(12) STANDARD PATENT

(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(30)

(31)

(43)
(43)
(44)
(71)
(72)

(74)

(56)

Title
Decision-theoretic web-crawling and predicting web-page change

International Patent Classification(s)
GOG6F 17/30 (2006.01) GOG6F 13/00 (2006.01)

Application No: 2005200231 (22) Date of Filing: 2005.01.19

Priority Data

Number (32) Date (33) Country
10777365 2004.02.12 us
Publication Date: 2005.09.01

Publication Journal Date: 2005.09.01
Accepted Journal Date: 2011.02.17

Applicant(s)
Microsoft Corporation

Inventor(s)
Meek, Christopher A.;Kadie, Carl M.

Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

Related Art
"Optimal Crawling Strategies for Web Search Engines™ retrieved on 5-11-2009 from
http://delivery.acm.org/10.1145/520000/511465/p136wolf.pdf

(11) Application No. AU 2005200231 B2

19 Jan 2005

2005200231

ABSTRACT OF THE DISCLOSURE
Systems and methods are described that facilitate predictive web-crawling
n a computer environment. Aspects of the invention provide for predictive,
utility-based, and decision theoretic probability assessments of changes in subsets
of web pages, enhancing web-crawling ability and ensuring that web page
information is maintained in a fresh state. Additionally, the invention facilitates

selective crawling of pages with a high probability of change.

19 Jan 2005

2005200231

1/11

»—100
1oz~*\\\
o WEB-CRAWLER
o COMPONENT
108-—\\\ l ///——104
MANAGING BUNDLING
COMPONENT COMPONENT
SEARCH SERVER |e———

N 106

FIG. 1

Oy 1 U

4

19 Jan 2005

2005200231

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE
Patent Attorneys
1 Nicholson Street,Melbourne, 3000, Australia

INVENTION TITLE:

Decision-theoretic web-crawling and predicting web-page change

The following statement is a full description of this invention, including the best method of performing it
known to me/us:-

5102

26 Mar 2010

2005200231

10

15

20

25

CANRPOnbIDCO\TXBR651739_1.DOC-25/03/2010

-la-

TECHNICAL FIELD
Described embodiments relate generally to data analysis, and more particularly to
systems and methods for obtaining information from a networked system utilizing a

distributed web-crawler.

BACKGROUND

The evolution of computers and networking technologies from high-cost, low-
performance data processing systems to low cost, high-performance communication,
problem solving and entertainment systems has provided a cost-effective and time
saving means to lessen the burden of performing every day tasks such as
correspondence, bill paying, shopping, budgeting and information gathering. For
example, a computing system interfaced to the Internet, via wire or wireless technology,
can provide a user with a channel for nearly instantaneous access to a wealth of
information from a repository of web sites and servers located around the world, at the
user’s fingertips.

Typically, the information available via web sites and servers is accessed via a
web browser executing on a web client (e.g., a computer). For example, a web user can
deploy a web browser and access a web site by entering the web site Uniform Resource
Locator (URL) (e.g., a web address and/or an Internet address) into an address bar of the
web browser and pressing the enter key on a keyboard or clicking a “go” button with a
mouse. The URL typically includes four pieces of information that facilitate access: a
protocol (a language for computers to communicate with each other) that indicates a set
of rules and standards for the exchange of information, a location to the web site, a name
of an organization that maintains the web site, and a suffix (e.g., com, org, net, gov, and

edu) that identifies the type of organization.

19 Jan 2005

2005200231

MS306756.1

10

15

In some instances, the user knows, a priori, the name of the site or server,
and/or the URL to the site or server that the user desires to access. In such
situations, the user can access the site, as described above, via entering the URL
in the address bar and connecting to the site. However, in many instances, the
user does not know the URL or the site name. Instead, the user employs a search
engine to facilitate locating a site based on keywords provided by the user. In
general, the search engine is comprised of executable applications or programs
that search the contents of web sites and servers for keywords, and return a list of
links to web sites and servers where the keywords are found. Basically, the
search engine incorporates a web “crawler” (aka, a “spider” or a “robot”) that
retrieves as many documents as possible (e.g., via retrieving URLs associated
with the documents). This information is then stored such that an indexer can
manipulate the retrieved data. The indexer reads the documents, and creates a
prioritized index based on the keywords contained in each document and other
attributes of the document. Respective search engines generally employ a
proprietary algorithm to create indices such that meaningful results are returned
for a query.

Thus, a web-crawler is crucial to the operation of search engines. In order
to provide current and up-to-date search results, the crawler must constantly
search the web to find new web pages, to update old web page information, and to
remove deleted pages. The number of web pages found on the Internet is
astronomical. It therefore requires that a web-crawler be extremely fast. Since
most web-crawlers gather their data by polling servers that provide the web pages,
a crawler must also be as unobtrusive as possible when accessing a particular
server. In the extreme, the crawler can absorb all of the server’s resources very
quickly and cause the server to shut down. Generally, a crawler identifies itself to
a server and seeks permission before accessing a server’s web pages. At this
point, a server can deny access to an abusive crawler that steals all of the server’s
resources. A web page hosting server typically benefits from search engines,

because they allow users to find their web pages more easily. Thus, most servers

05 Jan 2011

2005200231

10

15

20

25

30

CANRPortbNDCC\EXN\3293406_1.DOC - 4/1/11

welcome crawlers, as long as they do not drain too much of the server’s resources, which
can detrimentally impede a users’ ability to exploit server contents. '

The sheer volume of information on the Internet today presents a seemingly
insurmountable obstacle to efficient web-crawling. For example, a typical web-crawler
attempting to catalogue every page on the Internet can take weeks or even months to
plod through them. A page that is updated a moment after it has been crawled might not
be recrawled for months, in which case the information associated with the page is not
accurately catalogued, which in turn reduces the efficiency with which a user can receive
information relevant to a search. Thus, there is an unmet need in the art for systems and

methods that improve web-crawling speed and efficiency.

SUMMARY

The following presents a simplified summary of the invention in order to provide
a basic understanding of some aspects of the invention. This summary is not an
extensive overview of the invention. It is not intended to identify key/critical elements
of the invention or to delineate the scope of the invention. Its sole purpose is to present
some concepts of the invention in a simplified form as a prelude to the more detailed
description that is presented later.

Some embodiments relate to a computer implemented system that facilitates
web-crawling, comprising:

a managing component that performs a predictive analysis to predict when an at
least one web page will change, and determines when, and how to perform web-
crawling;

a server computer component that implements a web-crawling component that
crawls subsets of web pages as a function of the predictive analysis, and discovers and
updates the pages in a catalogue of possible search results;

a decision-theoretic component that determines an appropriate time to crawl the
at least one web page and makes predictions regarding changes in at least one web page
based at least in part on:

a certainty of the predictive analysis;
the amount of historical data related to the at least one web page;

a probability that a particular outcome will occur, Pr;

05 Jan 2011

2005200231

10

15

20

25

30

CANRPortb\DCC\EXN\3293406_1.DOC - 4/1/11

a utility factor associated with each outcome, Utility(O); and
an action, a, selected from a set of possible actions, A, to be performed on

the at least one web page, which maximizes the value of:

> Prlo] a)x Utility(o)

oel

where o is an outcome selected from a set of possible outcomes, 0,
wherein the outcome o maximizes the efficiency of the web-crawling component
in discovering and updating changed web pages; and
a bundling component that rearranges crawled web pages into new subsets

according to the utility of the web pages.
Some embodiments relate to a method for prioritizing web pages for crawling,

comprising:
predicting a change in at least one subset of pages;
assigning a score to the at least one subset of web pages;

selectively crawling subsets of pages with higher scores before subsets of pages

with lower scores;
non-selectively crawling all uncrawled pages in sequence;

performing decision-theoretic analysis to determine when to crawl a page based

on:
a certainty of the predicted change;
the amount of historical data related to the at least one web page;
a set of possible actions, A, to be performed on the at least one web page;
a set of possible outcomes, O;
a probability that a particular outcome will occur, Pr; and
a utility factor associated with each outcome, Utility(O);

selecting an action, a, from the set of possible actions A, which maximizes the

value of:

Z Pr(o | a) X Utility(o)

oe0

where o is an outcome in the set of all possible outcomes, O; and
separating at least one subset of pages according to perceived utility of individual

pages within the subset.

