACCTATCTTC	4350	
	TGCAGAGGAG	GAAACTGAGA	CCTAGGAGAA	TAAAGTGACT	CACTCAGGTC	4400	
	ACACCACTAA	AGGGTTTTCA	TCATTTCAGC	ATACCTAAGA	CAGGGCAGTC	4450	
	CAATTTTCAG	TATTCTCATA	AGATGGCTAT	TACTCCTCTC	AAAATGCATT	4500	
	TCCAAAGTAG	GAACATAGGA	CTTCGTTGGC	CACAGGGCAG	ACATTTTTTT	4550	
	AGTGTCTGGA	ATTAAAATGT	TTGAGGTTTA	GGTTTGCCAT	TGTCTTTCCA	4600	
	AAAGGCCAAA	TAATTCAGAT	GTAACCACAC	CAAGTGCAAA	CCTGTGCTTT	4650	
	CTATTTCACG	TACTGTTGTC	CATACAGTTC	TAAATACATG	TGCAGGGGAT	4700	
	TGTAGCTAAT	GCATTACACA	GTCGTTCAGT	CTTCTCTGCA	GACACACTAA	4750	
	GTGATCATAC	CAACGTGTTÁ	TACACTCAAC	TAGAAGATAA	TAAGCTTTAA	4800	
	TCTGAGGGCA	AGTACAGTCC	TGACAAAAGG	GCAAGTTTGC	ATAATAGATC	4850	
	TTCGATCAAT	TCTCTCTCCA	AGGGGCCCGC	AACTAGGCTA	TTATTCATAA	4900	
	AACACAACTG	AAGAGGGGAT	TGGTTTTACT	GTTAAATCAT	GTGTTGCTAA	4950	
	ATCATTTTCT	GAACAGTGTG	ттстааатса	GTCATTGATT	TAGTGTCAGC	5000	
	CACGTGGAGC	ACCTCGGCTT	AAAGCAGCTC	CACAAAACCT	GACACAACAC	5050	
	ACACACCAAT	TAAATGGATT	TTGTTGAGAA	TTTAATCATT	CAATTTGGTC	5100	
	AACCAGAATG	ACTTCCTGTG	GAACTCTGTT	TTATGACAGA	TAATAGTTTT	5150	
	CCAACTTGAT	TGAGTCTCTG	TATACCCTGG	GATATTGTAT	TTTTTAATGA	5200	
	AGGGCATTTT	CAAACTTGTC	AACTTCTCTT	TTCAGCACTT	GAAATGAAGG	5250	
	CTTATGGAAT	TCTGACTGTG	AAATGAATTT	TTCTATTGGG	АААААААААА	5300	
	ААААА						

Figure 7A cont'd

• •

· •

MLRQVLHRGLRTCFSRLGHFIASHPVFFASAPVLISILLGASFSRYQVEE SVEHLLAPQHSLAKIERNLVNSLFPVNRSKHRLYSDLQTPGRYGRVIVTS FQKANMLDQHHTDLILKLHAAVTKIQVPRPGFNYTFAHICILNNDKTCIV DDIVHVLEELKNARATNRTNFAITYPITHLKDGRAVYNGHQLGGVTVHSK DRVKSAEAIQLTYYLQSINSLNDMVAERWESSFCDTVRLFQKSNSKVKMY PYTSSSLREDFQKTSRVSERYLVTSLILVVTMAILCCSMQDCVRSKPWLG LLGLVTISLATLTAAGIINLTGGKYNSTFLGVPFVMLGHGLYGTFEMLSS WRKTREDQHVKERTAAVYADSMLSFSLTTAMYLVTFGIGASPFTNIEAAR IFCCNSCIAIFFNYLYVLSFYGSSLVFTGYIENNYQHSIFCRKVPKPEAL QEKPAWYRFLLTARFSEDTAEGEEANTYESHLLVCFLKRYYCDWITNTYV KPFVVLFYLIYISFALMGYLQVSEGSDLSNIVATATQTIEYTTAQQKYFS NYSPVIGFYIYESIEYWNTSVQEDVLEYTKGFVRISWFESYLNYLRKLNV STGLPKKNFTDMLRNSFLKAPQFSHFQEDIIFSKKYNDEVDVVASRMFLV AKTMETNREELYDLLETLRRLSVTSKVKFIVFNPSFVYMDRYASSLGAPL HNSCISALFLLFFSAFLVADSLINVWITLTVVSVEFGVIGFMTLWKVELD CISVLCLIYGINYTIDNCAPMLSTFVLGKDFTRTKWVKNALEVHGVAILQ SYLCYIVGLIPLAAVPSNLTCTLFRCLFLIAFVTFFHCFAILPVILTFLP PSKKKRKEKKNPENREEIECVEMVDIDSTRVVDQITTV

Figure 7B

Figure 8

BIOMARKERS FOR AUTISM SPECTRUM DISORDERS

FIELD OF THE INVENTION

[0001] The present invention relates to genetic markers for Autism Spectrum Disorders (ASD).

BACKGROUND OF THE INVENTION

[0002] Autism is a heritable neurodevelopmental condition characterized by impairments in social communication and by a preference for repetitive activities. Autism is not a distinct categorical disorder but is the prototype of a group of conditions defined as Pervasive Developmental Disorders (PDDs) or Autism Spectrum Disorders (ASD), which include Asperger's Disorder, Childhood Disintegrative Disorder, Pervasive developmental disorder-not otherwise specified (PDD-NOS) and Rett Syndrome. ASD is diagnosed in families of all racial, ethnic and social-economic backgrounds with incidence roughly four times higher in males compared to females. Overall population prevalence of autism has increased in recent years to a current estimate of 20 in 10,000 with incidence as high as 60 in 10,000 for all autism spectrum disorders.

[0003] Data from several epidemiological twin and family studies provide substantial evidence that autism has a significant and complex genetic etiology. The concordance rate in monozygotic twins is 60-90% (Bailey 1995), and the recurrence rate in siblings of affected probands has been reported to be between 5-10% (Jones & Szatmari 1988) representing a 50 fold increase in risk compared to the general population. Although autism spectrum disorders are among the most heritable complex disorders, the genetic risk is clearly not conferred in simple Mendelian fashion.

[0004] In a minority of cases (~10%), autism is part of a broader recognizable disorder (e.g. fragile X syndrome, tuberous sclerosis) or is associated with cytogenetically-detectable chromosome abnormalities. Moreover, co-morbidity of autism with microdeletion syndromes (e.g. William-Beuren and Sotos) and other genomic disorders (e.g. Prader-Willi/Angelman) suggests chromosomal imbalances are involved in the underlying etiology. The most frequent cytogenetic anomaly is an interstitial, maternally-inherited duplication of 15q11-13 (1-3%) encompassing the Prader Willi/ Angelman Syndrome critical region. There are also a large number of cases with deletions in the q11.2 and q13.3 regions of chromosome 22. The 22q11.2 region is associated with velo-cardio-facial Syndrome and deletions at 22q13.3 appear to also represent a clinically definable syndrome. Both deletions are associated with the autistic phenotypes. Other chromosome loci associated with anomalies with a higher frequency of events observed in syndromic forms of ASD include 7q (see TCAG www.chr7.org), 2q37, 5p14-15, 17p11.2. In addition, reciprocal duplications overlapping the William-Beuren deletion region have been associated with the autism phenotype.

[0005] Genome-wide linkage scans have found evidence for susceptibility loci on almost all chromosomes with 7q yielding the most consistent results. Other loci with significant linkage include 2q (IMGSAC 2001), 3q and most recently 11p (AGP 10K study). In some instances, like 7q, there is considerable overlap between cytogenetic anomalies and linkage results. However, the lack of linkage found at 15q11-13 and 22q13.3 loci reflect considerable heterogeneity in ASD and suggest that these rearrangements are responsible for a particular ASD subtype involving genes that do not contribute to the phenotype in cytogenetically normal patients. Despite promising results, no specific genes within these linkage peaks have unequivocally been shown to contribute to autism.

[0006] Mutations associated with ASD have been reported in two neuroligin (NLGN3 and NLGN4) genes and more recently SHANK3; however, these account for only rare causes of ASD. Other genes have been implicated, but represent rare events or have not yet been validated by other studies.

[0007] Together these data suggest substantial genetic heterogeneity with the most likely cause of non-syndromic idiopathic ASD involving multiple epistatically-interacting loci. [0008] The identification of large scale copy number variants (CNVs) represents a considerable source of genetic variation in the human genome that contributes to phenotypic variation and disease susceptibility found small inherited deletions in autistic kindreds suggesting possible susceptibility loci.

[0009] It would be desirable to identify genetic markers of ASD that facilitate in a determination of the risk of ASD in an individual, as well as to assist in the diagnosis of the condition.

SUMMARY OF THE INVENTION

[0010] A number of genetic markers have now been identified which are useful in assessing the risk of ASD in an individual, as well as being useful to diagnose the condition. The markers are useful both individually and in the form of a microarray to screen individuals for risk of ASD.

[0011] Thus, in one aspect of the present invention, a method of determining the risk of ASD in an individual is provided comprising:

[0012] probing a nucleic acid-containing sample obtained from the individual for a gene encoding PTCHD1, wherein a determination that the gene comprises a deletion of at least a portion of exon 1 is indicative of a risk of ASD in the individual.

[0013] In another aspect of the present invention, a method of determining the risk of ASD in an individual is provided comprising:

[0014] probing a nucleic acid-containing sample obtained from the individual for a mutation that modulates the expression of at least one gene selected from the group consisting of PTCHD1, SHANK3, NFIA, DPP6, DPP10, GPR98, PQBP1, ZNF41 and FTSJ1, wherein identification of a mutation that modulates the expression of at least one of said genes is indicative of a risk of ASD.

[0015] In another aspect of the invention, a method of determining the risk of ASD in an individual is provided comprising:

[0016] screening a biological sample obtained from the individual for abnormal levels of at least one gene product expressed by a gene selected from the group consisting of PTCHD1, SHANK3, NFIA, DPP6, DPP10, GPR98, PQBP1, ZNF41 and FTSJ1, wherein a determination that at least one of said gene products is expressed at a level that varies from the level in a healthy non-ASD individual is indicative of a risk of ASD.

[0017] In a further aspect of the invention, a method of determining the risk of ASD in an individual is provided comprising:

[0018] screening a nucleic acid-containing sample from the individual for genomic sequence variations that modulate the expression of PTCHD1.

[0019] These and other aspects of the present invention are described by reference to the following figures in which:

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. **1** is a flow chart depicting the methodology used to identify ASD-specific CNVs;

[0021] FIG. **2** illustrates a genome-wide distribution of ASD-specific CNVs as described in Table 3;

[0022] FIG. **3** illustrates the chromosome 16p11.2 region as depicted in the Autism Chromosome Rearrangement Database;

[0023] FIG. **4** illustrates examples of CNVs observed in ASD families including probands having multiple de novo events (a); rearrangements in the SHANK3 gene (b); probands with chromosome X deletions (at PTCHD1) from female carriers (c) or inherited translocations in addition to an unrelated de novo deletion (d); overlapping events in unrelated probands either de novo (e) or inherited (f) at the DPP6 locus; and recurrent de novo events at chromosome 16p11.2 in unrelated probands either gains (h) or losses (g);

[0024] FIG. **5** illustrates examples of DPP6 and DPP10 ASD-related CNVs;

[0025] FIG. **6** illustrates examples of chromosome 22q11.2 and 16p11.2 ASD-related CNVs;

[0026] FIG. **7** illustrates the cDNA sequence (A) of the PTCHD1 gene and the corresponding amino acid sequence (B); and

[0027] FIG. **8** illustrates ASD-related missense mutations identified in Table 7.

DETAILED DESCRIPTION OF THE INVENTION

[0028] A method of determining the risk of an autism spectrum disorder (ASD) in an individual is provided comprising screening a biological sample obtained from the individual for a mutation that may modulate the expression of at least one gene selected from the group consisting of PTCHD1, SHANK3, NFIA, DPP6, DPP10, DPYD, GPR98, PQBP1, ZNF41 and FTSJ1. Such genes are referred to herein as "ASD-associated" genes.

[0029] The term "an autism spectrum disorder" or "an ASD" is used herein to refer to at least one condition that results in developmental delay of an individual such as autism, Asperger's Disorder, Childhood Disintegrative Disorder, Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS) and Rett Syndrome (APA DSM-IV 2000).

[0030] In the present method of determining ASD risk in an individual, a biological sample obtained from the individual is utilized. A suitable biological sample may include, for example, a nucleic acid-containing sample or a protein-containing sample. Examples of suitable biological samples include saliva, urine, semen, other bodily fluids or secretions, epithelial cells, cheek cells, hair and the like. Although such non-invasively obtained biological samples are preferred for use in the present method, one of skill in the art will appreciate that invasively-obtained biological samples, may also be used in the method, including for example, blood, serum, bone marrow, cerebrospinal fluid (CSF) and tissue biopsies such as tissue from the cerebellum, spinal cord, prostate, stomach, uterus, small intestine and mammary gland samples. Tech-

niques for the invasive process of obtaining such samples are known to those of skill in the art. The present method may also be utilized in prenatal testing for the risk of ASD using an appropriate biological sample such as amniotic fluid and chorionic villus.

[0031] In one aspect, the biological sample is screened for nucleic acid encoding selected genes in order to detect mutations associated with an ASD. It may be necessary, or preferable, to extract the nucleic acid from the biological sample prior to screening the sample. Methods of nucleic acid extraction are well-known to those of skill in the art and include chemical extraction techniques utilizing phenol-chloroform (Sambrook et al., 1989), guanidine-containing solutions, or CTAB-containing buffers. As well, as a matter of convenience, commercial DNA extraction kits are also widely available from laboratory reagent supply companies, including for example, the QIAamp DNA Blood Minikit available from QIAGEN (Chatsworth, Calif.), or the Extract-N-Amp blood kit available from Sigma (St. Louis, Mo.).

[0032] Once an appropriate nucleic acid sample is obtained, it is subjected to well-established methods of screening, such as those described in the specific examples that follow, to detect genetic mutations indicative of ASD, i.e. ASD-linked mutations. Mutations, such as genomic copy number variations (CNVs), which include gains and deletions of segments of DNA, for example, segments of DNA greater than about 1 kb, such as DNA segments between about 300 and 500 kb, as well as base pair mutations such as nonsense, missense and splice site mutations, including sequence mutations in both coding and regulatory regions of a gene, have been found to be indicative of ASD.

[0033] ASD-linked mutations such as CNVs are not restricted to a single chromosome, but rather have been detected on a multiple chromosomes such as the X chromosome, chromosome 15 and chromosome 21, and on various regions of the same chromosome such as at Xp11 and Xp22. Examples of CNVs that have been determined to be linked to ASD include a deletion on chromosome Xp22 including at least a portion of exon 1 of the PTCHD1 gene; a duplication on chromosome 15q11; and a deletion within the SHANK3 gene.

[0034] Genomic sequence variations of various types in different genes have been identified as indicative of ASD. CNVs in the DPP10 gene, including intronic gains, such as a 105 kb intronic gain, and exonic losses, such as a 478 kb exonic loss, both of which are more specifically identified in Table 1, have been identified; CNVs in the DPP6 gene, such as a 66 kb loss encompassing exons 2 and 3 and gains such as a CNV encompassing the entire DPP6 gene, a 270 kb exonic gain (exon 1), and a 16 kb intronic gain (see Table 1); CNVs in the SHANK3 gene such as a 276 kb loss; and CNVs in the DYPD gene such as a loss of the entire gene.

[0035] In one embodiment, genomic sequence variations that inhibit the expression of PTCHD1 have been linked to ASD. The terminology "inhibit expression" refers broadly to sequence variations that may inhibit, or at least reduce, any one of transcription and/or translation, as well as the activity of the PTCHD1 protein. For example, a CNV in the PTCHD1 gene comprising a large deletion of the coding region which results in at least a reduction of the expression of PTCHD1 protein has been found to be indicative of ASD. Although the CNV is not particularly restricted, the CNV deletion may include, for example, at least a portion of exon 1, but may

additionally include surrounding regions as well, such as intron 1, in whole or in part, or a portion or more of the upstream region thereof.

[0036] Genomic sequence variations other than CNVs have also been found to be indicative of ASD, including, for example, missense mutations which result in amino acid changes in a protein that may also affect protein expression. In one embodiment, missense mutations in the PTCHD1 gene have been identified which are indicative of ASD, including missense mutations resulting in the following amino acid substitutions in the Ptchd1 protein: L73F, 1173V, V195I, ML336-337II and E479G.

[0037] To determine risk of ASD in an individual, it may be advantageous to screen for multiple genomic mutations, including CNVs and other mutations as indicated above applying array technology. In this regard, genomic sequencing and profiling, using well-established techniques as exemplified herein in the specific examples, may be conducted for an individual to be assessed with respect to ASD risk/diagnosis using a suitable biological sample obtained from the individual. Identification of one or more mutations associated with ASD would be indicative of a risk of ASD, or may be indicative of a diagnosis of ASD. This analysis may be conducted in combination with an evaluation of other characteristics of the individual being assessed, including for example, phenotypic characteristics.

[0038] In view of the determination of gene mutations which are linked to ASD, a method for determining risk of ASD in an individual is also provided in which the expression or activity of a product of an ASD-linked gene mutation is determined in a biological protein-containing sample obtained from the individual. Abnormal levels of the gene product or abnormal levels of the activity thereof, i.e. reduced or elevated levels, in comparison with levels that exist in healthy non-ASD individuals, are indicative of a risk of ASD.

or may be indicative of ASD. Thus, a determination of the level and/or activity of the gene products of one or more of PTCHD1, SHANK3, NFIA, DPP6, DPP10, DYPD, GPR98, PQBP1, ZNF41 and FTSJ1, may be used to determine the risk of ASD in an individual, or to diagnose ASD. As one of skill in the art will appreciate, standard assays may be used to identify and quantify the presence and/or activity of a selected gene product.

[0039] Embodiments of the invention are described by reference to the following specific examples which is not to be construed as limiting.

Example 1

DNA Samples and Population Structure

[0040] The study included 426 ASD families. All of the index cases met Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule (ADOS) criteria or on a clinical best estimate (Risi et al. J Am Acad Child Adolesc Psychiatry 2006; 45 (9):1094-103). Thirtytwo of these carried a cytogenetic chromosome rearrangement; 18 were detected by karyotyping 328 of 412 samples that originated from child diagnostic centres at the Hospital for Sick Children in Toronto and from St. John's, Newfoundland; 14 were already known to carry karyotypic anomalies (see Table 1 for information on these 32 patients). Affected and unaffected siblings were also assessed, and 56% (237/ 426) had one child (simplex) and 44% (189/426) had more than one child (multiplex) with ASD. Most cases were screened for fragile X mutations (75%) and if detected they were not included in the study. Most experiments were performed on blood genomic DNA (80%), otherwise the source was cell lines, e.g. lymphoblast cell lines. Population ancestry was estimated using STRUCTURE (Falush et al. Genetics 2003; 164 (4):1567-87; Pritchard et al. Genetics 2000; 155 (2):945-59).

	I		I				~				~					-	0							~	
		Location	89,056,400-89,973,600	30,134,300-30,188,900	35,332,700-35,386,900 69.642.500-69.670.700	21,490,300-22,039,600	106,152,000-106,216,000	112, 83,8 /0-112,912,639 242,127,468-242,730,382	196.922,636-196.965,669	97,076,449-97,125,076	109,391,000-109,404,000	19,272,965-19,496,544	21,407,981-22,058,411	18,446,422-20,089,383		114.038.000-114.536.000	104,920,000-106,356,000 29,796,300-30,298,800 46,277,400-49,509,100		87,417,351-87,441,344 148 095 537-149 547 463	5,365,506-5,409,964	44,762,996-44,858,504 171.715.627-171.797.851	140,658,658-141,014,307	40,902,122-40,970,072 38,041,635-38,144,574	141,813,948-141,983,139	21,427,103-20,059,872 18,427,103-20,059,872 41,570,665-41,711,411
	CNV Analysis	Size (bp)	917,200	54,600	54,200 28,200	549,300	64,000	128,905 602,914 Error! Hyperlink	rererence not valid. 43.033	48,627	13,000	223,579	650,430	1,642,961	Error! Hyperlink reference	498,000	$1,436,000\\502,500\\3,231,700$		23,993 1 451 976	44,458	95,508 82.224	355,649	102,939	169,191	1,632,769 140,746
		CNV	Loss	Gain	Gain Loss	Gain	Loss 2 ·	Loss	Loss	Loss	Loss	Gain	Gain	Gain		Gain	Gain Gain Loss		Gain Gain	Loss	Gain Loss	Loss	Loss	Loss	Loss Loss
		Chr	2p11.2	6p21.33	11p13 13a21.33	14q11.2	14q32.33	1p13.2 2q37.3	3q29	5q15	5q21.3	14q11.2	14q11.2	15q11.2		9q32	14q32.33 15q13.3 22q13.31-q31.33		1p22.3 1021 2-021 3	3p26.1	4p13 4a33	5q31.3	op12.3 7p14.1	7q34	15q11.2 17q21.31
		RefSeq Genes	SATB2	No known genes			-	Several		Several						See CNV			See CNV						
Cytogenetic Analysis	Breakpoint	Location	2q33.1: 200 006 682-200 154 700	6p22.3:	21,561,566-21,644,040			49,21.3		5q14.2-q14.3:	82,802,678-91,285,973					See CNV			See CNV						
		Karyotype	46, XX, t(2; 6)(q32; p22)	TI MOTIVITI				40, AA, U4; O)(q21; q12) unknown								46, XX, der(22)t(14; 22)(a32; a13) pat	inherited		47, XX, ring chromosome 1						
	Phenotype/Family	type	Simplex family ASD_developmental	dyspraxia			:	Sumplex family ASD, seizure disorder, obesity, macrocephaly								Simplex family	ASD, submucous cleft, globally developmentally delaved. large ears.	short forehead, distally tapere fingers, severe pes planovaleus	Simplex family ASD						
	Sample	Ð	1 NA0008-	(50863L)				2 NAU005- 000 (53601L)								3 NA0039-	000 (69736)		4 SK0283- 003	(72309)					

TABLE 1

US 2010/0248235 A1

	39,828,000-39,913,900		14,304,500-14,319,600	19,204,300-19,492,400 70,152,900-70,527,800	196,922,636-196,965,669 38,534,384-38,807,002 33,344,000 32,506,000	12,264,620-12,286,403	114,153,000-114,1 /5,000 21,717,112-22,048,615	18,427,100-19,943,185	34,525,041-54,591,577 41.518,102-41,719,833	14,973,800-15,001,300	213,013,000-213,016,000		15,125,800-16,535,400	78,902,000-78,957,000	9,275,811-12,705,200	95,556,287-95,616,345	38,096,725-38,131,968	47,030,119-47,485,249	31,904,362-31,968,090	40,584,198-41,007,040 21,584-229-22,075,626	106,223,861-106,246,130	18,446,422-20,079,140	63,768,909-63,860,341	41,200,020-41,719,855 32-174-061-32-090-075	41.956.500-43.054.900		47,414,800-47,577,100	61,854,900-61,911,500 41,521,600-41,760,200
	85,900		15,100	288,100 374,900	43,033 272,618 162,000	21,783	22,000 331,503	1,516,085	200,330 201.731	27,500	3,000		1,409,600	55,000	3,429,389	60,058	35,243	455,130	63,728	422,842	22,269	1,632,718	91,432	219,/9/ 816 914	1.098.400	60 60 61	162,300	56,600 238,600
	Gain		Gain	Gain Gain	Gain Loss Gain	Gain Gain	Gain Gain	Gain Gain	Gain	Loss	Loss		Loss	Gain	Loss	Loss	Gain	Gain	Gain	Loss Gain	Gain	Loss	Loss	Lose	Gain		Gain	Loss Gain
	7p14.1		2p24.3	14q11.2 2p13.3	3q29 5p13.1 6521 33	0021.32 8p23.1	9q32 14q11.2	15q11.2	10p11.2-11.1 17a21.31	20p12.1	2q34		3p25.1-p24.3	3p12.3	5p15.31-p15.2	6q16.1	7p14.1	10q11.22	12p11.21	12912 14011.2	14q32.33	15q11.2	16q21	1 c. 12 p/ 1 2 c 108 1	10011.21	1	13q14.2	16q21 17q21.31
ntinued	NEGR1	No known genes	No known genes	No known genes LOC401431, ATP6VOE2	SLC16A12, PANK1, MPHOSPH1						No known genes	POLA2, CDC42EP2, DPF2			CDH18	No known genes									No known genes		GABRG1 (breakpoint region is located in intron 7)	
TABLE 1-coi	1p31.1: 72 045 578 72 163 007	2,024.35 2,124.35 12,376,807-12,733,637 13q10: in progress 15q10: in progress progress	1q24.2: 167,452,268-167,522,136	9p12: 45,695,701-45,737,008 2q23.1: 148,938,284-149,125,547	10q23.31: 91,265,490-91,461,660						2p11.2: 80 117 655.80 158 404	11q13.1: 131 200 200 200 200	64,821,333-04,801,285 3p24: not	available 3q24: not available	5p14.3: 19.825.926-19.883.410	7p13: 46,618,434-46,733,542									4n15.3:	12,173,445-12,335,572	4p12: 44,876,353-46,024,486	
	46, XY, t(1; 2)(p22.1; p23)pat	mintorp to provide a curve	46 XY, t(1; 9)(q25; p13) inherited	46, XX, t(2; 10)(q22; q22.3) unknown							46, XY, t(2; 11)(p11.2; q13.3) pat		46, XY, inv(3)(p24; q24),	t(5; 7)(p15p13) de novo											46. XY. inv(4)(n12: n15.3)mat	inherited		
	Simplex family ASD	- Cer	Simplex family ASD	Simplex Family ASD, mental	retardation						Multiplex family ASD		Multiplex family	ASD, oral motor apraxia, poor balance	and coordination, mild hypotonia, walks	with a wide gait,	severe language	delay, moderate	intellectual disability,	some ractal reautes of Cri du Chat					Multinlex family	ASD, primarily non- verbal, profound	ueveroprinential ueray	
	5 SK0044- 003	(50067)	6 SK0182- 003	(52065) 7 SK0335- 003	(72815)						8 SK0126-	(59144)	9 SK0152-	003 (41548L)											10 SK0105-	003 (27155L)		

