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CONFIGURABLE DATA REPLICATION

BRIEF DESCRIPTION OF DRAWINGS

{0001} Figore 1A illustrates a first example svstem for data storage in accordance with some
mplementations.

{8602} Figure 1B illustrates a second example system for data storage in accordance with
some mnplementations.

{8603} Figure 1{ illusteates a third example system for data storage in accordance with some
mmplementations.

1080604} Figure 1D tustrates a fourth example system for data storage in accordance with
some mmplementations.

{0603} Figure 2A 15 a perspective view of a storage cluster with multiple storage nodes and
mternal storage coupled to each storage node to provide network attached storage, in
accordance with some embodiments.

{8606} Figure 2B 1s a block diagram showing an interconnect switch coupling multiple
storage nodes in accordance with some embodiments.

{8807} Figure 2C 18 a multiple level block diagram, showing contents of a storage node and
contents of one of the non-volatile solid state storage units in accordance with some
embodiments.

[0008] Figure 2D shows a storage server environment, which uses embodiments of the
storage nodes and storage units of some previous figures i accordance with some
embodiments.

{0009} Figurc 2E 1s a blade hardware block diagram, showing a control plane, compute and
storage planes, and authorities interacting with underlving physical resources, in accordance
with some embodiments.

100610} Figure 2F depicts elasticity sofiware lavers in blades of a storage cluster, in
accordance with some embodiments.

[86011] Figure 2G depicts authorities and storage resources in blades of a storage cluster, in
accordance with some embodimenis.

[B0012] Figure 3A sets forth a diagram of a storage system that is coupled for data
communications with a cloud services provider in accordance with some embodiments of the
present disclosure.

106013 Figure 3B sets forth a diagram of a storage system in accordance with some

embodiments of the present disclosure.



WO 2021/050875 PCT/US2020/050408

{86014} Figure 3C sets forth an example of a cloud-based storage system in accordance with
some embodiments of the present disclosure.

{00015} Figurc 3D illustrates an exemplary computing device that may be specifically
configured to perform one or more of the processes described herem,

{8001 6] Figure 4A sets forth a block diagram illustrating a plurality of storage systems that
suppott a pod according to some embodiments of the present disclosure.

{80017} Figure 4B scts forth a block diagram illustrating a metadata representation that
supports a pod and configurable data replication according to some embodiments of the
present disclosure.

[00018] Figure 5 sets forth a block diagram illustrating a plurality of storage systems that
support a pod according to some embodiments of the present disclosure,

[80019] Figure 6 scts forth a block diagram iHustrating a plurality of storage systems that
support configurable data replication according to some embodiments of the present
disclosure.

180028} Figure 7 sets forth a block diagram illustrating a plurality of storage systems that
support configurable data replication according o some embodiments of the present
disclosure.

[00021] Figure 8 sets forth a flow chart tllustrating an additional example method for
configurable data replication according to some embodiments of the present diselosure.
100022 Figure 9 sets forth a flow chart iHustrating an example method for continucus data
replication according to some erbodiments of the present disclosure.

DESCRIPTION OF EMBODIMENTS

[86023] Example methods, apparatus, and products for configurable data rephcation in
accordance with embodiments of the present disclosure arg descrbed with reference to the
accompanying drawings, beginning with Figure 1A, Figure 1A ilustrates an example system
for data storage, m accordance with some implementations. System 100 (also reforred to as
“storage systerm” herein) includes numercus elements for purposes of ilustration rather than
fimutation. It may be noted that system 100 may include the same, more, or fewer elements
configured in the same or different manner n other implementations.

[86024] System 100 mncludes a number of computing devices 164A-B. Computing devices
{also referred to as “client devices™ herein) may be embodied, for example, a server in a data
center, a workstation, a personal computer, a notchook, or the like. Computing devices
164A-B may be coupled for data communications 1o one or more storage arrays 102A-B

through a storage arca network ({SAN'} 138 or a local area network ("LAN’) 160,
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{86025} The SAN 158 may be implemented with a varety of data communications fabrics,
devices, and protocols. For example, the fabrics for SAN 158 may include Fibre Channel,
Ethemet, Infiniband, Senal Attached Small Computer System Interface ("SAS’), or the like.
Data communications protocols for use with SAN 138 may include Advanced Technology
Attachment ('ATA’), Fibre Channel Protocol, Small Computer System Interface (*SCST},
Internet Small Computer System Interface (15C8P), HyperSCSE, Non-Volatile Memory
Express {'NYMec’) over Fabrics, or the like. It may be noted that SAN 158 15 provided for
iHustration, rather than limitaton. Other data communication couplings may be implemented
between computing devices 164A-B and storage arrays 102A-B.

[006026] The LAN 160 may also be implemented with a variety of fabrics, devices, and
protocols. For example, the fabrics for LAN 160 may include Ethernet (802.3), wireless
(802.11), or the ke Pata communication protocols for use in LAN 160 may include
Transmission Control Protocol ("TCP’Y, User Datagram Protocol (FUDP’), Internet Protocol
{‘IP™), HyperText Transfor Protocol ((HTTP'), Wircless Access Protocol ("WAP™), Handheld
DBevice Transport Protocol (' HDTP™), Session Initiation Protocol (*SIP7), Real Time Protocol
{*'RTP’), or the like.

{86027} Storage arrays 102A-B may provide persistent data storage for the computing
devices 164A-B. Storage array 102A may be contained n a chassis (not shown), and storage
array 1028 mav be contamed in another chassis (not shown}, in implementations. Storage
arrav 102ZA and 102B may include one or more storage array controllers 110A-D {also
referred to as “controller” herein). A storage array controller 110A-D may be embodicd as a
module of automated computing machinery comprising computer hardware, computer
software, or a combination of computer hardware and software. In some implementations,
the storage array coutrollers 110A-I3 may be configured to carry out various storage tasks.
Storage tasks may include writing data received from the computing devices 164A-B to
storage array 102A-B, crasing data from storage array 102A-B, retrieving data from storage
array 102ZA-B and providing data to computing devices 164A-B, monitonng and reporting of
disk utilization and performance, performing redundancy operations, such as Redundant
Agray of Independent Drives (‘RAID ) or RAID-like data redundancy operations,
compressing data, encrypting data, and so forth,

{06028} Storage array controller 110A-D may be implemented mn a variety of ways, including
as a Field Programmable Gate Aray ((FPGA™), a Programmable Logic Chip (PLL), an
Application Specific Integrated Circutt ("ASICT), System-on-Chip ("SOC’), or any computing

device that includes discrete components such as a processing device, central processing unit,
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computer memory, or varous adapters. Storage array controller 110A-D may include, for
example, a data communications adapter configured to support commumications via the SAN
158 or LAN 160. In some umplementations, storage array corndroller 110A-D may be
mdependently coupled to the LAN 160, In implementations, storage array controller 110A-D
may include an VO controtler or the like that couples the storage array controller 110A-D for
data communications, through a midplane {not shown), to a persistent storage resource 170A-
B (also referred to as a “storage resource” herein). The persistent storage resource 170A-B
main include any number of storage drives [71A-F (also referred to as “storage devices”
heremn) and any number of non-volatile Random Access Memory ({NVRAM) devices (not
shown).

[B002%] In some implementations, the NVRAM devices of a persisient storage resource
170A-B may be configured to receive, from the storage array controller 110A-D, data to be
stored in the storage drives 171A-F. In some examples, the data may originate from
computing devices 164A-B. In some examples, writing data to the NVRAM device may be
carried out more quickly than directly writing data to the storage drive 171A-F. In
mmplementations, the storage array controller 110A-D may be configured to utilize the
NVRAM devices as a quickly accessible buffer for data destined to be writien to the storage
drives 171A-F. Latency for write requests using NVRAM devices as a buffer may be
mmproved relative to a system in which a storage array controller 110A-D writes data directly
to the storage dnives 171A-F. {n some implementations, the NVYRAM devices may be
mplemented with computer maemory in the form of high bandwidth, low latency RAM. The
NVRAM device 15 referred to as “non-volatile” because the NVRAM device may receive or
mehude a unigue power source that maintains the state of the RAM after main power loss to
the NYRAM device. Such a power source may be a batiery, one or more capacitors, or the
like. In response to a power loss, the NVRAM device may be contigured to write the
contents of the RAM to a persistent storage, such as the storage drives 171A-F.

1006036] In implementations, storage drive 171A-F may refer to any device configured to
record data persistently, where “persistently” or “persistent” refers as to a device's ability to
maintain recorded data afier loss of power. In some implementations, storage dnve 171A-F
may correspond to non-disk storage media. For example, the storage drive 171A-F may be
ong or more solid-state drives (*S5Ds"}, flash memory based storage, any type of solid-state
non-volatile memory, or any other type of non-mechanical storage device. In other
mmplementations, storage drve 171A-F may mclude mechanical or spinning hard disk, such

as hard-disk dnives ("HDD’).
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{86031} In some implementations, the storage array controtlers 110A-D may be configured
for offloading device management responsibilities from storage dnive 171A-F in storage array
102A-B. For cxample, storage array controlicrs 110A-D may manage control information
that may describe the state of one or more memory blocks i the storage drives 171A-F. The
control information may indicate, for example, that a particelar memory block has failed and
should no longer be written to, that a particular memory block contains boot code fora
storage array controller 110A-D, the number of program-erase {*P/E"} cycles that have been
performed on a particular memory block, the age of data stored in a particular memory block,
the type of data that 1s stored 1o a particular memory block, and so forth. In some
mmplementations, the control information may be stored with an associated memory block as
metadata. In other implementations, the control information for the storage drives [7TA-F
may be stored i one or more particular memory blocks of the storage drives 171A-F that are
selected by the storage array controller 110A-D. The selected memory blocks may be tagged
with an identifier indicating that the selected memory block contains control information.
The identitier may be utilized by the storage array controllers 110A-1¥ in conjunction with
storage drives 171A-F to quickly identify the memory blocks that contain control
mformation. For example, the storage controllers 110A-D may issue a command to locate
memory blocks that contain control information. it may be noted that control information
may be so large that parts of the control mformation may be stored in multiple locations, that
the control information may be stored in muliiple locations for purposes of redundancy, for
example, or that the control imformation may otherwise be distributed across multiple
memory blocks in the storage drive 171A-F.

180032} In implementations, storage array controllers 110A-D may offload device
management responsibiiities from storage drives 171A-F of storage array 102A-B by
retrigving, from the storage drives 171A-F, control information describing the state of one or
more memaory blocks mn the storage dnives 171A-F. Retnieving the control information trom
the storage drnives 171A-F may be carned out, for example, by the storage array controller
110A-D querving the storage dnves 171A-F for the location of control information fora
particular storage drve 171A-F. The storage drives 171A-F may be configured to execute
mstractions that enable the storage drive 171A-F to identify the location of the control
mformation. The instructions may be executed by a controller {(not shown} associated with or
otherwise located on the storage drive 171A-F and may causc the storage drive 171A-F o
scan a portion of each memory block to identify the memory blocks that store control

mformation for the storage drives 171A-F. The storage drives 171A-F may respond by
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sending a response message to the storage array controller 110A-D that includes the location
of control information for the storage drive 171A-F. Responsive to receiving the response
message, storage array controllers 110A-D may issue a request to read data stored at the
address associated with the location of control information for the storage drives 171A-F.
{00033} In other implementations, the storage array controllers 110A-D may further offload
device management responsibilities from storage drives 171A-F by performing, in response
1o receiving the control information, a storage drive management operation. A storage drive
management operation may include, for example, an operation that is typically performed by
the storage drive 171A-F {g.g., the controller (not shown) associated with a particular storage
drive 171A-F). A storage drive management operation may include, for example, ensuring
that data is not written to failed memory blocks within the storage drive 171A-F, ensuring
that data 1s written to memory blocks within the storage drive 171A-F in such a way that
adequate wear leveling is achieved, and so forth.

[06034] In implementations, storage array 102A-B may implement two or more storage array
controllers 110A-D. For example, storage array 102A may mclude storage array controllers
110A and storage array controllers 110B. At a given instance, a single storage array
controller 110A-D (¢ g, storage array conircller 110A) of a storage system 100 may be
designated with primary status {also referred to as “prunary controller” herein), and other
storage array controllers 110A-D (e.g., storage array controller 110A) may be designated
with secondary status {also referred to as “secondary controlier” herein). The primary
controller may have particular rights, such as permission to alter data in persistent storage
resource 1 70A-B (e.g., writing data to persistent storage resource 170A-B). At least some of
the rights of the primary controller may sopersede the rights of the secondary controller. For
mstance, the secondary controller may not have permission to alter data in persistent storage
resource 170A-~B when the primary controlier bas the right. The status of storage array
controllers 110A-D may change. For example, storage array controller 110A may be
designated with secondary status, and storage array controller 110B may be designated with
primary status.

{86035} In some implementations, a primary controller, such as storage array controller
110A, may serve as the primary controller for one or more storage arrays 102A-B, and a
second controller, such as storage array controller 110B, may serve as the secondary
controller for the one or more storage arrays 102A-B. For example, storage array controller
1OA may be the primary controller for storage array 102A and storage array 102B, and

storage array controller 110B may be the secondary controller for storage array 102A and
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102B. In some voplementations, storage array controllers 110C and 110D (also referred to as
“storage processing modules™) may neither have primary or secondary status. Storage array
controllers 110C and 110D, implemented as storage processing modules, may act as a
communication nterface between the primary and secondary controllers (¢.g., storage array
controllers 110A and 110B, respectively) and storage array 102B. For example, storage array
controler 110A of storage array 102A may send a write request, via SAN 158, to storage
array 102B. The write request may be received by both storage array controllers 110C and
110D of storage array 102B. Storage array controllers 110C and 110D facilitate the
communication, ¢.g., send the write request to the appropriate storage drive 171A-F. It may
be noted that in some implementations storage processing modules may be used to increase
the number of storage dnives controlled by the primary and secondary controlfers.

[606036] In implementations, storage array controllers 110A-D are communicatively coupled,
via a midplane (not shown), 1o one or more storage drives 171A-F and to ong or more
NVEREAM devices (not shown) that are included as part of a storage array 102A-B. The
storage array controllers 110A-D may be coupled to the midplane via one or more data
communication binks and the midplane mayv be coupled to the storage drives 171A-F and the
NVRAM devices via one or more data communications hinks. The data communications
links described herein are collectively tllustrated by data communications links 108A-D and
may include a Peripheral Component Interconnect Express (‘PCle™} bus, for example.
1060371 Figure 1B illustrates an example system for data storage, in accordance with some
mplementations. Storage array controller 1071 illustrated in Figure 1B may be similar to the
storage array controllers 110A-D described with respect to Figure TA. In one example,
storage array controller 101 may be similar to storage array controller 110A or storage array
controller 1108, Storage array controller 101 includes numerous clements for purposes of
illustration rather than limitation. It may be noted that storage array controfler 101 may
melude the same, more, or fewer clements configured in the same or different manner in
other implementations. It may be noted that elements of Figure 1A may be mcluded below to
help lustrate features of storage array controlier 101,

{86038} Storage array controller 101 may mclude one or more processing devices 104 and
random access memory (‘RAM™) 111, Processing device 104 {or controller 101) represents
one or morc general-purpose processing devices such as a microprocessor, central processing
vnit, or the like. More particularly, the processing device 104 (or controlier 101y may be a
complex mstruction set computing ("CISC™) microprocessor, reduced nstruction set

computing (‘RISC™) microprocessor, very long instruction word (*VLIW) microprocessor, or

~3



WO 2021/050875 PCT/US2020/050408

a processor implementing other instruction sets or processors implementing a combination of
mstraction sets. The processing device 104 {or controller 1081} may also be one or more
special-purpose processing devices such as an application specific integrated circuit
{(*ASIC), a ficld programmable gate array ({FPGA’), a digital signal processor ("DSP™),
network processor, or the hike.