Some embodiments relate to a method comprising:

05 Jan 2011

2005200231

10

15

20

25

C:\NRPortbNDCC\EXJ\3293406_1.DOC - 4/1/11

predicting when a web page will change in order to determine when, and how to

perform web-crawling;
crawling subsets of web pages based on the predicting when a web page will
change, to catalogue possible web page search results;
determining an appropriate time to crawl the web page and making predictions
regarding changes in at least one web page based at least in part on:
a certainty of the predicting;
the amount of historical data related to the at least one web page;
a probability that a particular outcome will occur, Pr;
a utility factor associated with each outcome, Utility(O); and
an action, a, selected from a set of possible actions, A, to be performed on

the at least one web page, which maximizes the value of:
Y Prlo] a)x Utility(o)

oe0

where o is an outcome selected from a set of possible outcomes, 0,
wherein the outcome o maximizes the efficiency of crawling in
discovering and updating changed web pages; and

rearranging the crawled web pages into new subsets according to the utility of the
web pages.

Embodiments provide systems and methods that facilitate predictive analysis of
web pages via a decision-theoretic approach to prioritizing web pages to be crawled.
According to some embodiments, a statistical approach to predicting when a web page
will change can be applied. The decision-theoretic web-crawling approach can
selectively choose pages to download in order to maximize an expected payoff. The
decision-theoretic approach comprises algorithms that facilitate page selection for
crawling based on a set of possible actions to be taken, a set of possible outcomes of the
actions, probability that a particular outcome will result from a particular action, and a
utility factor for each outcome, which captures the value of the outcome. Such
algorithms are employed to select a best action via applying a Maximum Expected

Utility Principal.

C:ANRPontbA\DCC\TXB\2988442_1 DOC - 31/5/10

-
—
‘ S - 5A-
5
—
~ According to some embodiments, web page change can be predicted to facilitate
—
a determination regarding page crawling priority. The probability that a web page has
— changed since the last crawl can be determined via analysis of, for example, historical
Q change information related to the specific page(s) in question, as well as historical
-
8 5 change data regarding other pages. Additionally, various features of page can be utilized
g to predict when the page will change. For example, a page’s URL can be analyzed to
8 determine whether it ends with “.html,” “.com,” etc. Similarly, features of the document

or HTML (e.g., whether it contains a table, a photo, efc.) can be assessed to predict a

page change. Furthermore, features of the words on a page and/or HTTP status

l———————'—%
' :

CANRPortHN\DCC\TXB\2651739 1. DOC - 25/3/10

-
—
S
=
=
O information obtained during page-download can be utilized to predict when the page will
N change.
According to some embodiments, feedback/feed-forward loops can be provided
to enhance web page change prediction. This aspect provides for creating a sample set
5 of URLs and crawling them at regular intervals regardless of change probability in order
to glean training data for learning probability predictors, tuning parameters of crawl
strategies, efc. Samples can be weighted by value, such value determined by, for

example, the number times a URL appeared in a result set for a user search, the
frequency with which a URL was clicked by a user who received the URL in a result set

10 for a search, etc. The sample set can be updated at regular intervals, such that individual
URLs or subsets of URLs can be traded in or out of the sample set, such that after a
period of time (e.g., a month, two months, efc.) the sample set can be completely new.
Alternatively, sample sets can be entirely swapped out according to a predefined
schedule.

15 To the accomplishment of the foregoing and related ends, certain illustrative
embodiments are described herein in connection with the following description and the
annexed drawings. These embodiments are indicative, however, of but a few of the
various ways in which the principles of the invention may be employed and the present
invention is intended to include all such aspects and their equivalents. Other features

20 may become apparent from the following detailed description, provided by way of

example, when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

2005200231

Figure 1 is an illustration of a web-crawling system 100 in accordance with some
25 embodiments.
Figure 2 is an illustration of a web-crawling system 200 in accordance with some
embodiments.
Figure 3 is an illustration of a web-crawling system 300 in accordance with some

embodiments detailing cooperative web-crawling components.

26 Mar 2010

2005200231

10

15

20

25

C:\NRPortb\DCC\TXB\2651739_1.DOC - 25/3110

Figure 4 is an illustration of a web-crawling system 400 in accordance with some
embodiments detailing cooperative web-crawling components.

Figure 5 is an illustration of a methodology 500 in accordance with some
embodiments.

Figure 6 is an illustration of a methodology 600 in accordance with some
embodiments.

Figure 7 is an illustration of a methodology 700 in accordance with some
embodiments.

Figure 8 is an illustration of a methodology 800 in accordance with some
embodiments.

Figure 9 is an illustration of a methodology 900 in accordance with some
embodiments.

Figures 10 and 11 are illustrations of exemplary computing environments 1000

and 1100 in accordance with some embodiments.

DETAILED DESCRIPTION

Embodiments are now described with reference to the drawings, wherein like
reference numerals are used to refer to like elements throughout. In the following
description, for purposes of explanation, numerous specific details are set forth in order
to provide a thorough understanding of the present invention. It may be evident,
however, that embodiments may be practiced without these specific details. In other
instances, well-known structures and devices are shown in block diagram form in order
to facilitate describing the embodiments.

As used in this application, the term “component” is intended to refer to a
computer-related entity, either hardware, a combination of hardware and software,
software, or software in execution. For example, a component may be, but is not limited
to being, a process running on a processor, a processor, an object, an executable, a thread

of execution, a program, and/or a computer. By way of illustration, both an application

26 Mar 2010

2005200231

10

15

20

25

CANRPortdNDCCA\TXB\2651739_1.DOC - 25/3/10

-7A -

running on a server and the server can be a computer component. One or more
components may reside within a process and/or thread of execution and a component
may be localized on one computer and/or distributed between two or more computers.
A “thread” is the entity within a process that the operating system kernel schedules for
execution. Each thread has an associated “context” which is the volatile data associated
with the execution of the thread. A thread’s context includes the contents of system
registers and the virtual address belonging to the thread’s process. Thus, the actual data
comprising a thread’s context varies as it executes.

Embodiments provide improved systems and methods of maintaining an index of
web documents. [t can also be utilized to retrieve and maintain data for other types of
information. Traditional web-crawlers have certain shortcomings which are alleviated
by described embodiments. Each client (e.g., a machine of any person who accesses the
Web) stores local information, so it can learn whether a web page has changed since the
last time the client visited it. If it has changed, the client can then communicate this
information to the search engine. Likewise, a server can use information about web
pages visited by clients to find pages currently unknown to the server. Effectively
finding documents and maintaining current knowledge about those documents is an
extremely important task for both intranet and Internet search. Described embodiments
can also be utilized in contexts such as intranet searches, where crawling pages and
keeping page information fresh on a server is an even greater challenge.

An important component of a search engine (for the Internet, an intranet, or
otherwise) is a data- or web-crawler. The web-crawler performs two primary tasks:
finding unknown documents to be indexed by the search engine and trying to ensure it
has up-to-date knowledge about each known document. Both of these tasks are difficult
and (along with page rank quality) are among the most important and visible quality
differentiators among search engines. Document crawlers are typically based on a server
model. A search engine crawls the Web by topological search. Beginning with a seed
set of known web pages, the crawler follows links from those pages and can thereby find

all web pages that are connected via a path (set of URL references) from the seed set.

26 Mar 2010

2005200231

10

15

C:ANRPonb\DCC\TXB\2651739_1.DOC - 25/3/10

-7B -

To ensure the search engine has up-to-date knowledge of a document collection, the
crawl has to be repeated frequently. Since the crawler revisits web pages each time it
crawls, it can learn how frequently a page (or subpage) changes, and recrawl certain
pages more frequently than others based on, for example, historical frequency of change,
predicted future change(s), etc.