11 SK0205-	Simplex family	46, XX, del(5)(p15.1)	See CNV	See CNV	3q29	Gain	96,068	199,226,000-199,322,068
004	ASD	de novo			2.61q-66.61qc	Loss	15,800,984	81,949-13,882,933
(74700)					cipc	Loss	168,07	9/0,021,18-081,400,00
					10q11.22	Gain	1,121,866	46,363,383-47,485,249
					10q21.3	Loss	29,732	67,747,770-67,777,502
					10q26.3	Gain	244,432	135,079,000-135,323,432
					14q11.2	Gain	217,035	19,272,965-19,490,000
					15q11.2	Gain	1,662,300	18,427,100-20,089,400
					17q21.31	Gain	65,845	41,006,823-41,072,668
					17a21.31	Gain	187.028	41.521.621-41.708.649
					22q11.21	Gain	150,753	17.265.500-17.416.253
12 SK0061-	Simpley family	A6 VV H5: 7Va15: a31 32)	7431 31.	No brown genec	-	N,	o CNIV detecte	
17 D003	ASD, developmental	unknown	118,928,065-119,006,076					5
(44951)	delav		5a14.3:	No known genes				
~	•		88,849,193-88,891,151	o				
13 SK0195-	Simplex family	46, XY, t(5; 8; 17)(q31.1; q24.1; q21.3)	5q31.1:	KLHL3	2p16.1	Gain	47,900	57,314,000-57,361,900
003	ASD	de novo	136,979,583-137,038,092			1		
(55310)			8q24.22: 132 448 049-132 512 973	No known genes	10q23.1	Loss	17,500	83,772,000-83,789,500
			17q21.31:	LRRC37A2, ARL17P1,	14q11.2	Gain	288,100	19,204,300-19,492,400
			41, 893, 216-42, 093, 636	LOC641522, NSF	4			
					17q21.31	Gain	644,700	41,521,600-42,166,300
14 SK0133- 003	Simplex family ASD	46, XY, t(6; 7)(p11.2; q22)pat inherited	6p12.1: 56 805 919-56 967 398	DST, c6orf65	2q37.1	Gain	314,000	232,076,000-232,390,000
(46012)			7a22.1:	No known genes	5a14.3	Gain	633.400	89.492.800-90.126.200
			97,933,646-97,973,368	0	Т			
					7q33	Loss	3,000	136,255,000-136,258,000
					8q23.2	Loss	32,000	111,182,000-111,214,000
					9p21.3	Loss	8,200	25,073,900-25,082,100
					11q25	Gain	369,000	133,855,000-134,224,000
					12q21.33	Gain	19,700	90,807,700-90,827,400
					13q21.32	Loss	2,500	65,576,300-65,578,800
15 SK0043-	Multiplex family	46, XY, t(6; 9)(q10; q12)	6q11.2-q12:	No known genes	8p23.2	Loss	35,040	3,984,190-4,019,230
003	ASD	unknown	63,464,452-63,511,410					
(29346)			9q21.11: 68.599.032-68.682.365	PIP5K1B	15q11.2	Gain	1,713,200	18,376,200-20,089,400
16 SK0181-	Simplex family	46, XY, t(6; 14)(q13; q21)	6q12: 69,241,818-69,279,457	No known genes	3p14.1-p13	Loss	5,346,900	65,286,300-70,633,200
004	ASD	de novo	14q21.1-q21.2:	LRFN5, c14orf155, c14orf28,	4q28.3	Loss	254,000	135,282,000-135,536,000
(52191)			40,807,716-44,806,460	BTBD5, KIAA0423, PRPF39, EVDD2 AV 002423	I			
				FKBF3, AKU93422, KIAA1596, FANCM. c140rf106				
17 SK0083-	Simplex family	46, XY, del(7)(q31.1q31.32)	7q31.1:	IMMP2L, LRRN3, DOCK4,	1q31.1	Loss	15,000	186,702,000-186,717,000
003	ASD,	de novo	108,272,363-108,337,904	ZNF277P, IFRD1 to	2P23.3	Gain	26,300	25,138,000-25,164,300
(50800L)	craniosynostosis,		7q31.31:	ASZ1, CFTR, CTTNBP2,	4q35.2	Gain	21,314	188,232,000-188,253,314
	developmental verbal		119,007,999-119,335,246	LSM8, ANKRD7	6p24.2	Gain	188,500	11,479,600-11,668,100
	dyspraxia, motor				7q31.1-q31.31	Loss	11,023,506	108,200,381-119,223,887
	delay				7q36.2	Loss	26,297	152,027,450-152,053,747
					8q24.21	Gain	48,000	127,951,000-127,999,000
					10p11.23	Gain	26,700	30,893,400-30,920,100
					14q11.2	Loss	219,458	19,272,965-19,492,423
					17q21.31	Loss	117,521	40,897,617-41,015,138

TABLE 1-continued

-continued	
1	
TABLE	

18 SK0131- 003	Simplex family Autistic features,	46, XX, del(7)(q31.2q32.2)(D78486-, D78522-) de novo, WBS inv-2	7q31.1: 113,181,975-113,518,235	FOXP2, MDFIC, TFEC, TES, CAV2, CAV1 to IRF5,	2p22.2 3p21.31	Gain Gain	67,740 52,599	37,848,232-37,915,972 147,754,068-147,806,667
(60660)	speecu-tanguage disorder	06 110AO	7q32.2: 128 540 500 128 705 715	LINFUD, LDEALNDD, DIMU, FAM40B, KLAA0828	4q31.21	Gain	120,171	145,146,000-145,266,171
	verbal dyspraxia),		120,070,120,020-120,070,10		7q31.1-q32.2	Loss 1	5,486,721	113,335,000-128,821,721
	dysmorphic features,				8q13.3 10c11 22	Gain Gain	261,985	72,881,221-73,143,206
	delay, unable to				10q26.2	Gain	91,077	128,501,014-128,592,091
	cough/sneeze/laugh				13q21.33	Loss	44,235	69,634,065-69,678,300
	spontaneously				14q11.2	Loss	222,786	19,272,965-19,495,751
					14q11.2	Gain	637,249	21,462,466-22,099,715
					15q11.2	Gain	1,662,280	18,427,103-20,089,383
					17q12	Gain G	29,984	31,4/1,515-31,501,499
	:			- 	77.11.pzz	Gain 2 :	810,876	20,//2,04/-21,582,923
19 SK0002- 003	Simplex family ASD percebosis	46, XX, IIIV(7)(p15.3; q22.1)	/p21.1: 18.284.307_18.302.387	No known genes	4q28.3	Gain	/65,000	132,195,000-132,960,000
(50002)	ereours led 'Arres		7022.3:	SPRK2	5p15.1-15.2	Gain	239,100	14,940,400-15,179,500
			104,360,659-104,549,945		15q11.2	Gain	1,713,200	18,376,200-20,089,400
20 SK0211-	Simplex family	46, XX, inv(7)(q22q34)mat	7q21.3:	No known genes	7q22.1	Gain	379,000	100,393,000-100,772,000
003	ASD, mild elevation	inherited	96,943,657-96,985,663		1 10-0		175 100	00 10 100 100 20 512 500
(76880)	or lactate	1 (CC31)(C-LZ1 -212)	/q24: 140,920,721-140,928,207	LASZK4, LASZK3	1.12de	LOSS	001,001	00,400,400-00,40,400
21 SNU040-	ASD ADHD severe	40, A.I. U./; SJ(PL5; 422), I (10: 11)(a26: a23)	71825126-21869196		c./ch2	LOSS	606,06	242,004,423-242,130,302
(55449)	anxietv attacks.	(kkk	8q22.2:	STK3	10a21.3	Loss	144.903	67.734.600-67.879.503
	seizures, difficulties		99,652,299-99,823,618		11q22.3	Loss	62,995	104.729.456-104.792.451
	with fine and gross		10q26:	Multiple genes	14q11.2	Gain	219,458	19,272,965-19,492,423
	motor skills		127,985,179-131,365,091					
					14q11.2	Gain	224,329	21,784,072-22,008,401
			11q23:	Multiple genes	15q11.2	Gain	1,662,280	18,427,103-20,089,383
			109,979,883-111,597,476					
					22q11.22	Loss	515,645	21,031,117-21,546,762
					22q11.23	Gain	269,129	23,975,202-24,244,331
22 SK0145-	Simplex family	46, XX, t(7; 11)(q31; q25)mat	7q31.2:	No known genes	1p36.11	Gain	192,600	26,231,500-26,424,100
003	ASD	Inherited	114,5/3,150-114,611,613	-	2p24.2	Gain 2 ·	14,233	1/,416,566-1/,450,599
(66/9)			11q25:	No known genes	3p23 5 15 25	Gain Cain	28,509	34,844,620-34,873,129
			133,882,64/-134,001,155		5p15.33	Gain 2 :	3,029,476	165,712-3,195,188
					6p22.2	Gain 2 ·	25,841	25,576,804-25,602,645
					7p14.1	Gain 2 :	20,412	37,494,999-37,515,411
					8q13.3	Gain	28,933	72,911,162-72,940,095
					10p12.1	Loss	98,961 22,221	27,642,965-27,741,926
					12p12.3	Gain 2 :	37,831	18,855,833-18,895,064
					14q11.2	Gain	464,929	21,551,291-22,016,220
					15q23-24.1	Gain 2	435,603	70,053,228-70,488,831
	:				19q13.43	Gain	308,600	63,476,500-63,785,100
23 SK0031-	Simplex family	46, XY, t(7; 13)(q31.3; q21) mat	7q31.2:	ST7	5p13.2	Loss	3,000	36,495,800-36,498,800
003	ASD, very little	inherited	116,2/0,156-116,458,896		6p22.1-21.33	Gain	/9,600	29,96/,200-30,046,800
(08160L)	language, global		13q21.1: 54 550 087 54 730 454	No known genes	9p23	Loss	112,800	11,895,600-12,008,400
	ueveiopiniemai uetays		J4,JJ9,U0/-J4,/J4,/J4,4J4		2.2cp41		1 7 28 000	99,010,100-99,767,000 16 711 400 20 000 400
					7.11pc1	Call	1,5 / 0,000	18,/11,400-20,089,400
					1 /q21.51	Cain	005/95	41,569,000-42,166,300
					c7.11p22	כמוח	UU2,1C2	23,989,000-24,240,200

med
ontir
1-c(
r T I

optimum constrained (000000000000000000000000000000000000	Simuley family	47 XX idic(15)013)	TABLE 1-con	tinued 1 OC400968 1 OC783755	1075.2	Gain	424.000	000 946 971-000 223 971
opene Solution Solution <t< td=""><td>nuy opmental ed nd</td><td>4., AA, Idic(L2)qL2) de novo</td><td>cok,8+8,1c-c2c,81k,82.;c1pc1</td><td>LUC400908, LUC 283 / 33, POTEI 5, OR4M2, OR4N4 to ARHGAP11A, c150rf45,</td><td>1q25.2 2p23.3 4p16.3 4q35.1</td><td>Gain Gain Gain</td><td>424,000 703,500 997,460 311,000</td><td>1/0,222,000-1/0,940,000 24,701,300-25,404,800 1,692,240-2,689,700 185,856,000-186,167,000</td></t<>	nuy opmental ed nd	4., AA, Idic(L2)qL2) de novo	cok,8+8,1c-c2c,81k,82.;c1pc1	LUC400908, LUC 283 / 33, POTEI 5, OR4M2, OR4N4 to ARHGAP11A, c150rf45,	1q25.2 2p23.3 4p16.3 4q35.1	Gain Gain Gain	424,000 703,500 997,460 311,000	1/0,222,000-1/0,940,000 24,701,300-25,404,800 1,692,240-2,689,700 185,856,000-186,167,000
mity biology (d) (d) (d) (d) (d) (d) (d) (d) (d) (d)	ıguage			GREMI, RYR3	5q31.1 9p21.1 14q11.2	Gain Loss Gain	93,000 362,900 414,900	134,426,000-134,519,000 30,452,800-30,815,700 21,660,700-22,075,600
min 46, XX, du(18)(G1) 15(G1,12, 15(11,12,12,12,12,12,12,12,12,12,12,12,12,1					16p11.2 16p11.2 16p11.2	Gain Gain Gain	11,922,600 1,543,900 658,600	18,5 /0,200-50,298,800 28,062,200-29,606,100 30,589,900-31,248,500
International Biology Res Constrained Biology Constrained Biology <thcon< td=""><td>amily palate, ild-facial</td><td>46, XX, del(18)(q21) de novo</td><td>18q21.32: 55,690,398-55,884,029</td><td>See CNV</td><td>12p13.33</td><td>Loss</td><td>92,328</td><td>1,760,084-1,852,412</td></thcon<>	amily palate, ild-facial	46, XX, del(18)(q21) de novo	18q21.32: 55,690,398-55,884,029	See CNV	12p13.33	Loss	92,328	1,760,084-1,852,412
interfact Sec XV Sec	heart				15q11.2 17021.31	Loss Gain	1,613,450 190.234	18,446,422-20,059,872 41 518 415-41 708 649
interied NYL Number of the constraint of the					18q21.32-q23	Loss	20,358,999	55,756,601-76,115,600
nik 6. XX (10; 2.1)(p1.2; q22.12) 191.3 EVISI. FUZJSK, LIRKSE, Diamine 10.13 Less 1.002.500 97.21,000-98;544,100 niheried 21q22.12: X94.294-7.866711 No known genes 17711.1-1112 Gain 24.00 47.800-502.718,000 niheried 21q22.12: Not waliable A <t< td=""><td></td><td></td><td></td><td></td><td>20p11.23</td><td>Loss Gain</td><td>08,/80 128,457</td><td>19,740,012-19,868,469</td></t<>					20p11.23	Loss Gain	08,/80 128,457	19,740,012-19,868,469
mily d. X, der(Y)(Y; 15) (q12; p11.2) pat 2q2.21.5 Not available S6(91, 399-36, 19).098 Not available (P11, 1-p11.2 Gain 29.1.00 216.400-22.138,000 mily de novo 46, X, der(Y)(Y; 15) (q12; p11.2) pat Not available (P11, 1-p11.2 Gain 24.40 48,005-07-474190 mily de novo 46, XY, del(15)(q23,q23,q23, 25, 21).088 Sec CNV Sec CNV Sec CNV Sec CNV 212.21 Cain 22.40 48,005-00-173/5800 mily de novo 46, XY, del(15)(q23,q23,q23, 25, 21) Sec CNV Sec CNV Sec CNV 212.21 Cain 23.530 13.400 27.69,00-137/5805 000-0277/41.000 mily de novo 46, XY, typ(15)(q11.2,q13) Sec CNV Sec CNV 29.423 Gain 29.235 Gain 29.236 13.600-13.0753/5400 mild de novo 764.11 Loss 77.81 Loss 77.81 11.0100-73.0001 75.611.0001 75.611.0001 75.611.0001 75.611.0001 75.611.0001 75.611.0001 75.611.0001 75.611.0001 75.611.0001 75.611.0001 75.611.0001 75.611.0001 75.611.0001 75.611.0100	mily	46, XY, t(19; 21)(p13.2; q22.12) inherited	19p13.2: 7,804,294-7,896,711	EVISL, FLJ22184, LRRC8E, MAP2K7, SNAPC2, CTXN1	1p21.3	Loss	1,092,500	97,271,600-98,364,100
mily 46, X, der(Y)(Y; 15) (q.12; p1.1.2) pat Not available qp.13 Gain 2,400 4,800 503-44,813 00 mily 46, XY, del(15) (q.2; p1.1.2) pat Not available 89:32.5 Gain 2,400 2,500-02,774 100 mily 46, XY, del(15) (q.2; p1.1.2) pat Not available 89:32.5 Gain 2,400 3,505-056,900 mily 46, XY, del(15) (q.2; p1.1.2) I.es 53:400 1,757,000-17,753,000 1,757,000-17,755,000 de novo 150,111 Loss 53:3,10 3,757,000-19,256,900 3,660,343,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,413,55 1,600,414,11,00 1,600,55,91,10,493 1,600,55,91,10,493 1,600,55,91,10,493 1,600,55,91,10,400,413,79,603 1,600,55,91,10,493 1,600,55,91,10,493 1,600,55,91,10,493 1,600,55,91,10,493 1,600,55,91,10,493 1,600,55,91,10,493 1,600,55,91,10,493 1,600,55,91,10,493 1,600,5			21q22.12: 36,091,999-36,191,098	No known genes	1/p11.1-p11.2	Gain	503,100	21,634,900-22,138,000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mily	46, X, der(Y)t(Y; 15) (q12; p11.2) pat	Not available		4p13	Gain Gain	42,400	44,809,500-44,851,900
mily 46, XY, del(15Yq23q242) See CNV See CNV 159(12) Loss 51,400 27600;500;27;741;900 indp12.1 Loss 583,100 98,273;90:100;16,000 139,15 14470 27600;500;77;41;900 indp12.1 Loss 583,100 98,273;90:100;16,000 34775 157,700;96:146,04355 157,000;96:146,04355 157,000 96,275;41;900 34775 157,900;100;16,000 34725 157,001 156,050,0716,000 34725 157,001 156,050,0716,000 34725 157,001 156,050,0716,000 34725 157,001 156,050,0716,000 34725 157,001 156,050,0716,000 34725 157,001 156,050,0716,000 34725 157,001 156,050,0714,000 34725 156,050,0714,000 34725 156,050,0714,000 34725 156,050,0714,000 34725 156,050,0714,000 34725 156,050,0714,000 34725 156,050,0714,000 34725 156,050,0714,000 34725 156,050,0714,000 156,055,050 156,065,001,002,0126 156,055,050 156,055,050 156,055,050 156,056,050,050,016,012,025,050 156,056,05		inherited			8p23.2 8a24.23	Ciain Loss	138.000	2,335,310-2,569,890 137.757.000-137.895.000
mily 46, XY, del(15)(q23q242.2) See CNV See CNV 15q11.2 Loss 558.300 18/76/500-102.56.00 de novo 327.3 Gain 333.39 145/700.96-146/0034.53 99.422 17/81.879.9900-100.216.00 de novo 772.2 Gain 29.778 141.322-171.10 97.78 141.322-171.10 nily 46, XY, up(15)(q11.2q13) See CNV 7014.1 Loss 33.359 145.700.96-146.07.983.500 nily 46, XY, up(15)(q11.2q13) See CNV 7014.1 Casi 33.359 141.327-131.100 nily 46, XY, up(15)(q11.2q13) See CNV 7014.1 Casi 32.05 38005.796-180.758.251 nily 46, XY, up(15)(q11.2q13) See CNV 7012.1 Gain 21.570 131.05.251.500.499 nily 46, XY, up(15)(q11.2q13) See CNV 702.11 Gain 21.766 180.754-13.008.457 nily 46, XY, up(12)(12,013.3, p13.3) See CNV 702.11 202.671.09.829.405 702.661.90.750.252.150.1499 nily 46, XY, up(11.20(23.3, p13.3)					10p12.1	Loss	51,400	27,690,500-27,741,900
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					15q11.2	Loss	558,300	18,676,700-19,235,000
$ \begin{array}{c cccc} \text{mily} & 46, XY, \mbox{ col}(1) \text{A}(243 \text{G}{-}4-2) & \text{Sec CNV} & \mbox{ col}(-1) \text{A}(243 \text{G}{-}4-2) & \mbox{ col}(-1) & \m$:				15q26.3	Gain	388,100	99,827,900-100,216,000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	amily	46, XY, del(15)(q23q24.2) de novo	See CNV	See CNV	1421.1	Loss Gain	52,555 57 951	145,/00,996-146,034,555 37 847 789-37 900 740
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					2027.3 3027.3	Gain	91.422	187.897.578-187.989.000
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					7p22.3	Gain	29,778	141,322-171,100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					7p14.1	Loss	32,636	38,092,579-38,125,215
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					10p13	Loss	1,570	13,096,593-13,098,163
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					11p15.1	Gain	21,766	18,905,796-18,927,562
inty inty def XY, trp(15)(q11.2q13)See CNV $17q21.31$ Gain (33.54) 33.52 $41.636,4744,179,833$ inty ing eyesde novo $57,861$ $38,067,354-38,125,215$ ing eyes $7p14.11$ Loss $77,861$ $38,067,354-38,125,215$ ing eyes $7p14.11$ Loss $77,861$ $38,067,354-38,125,215$ ing eyes $7p14.11$ Loss $77,861$ $38,067,354-38,125,215$ ing eyes $10p13$ Loss $27,361$ $38,067,354-38,125,255$ $10p13$ Loss $27,361$ $13,095,652-13,008,1653$ $10p13$ Loss $27,361$ $106,251,269$ $10p13$ Loss $27,961$ $19,057,961-19,992,255$ $14q12.2$ Loss $27,961$ $19,055,7061-19,992,255$ $14q12.2$ Loss $219,458$ $19,057,671,093,0298,847$ iny $46, XX, (11; 12)(q23.3; p13.3)$ $11q23: not$ $27,408$ $106,251,269$ iny $46, XX, (11; 12)(q23.3; p13.3)$ $11q23: not$ $27,208$ $19,02,561,19,692,120,9673,364,400iny46, XX, (11; 12)(q23.3; p13.3)11q23: not27,20821,942,31,0027,323112,213Gain11,871,74718,427,10030,258,847132,25113,25214q11.2Gain23,590,400-26,139,673,4400iny46, XX, (11; 12)(q23.3; p13.3)11q23: not22,32,916,710,32,296,710,912,996,71,996,71,996,71,996,71,996,71,996,71,966,71,$					17615-924.2	Loss	4,289,000	69,601,300-73,890,800
nily 46, XY, trp(15)(q11.2q13) See CNV See CNV 6q14.1 Loss 77,861 38,067,354-38,125,215 7p14.1 Loss 77,861 38,067,354-38,125,215 10p13 Loss 77,861 38,067,354-38,125,215 10p13 Loss 27,588 13,095,652-13,098,465 13,095,652-13,098,465 14q11.2 Loss 27,588 13,095,652-13,098,425 14q11.2 Loss 27,588 19,057,796-18,918,255 14q11.2 Loss 219,458 19,272,965-19,492,423 14q23.33 Gain 27,408 106,223,861 106,221,269 15,942,243 14q23.33 Gain 27,408 106,223,861 106,221,269 15,942,243 19,713,71 19,713,71 10,30,298,847 19,713,22 Loss 11,871,747 18,427,100 30,298,847 19,713,22 Loss 113,251 106,221,269 15,942,423 Loss 11,871,747 18,427,100 30,298,847 19,713,23 Gain 11,871,747 18,427,100 30,298,847 19,713,23 Loss 11,871,747 18,4274,00 31,065,453,4100 31,065,453,4100 31,065,453,4100 31,065,453,4100 31,065,453,413 12,013,511 12,013,511 12,013,511,511 23 Loss 11,055,453,413 12,0137,511 12,013,21473 12,0137,511 12,013,21473 12,0137,511 12,013,511,511 12,013,511,511 12,013,511,511 12,013,511,511 12,013,511,511 12,013,511,511 12,013,511,511,511 12,013,511,511 12,013,511,511 12,014,511,511,511 12,014,511,5511,511,511 12,014,511,511,511,511,511,511,511,511,511,5					1702131	Gain Gain	20,24/ 83 350	41 636 474-41 719 833
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mily	46, XY, trp(15)(q11.2q13)	See CNV	See CNV	6q14.1	Loss	47,288	79,036,117-79,083,405
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nthal	de novo			7p14.1	Loss	57,861	38,067,354-38,125,215
Ilpl5.1 Loss 12,459 18,905,706-19,492,553 Idq11.2 Loss 19,458 19,272,965-19,492,423 Idq11.2 Loss 19,71,747 18,427,100 30,298,847 mily 46, XX, t(11; 12)(q23.3; p13.3) 11q23: not 27,408 106,223,861 106,223,481 mily 46, XX, t(11; 12)(q23.3; p13.3) 11q23: not 202,567 7,034,818 mily 46, XX, t(11; 12)(q23.3; p13.3) 11q23: not 2,994 67,7,034,818 miknown 37,242 Gain 63,451,406* 2,994,63,454,400 available 372,423 Loss 11,871,747 18,427,400 miknown 132,251 6,002,567,17,034,818 2,994,6400,26,139,673 12p13,322,223 21,912 Gain 63,451,406* 2,994,63,454,400 12p13,322,p13,31: Multiple genes 12p1,121 Gain 246,006 21,408,204,21,907,551 12p13,322,p13,31: Multiple genes 14q112 Gain 499,269 21,498,204,21,997,473	ping eyes				10p13	Loss	2,538	13,095,625-13,098,163
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					11p15.1	Loss	12,459	18,905,796-18,918,255
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					14q11.2	د. ۲	219,458	19,272,965-19,492,423
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					14q32.33	Cain	21,408	106,223,861 106,251,269
mily 46, XX, t(11; 12)(q23.3; p13.3) 11q23: not 2p253-2p15 Gain 63, 451, 406° 2, 994 63, 454, 400 unknown 3p24.2 Loss 159, 273 25, 980, 400-26, 139, 673 12, 980, 400-26, 139, 673 12, 913, 32-p13.31: Multiple genes 14911.2 Gain 236, 006 31, 065, 545-31, 301, 551 12, 913, 32-p13.31: Multiple genes 14911.2 Gain 489, 269 21, 987, 473					19n13 2	Cain Loss	11,8/1,/4/	18,427,100 30,298,847 6 902 567 7 034 818
unknown 3p24.2 Loss 159,273 25,980,400-26,139,673 12p11.21 Gain 236,006 31,065,545-31,301,551 12p13.32-p13.31: Multiple genes 14q11.2 Gain 489,269 21,498,204 21,987,473	milv	46. XX. t(11: 12)(q23.3: p13.3)	11a23: not		2p25.3-2p15	Gain	$63.451.406^{b}$	2.994 63.454.400
12p13.32-p13.31: Multiple genes 14q11.2 Gain 236,006 31,065,545-31,301,551 14q11.2 Gain 2489,269 21,498,204 21,987,473		unknown	available		3p24.2	Loss	159,273	25,980,400-26,139,673
12p13.32-p13.31: Multiple genes 14q11.2 Gain 489,269 21,498,204 21,987,473					12p11.21	Gain	236,006	31,065,545-31,301,551
			12p13.32-p13.31:	Multiple genes	14q11.2	Gain	489,269	21,498,204 21,987,473