100039} The processing device 104 may be connected to the RAM 111 via a data
communications link 106, which may be embodicd as a high speed memory bus such as a
Double-Data Rate 4 ("DDR4’) bus. Stored in RAM 111 is an operating svstem 112, In some
mmplementations, mstractions 113 are stored in RAM 111, Instructions 113 may include
corputer program instructions for performing operations in in a direct-mapped flash storage
system. In one embodiment, a direct-mapped flash storage sysiem is one that that addresses
data blocks within flash drives directly and without an address translation performed by the
storage controlers of the flash drives.

{00040} In implementations, storage array controlicr 101 includes one or more host bus
adapters 103A-C that are coupled to the processing device 104 via a data communications
hnk 105A-C. In implementations, host bus adapters 103A-C may be computer hardware that
connects a host system {e.g.. the storage array controller) to other network and storage arrays.
In some examples, host bus adapters 103A~C may be a Fibre Channel adapter that cnables the
storage array controller 101 o connect to a SAN, an Ethemet adapter that enables the storage
array controller 101 to connect to a LAN, or the like. Host bus adapters 103A-C may be
coupled to the processing device 104 via a data communications hink 105A-C such as, for
example, a PCle bus.

180041} In tmplementations, storage array controller 101 may mehude a host bus adapter 114
that is coupled to an expander 115, The expander 115 may be used to attach a host system to
a larger number of storage drives. The expander 115 may, for example, be a SAS expander
utilized to cnable the host bus adapter 114 to attach to storage drives in an implementation
where the host bus adapter 114 is embodied as a SAS controller.

{06042} In implementations, storage array controlier 101 may include a switch 116 coupled
to the processing device 104 via a data communications link 109, The switch 116 may be a
computer hardware device that can create multiple endpoints out of a single endpoint, thereby
enabling onultiple devices to share a single endpoint. The switch 116 may, forexample, be a
PCle switch that is coupled to a PCle bus (c.g., data communications link 109) and presents

multiple PCle connection points to the midplane.
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{00043} In implementations, storage array controller 101 mcludes a data communications
knk 107 for coupling the storage array controller 101 to other storage array controllers. In
some examples, data communications link 107 may be a QuickPath Interconnect (P
mierconnect.

[00044] A traditional storage system that uses traditional flash dnives may implement a
process across the flash drves that are part of the traditional storage systemy. For examiple, a
higher level process of the storage systom may initiate and control a process across the flash
drives. However, a flash drive of the traditional storage svstem may include its own storage
controller that also performs the process. Thus, for the traditional storage system, a higher
level process {¢.g., initiated by the storage system) and a lower level process {¢.g., initiated
bv a storage controller of the storage sysiem) may both be performed.

[08045] To resolve various deficiencies of a traditional storage system, operations may be
performed by higher level processes and not by the lower level processes. For example, the
flash storage systemn may nclude flash drives that do not include storage controllers that
provide the process. Thus, the operating system of the flash storage system itself may initiate
and control the process. This may be accomplished by a direct-mapped flash storage system
that addresses data blocks within the flash drives directly and without an address translation
performed by the storage controllers of the flash drives.

[00046] The operating system of the flash storage system may identify and maintain a list of
atlocation units across multiple flash drives of the flash storage system. The allocation wnits
may be entire crase blocks or nwltiple erase blocks. The operating system may maintain a
map or address range that directly maps addresses to erase blocks of the flash drives of the
flash storage system.

{80047} Direct mapping to the erase blocks of the flash drnves may be used to rewrite data
and erase data. For example, the operations may be performed on one or more allocation
units that include a first data and a second data where the first data 1s to be retained and the
second data is no longer being used by the flash storage syvstem. The operating system may
mitiate the process to write the first data to new locations within other allocation units and
crasing the second data and marking the allocation units as being available for use for
subsequent data. Thas, the process may only be performed by the higher level operating
systermn of the flash storage system without an additional lower level process being performed
bv controlicrs of the flash drives.

[B0048] Advantages of the process being performed only by the operating svstem of the flash

storage system include increased reliability of the flash drives of the flash storage system as
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umnecessary or redundant write operations are not being performed during the process. One
possible point of novelty here is the concept of initiating and controlling the process at the
operating system of the flash storage system. In addition, the process can be controlled by
the operating system across multiple flash drives. This is contrast to the process being
performed by a storage controller of a flash drive.

1000491 A storage system can consist of two storage array controllers that share a set of
drives for faillover purposes, or it could consist of a single storage array controller that
provides a storage service that utilizes multiple drives, or it could consist of a distributed
network of storage array controllers each with some number of drives or some amount of
Flash storage where the storage array controllers in the network collaborate to provide a
complete storage service and collaborate on various aspects of a storage service including
storage allocation and garbage collection.

100605¢] Figure 1€ llustrates a third example system 117 for data storage in accordance with
some implementations. Svstem 117 (also referred 1o as “storage system”™ herein) includes
numerous clements for purposes of illustration rather than mitation. 1t may be noted that
system 117 may include the same, more, or fewer elements configured m the same or
different manner in other implementations.

{60051 ] In one embodiment, system 117 includes a dual Penpheral Component Interconnect
(‘PCE) flash storage device 118 with separately addressable fast write storage. System 117
may include a storage controller 119. In one embodiment, storage controller 119A-D may be
a CPU, ASIC, FPGA, or any other circuitry that may implement control structurces necessary
according to the present disclosure. In one embodiment, system 117 includes flash memory
devices {¢.g., including flash memory devices 120a-n), operatively coupled to vanous
channels of the storage device controlier 119, Flash memory devices 120a-n, may be
presented to the controller 119A-D as an addressable collection of Flash pages, erase blocks,
and/or control elements sufficient to allow the storage device controller 119A-D to program
and retricve various aspects of the Flash. In one embodiment, storage device controller
119A-D may perforn operations on flash memory devices 120a-n including storing and
retrieving data content of pages, arranging and erasing anv blocks, tracking statistics related
to the use and reuse of Flash memory pages, crase blocks, and cells, tracking and predicting
error codes and faults within the Flash memory, controlling voltage levels associated with
progranuning and retrieving contents of Flash cells, ete.

[BB052] In one embodiment, system 117 may include RAM 121 to store separately

addressable fast-write data. In one embodiment, RAM 121 may be one or more separate
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discrete devices. In another embodiment, RAM 121 may be integrated mto storage device
controller 119A-D or multiple storage device controllers. The RAM 121 may be utilized for
other purposes as well, such as temporary program memory for a processing device {(€.2.. a
CPU) in the storage device controller 119,

{88053} In one embodiment, system 117 may mchude a stored energy device 122, such as a
rechargeable battery or a capacitor. Stored energy device 122 may store energy sufficient to
power the storage device controller 119, some amount of the RAM {e.g., RAM 121}, and
some amount of Flash memory {e.g., Flash memory 120a-120n) for sufficient time to write
the contents of RAM to Flash memory. In one embodiment, storage device controller 119A-
13 may write the contents of RAM to Flash Memory if the storage device controller detects
toss of external power.

[386054] In one embodiment, system 117 includes two data communications finks 123a, 123b.
In one embodiment, data commuounications binks 123a, 123b may be PCI interfaces. In
another embodiment, data communications links 123a, 123b may be based on other
communications standards (e.g., HvperTransport, InfiniBand, etc.). Data communications
hinks 1233, 123b mav be based on non-volatide memory express ("NVMe ™} or NVMe gver
fabrics ({NVMT{} specifications that allow external connection to the storage device
controller 119A-D from other components in the storage svstem 117, It should be noted that
data commumications links may be interchangeably referred to herein as PCI buses for
convenience.

[06035] System 117 may also include an external power source (not shown), which may be
provided over one or both data communications hinks 1234, 123b, or which may be provided
separately. An alternative embodiment includes a separate Flash memory (not shown}
dedicated for use  storing the content of RAM 121. The storage device controller 119A-D
may present a logical device over a PCY bus which may include an addressable fast-write
togical device, or a distinct part of the logical address space of the storage device 118, which
may be presented as PCI memory or as persistent storage. In one embodiment, operations to
store into the device are directed into the RAM 121, On power failure, the storage device
controller 119A-D may write stored content associated with the addressable fast-write logical
storage to Flash memory (¢.g., Flash memory 120a-n) for long-term persistent storage.
{86056} In one embodiment, the logical device may inchide some presentation of some or all
of the content of the Flash memory devices 120a-n, where that presentation allows a storage
system including a storage device 118 (e.g., storage system 117} to directly address Flash

memory pages and divectly reprogram erase blocks from storage system components that are
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external to the storage device through the PCI bus. The presentation may also allow one or
more of the external components to control and retrieve other aspects of the Flash memory
ncluding some or all oft tracking statistics related to use and reuse of Flash memory pages,
erase blocks, and cells across all the Flash memory devices; tracking and predicting error
codes and faults within and across the Flash memory devices; controlling voltage levels
associated with programming and retrieving contents of Flash cells; etc.

{66057} In onc cmbodiment, the stored energy device 122 may be sufficient to ensure
completion of in-progress operations to the Flash memory devices 120a-120n stored energy
device 122 may power storage device controller 119A-D and associated Flash memory
devices {¢.g., 120a-n) for those operations, as well as for the storing of fast-write RAM to
Flash memory. Stored energy device 122 may be used to store accumulated statistics and
other parameters kept and tracked by the Flash memory devices 120a-n and/or the storage
device controller 119, Separate capacitors or stored ¢nergy devices (such as smaller
capacitors near or embedded within the Flash memorv devices themselves) may be used for
some or all of the operations described herein.

[86038] Various schemes may be used to track and optimize the life span of the stored energy
component, such as adjusting voltage levels over time, partially discharging the storage
energy device 122 to measure corresponding discharge characteristics, etc. 1fthe available
encrgy decreases over time, the effective available capacity of the addressable fast-wric
storage mav be decreased to ensure that if can be written safely based on the currently
available stored energy.

{00039} Figure 1D lustrates a third example system 124 for data storage in accordance with
some mplementations. In one embodiment, svstem 124 inclodes storage controtlers 125a,
125b. In one embodiment, storage controllers 1252, 125b are operatively coupled to Dual
PCI storage devices 119a, 119b and 119¢, 119d, respectively. Storage controllers 12352, 125b
may be operatively coupled (e.g., via a storage network 130} to some number of host
computers 127a-n.

{06066} In onc cmbodiment, two storage controllers {¢.g., 123a and 125b) provide storage
services, such as a SCS) block storage array, a file server, an object server, a database or data
analvtics service, ete. The storage controllers 125a, 125b may provide services through some
number of network interfaces {e.g., 126a-d} tc host computers 127a-n cutside of the storage
systern 124, Storage controllers 1253, 125b may provide integrated services or an application
entirely within the storage system 124, formung a converged storage and compute system.

The storage controllers 12533, 125b may utilize the fast write memory within or across storage
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devices 19a~d to journal in progress operations to ensure the operations are not loston a
power failure, storage controlier removal, storage controller or storage system shutdown, or
some fault of one or more software or hardware components within the storage system 124.
{80061} In one embodiment, controllers 123a, 125b operate as PUI masters to one or the
other PCE buses 1284, 128b. In another embodiment, 128a and 128b may be based on other
communications standards {¢.g., HyperTransport, InfiniBand, etc ). Other storage system
embodiments may operate storage controllers 125a, 125b as multi-masters for both PCI buscs
128a, 128b. Aliemnately, a PCI/NVMe/NVMT switching infrastructure or fabric may connect
multiple storage controliers. Some storage system embodiments may allow storage devices
to communicate with cach other directly rather than communicating only with storage
controllers. In one embodiment, a storage device controller 119a may be operable under
direction from a storage controller 125a to synthesize and transfer data to be stored into Flash
memory devices from data that has been stored in RAM {(e.g., RAM 121 of Figure 1(). For
exaraple, a recalculated version of RAM content mav be transferred afier a storage condrolier
has determined that an operation has fully commutted across the storage system, or when fast-
write memory on the device has reached a certain used capacity, or after a certain amount of
fime, to ensure improve satety of the data or to release addressable fast-write capacity for
reuse. This mechanism may be used, for example, to avoid a second transferoverabus (c.g.,
128a, 128b} from the storage controllers 125a, 125b. In one embodiment, a recalculation
may include compressing data, attaching indexing or other metadata, combining multiple data
segments together, performing crasure code calculations, cte.

[86062] In one embodiment, under direction from a storage controlier 125a, 125b, a storage
device controller 119a, 119b may be operable to calculate and transfer data to other storage
devices from data stored in RAM {e. g, RAM 121 of Figure 1C) without involvement of the
storage controllers 125a, 125b. This operation may be used to mirror data stored in one
controller 125a to another controller 125b, or 1t could be used to offload compression, data
aggregation, and/or erasure coding calculations and transfers to storage devices to reduce
load on storage controliers or the storage controller interface 129a, 129b to the PCI bus 128a,
128b.

{80063} A storage device controller 119A-D may include mechanisms for implementing high
availability primitives for use by other parts of a storage system extemal to the Dual PCE
storage device 118, For example, reservation or exclusion primitives may be provided so
that, in a storage system with two storage controllers providing a highly available storage

service, one storage controller may prevent the other storage controller from accessing or
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continuing to access the storage device. This could be used, for example, m cases where one
controller detects that the other controller 1s not functioning properly or where the
mterconnect between the two storage controllers may itself not be functioning properly.
[B8064] In one embodiment, a storage system for use with Dual PCI direct mapped storage
devices with separately addressable fast write storage includes systems that manage erase
blocks or groups of erase blocks as allocation units for storing data on behalf of the storage
service, or for storing metadata {¢.g., indexes, logs, cic.) associated with the storage service,
or for proper management of the storage system itself. Flash pages, which may be a few
kilobytes n size, may be written as data arrives or as the storage system is to persist data for
long ntervals of time (e.g., above a defined threshold of time). To commit data more
quickly, or to reduce the number of writes to the Flash memory devices, the storage
controllers may first write data nto the separately addressable fast write storage on one more
storage devices.

[06065] In onc cmbodiment, the storage condrollers 125a, 125b may tnitiate the use of erase
blocks within and across storage devices (e.g., 118} in accordance with an age and expected
remaining lifespan of the storage devices, or based on other statistics. The storage controllers
125a, 125b may imitiate garbage collection and data migration data between storage devices
i accordance with pages that are no longer needed as well as to manage Flash page and crase
block lifespans and to manage overall system performance.

{00066} In one embodiment, the storage systerm 124 may utilize mirroring and/or erasure
coding schemes as part of storing data into addressable fast write storage and/or as part of
writing data into allocation units associated with erase blocks. Erasure codes may be used
across storage devices, as well as within erase blocks or allocation anits, or within and across
Flash memory devices on a single storage device, to provide redundancy against single or
multiple storage device failures or to protect against internal corruptions of Flash memory
pages resulting from Flash memory operations or from degradation of Flash memory cells.
Marroring and erasure coding at varicus levels may be used to recover from multiple types of
fatlures that occur separately or in combination.