There are a number of weaknesses with the current server-based crawling
paradigm. For example, a search engine can only learn about a change to a document
(e.g., a content change, or a page that no longer exists, efc.) when the crawler happens to
revisit the page. Conventional systems typically cannot adjust the frequency with which
they crawl frequently changing pages with any appreciable efficiency. Described
embodiments offer systems and methods for maintaining up-to-date knowledge about
known documents in a way that remedies the above mentioned weaknesses.

As used herein, the term “inference” refers generally to the process of reasoning
about or inferring states of the system, environment, and/or user from a set of
observations as captured via events and/or data. Inference can be employed to identify a
specific context or action, or can generate a probability distribution over states, for

example. The inference can be probabilistic—that is, the

19 Jan 2005

2005200231

MS306756.1

10

15

20

25

30

computation of a probability distribution over states of interest based on a
consideration of data and events. Inference can also refer to techniques employed
for composing higher-level events from a set of events and/or data. Such
inference results in the construction of new events or actions from a set of
observed events and/or stored event data, whether or not the events are correlated
in close temporal proximity, and whether the events and data come from one or
several event and data sources.

Figure 1 is an illustration of a system 100 that provides predictive
approach to prioritizing pages for crawling. The system 100 comprises a web-
crawling component 102 that crawls web pages in order to discover and update
the pages in a catalogue of possible search results. The web-crawling component
102 is operably associated with a bundling component 104 that prioritizes web
pages into sets, or “chunks,” based on the utility of the pages. The bundling
component 104 is further operably associated with a search server 106 that
contains subsets of items, such as URLs, that can be selected by a managing
component 108 for crawling by the crawling component 102. In this manner, the
search server 106 can be crawled by the crawling component 102 and
continuously reprioritized via the bundling component 104.

The system 100 facilitates predicting when a web page will change in
order to expedite crawling of the web page upon change so that the search server
can be updated without substantial delay. Such predictions can be made by
assessing the probability that a page has changed since the last time it was
crawled. In order to determine the probability that a web page has changed,
historical information related to the specific pages in question can be assessed
(e.g., the number of times the page has changed in the past, the magnitude of the
change(s), etc.), as well as historical data pertaining to changes in other pages. In
addition, one can use features of the URL of the page (e.g. whether the URL ends
with “html”, “.com”, etc.), features of the document or HTML (e.g., whether it
contains a table, a photo, etc.), features of the words on the page, and/or HTTP

status information obtained when downloading the page.

-

p—

-

N

S

=

O

S\

p—

()

N 5

-

S

N

w

-

S

N
10
15
20
25

CANRPortb\DCCITXB\2651739_1 . DOC - 25/3/10

-9.

The managing component 104 can build a statistical model to predict
probabilities associated with web page changes. Such statistical model can be, for
example, logistic regression, a probabilistic version of a support vector machine, etc. To
build a statistical model, the managing component 106 can collect training data germane
to the timing of web-pages change (and, in a more general sense, other aspects that
describe possible outcomes, such as the number of page-views, the degree of change,
etc.) for a set of pages, as well as a specific history of when each page changed. The
managing component 106 can further construct a training set by extracting features for
each page utilizing the contents of the page, the change history for the page, its URL, the
HTTP status messages associated with downloading the page, etc. In the case of
prediction for a “new page” scenario, the managing component 104 can use a subset of
this information (e.g. wherein history information is unavailable).

According to some embodiments, the system 100 can use the prediction of when
a web page will change to support a decision-theoretic to selectively downloading pages
to maximize the efficiency of the crawling component 102 in discovering and updating
changed web pages. A variety of factors can be employed to facilitate the decision-
theoretic choice of an appropriate time to crawl a specific page. For example, such
factors can comprise a set of possible actions, A; a set of possible outcomes, O; a
probability that a particular outcome will occur, Pr; and a utility factor associated with
each outcome, Utility(O), which captures the value of the particular outcome. Such
factors can be utilized to select a best action via applying the Maximum Expected Utility

principal. For example, an action is selected, a € A, which maximizes the value of?:

Z Pr(o |a)x Utility(o)

0e)

The set of all actions A can comprise all possible subsets of pages that can be
downloaded from the search server 106. Each single page can be considered
independently from other pages in order to simplify choosing an action, and sets of

page(s) can be chosen based on their individual ranking. This approach

19 Jan 2005

2005200231

MS306756.1

10

15

20

25

30

facilitates making decisions regarding which pages to update in the current time
period and mitigates problems associated with the time required to crawl every
page, which can be on the order of weeks or months.

Several outcomes O are possible for each chosen action. For example, an
outcome can be a decision not to download a page, a failed attempt to download a
page, a download of an unchanged page, and/or a download of a changed page.
Possible outcome variants can be expanded to comprise other aspects such as, for
example, the number of times a page might be viewed in an upcoming time period
(e.g., day, week, month, etc.), the magnitude of change(s) in the page, etc.

The utility function weights the value of each outcome, such that the value
of a page can be a function of the importance of the page, the number of times the
page is viewed in a given time period, the number of clicks on the page, the
specific links clicked on the page, the degree of change in a changed page, various
business rules (e.g., crawl every page once in each 4-week period, crawl a page at
most once per day, etc.), and/or any other suitable aspect associated with the
importance of the page.

Determining the probability that a given outcome will occur is of
paramount importance. A basic object of web-crawling is to assess the
probability that a page has changed since the last time 1t was crawled. In order to
accurately predict the probability that a particular outcome will occur, the
managing component can employ historical data pertaining to the specific pages
under review, as well as the history of changes to other pages, etc.

Selectively crawling such a vast expanse of pages necessitates a strategy
for determining which pages to crawl in the current and future time periods. For
example, if the page under review is a new page, then no historical data is
available to the managing component 108 upon which to base a prediction of
page-change probability. According to this example, the managing component
can rely on page contents, the URL of the page, etc. If the page is not new, then
the managing component can inspect available change history of the page in
addition to the information described above in reference to the new page.

Additionally, decision theory can also facilitate crawling a new page more

10

26 Mar 2010

2005200231

10

15

20

25

CANRPontb\DCC\TXB\2651739_1.DOC - 25/3/10

-11 -

frequently in order to augment and/or obtain information about the rate in which the
page changes. For example, if a probability predictor indicates that it is uncertain in its
prediction of when the page will change, the decision-theoretic can choose to be cautious
and crawl the page frequently, thus reducing the risk that the page will become
unacceptably out of date and providing more historical data, which can increase the
certainty of future probability predictions.

Additionally, the managing component 108 can instruct the crawling component
102 to perform category-specific crawling via employing a category such as, for
example, “baseball,” “stock prices,” efc. In this manner, the crawling component 102
can selectively crawl pages containing indicia of a particular category. Similarly, the
management component 108 can instruct the crawling component 102 to perform query-
specific crawling (e.g., “Australian Open,” “StockX,” efc.). Such examples represent
subjects wherein information changes frequently and, consequently, web pages related to
the subjects will be updated frequently (e.g., scores, prices, efc.). Such query-specific
crawling can enhance the efficiency of web page change prediction. Furthermore,
outcome space can be expanded to comprise the number of times a page will be viewed
in a future time period, the number and/or magnitude of page changes, efc.