	Gain 35,832 7,801,488-7,837,320 Gain 124,630 732,190-8/6,820 Loss 215,567 4,200,904-4,416,471 Loss 137,757,137-137,137,355,330 Loss 54,390 6,845,440-6,899,830 Loss 54,390 6,845,440-6,899,830 Loss 192,356 18,427,103-20,5641 Loss 1,908,356 18,427,103-20,5641 Loss 1,908,356 18,427,103-20,35459 Hyperlink Errorf	Gain 183,903 48,583,12748,767,030 Loss 83,750 47,643,250,47,727,000 Loss 509,800 90,919,200-91,429,000	Gain 211,000 112,463,000-112,674,000 Gain 124,800 47,030,100-47,154,900 Gain 186,000 105,829,000-106,015,000 Loss 888,000 112,325,000-113,213,000		CNV Analysis	s./Str# RefSeq Genes Comments	Io/NS No known genes NFLD	(es/NS ZNRD1, PPP1R11, RNF39, TRIM31 Io/NS S12.1A2	io/NS No known genes io/NS No known genes fes/NS ST7L, CAPZA1 NFLD io/S 10 genes	 Io/NS MUC20, MUC4 Io/NS No known genes ces/NS No known genes io/S FAM86B1, Io/S EAM86B1, Io/C440053 Io/S Ko Rgenes Io/S No known genes 	Vo'NS LOC283755, POTEL5, OR4M2, OR4N4 NFLD Jo'NS 7 genes Unaffected sibling Io/NS 6 genes Unaffected sibling
	4p16.1 5p15.33 6p25.1 8q24.23 11p15.4 14p11.2 15q11.2	15q21.2 Xp11.23 7q21.2	9q32 10q11.22 14q32.33 Xq23		I	RefSeq Genes A	SATB2 N	No known genes N	N N Several Y	Several N YY YY N N YY N N N Y Y N N N N N N N	N N See CNV N N
TABLE 1-continued	υ	0		Cytogenetic Analysis	Breakpoint	Location	2q33.1: 200 006 602 200 154 700	201,561,566-21,644,040 6p23.3 21,561,566-21,644,040	4q21.3	5q14.2-q14.3: 82,802,678-91,285,973	at See CNV
	.1.2q11.2)pat Not availabl	?)(p11.2; ?) Not availabl				Karyotype	46, XX, t(2; 6)(q32; p22)	ПТИТОМП	46, XX, t(4; 5)(q21; q13) unknown		46, XX, der(22)((14; 22)(q32; q13) p. inherited
	y 46, X, inv(Y)(p1 inherited	y 46, XX, ins(21;	ШКПОЖП		Phenotype/Family	type	Simplex family	dyspraxia dyspraxia	Simplex family ASD, seizure	unsorter, ocenty, macrocephaly	Simplex family ASD, submucous cleft. globally
	0300- Multiplex Famil 447) ASD, NF1 447)	0094- Multiplex Famil	304) ASU		Sample	Ð	1 NA0008-	(50863L)	2 NA0005- 000		3 NA0039- 000 (69736)

	genes + 46, XX, der(14) (ANK3 t(14; 22)(q32; q13)	known genes SK genes known genes known genes known genes enes R116 AR15ML, RP	SSI .known genes 0C283755, TE15, .4A2, 0R4N4 AA1267	DC2L5 SK		known genes SK	rounger product has the same translocation and	severe speech and language disorder but does not meet ASD criteria on AIDOS.	enes Others Non-Canadian	UC20, MUC4 family FR orf0, BTNL2 orf0, BTNL2 hown genes Known genes C283755, 4M2, OK404 4M2, OK404
	Yes/NS 40 SF	Yes/NS NG Yes/S NG Yes/S NG Yes/S NG Yes/NS NG Yes/NS 6 § No/NS GH No/NS GH	No/NS PR No/S Nc No/S Nc PC PC OF No/NS KI	No/NS CI		No/NS Nc	No/S 6		Yes/NS 6	No/NS M Yes/S LL Yes/NS CC No/NS NG No/NS NG No/S OF No/S OF PC NO/NS NG NO/NS NO
		See CNV		NEGR1	No known genes	No known genes	No known genes		LOC401431, ATP6VOE2	SLC16A12, PANK1, MPHOSPH1
TABLE 1-continued		See CNV		1p31.1: 72,065,578-72,163,007	2p24.3: 12,376,807-12,733,637 13q10: in progress 15q10: in	progress 1q24.2: 167 453 768 167 533 136	901,227,005-701-45,737,008		2q23.1: 148 938 284-149 125 547	10,255,490-91,461,660 91,265,490-91,461,660
		47, XX, ring chromosome 1 de novo		46, XY, t(1; 2)(p22.1; p23)pat der(13; 15)(q10; q10)mat	inherited	46 XY, t(1; 9)(q25; p13)	וווופווומ		46, XX, t(2; 10)(q22; q22.3)	
	levelopmentally lelayed, large ears, thort forehead, listally tapere ingers, severe pes	ASD family ASD		simplex family ASD		simplex family	USY		simplex Family ASD_mental	etardation
		4 SK0283- 1 003 / (72309)		5 SK0044- 5 003 →	(50067)	6 SK0182- 5	, (52065)		7 SK0335- 5 003 A	(72815)

-continued	
Ļ	
TABLE	

Other Canadian Family	Other Canadian Family Previously described in a manuscript by	Harvard et al., The 3p25.1, 5p15.31-p15.2 and 18q1.2.2 deletions were identified in Harvard, C. et al using BAC CGH. The deletion size has been refined here using SNPs. Older sibling also has ASD but has	karyotype Maternal aunt with schizophrenia and a maternal uncle with Down syndrome SK Described previously in Vincent et al. ² Affected brother.	apparently unaffected mother and unaffected matemal grandfather all have the same inversion. Distal 4p15.3 breakpoint maps ~12 Mb to a region previously indicated to show linksoe to antien	SK FISH analysis with subtelomeric probe (containing
ERB4	12 genes ROBO1 8 genes	No known genes No known genes ANXA8 No known genes YAF2, ZCRB1 No known genes LOC283755, ORAM2, OR4N4 No known genes KIAA11267 KIAA11267 KIAA11267 C18.0×610	CLOULLY, FHOD3 RET, RASGEFIA, BMSIL, ZNF11B, MGC16291, MGC10291,	MED4, NUDT15, SUCLA2 No known genes KLAA1267	LMLN, LOC348840 >50 genes No known genes
Yes/NS	Yes/S Yes/S Yes/S	No/S No/NS No/S No/S Yes/S No/NS No/NS Yes/NS Yes/S	Yes/NS	Yes/NS Yes/NS No/NS	No/NS Yes/S No/NS
No known genes POLA2, CDC42EP2, DPF2	CDH18	No known genes	No known genes	GABRG1 (breakpoint region is located in intron 7)	See CNV
2p11.2: 89,117,655-89,158,494 11q13.1: 64,801.333-64,861.285	3p24. not available 3q24. not available 5p14.3. 19.825, 926-19,883,410	7p13:46,618,434-46,733,542	4p15.3: 12,173,445-12,335,572	4p12: 44,876,353-46,024,486	See CNV
46, XY, t(2; 11)(p11.2; q13.3) pat inherited	46, XY, inv(3)(p24; q24), t(5; 7)(p15p13) de novo		46, XY, inv(4)(p12; p15.3)mat inherited		46, XX, del(5)(p15.1) de novo
Multiplex family ASD	Multiplex family ASD, oral motor apraxia, poor balance and coordination, mild hypotonia, walks	with a wide gain, severe language delay, moderate intellectual disability, some facial features of Cri du Chat	Multiplex family ASD, primarily non- verbal, profound developmental delay		Simplex family ASD
8 SK0126- 003 (59144)	9 SK0152- 003 (41548L)		10 SK0105- 003 (27155L)		11 SK0205- 004 (56242)

11

			KIAA1596, FANCM, c14orf106				
	No known genes	No/NS	LRFN5, c14orf155, c14orf28, BTBD5, KLAA0423, PRPF39, FKBP3, AK093422,	14q21.1-q21.2: 40,807,716-44,806,460	de novo	ASD	004 (52191)
SK	13 genes	Yes/S	No known genes	6q12: 69,241,818-69,279,457	46, XY, t(6; 14)(q13; q21)	Simplex family	16 SK0181-
46, XY karyotype	POTE15, OR4M2, OR4N4			68,599,032-68,682,365			
ASD but a normal	LOC283755,	No/S	PIP5K1B	9q21.11:			(29346)
Sibling also has)	63,464,452-63,511,410	unknown	ASD	003
SK	CSMD1	No/NS	No known genes	6q11.2-q12:	46, XY, t(6; 9)(q10; q12)	Multiplex family	15 SK0043-
	No known genes	Yes/NS					
	No known genes	Yes/NS					
	No known genes	No/S					
	No known genes	Yes/NS					
	No known genes	SN/oN					
	MASS1	DIV - IV					
SK0145-003	POLR3G,						
same breakpoint	CETN3, 1 OC1 53364	Yes/NS	No known genes	7q22.1: 07 033 646-07 073 368			
Live seen at 11q25 is in the	B3GNT7						(7100+)
Canadian Family CNIV gean of	NMUR1, MGC35154 NCI			56,805,919-56,967,398	inherited	ASD	003 (46013)
Other	MGC43122,	Yes/NS	DST, c6orf65	6p12.1:	46, XY, t(6; 7)(p11.2; q22)pat	Simplex family	14 SK0133-
	OR4Q3, OR4K2 ktaat367	S/ON					
	OR4M1, OR4K5,		LOC641522, NSF	41,893,216-42,093,636			
	OR4K1, OR4N2,	No/NS	LRRC37A2, ARL17P1,	17q21.31: 17q21.31:			
	NRG	Yes/NS	No known genes	8q24.22: 122 448 646 122 512 672			(55310)
Canadian Family	,			136,979,583-137,038,092	de novo	ASD	003
Other	No known genes	No/NS	KLHL3	5q31.1:	46, XY, t(5; 8; 17)(q31.1; q24.1; q21.3)	Simplex family	13 SK0195-
Family			No known genes	5q14.3: 88 840 103-88 801 151		delay	(44951)
:	Non-Canadian			118,928,065-119,006,076	unknown	ASD, developmental	003
Other	Io CNV detected	4	No known genes	7q31.31:	46, XY, t(5; 7)(q15; q31.32)	Simplex family	12 SK0061-
	DGCR6, PRODH, DGCR2	No/S					
	No known genes KLAA1267	No/S No/NS					
	OR4M2, OR4N4						
	LOC283755,	No/S					
	OR4K1, OR4N2, OR4K5, OR4K2	No/S					
	SYCE1; CYP2E1	No/S					
terminal deletion	PPYR1, GPRIN2 CTNNA3	SN/0N					
consistent with a	SY 115, ANAA8, ANXA8L1,	C/0N					
D662488)		11 - 10					

TABLE 1-continued

3- Simplex family	~	46, XY, del(7)(q31.1q31.32)	TABLE 1-continued 7q31.1:	IMMP2L, LRRN3, DOCK4,	No/S	No known genes	Other
sD, miosynostos velopmental spraxia, mol lay	sis, l verbal tor	de novo	108,272,363-108,337,904 7q31.31: 119,007,999-119,335,246	ZNF277F, IFRD1 to ASZI, CFTR, CTTNBP2, LSM8, ANKRD7	Ycs/NS Ycs/S Yes/NS Yes/NS Yes/NS Yes/NS No/NS	No known genes No known genes No known genes >50 genes No known genes No known genes No known genes OR4K1, OR4N2, OR4A1, OR4K2, OR4A1, OR4K2, OR4A1, OR4K2, OR4A1, OR4K2, OR4A1, OR4K2, OR4K1, OR4K2,	Canadian Family Described previously in Feuk et al. ³
implex famili utistic featur eeech-langua sorder evelopmenta evelopmenta sysmorphic fe- jald developm ild developm ild developm ough/sneezer/l	y es, ge iia), atures, nental o laugh	46, XX, del(7)(q,31.2q32.2)(D78486-, D75522-) de поvo, WBS inv-2 de поvo	7q31.1: 113,181,975-113,518,235 7q32.2: 128,540,690-128,796,716	FOXP2, MDFIC, TFEC, TES, CAV2, CAV1 to IRF5, TNP03, TSPAN33, SM0, FAM40B, KIAA0828	Yes/NS Yes/NS No/NS Yes/S Yes/NS No/NS Yes/NS	No known genes CCR2 GYPE GYPE AMPH > 0 genes MSC, TRPAI ANXAB DOCK1	Other Canadian Family Described previously in Feuk et al. ³
					No/NS No/NS No/NS No/NS	No known genes OR4K1, OR4N2, OR4M1, OR4K5, OR4Q3, OR4K2 No known genes POTE15, POTE15, OR4M2, OR4N4 No known genes	
simplex famil; ASD, psychos.	y. Is	46, XX, inv(7)(p15.3; q22.1) unknown	7p21.1: 18.284,397-18,302,387 7q22.3: 104,360,659-104,549,945	No known genes SPRK2	No/NS No/S No/S Yes/S	6 genes No known genes LOC283755, POTE15, OR4M2, OR4N4	Other Non Canadian- Family
simplex famil; ASD, mild ele of lactate	y wation	46, XX, inv(7)(q22q34)mat inherited	7q21.3: 96,943,657-96,985,663 7q34: 140,920,721-140,958,207	No known genes TAS2R4, TAS2R5	No/NS No/NS	10 genes No known genes	Other Non Canadian Family Mother and unaffected twin sister have the same kary otype; 7 d34 breakpoint overlaps with a ASD translocation patient

			TABLE 1-continued				
21 SK0040- 003	Multiplex family ASD ADHD severa	46, XY, t(7; 8)(p15; q22), t	7p15.3: 21 825 126-21 860 196	No known genes	No/S	No known genes	Other Non-Canadian
005 (55449)	anxiety attacks.	(10, 11) unknown	z1;022;120-21;009;190 8022.2:	STK3	No/S	CTNNA3	Family
~	seizures, difficulties		99,652,299-99,823,618		No/NS	No know genes	Unaffected sister
	with fine and gross		10q26:	Multiple genes	No/NS	OR4K2, OR4N2, OB 471 OB 475	with normal
	IIIOLOF SKIIIS		160,000,101-611,006,121		No/NS	OR4N1, UR4N3 No known genes	lemate karyotype, has difficulties in
			11q23:	Multiple genes	No/S	LOC283755,	some muscles,
			109,979,883-111,597,476	1		POTE15,	difficulties with
					OLC IN	OK4M2, OK4N4	time and gross
					SN/ON	FRAME, SUHW 2, SUHW1 GGT1 4	motor skills, severe anviety
					No/S	CTA. LRP5L	attacks, not able
						~	to relate to peers
							and is affected by
571075 CC	Cimalay family	$46 \text{ VV} + 77 \cdot 11 \text{ Mas} 31 \cdot 325 \text{ Mas} 4$	7.21 2.	No known conce	Voo MC	0 conoc	noise Other
22 3EVUT-1-	ASD	+0, 223, U(7, 11) Hold (7, 12) Held	114.573.150-114.611.613		Yes/NS	o genes No known genes	Canadian Family
(67955)			11q25:	No known genes	Yes/NS	No known genes	Apparently
			133,882,647-134,001,155)	Yes/NS	28 genes	unaffected mother
					Yes/NS	LRRC16	has the same
					No/NS	No known genes	7q31.2 and 11q25
					res/INS	MISC	Dreakpoints
					No/S	PICHD3 No brown conce	
					SN/ON	No known genes	
					Yes/NS	9 genes	
					Yes/NS	18 genes	
23 SK0031-	Simplex family	46, XY, t(7; 13)(q31.3; q21) mat	7q31.2:	ST7	Yes/NS	No known genes	Other
003	ASD, very little	inherited	116,270,156-116,458,896		No/NS	HLA-A	Non Canadian
(68160L)	language, global		13q21.1:	No known genes	No/NS	No known genes	Family
	developmental delays		54,559,087-54,739,454		Yes/S	8 genes	
					No/S	LOC283/55,	
						PUIEIS, OPAM2 OPAM4	
					No/No	OR4INL, UR4IN4 6 genes	
					S/oN	o guus CTA-246H3.1,	
						LRP5L	
24 SK0073- 003	Simplex family ASD developmental	47, XX, idic(15)q13) de novo	15q13: 28,918,525-31,848,963	LOC400968, LOC283755, Potf15, Oram?	Yes/NS Vec/NS	6 genes 7 genes	SK Described
(572831.)	delay delayed	10.10A		ORANA to	Ves/NS	/ guius 12 genes	nreviously in
(100710)	expressive and			ARHGAP11A, c15orf45,	Yes/NS	CASP3,	Kwasnicka-
	receptive language			GREM1, RYR3		ccDC111,	Crawford et al. ⁴
						MLF1IP, ACSL1	
					Yes/S	No known genes	
					SN/ON	No known genes No known genes	
					Yes/S	>50 genes	
					No/NS	>20 genes	
					No/NS	>20 genes	

	SK As noted in the Autism Chromosome Rearrangment Database there are 5 addition reported cases of abnormalities involving 18q; Sibling has a involving 18q; Sibling has a attreated with autism and has	Other Canadian Family Patient has an unaffected sister with the same boundary	skuvype	Xs	SK
	CACNA2D4, ADIPOR2, LKIN2 LKIN2 POTE15, OR4M2, OR4M4 KIAA1267 >50 genes KIR3DF1, KIR2DL1, KIR2DL1, KIR2DL4, KIR2DL4, KIR2DL4, KIR2DL4, KIR2DL4, KIR2DS4 RIN2 KIR2DS4	FLJ35409, DPYD FAM27L	No known genes No known genes PTCHD3 LOC283755 PCSK6, TARSL2,	Nakuowi genes No kinowi genes No kinowi genes No kinowi genes No kinowi genes No kinowi genes MRGPRXI 55 genes No kinowi genes No kinowi genes No kinowi genes	No known genes No known genes TARP MRGPRXI 6 genes No known genes 5-50 genes EMR4, FLG25758, MBD3L2, ZF557
	Yes/S No/S Yes/S No/NS Yes/NS	Yes/S Yes/NS	No/NS No/NS No/NS No/NS No/NS No/NS	No/NS No/NS No/NS No/NS No/NS No/NS No/NS No/NS	No/NS No/NS No/NS No/NS No/NS Yes/S No/NS
	See CNV	EVI5I, FLJ22184, LRRC8E, MAP2K7, SNAPC2, CTXN1 No known genes		See CNV	See CNV
TABLE 1-continued	18q21.32: 55,690,398-55,884,029	19p13.2: 7,804.294-7,896,711 21q22.12: 36,091,999-36,191,098	Not available	See CNV	See CNV
	46, XX, del(18)(q21) de novo	46, XY, 1(19; 21)(p13.2; q22.12) inherited	46, X, der(Y)t(Y; 15) (q12; p11.2) pat inherited	46, XY, del(15)(q23q24.2) de novo	46, XY, trp(15)(q11.2q13) de novo
	Multiplex family ASD, cleft palate, club feet, mild-facial hypoplasia, heart defect	Simplex family ASD	Simplex family ASD	Simplex Family ASD	Simplex Family ASD, epicanthal folds, drooping eyes
	25 SK0218- 003 (60340)	26 SK0215- 006 (58449)	27 SK0136- 003 (51253)	28 SK0243- 003 (67941)	29 SK0245- 005 (68517)

	Q																						
	NFI		SK													SK							
	>50 genes No known genes DDX11. OVOS2	No known genes 21 genes	SORCS2	ZDHHC11	No known genes	No known genes	OR10A2,	OR10A4,	OR2D2, OR2D3	6 genes	LOC283755,	POTE15,	OR4M2, OR4N4	TRPM7, USP50	ZNF630, SSX6	MTERF, AKAP9,	CYP51A1,	LOC401387	KIAA1958,	C9orf80	No known genes	No known genes	No known genes
	Yes/S No/NS No/S	No/NS Vec/S	Yes/NS	No/S	Yes/S	No/S	Yes/S			No/NS	No/S			Yes/S	No/S	Yes/NS			No/NS		No/NS	No/NS	Yes/NS
		Multiple genes																					
TABLE 1-continued	11q23: not available	12p13.32-p13.31: 4 341 718-7 018 138	Not available													Not available							
	46, XX, t(11; 12)(q23.3; p13.3) unknown		46, X, inv(Y)(p11.2q11.2)pat	inherited												46, XX, ins(21; ?)(p11.2; ?)	unknown						
	Simplex Family ASD		Multiplex Family	ASD, NF1												Multiplex Family	ASD						
	30 NA0097- 000 (82361L)		31 SK0300-	003	(77447)											32 SK0094-	005	(49304)					

Affymetrix GeneChip Human Mapping 500K Array Set

[0041] For each sample, approximately 500,000 SNPs were genotyped using the combined two-chip Nspl and Styl GeneChip® Human Mapping Commercial or Early Access Arrays (Affymetrix, Inc., Santa Clara, Calif.) according to the manufacturer's instructions and as described previously (Kennedy et al. 2003 Nat Biotechnol. 21:1233-7, the contents of which are incorporated herein by reference). Briefly, 250 ng of genomic DNA was digested with Nspl and Styl restriction enzyme (New England Biolabs, Boston, Mass.), ligated to an adaptor and amplified by PCR. The PCR products were then fragmented with DNaseI to a size range of 250 bp to 2,000 bp, labelled, and hybridized to the array. After hybridization, arrays were washed on the Affymetrix fluidics stations, stained, and scanned using the Gene Chip Scanner 3000 7G and Gene Chip Operating System. Data has been submitted to the Gene Expression Omnibus database (accession GSE9222). Karyotypes were generated using standard clinical diagnostic protocols.

Characterization of Copy Number Variation

[0042] Nspl and Styl array scans were analyzed for copy number variation using a combination of DNA Chip Analyzer (dChip) (Li and Wong 2001 *Genome Biology* 2: 0032.1-0032. 11), Copy Number Analysis for GeneChip (CNAG) (Nannya 2005 *Cancer Res.* 65:6071-9) and Genotyping Microarray based CNV Analysis (GEMCA) (Komura 2006 *Genome Res.* 16:1575-84). Each of these references is incorporated herein by reference.

[0043] Analysis with dChip (www.dchip.org) was performed as previously described (Zhao et al 2005 *Cancer Res.* 65:5561-70) in batches of ~100 probands. Briefly, array scans were normalized at the probe intensity level with an invariant set normalization method. After normalization, a signal value was calculated for each SNP using a model-based (PM/MM) method. In this approach, image artifacts were identified and eliminated by an outlier detection algorithm. For both sets of arrays, the resulting signal values were averaged across all samples for each SNP to obtain the mean signal of a diploid genome. From the raw copy numbers, the inferred copy number at each SNP was estimated using a Hidden Markov Model (HMM).

[0044] For analyses with CNAG version 2.0 (www.genome.umin.jp), the reference pool was set to include all samples and performed an automatic batch pair-wise analysis using sex-matched controls. Test samples were compared to all samples within the reference pool and matched based on signal intensity standard deviations. The scan intensities for each 'test' sample were compared to the average intensities of the reference samples (typically the average of 5-12 samples) and used to calculate raw copy number changes. Underlying copy number changes were then inferred using a Hidden Markov Model (HMM) built into CNAG.

[0045] GEMCA analysis was performed essentially as described (Komura et al. Genome Res 2006; 16 (12):1575-84) with the exception that two designated DNA samples (NA10851 and NA15510) were used as references for pairwise comparison to all proband experiments. These results were further filtered by only including those CNVs that were common to both pair-wise experiments.

[0046] CNVs were merged if they were detected in the same individual by more than one algorithm using the outside probe boundaries.

Controls and Autism Chromosome Rearrangement Database (ACRD)

[0047] Control samples consisted of (i) CNVs observed in 500 Europeans from the from the German PopGen project (Krawczak et al. Community Genet 2006; 9 (1):55-61), and CNVs found in a cohort of 1000 Caucasian non-disease controls from the Ontario population (ref. 24). The ACRD that had 834 putative CNVs or breakpoints mapped to the genome was established. A CNV was considered ASD-specific if it was >10 kb, contained at least three probes and at least 20% of its total length was unique when compared to controls.

CNV Validation Experiments and Balance Rearrangement Breakpoint Mapping

[0048] PCR validation of CNV calls was performed using Quantitative Multiplex PCR of short fluorescent fragments (QMPSF) (Redon et al. *Nature*. 444:444-54) or SYBR-Green 1 based real-time quantitative PCR (qPCR) using controls at the ACCN1, CFTR or FOXP2 loci (PMID: 14552656). For both methods, primers were designed using the program PRIMER3 (http://frodo.wi.mit.edu/). Balanced rearrangements were mapped primarily using FISH (Nannya et al. Cancer Res 2005; 65 (14):6071-9). The microdel program (Komura et al., ibid) was used to score CNV losses.