{86067} The embodiments depicted with reference to Figs. 2A-G illustrate a storage cluster
that stores user data, such as user data originating from one or more user or client systems or
other sources external to the storage cluster. The storage cluster distributes user data across
storage nodes housed within a chassis, or across multiple chassis, using erasure coding and
redundant copies of metadata. Erasure coding refers to a method of data protection or

reconstruction in which data s stored across a set of different locations, such as disks, storage
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nodes or geographic locations. Flash memory 1s one type of solid-state memory that may be
mtegrated with the embodiments, although the embodiments may be extended {o other types
of solid-statc memory or other storage medium, including non- solid state memory. Control
of storage locations and workloads are distributed across the storage locations in a clustered
pecr-to-peer system. Tasks soch as mediating communications between the various storage
nodes, detecting when a storage node has become unavailable, and balancing 1/0s (inputs and
outputs) across the various storage nodes, are all handled on a distributed basis. Data is laid
out or distributed across multiple storage nodes 1n data fragments or stripes that support data
recovery in some embodiments. Ownership of data can be reassigned within a cluster,
mdependent of input and output patterns. This architecture deseribed in more detail below
allows a storage node in the cluster to fail, with the system remaining operational, since the
data can be reconstructed from other storage nodes and thus remain available for input and
output operations. In various embodiments, a storage node may be referred to as a cluster
node, a blade, or a server.

[86068] The storage clusier may be contained within a chassis, 1.¢., an enclosure housing one
or more storage nodes. A mechanism to provide power to each storage node, such as a power
distribution bus, and a commumnication mechanism, such as a communication bus that enables
cormunication between the storage nodes are mcluded within the chassis. The storage
chuster can run as an independent system in one location according to some embodiments. In
one embodiment, a chassis contains at ieast two nstances of both the power distribution and
the communication bus which may be enabled or disabled independently. The wnternal
communication bus may be an Ethemnet bus, however, other technologies such as PCle,
InfiniBand, and others, are equally soitable. The chassis provides a port for an external
communication bus for enabling communication between nmultiple chassis, directly or
through a switch, and with client systems. The external communication may use a
technology such as Bthernet, InfiniBand, Fibre Channel, etc. In some embodiments, the
external communication bus uses different communication bus techoologies for inter-chassis
and client communication. {f a switch is deploved within or between chassis, the switch may

act as a translation between multiple protocols or technologics. When multiple chassig ar

w

connected to define a storage cluster, the storage cluster may be accessed by a client using
either proprietary interfaces or standard interfaces such as network file system ("NFS’),
common internet file system (CCIFS’), small computer system interface (SCSI™) or hypertext
transfer protocol (HTTP™). Translation from the chient protocol may occur at the swiich,

chassis external communication bus or within each storage node. In some embodiments,
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multiple chassis may be coupled or connecied to cach other through an aggregator swiich. A
portion and/or all of the coupled or connected chassis may be designated as a storage cluster.
As discussed above, each chassis can have multiple blades, each blade has a media access
control (‘'MAC) address, but the storage cluster is presented to an external network as having
a single cluster IP address and a single MAC address in some embodiments.

1360691 Each storage node may be one or more storage servers and cach storage server is
connected to one or more non-volatile solid state memory units, which may be referred to as
storage umits or storage devices. One embodiment mchudes a single storage server in cach
storage node and between one to eight non-volatile solid state memory units, however this
one example is not meant to be limiting. The storage scrver may include a processor, DRAM
and interfaces for the internal commumication bus and power distribution for cach of the
power buses. Inside the storage node, the interfaces and storage unit share a commumication
bus, e.g., PCI Express, in some embodiments. The non-volatile solid state memaory units may
directly access the internal communication bus interface through a storage node
communication bus, or request the storage node 1o access the bus mterface. The non-volatile
solid state memory onit contains an embedded CPU, sohid state storage controller, and a
quantity of solid state mass storage, ¢.g., between 2-32 terabytes ("TB™) n some
crbodiments. An embedded volatile storage medium, such as DRAM, and an cnergy reserve
apparatus are included 1n the non-volatile solid state memory unit. In some embodiments, the
Snergy reserve apparatus is a capacitor, super-capacitor, or battery that enables transferring a
subset of DRAM contents to a stable storage medium in the case of power loss. In some
embodiments, the non-volatile solid state memory unit is constructed with a storage class
memory, such as phase change or magnetoresistive random access memory { MRAM ™) that
substitutes for BRAM and enables a reduced power hold-up apparatus.

{80076} One of many features of the storage nodes and non-volatile solid state storage is the
ability to proactively rebuild data in a storage clusier. The storage nodes and non-volatiie
solid state storage can detenmine when a storage node or non-volatile solid state storage in the
storage cluster is unreachable, independent of whether there is an attempt to read data
mvolving that storage node or non-volatile solid state storage. The storage nodes and non-
volatile solid state storage then cooperate to recover and rebuild the data in at least partially
new locations. This constitutes a proactive rebuild, in that the system rebuilds data withowt
waiting until the data is needed for a read access mitiated from a client system emploving the
storage cluster. These and further details of the storage memory and operation thercof are

discussed below.
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{86071} Figure 2A 1s a perspective view of a storage cluster 161, with multiple storage nodes
150 and internal solid-state memory coupled to each storage node to provide network
attached storage or storage arca network, i accordance with some cmbodiments. A network
attached storage, storage area network, or a storage cluster, or other storage memory, could
mnclude one or more storage clusters 161, each having one or more storage nodes 150, n a
flexible and reconfigurable arrangement of both the physical components and the amount of
storage memory provided therebyv. The storage cluster 161 is designed to fit in a rack, and
ong or more racks can be set up and populated as desired for the storage memory. The
storage claster 161 has a chassis 138 having multiple slots 142, 1t should be appreciated that
chassis 138 may be referred to as a housing, enclosure, or rack unit. In one embodiment, the
chassis 138 has fourteen slots 142, although other numbers of slots are readily devised. For
gxample, some embodiments have four slots, eight slots, sixteen slots, thirty-two slots, or
other suitable number of siots. Each slot 142 can accommodaie one storage node 150 in
some embodiments. Chassis 138 includes flaps 148 that can be utilized to mount the chassis
138 on arack. Fans 144 provide air circulation for cooling of the storage nodes 150 and
components thereof, although other cooling components could be used, or an embodiment
could be devised without cooling components. A switch fabric 146 couples storage nodes
150 within chassis 138 together and to a network for communication to the memory. fnan
embodiment depicted in herein, the slots 142 to the left of the switch fabric 146 and fans 144
are shown occupied by storage nodes 130, while the slots 142 to the right of the switch fabric
146 and fans 144 are empty and available for insertion of storage node 150 for ithustrative
purposes. This configuration 1s one example, and one or more storage nodes 150 could
occupy the slots 142 in varnous further arrangements. The storage node arrangements need
not be sequential or adjacent in some embodiments. Storage nodes 150 are hot plugeable,
meaning that a storage node 150 can be mnserted into a slot 142 in the chassis 138, or removed
from a slot 142, without stopping or powenng down the system. Upon insertion or removal
of storage node 150 frony slot 142, the system automatically reconfigures m order to
recognize and adapt to the change. Reconfiguration, in some embodiments, includes
restoring redundancy and/or rebalancing data or load.

180072} Each storage node 150 can have multiple components. In the embodiment shown
here, the storage node 150 includes a printed circuit board 159 populated by a CPU 156, 1¢,
processor, a memory 154 coupled to the CPU 156, and a non-volatile solid state storage 152
coupled to the CPU 156, although other mountings and/or components could be used in

further embodiments. The memory 154 has instructions which are executed by the CPU 156
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and/or data operated on by the CPU 156, As further explained below, the non-volatile sohid
state storage 152 includes flash or, in further embodiments, other types of sohid-state
Memory.

[B0073] Referring to Figure 2A, storage cluster 161 is scalable, meaning that storage capacity
with non-uniform storage sizes is readily added, as described above. One or more storage
nodes 150 can be plugged into or removed from each chassis and the storage cluster self-
configures m some embodiments. Plug-in storage nodes 150, whether installed in a chassis
as delivered or later added, can have different sizes. For example, in one embodiment a
storage node 150 can have any multiple of 4 TB, ¢ g, 8 TB, 12 TB, 16 TB, 32 TB, et¢. In
further embodiments, a storage node 150 could have any multiple of other storage amounts or
capacities. Storage capacity of cach storage node 150 is broadcast, and influences decisions
of how to stripe the data. For maximum storage efficiency, an embodiment can self-
configure as wide as possible in the stripe, subject to a predetermined requirement of
continued operation with loss of up to one, or up to two, non-volatile solid state storage units
152 or storage nodes 150 within the chassis.

180074} Figure 2B is a block diagram showing a commumications inferconnect 173 and
power distribution bus 172 coupling multiple storage nodes 150, Referring back to Figure
2A, the communications mnterconnect 173 can be included in or implemented with the switch
fabric 146 10 some embodiments. Where multiple storage clusters 161 occupy a rack, the
communications interconnect 173 can be included in or tmplemented with a top of rack
switch, in some embodiments. As illustrated i Figure 2B, storage cluster 161 1s enclosed
within a single chassis 138, External port 176 15 coupled to storage nodes 150 through
communications interconnect 173, while external port 174 15 coupled directly to a storage
node. External power port 178 is coupled to power distribution bus 172, Storage nodes 150
may include varving amounts and differing capacitics of non-volatile solid state storage 152
as described with reference to Figure 2ZA. In addition, one or more storage nodes 150 may be
a compute only storage node as ithistrated in Figure 2B. Authorities 168 are implemented on
the non-volatile solid state storages 152, for example as lists or other data structures stored in
memory. In some embodiments the authorities are stored within the non-volatile solid state
storage 152 and supported by software executing on a controller or other processor of the
non-volatiic solid state storage 152, In a further embodiment, authorities 168 are
implemented on the storage nodes 150, for example as lists or other data structures stored in
the memory 154 and supported by software executing on the CPU 156 of the storage node

150. Authonties 168 control how and where data 1s stored m the non-volatile solid state
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storages 152 in some embodiments. This control assists in determming which type of erasure
coding scheme 1s applied to the data, and which storage nodes 150 have which portions of the
data. Each authority 168 may be assigned to a non-volatile solid state storage 152. Each
authority may control a range of inode numbers, segment numbers, or other data identifiers
which are assigned to data by a file system, by the storage nodes 150, or by the non-volatile
solid state storage 152, in vanous embodiments,

[06075] Every piece of data, and every piece of metadata, has redundancy in the system i
some embodiments. fn addition, every piece of data and every piece of metadata has an
owner, which may be referred to as an authority. If that authority is unreachable, for example
through fatlure of a storage node, there is a plan of succession for how to find that data or that
metadata. In various embodiments, there are redundant copies of authorities 168, Authorities
168 have a relationship to storage nodes 150 and non-volatile solid state storage 152 in some
embodiments. Each authority 163, covering a range of data segment nantbers or other
wdentificrs of the data, may be assigned to a specific non-volatile sohid state storage 152, In
some embodiments the authorities 168 for all of such ranges are distributed over the non-~
volatile solid state storages 152 of a storage cluster. Each storage node 150 has a network
port that provides access to the non-volatile solid state storage{s) 152 of that storage node
150. Data can be stored in a segment, which is associated with a segment nuntber and that
segment number 18 an indirection for a configuration of a RAID (redundant array of
mdependent disks) strpe in some embodiments. The assignment and use of the authoritics
168 thus establishes an indirection to data. Indirection may be referred to as the ability to
reference data indirectly, n this case via an authority 168, in accordance with some
embodiments. A segment identifies a sct of non-volatile solid state storage 152 and a local
wlentifier into the set of non-volatile solid state storage 152 that may contain data. In some
embodiments, the local identifier is an offsct into the device and may be reused sequentially
by multiple segments. In other embodiments the local identitier 1s unique for a specific
segment and never reused. The offsets m the non-volatile solid state storage 152 are applied
to locating data for writing to or reading from the non-volatile solid state storage 132 (in the
form of a RAID stripe). Data is striped across multiple units of non-volatile solid state
storage 152, which may mmclhude or be different from the non-~volatile sclid state storage 152
having the authority 168 for & particular data segment.

[00076] It there 15 a change m where a particular segment of data s located, ¢.g., during a
data move or a data reconstruction, the authority 168 for that data segment should be

consulted, at that non-volatile sohid state storage 152 or storage node 150 having that
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authority 168, In order to locate a particular piece of data, embodiments calculate a hash
value for a data segment or apply an inode mumber or a data segment nomber. The cutput of
this operation points to a non-volatile solid state storage 152 having the authority 168 for that
particular piece of data. In some embodiments there are two stages to this operation. The
first stage maps an entity identifier (1D}, ¢.2., a segment number, inode number, or directory
number to an authority identifier. This mapping may include a calculation such asa hash ora
bit mask. The second stage is mapping the authority identifier to a particular non-volatile
solid state storage 152, which may be done through an explicit mapping. The operation is
repeatable, so that when the calculation 1s performed, the result of the calculation repeatably
and reliably points to a particular non-volatile solid state storage 152 having that authority
168. The operation may mchude the set of reachable storage nodes as input. If the set of
reachable non-volatile solid state storage units changes the optimal set changes. In some
embodiments, the persisted value is the current agsignment {(which is always true) and the
calculated value is the target assignment the cluster will attempt to reconfigure towards. This
calculation may be used to determine the optimal non-volatile solid state storage 152 for an
authority in the presence of a set of non-volatile sohid state storage 152 that are reachable and
constituie the same cluster. The calculation also determines an ordered set of peer non-
volatile solid state storage 152 that will also record the authority to non-volatile solid state
storage mapping so that the authonty may be determined even if the assigned non-volatile
solid state storage is unreachable. A duplicate or substitute avthority 168 may be consulted if
a specific authority 168 is unavailable in some embodiments.

{86077} With reference to Figure 2A and 2B, two of the many tasks of the CPU 156 on a
storage node 150 are to break up write data, and reassemble read data. When the system has
determined that data is to be written, the avthority 168 for that data is located as above.
When the segment 1D for data is already determined the request to write is forwarded to the
non-~volatile solid state storage 152 currently determined to be the host of the authority 163
determined from the segment. The host CPU 156 of the storage node 150, on which the non-
volatie solid state storage 152 and corresponding authority 168 reside, then breaks up or
shards the data and transmits the data out to vanous non~volatile solid state storage 152, The
transmitted data is written as a data stripe in accordance with an erasure coding scheme. In
some embodiments, data is requesied to be pulled, and in other embodiments, data is pushed.
In reverse, when data is read, the authority 168 for the segment 1D containing the data is
located as described above. The host CPU 156 of the storage node 150 on which the non-

vodatile solid state storage 152 and corresponding authority 168 reside requests the data from
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the non-volatile solid state storage and corresponding storage nodes pointed to by the
authority. In some embodiments the data is read from flash storage as a data stnipe. The host
CPU 156 of storage node 130 then reassermbles the read data, correcting any errors (if
present) according to the appropriate erasure coding scheme, and forwards the reassembled
data to the network. In further embodiments, some or all of these tasks can be handled i the
non-volatile solid state storage 152, In some embodiments, the segment host requests the
data be sent to storage node 130 by requesting pages from storage and then sending the data
to the storage node making the onginal request.