Figure 2 is an illustration of a system 200 that bundles URLs according to their
utility, in accordance with some embodiments. A managing component 202 can
download chunks of web pages from a search server 204. A chunk can be, for example,
65,536 pages, 32,768 pages, or some other number of web pages grouped together. The
managing component 202 gleans information from subsets of the downloaded chunks,
each subset comprising at least one web page. Information gleaned by the managing
component 202 can comprise, for example, page content, URL, HTTP header
information, historical information, efc. The managing component 202 can then base a
prediction of the probability that a specific page or subset of pages has changed since a
previous crawl or will change before a scheduled subsequent crawl and instruct the web-
crawler 204 to take an action to facilitate a desired outcome (e.g., crawl the page if

change is imminent, ignore the page until scheduled crawl because change is not likely,

26 Mar 2010

2005200231

10

15

20

25

CANRPortbADCC\TXB\2651739_1.DOC - 25/3/10

-12-

etc.) Additionally, predictions can be made regarding the timing of a page change and/or
probability that a page will change on a specific future date or did change on a specific
past date. Such predictions can be employed to provide a distribution curve expressing
the probabilities that a page will change on one of several dates. Such predictions can be
definitive of which chunk a page should be part.

Once the selected pages have been crawled and pertinent information has been
updated, a bundling component 208 can receive URL information from the web-crawler
206 and repackage the URLs into new chunks (CHUNKS*) based on predictions of, for
example, when page(s) will change. The bundling component 208 can then restore the
repackaged CHUNKS* to the search server 204.

Figure 3 is an illustration of components of the web-crawler described herein in
accordance with some embodiments. A Round Robin component 302 is illustrated as it
crawls listed pages, 1-n, individually from top to bottom, as indicated by the hashed
arrows pointing vertically downward. The Round Robin component thus ensures that
every page will be crawled within the specified crawling period (e.g., 28 days), which in
turn guarantees that no page will be outdated by more than 28 days. It is to be
understood that the crawling period can be any sufficient time period for crawling a
search server and is not limited to a period of 28 days.

According to Figure 3, the Round Robin component 302 has crawled Chunk]1 (as
illustrated by the “RR” indicium in the lower left corner of Chunk1) and is in the process
of crawling Chunk2. Upon completion of the crawl of Chunk2, the Round Robin
component 302 can proceed to crawl Chunk3 to determine the content thereof.
However, a Greedy component 304 is in the process of crawling Chunk3, and, therefore,
the Round Robin component 302 can receive an indication that Chunk3 does not require
crawling. Thus, the next chunk the Round Robin component 302 will crawl is Chunk4.
It will be noted that the Greedy component 304 has already crawled the ChunkN, and
that the hashed vertical arrows associated with the Greedy component extend in both
directions along the list of chunks in the set to illustrate that the Greedy component 304

is not bound by the order of the chunks when crawling. Rather, the Greedy component

)
o
O
@\
—
s
\O
@\
o
N
o\
)
) S
. o\
s W
|)
! =)
| @\
10
15
20
25

C:ANRPortb\DCCA\TXB\2651739_1.DOC - 25/3/10

-13 -

304 can select chunks (which can be individual pages) to crawl based on a best score
such as, for example, a predictive score (e.g., a maximum average probability of having
changed since the last crawl), a utility score (e.g., the maximum average utility), and/or a
decision-theoretic score (e.g., a maximum expected utility), efc. In this manner, the
Round Robin component 302 can ensure that all chunks are crawled within a prescribed
time period while the Greedy component ensures that chunks with the highest utility
and/or change-potential scores are searched before those with lower scores.
Furthermore, the ability of the Round Robin component 302 to recognize that a chunk
has been crawled by the Greedy component 304 during the current crawling period
reduces the time required to crawl a chunk, search server, etc. Algorithms describing the
manner in which the Round Robin component 302 and Greedy component 304 cooperate
are described infra, with respect to Figures 7-9.

Figure 4 is an illustration of components of the web-crawler described herein in
accordance with some embodiments. The figure depicts a Round Robin component 402
at the perimeter of a chunk (e.g., subset of items, or pages, efc.) in order to illustrate the
ordered crawling of the chunk performed by the Round Robin component 402. As
illustrated, the Round Robin component 402 has crawled Chunk1 and is in the process of
crawling Chunk2. Chunks 1 and 2 are shown with an “RR” in the lower right corner to
indicate that each chunk has been, or is currently being, crawled by the Round Robin
component 402. A Greedy component 404 is illustrated at the center of the chunks in
order to more clearly demonstrate that the Greedy component 404 has access to all
chunks regardless of their Round Robin ordering. For example, the Greedy component
is currently crawling Chunk3 as indicated by the communications link connecting the
Greedy component 404 to Chunk3. It will be noted, however, that Chunk5 has already
been crawled by the Greedy component 404, despite the fact that ChunkS5 is positioned
after Chunk3. According to this example, the Greedy component 404 has determined
Chunk5 to have a higher score (e.g., predictive, utility, and/or decision-theoretic, efc.)
than Chunk3, and therefore crawled Chunk5 before Chunk3. The Round Robin

component 402 can attempt to crawl Chunk3 upon completion of Chunk2, but can

26 Mar 2010

2005200231

10

15

20

25

C:ANRPortb\DCCA\TXBA2651739_1 DOC - 25/3/10

-14 -

recognize that Chunk3 has been crawled by the Greedy component 404. Thus, the next
chunk that the Round Robin component will crawl will be Chunk4.

While, for purposes of simplicity of explanation, the one or more methodologies
shown herein, e.g., in the form of a flow chart, are shown and described as a series of
acts, it is to be understood and appreciated that the present invention is not limited by the
order of acts, as some acts may, in accordance with the present invention, occur in a
different order and/or concurrently with other acts from that shown and described herein.
For example, those skilled in the art will understand and appreciate that a methodology
could alternatively be represented as a series of interrelated states or events, such as in a
state diagram. Moreover, not all illustrated acts may be required to implement a
methodology in accordance with described embodiments.

Figure 5 is an illustration of a methodology for predictive web-crawling via a
Greedy algorithm in accordance with some embodiments. At 502, chunks are
downloaded from a search server to be crawled. At 504, chunk scores are determined to
facilitate a determination of which chunks to crawl. For example, a chunk score can be a
predictive score (e.g., a maximum average probability of having changed since the last
crawl, efc.), a utility score (e.g., the maximum average utility, erc.), and/or a decision-
theoretic score (e.g., the maximum expected utility, etc.). At 506, a determination can be
made regarding chunk scores as to whether a given chunk’s score warrants a Greedy
crawl (e.g., whether the crawler should crawl ahead of schedule, etc.). If the score of a
given chunk does not warrant a Greedy crawl, then the chunk will not be immediately
crawled. If the chunk’s score is sufficiently high to warrant a Greedy crawl, then at 508,
the chunks with sufficient scores can be crawled.

Figure 6 illustrates a methodology in accordance with some embodiments in
which the number of chunks chosen for crawling can be based on, for example, crawling
capacity. At 602, the crawling capacity of a web-crawler is determined (e.g., a
maximum number of chunks, M, that can possibly be crawled is assessed). At 604,
chunks can be downloaded from a search server for potential crawling. At 606, chunk

scores (e.g., predictive, utility-based, and/or decision-theoretic) can be determined to

)
p—
)
@\
S
=
\O
@\
p—
N
o\
)
) 5
@\
W
)
)
@\
10
\ 15
|
|
20
25

C \NRPortbhDCCATXB\2651739_1.DOC - 25/3/10

-15 -

facilitate a determination of which chunks to crawl. At 608, a determination can be
made regarding chunk scores and whether a given chunk’s score warrants a Greedy
crawl (e.g., whether the crawler should crawl ahead of schedule, etc.). If the score of a
given chunk does not warrant a Greedy crawl, then the chunk will not be immediately
crawled. If the chunk’s score is sufficiently high to warrant a Greedy crawl, then at 610,
the chunks with the best scores can be crawled.