[0049] For QMPSF, short genomic sequences (140-220 bp) within putative CNVs were PCR amplified using dye-labelled primers corresponding to unique sequences. Each reaction also included co-amplified control amplicons corresponding to either ACCN1 or CFTR located at 17q11.2 and 7q31.2, respectively. Briefly, 40 ng of genomic DNA was amplified by PCR in a final volume of 25 µl using AmpliTaq® DNA polymerase (manufactured for Applied Biosystems by Roche Molecular Systems, Inc.) After an initial step of denaturation at 95° C. for 5 minutes conditions were as follows: 25 PCR cycles of 94° C. for 30 seconds, annealing at 60° C. for 45 seconds, and extension at 72° C. for 30 seconds. A final extension step at 72° C. for 15 minutes followed. QMPSF amplicons were separated on an ABI 3730x1 DNA Analyzer (Applied. Biosystems, Foster City, Calif.), and analyzed using ABI GeneMapper® software version 3.7 (Applied Biosystems). After adjustment of control amplicons to the same heights, the QMPSF pattern generated from test DNA was superimposed to that of the control DNA. For each putative CNV locus, the copy number ratio was determined by dividing the normalized peak height obtained from the test DNA by that of the control DNA. Peak ratios of >1.4 and <0.7 were indicative of copy number gains and losses, respectively. At least two independent QMPSF assays were required for CNV confirmation.

[0050] SYBR Green I-based real-time qPCR amplification was performed using a Mx3005P quantitative PCR system (Stratagene, La Jolla, USA). Non-fluorescent primers were designed to amplify short genomic fragments (<140 bp) in putative CNV loci. Each assay also included amplification of a control amplicon corresponding to FOXP2 at 7q31.1 for comparison. After optimization of primer sets with control genomic DNA using 'Brilliant® SYBR® Green QPCR Master Mix' (Stratagene), test samples were assayed in 15 μ l reaction mixtures in 96-well plates containing: 7.5 μ l of reaction mix, 1.8 μ l of primer, 6.0 ng of genomic DNA at 1.2 ng/ μ l, 0.225 μ l of reference dye with 1:500 dilution, and 0.475 μ l of water. PCR conditions consisted of 10 minutes of polymerase activation at 95° C., followed by 40 cycles of: 95° C. for 15 seconds and a single step at 60° C. for 1 minute for annealing and elongation. These steps were then followed by a final cycle of 95° C. for 1 minute, 55° C. for 30 seconds, and 95° C. for 30 seconds. Standard curve quantification was analyzed by MxPro-Mx3005P software (version 3.20 Build 340) to calculate copy number changes. Coefficient of variation (CV) was calculated on all sample Ct values to remove possible outlier when CV was greater than 1%. The average quantity of the putative CNV locus was divided by the average quantity

found to be: 90.3%, 4.5%, 4.5%, and 0.7%, European, European/mixed, Asian, or Yoruban, respectively.

[0052] To maximize CNV discovery, three calling algorithms were used as described above (see FIG. 1) and common results between them were merged to identify a 'full' dataset of 3389 independent CNVs (~8 CNVs per genome, mean size 390 kb) (see Table 4 below). To minimize potential false positives, a second dataset was generated whereby a CNV needed to be detected by two or more algorithms and/or on both the NspI or StyI microarrays (Pinto et al. Hum Mol Genet 2007; 16 Spec No 2:R168-73).

[0053] This 'stringent' dataset contained 1312 CNVs (~3 CNVs per genome, mean size 603 kb). Using q-PCR, 48% (12/26) and 96% (48/50) of random CNVs were validated in the full and stringent collections, respectively.

TABLE 4

	Sumn	nary of CNV	in ASD and	Controls		
	POP CONT	GEN TROLS		AUTISM PI	ROBANDS	
	All C	ONVs	All (CNVs	Autism	Specific ¹
	Full	Stringent ²	Full	Stringent ²	Full	Stringent ²
#samples	500	500	426	426	426	426
#CNVs	3695	1558	3389	1312	888	276
CNV/Genome ³	7.4	3.1	8.0	3.1	2.1	0.65
Mean/Median Size (kb)	315/151	470/224	390/162	603/219	518/121	1082/194
% Gain/Loss	59/41%	70/30%	58/42%	62/38%	61/39%	57/43%
Overlapping	3005/333	1226/142	2728/277	980/94	397/122	30/13
CNV/Loci (%) ⁴	(81%)	(78%)	(80%)	(74%)	(44%)	(11%)
>1Mb CNV (%)	343	250	339	212	63	32
	(9%)	(16%)	(10%)	(16%)	(7%)	(12%)

¹Not seen in controls.

²Stringent dataset as called by >1 algorithms or arrays. Analysis with dChip was performed in batches of ~100 probands. For CNAG version 2.0, the reference pool was set to include all samples and performed an automatic batch pairwise analysis using sex-matched controls. For GEMCA two designated DNA samples (NA10851 and NA15510) were used as references for pairwise comparison to all proband experiments. These results were further filtered by only including those CNVs that werecommon to both pairwise experiments. In all instances CNVs were merged if they were detected in the same individual by more than one algorithm using the outside probe boundaries.

³CNV/genome breakdown by algorithm: dChip Merged (3.0/genome), CNAG Merged (5.6/genome), GEMCA (5.5/genome). Validation experiments using q-PCR and FISH are described in the text. Another form of validation comes from examining the trios where we can demonstrate inheritance in 48 (maternal is 25, paternal is 23) of the autism-specific stringent dataset. Also from the trios, 148 confirmed regions (inheritance assignment) in the stringent dataset that overlap with controls (maternal is 65, paternal is 83).

⁴Represents the total number of overlapping and/or recurrent CNVs, the number of overlapping/CNV loci, and the percentage of overlapping CNVs, out of the total dataset.

tity of the control amplicon on FOXP2. Ratios of >1.4 and <0.7 were indicative of copy number gains and losses, respectively. Each putative CNV locus had at least two independent assays.

Results

Structural Variation Characteristics in ASD Cases

[0051] A total of 426 ASD index cases were tested for CNV content including 394 typical idiopathic cases and 32 others that were enrolled based on prior knowledge of having a cytogenetic abnormality. The Affymetrix 500k SNP array was used because it provided the highest resolution screen available for both SNP genotype and CNV data. Using the SNPs, the ancestry of each sample was categorized (to guide selection of controls). Backgrounds of the samples were

[0054] Five hundred European control samples were examined for their CNV content and similar numbers of CNVs (3695 in the full and 1558 in the stringent dataset) were found to those in the ASD cases (Table 4). This suggested germ-line chromosome instability was not a significant contributing mechanism. The ASD CNVs were then compared against the 500 European/Caucasian controls and the *Database of Genomic Variants* (a repository of structural variation in 'non-disease' populations) (lafrate et al. Nat Genet 2004; 36 (9):949-51) to establish autism-specific CNV datasets. The subsequent analysis then focused on the 276 CNVs in the stringent autism-specific category, which mapped across all 23 chromosomes (FIG. 2), details of which are found in Table 3, below. Additional ASD-relevant CNV data is also found in the other categories in Table 5 (discussed below).

TABLE 3

FAM ID (DNA)	Sex	Туре	Chr	start	stop	size	CNV	CNV Category
SK0215-006 (58449)	М	CHR	1	97,271,600	98,364,100	1,092,500	loss	CNVs confirmed de novo
SK0152-003 (41548L)	М	CHR	3	15,125,800	16,535,400	1,409,600	loss	CNVs confirmed de novo
SK0181-003 (52191)	Μ	CHR	3	65,286,300	70,633,200	5,346,900	loss	CNVs confirmed de novo
SK0205-004 (56242)	F	CHR	5	81,949	13,882,933	13,800,984	loss	CNVs confirmed de novo
SK0152-003 (41548L)	М	CHR	5	9,275,811	12,705,200	3,429,389	loss	CNVs confirmed de novo
SK0083-003 (50800L)	M	CHR	7	108,200,381	119,223,887	11,023,507	loss	CNVs confirmed de novo
SK0131-003 (39989)	F	CHR	7	113,335,000	128,821,721	15,486,722	loss	CNVs confirmed de novo
SK0262-003 (68609)	M	SPX	8	710,491	1,501,580	791,089	gain	CNVs confirmed de novo
SK0152-003 (41548L)	M	CHR	12	40,584,198	41,007,040	422,842	loss	CNVs confirmed de novo
SK0243 003 (57/88)	M	SPA CUP	12	60.601.300	73 800 800	18,218,001	gain	CNVs confirmed de novo
NA0067-000 (65344I)	M	SPY	15	87 800 503	88.066.260	265 668	loss	CNVs confirmed de novo
SK0218-003 (60340)	F	CHR	18	55 756 601	76 115 600	203,000	loss	CNVs confirmed de novo
MM0109-003 (46486)	F	SPX	20	60 949 339	62 377 000	1 427 662	ogin	CNVs confirmed de novo
SK0244-003 (69183)	M	SPX	21	42,974,148	43,328,084	353,936	gain	CNVs confirmed de novo
NA0039-000 (69736)	F	CHR	22	46,277,400	49,509,100	3,231,700	loss	CNVs confirmed de novo
MM0109-003 (46486)	F	SPX	22	49,243,247	49,519,949	276,703	loss	CNVs confirmed de novo
NA0097-000 (82361L)	F	CHR	Х	34,419	5,859,730	5,825,312	loss	CNVs confirmed de novo
SK0306-004 (78681)	F	SPX	Х	48,073,600	52,716,966	4,643,367	gain	CNVs confirmed de novo
SK0147-003 (47544L)	F	SPX	2	114,855,796	115,334,166	478,371	loss	CNVs Recurrent/Overlapping
SK0167-003 (60966L)	F	MPX	2	114,855,796	115,334,166	478,371	gain	CNVs Recurrent/Overlapping
SK0288-003 (75420)	F	SPX-MZ	2	115,141,880	115,247,000	105,121	gain	CNVs Recurrent/Overlapping
NA0030-000 (55240)	M	SPX	2	186,674,000	186,786,323	112,324	loss	CNVs Recurrent/Overlapping
SK0306-004 (78681)	F	SPX	2	186,674,000	186,771,130	97,131	loss	CNVs Recurrent/Overlapping
MM0220-003 (61180L)	M	MPX	6	118,799,000	119,117,000	318,001	gain	CNVs Recurrent/Overlapping
NA0025-000 (60490) SK0100 003 (54742)	M	SPA	07	118,823,011	154 478 000	293,990	gain	CNVs Recurrent/Overlapping
SK0190-003 (34742) SK0115 003 (40555)	M	SPA	7	152,098,000	153 372 000	274.001	gain	CNVs Recurrent/Overlapping
SK0058-003 (59963)	M	MPX	7	153,539,745	153,556,533	16 789	gain	CNVs Recurrent/Overlapping
SK0143-003 (36812)	M	SPX	8	53 481 200	53 766 400	285 201	gain	CNVs Recurrent/Overlapping
MM0236-004 (46475)	M	MPX	8	53 724 445	53 996 124	271 680	gain	CNVs Recurrent/Overlapping
SK0270-003 (71341)	M	SPX	9	7,725,280	7,764,180	38,900	loss	CNVs Recurrent/Overlapping
MM0103-003 (42387)	М	MPX	9	7,725,283	7,760,233	34,951	loss	CNVs Recurrent/Overlapping
MM0272-003 (45563)	М	MPX	11	40,285,800	40,548,738	262,939	loss	CNVs Recurrent/Overlapping
SK0167-003 (60966L)	F	MPX	11	40,417,554	40,610,400	192,847	loss	CNVs Recurrent/Overlapping
SK0023-003 (58096)	Μ	SPX	13	66,470,851	66,660,289	189,438	gain	CNVs Recurrent/Overlapping
MM0299-003 (51674)	F	MPX	13	66,487,899	66,660,300	172,402	gain	CNVs Recurrent/Overlapping
MM0109-003 (46486)	F	SPX	16	21,441,805	22,688,093	1,246,289	gain	CNVs Recurrent/Overlapping
MM0289-003 (42267)	F	MPX	16	21,808,808	22,611,363	802,556	loss	CNVs Recurrent/Overlapping
MM0088-003 (45562)	F	MPX	16	29,559,989	30,235,818	675,830	loss	CNVs Recurrent/Overlapping
NA0133-000 (78119L)	F	SPX	16	29,559,989	30,085,308	525,320	gain	CNVs Recurrent/Overlapping
SK0091-004 (46407)	F	MPX	22	17,265,500	21,546,762	4,281,262	gain	CNVs Recurrent/Overlapping
SK0323-003 (80022) SK0123 004 (60536L)	M	MPA	22	18,083,900	19,427,000	743,101 601 528	gain	CNVs Recurrent/Overlapping
MM0102 003 (47508)	M	MPX	22	47,717,500	40,310,020	80.380	laga	CNVs Recurrent/Overlapping
NA0002-000 (52026)	M	SPX	22	153 585 000	153 651 462	66 463	loss	CNVs Recurrent/Overlapping
NA0002-000 (32020)	141	SIA	'	155,565,000	155,051,402	00,405	1055	CNVs confirmed de novo
SK0073-003 (57283L)	F	CHR	15	18 376 200	30 298 800	11 922 600	gain	CNVs Recurrent/Overlapping/
2120072 002 (272002)	-	onne	10	10,070,200	50,250,000	11,922,000	Bun	CNVs confirmed de novo
SK0245-005 (68517)	М	CHR	15	18,427,100	30,298,847	11.871.747	gain	CNVs Recurrent/Overlapping/
× ,					, ,		0	CNVs confirmed de novo
SK0119-003 (35190)	М	MPX	22	17,014,900	19,786,200	2,771,300	loss	CNVs Recurrent/Overlapping/
								CNVs confirmed de novo
SK0297-003 (76066)	Μ	SPX-MZ	22	17,265,500	21,546,762	4,281,263	gain	CNVs Recurrent/Overlapping/
								CNVs confirmed de novo
MM0109-003 (46486)	F	SPX	17	40,555,289	41,089,766	534,478	loss	CNVs that are Singletons
MM0240-003 (43743)	F	MPX	17	40,555,289	41,128,323	573,035	loss	CNVs that are Singletons
NA0074-000 (63358)	M	SPX	1	41,463,611	41,924,314	460,704	gain	CNVs that are Singletons
SK0036-003 (29186)	F	SPX	1	57,936,233	58,514,629	578,396	gain	CNVs that are Singletons
MM0236-004 (46475)	M	MPX	1	60,369,200	61,426,300	1,057,101	gain	CNVs that are Singletons
MM0020-004 (47838)	M	MPX	1	65,649,086	65,/13,423	64,338	gain	CNVs that are Singletons
NA0076-000 (63624) SK0174 002 (642701)	M	SPA	1	91,930,260	92,330,344	400,078	gain	CNVs that are Singletons
SK01/4-003 (043/9L)	E IVI	CUP	1	148.005.537	100,240,265	1 451 026	ross	CNVs that are Singletons
MM0011-003 (60566L)	M	MPY	1	146,095,557	166.028.402	1,451,920	loss	CNVs that are Singletons
SK0132-003 (30661)	M	MPY	1	186 673 800	186 716 570	42 672	loss	CNVs that are Singletons
NA0109-000 (72873)	M	SPX	1	212 037 558	212 471 000	433 443	loss	CNVs that are Singletons
SK0183-004 (52217)	M	SPX	1	238,633 145	239,606 926	973 781	loss	CNVs that are Singletons
MM0219-003 (46823)	M	MPX	2	34,155,700	34,253,221	97.522	loss	CNVs that are Singletons
MM0295-003 (46488)	Μ	MPX	2	34,662,196	34,780,515	118,320	loss	CNVs that are Singletons
NA0083-000 (66104L)	M	SPX	$\overline{2}$	34,858,330	34,937,455	79,125	loss	CNVs that are Singletons
SK0270-003 (71341)	М	SPX	2	39,992,374	40,053,300	60,926	loss	CNVs that are Singletons
NA0055-000 (59448)	М	SPX	2	41,958,200	42,088,448	130,249	loss	CNVs that are Singletons
SK0301-003 (77203)	М	MPX	2	52,856,046	52,969,575	113,530	loss	CNVs that are Singletons

TABLE 3-continued

FAM ID (DNA)	Sex	Туре	Chr	start	stop	size	CNV	CNV Category
NA0027-000 (60421L)	М	MPX	2	121,623,000	121,684,915	61,915	loss	CNVs that are Singletons
NA0057-000 (59537)	М	SPX	2	125,496,832	125,890,571	393,740	loss	CNVs that are Singletons
MM0176-003 (62118L)	M	MPX	2	135,358,000	135,471,070	113,071	loss	CNVs that are Singletons
SK0225-003 (60921) SK0102 003 (54877)	M	SPX	2	155,849,451	155,988,560	139,109	loss	CNVs that are Singletons
NA0007-000 (50611)	M	SPX	2	195 170 000	195 217 247	47 248	gain	CNVs that are Singletons
SK0283-003 (72309)	F	CHR	3	5,365,506	5,409,964	44,458	loss	CNVs that are Singletons
MM0210-004 (47376)	М	MPX	3	7,957,390	8,250,541	293,151	gain	CNVs that are Singletons
NA0044-000 (57097)	М	SPX	3	35,613,300	35,928,200	314,901	gain	CNVs that are Singletons
SK0021-008 (51504)	M	MPX	3	36,110,965	36,215,909	104,945	loss	CNVs that are Singletons
MM0154-003 (56678L)	F	MPX	3	50,089,500	50,199,200	109,701	gain	CNVs that are Singletons
SK0152-003 (41548L) NA0044-000 (57097)	M	SPY	3	78,902,000 82,866,400	78,957,000 84 544 763	1 678 364	gain	CNVs that are Singletons
SK0023-003 (58096)	M	SPX	3	99 400 957	99 484 400	83 443	gain	CNVs that are Singletons
NA0018-000 (72622)	M	SPX	3	117.838.700	117,937.000	98,301	gain	CNVs that are Singletons
NA0003-000 (48474)	М	SPX	3	124,386,373	124,456,000	69,628	gain	CNVs that are Singletons
NA0090-000 (65410)	Μ	SPX	3	183,837,706	183,940,069	102,364	gain	CNVs that are Singletons
NA0044-000 (57097)	М	SPX	4	55,718,164	55,811,710	93,547	loss	CNVs that are Singletons
NA0016-000 (51524L)	F	SPX	4	114,333,509	114,416,051	82,542	loss	CNVs that are Singletons
SK0012-003 (38408L) SK0103 005 (42258)	M	SPA	4	152,993,000	153,381,007	388,008	gain	CNVs that are Singletons
NA0037-000 (69812)	M	SPX	4	179 692 000	179 865 679	173 680	gain	CNVs that are Singletons
MM0299-003 (51674)	F	MPX	4	181,968,784	182,095,665	126,882	loss	CNVs that are Singletons
SK0266-003 (68257)	М	SPX	4	183,466,000	183,517,000	51,000	loss	CNVs that are Singletons
SK0002-003 (50002)	F	CHR	5	14,940,400	15,179,500	239,100	gain	CNVs that are Singletons
NA0078-000 (63727)	Μ	MPX	5	25,125,371	25,450,672	325,302	gain	CNVs that are Singletons
NA0076-000 (63624)	M	SPX	5	37,409,881	37,778,834	368,953	gain	CNVs that are Singletons
SK0335-003 (72815) MM0142 004 (47286)	F M	CHR	5	38,534,384	38,807,002	272,619	loss	CNVs that are Singletons
NA0023-000 (60504L)	E IVI	SPY	5	113 104 916	113,178,000	73 084	loss	CNVs that are Singletons
SK0118-003 (52027)	M	SPX	5	122.834.399	123.029.036	194.638	loss	CNVs that are Singletons
SK0077-003 (48226)	M	SPX	5	128,968,799	129,433,000	464,201	gain	CNVs that are Singletons
SK0300-003 (77447)	М	CHR	6	4,200,904	4,416,471	215,568	loss	CNVs that are Singletons
MM0212-004 (62223L)	F	MPX	6	17,505,095	17,703,208	198,114	gain	CNVs that are Singletons
MM0300-003 (47836)	F	MPX	6	27,827,354	28,119,631	292,278	gain	CNVs that are Singletons
MM0225-004 (60826)	M	SDY	6	69,929,900	/0,2/8,043	348,144	gain	CNVs that are Singletons
SK0217-003 (39279) SK0326-003 (81155)	M	SPX	6	112,079,982	112,776,094	90,112 80 798	gain	CNVs that are Singletons
MM0088-003 (45562)	F	MPX	7	2.922.139	2.964.895	42,757	loss	CNVs that are Singletons
NA0147-000 (77123L)	M	SPX	7	3,946,854	4,002,686	55,833	loss	CNVs that are Singletons
SK0049-004 (59987L)	М	MPX	7	11,526,500	11,560,300	33,800	gain	CNVs that are Singletons
SK0132-003 (30661)	М	MPX	7	20,242,925	20,345,800	102,876	gain	CNVs that are Singletons
NA0145-000 (82058L)	M	SPX	7	47,742,927	48,775,200	1,032,274	loss	CNVs that are Singletons
SK0119-003 (35190)	M	MPX SDV	8	17,706,313	17,738,524	32,211	loss	CNVs that are Singletons
SK0202-003 (08009) SK0077-003 (48226)	M	SPX	8	42 971 601	43 820 300	848 699	gain	CNVs that are Singletons
SK0294-003 (76222)	M	SPX	8	73.762.894	73,798,241	35,348	gain	CNVs that are Singletons
SK0076-003 (38712)	F	SPX	8	83,989,256	84,141,278	152,022	gain	CNVs that are Singletons
MM0241-004 (45547)	М	MPX	8	87,230,811	87,498,988	268,178	gain	CNVs that are Singletons
MM0210-004 (47376)	М	MPX	8	104,166,572	104,947,190	780,618	gain	CNVs that are Singletons
SK0194-003 (55078)	M	SPX	8	123,539,127	123,644,422	105,296	loss	CNVs that are Singletons
SK0292-005 (75890) MM0007-003 (59978)	г	MPY	0	5 099 530	5 235 490	135 961	again	CNVs that are Singletons
MM0711-003 (63583L)	M	MPX	9	16 092 066	16 379 100	287.035	gain	CNVs that are Singletons
SK0015-003 (49932)	M	MPX	9	19,284,100	19,511,500	227,400	gain	CNVs that are Singletons
SK0015-003 (49932)	М	MPX	9	19,702,200	24,674,100	4,971,900	loss	CNVs that are Singletons
SK0278-003 (74431)	М	SPX	9	22,626,541	22,747,714	121,174	loss	CNVs that are Singletons
SK0148-005 (41350)	F	SPX	9	24,607,036	24,682,114	75,078	loss	CNVs that are Singletons
MM0020-004 (47838)	M	MPX	9	25,439,100	25,535,000	95,901	loss	CNVs that are Singletons
NA0105-000 (72085) NA0147-000 (771231)	M	SPA	9	33,034,330	33,294,800	240,465	gain	CNVs that are Singletons
SK0045-003 (58937)	M	MPX	9	109 446 000	109 837 000	391,013	gain	CNVs that are Singletons
MM0117-003 (59983)	M	MPX	10	2,313,505	2,407,102	93,598	loss	CNVs that are Singletons
MM0225-004 (60826)	М	MPX	10	4,976,040	5,124,511	148,472	gain	CNVs that are Singletons
MM1086-004 (76285)	М	MPX	10	31,256,118	31,604,509	348,392	loss	CNVs that are Singletons
MM0068-003 (60836)	М	MPX	10	68,139,200	68,246,027	106,828	loss	CNVs that are Singletons
NA0037-000 (69812)	М	SPX	10	104,641,000	104,786,777	145,778	loss	CNVs that are Singletons
5KU3UU-003 (77447)	M	CHR	11	0,845,440	0,899,830	54,391	loss	CNVs that are Singletons
MM0305-003 (47607)	M	ora MPX	11	55,159,190 68 053 777	55,402,070 68 204 900	502,881 151 123	gain	CNVs that are Singletons
NA0032-000 (55186)	M	SPX	11	76.114.600	76,140.500	25.900	gain	CNVs that are Singletons
MM0212-004 (62223L)	F	MPX	11	99,148,202	99,289,243	141,042	loss	CNVs that are Singletons
SK0167-003 (60966L)	F	MPX	11	101,131,785	101,246,901	115,117	loss	CNVs that are Singletons
MM0112-005 (46736)	М	MPX	11	116,789,980	116,855,347	65,368	gain	CNVs that are Singletons