[86078] In some systems, for example in UNIX-stvle file systems, data 1s handled with an
index node or inode, which specifics a data structure that represents an object in a file systen.
The object could be a file or a directory, for example. Metadata may accompany the object,
as attributes such as permission data and a creation timestamp, among other attributes. A
segment number could be assigned to all or a portion of such an object in a file system. In
other systems, data segments are handled with a segmoent number assigned elsewhere. For
purposes of discussion, the unit of distribution is an entity, and an entity can be afile, a
directory or a segment. That is, entitics are units of data or metadata stored by a storage
systern. Entities are grouped into sets called authornities. Each authority has an authority
owner, which is a storage node that has the exclusive right to update the entities in the
authority. In other words, a storage node contains the authority, and that the authority, in
turn, contains entitics.

{00079} A segment 1s a logical container of data in accordance with some embodiments. A
segment is an address space between medium address space and physical flash locations, 1.¢,
the data segment number, are in this address space. Segments may also contain meta-data,
which enable data redundancy to be restored (rewniiten to different flash locations or devices)
without the involvement of higher level software. In one embodiment, an mtemal format of a
segment contains chient data and medium mappings to determine the position of that data.
Each data segment is protected, e.g., from memory and other failures, by breaking the
segment into a number of data and panity shards, where applicable. The data and panty
shards are distnibuted, 1.¢., striped, across non-volatile solid state storage 152 coupled to the
host CPUs 156 (8ee Figures 2E and 23} in accordance with an erasure coding scheme.
Usage of the term segments refers to the container and its place in the address space of
scgments 1 some embodiments. Usage of the term stripe refers to the same set of shards as a
segment and includes how the shards are distnibuted along with redundancy or parity

nformation i accordance with some embodiments.
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{06086} A series of address-space transformations takes place across an entire storage
system. At the top are the directory entries (file names) which link to an inode. Inodes point
into medium address space, where data is logically stored. Medium addresses may be
mapped through a series of indirect mediums to spread the load of large files, or implement
data services like dedvplication or snapshots. Mednim addresses may be mapped through a
series of indirect mediums to spread the load of large files, or implement data services like
deduplication or snapshots. Segment addresses are then translated into physical flash
locations. Phyvsical flash locations have an address range bounded by the amount of flash in
the system in accordance with some embodiments. Mediom addresses and segment
addresses are logical containers, and in some embodiments use a 128 bit or larger identifier
30 as to be practically infinite, with a bikehihood of reuse calculated as tonger than the
gxpected life of the system. Addresses from logical contamers are allocated in a hierarchical
fashion in some embodiments. Initially, each non-volatile solid state storage unit 152 may be
assigned a range of address space. Within this assigoned range, the non-volatile solid state
storage 152 13 able to allocate addresses without synchronization with other non-volatile solid
stale storage 152.

{86081} Data and metadata 15 stored by a set of underlying storage layouts that are optiized
for varving workload patterns and storage devices. These layouts incorporate multiple
redundancy schemes, compression formats and index algonthms. Some of these layouts store
mformation about authorities and authority masters, while others store file metadata and file
data. The redundancy schemes include error correction codes that tolerate corrupted bits
within a single storage device (such as a NAND tlash chip), erasure codes that tolerate the
failure of multiple storage nodes, and replication schemes that tolerate data center or regional
failures. In some embodiments, low density parity check (LDPC™) code is used within a
single storage unit. Reed-Solomon encoding is used within a storage cluster, and mirroring is
used within a storage grid in some embodiments. Metadata may be stored using an ordered
log structured index (such as a Log Structared Merge Tree), and large data may not be stored
m a log structured layout.

{86082} In order to maintain consistency across multiple copies of an entity, the storage
nodes agree implicitly on two things through calculations: (1) the authority that contains the
entity, and (2) the storage node that contains the authority. The assignment of entities to
authoritics can be done by pseudo randomly assigning entitics to authorities, by splitting
entities wto ranges based upon an externally produced key, or by placing a single entity into

gach authority. Examples of pseudorandom schemes are linear hashing and the Replication
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Under Scalable Hashing ('RUSH’) familv of hashes, including Controlled Replication Under
Scalable Hashing ("CRUSH’). In some embodiments, pseudo-random assignment 1s utilized
only for assigning authoritics 1o nodes because the st of nodes can change. The set of
authorities cannoi change so any subjective function may be applied in these embodiments.
Some placement schemes automatically place authorities on storage nodes, while other
placement schemes rely on an explicit mapping of authorities o storage nodes. In some
embodiments, a pseudorandom scheme is utilized to map from cach authority to a set of
candidate authority owners. A pseudorandom data distribution function related to CRUSH
may assign authorities to storage nodes and create a list of where the authorities are assigned.
Fach storage node has a copy of the pseudorandom data distribution function, and can arrive
at the same calculation for distnbuting, and later finding or locating an anthonity. Each of
the pseudorandom schemes reguires the reachable set of storage nodes as input in some
embodiments in order to conclude the same target nodes. Once an entity has been placed in
an authority, the entity may be stored on phvsical devices so that no expected faihure will lead
to ungxpected data loss. In some embodiments, rebalancing algorithms attempt to store the
copics of all entities within an authority in the same layvout and on the same set of machines.
{00083} Examples of expected failures include device failures, stolen machines, datacenter
fires, and regional disasters, such as nuclear or geological events. Different failures lead to
different levels of acceptable data loss. In some embodiments, a stolen storage node impacts
neither the security nor the reliability of the system, while depending on system
configuration, a regional event could lead to no loss of data, a fow seconds or minutes of fost
updates, or even complete data Joss.

[86084] In the embodiments, the placement of data for storage redundancy 1s independent of
the placement of avthorities for data consistency. In some embodiments, storage nodes that
contain authorities do not contain any persistent storage. Instead, the storage nodes are
connected to non-volatile solid state storage units that do not contain authonties. The
communications imerconnect between storage nodes and non-volatile solid state storage units
consists of muktiple communication technologies and has non-uniform performance and fault
tolerance charactenistics, In some embodiments, as mentioned above, non-volatile sohid state
storage units are connected to storage nodes via PCI express, storage nodes are connected
together within g single chassis using Ethernet backplane, and chassis are connected together
to form a storage cluster. Storage clusters are connected to clients using Ethernet or fiber
channel in some embodments. H multiple storage clusiers are configured into a storage grid,

the mudtiple storage clusters are connected using the Internet or other long-distance
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networking hinks, such as a “metro scale” link or private hink that does not traverse the
mternet.

[00085] Authority owners have the exclusive right to modify entities, to migrate entitics from
one non-volatile solid state storage unit to another non-volatile solid state storage unmit, and to
add and remove copies of entities. This allows for maintaiming the redandancy of the
underlying data. When an authority owner fails, is going to be decommissioned, or is
overloaded, the authority is transferred to a new storage node. Transient failures make it non-
trivial to ensure that all non~faulty machines agree upon the new authonty location. The
ambiguity that arises due to transient failures can be achicved antomatically by a consensus
protocol such as Paxos, hot-warm failover schemes, via manual intervention by a remote
gystern administrator, or by a local hardware administrator (such as by phvsically removing
the failed machine from the cluster, or pressing a button on the failed machine). In some
embodiments, a consensus protocol is used, and failover is automatic. Htoo many failures or
replication events occur in too short a time period, the system goes into a self-preservation
mode and halts replication and data movement activities until an admumnistrator intervenes in
accordance with some embodiments.

{06086} As authoritics are transterred between storage nodes and authority owners update
entities n their authoritics, the system transfers messages between the storage nodes and non-
vodatile solid state storage units. With regard to persistent messages, messages that have
different purposes are of different types. Depending on the type of the message, the system
maintains diffcrent ordering and durability guarantecs. As the persistent messages are being
processed, the messages are temporarnily stored i multiple durable and non-durable storage
hardware technologies. In some embodiments, messages are stored in RAM, NVRAM and
on NAND flash devices, and a vanety of protocols are used in order to make efficient use of
cach storage medium. Latency-sensitive clicnt requests may be persisted in replicated
NVRAM, and then later NAND, while background rebalancing operations are persisted
dircctly to NAND.

{00087} Porsistent messages are persistently stored prior to being transmitted. This allows
the system to continue to serve client requests despite failures and component replacement.
Although many hardware components contain unique identifiers that are visible to system
administrators, manufacturer, hardware supply chain and ongoing monitoring quality control
mirastructure, applications running on top of the infrastructure address virtualize addresses.
These virtualized addresses do not change over the lifetime of the storage system, regardiess

of component failures and replacements. This allows each component of the storage system
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to be replaced over time without reconfiguration or disruptions of chient request processing,
t.¢., the system supports non-disruptive upgrades.

[B0088] In some embodiments, the virtualized addresses are stored with sufficient
redundancy. A continuous monitoring system correlates hardware and software status and
the hardware identifiers. This allows detection and prediction of fatlures due to faulty
components and manofacturing details. The monitoring system also enables the proactive
transfer of authoritics and entitics away from impacted devices before failure occurs by
removing the component from the critical path in some embodiments.

180089} Figure 2C is a multiple level block diagram, showing contents of a storage node 150
and contents of a non-volatile solid state storage 152 of the storage node 150, Data is
cornmunicated to and from the storage node 130 by a network interface controller ("NIC™)
202 in some cmbodiments. Each storage node 150 has a CPU 156, and one or more non-
volatile solid state storage 132, as discussed above. Moving down ong level in Figure 2C,
cach non-volatile solid state storage 152 has a relatively fast non-volatile solid state memory,
such as nonvolatile random access memory { NVRAM') 204, and flash memory 206. In
some embodiments, NVRAM 204 may be a component that does not require prograny/erase
cveles (DRAM, MRAM, PCM), and can be a memory that can support being written vastly
maore often than the memory is read from. Moving down another level in Figure 2, the
NVRAM 204 is implemented 1n one embodiment as high speed volatile memory, such as
dynamic random aceess memory {BRAM) 216, backed up by energy reserve 218, Energy
reserve 218 provides sufficient electrical power to keep the DRAM 216 powered long enough
for contents to be transferred to the flash memory 206 1n the event of power failure. In some
embodiments, encrgy reserve 218 1s a capacitor, super-capacitor, battery, or other device, that
supplics a suitable supply of energy sufficient o enable the transfer of the contents of BRAM
216 to a stable storage medium 1n the case of power loss. The flash memory 206 is
mplemented as multiple flash dies 222, which mayv be referred to as packages of flash dies
222 or an array of flash dies 222 It should be appreciated that the flash dies 222 could be
packaged in any number of ways, with a single dic per package, multiple dics per package
{i.c. multichip packages), in hvbrid packages, as bare dies on a printed circuit board or other
substrate, as encapsulated dies, etc. In the embodiment shown, the non-~volatile solid state
storage 152 has a controller 212 or other processor, and an input output (1/0} port 210
coupled to the controller 212, V0O port 210 is coupled to the CPU 156 and/or the network
miterface controtler 202 of the flash storage node 150. Flash input output (I/0) port 2201

coupled to the flash dies 222, and a direct memory access unit {BMA) 214 is coupled to the
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controtler 212, the DRAM 216 and the flash dies 222, In the embodiment shown, the VO
port 210, controller 212, BMA unit 214 and flash V0 port 220 are implemented on a
progranunable logic deviee ('PLID7) 208, ¢ g., a field programmablc gate array (FPGA). In
this embodiment, each flash die 222 has pages, organized as sixicen kB (kiiobyvie) pages 224,
and a register 226 through which data can be wniten to or read from the flash die 222, In
further embodiments, other types of solid-state memory are used in place of, or in addition to
flash memory ilustrated within flash dic 222,

{86096 Storage clusters 161, in vanous embodiments as disclosed herein, can be contrasted
with storage arravs in general. The storage nodes 150 are part of a collection that creates the
storage cluster 161, Each storage node 150 owns a shice of data and computing required to
provide the data. Multiple storage nodes 150 cooperate to store and retrieve the data.
Storage memory or storage devices, as used in storage arrays in general, are less involved
with processing and manipulating the data. Storage memory or storage devices in a storage
array receive commands to read, write, or crase data. The storage memory or storage devices
i a storage array are not aware of a larger system in which they are embedded, or what the
data means. Storage memory or storage devices in storage arrays can include various tvpes
of storage memory, such as RAM, solid state drives, hard disk drives, etc. The storage aniis
152 described herein have multiple interfaces active simultancously and serving multiple
purposes. In some embodiments, some of the functionality of a storage node 150 1s shifted
mito a storage unit 152, transforming the storage unit 152 into a combination of storage unit
152 and storage node 150, Placing computing {(relative to storage data} into the storage unit
152 places this computing closer to the data itself. The various system embodiments have a
hierarchy of storage node layers with different capabilities. By contrast, in a storage array, a
controller owns and knows evervthing about all of the data that the controller manages in a
shelf or storage devices. In a storage cluster 161, as described herein, multiple controliers in
multiple storage unats 152 and/or storage nodes 130 cooperate 1n various ways {e.g., for
erasure coding, data sharding, metadata communication and redundancy, storage capacity
gxpansion or contraction, data recoverv, and so on).

{00091} Figure 2D shows a storage server environment, which uses embodiments of the
storage nodes 150 and storage units 152 of Figures 2A-C. In this version, each storage anit
152 has a processor such as controller 212 {see Figure 2(}, an FPGA (ficld programmable
gate array}, flash memory 206, and NVRAM 204 {(which is super-capacitor backed DRAM
216, see Figures 2B and 2C) on a PCle {peripheral component interconnect express) board in

a chassis 138 (sec Figure 2A). The storage unit 152 may be implemented as a single board
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containing storage, and may be the largest tolerable farlure domain mside the chassis. In
some embodiments, up to two storage units 152 may fail and the device will continue with no
data loss.

{80092} The physical storage is divided mto named regions based on application usage in
some embodiments. The NVRAM 204 15 a contiguous block of reserved memory in the
storage unit 152 DRAM 216, and is backed by NAND flash. NVRAM 204 is logically
divided into multiple memory regions written for two as spood {c.g., spool_region). Space
within the NVRAM 204 spools is managed by cach anthority 168 independently. Each
device provides an amount of storage space to cach authority 168, That authority 168 further
manages lifetimes and aliocations within that space. Examples of a spool inciude distributed
transactions or notions. When the primary power to a storage unit 152 fails, onboard super-
capacttors provide a short duration of power hold up. During this holdup interval, the
contents of the NVRAM 204 are flushed to flash memory 206, On the next power-on, the
contents of the NVRAM 204 are recovered trom the flash memory 206,

{86093} As for the storage unit controller, the responsibility of the logical “controlier” 1s
distributed across each of the blades containing anthorities 168, This distribution of logical
control is shown in Figure 2D as a host coniroller 242, mid-tier controlier 244 and storage
unit controlicr(s) 246. Management of the control plane and the storage planc are treated
mdependently, although parts may be physically co-located on the same blade. Each
authority 168 effectively serves as an independent controller. Each authority 168 provides its
own data and metadata structures, its own background workers, and maintains its own
hifecycle.