Figure 7 is an illustration of a methodology 700 in accordance with some
embodiments in which a Greedy algorithm is employed in conjunction with a Round
Robin algorithm. Such embodiments employ the Greedy algorithm to choose the chunks
via utilizing predictive, utility-based, and/or decision-theoretic scores while guaranteeing
that all chunks can be crawled (in the future) before they are D days old. At 702, a
determination is made regarding what percentage of the crawling capacity is needed by
the Round Robin (11%) in order to guarantee that no URL is more than D days out of
date (e.g., to guarantee that all pages will be crawled at least once within D days). For
example, if 50% of available crawling capacity can, using the Round Robin algorithm,
guarantee that no chunk will be more than 28 days out of date, then the Round Robin
algorithm can crawl chunks according to their deadlines. Deadlines can be determined,
for instance, by assessing the last date a chunk was crawled. For example, if chunk A
was crawled 14 days ago, then its deadline is 14 days in the future. If chunk B was
crawled 7 days ago, then its deadline is 21 days in the future. Thus, chunk A will be
crawled before chunk B. According to this example, 50% of crawling capacity can be
assigned to Round Robin at 704.

At 706, the remainder of crawling capacity (1-rr%) can be assigned to the Greedy
algorithm (g%) for Greedy crawling. Then, at 708, a determination of the maximum
number of chunks (M) that can be crawled in a time period can be determined, for
example, by assessing the size of the chunks to be selected and the length of the time
period, where crawling speed is a known value. At 710, a determination can be made
regarding which particular chunks are to be crawled (TBC). Next, at 712, a floor is

selected for the number of chunks with best scores to be added to TBC, using the

I

26 Mar 2010

2005200231

10

15

20

25

CANRPonbADCCATXB\2651739_t DOC - 25/3/10

-16 -

formula g%*M. For example, if g% is 55%, and M is equal to 5, then g%*M equals
2.75, and the floor will be 2. Finally, at 714, a selection is made of the oldest chunks via
the formula M-size(TBC), which chunks are added to TBC. In this manner, chunks are
selected for Greedy crawling while the Round Robin algorithm ensures that all chunks
will be crawled during a given time period.

Figure 8 is an illustration of a methodology 800 in accordance with some
embodiments in which a Greedy algorithm is employed in conjunction with a Round
Robin algorithm. At 802, a determination is made regarding what percentage of the
crawling capacity is needed by the Round Robin (%) in order to guarantee that no URL
is more than D days out of date (e.g., to guarantee that all pages will be crawled at least
once within D days). Crawling capacity can then be assigned to Round Robin at 804.
At 806, the remainder of crawling capacity (1-rr%) can be assigned to the Greedy
algorithm (g%) for Greedy crawling. Then, at 808, a determination of the maximum
number of chunks (M) that can be crawled in a time period can be determined, for
example, by assessing the size of the chunks to be selected and the length of the time
period, where crawling speed is a known value. At 810, a determination can be made
regarding which particular chunks are to be crawled (TBC).

At 812, a ceiling is selected based on the formula rr%*M for a number of chunks
to be added to TBC. For example, if rr% equals 53% and M is equal to 10, then rr%*M
equals 5.3, and the resultant ceiling value will be 6. At 814, the oldest M-size(TBC)
chunks with best scores (e.g., predictive, utility, and/or decision-theoretic, erc.) are
selected and added to TBC. In this manner, chunks are selected for Greedy crawling
while the Round Robin algorithm ensures that all chunks will be crawled during a given
time period.

Figure 9 is an illustration of a methodology 900 in accordance with some
embodiments in which a Greedy algorithm is employed in conjunction with a Round

Robin algorithm. It is possible that Round Robin can

19 Jan 2005

2005200231

MS306756.1

10

15

20

finish crawling all the chunks sooner than it needs to when employing the above
described methodologies. This can occur because Greedy is also crawling
chunks. For example, if all the chunks need to be crawled in within a 28-day
period, employing methodology 700 or 800 can result in all the pages in fact
being crawled in 20 days. To account for this potential occurrence, the following
algorithm is set forth in detail.

Let C be the set of chunks and C0,C1,...,Cn is a partition of C where Cj

+ are the chunks that are due in j time periods and Nj be the number of chunks in

Cj. The number of members in the partition (e.g., n) of C is a function of the
maximum out-of-date allowance. Let L be the maximum number of chunks that
that are desired be crawled in a time period (e.g., to guarantee that no chunk is
more than D days out of date), and let M be the maximum number of chunks that
can possibly be crawled in a time period, where M is greater than or equal to L.
Let TBC be the set of chunks to be crawled in the current time period. Note that,
in the “for” loop below, R is used to store the number of chunks required to be
crawled after the current day with due date < j, and PQ 1s a priority queue of

chunks prioritized by the score for the chunk.

17

19 Jan 2005

2005200231

MS306756.1

as described herein supra (e.g. predictive, utility, and/or decision-theoretic). At

904, chunks are sorted according to due dates (e.g., chunks due to be crawled in j
5 time are comprised by the set Cj; which has Nj chunks). At 906, chunks in Cj are

added to a priority queue (PQ). Then, at 908, a determination of the size of PQ is

Assign each chunk a score (either predictive, utility or
decision-theoretic);
TBC =C0;
Initialize PQ = {};
Forj=1ton
{
Add chunks in Cj to priority queue PQ;
While (size(PQ) >j * L) //exceeded capacity, therefore
meet capacity by shifting item(s)

Move top item from PQ to TBC

}

}
// Choose chunks to fill up crawl capacity

While(size(TBC) < M)
{
Move top item from PQ to TBC

}
Return TBC;

}

Still referring to Figure 9, at 902 each chunk CO...Cn is assigned a score

made with regard to a value j*L, where L is the maximum desired number of

chunks to be crawled. If PQ is smaller than j*L, then such information can be

employed to provide feedback and the method can revert to 906 for further

10 addition of chunks. If PQ is greater than j*L, then at 910 the top chunk in PQ can

18

26 Mar 2010

2005200231

10

15

20

25

C:ANRPortbADCC\TXB\2651739_) DOC - 25/3/10

-19.

be moved to a set of chunks to be crawled (TBC). At 912, a determination is made
regarding the size of TBC with respect to M, where M is the maximum number of
chunks that can possibly be crawled in a time period. If TBC is less than M (e.g., there
is still room in TBC for more chunks, etc.) then the method can revert to 910 to move
then the next top chunk in PQ to TBC. If it is determined at 912 that the size of TBC is
not less than M, then at 914, TBC can be returned to the web-crawler for crawling. In
this manner, chunk status and crawling deadlines can be continuously updated in order to
capitalize on an occurrence wherein Round Robin and Greedy algorithms cooperatively
perform a crawl in less time than is required.

Some embodiments can employ feedback loop(s) in conjunction with web page
change prediction. For example, in addition to the regular crawling described above, a
sample of URLs can be selected and crawled at regular intervals, regardless of the
probability of change, to provide training data for learning probability predictors and for
tuning crawling strategies. Such can also provide data that can facilitate testing crawling
strategies, building metrics for such testing, and validating crawling methods. For
instance, a sample size of 64,000 URLs can be sufficiently large to be useful, and
samples need not be uniform across all URLs, but rather can be weighted by value.
According to one aspect, sample value can be determined by picking URLs from a result
set sent to users who use a given search engine. Furthermore, available click-through
information can be utilized to facilitate determining suggested URLs on which users
click in order to weight such URLs more than others samples in a result set.

The crawling interval can be matched to the maximum frequency of crawling
episodes in the production environment (e.g., daily, hourly, efc.). Some embodiments
are not limited by such intervals. Additionally, random crawling can be useful because it
is independent of the production crawl strategy.

Pages in the sample can be crawled normally, too. According to this aspect,
URLSs need not be moved to this sample, but rather can be copied thereto. Periodically,

(e.g. every month, two months, efc.), a new sample can be taken.