TABLE 3-continued

FAM ID (DNA)	Sex	Туре	Chr	start	stop	size	CNV	CNV Category
MM0240-003 (43743)	F	MPX	11	117,452,000	117,539,000	87,001	gain	CNVs that are Singletons
SK0255-003 (68785)	М	SPX	11	124,303,460	124,719,976	416,517	gain	CNVs that are Singletons
NA0065-000 (62798L)	Μ	SPX	11	125,639,908	126,102,027	462,120	gain	CNVs that are Singletons
NA0172-000 (80993L)	М	SPX	12	3,727,911	3,879,230	151,320	loss	CNVs that are Singletons
SK0059-003 (29224)	М	SPX	12	10,431,082	10,445,300	14,218	gain	CNVs that are Singletons
SK0326-003 (81155)	М	SPX	12	46,170,200	46,365,774	195,575	gain	CNVs that are Singletons
SK0110-003 (24626)	M	SPX	12	50,520,400	50,573,516	53,116	gain	CNVs that are Singletons
NA0071-000 (64719L)	F	SPX	12	57,408,270	58,532,356	1,124,087	gain	CNVs that are Singletons
SK0305-003 (78621)	F	SPX	12	77,239,265	77,364,400	125,136	loss	CNVs that are Singletons
SK0301-003 (7/203)	M	MPX	12	83,388,935	83,428,800	39,866	gain	CNVs that are Singletons
NA0093-000 (66999)	M	SPX	12	96,496,784	96,568,500	/1,/16	loss	CNVs that are Singletons
MM0/11-003 (63583L)	M	MPX	12	96,576,486	96,639,686	63,201	loss	CNVs that are Singletons
NA0100 000 (73890)	г	SDY	12	110 646 607	110,580,000	152 204	gam	CNVs that are Singletons
MM0210-004 (47376)	M	SFA MPY	12	125 446 000	125 757 000	311.000	gain	CNVs that are Singletons
SK0079-003 (48388)	M	MPX	12	17 960 300	18 402 004	532 604	gain	CNVs that are Singletons
NA0028-000 (58891L)	M	SPX	13	62 91 5 91 2	62 977 748	61.837	loss	CNVs that are Singletons
SK0326-003 (81155)	M	SPX	13	89 726 966	90 1 34 219	407 254	gain	CNVs that are Singletons
NA0048-000 (58569)	M	SPX	13	93 288 520	93 344 600	56.081	gain	CNVs that are Singletons
SK0326-003 (81155)	M	SPX	13	93,497,400	93.732.931	235,532	gain	CNVs that are Singletons
SK0254-003 (68687)	М	SPX	13	105,172,000	105,357,000	185,000	gain	CNVs that are Singletons
SK0121-003 (41288)	М	SPX	14	76,007,842	76,924,400	916,558	gain	CNVs that are Singletons
SK0031-003 (68160L)	М	CHR	14	99,015,100	99,787,500	772,400	gain	CNVs that are Singletons
SK0300-003 (77447)	М	CHR	15	48,583,127	48,767,030	183,904	gain	CNVs that are Singletons
SK0326-003 (81155)	Μ	SPX	15	97,406,000	97,961,522	555,523	gain	CNVs that are Singletons
SK0281-003 (72934)	Μ	SPX	16	57,542,779	57,579,900	37,122	loss	CNVs that are Singletons
MM0310-005 (60951)	Μ	MPX	16	80,972,252	80,983,135	10,884	loss	CNVs that are Singletons
SK0203-004 (56040)	М	MPX	16	82,603,600	82,687,900	84,300	gain	CNVs that are Singletons
SK0085-004 (30422)	Μ	MPX	17	3,836,592	3,998,867	162,276	gain	CNVs that are Singletons
SK0298-003 (77697)	Μ	SPX	17	76,914,079	77,771,141	857,063	gain	CNVs that are Singletons
SK0328-003 (82302)	М	SPX	18	13,794,043	14,743,900	949,858	gain	CNVs that are Singletons
SK0303-003 (78391)	F	MPX	18	28,383,551	28,448,100	64,550	loss	CNVs that are Singletons
SK0014-003 (41606)	M	SPX	18	52,531,252	53,165,421	634,169	gain	CNVs that are Singletons
SK0121-003 (41288)	M	SPX	19	33,693,363	33,762,805	69,442	loss	CNVs that are Singletons
NA0111-000 (73891)	M	SPX	19	57,836,600	58,246,200	409,601	gain	CNVs that are Singletons
NA0004-000 (47490)	M	SPX	19	58,634,965	58,958,584	323,620	gain	CNVs that are Singletons
NA0070-000 (64249L)	F T	SPX	19	60,499,398	60,742,656	243,259	loss	CNVs that are Singletons
NA0110 000 (72165)	Г	SPA	19	61,910,800	62,644,900	/34,100	loss	CNVs that are Singletons
SK0232 003 (50838)	M	SFA MDV	19	63,050,550	63 771 100	288 100	ross	CNVs that are Singletons
MM0018-003 (59858)	M	MPY	20	11 319 093	11 424 900	105 808	loss	CNVs that are Singletons
SK0335-003 (72815)	F	CHR	20	14 955 730	15 011 214	55 485	loss	CNVs that are Singletons
SK0258-004 (67930)	Ŵ	SPX	20	45 468 000	45 673 300	205 300	ogin	CNVs that are Singletons
MM0126-003 (54581)	M	MPX	21	22,839,570	22,938,377	98,808	loss	CNVs that are Singletons
SK0118-003 (52027)	М	SPX	21	28,060,406	28,250,400	189,995	loss	CNVs that are Singletons
SK0186-004 (52964)	М	SPX	х	22,962,800	23,119,000	156,200	loss	CNVs that are Singletons
MM0087-003 (59962L)	М	MPX	Х	25,516,263	25,620,400	104,138	loss	CNVs that are Singletons
NA0100-000 (70601L)	Μ	SPX	Х	44,395,900	45,060,800	664,901	gain	CNVs that are Singletons
SK0087-003 (60692L)	F	MPX	Х	83,866,300	92,175,100	8,308,800	loss	CNVs that are Singletons
MM0020-004 (47838)	М	MPX	Х	87,452,050	87,595,200	143,151	gain	CNVs that are Singletons
SK0228-003 (62083)	М	SPX	Х	104,153,000	104,638,000	485,000	gain	CNVs that are Singletons
SK0088-003 (64798)	М	SPX	X	114,042,922	114,215,435	172,513	gain	CNVs that are Singletons
MM0087-003 (59962L)	M	MPX	X	130,406,000	130,695,499	289,500	gain	CNVs that are Singletons
NA0016-000 (51524L)	F	SPX	X	140,600,370	140,907,495	307,125	gain	CNVs that are Singletons
SK0234-003 (64340)	M	MPX	X	142,561,000	142,682,000	121,000	loss	CNVs that are Singletons
SK0320-003 (79449)	M	MPX	X	143,059,574	143,399,300	339,727	gain	CNVs that are Singletons
SK0123-004 (60536L)	M	MPX SDV	X	147,974,000	148,479,449	505,449	gain	CNVs that are Singletons
MM0140.003 (42382)	IVI M	SFA MDV	1	101.030.551	101 223 110	102,092	gain	CNVs that overlap the ACRD
SK0229 003 (62211)	M	SDY	1	242 451 000	243 113 480	192,300	gain	CNVs that overlap the ACRD
NA0016 000 (51524L)	E	SPY	1	242,451,000	243,113,489	120.044	gain	CNVs that overlap the ACRD
MM0063-003 (46687)	г Б	MPY	2	50 780 202	50 859 200	78 000	loss	CNVs that overlap the ACRD
SK0234-003 (64340)	M	MPX	2	54 171 783	54 345 700	173,917	agin	CNVs that overlap the ACRD
SK0188-003 (53664)	M	SPX	2	112.415 581	112,510,212	94 632	loss	CNVs that overlap the ACRD
MM0019-003 (42052)	M	MPX	2	201.286.000	201.317.066	31.067	loss	CNVs that overlap the ACRD
MM0296-003 (47829)	M	MPX	2	221,429.610	221,551.000	121.391	loss	CNVs that overlap the ACRD
NA0004-000 (47490)	M	SPX	2	235,797.267	236,239.000	441.734	gain	CNVs that overlap the ACRD
MM0068-003 (60836)	М	MPX	3	1,720,948	1,795,234	74,287	gain	CNVs that overlap the ACRD
NA0067-000 (65344L)	М	SPX	3	61,075,295	61,581,100	505,806	gain	CNVs that overlap the ACRD
MM0296-003 (47829)	М	MPX	4	328,851	542,862	214,012	gain	CNVs that overlap the ACRD
MM0228-004 (47602)	М	MPX	4	11,820,924	11,983,053	162,130	loss	CNVs that overlap the ACRD
NA0129-000 (77405)	М	SPX	4	38,109,899	38,349,444	239,546	gain	CNVs that overlap the ACRD
SK0188-003 (53664)	М	SPX	4	61,408,094	61,758,800	350,707	loss	CNVs that overlap the ACRD
SK0057-003 (40919)	М	SPX	4	74,105,700	74,464,300	358,600	gain	CNVs that overlap the ACRD