{80054} Figure 2E is a blade 252 hardware block diagram, showing a control plane 254,
compute and storage planes 256, 258, and authoritics 168 interacting with underlying
physical resources, using embodiments of the storage nodes 150 and storage units 152 of
Figs. 2A-C n the storage server environment of Figure 2D. The control plane 254 13
partitioned into a number of authoritics 168 which can use the compute resources in the
compute planc 256 to run on anv of the blades 252, The storage plane 238 is partitioned into
a set of devices, each of which provides access to flash 206 and NVRAM 204 resources. In
one embodiment, the compute plane 256 mayv perform the operations of a storage array
controller, as described herein, on ong or more devices of the storage plane 258 {eg., a
storage array).

{00095} In the compute and storage planes 256, 258 of Figure 2E, the authorities 168 interact

with the undertving physical resources (i.e., devices). From the point of view of an authority
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168, its resources are striped over all of the physical devices. From the point of view of a
device, it provides resources to all authoritics 168, irrespective of where the authorities
bappen to run. Each authority 168 has allocated or has been allocated one or more partitions
260 of storage memory in the storage units 152, e.g. partitions 260 m flash memory 206 and
NVRAM 204. Each authonty 168 ases those allocated partitions 260 that belong to 1, for
writing or reading user data.  Authorities can be associated with differing amounts of physical
storage of the systern. For example, one authority 168 could have a larger number of
partitions 260 or larger sized partitions 260 in one or more storage units 152 than one or more
other authorities 168.

{00096} Figurc 2F depicts clastictty software lavers 1n blades 232 of a storage cluster, in
accordance with some embodiments. In the elasticity structure, elasticity software 1s
symmetrnic, 1.¢., each blade's compute modulde 270 runs the three wdentical layers of processes
depicted o Figure 2F. Storage managers 274 execute read and write requests from other
blades 257 for data and metadata stored in Jocal storage unit 152 NVRAM 204 and flash 206.
Authorities 168 fulfill client requests by 1ssuing the necessary reads and writes to the blades
252 on whose storage units 152 the corresponding data or metadata resides. Endpoints 272
parse chient conngction requests received from switch fabric 146 sapervisory software, relay
the clicnt connection requests to the authoritics 168 responsible for fulfillment, and relay the
authorities' 168 responses to clients. The symmetric three-layver structure enables the storage
system'’s high degree of concurreney. Elasticity scales out efficiently and reliably in these
embodiments. In addition, clasticity implements a unique scale-out technique that balances
work evenly across all resources regardless of client access pattern, and maximizes
concurrency by climinating much of the need for inter-blade coordination that typically
ocours with conventional distributed locking.

{00097} Stll referring to Figure 2F, anthoritics 168 manning in the compute modules 270 of a
blade 232 perform the intemal operations required to fulfill chient requests. One feature of
clasticity is that authorities 168 are stateless, 1.¢., they cache active data and metadata in their
own blades' 252 DRAMs for fast access, but the authorities store cvery update n their
NVRAM 204 partitions on three separate blades 252 until the update has been written to flash
206. Al the storage system writes to NVRAM 204 are 1n triplicate to partitions on three
separate blades 252 in some embodiments. With triple-mirrored NVRAM 204 and persistent
storage protected by parity and Reed-Solomon RAID checksums, the storage system can
survive concurrent failure of two blades 252 with no loss of data, metadata, or access to

cither.
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{86098} Because authorities 168 are stateless, they can migrate between blades 252, Each
authority 168 has a unique identifier. NVRAM 204 and flash 206 partitions are associated
with authorities’ 168 identifiers, not with the blades 252 on which they are running in some.
Thus, when an authority 168 migrates, the anthority 168 continues to manage the same
storage partitions from its new location. When a new blade 232 is nstalled in an
embodiment of the storage cluster, the system automatically rebalances load by: partitioning
the new blade's 252 storage for use by the system's authorities 168, migrating selected
authorities 168 to the new blade 252, starting endpoints 272 on the new blade 252 and
mehiding them i the switch fabric's 146 client connection distribution algorithm.

{00099} From their new locations, migrated authoritics 168 persist the contents of their
NVRAM 204 partitions on flash 206, process read and write requests from other authorities
168, and fulfill the chient requests that endpoints 272 direct to them. Similarly, if a blade 252
fails or is removed, the system redistributes tis authoritics 168 among the system's remaining
blades 252, The redistributed authoritics 168 continue to perform their original functions
from their new locations.

[860180] Figure 2G depicts authorities 168 and storage resources in blades 252 of a storage
chuster, in accordance with some embodiments. Fach authority 168 is exclusively responsible
for a partition of the flash 206 and NVRAM 204 on cach blade 232, The authonty 168
manages the content and ntegrity of its partitions independently of other authorities 168.
Authorities 168 compress incoming data and preserve it temporarily in their NVRAM 204
partitions, and then consolidate, RAID-protect, and persist the data in segments of the storage
i their flash 206 partifions. As the authorities 168 write data to flash 206, storage managers
274 perform the necessary flash translation to optimize write performance and maximize
media longevity. In the background, authorities 168 “garbage collect.” or reclaim space
occupied by data that clients have made obsolete by overwriting the data. 1t should be
appreciated that since authorities' 168 partitions are disjoint, there is no need for distributed
locking to execute client and writes or to perform background functions.

{06016} The embodiments described herein may utilize various software, communication
and/or networking protocols. In addition, the configuration of the hardware and/or software
may be adjusted to accommodate various protocols. For example, the embodiments may
ptitize Active Darectory, which is a database based system that provides authentication,
directory, policy. and other services in a WINDOWS™ environment. In these embodiments,
LDAP (Lightweight Directory Access Protocol) 1s one example application protocol for

guerying and modifying items m directory service providers such as Active Directory. In
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some embodiments, a network lock manager ("NLM} 1s utilized as a facility that works
cooperation with the Network File System ("NFS™) to provide a System V stvle of advisory
file and record locking over a network., The Server Message Block ({SMB) protocol, one
version of which is also known as Common Internet File System (CCIFS™), may be mtegrate
with the storage systems discussed herein. SMP operates as an application-layer network
protocol typically used for providing shared access to files, printers, and serial ports and
miscellancous communications between nodes on a network. SMB also provides an
authenticated inter-process communication mechanism. AMAZON™ §3 (Simple Storage
Service) is a web service offered by Amazon Web Services, and the systems described herein
may interface with Amazon S3 through web services interfaces (REST (representational state
transfer), SOAP (simple object access protocol}, and BitTorrent). A RESTHul API
{application programming interface} breaks down a transaction to create a series of small
modules. Each module addresses a particular underlying part of the transaction. The control
o1 permissions provided with these embodiments, especially for object data, may include
utifization of an access control list CACL™Y. The ACL 1s a list of permissions attached to an
obiect and the ACL specifies which users or system processes are granted access to objects,
as well as what operations are allowed on given objects. The systems may utilize Internet
Protocol version 6 ("IPv67), as well as IPv4, for the communications protocol that provides an
wdentification and location system for computers on networks and routes traffic across the
Internet. The routing of packets between networked systems may inclode Equal-cost multi-
path routing (CECMP’), which is a routing strategy where next-hop packet forwardingto a
single destination can occur over multiple “best paths”™ which tie for top place in routing
metric calculations. Mudti-path routing can be used n conjunction with most routing
protocols, because it is a per-hop decision Hmited to a single router. The software may
support Multi-tenancy, which is an architecture 1n which a single instance of a software
apphication serves multiple customers. Each customer may be referred 1o as a tenant.
Tenants may be given the ability to customize some parts of the applcation, but may not
customize the application's code, in some embodiments. The embodiments may maintain
audit logs. An audit log i1s a document that records an event m a computing system. In
addition to documenting what resources were accessed, audit log entries typically include
destination and source addresses, a timestamp, and user fogin wnformation for compliance
with various regulations. The embodiments may support various key management policies,
such as encryption key rotation. In addition, the system may support dynamic root passwords

or some vartation dynamically changing passwords.
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[860182] Figure 3A sets forth a diagram of a storage system 306 that is coupled for data
communications with a cloud services provider 302 in accordance with some embodiments of
the present disclosure. Although depicted m less detail, the storage svstem 306 depicted in
Figure 3A may be similar to the storage svstems descrnibed above with reference to Figures
1A-1D and Figures 2A-2G. In some embodiments, the storage system 306 depicted in Figure
3A may be embodied as a storage system that includes imbalanced active/active controlers,
as a storage system that mcludes balanced active/active controllers, as a storage system that
meludes active/active controllers where less than all of each controller’s resources are utihized
such that each controlier has reserve resources that may be used to support failover, as a
storage system that includes fully active/active controllers, as a storage svstem that includes
dataset-segregated controllers, as a storage system that includes dual-laver architectures with
front-end controllers and back-end mtegrated storage controllers, as a storage system that
mncludes scale-out clusters of dual-controller arravs, as well as combinations of such
embodiments.

[860183] 1n the example depicted in Figure 3A, the storage svstem 306 1s coupled to the
cloud services provider 302 via a data communications link 304, The data commanications
link 304 may be embodied as a dedicated data communications fink, as a data
communications pathway that is provided through the use of one or data communications
networks such as a wide area network ("WAN) or local area network (*LAN), or as some
other mechanism capable of transporting digital mformation between the storage system 306
and the cloud services provider 302, Such a data comnunications link 304 may be fully
wired, fully wireless, or some aggregation of wired and wireless data communications
pathways. In such an example, digital information may be exchanged between the storage
systern 306 and the cloud services provider 302 via the data commmunications link 304 using
one or more data communications protocols. For example, digital information may be
exchanged between the storage system 306 and the cloud services provider 302 via the data
communications link 304 using the handheld device transfer protocol (HDTPY), hypertext
transfer protocol (HTTPY), mtemnet protocol (1P, real~time transfer protocol (RTH).
transmission control protocol ("TCP), user datagram protocol (UDP'), wireless application
protocol (WAP"), or other protocol.

1860184} The cloud services provider 302 depicted in Figure 3A may be embodied, for
example, as a system and computing cnvironment that provides services to users of the cloud
services provider 302 through the sharing of computing resources via the data

commuunications link 304, The cloud services provider 302 may provide on-demand access
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to a shared pool of configurable computing resources such as computer networks, servers,
storage, applications and services, and so on. The shared pool of configurable resources may
be rapidly provisioned and released to a user of the cloud services provider 302 with minimal
management effort. Generally, the user of the cloud services provider 302 is unaware of the
exact computing resources utilized by the cloud services provider 302 to provide the services.
Although in many cases such a cloud services provider 302 may be accessible via the
Internet, readers of skill in the art will recognize that anv system that abstracts the use of
shared resources to provide services to a user through any data communications link may be
considered a cloud services provider 302.

[B00105] In the cxample depicted in Figure 34, the cloud services provider 302 may be
configured fo provide a variety of services to the storage sysiem 306 and users of the storage
ayaterm 306 throogh the implementation of various service models. For example, the cloud
services provider 302 may be configured to provide services to the storage system 306 and
users of the storage system 306 through the implementation of an infrastructure as a service
{'IaaS") service model where the cloud services provider 302 offers computing infrastructure
such as virtual machines and other resources as a service o subsenbers. In addition, the
cloud services provider 302 may be configured to provide services to the storage system 306
and users of the storage system 306 through the implementation of a platform as a service
('Paal’} service model where the cloud services provider 302 offers a development
environment to application developers. Such a development environment may inchide, for
exaraple, an operating system, programming-language execution environment, database, web
server, or other components that may be utilized by application developers to develop and run
software solutions on a cloud platform. Furthermore, the cloud services provider 302 may be
configured o provide services to the storage system 306 and users of the storage system 306
through the implementation of a software as a service ('Saa8’) service model where the cloud
services provider 302 offers application software, databases, as well as the platforms that are
used to run the apphcations to the storage system 306 and users of the storage system 306,
providing the storage system 306 and users of the storage system 306 with on-demand
software and eliminating the need to mstall and run the application on local computers, which
may simplify maintenance and support of the application. The cloud services provider 302
may be further configured to provide services to the storage system 306 and vsers of the
storage system 306 through the tuplementation of an anthentication as a service ' AaaS")
service model where the cloud services provider 302 offers authentication services that can

be used to secure access to applications, data sources, or other resources. The cloud services
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provider 302 may also be configured to provide services to the storage system 306 and users
of the storage system 306 through the implementation of a storage as a service model where
the cloud services provider 302 offers access to its storage mfrastructure for use by the
storage systern 306 and users of the storage system 306. Readers will appreciate that the
cloud services provider 302 may be configared to provide additional services to the storage
system 306 and users of the storage system 306 through the mmplementation of additional
service models, as the service models described above are included onlv for explanatory
purposes and m no way represent a limitation of the services that may be offered by the cloud
services provider 302 or a limitation as to the service models that may be implemented by the
cloud services provider 302.

[300106] In the example depicted in Figure 34, the cloud services provider 302 may be
embodied, for example, as a private cloud, as a public cloud, or as a combination of a private
cloud and public cloud. In an embodiment in which the cloud services provider 302 1s
embodied as a private cloud, the cloud services provider 302 may be dedicated to providing
services to a single organization rather than providing services to multiple orgamizations. In
an embodiment where the cloud services provider 302 1s embodied as a public cloud, the
cloud services provider 302 may provide services to multiple organizations. Public cloud and
private cloud deployment models may differ and may come with various advantages and
disadvantages. For example, because a public cloud deployment involves the sharing of a
computing infrastructure across different oreamzation, such a deployment may not be ideal
for organizations with security concerns, mission-critical workloads, uptime requirements
demands, and so on. While a private cloud deployment can address some of these issues, a
private cloud deplovment may require on-premises staff to manage the private cloud. In still
ahlternative embodiments, the cloud services provider 302 may be embodied as amix of a
private and public cloud services with a hybnd cloud deployment.

{00107 Although not explicitly depicted 1n Figure 3A, readers will appreciate that
additional hardware components and additional software components may be ngcessary o
facilitate the delivery of cloud services to the storage system 306 and users of the storage
system 306. For example, the storage system 306 may be coupled to {or even include) a
cloud storage gateway. Such a cloud storage gateway may be embodied, for example, as
hardware-based or software-based appliance that is located on premise with the storage
system 306. Such a cloud storage gateway may operate as a bridge between local
applications that are executing on the storage array 306 and remote, cloud-based storage that

is utilized by the storage array 306. Through the use of a ¢loud storage gateway,
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organizations may move primary iI5C51 or NAS to the cloud services provider 302, thereby
enabling the organization to save space on their on-premises storage systems. Such a cloud
storage gateway may be configured to emulate a disk array, a block-based device, a file
server, or other storage system that can translate the SCST commands, file server commands,
or other appropnate command into REST-space protocols that facilitate communications with
the cloud services provider 302,

[060108] In order to enable the storage system 306 and users of the storage system 306 to
make use of the services provided by the cloud services provider 302, a cloud migration
process may take place during which data, applications, or other elements from an
organization's local systems (or even from another cloud environment} arc moved to the
cloud services provider 302, In order to successfully migrate data, applications, or other
elements 1o the cloud services provider's 302 environment, middleware such as a cloud
migration tool may be utidized to bridge gaps between the cloud services provider's 302
environment and an organization's environment. Such cloud migration tools may alsc be
contigured to address potentially high network costs and long transfer times associated with
migrating large volumes of data to the cloud services provider 302, as well as addressing
security concerns associated with sensitive data to the cloud services provider 302 over data
communications networks. In order to further enable the storage svstem 306 and users of the
storage system 306 to make use of the services provided by the cloud services provider 302, a
cloud orchestrator may also be used o arrange and coordinate automated tasks in pursuit of
creating a consolidated process or workflow. Such a cloud orchestrator may perform tasks
such as configuring vanous components, whether those components are cloud components or
on-premises components, as well as managing the interconnections between such
components. The cloud orchestrator can simplify the mter-component communication and
connections to ensure that hinks are correctly configured and maintained.