19 Jan 2005

2005200231

MS306756.1

10

15

20

25

30

Alternatively, URLs can be traded in and out smoothly so that over the course of a
month (or two, etc.), the sample will be new compared to the preceding month.
According to this aspect, a greater amount of data about each URL can be
retained than with regular crawling. By way of example, regular crawling might
only permit retention of the number of times a web page changed, the number of
times it was the same, and/or the average interval between crawls of the web
page. However, the feedback protocols described herein can permit retention of
information related to, for example, whether a web page changed on a given day.
Furthermore, for each URL in the sample, records can be maintained regarding its
initial conditions (e.g., the information about a particular page as gleaned during
regular crawl). Thus, a web-crawling simulation is not required to assume that
each URL in a sample is anew URL. In this manner, web-crawling strategies
can be enhanced to increase the freshness of pages with a higher rate of change
relative to pages that change only infrequently, which in turn facilitates
employing significantly fewer machines to produce significantly fresher results.
In order to provide additional context for implementing various aspects of
the present invention, Figure 10 and the following discussion is intended to
provide a brief, general description of a suitable computing environment 1000 in
which the various aspects of the present invention may be implemented. While
the invention has been described above in the general context of computer-
executable instructions of a computer program that runs on a local computer
and/or remote computer, those skilled in the art will recognize that the invention
also may be implemented in combination with other program modules.
Generally, program modules include routines, programs, components, data
structures, etc. that perform particular tasks and/or implement particular abstract
data types. Moreover, those skilled in the art will appreciate that the inventive
methods may be practiced with other computer system configurations, including
single-processor or multi-processor computer systems, minicomputers, mainframe
computers, as well as personal computers, hand-held computing devices,
microprocessor-based and/or programmable consumer electronics, and the like,

each of which may operatively communicate with one or more associated devices.

20

19 Jan 2005

2005200231

MS306756.1

10

15

20

25

30

The illustrated aspects of the invention may also be practiced in distributed
computing environments where certain tasks are performed by remote processing
devices that are linked through a communications network. However, some, if
not all, aspects of the invention may be practiced on stand-alone computers. In a
distributed computing environment, program modules may be located in local
and/or remote memory storage devices.

As used in this application, the term “component” is intended to refer to a
computer-related entity, either hardware, a combination of hardware and software,
software, or software in execution. For example, a component may be, but is not
limited to, a process running on a processor, a processor, an object, an executable,
a thread of execution, a program, and a computer. By way of illustration, an
application running on a server and/or the server can be a component. In addition,
a component may include one or more subcomponents.

With reference to Figure 10, an exemplary system environment 1000 for
implementing the various aspects of the invention includes a conventional
computer 1002, including a processing unit 1004, a system memory 1006, and a
system bus 1008 that couples various system components, including the system
memory, to the processing unit 1004. The processing unit 1004 may be any
commercially available or proprietary processor. In addition, the processing unit
may be implemented as multi-processor formed of more than one processor, such
as may be connected in parallel.

The system bus 1008 may be any of several types of bus structure
including a memory bus or memory controller, a peripheral bus, and a local bus
using any of a variety of conventional bus architectures such as PCI, VESA,
Microchannel, ISA, and EISA, to name a few. The system memory 1006 includes
read only memory (ROM) 1010 and random access memory (RAM) 1012. A
basic input/output system (BIOS) 1014, containing the basic routines that help to
transfer information between elements within the computer 1002, such as during
start-up, is stored in ROM 1010.

The computer 1002 also may include, for example, a hard disk drive 1016,

amagnetic disk drive 1018, e.g., to read from or write to a removable disk 1020,

21

19 Jan 2005

2005200231

MS306756.1

10

15

20

25

30

and an optical disk drive 1022, e.g., for reading from or writing to a CD-ROM
disk 1024 or other optical media. The hard disk drive 1016, magnetic disk drive
1018, and optical disk drive 1022 are connected to the system bus 1008 by a hard
disk drive interface 1026, a magnetic disk drive interface 1028, and an optical
drive interface 1030, respectively. The drives 1016-1022 and their associated
computer-readable media provide nonvolatile storage of data, data structures,
computer-executable instructions, etc. for the computer 1002. Although the
description of computer-readable media above refers to a hard disk, a removable
magnetic disk and a CD, it should be appreciated by those skilled in the art that
other types of media which are readable by a computer, such as magnetic
cassettes, flash memory cards, digital video disks, Bernoulli cartridges, and the
like, can also be used in the exemplary operating environment 1000, and further
that any such media may contain computer-executable instructions for performing
the methods of the present invention.

A number of program modules may be stored in the drives 1016-1022 and
RAM 1012, including an operating system 1032, one or more application
programs 1034, other program modules 1036, and program data 1038. The
operating system 1032 may be any suitable operating system or combination of
operating systems. By way of example, the application programs 1034 and
program modules 1036 can include facilitating client-based web-crawling in
accordance with an aspect of the present invention.

A user can enter commands and information into the computer 1002
through one or more user input devices, such as a keyboard 1040 and a pointing
device (e.g., a mouse 1042). Other input devices (not shown) may include a
microphone, a joystick, a game pad, a satellite dish, wireless remote, a scanner, or
the like. These and other input devices are often connected to the processing unit
1004 through a serial port interface 1044 that is coupled to the system bus 1008,
but may be connected by other interfaces, such as a parallel port, a game port or a
universal serial bus (USB). A monitor 1046 or other type of display device is also

connected to the system bus 1008 via an interface, such as a video adapter 1048.

22

19 Jan 2005

2005200231

MS306756.1

10

15

20

25

30

In addition to the monitor 1046, the computer 1002 may include other peripheral
output devices (not shown), such as speakers, printers, etc.

It is to be appreciated that the computer 1002 can operate in a networked
environment using logical connections to one or more remote computers 1060.
The remote computer 1060 may be a workstation, a server computer, a router, a
peer device or other common network node, and typically includes many or all of
the elements described relative to the computer 1002, although, for purposes of
brevity, only a memory storage device 1062 is illustrated in Figure 10. The
logical connections depicted in Figure 10 can include a local area network (LAN)
1064 and a wide area network (WAN) 1066. Such networking environments are
commonplace in offices, enterprise-wide computer networks, intranets and the
Internet.

When used in a LAN networking environment, for example, the computer
1002 is connected to the local network 1064 through a network interface or
adapter 1068. When used in a WAN networking environment, the computer 1002
typically includes a modem (e.g., telephone, DSL, cable, etc.) 1070, or is
connected to a communications server on the LAN, or has other means for
establishing communications over the WAN 1066, such as the Internet. The
modem 1070, which can be internal or external relative to the computer 1002, is
connected to the system bus 1008 via the serial port interface 1044. In a
networked environment, program modules (including application programs 1034)
and/or program data 1038 can be stored in the remote memory storage device
1062. It will be appreciated that the network connections shown are exemplary
and other means (e.g., wired or wireless) of establishing a communications link
between the computers 1002 and 1060 can be used when carrying out an aspect of
the present invention.

In accordance with the practices of persons skilled in the art of computer
programming, the present invention has been described with reference to acts and
symbolic representations of operations that are performed by a computer, such as
the computer 1002 or remote computer 1060, unless otherwise indicated. Such

acts and operations are sometimes referred to as being computer-executed. It will

23

26 Mar 2010

2005200231

10

15

20

25

CANRPontbNDCCA\TXBA\2651739_1.DOC - 25/3/10

-24.-

be appreciated that the acts and symbolically represented operations include the
manipulation by the processing unit 1004 of electrical signals representing data bits
which causes a resulting transformation or reduction of the electrical signal
representation, and the maintenance of data bits at memory locations in the memory
system (including the system memory 1006, hard drive 1016, floppy disks 1020, CD-
ROM 1024, and remote memory 1062) to thereby reconfigure or otherwise alter the
computer system's operation, as well as other processing of signals. The memory
locations where such data bits are maintained are physical locations that have particular
electrical, magnetic, or optical properties corresponding to the data bits.