TABLE 3-continued

M0176-003 (62118L) M MPX 4 91,220,121 91,309,602 89,482 loss CNVs that overlap the ACRD SK0012-003 (S446k1) M SYX 4 163,387,402 163,362,655 973,524 gain CNVs that overlap the ACRD SK0166-003 (56775) M SYX 4 166,788,000 187,118,000 330,001 gain CNVs that overlap the ACRD SK0166-003 (56775) M MKW 4 188,215,500 123,313 gain CNVs that overlap the ACRD SK0186-003 (5664) MYX 5 13,332,010 72,7123 gain CNVs that overlap the ACRD NA0165-000 (80961) MYX 5 120,44,000 130,076 gain CNVs that overlap the ACRD NA0165-000 (80961) F MYX 5 120,44,000 130,076 gain CNVs that overlap the ACRD NA0165-000 (80961) F MYX 5 120,44,000 130,076 gain CNVs that overlap the ACRD NA0165-000 (80981) MYX 5 120,464,000 132,	FAM ID (DNA)	Sex	Туре	Chr	start	stop	size	CNV	CNV Category
SK012.003 (Sk46L) M SPX 4 162,387,402 163,326,555 975,254 gain CNVs that overlap the ACRD SK016-003 (S6773) M SPX 4 186,788,000 174,984,055 162,9441 gain CNVs that overlap the ACRD SK0076-003 (6001) M MYX 4 188,223,000 188,253,514 21,312,979 gain CNVs that overlap the ACRD SK008-003 (50601) M MYX 5 13,382,700 14,237,600 404,901 gain CNVs that overlap the ACRD NA0075-000 (6061) MYX 5 12,0443,920 12,037,200 727,032 gain CNVs that overlap the ACRD NA016-5004 (6062) MYX 5 12,0443,900 13,247,9400 gain CNVs that overlap the ACRD NA016-5004 (6082) MYX 5 12,0443,900 13,247,9400 gain CNVs that overlap the ACRD NA016-5004 (6082) MYX 5 12,0443,900 13,247,9401 gain CNVs that overlap the ACRD NA0016-7003 (40450) MYX 7	MM0176-003 (62118L)	М	MPX	4	91,220,121	91,309,602	89,482	loss	CNVs that overlap the ACRD
SK016-003 (S46KL) M SPX 4 173.2324.616 174.954.056 1,629.441 gain CNVs that overlap the ACRD SK016-003 (50910.1) M MPX 4 188.323.0567 190.154.000 1,923.434 gain CNVs that overlap the ACRD SK008-1003 (S0901.1) M MPX 4 190.172.765 191.356.043 1,133.279 gain CNVs that overlap the ACRD SK018-003 (S0801.1) M MYX 5 79.335.100 79.015.516 277.327 gain CNVs that overlap the ACRD SK016-7003 (609661.1) F MYX 5 120.964.000 130.076 gain CNVs that overlap the ACRD SK017-003 (609661.2) F MYX 5 120.964.000 130.470 gain CNVs that overlap the ACRD SK017-2003 (707.21) F SFX 6 77.622.920 77.673.922 Sin CNVs that overlap the ACRD SK017-2003 (707.21) F SFX 6 77.622.920 77.673.922 Sin CNVs that overlap the ACRD SK017-003 (6482.5) MYX	SK0012-003 (58468L)	Μ	SPX	4	162,387,402	163,362,655	975,254	gain	CNVs that overlap the ACRD
SK016+003 (36773) M SPX 4 186,788,000 17118,000 330,001 gain CNN that overlap the ACRD SK008+003 (508001) M CHR 4 188,322,000 182,321,41 21,315 gain CNN that overlap the ACRD SK018+003 (53664) M SYX 5 13,332,700 14,237,600 440,4901 gain CNN that overlap the ACRD NA0078-000 (69621) M SYX 5 89,445,869 90,172,900 72,7032 gain CNN that overlap the ACRD NA014-000 (802581) M SYX 5 120,446,000 130,075 gain CNN that overlap the ACRD SK0167-003 (672831) F CHR 5 132,614,940 93,000 gain CNN that overlap the ACRD SK0074-003 (46826) M MYX 6 93,647,800 95,813,100 93,000 gain CNN that overlap the ACRD SK0074-003 (46826) M MYX 6 93,647,800 95,813,100 93,000 gain CNN that overlap the ACRD	SK0012-003 (58468L)	Μ	SPX	4	173,324,616	174,954,056	1,629,441	gain	CNVs that overlap the ACRD
SK007+003 (60910L) M MPX 4 18.8230.567 19.0154,000 1,22,315 gain CNNs that overlap the ACRD SK0081-003 (50601) M MPX 4 190,172,765 191,316,043 1,132,217 gain CNNs that overlap the ACRD SK0188-003 (5064) MPX 5 13,332,100 19,613,516 277,322 gain CNNs that overlap the ACRD SK0167-003 (60966L) F MPX 5 120,964,000 121,095,213 gain CNNs that overlap the ACRD SK0017-003 (60966L) F MPX 5 134,426,000 135,191,001 93,000 gain CNNs that overlap the ACRD SK0077-003 (4721) F SPX 6 7,362,920 7,673,932 51,012 Gas CNNs that overlap the ACRD SK0077-003 (48226) MPX 6 93,687,480 92,581,104 19,2545 Gas CNNs that overlap the ACRD SK0077-003 (48255) M SPX 6 93,687,480 94,24419 gain CNNs that overlap the ACRD SK0016-003 (58875) </td <td>SK0166-003 (36773)</td> <td>Μ</td> <td>SPX</td> <td>4</td> <td>186,788,000</td> <td>187,118,000</td> <td>330,001</td> <td>gain</td> <td>CNVs that overlap the ACRD</td>	SK0166-003 (36773)	Μ	SPX	4	186,788,000	187,118,000	330,001	gain	CNVs that overlap the ACRD
SK008.003 (508001.) M CHR 4 188,232,000 188,232,314 21,315 gain CNNs that overlap the ACRD MM0019-003 (53664) M SPX 5 13,332,700 14,237,600 404,901 gain CNNs that overlap the ACRD NA0078-000 (6077) M MPX 5 73,335,100 19,213,214 gain CNNs that overlap the ACRD NA014-000 (61221.) M SPX 5 89,445,869 90,172,900 72,7032 gain CNNs that overlap the ACRD NA014-000 (641221.) M SPX 5 120,441,400 130,076 gain CNNs that overlap the ACRD SK0077-003 (72831.) F CHR 5 134,426,000 145,19,000 9,3000 gain CNNs that overlap the ACRD SK0074-003 (40450) M MPX 6 93,66,120 97,66,327 92,233 Isos CNNs that overlap the ACRD SK0014-003 (63851) M PX 7 108,857,049 108,972.52 240,471 Isos CNNs that overlap the ACRD SK014-004 (68250) M MPX 6 93,56,274 97,66,574	SK0074-003 (60910L)	Μ	MPX	4	188,230,567	190,154,000	1,923,434	gain	CNVs that overlap the ACRD
MM0019-003 (42052) M MPX 4 190,172,765 191,332,729 gain CNNs that overlap the ACRD NA0078-000 (63727) M MPX 5 79,336,190 79,613,516 277,327 loss CNNs that overlap the ACRD NA0018-000 (690661) F MPX 5 120,964,000 121,095,210 131,214 gain CNNs that overlap the ACRD NA0018-000 (690661) F MPX 5 120,964,000 121,095,210 131,214 gain CNNs that overlap the ACRD SK0075-003 (69261) M MPX 5 134,425,000 95,3001 gain CNNs that overlap the ACRD SK0077-003 (49226) M MPX 6 93,867,420 96,015,900 92,2419 gain CNNs that overlap the ACRD SK0077-003 (4926) M MPX 6 93,67,440 90,897,525 29,253 gain CNNs that overlap the ACRD SK0027-003 (61350) M SPX 7 18,357,049 96,878,80 79,440 isos CNNs that overlap the ACRD <	SK0083-003 (50800L)	Μ	CHR	4	188,232,000	188,253,314	21,315	gain	CNVs that overlap the ACRD
SK0188.003 (53664) M SPX 5 13,832,700 14,237,600 464,901 gain CNN that overlap the ACRD NA00174-000 (80757) M SPX 5 9,445,869 90,172,900 727,321 gain CNN that overlap the ACRD SK0167-030 (6096L) F MPX 5 120,443,925 120,443,925 121,574 Gain CNN that overlap the ACRD SK017-030 (67283L) F CHR 5 132,619,401 9,3000 gain CNN that overlap the ACRD SK0077-003 (47283L) F CHR 7,762,292 7,763,352 9,101 Soc CNN that overlap the ACRD SK0077-003 (48250) M MYX 6 9,566,274 97,665,827 92,253 Soc CNN that overlap the ACRD SK0026-003 (63875) M MYX 6 93,561,204 93,897,525 240,471 Soc CNN that overlap the ACRD SK026-003 (6300 MYX 8 89,598,561 89,678,800 79,840 Soc NN that overlap the ACRD SK0216-004 (63553) <td>MM0019-003 (42052)</td> <td>Μ</td> <td>MPX</td> <td>4</td> <td>190,172,765</td> <td>191,306,043</td> <td>1,133,279</td> <td>gain</td> <td>CNVs that overlap the ACRD</td>	MM0019-003 (42052)	Μ	MPX	4	190,172,765	191,306,043	1,133,279	gain	CNVs that overlap the ACRD
NA0078-000 (63727) M MPX 5 79,335,190 79,613,516 277,327 loss CNW stat overlap the ACRD SK0167-003 (690661.) F MPX 5 120,343,925 120,474,000 130,076 gain CNW stat overlap the ACRD MM0215-004 (47093) M MPX 5 132,619,400 132,732,003 112,574 loss CNW stat overlap the ACRD SK0075-003 (67231) F CHR 6 93,087,422 98,01100 4,904,419 gain CNW stat overlap the ACRD SK0077-003 (48226) MPX 6 93,687,422 98,011,004 4,924,419 gain CNW stat overlap the ACRD SK0087-003 (48256) MSY F 183,516,61 135,791,029 213,98 gain CNW stat overlap the ACRD SK0126-003 (58875) MYX F 118,462,717 118,679,189 216,473 loss CNW stat overlap the ACRD SK0212-004 (57601) MPX 9 29,578,508 92,418,800 410,100 loss CNW stat overlap the ACRD SK012-004	SK0188-003 (53664)	Μ	SPX	5	13,832,700	14,237,600	404,901	gain	CNVs that overlap the ACRD
NA0145-000 (82058L) M SYX 5 89,445,869 90,172,900 127,032 gain CNVs that overlap the ACRD NA0019-000 (64122L) M SYX 5 120,345,251 121,445,1000 130,214 gain CNVs that overlap the ACRD SK0077-003 (57283L) F CHR 5 134,426,000 134,519,000 gain CNVs that overlap the ACRD SK0077-003 (6422b) M MPX 6 73,622,200 76,733,321 51,011 Ios CNVs that overlap the ACRD SK0077-003 (4682b) M MPX 6 95,661,240 92,253 Ios CNVs that overlap the ACRD SK0077-003 (46450) M MPX 6 97,566,274 97,658,527 92,253 Ios CNVs that overlap the ACRD SK016/003 (6837) M SYX 7 108,570,491 108,571,932 216,473 Ios CNVs that overlap the ACRD SK012-004 (64553) M MPX 9 20,71,7801 29,218,800 79,840 Ios CNVs that overlap the ACRD	NA0078-000 (63727)	Μ	MPX	5	79,336,190	79,613,516	277,327	loss	CNVs that overlap the ACRD
SK0167-003 (60966L) F MPX 5 12:0;343:925 12:0;474;000 13:0;76 gain CNWs that overlap the ACRD MM0215-004 (47095) M MPX 5 13:2;619,430 13:2;732,003 11:2;574 loss CNWs that overlap the ACRD SK0072-003 (7211) F SFX 6 77,622,920 7,673,932 51,012 loss CNWs that overlap the ACRD SK0072-003 (60826) M MPX 6 93,687,482 98,011,900 4,924,441 gain CNWs that overlap the ACRD SK0071-003 (6826) M MPX 6 97,566,714 97,668,877 92,353 loss CNWs that overlap the ACRD SK0016-003 (58875) MSPX 7 108,357,049 108,597,1890 126,473 loss CNWs that overlap the ACRD SK0216-004 (57601) MPX 9 28,577,800 29,218,800 641,000 loss CNW that overlap the ACRD SK0116-003 (5207) MSYX 9 111,6528,741 116,612,329 83,546 loss CNW that overlap the ACRD	NA0145-000 (82058L)	Μ	SPX	5	89,445,869	90,172,900	727,032	gain	CNVs that overlap the ACRD
NA0019-000 (e41221) M SPX 5 120,964,000 121,095,213 131,214 gain CNVs that overlap the ACRD SK0073-003 (572831) F CHR 5 134,426,000 134,519,000 gain CNVs that overlap the ACRD SK0073-003 (672831) F CHR 5 134,426,000 153,101 L95,001 CNVs that overlap the ACRD SK0077-003 (40482) M MYX 6 95,461,000 95,813,01 L19,504 loss CNVs that overlap the ACRD SK0017-003 (40450) M MYX 6 95,461,000 95,813,01 L9,504 loss CNVs that overlap the ACRD SK0216-003 (5875) M MYX 7 108,597,525 240,477 loss CNVs that overlap the ACRD SK0212-004 (57601) MYX 9 27,378,00 29,218,800 79,440 loss CNVs that overlap the ACRD SK012-004 (31899) MYX 9 70,739,217 115,212,425 80,445 loss CNVs that overlap the ACRD SK012-004 (31899) MYX	SK0167-003 (60966L)	F	MPX	5	120,343,925	120,474,000	130,076	gain	CNVs that overlap the ACRD
MM0215-004 (47095) M MPX 5 132,619,430 132,732,003 112,574 loss CNVs that overlap the ACRD SK072-003 (70721) F SPX 6 77,622,920 77,673,932 51,012 loss CNVs that overlap the ACRD SK0077-003 (48226) M MPX 6 95,061,249 95,861,304 119,504 loss CNVs that overlap the ACRD SK0077-003 (48226) M MPX 6 95,661,249 97,658,527 2231 loss CNVs that overlap the ACRD SK0216-003 (58875) M SPX 7 108,357,049 106,579,189 216,477 loss CNVs that overlap the ACRD SK0226-003 (1640) MPX 8 89,598,961 89,678,800 79,840 loss CNVs that overlap the ACRD SK0110-004 (1550) MPX 9 116,52000 112,2142 S0,643 gain CNVs that overlap the ACRD SK012-004 (11899) MPX 9 116,52000 112,21425 S0,640 Gain CNVs that overlap the ACRD SK01	NA0019-000 (64122L)	М	SPX	5	120,964,000	121,095,213	131,214	gain	CNVs that overlap the ACRD
SK0072-003 (57283L) F CHR 5 134,425,000 134,519,000 93,000 gain CNVs that overlap the ACRD MM0225-004 (60826) M MPX 6 93,087,482 98,011,900 4,922,419 gain CNVs that overlap the ACRD SK0077-003 (40450) M MPX 6 95,66,274 97,658,527 92,233 loss CNVs that overlap the ACRD SK0216-003 (58875) M SPX 7 108,537,649 108,597,525 240,477 loss CNVs that overlap the ACRD SK0226-005 (61360) M SPX 7 118,627,17 118,679,189 216,473 loss CNVs that overlap the ACRD SK0212-004 (5761) M MPX 9 28,577,800 29,218,800 641,000 loss CNVs that overlap the ACRD SK012-004 (5761) M MPX 9 70,732,217 70,870,843 loss CNVs that overlap the ACRD SK012-004 (5189) M SPX 9 116,52,000 112,246,300 634,490 gain CNVs that overlap the	MM0215-004 (47095)	М	MPX	5	132,619,430	132,732,003	112,574	loss	CNVs that overlap the ACRD
SK0272-003 (0721) F SPX 6 77,672.922 77,673,932 51,012 loss CNVs that overlap the ACRD SK0077-003 (48226) M SPX 6 95,661.240 95,851.304 119,504 loss CNVs that overlap the ACRD SK0027-003 (48226) M SPX 6 95,662.249 97,658.257 224,1398 gain CNVs that overlap the ACRD SK0216-004 (69383) M SPX 7 108,370.499 108,571.552 240,477 loss CNVs that overlap the ACRD SK0216-0404 (45553) M MPX 8 95,98,671 18,679,189 216,6473 loss CNVs that overlap the ACRD SK0127-0404 (71182) M MPX 9 216,5200 112,21452 560,4634 gain CNVs that overlap the ACRD SK0127-0404 (1189) M SPX 9 116,522,000 112,21452 560,4644 gain CNVs that overlap the ACRD SK0120-040 (31899) M SPX 10 44,988,900 45,468,800 479,900 gain	SK0073-003 (57283L)	F	CHR	5	134,426,000	134,519,000	93,000	gain	CNVs that overlap the ACRD
MM0225-004 (60826) M MPX 6 93,087,482 98,011,900 4,924,419 jain CNVs that overlap the ACRD SK007F-003 (40450) M MPX 6 97,566,274 97,658,513,04 119,504 loss CNVs that overlap the ACRD SK0216-003 (58875) M SPX 7 108,357,049 108,507,525 240,477 loss CNVs that overlap the ACRD SK0216-003 (5160) M SPX 7 118,462,717 118,679,189 216,473 loss CNVs that overlap the ACRD SK0216-004 (57601) M MPX 9 28,577,800 29,218,800 641,000 loss CNVs that overlap the ACRD SK0120-004 (57601) M MPX 9 11,652,000 112,212,452 560,453 jain CNVs that overlap the ACRD SK0120-004 (31899) SPX 10 42,611,900 43,2663,00 654,400 jain CNVs that overlap the ACRD SK013-003 (3899) F CHR 10 123,285,00 13,604,999 320,000 gain CNVs tha	SK0272-003 (70721)	F	SPX	6	77,622,920	77,673,932	51,012	loss	CNVs that overlap the ACRD
SK0077-003 (48226) M SPX 6 95,461,800 95,581,304 119,504 Ioss CNVs that overlap the ACRD SK00216-003 (58875) M SPX 6 153,519,631 153,791,029 271,398 ioss CNVs that overlap the ACRD SK0216-003 (69383) M SPX 7 118,452,717 118,679,189 216,473 loss CNVs that overlap the ACRD SK0216-004 (45553) M MPX 8 89,598,661 89,678,800 79,840 loss CNVs that overlap the ACRD SK012-004 (57601) MPX 9 70,739,231 70,870,084 130,854 ioss CNVs that overlap the ACRD SK012-004 (31899) MPX 9 116,528,784 116,612,329 83,544 ioss CNVs that overlap the ACRD SK012-004 (31899) SPX 10 42,850,00 43,68,800 479,900 gain CNVs that overlap the ACRD SK012-004 (31899) SPX 10 122,850,104 128,552,091 91,018 gain CNVs that overlap the ACRD SK013-003	MM0225-004 (60826)	М	MPX	6	93,087,482	98,011,900	4,924,419	gain	CNVs that overlap the ACRD
SK0087-003 (40450) M MPX 6 97,566,274 97,658,27 92,253 loss CNVs that overlap the ACRD NA0061-000 (60383) M SPX 7 108,357,049 108,597,552 240,477 ioss CNVs that overlap the ACRD SK0216-003 (61360) M SPX 7 118,462,717 118,679,189 216,473 ioss CNVs that overlap the ACRD SK0210-004 (57601) M MPX 9 28,577,800 29,218,800 641,000 ioss CNVs that overlap the ACRD SK0110-004 (57601) M MPX 9 10,528,704 116,612,329 85,546 loss CNVs that overlap the ACRD SK0110-004 (31899) M SPX 10 42,611,900 43,265,000 36,0499 gain CNVs that overlap the ACRD SK0110-004 (31899) M SPX 10 42,611,900 43,265,000 36,0499 gain CNVs that overlap the ACRD SK0110-004 (31899) M SPX 10 42,611,900 43,663,000 654,400 gain	SK0077-003 (48226)	М	SPX	6	95,461,800	95,581,304	119,504	loss	CNVs that overlap the ACRD
SK0216-003 (58875) M SPX 6 153,519,631 153,751,029 271,398 gain CNVs that overlap the ACRD SK0226-005 (61360) M SPX 7 108,857,421 118,672,117 118,672,118 126,471 loss CNVs that overlap the ACRD SK0226-005 (61360) M MPX 9 28,577,800 29,218,800 641,000 loss CNVs that overlap the ACRD SK01210-004 (57601) M MPX 9 70,739,231 70,870,004 130,854 loss CNVs that overlap the ACRD SK0121-004 (31899) M SPX 10 42,261,300 43,266,300 654,400 gain CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 12,426,5400 138,079 gain CNVs that overlap the ACRD SK0131-003 (39989) F CHR 10 128,501,014 128,592,091 91,078 gain CNVs that overlap the ACRD SK0131-003 (60340) F CHR 10 133,644,999 320,000 gain CNVs that overlap the ACRD SK0131-003 (60340) F CHR 10	SK0087-003 (40450)	М	MPX	6	97,566,274	97,658,527	92,253	loss	CNVs that overlap the ACRD
NA0061-000 (60383) M SPX 7 108,357,049 108,597,252 240,477 loss CNVs that overlap the ACRD MM0218-004 (45553) M MPX 8 89,598,961 89,678,800 79,840 loss CNVs that overlap the ACRD SK0210-004 (57561) M MPX 9 70,739,231 70,790,204 loss CNVs that overlap the ACRD SK0118-003 (51027) M SPX 9 11,652,87,84 li6,612,329 83,546 loss CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 42,611,900 43,266,300 654,400 gain CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 112,267,330 112,405,408 138,079 gain CNVs that overlap the ACRD NA0139-000 (81816L) M SPX 10 112,850,1014 128,592,001 91,078 gain CNVs that overlap the ACRD NA0138-000 (81816L) M SPX 10 132,50,001 33,13,6459 92,3727 gain CNVs thato	SK0216-003 (58875)	М	SPX	6	153,519,631	153,791,029	271,398	gain	CNVs that overlap the ACRD
SK0226-005 (61360) M MPX 7 118,462,171 118,679,189 216,473 loss CNVs that overlap the ACRD SK0210-004 (57601) M MPX 9 28,577,800 29,218,800 641,000 loss CNVs that overlap the ACRD SK0118-003 (52027) M SPX 9 111,652,000 112,212,452 560,453 gain CNVs that overlap the ACRD SK0102-004 (31899) M SPX 9 116,528,784 116,612,329 83,546 loss CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 42,261,300 43,266,300 654,400 gain CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 112,807,301 112,405,408 138,079 gain CNVs that overlap the ACRD SK0113-003 (83989) F CHR 10 128,502,019 13,640,999 320,000 gain CNVs that overlap the ACRD SK0114-003 (60340) F CHR 12 1,760,084 1,852,412 92,328 loss CNVs that overlap the ACRD SK0328-003 (6678L) F MPX	NA0061-000 (60383)	М	SPX	7	108,357,049	108,597,525	240,477	loss	CNVs that overlap the ACRD
MM0218-004 (4553) M MPX 8 89,598,961 89,678,800 79,740 loss CNVs that overlap the ACRD SK0210-004 (57601) M MPX 9 70,739,231 70,870,084 130,854 loss CNVs that overlap the ACRD SK0118-003 (52027) M SPX 9 111,652,000 112,212,452 560,453 gain CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 42,611,900 45,468,800 479,900 gain CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 122,850,101 128,551,001 133,604,999 gain CNVs that overlap the ACRD SK0118-003 (823661) M SPX 10 133,285,000 133,604,999 320,000 gain CNVs that overlap the ACRD SK01218-003 (60340) F CHR 12 1,760,084 1852,412 92,328 loss CNVs that overlap the ACRD SK01218-003 (66341) F SPX 13 32,965,700 33,137,655 171,956 gain <td>SK0226-005 (61360)</td> <td>М</td> <td>SPX</td> <td>7</td> <td>118,462,717</td> <td>118,679,189</td> <td>216,473</td> <td>loss</td> <td>CNVs that overlap the ACRD</td>	SK0226-005 (61360)	М	SPX	7	118,462,717	118,679,189	216,473	loss	CNVs that overlap the ACRD
SK0210-004 (57601) M MPX 9 28,577,800 29,218,800 6641,000 loss CNVs that overlap the ACRD SK0118-003 (52027) M SPX 9 111,652,8784 116,612,329 83,546 loss CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 42,611,900 43,266,300 654,400 gain CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 44,261,900 43,266,300 654,400 gain CNVs that overlap the ACRD SK0112-004 (31899) M SPX 10 112,405,400 138,079 gain CNVs that overlap the ACRD SK0131-003 (39989) F CHR 10 128,501,014 128,524,12 92,328 loss CNVs that overlap the ACRD NA0113-000 (823661) M SPX 11 0,667,800 683,682 loss CNVs that overlap the ACRD NA0112-000 (76018L) F SPX 13 3,265,700 31,31,765 17,1956 gain CNVs that overlap the ACRD NA0117-000 (76018L) F SPX 13 10,380,767 <td< td=""><td>MM0218-004 (45553)</td><td>М</td><td>MPX</td><td>8</td><td>89,598,961</td><td>89,678,800</td><td>79,840</td><td>loss</td><td>CNVs that overlap the ACRD</td></td<>	MM0218-004 (45553)	М	MPX	8	89,598,961	89,678,800	79,840	loss	CNVs that overlap the ACRD
SK0273-003 (71182) M MPX 9 70,739,231 70,870,084 150,844 loss CNVs that overlap the ACRD SK0118-003 (52027) M SPX 9 11,652,003 654,400 gain CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 42,611,900 45,668,800 479,900 gain CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 112,267,330 112,405,408 138,007 gain CNVs that overlap the ACRD SK013-003 (39989) F CHR 10 128,501,014 128,552,001 9,000 gain CNVs that overlap the ACRD NA0138-000 (8136L) M SPX 10 133,285,000 133,604,999 320,000 gain CNVs that overlap the ACRD SK0128-003 (63040) F CHR 12 1,760,084 185,212 9,232 gain CNVs that overlap the ACRD SK0118-003 (56678L) F MPX 13 32,965,700 33,13,655 171,956 gain CNVs that overlap the A	SK0210-004 (57601)	М	MPX	9	28,577,800	29,218,800	641,000	loss	CNVs that overlap the ACRD
SK0118-003 (2027) M SPX 9 111,652,000 112,212,42,2 26,04,35 gain CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 42,611,900 43,266,300 654,400 gain CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 112,267,330 112,405,408 138,079 gain CNVs that overlap the ACRD SK0131-003 (39989) F CHR 10 128,501,014 128,592,091 91,078 gain CNVs that overlap the ACRD NA0138-000 (818161.) M SPX 10 122,67,330 112,405,408 138,079 gain CNVs that overlap the ACRD NA0125-000 (823661.) M SPX 11 9,984,119 10,667,800 683,682 loss CNVs that overlap the ACRD NA0122-000 (760181.) F SPX 13 32,965,700 33,137,655 171,956 gain CNVs that overlap the ACRD NA0122-000 (760181.) F MPX 13 103,896,769 103,930,492 33,724 loss CNVs that overlap the ACRD SK0328-003 (82302.) M <	SK0273-003 (71182)	M	MPX	9	70,739,231	70,870,084	130,854	loss	CNVs that overlap the ACRD
NA0066-000 (64119L) M SPX 9 116,528,784 116,612,329 85,346 loss CNVs that overlap the ACRD SK0102-004 (31899) M SPX 10 42,611,900 43,266,300 654,400 gain CNVs that overlap the ACRD SK0112-004 (31899) M SPX 10 112,267,330 112,405,408 180,079 gain CNVs that overlap the ACRD SK0131-003 (39989) F CHR 10 128,501,014 128,520,091 91,078 gain CNVs that overlap the ACRD NA0113-000 (81816L) M SPX 10 132,850,00 133,604,999 gain CNVs that overlap the ACRD NA0112-000 (75018L) F SPX 13 32,965,700 33,137,655 171,956 gain CNVs that overlap the ACRD MM0154-003 (66678L) F MPX 13 54,651,953 55,025,229 373,277 gain CNVs that overlap the ACRD SK0320-003 (64284) MPX 13 13,361,751 113,361,741 loss CNVs that overlap the ACRD SK0320-003 (64848) MPX 14 42,537,581 45,653,418	SK0118-003 (52027)	М	SPX	9	111,652,000	112,212,452	560,453	gain	CNVs that overlap the ACRD
SK0102-004 (31899) M SPX 10 42,261,900 43,266,300 654,400 gain CNvs that overlap the ACRD SK0102-004 (31899) M SPX 10 112,267,330 112,405,408 138,079 gain CNvs that overlap the ACRD SK0131-003 (39989) F CHR 10 128,501,014 128,592,091 91,078 gain CNvs that overlap the ACRD NA0113-000 (81816L) M SPX 10 133,285,000 133,049,993 20,000 gain CNvs that overlap the ACRD SK0121-000 (76018L) F SPX 13 32,965,700 33,17,655 171,956 gain CNvs that overlap the ACRD NA0112-000 (76018L) F SPX 13 32,965,700 33,17,655 171,956 gain CNvs that overlap the ACRD SK0328-003 (82302) M SPX 13 133,386,769 103,90,492 33,724 loss CNvs that overlap the ACRD SK0328-003 (82612) M MPX 14 42,022,226 62,210,026 187,741 loss CNvs that overlap the ACRD SK0320-003 (79449) M MPX <td>NA0066-000 (64119L)</td> <td>M</td> <td>SPX</td> <td>9</td> <td>116,528,784</td> <td>116,612,329</td> <td>83,546</td> <td>loss</td> <td>CNVs that overlap the ACRD</td>	NA0066-000 (64119L)	M	SPX	9	116,528,784	116,612,329	83,546	loss	CNVs that overlap the ACRD
Sk0102-004 (31899) M SPX 10 44,988,900 43,468,800 479,900 gain CNvs that overlap the ACRD Sk0131-003 (39989) F CHR 10 128,501,014 128,592,091 91,078 gain CNvs that overlap the ACRD NA0133-000 (81816L) M SPX 10 133,285,000 133,604,999 320,000 gain CNvs that overlap the ACRD Sk0218-003 (60340) F CHR 12 1,760,084 1,852,412 92,328 loss CNvs that overlap the ACRD NA0112-000 (76018L) F SPX 13 32,965,700 33,137,655 171,956 gain CNvs that overlap the ACRD NA0112-000 (76018L) F MPX 13 54,651,953 55,025,229 373,277 gain CNvs that overlap the ACRD SK0328-003 (82302) M SPX 14 42,022,286 42,210,026 187,741 loss CNvs that overlap the ACRD SK0305-004 (78621) F MPX 14 45,537,81 45,653,418 115,838 loss CNvs that overlap the ACRD SK03020-03 (79449) M MPX	SK0102-004 (31899)	M	SPX	10	42,611,900	43,266,300	654,400	gain	CNVs that overlap the ACRD
NA0109-000 (7287) M SPX 10 112,267,330 112,405,408 138,079 gain CNVs that overlap the ACRD SK0131-003 (39989) F CHR 10 128,501014 128,592,091 91,078 gain CNVs that overlap the ACRD NA0113-000 (82366L) M SPX 11 9,984,119 10,667,800 683,682 loss CNVs that overlap the ACRD SK0218-003 (60340) F CHR 12 1,760,084 1,852,412 92,328 loss CNVs that overlap the ACRD NA0112-000 (76018L) F SPX 13 32,965,700 33,137,655 171,956 gain CNVs that overlap the ACRD NM0154-003 (56678L) F MPX 13 54,651,953 55,025,229 33,724 loss CNVs that overlap the ACRD SK0328-003 (82302) M SPX 13 103,896,769 103,930,492 33,724 loss CNVs that overlap the ACRD SK0320-003 (76448) M MPX 14 42,512,286 42,210,026 187,741 loss CNVs that overlap the ACRD SK0320-003 (76449) M MPX	SK0102-004 (31899)	M	SPX	10	44,988,900	45,468,800	479,900	gain	CNVs that overlap the ACRD
Sk0131-000 (3999) F CHR 10 128,501,014 128,592,091 91,018 gain CNVs that overlap the ACRD NA0138-000 (81816L) M SPX 11 9,984,119 10,667,800 683,682 loss CNVs that overlap the ACRD SK0218-003 (60340) F CHR 12 1,760,084 1,852,412 92,328 loss CNVs that overlap the ACRD NA0122-000 (76018L) F SPX 13 32,965,700 33,17,655 171,956 gain CNVs that overlap the ACRD NA0117-000 (73621) M SPX 13 42,511,458 42,599,200 87,743 gain CNVs that overlap the ACRD SK0328-003 (82302) M SPX 13 103,866,769 103,930,492 33,727 gain CNVs that overlap the ACRD SK0325-003 (846488) M MPX 13 113,61,712 113,646,000 284,289 gain CNVs that overlap the ACRD SK0325-004 (78621) F SPX 14 45,537,581 45,534,148 115,838 loss CNVs that overlap the ACRD MM0125-004 (60826) M MPX	NA0109-000 (72873)	M	SPA	10	112,267,330	112,405,408	138,079	gain	CNVs that overlap the ACRD
NA0113-000 (81361) M SPX 10 153,283,000 10,067,800 683,682 loss CNVs that overlap the ACRD SK0218-003 (60340) F CHR 12 1,760,084 1,852,412 92,328 loss CNVs that overlap the ACRD NA0113-000 (73621) M SPX 13 32,965,700 33,137,655 171,956 gain CNVs that overlap the ACRD NM0154-003 (56678L) F MPX 13 54,651,953 55,022,229 373,277 gain CNVs that overlap the ACRD SK0328-003 (82302) M SPX 13 103,896,769 103,930,492 33,724 loss CNVs that overlap the ACRD SK0305-004 (78621) F SPX 14 42,022,286 42,210,026 187,741 loss CNVs that overlap the ACRD SK0305-004 (78621) F SPX 14 45,537,581 45,653,418 115,838 loss CNVs that overlap the ACRD SK0305-004 (6826) M MPX 14 83,373,278 83,435,200 19,23 gain CNVs that overlap the ACRD NA0064-000 (63581L) M SPX	SK0131-003 (39989)	F	CHR	10	128,501,014	128,592,091	91,078	gain	CNVs that overlap the ACRD
NA0113-000 (82306L) M SPA 11 9,984,119 10,067,800 663,062 1088 CNVs that overlap the ACRD SK0218-003 (60340) F CHR 12 1,760,084 1,852,412 9,2328 loss CNVs that overlap the ACRD NA0117-000 (73621) M SPX 13 32,965,700 33,137,655 171,956 gain CNVs that overlap the ACRD SK0328-003 (82302) M SPX 13 54,651,953 55,025,229 373,277 gain CNVs that overlap the ACRD SK0328-003 (82302) M SPX 13 103,896,769 103,930,492 33,724 loss CNVs that overlap the ACRD SK0320-003 (78448) M MPX 14 42,022,286 42,210,026 187,741 loss CNVs that overlap the ACRD SK0320-003 (79449) M MPX 14 45,537,581 45,653,418 l15,838 loss CNVs that overlap the ACRD MM0154-003 (56678L) F MPX 14 106,223,861 lo6,356,422 l32,622 gain CNVs that overlap the ACRD MM0256-004 (46991) M MPX	NA0138-000 (81816L)	M	SPA	10	133,285,000	133,604,999	320,000	gain	CNVs that overlap the ACRD
SK012+005 (00940) F CHR 12 1,700,084 1,352,412 92,528 1088 CNVs that overlap the ACRD NA0122+000 (75018L) F SPX 13 32,965,700 33,137,655 171,956 gain CNVs that overlap the ACRD NM0154-003 (56678L) F MPX 13 54,651,953 55,022,229 373,277 gain CNVs that overlap the ACRD SK0328-003 (82302) M SPX 13 103,896,769 103,930,492 33,724 loss CNVs that overlap the ACRD SK0325-004 (46488) M MPX 14 42,022,286 42,210,026 187,741 loss CNVs that overlap the ACRD SK0320-003 (78449) MPX 14 45,537,581 45,541.8 113,846,000 284,289 gain CNVs that overlap the ACRD MM0154-003 (56678L) F MPX 14 106,223,861 106,356,482 13,26,22 gain CNVs that overlap the ACRD MM0256-004 (46991) M MPX 15 87,973,421 83,615,607 1,058,276 loss CNVs that overlap the ACRD NA0063-000 (60351) M <td< td=""><td>NAU113-000 (82366L)</td><td>M</td><td>SPA</td><td>11</td><td>9,984,119</td><td>10,007,800</td><td>083,082</td><td>loss</td><td>CNVs that overlap the ACRD</td></td<>	NAU113-000 (82366L)	M	SPA	11	9,984,119	10,007,800	083,082	loss	CNVs that overlap the ACRD
NA0112-000 (73621) F SPX 13 32,953,700 35,17,033 117,956 gain CNVs that overlap the ACRD MM0154-003 (56678L) F MPX 13 54,651,953 55,025,229 373,277 gain CNVs that overlap the ACRD SK0328-003 (82302) M SPX 13 103,896,769 103,990,492 33,724 loss CNVs that overlap the ACRD SK0305-004 (78621) F SPX 14 42,022,286 42,210,026 187,741 loss CNVs that overlap the ACRD SK0305-004 (6826) M MPX 14 45,537,581 45,653,418 115,838 loss CNVs that overlap the ACRD SK0305-004 (6826) M MPX 14 45,537,581 45,653,418 115,838 loss CNVs that overlap the ACRD NM0154-003 (56678L) F MPX 14 83,373,278 83,435,200 61,923 gain CNVs that overlap the ACRD NA0064-000 (63582L) M SPX 15 82,573,421 83,631,697 1,508,276 loss CNVs that overlap the ACRD NA0063-000 (60351) M SPX	NA0122 000 (76018L)	Г	CHK	12	1,760,084	1,832,412	92,328	loss	CNVs that overlap the ACRD
NA0117-000 (36678L) M SFA 13 42,511,436 42,512,436 42,512,436 gain CNVs that overlap the ACRD SK0328-003 (82302) M SPX 13 103,896,769 103,930,492 33,724 loss CNVs that overlap the ACRD SK0328-003 (82302) M SPX 13 103,896,769 103,930,492 33,724 loss CNVs that overlap the ACRD SK0300-004 (78621) F SPX 14 42,022,286 42,210,026 187,741 loss CNVs that overlap the ACRD SK0320-004 (78621) M MPX 14 83,373,278 83,435,200 61,923 gain CNVs that overlap the ACRD MM0154-003 (56678L) F MPX 14 106,223,861 106,356,482 132,622 gain CNVs that overlap the ACRD NA0064-000 (63582L) M SPX 15 87,922,400 87,93,909 71,510 gain CNVs that overlap the ACRD NA0063-000 (76314L) M SPX 16 6,813,789 6,898,849 85,060 loss CNVs that overlap the ACRD NA0095-000 (75414L) M SPX <td>NA0122-000 (70018L)</td> <td>Г</td> <td>SPA</td> <td>13</td> <td>32,903,700</td> <td>42 500 200</td> <td>171,930</td> <td>gain</td> <td>CNVs that overlap the ACRD</td>	NA0122-000 (70018L)	Г	SPA	13	32,903,700	42 500 200	171,930	gain	CNVs that overlap the ACRD
Mini 134-003 (80078L) F Min X 13 134,011,934 133,936,769 133,930,492 33,724 Joss CNVs that overlap the ACRD SK0328-003 (82302) M MPX 13 103,896,769 103,930,492 33,724 Joss CNVs that overlap the ACRD SK0328-003 (82302) M MPX 13 103,896,769 103,930,492 33,724 Joss CNVs that overlap the ACRD SK0328-003 (78621) F SPX 14 42,022,286 42,210,026 187,741 Joss CNVs that overlap the ACRD MM0225-004 (60826) M MPX 14 83,373,278 83,435,200 61,923 gain CNVs that overlap the ACRD NA0064-000 (63582L) M SPX 15 82,573,421 83,631,697 1,058,276 Joss CNVs that overlap the ACRD NA0063-000 (60351) M MPX 15 87,224,400 87,993,909 71,510 gain CNVs that overlap the ACRD NA0063-000 (60351) M SPX 16 74,576,356 74,613,000 36,645 Joss CNVs that overlap the ACRD SK012-003 (75414L)	MM0154 003 (56678L)	E	SFA MDV	13	54 651 053	42,399,200	373 777	gain	CNVs that overlap the ACRD
SK0322-003 (6420) M SYA 13 105,850,709 105,950,492 35,724 10ss CNVs that overlap the ACRD SK0305-004 (78621) F SPX 14 42,022,286 42,210,026 187,741 loss CNVs that overlap the ACRD SK0305-004 (78621) F SPX 14 42,022,286 42,210,026 187,741 loss CNVs that overlap the ACRD MM0225-004 (60826) M MPX 14 83,373,278 83,435,200 61,923 gain CNVs that overlap the ACRD NA0064-000 (63582L) M SPX 15 82,573,421 83,631,697 1,058,276 loss CNVs that overlap the ACRD NA0064-000 (63582L) M SPX 15 87,922,400 87,993,909 71,510 gain CNVs that overlap the ACRD NA0063-000 (60351) M SPX 16 6,813,789 6,898,849 85,060 loss CNVs that overlap the ACRD NA0095-000 (75414L) M SPX 16 73,367,02 259,400 loss CNVs that overlap the ACRD SK012-003 (4546L) M SPX 16 74,	SEC328 003 (82302)	г	SDY	13	102 806 760	102 020 402	373,277	gam	CNVs that overlap the ACRD
Min 22-5003 (6048) M Mi X 13 113,501,712 113,600,000 264,269 gain CNVs that overlap the ACRD SK0305-004 (78621) F SPX 14 42,022,286 42,210,026 187,741 loss CNVs that overlap the ACRD SK0305-004 (60826) M MPX 14 45,537,581 45,653,418 115,838 loss CNVs that overlap the ACRD MM0154-003 (56678L) F MPX 14 83,373,278 83,435,200 61,923 gain CNVs that overlap the ACRD NA0064-000 (63582L) M SPX 15 82,573,421 83,631,697 1,058,276 loss CNVs that overlap the ACRD NM0256-004 (46991) M MPX 15 87,924,200 87,993,909 71,510 gain CNVs that overlap the ACRD NA0063-000 (60351) M SPX 16 78,397,667 73,657,067 259,400 loss CNVs that overlap the ACRD SK012-003 (58468L) M SPX 16 74,576,356 74,613,000 36,645 loss CNVs that overlap the ACRD SK012-003 (58468L) M SPX	MM0205_003 (46488)	M	MDY	13	113 361 712	113 646 000	284 280	ross	CNVs that overlap the ACRD
SK0350-004 (10021) 1 SIX 14 42,022,006 167,141 1083 CNVs that overlap the ACRD SK0320-003 (79449) M MPX 14 83,373,278 83,435,200 61,923 gain CNVs that overlap the ACRD MM0154-003 (56678L) F MPX 14 106,223,861 106,356,482 132,622 gain CNVs that overlap the ACRD NA0064-000 (63582L) M SPX 15 82,573,421 83,631,697 1,058,276 loss CNVs that overlap the ACRD MM0256-004 (46991) M MPX 15 87,922,400 87,993,909 71,510 gain CNVs that overlap the ACRD NA0063-000 (60351) M SPX 16 73,397,667 73,657,067 259,400 loss CNVs that overlap the ACRD NA0083-000 (60351) M SPX 16 74,576,356 74,613,000 36,645 loss CNVs that overlap the ACRD SK0120-003 (58468L) M SPX 16 74,576,356 74,613,000 36,645 loss CNVs that overlap the ACRD SK0120-003 (58468L) M SPX 18 <	SK0305-004 (78621)	E	SPY	14	42 022 286	42 210 026	187 741	loss	CNVs that overlap the ACRD
Discolor 050 (057-07) M Mix 14 40,953,101 41,953,1201 119,953,100 119,953,100 119,953,100 119,953,100 119,953,100 119,953,100 119,953,	SK0320-003 (79449)	M	MPX	14	45 537 581	45 653 418	115.838	loss	CNVs that overlap the ACRD
MM0122-004 (3652) M M H 14 106,23,210 16,723 16,723 16,724 16,724 17 17 17 17,724 17,725 17,724 17,725 <th< td=""><td>MM0225-004 (60826)</td><td>M</td><td>MPY</td><td>14</td><td>83 373 278</td><td>83,435,200</td><td>61 023</td><td>agin</td><td>CNVs that overlap the ACRD</td></th<>	MM0225-004 (60826)	M	MPY	14	83 373 278	83,435,200	61 023	agin	CNVs that overlap the ACRD
MA0064-000 (63582L)MSPX1582,573,42183,631,6971,058,276lossCNVs that overlap the ACRDMM0256-004 (46991)MMPX1587,922,40087,993,90971,510gainCNVs that overlap the ACRDSK0266-003 (68257)MSPX166,813,7896,898,84985,060lossCNVs that overlap the ACRDNA0063-000 (60351)MSPX1673,397,66773,677,067259,400lossCNVs that overlap the ACRDNA0095-000 (75414L)MSPX1674,576,35674,613,00036,645lossCNVs that overlap the ACRDSK012-003 (58468L)MSPX1827,565,03227,781,900216,869gainCNVs that overlap the ACRDSK012-003 (41548L)MCHR1832,174,06132,990,975816,914lossCNVs that overlap the ACRDSK0147-003 (47544L)FSPX1846,101,84146,218,000116,160gainCNVs that overlap the ACRDSK0034-003 (78063)MSPX1869,230,58448,124lossCNVs that overlap the ACRDSK0023-003 (58096)MSPX1869,230,58448,124lossCNVs that overlap the ACRDSK0233-003 (72309)FCHR444,762,99644,878,50495,508gainCNVs that overlap the ACRDSK0233-003 (647372)MMPX444,773,36744,846,80073,434gainCNVs that overlap the ACRDSK0012-003 (46486) <td>MM0154-003 (56678L)</td> <td>F</td> <td>MPX</td> <td>14</td> <td>106 223 861</td> <td>106 356 482</td> <td>132 622</td> <td>gain</td> <td>CNVs that overlap the ACRD</td>	MM0154-003 (56678L)	F	MPX	14	106 223 861	106 356 482	132 622	gain	CNVs that overlap the ACRD
MM0256-004 (46991)MMPX1587,922,40087,993,90971,510gainCNVs that overlap the ACRDSK0266-003 (68257)MSPX166,813,7896,898,84985,060lossCNVs that overlap the ACRDNA0063-000 (60351)MSPX1673,397,66773,657,067259,400lossCNVs that overlap the ACRDNA0095-000 (75414L)MSPX1674,576,35674,613,00036,645lossCNVs that overlap the ACRDSK012-003 (58468L)MSPX1827,556,33227,781,900216,869gainCNVs that overlap the ACRDSK012-003 (58468L)MSPX1832,174,06132,990,975816,914lossCNVs that overlap the ACRDSK0147-003 (47544L)FSPX1837,509,55637,950,450440,895gainCNVs that overlap the ACRDSK0024-003 (78063)MSPX1869,282,46169,330,58448,124lossCNVs that overlap the ACRDSK0023-003 (58096)MSPX2146,497,67546,678,820181,145gainCNVs that overlap the ACRDSK0023-003 (72309)FCHR444,762,99644,888,50495,508gainCNVs that overlap the ACRDSK0023-003 (64372)MMPX444,773,36744,846,80073,433gainCNVs that overlap the ACRDNA0030-000 (66999)MSPX4189,583,747189,825,000286,254gainCNVs that overlap the ACRD <td>NA0064-000 (63582L)</td> <td>Ŵ</td> <td>SPX</td> <td>15</td> <td>82,573,421</td> <td>83.631.697</td> <td>1.058.276</td> <td>loss</td> <td>CNVs that overlap the ACRD</td>	NA0064-000 (63582L)	Ŵ	SPX	15	82,573,421	83.631.697	1.058.276	loss	CNVs that overlap the ACRD
SK0266-003 (68257)MSPX166,813,7896,898,84985,060lossCNVs that overlap the ACRDNA0063-000 (60351)MSPX1673,397,66773,657,067259,400lossCNVs that overlap the ACRDNA0095-000 (75414L)MSPX1674,576,35674,613,00036,645lossCNVs that overlap the ACRDSK0264-003 (72687)FSPX1728,985,30029,960,700975,400gainCNVs that overlap the ACRDSK012-003 (58468L)MSPX1827,565,03227,781,900216,869gainCNVs that overlap the ACRDSK0147-003 (47544L)FSPX1837,509,55637,950,450440,895gainCNVs that overlap the ACRDSK0023-003 (58069)MSPX1869,282,46169,330,58448,124lossCNVs that overlap the ACRDNA0138-000 (81816L)MSPX1869,282,46169,330,58448,124lossCNVs that overlap the ACRDNA0112-000 (72340)MSPXX38,250,33138,371,333121,003gainCNVs that overlap the ACRDNA0003-003 (66999)MSPX444,773,36744,846,80073,434gainCNVs that overlap the ACRDNA0030-003 (646466)FSPX4189,583,747189,825,000286,254gainCNVs that overlap the ACRDSK0112-003 (46100)MMPX4189,580,553190,228,000647,447gainCNVs that overlap the ACR	MM0256-004 (46991)	M	MPX	15	87,922,400	87.993.909	71,510	gain	CNVs that overlap the ACRD
NA0063-000 (60351) M SPX 16 73,397,667 73,657,067 259,400 loss CNVs that overlap the ACRD NA0095-000 (75414L) M SPX 16 74,576,356 74,613,000 36,645 loss CNVs that overlap the ACRD SK0284-003 (72687) F SPX 17 28,985,300 29,960,700 975,400 gain CNVs that overlap the ACRD SK012-003 (58468L) M SPX 18 27,565,032 27,781,900 216,869 gain CNVs that overlap the ACRD SK012-003 (41548L) M CHR 18 32,174,061 32,990,975 816,914 loss CNVs that overlap the ACRD SK0132-003 (41548L) F SPX 18 37,509,556 37,950,450 440,895 gain CNVs that overlap the ACRD SK01304-003 (78063) M SPX 18 69,282,461 64,376,67 46,678,820 181,145 gain CNVs that overlap the ACRD NA0138-000 (75340) M SPX 18 69,282,461 64,678,820 181,145<	SK0266-003 (68257)	M	SPX	16	6.813.789	6.898.849	85.060	loss	CNVs that overlap the ACRD
NA0095-000 (75414L) M SPX 16 74,576,356 74,613,000 36,645 loss CNVs that overlap the ACRD SK0284-003 (72687) F SPX 17 28,985,300 29,960,700 975,400 gain CNVs that overlap the ACRD SK0012-003 (58468L) M SPX 18 27,565,032 27,781,900 216,869 gain CNVs that overlap the ACRD SK012-003 (41544L) M CHR 18 32,174,061 32,990,975 816,914 loss CNVs that overlap the ACRD SK0147-003 (47544L) F SPX 18 37,509,556 37,950,450 440,895 gain CNVs that overlap the ACRD SK0304-003 (78063) M SPX 18 69,282,461 69,330,584 48,124 loss CNVs that overlap the ACRD SK0023-003 (58096) M SPX 18 69,282,461 69,330,584 48,124 loss CNVs that overlap the ACRD SK023-003 (58096) M SPX 18 69,282,461 69,330,584 48,124 loss	NA0063-000 (60351)	M	SPX	16	73.397.667	73.657.067	259,400	loss	CNVs that overlap the ACRD
SK0284-003 (72687) F SPX 17 28,985,300 29,960,700 975,400 gain CNVs that overlap the ACRD SK012-003 (58468L) M SPX 18 27,565,032 27,781,900 216,869 gain CNVs that overlap the ACRD SK0152-003 (41548L) M CHR 18 32,174,061 32,990,975 816,914 loss CNVs that overlap the ACRD SK0147-003 (47544L) F SPX 18 37,509,556 37,950,450 440,895 gain CNVs that overlap the ACRD SK034-003 (78063) M SPX 18 69,282,461 69,330,584 48,124 loss CNVs that overlap the ACRD SK0023-003 (58096) M SPX 18 69,282,461 69,330,584 48,124 loss CNVs that overlap the ACRD SK023-003 (58096) M SPX 21 46,497,675 46,678,820 181,145 gain CNVs that overlap the ACRD SK0283-003 (72309) F CHR 4 44,762,996 44,858,504 95,508 gain	NA0095-000 (75414L)	M	SPX	16	74.576.356	74.613.000	36.645	loss	CNVs that overlap the ACRD
SK0012-003 (58468L) M SPX 18 27,565,032 27,781,900 216,869 gain CNVs that overlap the ACRD SK0152-003 (41548L) M CHR 18 32,174,061 32,990,975 816,914 loss CNVs that overlap the ACRD SK0147-003 (47544L) F SPX 18 37,509,556 37,950,450 440,895 gain CNVs that overlap the ACRD SK0304-003 (78063) M SPX 18 46,101,841 46,218,000 116,160 gain CNVs that overlap the ACRD SK0023-003 (58096) M SPX 18 69,282,461 69,330,584 48,124 loss CNVs that overlap the ACRD SK0023-003 (58096) M SPX 21 46,497,675 46,678,820 181,145 gain CNVs that overlap the ACRD SK023-003 (72309) F CHR 4 44,762,996 44,858,504 95,508 gain CNVs that overlap the ACRD MM0010-005 (47372) M MPX 4 44,773,367 44,846,800 73,434 gain	SK0284-003 (72687)	F	SPX	17	28,985,300	29,960,700	975,400	gain	CNVs that overlap the ACRD
SK0152-003 (41548L) M CHR 18 32,174,061 32,990,975 816,914 loss CNVs that overlap the ACRD SK0147-003 (47544L) F SPX 18 37,509,556 37,950,450 440,895 gain CNVs that overlap the ACRD SK0147-003 (47544L) F SPX 18 37,509,556 37,950,450 440,895 gain CNVs that overlap the ACRD NA0138-000 (81816L) M SPX 18 69,282,461 69,330,584 48,124 loss CNVs that overlap the ACRD SK0023-003 (58096) M SPX 18 69,282,461 69,330,584 48,124 loss CNVs that overlap the ACRD NA0112-000 (72340) M SPX X 38,250,331 38,371,333 121,003 gain CNVs that overlap the ACRD SK023-003 (72309) F CHR 4 44,762,996 44,858,504 95,508 gain CNVs that overlap the ACRD NA0093-000 (66999) M SPX 4 44,773,367 44,846,800 73,434 gain	SK0012-003 (58468L)	М	SPX	18	27.565.032	27,781,900	216.869	gain	CNVs that overlap the ACRD
SK0147-003 (47544L) F SPX 18 37,509,556 37,950,450 440,895 gain CNVs that overlap the ACRD SK0304-003 (78063) M SPX 18 46,101,841 46,218,000 116,160 gain CNVs that overlap the ACRD NA0138-000 (81816L) M SPX 18 69,282,461 69,30,584 48,124 loss CNVs that overlap the ACRD SK0023-003 (58096) M SPX 1 86,497,675 46,678,820 181,145 gain CNVs that overlap the ACRD NA0112-000 (72340) M SPX X 38,250,331 38,371,333 121,003 gain CNVs that overlap the ACRD SK0283-003 (72309) F CHR 4 44,762,996 44,846,800 73,434 gain CNVs that overlap the ACRD NA0093-000 (66999) M SPX 4 44,773,367 44,846,800 73,434 gain CNVs that overlap the ACRD NM0010-003 (46486) F SPX 4 189,538,747 189,825,000 286,254 gain	SK0152-003 (41548L)	М	CHR	18	32.174.061	32,990,975	816,914	loss	CNVs that overlap the ACRD
SK0304-003 (78063) M SPX 18 46,101,841 46,218,000 116,160 gain CNVs that overlap the ACRD NA0138-000 (81816L) M SPX 18 69,282,461 69,330,584 48,124 loss CNVs that overlap the ACRD SK0023-003 (58096) M SPX 21 46,497,675 46,678,820 181,145 gain CNVs that overlap the ACRD NA0112-000 (72340) M SPX X 38,250,331 38,371,333 121,003 gain CNVs that overlap the ACRD SK0283-003 (72309) F CHR 4 44,762,996 44,858,504 95,508 gain CNVs that overlap the ACRD MM0010-005 (47372) M MPX 4 44,773,367 44,846,800 73,434 gain CNVs that overlap the ACRD NA0093-000 (66999) M SPX 4 44,773,367 44,846,800 73,433 gain CNVs that overlap the ACRD MM0109-003 (46486) F SPX 4 189,538,747 189,825,000 286,254 gain	SK0147-003 (47544L)	F	SPX	18	37,509,556	37,950,450	440,895	gain	CNVs that overlap the ACRD
NA0138-000 (81816L) M SPX 18 69,282,461 69,330,584 48,124 Joss CNVs that overlap the ACRD SK0023-003 (58096) M SPX 21 46,497,675 46,678,820 181,145 gain CNVs that overlap the ACRD NA0112-000 (72340) M SPX X 38,250,331 38,371,333 121,003 gain CNVs that overlap the ACRD SK0283-003 (72309) F CHR 4 44,762,996 44,858,504 95,508 gain CNVs that overlap the ACRD MM0010-005 (47372) M MPX 4 44,773,367 44,846,800 73,434 gain CNVs that overlap the ACRD NA0093-000 (66999) M SPX 4 44,773,367 44,846,800 73,433 gain CNVs that overlap the ACRD MM0109-003 (46486) F SPX 4 189,538,747 189,825,000 286,254 gain CNVs that overlap the ACRD SK0112-003 (46100) M MPX 4 189,580,553 190,228,000 647,447 gain	SK0304-003 (78063)	М	SPX	18	46,101,841	46,218,000	116,160	gain	CNVs that overlap the ACRD
SK0023-003 (58096) M SPX 21 46,497,675 46,678,820 181,145 gain CNVs that overlap the ACRD NA0112-000 (72340) M SPX X 38,250,331 38,371,333 121,003 gain CNVs that overlap the ACRD SK0283-003 (72309) F CHR 4 44,762,996 44,858,504 95,508 gain CNVs that overlap the ACRD MM0010-005 (47372) M MPX 4 44,773,367 44,846,800 73,434 gain CNVs that overlap the ACRD NA0093-000 (66999) M SPX 4 44,773,367 44,846,800 73,433 gain CNVs that overlap the ACRD MM010-003 (46486) F SPX 4 189,583,747 189,825,000 286,254 gain CNVs that overlap the ACRD SK0112-003 (46100) M MPX 4 189,580,553 190,228,000 647,447 gain CNVs that overlap the ACRD	NA0138-000 (81816L)	М	SPX	18	69.282.461	69,330,584	48,124	loss	CNVs that overlap the ACRD
NA0112-000 (72340) M SPX X 38,250,331 38,371,333 121,003 gain CNVs that overlap the ACRD SK0283-003 (72309) F CHR 4 44,762,996 44,858,504 95,508 gain CNVs that overlap the ACRD MM0010-005 (47372) M MPX 4 44,773,367 44,846,800 73,434 gain CNVs that overlap the ACRD NA0093-000 (66999) M SPX 4 44,773,367 44,846,800 73,433 gain CNVs that overlap the ACRD MM0109-003 (46486) F SPX 4 44,773,367 44,846,800 73,433 gain CNVs that overlap the ACRD SK0112-003 (46100) M MPX 4 189,580,553 190,228,000 286,254 gain CNVs that overlap the ACRD	SK0023-003 (58096)	М	SPX	21	46,497,675	46,678,820	181,145	gain	CNVs that overlap the ACRD
SK0283-003 (72309) F CHR 4 44,762,996 44,858,504 95,508 gain CNVs that overlap the ACRD MM0010-005 (47372) M MPX 4 44,773,367 44,846,800 73,434 gain CNVs that overlap the ACRD NA0093-000 (66999) M SPX 4 44,773,367 44,846,800 73,433 gain CNVs that overlap the ACRD MM0109-003 (46486) F SPX 4 189,538,747 189,825,000 286,254 gain CNVs that overlap the ACRD SK0112-003 (46100) M MPX 4 189,580,553 190,228,000 647,447 gain CNVs that overlap the ACRD	NA0112-000 (72340)	М	SPX	Х	38,250,331	38,371,333	121,003	gain	CNVs that overlap the ACRD
MM0010-005 (47372)MMPX444,773,36744,846,80073,434gainCNVs that overlap the ACRDNA0093-000 (66999)MSPX444,773,36744,846,80073,433gainCNVs that overlap the ACRDMM0109-003 (46486)FSPX4189,538,747189,825,000286,254gainCNVs that overlap the ACRDSK0112-003 (46100)MMPX4189,580,553190,228,000647,447gainCNVs that overlap the ACRD	SK0283-003 (72309)	F	CHR	4	44,762,996	44,858,504	95,508	gain	CNVs that overlap the ACRD
NA0093-000 (66999) M SPX 4 44,773,367 44,846,800 73,433 gain CNVs that overlap the ACRD MM0109-003 (46486) F SPX 4 189,538,747 189,825,000 286,254 gain CNVs that overlap the ACRD SK0112-003 (46100) M MPX 4 189,580,553 190,228,000 647,447 gain CNVs that overlap the ACRD	MM0010-005 (47372)	М	MPX	4	44,773,367	44,846,800	73,434	gain	CNVs that overlap the ACRD
MM0109-003 (46486) F SPX 4 189,538,747 189,825,000 286,254 gain CNVs that overlap the ACRD SK0112-003 (46100) M MPX 4 189,580,553 190,228,000 647,447 gain CNVs that overlap the ACRD	NA0093-000 (66999)	М	SPX	4	44,773,367	44,846,800	73,433	gain	CNVs that overlap the ACRD
SK0112-003 (46100) M MPX 4 189,580,553 190,228,000 647,447 gain CNVs that overlap the ACRD	MM0109-003 (46486)	F	SPX	4	189,538,747	189,825,000	286,254	gain	CNVs that overlap the ACRD
	SK0112-003 (46100)	М	MPX	4	189,580,553	190,228,000	647,447	gain	CNVs that overlap the ACRD