{3001 09] In the example depicted in Figure 3A, and as described briefly above, the clond
services provider 302 may be configured to provide services to the storage system 306 and
users of the storage system 306 through the usage of a Saa$ service model where the cloud
services provider 302 offers application software, databases, as well as the platforms that are
used to run the applications to the storage system 306 and users of the storage system 306,
providing the siorage system 306 and users of the storage system 306 with on-demand
software and eliminating the need to install and run the application on local computers, which
may simphfy maintenance and support of the application. Such applications may take many

forms in accordance with various embodiments of the present disclosure. For example, the
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cloud services provider 302 may be configured to provide access to data analviics
applications to the storage system 306 and users of the storage system 306, Such data
analvtics applications may be configured, for example, to receive telemetry data phoned
home by the storage system 306, Such telemetry data may describe various operating
characteristics of the storage system 306 and may be analyzed, for example, to deteroune the
health of the storage system 306, to identify workloads that are executing on the storage
system 306, to predict when the storage system 306 will run out of vanious resources, to
recommend configuration changes, hardware or software upgrades, workflow mugrations, or
other actions that may mmprove the operation of the storage system 306,

{6601 19] The cloud services provider 302 may also be contfigured to provide access to
virtualized computing environments to the storage system 306 and users of the storage
aystem 306. Such virtualized computing environments may be embodied, for example, as a
virtual machine or other virtualized computer hardware platforms, virtual storage devices,
virtualized computer network resources, and so on. Examples of such virtualized
environments can include virtual machines that are created to emuiate an actual computer,
virtualized desktop environments that separate a logical desktop from a physical maching,
virtualized file systems that allow uniform access to different types of concrete fife systems,
and many others.

[6060111] For further explanation, Figure 3B sets forth a diagram of a storage system 306 1n
accordance with some embodiments of the present disclosure. Although depicted in less
detail, the storage system 306 depicted in Figure 3B may be similar to the storage systems
described above with reference to Figures 1A-1D and Figures 2A-2G as the storage system
may include many of the components described above.

{8601 12] The storage system 306 depicted in Figure 3B may include storage resources 308,
which may be embodied in many forms. For example, in some cmbodiments the storage
resources 308 can include nano-RAM or another form of nonvolatile random access memory
that utilizes carbon nanctebes deposited on a substrate. In some embodiments, the storage
resources 308 may include 3D crosspoint non-volatile maemory in which bit storage 1s based
on a change of bulk resistance, in conjunction with a stackable cross-gridded data access
array. In some embodiments, the storage resources 308 may melude flash memory, including
single-level cell (SLCY NAND flash, multi-level cell {MLC") NAND flash, triple-level cell
{(TLCY NAND flash, quad-level cell (QLC"Y NAND flash, and others. In some
embodiments, the storage resources 308 may include non-volatile magnetoresistive random-

access memory { MRAM'), including spin transfer torque (5TT) MRAM, in which data is
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stored through the use of magnetic storage elements. In some embodiments, the example
storage resources 308 may include non-volatile phase-change memory (PCM') that may have
the ability 1o hold multiple bits in a single cell as cells can achieve a number of distinct
miermediary states. In some embodiments, the storage resources 308 may include quantum
memory that allows for the storage and retrieval of photonic guantum mformation. In some
embodiments, the example storage resources 308 may include resistive random-access
memory {'ReRAM') in which data is stored by changing the resistance across a dielectric
solid-state material. In some embodiments, the storage resources 308 may include storage
class memory ('SCM'} in which solid-state nonvolatile memory may be manufactured at a
bigh density using some combination of sub-lithographic patterning technigques, multiple hits
per cell, muttiple lavers of devices, and so on. Readers will appreciate that other forms of
computer memories and storage devices may be utilized by the storage systems descnbed
above, mchuding DRAM, SRAM, EEPROM, universal memory, and many others. The
storage resources 308 depicted in Figure 3A may be embodied in a variety of form factors,
mehuding but not limited to, dual in-line memory modules ("DIMMs"), non-volatile dual in-
bine memory modules (NVDIMMs'Y, M2, U2, and others.

{8601 13] The storage resources 308 depicted in Figure 3A may nclude various forms of
storage-class memory (‘SCM’). SCM may cffectively treat fast, non-volatile memory (¢c.g.,
NAND flash) as an extension of DRAM such that an entire dataset may be treated as an in-
memory dataset that resides entirely in DRAM. SCM may include non-volatile media such
as, for cxample, NAND flash. Such NAND flash may be accessed utilizing NVMe that can
use the PCle bus as its transport, providing for relatively low access latencies compared to
older protocols. I fact, the network protocols used for 55Ds in all-flash arrays can include
N¥YMe using Ethernet (ROCE, NVME TCP), Fibre Channel (NVMe FC), InfimiBand
{(iIWARP), and others that make it possible to treat fast, non-volatile memory as an extension
of DRAM. In view of the fact that DRAM is often bvie-addressable and fast, non-volatile
memory such as NAND flash 1s block-addressable, a controller software/hardware stack may
be needed to convert the block data to the bytes that are stored n the media. Examples of
media and software that may be used as SCM can include, for example, 3D XPoint, Inte
Memory Drive Technology, Samsung’s Z-55D, and others.

{0601 14] The example storage system 306 depicted in Figure 3B may implement a variety of
storage architectures. For example, storage systems in accordance with some embodinments
of the present disclosure may utilize block storage where data is stored m blocks, and each

block essentially acts as an individual hard drnive. Storage systems in accordance with some
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embodiments of the present disclosure may utilize object storage, where data is managed as
obiects. Each obicct may inchude the data itself, a variable amowunt of metadata, and a
globally unique identifier, where object storage can be implemented at multiple levels {e.g,
device level, system level, interface level). Storage systems in accordance with some
embodiments of the present disclosure atilize file storage in which data is stored in a
hierarchical structure. Such data may be saved in files and folders, and presented to both the
system storing it and the syster retrieving it in the same format.

{8601 15] The example storage system 306 depicted in Figure 3B may be embodied as a
storage system in which additional storage resources can be added through the use of a scale-
up model, additional storage resources can be added through the use of a scale-out model, or
through some combination thereof. In a scale~-up model, additional storage may be added by
adding additional storage devices. In a scale-out model, however, addittonal storage nodes
may be added to a cluster of storage nodes, where such storage nodes can inchude additional
processing resources, additional networking resources, and so on.

{0001 16] The storage svstem 306 depicted i Figure 3B also includes communications
resovrces 310 that may be useful in facihitating data communications between components
within the storage system 306, as well as data communications between the storage system
306 and computing devices that are outside of the storage system 306. The conununications
resources 310 may be configured o utilize a varnety of different protocols and data
communication fabrics to facilitate data communications between components within the
storage systems as well as computing devices that are outside of the storage system. For
example, the communications resources 310 can include fibre channel (F(') technologies
such as FC fabrics and FC protocols that can transport SCSI commands over FC networks.
The commumications resources 310 can also include FC over ethernet (FCoE"Y techuologies
through which FC frames are encapsulated and transmitted over Ethernct networks. The
coromunications resources 310 can also mnclude InfiniBand ('IB%) technologies in which a
switched fabric topology is utilized to facilitate transmissions between channel adapters. The
communications resources 310 can also include NVM Express ({NVMe') technologies and
NVMe over fabrics (NVMeoF') technologies through which non-volatile storage media
attached via a PCE express ('PCle’) bus may be accessed. The communications resources 310
can also mchude mechanisms for accessing storage resources 308 within the storage system
306 utilizing serial attached SCST ('SASY, serial ATA ('SATA') bus mterfaces for connecting
storage resources 308 within the storage svstem 306 to host bus adapters within the storage

system 306, internet small computer systems interface (1SCST') technologies to provide
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block-level access to storage resources 308 within the storage system 306, and other
conumunications resources that that may be useful in facilitating data communications
between components within the storage system 306, as well as data communications between
the storage system 306 and computing devices that are outside of the storage system 306,
[880117] The storage system 306 depicted tn Figure 3B also includes processing resources
312 that may be useful mn useful in executing computer program instructions and performing
other computational tasks within the storage system 306. The processing resources 312 may
melude one or more application-specific integrated circuits (ASICs") that are customized for
some particular purpose as well as one or more central processing units (CPUs}. The
processing resources 312 may also include one or more digital signal processors ('BSPs'), one
or more field-programmable gate arravs (FPGAs'), one or more systems on a chip {50(Cs'), or
other form of processing resources 312, The storage system 306 may otilize the storage
resources 312 to perform a vanety of tasks including, but not limited to, supporting the
execution of sofiware resources 314 that will be described in greater detail below.

[860118] The storage sysiem 306 depicted in Figure 3B also includes software resources 314
that, when executed by processing resources 312 within the storage system 306, may perform
various tasks. The software resources 314 may include, for example, one or more modules of
corputer program instructions that when executed by processing resources 312 within the
storage system 306 are useful in carrving out various data protection technigues to preserve
the integrity of data that is stored within the storage systems. Readers will appreciate that
such data protection techniques may be carried out, for example, by system software
executing on computer hardware within the storage system, by a cloud services provider, or
i other ways. Such data protection techniques can include, for example, data archiving
techniques that cause data that is no longer actively used to be moved to a separate storage
device or separate storage svstem for long-term retention, data backup techniques through
which data stored in the storage system may be copied and stored m a distinct location to
avoid data loss in the event of equipment failure or some other form of catastrophe with the
storage system, data replication techniques through which data stored in the storage system is
replicated to another storage system such that the data may be accessibie via multiple storage
systems, data snapshotting techniques through which the state of data within the storage
syster is captured at various points in time, data and database cloning techniques through
which duplicate copies of data and databases may be created, and other data protection

techniques. Through the use of such data protection techniques, business continuity and
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disaster recovery objectives may be met as a failure of the storage system may not result m
the loss of data stored in the storage system.,

{30601 19] The software resources 314 may also include software that is useful in
mmplementing software-defined storage (SDS'). In such an example, the software resources
314 may include one or more modules of computer program mstructions that, when executed,
are useful 1n policy-based provisioning and management of data storage that is independent
of the underlying hardware. Such software resources 314 mayv be usetul in implementing
storage virtualization o separate the storage hardware from the software that manages the
storage hardware.

{0001 20} The software resources 314 may also include software that is useful in faciltating
and optimizing /0 operations that are directed to the storage resources 308 i the storage
system 306, For example, the software rescurces 314 may include software modules that
perform carry out vanous data reduction techoigques such as, for example, data compression,
data deduplication, and others. The software resources 314 may include sofiware modules
that intetigently group together /(O operations to facilitate better usage of the underlying
storage resource 308, software modules that perform data migration gperations to migrate
from: within a storage system, as well as software modules that perform other functions. Such
software resources 314 may be embodicd as one or more software containers or in many
other ways.

1060121] Readers will appreciate that the presence of such software resources 314 may
provide for an improved user experience of the storage svstem 306, an expansion of
functionality supported by the storage system 306, and many other benefits. Consider the
specific example of the software resources 314 carrying out data backup technigues through
which data stored in the storage system may be copied and stored in a distinct location to
avoid data loss in the event of equipment failure or some other form of catastrophe. In such
an example, the systems described herein may more rehiably {and with Iess burden placed on
the user) perform backup operations relative to interactive backup management systems that
require high degrees of user interactivity, offer less robust automation and feature sets, and so
on.

[860122] For further explanation, Figare 3C sets forth an example of a cloud-based storage
systern 318 in accordance with some embodiments of the present disclosure. In the example
depicted in Figure 3C, the cloud-based storage system 318 is created entirely in a cloud
computing environment 316 such as, for example, Amazon Web Services (AWS'), Microsoft

Azure, Google Cloud Platform, IBM Cloud, Oracle Cloud, and others. The cloud-based
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storage system 318 may be used to provide services similar to the services that may be
provided by the storage systems deseribed above. For example, the cloud-based storage

system 318 may be used to provide block storage services to users of the cloud-based storage
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system 318, the cloud-based storage system 318 may be used to provide storage services to
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users of the cloud-based storage system 318 through the use of solid-state storage, and so on.
1060123] The cloud-based storage system 318 depicted in Figure 3C includes two cloud
computing instances 320, 322 that cach are used to support the execution of a storage
controller application 324, 326. The clond computing mstances 320, 322 may be embodied,
for example, as instances of cloud computing rescurces {e.g., virtual machines) that may be
provided by the cloud computing covironment 316 to support the execution of software
apphications such as the storage controlier apphication 324, 326, In one embodiment, the
cloud computing mnstances 320, 322 may be embodied as Amazon Elastic Compute Cloud
{(EC2" instances. In such an example, an Amazon Machine Image (AMI') that includes the
storage controller application 324, 326 may be booted to create and configure a virtual
machine that may execute the storage controller application 324, 326.

1860124] In the example method depicted in Figure 3C, the storage controller application
324, 326 may be embodied as a module of computer program 1nstructions that, when
executed, carries out various storage tasks. For example, the storage controlicr application
324, 326 may be embodied as a module of computer program instructions that, when
executed, carries out the same tasks ag the controllers 110A, 110B 1n Figure 1A described
above such as writing data received from the users of the cloud-based storage systern 318 to
the cloud-based storage system 318, erasing data from the cloud-based storage svstem 318,
retrieving data from the cloud-based storage system 318 and providing such data to users of
the cloud-based storage system 318, monitoring and reporting of disk utilization and
performance, performing redundancy operations, such as RAID or RAID-like data
redundancy operations, compressing data, encrypting data, deduplicating data, and so torth.
Readers will appreciate that because there are two cloud computing instances 320, 322 that
cach include the storage controller application 324, 326, in some embodiments one cloud
computing instance 320 may operate as the primarv controller as described above while the
other cloud computing instance 322 may operate as the secondary controller as described
above. In such an example, in order to save costs, the cloud computing instance 320 that
operates as the primary controller may be deployed on a relatively high-performance and
relatively expensive cloud computing instance while the cloud computing instance 322 that

operates as the secondary controller may be deploved on a relatively low-performance and

40



WO 2021/050875 PCT/US2020/050408

relatively inexpensive cloud computing instance. Readers will appreciate that the storage
controller application 324, 326 depicted in Figure 3C may include identical source code that
is executed within different cloud computing instances 320, 322

{0001 25 Consider an example 1n which the cloud computing environment 316 1s embodied
as AWS and the cloud computing instances are embodied as EC2 instances. b such an
example, AWS offers many tvpes of EC2 instances. For example, AWS offers a suite of
general purpose EC2 instances that include varving levels of memory and processing power.
In such an example, the cloud computing mstance 320 that operates as the primary controlier
may be deployed on one of the mmstance types that has a relatively large amount of memory
and processing power while the cloud computing instance 322 that operates as the secondary
controller may be deploved on one of the mstance types that has a relatively small amount of
memory and processing power. In such an example, upon the occurrence of a failover event
where the roles of primary and secondary are switched, a double failover may actually be
carnied out such that: 1} a first failover event where the cloud computing instance 322 that
formerty operated as the secondary controller begins 1o operate as the primary controller, and
2} a third cloud computing nstance (not shown) that is of an instance tyvpe that has a
relatively large amount of memory and processing power 1s spun up with a copy of the
storage controller application, where the third cloud computing instance begins operating as
the primary controller while the cloud computing instance 322 that onginally operated as the
secondary controller begins operating as the secondary controller again. In such an example,
the cloud computing instance 320 that formerly operated as the primary controller may be
terminated. Readers will appreciate that in alternative embodiments, the cloud computing
mstance 320 that is operating as the secondary controller after the failover event may
continue to operate as the secondary countroller and the cloud computing instance 322 that
operated as the primary controller after the occurrence of the failover event may be
terminated once the primary role has been assumed by the third cloud computing mstance
{not shown).