Figure 11 is another block diagram of a sample computing environment 1100
with which described embodiments can interact. The system 1100 further illustrates a
system that includes one or more client(s) 1102. The client(s) 1102 can be hardware
and/or software (e.g., threads, processes, computing devices). The system 1100 also
includes one or more server(s) 1104. The server(s) 1104 can also be hardware and/or
software (e.g., threads, processes, computing devices). The servers 1104 can house
threads to perform transformations by employing described embodiments, for example.
One possible communication between a client 1102 and a server 1104 can be in the form
of a data packet adapted to be transmitted between two or more computer processes.
The system 1100 includes a communication framework 1108 that can be employed to
facilitate communications between the client(s) 1102 and the server(s) 1104. The
client(s) 1102 are operably connected to one or more client data store(s) 1110 that can be
employed to store information local to the client(s) 1102. Similarly, the server(s) 1104
are operably connected to one or more server data store(s) 1106 that can be employed to
store information local to the servers 1104.

In some embodiments, where a data packet is transmitted between two or more

computer components that facilitate web-crawling, the data packet is comprised of, at

26 Mar 2010

2005200231

10

15

20

25

C\NRPorbNDCC\TXB\2651739_1.DOC - 25/3/10

225 -

least in part, information relating to web-crawling that utilizes, at least in part, a
distributed system for web-crawling.

Some embodiments relate to a computer readable medium or media storing
computer executable components of a system for facilitating web-crawling is comprised
of, at least in part, a web-crawling system that determines, at least in part, information
pertaining to web pages compiled by a distributed system for web-crawling.

It is to be appreciated that the described systems and/or methods can be utilized
in web-crawling systems facilitating computer components and non-computer related
components alike. Further, the described systems and/or methods are employable in a
vast array of electronic related technologies, including, but not limited to, computers,
servers and/or handheld electronic devices and the like which can be wired and/or
wireless and the like.

Embodiments can be utilized not only for server to client based crawling systems
but also for peer-to-peer crawling systems. It is also possible that a client can perform
tasking typically associated with “server” behavior and thus transfer some characteristics
associated with the server to the client in some instances. An example is a client that
performs “sub-crawls” to other clients to ascertain and/or retrieve information to send to
a server. This instance can be beneficial, for example, in networks that have bottlenecks
between certain clients and a server. Data can be transferred to a client with the best
access to the server. In other instances, a client can exhibit server behavior by initiating
sub-crawls in an intranet system, thus reporting out information to a server from only a
single and/or substantially reduced number of clients present on the intranet. In this
manner a search server can initiate multiple sub-crawls in clients to expand its crawling
resources.

What has been described above includes example embodiments. It is, of course,

not possible to describe every conceivable combination of components or methodologies

26 Mar 2010

2005200231

10

CANRPonb\DCC\TXB\2651739_1.DOC - 25/3/10

=26 -

for purposes of describing the present invention, but one of ordinary skill in the art may
recognize that many further combinations and permutations of described features are
possible. Accordingly, the present invention is intended to embrace all such alterations,
modifications and variations that fall within the spirit and scope of the invention.

Throughout this specification and the claims which follow, unless the context
requires otherwise, the word "comprise”, and variations such as "comprises" or
"comprising"”, will be understood to imply the inclusion of a stated integer or step or
group of integers or steps but not the exclusion of any other integer or step or group of
integers or steps.

The reference to any prior art in this specification is not, and should not be taken
as, an acknowledgement or any form of suggestion that that prior art forms part of the

common general knowledge in Australia.

05 Jan 2011

2005200231

10

15

20

25

30

C\NRPonbADCCEXN3293406_1.DOC-40172011

-27-
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer implemented system that facilitates web-crawling, comprising:

a managing component that performs a predictive analysis to predict when an at
least one web page will change, and determines when, and how to perform web-crawling;

a server computer component that implements a web-crawling component that
crawls subsets of web pages as a function of the predictive analysis, and discovers and
updates the pages in a catalogue of possible search results;

a decision-theoretic component that determines an appropriate time to crawl the at
least one web page and makes predictions regarding changes in at least one web page
based at least in part on:

a certainty of the predictive analysis;
the amount of historical data related to the at least one web page;

a probability that a particular outcome will occur, Pr;
a utility factor associated with each outcome, Utility(O); and

an action, a, selected from a set of possible actions, A, t0 be performed on

the at least one web page, which maximizes the value of:

Z Prlo] a)x Utility(o)

oe0
where o is an outcome selected from a set of possible outcomes, O, wherein

the outcome o maximizes the efficiency of the web-crawling component in
discovering and updating changed web pages; and

a bundling component that rearranges crawled web pages into new subsets

according to the utility of the web pages.

2. The system of claim 1, wherein the predictive analysis is based at least in part on

the utility of the at least one web page.

3. The system of claim 1 or claim 2, wherein the predictive analysis is based at least

in part on historical data related to the at least one web page.

4. The system of any one of claims 1 to 3, wherein the predictive analysis is based at

least in part on content contained in the at least one web page.

05 Jan 2011

2005200231

10

15

20

25

30

C:\NRPonbhNDCOEXNI293406_).DOC4/0172011

-8 -

5. The system of any one of claims 1 to 4, wherein the web-crawling component
comprises a Round Robin crawling component that sequentially crawls web pages in a
subset and ensures that every web page will be crawled within a crawling period, and a
Greedy crawling component that non-sequentially crawls pages according to a score

associated with each page.

6. A method for prioritizing web pages for crawling, comprising:
~ predicting a change in at least one subset of pages;
assigning a score to the at least one subset of web pages;
selectively crawling subsets of pages with higher scores before subsets of pages
with lower scores;
non-selectively crawling all uncrawled pages in sequence;
performing decision-theoretic analysis to determine when to crawl a page based on:
a certainty of the predicted change;
the amount of historical data related to the at least one web page;
a set of possible actions, A, to be performed on the at least one web page;
a set of possible outcomes, O;
a probability that a particular outcome will occur, Pr; and
a utility factor associated with each outcome, Utility(O);
selecting an action, a, from the set of possible actions A, which maximizes the

value of’

Z Prlo|a)x Utility(o)

0e0

where 0 is an outcome in the set of all possible outcomes, O; and
separating at least one subset of pages according to perceived utility of individual

pages within the subset.

7. The method of claim 6, further comprising rebundling separated pages into new

subsets according to the perceived utility of the separate pages.

8. The method of claim 6 or claim 7, further comprising making predictions regarding

when a web page will change based at least in part on a number of previous

17 Jun 2010

2005200231

C.ANRPortbADCC\T XB\2988442_1 DOC - 31/8/10

-29.

crawls of the page.

9. The method of any one of claims 6 to 8, wherein the predicting is based on at
least one of a universal resource locator (URL) of the page and a web site that points to

the URL of the page if the page has not been crawled previously.

10. The method of any one of claims 6 to 8, wherein the predicting is based on at
least one of a URL of the page, a web site that points to the URL of the page, a hypertext
transfer protocol (HTTP) header of the page, and content of the page if the page

previously has been crawled only once.

11. The method of any one of claims 6 to 8, wherein the predicting is based on at
least one of a URL of the page, a web site that points to the URL of the page, an HTTP
header of the page, content of the page, history of changes to the page, and delta

information related to the page if the page previously has been crawled more than once.

12. The method of claim 11, wherein delta information comprises analyzing the

context of the page to determine differences in the page from one crawl to the next.

13. The method of any one of claims 6 to 12, wherein the sequence in which all

uncrawled pages are non-selectively crawled is based on a time since the last crawl.

14. The method of claim 13, further comprising ensuring that no web page goes

uncrawled for more than a predetermined time period.

15. The method of any one of claims 6 to 14, wherein the score is at least one of a

predictive score, a utility score, and a decision theoretic score.

16. The method of any one of claims 6 to 15, further comprising weighting a score of
at least one web page based on at least one of:

probability of having changed;

05 Jan 2011

2005200231

10

15

20

25

30

C:ANRPortbADCO\EXN\3293406_1.DOC-401/12011

-30-

maximum average utility, and

maximum expected utility.

17. The method of any one of claims 6 to 16, further comprising ensuring that no web

page is more than D days out of date, where D is a real number.