[0055] Wide-ranging prevalence frequencies of cytogenetically detectable chromosomal abnormalities in ASD, and the inability of microarray scans to find balanced abnormalities, prompted karyotyping to be performed. Karyotyping (and FISH) also provided the ability to characterize the chromosomal context (e.g. ring chromosomes) of some of the CNV regions, something not possible using microarrays alone. Therefore, 313 unbiased idiopathic cases where blood was available were examined and 5.8% (18/313) cases were found to have balanced (11) or unbalanced (7) karyotypes (all

unbalanced karyotypic changes (7) were also found by microarray analysis and are included in the CNV statistics). The genomic characteristics of all CNVs are shown in the Autism Chromosome Rearrangement Database (see FIG. **3**). In this study, CNV loss and gain will typically equate to a standard deletion or duplication. In some cases a duplication of only part of a gene could lead to its disruption (Table 5), and there are also positional effects on gene expression to consider.

De Novo, Overlapping/Recurrent, and Inherited Structural Variants

[0056] Structural variants found in ASD cases were initially prioritized to possibly be etiologic if they were not in controls and, (i) de novo in origin (25 cases) (see Table 5 below), (ii) overlapping (27 cases at 13 loci) in two or more unrelated samples (see Table 7 below), (iii) recurrent (same breakpoints) in two or more unrelated samples (four cases at two loci), (iv) or inherited (the remainder). In a proof of principle analysis, CNVs were found at known ASD loci: NLGN4 and 22q, 15q, SHANK3 and NRXN1 in categories i, ii, iii, and iv, respectively. ASD structural variants found in controls (eg. NRXN1) could also be involved.

TABI	Æ	5
	<u> </u>	~

			De Novo Rearrangen	ients in ASD o	cases		
FamID (DNA) ¹	Sex	Туре	Chromosome ²	Size (bp) ³	CNV	Genes ⁴	Phenotype Comments ⁵
1 SK0181-004 (52191)	М	CHR (SPX)	3p14.1-3p13 (a)	5,346,900	loss	13 genes	IQ = 107
			t(6; 14)(q13; q21)(k)	N/A	none	11 genes	Dysmorphology
2 SK0152-003 (41548)	Μ	CHR (MPX) ⁶	3p25.1-p24.3 (a)	1,409,600	loss	12 genes	IQ = unknown
			5p15.31-p15.2 (a)	3,429,389	loss	8 genes	
			12q12 (a)	422,842	loss	4 genes	
			t(5; 7)(p15p13) (k)	N/A	none	CDH18	
3 SK0215-006 (58449)	Μ	CHR (SPX)	1p21.3 (a)	1,092,500	loss	DPYD whole	IQ = 38, SLI
4 SK0205-004 (56242)	F	CHR (SPX)	5p15.33-5p15.2 (k)	13,800,984	loss	46 genes	IQ = unknown, Cri du chat
5 SK0083-003 (50800)	Μ	CHR (SPX)	7q31.1-q31.31 (k)	11,023,507	loss	25 genes	IQ = 76
6 SK0131-003 (39989)	F	CHR (SPX)	7q31.1-q32.2 (k)	15,486,722	loss	>50 genes	IQ = 95, SLI
7 SK0243-003 (67941)	Μ	CHR (SPX)	15q23-q24.2 (k)	4,289,500	loss	>50 genes	IQ = unknown, SLI
8 SK0073-003 (57283)	F	CHR (SPX)	15q11.2-q13.3 (k)	11,922,600	gain	>50 genes	IQ = unknown
9 SK0245-005 (68517)	Μ	CHR (SPX)	15q11.2-q13.3 (k)	11,871,747	gain	>50 genes	IQ = unknown
10 SK0218-003 (60340)	F	CHR (MPX) ⁴	18q21.32-18q23 (k)	20,358,999	loss	>50 genes	IQ = unknown, seizures, dysmorphology
11 NA0039-000 (69736)	F	CHR (SPX)	22q13.31-q13.33 (k)	3,231,700	loss	41 genes	IQ = unknown
12 NA0097-000 (82361)	F	CHR (SPX)	Xp22.33-p22.31 (a)	5,825,311	loss	21 genes + NLGN4	IO = unknown
13 SK0283-003 (72309)	F	CHR (SPX)	47, XX, ring chr1 (k)	N/A	gain	>50 genes	IQ = 38
14 SK0133-003 (46012	М	CHR (SPX)	t(5; 8; 17)(q31.1; q24.1; q21.3) (k)	N/A	none	5 genes	IQ = unknown
15 NA0002-000 (52026)	М	SPX	7q36.2 (a)	66,462	loss	DPP6 exonic	IO = unknown
16 SK0262-003 (68609)	Μ	SPX	8p23.3 (a)	791,089	gain	DLGAP2 exonic	IQ = unknown
17 MM0278-003 (57788)	Μ	SPX	12q24.21-q24.33 (a)	18,218,000	gain	>50 genes	IQ = 36
18 NA0067-000 (65344)	Μ	SPX	16q24.3 (a)	265,667	loss	ANKRD11 exonic	IQ = unknown
19 MM0088-003 (45562)	F	MPX	16p11.2 (a)	675,829	loss	28 genes	IQ = 87
20 SK0102-004 (31899)	Μ	SPX	16p11.2 (a)	432,600	gain	24 genes	IQ = 74, Epilepsy
21 SK0244-003 (69183)	М	SPX	21g22.3 (a)	353,936	gain	4 genes	IQ = 80
22 MM0109-003 (46486)	F	SPX	20q13.33 (a)	1,427,661	gain	44 genes	IO = unknown
× /			22a13.33 (a)	276.702	loss	13 genes + SHANK3	
23 SK0119-003 (35190)	М	MPX^4	22q11.21 (a)	2.771.300	loss	>50 genes	IO = 58, VCF syndrome
24 SK0297-003 (76066)	M	SPX-MZ	22a11.21(a)	4.281.262	gain	>50 genes	IO = 107, dysmorphology
25 SK0306-004 (78681)	F	SPX	Xp11.23-11.22 (a)	4.643.367	gain	>50 genes	IO = 87
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-			.,0.15,507	<i>.</i>	001100	

¹Table is sorted based on family type. Probands with abnormal karyotypes (CHR) (1-14) are separated from probands belonging to simplex (SPX) and multiplex (MPX) families with normal karyotypes (15-25). ²De novo event detected by either karyotype (k) or microarray (a)

**comment on case 25 that is also in Table 3(see entry #2

				Recuri	ent and overla	oping lo	ci in ASD		
Chron	mosome	FamID (DNA)	Sex	Type ¹	Size (bp) ²	CNV	Origin	Genes ³	Phenotype Comments
1 2q14.	.1	SK0147-003 (47544)	F	SPX	478,370	loss	Paternal	DPP10 exonic	IQ = unknown, NF1
		SK0288-003 (75420)	F	SPX-MZ	105,120	gain	Paternal	DPP10 intronic	IQ = 83
2 2q32.	.1	SK0306-004 (78681)	F	SPX	97,130	loss	Unknown	None	IQ = 87
		NA0030-000 (55240)	Μ	SPX	112,323	loss	Unknown	None	IQ = unknown
3 6q22.	.31	MM0220-003 (61180)	Μ	MPX	318,000	gain	Paternal	PLN, c6orf204 whole	IQ = unknown
		NA0025-000 (60490)	Μ	SPX	293,989	gain	Paternal	PLN, c6orf204 whole	IQ = unknown
4 7q36.	.2	SK0190-003 (54742)	Μ	SPX	1,780,000	gain	Maternal	DPP6 whole	IQ = 82
		SK0115-003 (40555)	Μ	SPX	274,000	gain	Unknown	DPP6 exonic	IQ = unknown
		SK0058-003 (59963)	Μ	MPX	16,788	gain	Maternal	DPP6 intronic	IQ = 111
		NA0002-000 (52026)	Μ	SPX	66,462	loss	De novo	DPP6 exonic	IQ = unknown
5 8q11.	.23	SK0143-003 (36812)	М	SPX	285,200	gain	Unknown	UNQ9433 whole, RB1CC1 exonic	IQ = 66 Apraxia, CHD, Seizure
		MM0236-004 (46475)	М	MPX	271,679	gain	Unknown	RS1CC1 exonic	IQ = 99

TABLE 6

			Recur	ent and overlap	ping lo	ci in ASD		
Chromosome	FamID (DNA)	Sex	Type ¹	Size (bp) ²	CNV	Origin	Genes ³	Phenotype Comments
6 9p24.1	SK0270-003 (71341)	М	SPX	38,900	loss	Unknown	none	IQ = 91, SLI
-	MM0103-003 (42387)	Μ	MPX	34,950	loss	Paternal	none	IQ = 107
7 11p12	MM0272-003 (45563)	Μ	MPX	262,938	loss	Maternal	none	IQ = 111, Seizures
	SK0167-003 (60966)	F	MPX	192,846	loss	Unknown	none	IQ = 91
8 13q21.32	SK0023-003 (58096)	Μ	SPX	189,438	gain	Unknown	PCDH9 intronic	IQ = 91, Seizures
	MM0299-003 (51674)	F	MPX	172,401	gain	Paternal	PCDH9 intronic	IQ = 39
9 15q11.2-q13.3	SK0073-003 (57283)	F	CHR	11,922,600	gain	De novo	>50 genes	IQ = unknown
	SK0245-005 (68517)	Μ	CHR	11,871,747	gain	De novo	>50 genes	IQ = unknown
10 16p12.1	MM0109-003 (46486)	F	SPX	1,246,288	gain	Maternal	8 genes	IQ = unknown
	MM0289-003 (42267)	F	MPX	802,555	loss	Maternal	5 genes	IQ = 63
11 16p11.1	NA0133-000 (78119)	F	SPX	525,319	gain	Maternal	29 genes	IQ = unknown
	SK0102-004 (31899)	Μ	SPX	$432,600^4$	gain	De novo	24 genes	IQ = 64, Epilepsy
	MM0088-003 (45562)	F	MPX	675,829	loss	De novo	32 genes	IQ = 87
12 22q11.2	SK0119-003 (35190)	Μ	MPX	2,771,300	loss	De novo	>50 genes	IQ = 58, VCF syndrome
	SK0091-004 (46407)	F	MPX	4,281,262	gain	Paternal	>50 genes	IQ = 126
	SK0297-003 (76066)	Μ	SPX-MZ	4,281,262	gain	De novo	>50 genes	IQ = 107, dysmorphology
	SK0323-003 (80022)	Μ	MPX	743,100	gain	Unknown	7 genes	IQ = unknown
13 22q13.31	SK0123-004 (60536)	Μ	MPX	601,528	gain	Maternal	none	IQ = 93
	MM0102-003 (47598)	М	MPX	80,380	loss	Maternal	none	IQ = 70

¹Families are grouped based on simplex (SPX), multiplex (MPX) and chromosomal abnormalities (CHR). Simplex families with affected monozygotic twins is denoted as SPX-MZ. The de novo cases also appear in Table 2 and some of the family pedigrees are shown in FIG. 2 and Supplemental FIG. 2. ²CNV size is based on array results. The breakpoints have not been accurately defined, and CNVs may be smaller or larger than posted.