10001 26] Readers will appreciate that while the embodiments described above relate to
embodiments where one cloud computing instance 320 operates as the primary controller and
the second cloud computing instance 322 operates as the secondary controller, other
embodiments are within the scope of the present disclosure. For example, each cloud
corputing instance 320, 327 may operate as a primary controller for some portion of the
address space supported by the cloud-based storage system 318, cach cloud computing

mstance 320, 322 may operate as a primary controller where the servicing of VO operations
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directed to the cloud-based storage system 318 are divided in some other way, and so on. In
fact, 10 other embodiments where costs savings may be prioritized over performance
demands, only a single cloud computing instance may exist that contains the storage
controller application. In such an example, a controller faslure may take more time 1o recover
from as a new cloud compuoting instance that inclades the storage controller application
would need to be spun up rather than having an already created cloud computing instance
take on the role of servicing 1/0 operations that would have otherwise been bandled by the
failed cloud computing instance.
[860127] The cloud-based storage system 318 depicted in Figure 3C includes cloud
computing instances 340a, 340b, 340n with local storage 330, 334, 338, The cloud
computing instances 340a, 340b, 340n depicted 1in Figure 3C may be embodied, for example,
as instances of cloud computing resources that may be provided by the cloud computing
environment 316 to support the execution of software applications. The cloud computing
mstances 340a, 340b, 340n of Figure 3C may differ from the cloud computing mstances 320,
22 descrnbed above as the cloud computing instances 340a, 340b, 340n of Figure 3C have
local storage 330, 334, 338 resources whereas the cloud computing mnstances 320, 322 that
support the execution of the storage controller application 324, 326 nead not have local
storage resources. The cloud computing mstances 340a, 340b, 340n with local storage 330,
334, 338 may be embodied, for example, as EC2 M3 mstances that include one or more
S5Ds, as ECZ RS instances that include one or more S5Ds, as EC2 13 nstances that include
one or more SS5Ds, and so on. In some embodiments, the local storage 330, 334, 338 must be
embodied as solid-state storage {e.g., SSDs) rather than storage that makes use of hard disk
drives.
1060128} In the example depicted in Figure 3C, cach of the cloud computing mstances 340a,
340b, 340n with local storage 330, 334, 338 can include a software dacmon 328, 332, 336
that, when executed by a cloud computing mstance 340a, 340b, 340n can present itseif to the
storage controller applications 324, 326 as if the cloud computing mstance 340a, 340b, 340n
were a physical storage device (e.g.. one or more 55Ds). In such an example, the software
dacmon 328, 332, 336 may include computer program instructions similar to those that would
normally be contained on a storage device such that the storage controller apphications 324,
326 can send and receive the same commands that a storage controller would send to storage
devices. In such a way, the storage controller applications 324, 326 may include code that is
wdentical to {or substantially identical to) the code that would be executed by the controllers

in the storage systems described above. In these and similar embodiments, communications
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between the storage controlier applications 324, 326 and the cloud computing instances 340a,
340b, 3400 with local storage 330, 334, 338 may utilize 18CSI, NVMe over TCP, messaging,
a custom protocol, or in some other mechanism.

{8081 29] In the example depicted in Figure 3C, cach of the cloud computing mnstances 340a,
340b, 340n with local storage 330, 334, 33% may also be coupled to block-storage 342, 344,
346 that 1s offered by the cloud computing environment 316. The block-storage 342, 344,

346 that 1s offercd by the cloud computing environment 316 may be embodied, for example,

coupled to a first cloud computing mstance 340a, a second EBS volume may be coupled to a
second cloud computing instance 340b, and a third EBS volume may be coupled to a third
cloud computing mnstance 340n. In such an example, the block-storage 342, 344, 346 that is
offered by the cloud computing environment 316 may be utdized i a manner that is similar
to how the NVRAM devices described above are utilized, as the software dacmon 328, 332,
336 (or some other module) that is executing within a particular cloud comping instance
340a, 340b, 340n may, upon receiving a reqguest {o wrife data, mihate a write of the data to
its attached EBS volume as well as a write of the data to its local storage 330, 334, 338
resources. i some aliernative embodiments, data may only be writien to the local storage
330, 334, 338 rescurces within a particular cloud comping instance 340a, 340b, 340n. In an
altermative embodiment, rather than using the block-storage 342, 344, 346 that is offered by
the cloud computing environment 316 as NVRAM, actual RAM on each of the cloud
computing instances 340a, 340b, 340n with local storage 330, 334, 338 may be used as
NVRAM, therebv decreasing network utilization costs that would be associated with using an
EBS volume as the NVRAM.

1060138} In the cxample depicted in Figure 3C, the cloud computing instances 340a, 340b,
340n with local storage 330, 334, 338 may be utilized, by cloud computing instances 320,
322 that support the execution of the storage controller application 324, 326 to service /O
operations that are directed to the cloud-based storage system 318, Consider an example m
which a first cloud computing mstance 320 that is executing the storage controller application
324 18 operating as the primary controller. In such an example, the first cloud computing
mstance 320 that is executing the storage controller application 324 may receive {directly or
mdirectly via the secondary controller) requests to write data to the cloud-based storage
systern 318 from users of the cloud-based storage svstem 318, In such an example, the first
cloud computing mstance 320 that 1s executing the storage controller application 324 may

perform vanous tasks such as, for example, deduplicating the data contained in the request,
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compressing the data contained in the request, determining where to the write the data
contained in the request, and so on, before vltimately sending a request to write a
deduplicated, encrvpted, or otherwise possibly updated version of the data to one or more of
the cloud computing instances 340a, 340b, 340n with local storage 330, 334, 338, Fither
cloud computing nstance 320, 322, n some embodiments, may receive a reqacest to read data
from the cloud-based storage system 318 and may ultimately send a request to read data to
one or more of the cloud computing instances 340a, 340b, 340n with local storage 330, 334,
338.

[860131] Readers will appreciate that when a request to write data is received by a particular
cloud computing instance 340a, 340b, 340n with local storage 330, 334, 338, the software
dacmon 328, 332, 336 or some other module of computer program instructions that is
exccuting on the particular cloud computing mstance 340a, 340b, 340n may be configured to
not only write the data to its own local storage 330, 334, 338 wsources and any appropriate
block-storage 342, 344, 346 that are offered by the cloud computing environment 316, but the
software daemon 328, 332, 336 or some other module of computer program instructions that
18 executing on the particular cloud computing instance 340a, 340b, 340n may also be
configured to write the data to ¢loud-based object storage 348 that is attached to the particular
cloud computing instance 340a, 340b, 340n. The cloud-based object storage 348 that is
attached to the particular cloud computing instance 340a, 340b, 340n may be embodied, for
exarnple, as Amazon Simple Storage Service ({83} storage that is accessible by the particular
cloud computing nstance 340a, 340b, 340n. In other embodiments, the cloud computing
mstances 320, 322 that each include the storage controller application 324, 326 may initiate
the storage of the data i the local storage 330, 334, 338 of the cloud computing instances
340a, 340b, 340n and the cloud-based object storage 348,

[000132] Readers will appreciate that, as described above, the cloud-based storage system
318 may be used to provide block storage services to users of the cloud-based storage system
318. While the local storage 330, 334, 338 resources and the block-storage 342, 344, 346
resources that are utilized by the cloud computing instances 340a, 340b, 340n may support
block-level access, the cloud-based object storage 348 that is attached to the particular cloud
computing instance 340a, 340b, 340n supports only object-based access. In order to address
this, the software dacmon 328, 332, 336 or some other module of computer program
mstructions that is executing on the particular cloud computing mstance 340a, 340b, 340n

may be configured to take blocks of data, package those blocks into objects, and write the
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objects to the cloud-based object storage 348 that is attached to the particular cloud
computing instance 340a, 340b, 340n.

{0001 33} Consider an example in which data is written to the local storage 330, 334, 338
resources and the block-storage 342, 344, 346 resources that are utilized by the cloud
computing instances 340a, 340b, 340n m 1 MB blocks. In such an example, assume that a
user of the cloud-based storage system 318 issues a request to write data that, after being
compressed and deduplicated by the storage controller application 324, 326 results in the
need 1o write 5 MB of data. In such an example, writing the data to the local storage 330,
334, 338 resources and the block-storage 342, 344, 346 resources that are utilized by the
cloud computing nstances 340a, 340b, 340n is relatively straightforward as 5 blocks that are
1 MB i size are writien 1o the tocal storage 330, 334, 338 resources and the block-storage
342, 344 346 resources that are utilized by the cloud computing mstances 340a, 340b, 340n.
In such an example, the software daemon 328, 332, 336 or some other module of computer
program instructions that is exccuting on the parficular cloud computing mstance 340a, 340b,
340n may be configured to: 1) create a first object that includes the first 1 MB of data and
write the first object to the cloud-based object storage 348, 2} create a second object that
mehudes the second 1 MB of data and write the second object to the cloud-based object
storage 348, 3) create a third object that includes the third 1 MB of data and write the third
ohicct to the cloud-based object storage 348, and so on. As such, in some embodiments, each
object that is written to the cloud-based object storage 348 may be identical {or nearly
identical) in size. Readers will appreciate that in such an example, metadata that 15 associated
with the data itself may be mmcluded in each object {e.g., the first 1 MB of the object is data
and the remaining portion is metadata associated with the data).

{860134] Readers will appreciate that the cloud-based object storage 348 may be
mcorporated 1nto the cloud-based storage system 318 to increase the durability of the cloud-
based storage system 318, Contimung with the example described above where the cloud
computing instances 340a, 340b, 340n are EC2 mstances, readers will undersiand that EC2
mstances are only guarantced to have a monthly uptinie of 99.9% and data stored in the local
mstance store only persists duning the lifetime of the EC2 instance. As such, relying on the
cloud computing mstances 340a, 340b, 340n with local storage 330, 334, 338 as the only
source of persistent data storage in the cloud-based storage system 318 may result ina
rclatively unreliable storage system. Likewise, EBS volumes are designed for 99.999%,
avatlabiiity. As such, even relving on EBS as the persistent data store in the cloud-based

storage system 318 may result in a storage system that is not sufficiently durable. Amazon
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S3, however, 1s designed to provide 99.999999999% durability, meaning that a cloud-based
storage system 318 that can incorporate 83 mto s pool of storage is substantially more
durable than various other options.

{03001 35] Readers will appreciate that while a clond-based storage system 318 that can
mcorporate 83 into its pool of storage 15 substantially more durable than varicus other
options, utilizing 53 as the pnmary pool of storage may resolt in storage system that hag
relatively slow response tumes and relatively long VO latencies. As such, the cloud-based
storage system 318 depicted in Figure 3C not only stores data in S3 but the cloud-based
storage system 318 also stores data in local storage 330, 334, 338 resources and block-storage
342, 344, 346 resources that are utilized by the cloud computing instances 340a, 340b, 340n,
such that read operations can be serviced from local storage 330, 334, 338 resources and the
block-storage 342, 344, 346 resources that are utilized by the cloud computing instances
340a, 340b, 340n, thereby reducing read latency when users of the cloud-based storage
system 318 attempt to read data from the cloud-based storage system 318,

[860136] In some embodiments, all data that is stored by the cloud-based storage svstem 318
may be stored 1n both: 1) the cloud-based object storage 348, and 2} at least one of the local
storage 330, 334, 338 resources or block-storage 342, 344, 346 resources that are utilized by
the cloud computing instances 340a, 340b, 340n. In such embodiments, the local storage
330, 334, 338 resources and block-storage 342 344, 346 resources that are utibized by the
cloud computing stances 340a, 340b, 340n may effectively operate as cache that generally
mcludes all data that is also stored in 83, such that all reads of data may be serviced by the
cloud computing mstances 340a, 340b, 340n without requiring the cloud computing instances
340a, 340k, 340n to access the cloud-based object storage 348, Readers will appreciate that
in other embodiments, however, all data that is stored by the cloud-based storage system 318
may be stored in the cloud-based object storage 348, but less than all data that is stored by the
cloud-based storage systern 318 may be stored in at least one of the local storage 330, 334,
338 resources or block-storage 342, 344, 346 resources that are utilized by the clond
computing instances 340a, 340b, 340n. In such an example, various policies may be utilized
to determine which subset of the data that 1s stored by the cloud-based storage system 318
should reside in both: 1) the cloud-based object storage 348, and 2} at least one of the local
storage 330, 334, 338 resources or block-storage 342, 344, 346 resources that are utilized by
the cloud computing instances 340a, 340b, 340n.

{0001 37] As deseribed above, when the cloud computing instances 340a, 340b, 340n with

local storage 330, 334, 338 are embodied as EC2 mstances, the cloud compating instances
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340a, 340b, 340n with local storage 330, 334, 338 are only guaranteed to have a monthly
gptime of 99.9% and data stored in the local instance store only persists during the lifetime of
cach cloud computing instance 340a, 340b, 340n with local storage 330, 334, 338, As such,
one or more modules of computer program instructions that are executing within the cloud-
based storage system 318 (¢.g., a monitoring module that is executing on its own EC2
mstance) may be designed to handle the failare of one or more of the cloud computing
mstances 340a, 340b, 340n with local storage 330, 334, 338, In such an example, the
monitoring module mayv handle the failure of one or more of the cloud computing instances
340a, 340b, 340n with local storage 330, 334, 338 by creating one or more new cloud
coraputing instances with local storage, retrieving data that was stored on the fatled cloud
corputing instances 340a, 340b, 340n from the cloud-based object storage 348, and storing
the data retrieved from the cloud-based object storage 348 in local storage on the newly
created cloud computing instances. Readers will appreciate that many variands of this process
may be implemented.

860138} Consider an example in which all cloud computing mstances 340a, 340b, 340n with
local storage 330, 334, 338 failed. In such an example, the monitoring module may create
new cloud computing instances with local storage, where high-bandwidth instances types are
selected that allow for the maximum data transfer rates between the newly created high-
bandwidth cloud computing instances with local storage and the cloud-based object storage
348, Readers will appreciate that instances types are selected that allow for the maximom
data transfer rates between the new cloud computing instances and the cloud-based object
storage 348 such that the new high-bandwidth cloud computing instances can be rehydrated
with data from the cloud-based object storage 348 as quickly as possible. Once the new high-
bandwidth cloud computing instances are rehydrated with data from the cloud-based object
storage 348, less expensive lower-bandwidth cloud computing instances mayv be created, data
may be migrated to the iess expensive lower-bandwidth cloud computing instances, and the
high-bandwidth cloud computing instances may be terminated.