18. A method comprising:

predicting when a web page will change in order to determine when, and how to
perform web-crawling;
crawling subsets of web pages based on the predicting when a web page will
change, to catalogue possible web page search results;
determining an appropriate time to crawl the web page and making predictions
regarding changes in at least one web page based at least in part on:
a certainty of the predicting;
the amount of historical data related to the at least one web page;
a probability that a particular outcome will occur, Pr;
a utility factor associated with each outcome, Utility(O); and
an action, a, selected from a set of possible actions, A, to be performed on

the at least one web page, which maximizes the value of:

Z Prlo| a)x Utility(o)

0e0
where o is an outcome selected from a set of possible outcomes, O, wherein
the outcome o maximizes the efficiency of crawling in discovering and
updating changed web pages; and
rearranging the crawled web pages into new subsets according to the utility of the

web pages.

19. The method of claim 18, wherein the predicting is based at least in part on the

utility of the at least one web page.

20. The method of claim 18 or claim 19, wherein the predicting is based at least in part

on historical data related to the at least one web page.

30 Sep 2010

2005200231

10

C:WRPonbADCCEXJU114164_1.D0C-29/0972010

231 -

21. The method of any one of claims 18 to 20, wherein the predicting is based at least

in part on content contained in the at least one web page.

22. The method of any one of claims 18 to 21, further comprising sequentially crawling
web pages in a subset within a crawling period, and non-sequentially crawling pages

according to a score associated with each page.

23. Computer-readable storage storing executable program instructions for performing

the method of any one of claims 6 to 22 or for implementing the system of any one of

claims 1 to S.

24, A system comprising means for performing the method of any one of claims 6 to

22 or for implementing the system of any one of claims 1 to 5.

2005200231 19 Jan 2005

1/11

»—100
1oz~*\\\
o WEB-CRAWLER
o COMPONENT
108-—\\\ l ///——104
MANAGING BUNDLING
COMPONENT COMPONENT
SEARCH SERVER |e———

N 106

FIG. 1

Oy 1 U

2005200231 19 Jan 2005

206
_\

2/11

/— 200

/—— 202

- MANAGING
WEB-CRAWLER | PAGE INFO COMPONENT
URLs CHUNKS
y
208 — BUNDLING SEARCH SERVER
COMPONENT
L . || CHUNK || CHUNK.
CHUNK
CHUNKS*
[orRL] [urL] | |
CHUNK || CHUNK
[URL] |URL|

A AP 5 %1518 i e a3 s

A e o e 8 % 8 v A A

2005200231 19 Jan 2005

3/11

— 300
!!!illill'
302
v
ROUND ROBIN -
CRAWLER ’1—’
(RR)
| /,_304
CRAWLER
(6)
1'!!!!!]'
o
®
°
" /

FIG. 3

2005200231 19 Jan 2005

4/11

402
_\

ROUND ROBIN
CRAWLER

404 \
GREEDY
CRAWLER

CHUNK 4

2005200231 19 Jan 2005

5/11

START

DOWNLOAD CHUNK(S)
FROM SERACH SERVER

DETERMINE CHUNK
SCORES

DOES SCORE ™
WARRANT GREEDY
CRAWL?

— 506

CRAWL CHUNK(S) WITH
SUFFICIENT SCORE

/—— 508

FIG. §

2005200231 19 Jan 2005

6/11

DETERMINE CRAWLING
CAPACITY

f- 602

r

DETERMINE NUMBER
OF CHUNKS AND
DOWNLOAD FROM
SERACH SERVER

604

l

DETERMINE CHUNK
SCORES

/— 606

NO

DOES SCORE
WARRANT GREEDY
CRAWL?

608

CRAWL CHUNK(S) WITH
SUFFICIENT SCORE

/—— 610

END

FIG. 6

O gy

2005200231 19 Jan 2005

START

702 '\

DETERMINE FRACTION
OF CRAWLING
CAPACITY REQUIRED
BY ROUND ROBIN

712
/_

l

704
T\

ASSIGN REQUIRED
PERCENTAGE OF
CRAWLING CAPACITY
TO ROUND ROBIN

SELECT THE FLOOR
(GREEDY % *M) CHUNKS
WITH BEST SCORE AND

ADD TO TBC

l S~ ;/14

l

706
\

ASSIGN REMAINING
PERCENTAGE OF
CRAWLING CAPACITY
TO GREEDY

SELECT THE OLDEST
M-SIZE(TBC) CHUNKS
AND ADD TO TBC

708 \

DETERMINE THE
MAXIMUM NUMBER OF
CHUNKS (M) THAT CAN

BE CRAWLED IN A TIME

PERIOD

710 —\

DETERMINE THE SET
OF CHUNKS TO BE
CRAWLED (TBC)

END

FIG. 7

2005200231 19 Jan 2005

8/11

START

802 \

DETERMINE FRACTION
OF CRAWLING
CAPACITY REQUIRED
BY ROUND ROBIN

Y

804
N

ASSIGN REQUIRED
PERCENTAGE OF
. CRAWLING CAPACITY
TO ROUND ROBIN

SELECT THE OLDEST
CEILING (RR% *M)
CHUNKS AND ADD TO
TBC

7 —— 814

/

806 ~\

ASSIGN REMAINING
PERCENTAGE OF
CRAWLING CAPACITY

o "T'O"_GR'EEDY‘ AU P

SELECT THE OLDEST
M-SIZE(TBC) CHUNKS
WITH BEST SCORE AND
ADD TO TBC

'

808 —\

DETERMINE THE
MAXIMUM NUMBER OF
CHUNKS (M) THAT CAN
BE CRAWLED IN A TIME

PERIOD

l

810-\

DETERMINE THE SET
OF CHUNKS TO BE
CRAWLED (TBC)

TEND

FIG. 8

e A < 8 e S ems r A m e e ea e e

e A A~ ey,

2005200231 19 Jan 2005

9/11

START

ASSIGN EACH CHUNK A
SCORE

l

SORT SET OF CHUNKS
DUE FOR CRAWLING IN
GIVEN TIME PERIOD(S)

l

ADD DUE CHUNKS TO
PRIORITY QUEUE (PQ)

908

SIZE OF PQ > j*L ?

YES

MOVE TOP ITEM FROM

PQ TO TBC

912

SIZE OF TBC <M ?

NO

914 N

RETURN TBC FOR
CRAWLING

END

FIG. 9

S A AP A Y YT A nh e 8 e m s e mn me e n e o

2005200231 19 Jan 2005

10/11

1002
yan
- | 1030
PROCESSING _ | | "OPERATING SYSTEM '
UNIT 1004 IRty gl)
' 1032
oo/ 1006 | 1_ APPLICATIONS |
SYSTEM C 1034
MEMORY L 1012 7‘: | MODULES !
» | 1036
<« | RAM } == o -
' .)
ROM]
p=
<«—p»| INTERFACE }« > W iore & mpD /|
/]
1026 FDD - 1018
«—>| INTERFACE [¢——>]
T = 71| pbsk. [L}. S
g 1 1020 _ [
A 1028 D DRIVE MONITOR
«—>| INTERFACE [¢——> e 1038
1046 DISK :
4 > KEYBOARD
| vibeo |
1 ADAPTOR — 1040
£ 1942 W IRED/WIRELESS) MOUSE
INPUT [€ :
1058 1054 1048
«—>| DEVICE L v L
INTERFACE (% » MODEM [« » WAN (<> REMOTE
» ' COMPUTER(S)
| £~ 1056 L~ 1052
| NETWORK |_ o ks 1050
ADAPTOR (WIRED/WIRELESS) >
L] ' MEMORY/
STORAGE

FIG. 10

2005200231 19 Jan 2005

Ve 1102
CLIENT(S)

3

N
CLIENT DATA STORE(S)

11/11

SERVER(S)

A

COMMUNICATION

FRAMEWORK 1110

1106

SERVER DATA STORE(S)

F1G. 11

A et et @ e oL o eeen e,

———

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