³When only a single gene is involved if the CNV intersects (suggesting it may disrupt the gene) the term 'exonic' is used and if the CNV encompasses the entire gene the term 'whole' is

⁴CNV is only called by one algorithm

[0057] By testing parental DNA and validating CNVs, a de novo mutation rate of 7.1% (4/56) and 2.0% (1/49) was observed in idiopathic simplex and multiplex families, respectively. There was parental information for 13 of 18 cases discovered to carry cytogenetic abnormalities and 7 (6 simplex, 1 multiplex) of these were de novo in origin. Since only 1/7 (from a simplex family) of these was balanced and directly interrupting a gene, it was estimated that this class of rearrangements had much less of a contribution than CNVs to the total rate of de novo and structural variation in the present cohort.

[0058] The collective data identified 25 de novo cases (Table 5) and in three, two or more events were identified. Notably, in family SK0152 (FIG. 4a) there were four de novo events. In MM019 (FIG. 4b) there were two de novo deletions, one leading to haplo-insufficiency of SHANK3.

[0059] The 13 loci where overlapping ASD-specific CNVs were found are likely indicative of ASD-susceptibility since they arise in two or more unrelated families. In six, gains and losses often encompassing entire genes were observed at the same locus (Table 6) suggesting general gene dysregulation to be involved.

[0060] Using q-PCR or by assessing SNP patterns, 196 inherited CNVs (90 maternal and 106 paternal) were confirmed. No sub-grouping of these demonstrated obvious parent-of-origin effects (the two chromosome 15q11-q13 duplications detected were both de novo in origin). A 160 kb deletion was detected in a male inherited from a carrier mother, leading to a null PTCHD1 in the proband and his dizygotic twin brother (FIG. 4c). There were also instances where apparently balanced inherited translocations were accompanied by de novo deletions in the offspring (eg. DPYD) (FIG. 4d).

Candidate ASD-Susceptibility Genes and Loci Identified

[0061] New ASD candidates identified were those with a structural change (either de novo or found in two or more unrelated ASD cases, or for the X chromosome an allele being transmitted maternally from an unaffected carrier) specific to that gene, including ANKRD11, DLGAP2, DPP6, DPP10, DPYD, PCDH9 and PTCHD1 (Tables 5 and 6). As previously noted, NLGN4, SHANK3 and NRXN1 were also identified. The PCDH9 and NRXN1 genes are also found as CNVs in controls in the DGV (Database of Genomic Variants).

[0062] Additional positional candidate genes identified were those found interrupted by balanced cytogenetic breakpoints including NEGR1, PIP5K1B, GABRG1, KLHL3, STK3, ST7, SATB2 (Table 1). Moreover, 77 CNVs in the stringent dataset overlapped with the Autism Chromosome Rearrangement Database providing a second line of evidence for involvement (FIG. 2). For example, a 4.6 Mb de novo duplication at Xp11.23-11.22 was detected in a female SK0306-004 (Table 5) and a male in the database.

[0063] DPP6 and DPP10 emerge as being positional and functional candidates. DPP6 (~1.5 Mb in size at 2q14.1) and DPP10 (~1.3 Mb at 7q36.2) code for accessory trans-membrane dipeptidyl peptidase-like subunits that affect the expression and gating of Kv4.2 channels (KCND2). Kv4.2 channels function in regulation of neurotransmitter release and neuronal excitability in the glutamatergic synapse at the same sites where SHANK3 and the NLGN gene products are found. In addition, autism balanced breakpoints have been mapped near KCND2 at 7q31.

[0064] For DPP10 there are inherited CNV gains and losses (Table 5, FIG. 4). De novo and inherited CNVs were found at the multi-transcript DPP6 gene. A 66 kb de novo loss encompassing exons 2 and 3 is found in a male in family NA0002 (FIG. 4e). In family SK0190, the male proband and an unaffected female sibling both carry a CNV gain inherited from an unaffected mother (FIG. 4f) that encompassed the entire DPP6. A 270 kb gain was found in SK0115-003 that extends across the first exon (which may disrupt the functional gene) and SK0058-003 carries a maternally-inherited 16 kb intronic CNV gain (Table 1; FIG. 5).

Medical Genetics

[0065] Structural variants overlapping loci involved in medical genetic conditions including Waardenburg Type IIA (3p14.1), speech and language disorder (7q31), mental retardation (MR) (15q23-q24, 16p11.2) and velocardialfacial syndrome (VCFS) (22q13) were identified (Table 5), amongst others. Identification of the structural variant at these loci led to clinical re-assessment and either identification or refinement of the diagnosis, for additional syndromic features. Other instances (eg. SK0186-PTCHD1 deletion) (FIG. 4c) prompted re-testing of the entire family and eventually a diagnosis of mild-ASD in a previously undiagnosed sibling. This family was then redesignated multiplex as opposed to simplex.

[0066] The identification of a de novo deletion (2.7 Mb) at 22q11.2 in two ASD brothers led to their re-examination and diagnosis for VCFS. The re-testing also further defined the siblings to be at opposite ends of the ASD spectrum (FIG. 6). Larger duplications (4.3 Mb) of this same region in two other ASD families (SK0289 and SK0091) did not cause VCFS (Table 6); however, in SK0091 the variant was inherited from a normal father and not found in an affected male sibling.

[0067] A recurrent ~500 kb duplication at 16p11.2 in two ASD families (SK0102 and NA0133) (FIGS. 4 and 5) was also discovered. As with DPP6/DPP10 and 22q11.2, there were carriers of these structural variants without ASD. In a third family (MM0088), the proband has a larger 676 kb de novo deletion and it is only detected in one of two ASD siblings. (FIG. 4g).

[0068] In sum, using the genome-wide scanning approach, numerous new putative-ASD loci (Tables 4 and 5, FIG. 2) were identified. Generally, ASD loci include (i) those that contain genes functioning in the PSD, (ii) and/or chromosomal regions previously shown to be involved in mental retardation, and (iii) involve dysregulation of gene expression.

[0069] CNVs that implicate ASD loci include the SHANK3, NLGN, and NRXN1-PSD genes and also identify novel loci at DPP6 and DPP10 (amongst others including PCDH9, RPS6KA2, RET from the full dataset) were identified.

[0070] Lastly, six unrelated ASD cases were identified (Table 6) that had either CNV gains or losses at the same locus which indicate that gene expression of genes in these regions are related to the development of speech and language and/or social communication in humans, as in SHANK3 and genes in the Williams-Beuren syndrome locus.

Example 2

PTCHD1 as a Marker of ASD

[0071] As set out above, a genome scan with Affymetrix 500K SNP Arrays was used to identify a CNV deletion on chromosome Xp22.11 that spans exon 1 of the PTCHD1 gene. Exon 1 is shown bolded in FIG. 7 spanning nucleotide positions 1-359. The Cdna sequence of the PTCHD1 gene (NM_173495) as well as the amino acid sequence of the corresponding encoded protein is illustrated in FIG. 7 which illustrates a genomic size of:: 59325, an exon/coding exon count of 3 encoding a protein of 783 amino acids.

[0072] The deletion was determined to be an ~156 kb deletion on Xp22.11 on a male proband. The physical position of this CNV is chrX:22,962,800-23,119,000 (UCSC 2004 Assembly). The deletion is flanked by SNP probes rs7055928 and rs1918560 (at 22.956 and 23.133 Mb from the Xp terminus, respectively). The most proximal and distal SNPs (from the Affymetrix SNP microarrays) within the deleted region,

as determined by the SNP microarray analysis, are rs7879064 (23.119 Mb) and rs4828958 (22.972 Mb). PCR amplicons from within the deleted region were used to confirm the deletion by Qper (PCR primers and locations are given below). This deletion spans the entire exon 1 of the PTCHD1 gene (NM_173495). Analysis of both Sty and Nsp chips data identified this event and was further validated using PCR and QPCR techniques. The following primers were used:

PTCHD-CNV1F ATTCGCAGTTCCTTCGTCTT	(SEQ ID NO: 1)
PTCHD-CNV1R AAAGTGGATTGATCGGTTCC	(SEQ ID NO: 2)
PTCHD-CNV2F GCTTGAGGACGTGTTTCTCC	(SEQ ID NO: 3)
PTCHD-CNV2R CTAGGAGAGGTGGCGCTCT	(SEQ ID NO: 4)

[0073] This CNV is autism specific as it was not present in the Database of Genomic Variants (DGV) and in other controls. Furthermore, the segregation of this deletion was characterized in family and it was identified that the deletion was transmitted from a heterozygous mother. A male sibling also had language deficits.

[0074] Mutation screening of PTCHD1 in N=400 autism patients was conducted in the usual manner. The following primers were used:

PTCHD1-x1F AGCGTGCGCCTCGCCCT	(SEQ	ID	NO :	5)
PTCHD1-x1R TCCTTGTCCAGGAGGCTGGGA	(SEQ	ID	NO :	6)
PTCHD1-x1Bf GCGCCCGCTCTGCTCTA	(SEQ	ID	NO :	7)
PTCHD1-x1Br TCCTTGTCCAGGAGGCTGGGA	(SEQ	ID	NO :	8)
PTCHD1-x2-F GAATGTCCACCCTCTCCAAA	(SEQ	ID	NO :	9)
PTCHD1-x2-R AAGGCTACTCCTGGCCTTTT	(SEQ	ID	NO :	10)
PTCHD1-x3a-F CTTTGACCCAGTAGTCCCTCA	(SEQ	ID	NO :	11)
PTCHD1-x3a-R GCACAAACCCCTTGGTGTA	(SEQ	ID	NO :	12)
PTCHD1-x3b-F TGTGATTGGGTTTTACATATATGAGTC	(SEQ	ID	NO :	13)
PTCHD1-x3b-R AGGTCAGATTTGAAGGCACAG	(SEQ	ID	NO :	14)
PTCHD1-x3c-F AAAAATGCCCTGGAAGTGC	(SEQ	ID	NO :	15)
PTCHD1-x3c-R TGTGTGAATTCTCATAACAACTCCT	(SEQ	ID	NO :	16)

[0075] The mutation screening revealed an I173V mutation.

Example 3

Identification of Additional Markers of ASD

[0076] By sequencing the entire coding region of PTCHD1 in 900 unrelated ASD cases, six missense mutations were identified in six unrelated ASD probands (Table 7, FIG. 8). For clinical details see Table 8.

TABLE 7

Subject ID	Exon	Mutation	Nucleotide	Sex of Proband	Transmission	Family Type	XCI Status of Carrier Mother	Population Ancestry	Frequency in ASD	No. of Control Chromosomes Tested
Family 1	1	167-kb c	leletion, disrupts	М	Mother	Multiplex	Skewed	European	1 in 427	2067 (M = 760 E = 1208)
Family 1	1	167-kb c PTCHD1	leletion, disrupts	М	Mother	Multiplex	Skewed	European	1 in 427	(M = 769 F = 1298) 2067 (M = 769 F = 1298)
Family 2	2	I173V	517A > G	М	Mother	Multiplex	Random	European\Mixed	2 in 900	659 M 210 E 220)
Family 3	2	I173V	517A > G	М	Mother	Simplex	Random	European	2 in 900	(M = 219 F = 220) 659 (M = 210 F = 220)
Family 4	2	V195I	583G > A	М	Mother	Simplex	NC	European	1 in 900	(M = 219 F = 220) 659
Family 5	2	ML336-7II	1008-9GC > TA	М	Mother	Simplex	Random	Asian	1 in 900	(M = 219 F = 220) 751*
Family 6	3	E479G	1436A > G	М	Mother	Multiplex	Random	European	1 in 900	(M = 249 F = 251) 427
Family 7	1	L73F	217C > T	М	Mother	Multiplex	NC	Not Available	1 in 900	(M = 137 F = 145) 427 (M = 137 F = 145)

*Out of 751 control chromosomes tested, N = 92 were Asian

TABLE 8

Subject ID Sex	Mutations	Clinical Details	Family History	Comments
Family 1 M	167-kb del	Meet ADI and ADOS-1 criteria for diagnosis of autism. Difficulty with conversations, echoed words, repetitive interests, delay in social use of language. Attention Deficit and Hyperactivity Disorder (ADHD). No mental retardation (MR). Non-Verbal IQ = 42% ile	Maternal history of learning problem and articulation difficulties. Paternal history of ADHD like features.	Severe colic during early childhood
Family 1 M	167-kb del	Meet ADI and ADOS-1 criteria for diagnosis of autism. Difficulty with conversations, echoed words, repetitive interests, delay in social use of language. Attention Deficit and Hyperactivity Disorder (ADHD). No mental retardation (MR). Non-Verbal IQ = 23% ile	Maternal history of learning problem and articulation difficulties. Paternal history of ADHD like features.	Severe colic during early childhood
Family 2 M	I173V	Meet ADI and ADOS-1 criteria for diagnosis of autism. Highly repetitive language and behaviour, motor mannerisms, extremely hyperactive, poor motor coordination and mental retardation, Lang: receptive = 40, <1% ile, expressive = 40, <1% ile	Father had type II diabetes	
Family 3 M	I173V	Meet ADI and ADOS-1 criteria for diagnosis of autism. Meet ADI and ADOS-1 criteria for diagnosis of autism. ADI social score = 25, ADI communication score = 21, ADI Restricted, Repetitive, and Stereotyped Behavior Score = 11, ADI development score = 3, Normal IO.	No family history of PDD	
М	V195I	Diagnosed with autism at the age of 3 years and 4 months. Meet ADI and ADOS-1 criteria for diagnosis of autism. Severe expressive and receptive language delay. No dysmorphology observed.	No family history of PDD	FRX and head CT scan was normal
Family 5 M	ML336-7II	Meet ADI and ADOS-1 criteria for diagnosis of autism. ADI social score = 26, ADI communication score = 14, ADI stereotype score = 5 ADI development score: 4, ADOS social + communication score = 20, ADOS Restricted, Repetitive, and Stereotyped Behavior Score = 3, Some text to ware observed that could be related to achiga physical	Father died of leukemia	Minor thalassemia
Family 6 M Family 7 M	E479G L73F	Diagnosed with high functioning autism. Meet ADI and ADOS-1 criteria for diagnosis of autism	No family history of PDD	

[0077] All these mutations resulted in the substitution of highly conserved amino acids, and were inherited from unaffected carrier mothers. Based on in silico protein modeling, three mutations (L73F, 1173V, V195I) are present in a predicted amino acid loop that sits outside of the cell membrane. This loop is posited to interact with the ligand, Hh. Another mutation, the 2-amino acid substitution ML336-337II was present within a predicted transmembrane domain. Finally, the E479G mutation was present within a predicted cytoplasmic amino acid loop. In five out of six families, these mutations segregated with the phenotype. Controls (439) were

tested for the I173V and V195I mutations, 500 controls for ML336-337II, and 282 controls for L73F and E479G. None of these mutations were present in controls. Furthermore, the fact that these mutations were all maternally inherited to male probands, and were not observed in our control populations, indicates that the mutations are associated with ASD. In turn, it is reasonable to assume that these mutations contribute to the etiology of autism, and perhaps in-combination with other disease-related loci, give rise to the ASD phenotype.

[0078] Interestingly, in two of the ASD families reported in Tables 7/8 (Family-2 & Family-4), other ASD-related CNVs

were identified. In family 2, in addition to 1173V mutation, a de novo ~1.0 Mb loss at 1p21.3 resulting in deletion of the entire DPYD gene (NM_000110.3) was identified. DPYD encodes a rate-limiting enzyme, dihydropyrimidine dehydrogenase (DPD), involved in pyrimidine metabolism. Complete DPD deficiency results in highly variable clinical outcomes, with convulsive disorders, motor retardation, and mental retardation being the most frequent manifestations. In Family-4, in addition to the V195I mutation, a 66 Kb de novo loss at 7q36.2 was identified resulting in deletion of DPP6 exon 3,

and 33 amino acids towards the N-terminal end of the DPP6 protein. These cases evidence digenic involvement in ASD. **[0079]** The ability of these PTCHD1-mutants to repress Gli2 expression was compared with wild type to determine if there was loss of function in the mutants. NIH10T1/2 fibroblasts were transfected with CMV-empty vector, a Gli-responsive promoter fused to the Luciferase gene (Gli2 pro), β -Gal (normalization) and PTCHD1 mutant expression plasmids. A mild loss of function of at least the E479G and ML336-7II mutants resulted in increased expression of Gli2 compared to wild type.

SEQUENCE LISTING	
<160> NUMBER OF SEQ ID NOS: 16	
<210> SEQ ID NO 1 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer	
<400> SEQUENCE: 1	
attcgcagtt ccttcgtctt	20
<210> SEQ ID NO 2 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer	
<400> SEQUENCE: 2	
aaagtggatt gatcggttcc	20
<210> SEQ ID NO 3 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer	
<400> SEQUENCE: 3	
gettgaggae gtgtttetee	20
<210> SEQ ID NO 4 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer	
<400> SEQUENCE: 4	
ctaggagagg tggcgctct	19
<pre><210> SEQ ID NO 5 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer</pre>	
<400> SEQUENCE: 5	

							-
-	С	on	t:	lľ	ıu	е	d

	contrinated
agegtgegee tegeeet	17
<pre><210> SEQ ID NO 6 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer</pre>	
<400> SEQUENCE: 6	
tccttgtcca ggaggctggg a	21
<pre><210> SEQ ID NO 7 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer </pre>	
<400> SEQUENCE: /	17
gegeeegete tgeteta	17
<210> SEQ ID NO 8 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer	
<400> SEQUENCE: 8	
tccttgtcca ggaggctggg a	21
<210> SEQ ID NO 9 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer	
<400> SEQUENCE: 9	
gaatgteeac eeteteeaaa	20
<210> SEQ ID NO 10 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer	
<400> SEQUENCE: 10	
aaggctactc ctggcctttt	20
<pre><210> SEQ ID NO 11 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer</pre>	
<400> SEQUENCE: 11	
ctttgaccca gtagtccctc a	21

<210> SEQ ID NO 12

-	С	0	n	t	i	n	u	e	ō
	_	_		_	_			_	_

<211> LENGTH: 19	
<212> TYPE: DNA	
<220> FEATURE:	
<223> OTHER INFORMATION: primer	
<400> SEQUENCE: 12	
	19
geacaaacee eeeggegea	19
<210> SEQ ID NO 13	
<211> LENGTH: 27	
<212> IIPE: DNA <213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: primer	
<400> SEQUENCE: 13	
tgtgattggg ttttacatat atgagtc	27
<210> SEQ ID NO 14	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: primer	
<400> SEQUENCE: 14	
aggtcagatt tgaaggcaca g	21
<210> SEQ ID NO 15	
<211> LENGTH: 19	
<212> TIPE: DNA <213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: primer	
<400> SEQUENCE: 15	
aaaaatgccc tggaagtgc	19
<210> SEQ ID NO 16	
<211> LENGTH: 25	
<212> IIPE: DNA <213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: primer	
<400> SEQUENCE: 16	
tgtgtgaatt ctcataacaa ctcct	25
We claim:	13 . (canceled)
1. (canceled)	14. (canceled)
2. (canceled)	15. (canceled)
3. (canceled)	16 . (canceled)
4. (canceled)	17 A method of determining the risk of ASD in an indi-
5. (canceled)	vidual comprising:
6. (canceled)	nrohing a nucleic acid containing comple abtained from
7. (canceled)	the individual for a genomic sequence mutation in a
- /	are manification for a genomic bequeitee mutation in a

- 8. (canceled)
- 9. (canceled)
- 10. (canceled)
- 11. (canceled)
- $12. \ (\text{canceled})$

brobing a nucleic acid-containing sample obtained from the individual for a genomic sequence mutation in at least one gene selected from the group consisting of PTCHD1, SHANK3, NFIA, DPP6, DYPD, DPP10, GPR98, PQBP1, ZNF41 and FTSJ1, wherein identification of a mutation that modulates the expression of at least one of said genes is indicative of a risk of ASD. **18**. A method as defined in claim **17**, wherein the genomic sequence variation is in the PTCHD1 gene.

19. A method as defined in claim **17**, wherein the genomic sequence mutation is a deletion of at least a portion of exon 1 of PTCHD1.

20. A method as defined in claim **17**, wherein the genomic sequence mutation is an intronic gain in DPP10.

21. A method as defined in claim **17**, wherein the genomic sequence mutation is an exonic loss in DPP10.

22. A method as defined in claim **17**, wherein the genomic sequence mutation is an exonic loss encompassing at least a portion of exons 2 and 3 in DPP6.

23. A method as defined in claim **17**, wherein the genomic sequence mutation is a gain in DPP6 selected from at least one of the group consisting of the entire DPP6 gene, a 270 kb exonic gain in exon 1 and a 16 kb intronic gain.

24. A method as defined in claim **17**, wherein the genomic sequence mutation is a loss in the SHANK3 gene.

25. A method as defined in claim **17**, wherein the genomic sequence mutation is a loss of the DYPD gene.

26. A method as defined in claim **17**, wherein the genomic sequence mutation is at least one missense mutation in PTCHD1 resulting in at least one amino acid substitution in the encoded protein selected from the group consisting of L73F, 1173V, V1951, ML336-337II and E479G.

27. A method as defined in claim 17, wherein the genomic sequence mutation is selected from the group consisting of a deletion of at least a portion of exon 1 of PTCHD1; an intronic gain in DPP10; an exonic loss in DPP10; an exonic loss encompassing at least a portion of exons 2 and 3 in DPP6; a gain in DPP6 selected from at least one of the group consisting of the entire DPP6 gene, a 270 kb exonic gain in exon 1 and a 16 kb intronic gain; a loss in the SHANK3 gene; a loss of the DYPD gene; and at least one missense mutation in PTCHD1 resulting in at least one amino acid substitution in

the encoded protein selected from the group consisting of L73F, I173V, V195I, ML336-337II and E479G.

28. A method of determining the risk of ASD in an individual comprising:

screening a biological sample from the individual for abnormal levels of at least one gene product expressed by a gene selected from the group consisting of PTCHD1, SHANK3, NFIA, DPP6, DPP10, DYPD, GPR98, PQBP1, ZNF41 and FTSJ1, wherein a determination that at least one of said gene products is expressed at a level that varies from the expression level in a healthy non-ASD individual is indicative of a risk of ASD.

29. The method as defined in claim **28**, wherein the biological sample is screened for abnormal levels of the PTCHD1 gene product.

30. A method of determining the risk of ASD in an individual comprising:

screening a nucleic acid-containing sample from the individual for at least one genomic sequence variation that modulates the expression of PTCHD1, wherein identification of at least one of said genomic sequence variations is indicative of a risk of ASD in the individual.

31. A method as defined in claim **30**, wherein the genomic sequence variation is in the PTCHD1 gene.

32. A method as defined in claim **30**, wherein the genomic sequence variation is a deletion of at least a portion of exon 1 of PTCHD1.

33. A method as defined in claim **30**, wherein the genomic sequence variation is at least one missense mutation in PTCHD1 resulting in at least one amino acid substitution in the encoded protein selected from the group consisting of L73F, I173V, V195I, ML336-337II and E479G.

* * * * *