{0001 39] Readers will appreciate that in some embodiments, the number of new cloud
computing instances that are created may substantially exceed the number of cloud
compuiting instances that are needed to locally store all of the data stored by the cloud-based
storage system 318, The number of new cloud computing tnstances that are created may
substantially exceed the number of cloud computing instances that arc needed to locally store
all of the data stored by the cloud-based storage system 318 in order to more rapidly pull data

from the cloud-based cbicct storage 348 and into the new cloud computing instances, as each
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new cloud computing mstance can (in paraliel} retrieve some portion of the data stored by the
cloud-based storage system 318, In such embodiments, once the data stored by the cloud-
based storage svsten 318 has been pulled into the newly created cloud computing instances,
the data may be consolidated within a subset of the newly created cloud computing mstances
and those newly created cloud computing instances that are excessive may be terminated.
1060140] Consider an example in which 1000 cloud computing mmstances are needed in order
to locally store all valid data that users of the cloud-based storage svstem 318 have written to
the cloud-based storage system 318, In such an example, assume that all 1,000 cloud
computing instances fail. In such an example, the monitoring module may cause 100,000
cloud computing instances to be created, where cach cloud computing instance is responsible
for retrieving, from the cloud-based object storage 348, distinct 1/100,000th chunks of the
vahd data that users of the cloud-based storage system 318 have written {o the cloud-based
storage system 318 and focally storing the distinct chunk of the dataset that i retrieved. In
such an example, because cach of the 100,000 cloud computing instances can retrieve data
from the cloud-based object storage 348 in parallel, the caching laver may be restored 160
times faster as compared to an embodiment where the monitoring module only create 1000
replacement cloud computing instances. In such an example, over time the data that is stored
locally in the 100,000 could be consolidated into 1,000 cloud computing instances and the
remaining 99,000 cloud computing instances coald be terminated.

1060141} Readers will appreciate that various performance aspects of the cloud-based storage
system 318 may be monitored {(e.g., by a momitoring module that is executing in an ECZ
mstance) such that the cloud-based storage system 318 can be scaled-up or scaled-out as
needed. Consider an example in which the monitoring module monitors the performance of
the could-based storage system 318 via communications with one or more of the cloud
computing instances 320, 322 that each are used to support the execution of a storage
controller application 324, 326, via monttoring communications between cloud computing
340a

mstances 320, 322 340b, 340n, via monitoring communications between cloud

computing instances 320, 322, 340a, 340b, 340n and the cloud-based object storage 348, or in
some other way. In such an example, assume that the monitoring module deternmunes that the
cloud computing mstances 320, 322 that are used to support the execution of a storage
controller application 324, 326 are undersized and not sufficiently servicing the VO requests
that arc issued by users of the cloud-based storage system 318, In such an example, the
monitormg module may create a new, more powerful cloud computing mstance {¢.g., a cloud

computing instance of a tvpe that mchudes more processing power, more memory, etc... ) that
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meludes the storage controller application such that the new, more powerful cloud computing
mstance can begin operating as the primary controller. Likewise, if the monttoring modude
determines that the cloud computing instances 320, 322 that arc used to support the execution
of a storage controller apphication 324, 326 are oversized and that cost savings could be
gained by switching to a smaller, less powerful cloud computing instance, the monitoring
module may create a new, less powerful {and less expensive) cloud computing instance that
mcludes the storage controller application such that the new, less powerful cloud computing
mstance can begin operating as the primary controller,

[860142] Consider, as an additional example of dvnamically sizing the cloud-based storage
systern 318, an example 1o which the monitoring module determines that the utilization of the
tocal storage that 1s collectively provided by the cloud computing mstances 340a, 340b, 340n
has reached a predetermined vtilization threshold (e.g., 95%]). In such an example, the
monitoring modile may create additional cloud computing instances with local storage to
expand the pool of local storage that is offered by the cloud computing instances.
Alternatively, the momtonng module may create one or more new cloud computing instances
that have larger amounts of local storage than the already exusting cloud computing mstances
340a, 340b, 340n, such that data stored in an already existing cloud computing 1nstance 340a,
340b, 340n can be migrated to the one or more new cloud computing instances and the
already existing cloud computing instance 340a, 340b, 340n can be terminated, thereby
expanding the pool of local storage that is offered by the cloud computing instances.
Likewise, if the pool of local storage that is offered by the cloud computing mnstances is
unnecessarily large, data can be consolidated and some cloud computing mstances can be
terminated.

{860143] Readers will appreciate that the cloud-based storage system 318 may be sized up
and down automatically by a monttoring module applying a predeternuned set of rules that
may be relatively simple of relatively complicated. In fact, the monitoring module may not
only take o account the current state of the cloud-based storage system 318, but the
monitoring module may also apply predictive policics that are based on, for example,
observed behavior (¢ .g., every night from 10 PM until 6 AM usage of the storage system is
relatively hight), predetermined fingerprints {&.g., every time a virtual deskiop mfrastructure
adds 100 virtual desktops, the number of IOPS directed to the storage system increase by X),
and so on. In such an example, the dynamic scaling of the cloud-based storage system 318
may be based on current performance metrics, predicted workloads, and many other factors,

mclading combinations thereof.
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[860144] Readers will further appreciate that because the cloud-based storage system 31¢
may be dynamically scaled, the cloud-based storage system 318 may even operate in a way
that 1s more dynamic. Consider the example of garbage collection. In atraditional storage
system, the amount of storage s fixed. As such, at some point the storage system may be
forced to perform garbage collection as the amount of available storage has become so
constrained that the storage system is on the verge of ronning out of storage. In contrast, the
cloud-based storage system 318 described here can always 'add’ additional storage {c.g., by
adding more cloud computing istances with local storage). Because the cloud-based storage
system 318 described here can always ‘add’ additional storage, the cloud-based storage
systermn 318 can make more intelligent decisions regarding when to perform garbage
collection. For example, the cloud-based storage svstem 318 may implement a policy that
garbage collection only be performed when the number of IOPS being serviced by the cloud-
based storage systera 318 falls below a certain level. In some embodiments, other system-
cvel functions (e.g., deduplication, compression) mav also be turned off and on in response
to system load, given that the size of the cloud-based storage system 318 is not constrained in
the same way that traditional storage systems are constraimed.

{060145] Readers will appreciate that embodiments of the present disclosure resolve an issue
with block-storage services offered by some cloud computing environments as some cloud
computing environments only allow for one cloud computing nstance to connect to a block-
storage volume at a single time. For example, in Amazon AWS, only a single EC2 instance
may be connected to an EBS volume. Through the use of HCZ instances with local storage,
embodiments of the present disclosure can offer multi-connect capabilitics where multiple
EC2 instances can connect to another EC2 instance with local storage (a drive mstance’). In
such embodiments, the drive instances may include software executing within the drive
mstance that allows the duve mstance to support VO directed to a particular volume from
cach connected EC2 mstance. As such, some embodiments of the present disclosure may be
embodied as multi-connect block storage services that may oot include all of the components
depicted in Figure 3C.

[860146] In some embodiments, especially in embodiments where the cloud-based object
storage 348 resources are embodied as Amazon 83, the cloud-based storage system 318 may
mehude one or more modules {e.g., a module of computer program instructions ¢xecuting on
an BC? instance) that arc configured to cnsure that when the local storage of a particular
cloud computing mstance is rehydrated with data from §3, the appropriate data 1s actually in

~

53. This issue arises largely because 83 mplements an eventual consistency model where,
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when overwriting an existing object, reads of the object will eventually (but not necessarily
mmediately become consistent and will eventually (but not necessarily immediately) retum
the overwritten version of the object. To address this issue, in some cmbodiments of the
present disclosure, objects in S3 are never overwritien. Instead, a traditional ‘overwrite'
would result in the creation of the new object {that includes the updated version of the data)
and the eventual deletion of the old object {that includes the previous version of the data).
{006147] In some embodiments of the present disclosure, as part of an attempt to never (or
almost never) overwrite an object, when data is written {o 83 the resultant object may be
tagged with a sequence number. In some embodiments, these sequence numbers may be
persisted elsewhere {¢.g., in a database) such that at any point in time, the sequence number
associated with the most up-to-date version of some piece of data can be known. Insucha
way, a determination can be made as to whether $3 has the most recent version of some piece
of data by mergly reading the sequence number associated with an object - and without
actually reading the data from S3. The ability to make this determination may be particularly
mmportant when a cloud computing instance with local storage crashes, as it would be
undesirable to rehydrate the local storage of a replacement cloud computing mstance with
out-of-date data. In fact, because the cloud-based storage svstem 318 does not need to access
the data to venfy its validity, the data can stay encrypted and access charges can be avoided.
[3060148] The storage systems described above may carry out intelligent data backup
techniques through which data stored in the storage system may be copied and stored in a
distinct location to avoid data loss in the event of equipment failure or some other form of
catastrophe. For example, the storage svstems described above may be configured to
examine cach backup to avoid restoring the storage system to an undesirable state. Consider
an example in which malware infects the storage system. In such an example, the storage
system may include software resources 314 that can scan cach backup to identity backups
that were captured before the malware intected the storage svstem and those backups that
were captured after the malware infected the storage system. In such an example, the storage
system may restore itself from a backup that does not include the malware — or at least not
restore the portions of a backup that contained the malware. In such an example, the storage
system may include software resources 314 that can scan each backup to identify the
presences of malware {or a virus, or some other undesirable), for example, by identifying
write operations that were serviced by the storage system and originated from a network
subnet that is suspected to have delivered the malware, by identifying write operations that

were serviced by the storage system and originated from a user that is suspected to have
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delivered the malware, by identifving write operations that were serviced by the storage
system and examining the content of the write operation against fingerprints of the malware,
and in many other ways.

[B08149] Readers will further appreciate that the backups (often in the form of one or more
snapshots) may also be utilized to perform rapid recovery of the storage system. Consider an
exarnple in which the storage system is infected with ransomware that locks users out of the
storage system. In such an example, software resources 314 within the storage systenm may
be configured to detect the presence of ransomware and may be further configured to restore
the storage system to a point-in-time, using the retained backups, prior to the point-in-time at
which the ransomware infected the storage system. In such an exampie, the presence of
ransomware may be explicitly detected through the use of software tools utilized by the
system, through the use of akey {e.g., a USB drive) that is inserted into the storage system, or
m a similar way. Likewise, the presence of ransomware may be inferred in response to
system activity meeting a predeternuned fingerprint such as, for example, no reads or writes
coming mto the system for a predetermined period of time.

[860150] Readers will appreciate that the various compongnts depicted in Figure 3B mav be
grouped into one of more optimized computing packages as converged nfrastructures. Such
converged intrastructures may include pools of computers, storage and networking resources
that can be shared by musdtiple applications and managed 1 a collective manner using policy-
driven processes. Such converged infrastructures may minimize compatibility issues
between various components within the storage svstem 306 while also reducing various costs
associated with the establishment and operation of the storage system 306, Such converged
mfrastructures may be implemented with a converged infrastructure reference architecture,
with standalone appliances, with a software driven hyper-converged approach (e.g., hyper-
converged intrastructures), or in other ways.

[B068151] Readers will appreciate that the storage system 306 depicted n Figure 3B may be
useful for supporting various types of software applications. For example, the storage svstem
306 may be useful in supporting artificial intelligence ("Al’) applications, database
applications, DevOps projects, electronic design antomation tools, event-driven software
applications, high performance computing applications, simulation applications, high-speed
data capture and analvsis applications, machine leamning applications, media production
applications, media serving applications, picture archiving and communication systems

{(PACS") applications, software development applications, virtual reality applications,
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augmented reality applications, and many other types of applications by providing storage
resources to such applications.

{000152] The storage systems described above may operaie 1o support a wide varicty of
apphications. In view of the fact that the storage svstems include compute resources, storage
resources, and a wide variety of other resources, the storage systems may be well sunted to
support applications that are resource intensive such as, for example, Al applications. Such
Al applications may cnable devices to perceive their environment and take actions that
maximize their chance of success at some goal. Examples of such Al applications can
mclude IBM Watson, Microsoft Oxford, Google DeepMind, Baidu Minwa, and others. The
storage systems described above may also be well suited to support other types of
apphications that are resource intensive such as, for example, machine leaming applications.
Machine learning applications may perform vartous types of data analysis to automate
analvtical model building. Using algorithms that iteratively learn from data, machine
learning applications can enable computers to learn without being explicitly programmed.
One particular arca of machine learning 1s referred to as reinforcement leaming, whic
mvolves taking suitable actions to maximize reward in a particular situation. Reinforcement
leaming may be emploved to find the best possible behavior or path that a particular software
application or machine should take in a specific sttuation. Reinforcement leaming differs
from other arcas of machine learning (e g, supervised learming, vnsupervised learning) in that
correct input/output pairs need not be presented for remforcement leaming and sub-optimal
actions need not be explicitly corrected.

[860153] In addition to the resources already described, the storage systems described above
may also include graphics processing untts ({GPUs™), occasionally referred to as visual
processing umt ((VPUs™). Such GPUs may be embodied as specialized electronic circuits
that rapidly manipulate and alter memory to accelerate the creation of tmages in a frame
buffer intended for output to a display device. Such GPUs may be included within any of the
computing devices that are part of the storage systems described above, including as one of
many individually scalable components of a storage svstem, where other examples of
mdividually scalable components of such storage system can mclude storage components,
memory components, compute components {¢.g., CPUs, FPGAs, ASICs), networking
compeonents, software components, and others. In addition to GPUs, the storage systems
described above may also include neural network processors (NINPs’) for use in various
aspects of neural network processmg. Such NNPs may be used m place of (or in addition to)

GPUs and may be also be independently scalable.
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[860154] As described above, the storage systems described herein may be configured to
support artificial intelligence applications, machine learning applications, big data analytics
applications, and many other types of applications. The rapid growth in these sort of
applications is being driven by three technologies: deep leaming (BL), GPU processors, and
Big Data. Decp learning 1s a computing model that makes use of massively parallel neural
networks inspired by the human brain. Instead of experts handerafting software, a degp
learning model writes its own software by leaming from lots of examples. A GPU isa
modemn processor with thousands of cores, well~suited to run algorithms that loosely
represent the parallel nature of the human bram.

[B00155] Advances in deep neural networks have ignited a new wave of algorithms and tools
for data scientists to tap into their data with artificial intelligence (A}, With improved
algorithms, larger data sets, and various frameworks (including open-source software
libraries for machine learning across a range of tasks), data scientists are tackling new use
cases like autonomous driving vehicles, natural language processing and understanding,
computer vision, machine reasoming, strong Al, and many others. Applications of such
techniques may include: machine and vehicular object detection, identification and
avoidance; visual recognition, classification and tagging; algorithmic financial trading
strategy performance management; simultancous localization and mapping; predictive
maintenance of high-value machinery; prevention against cyvber security threats, expertise
automation; image recognition and classification; question answering; robotics; text analyiics
{extraction, classification) and text generation and transiation; and many others. Applications
of Al technigues has materialized in a wide array of products include, for example, Amazon
Echo’s speech recognition technology that allows users to talk to their machines, Google
Transkate™ which allows for machine-based language translation, Spotify’s Biscover
Weceklv that provides recommendations on new songs and artists that a user may like based
on the user’s usage and traffic analvsis, Quill’s text generation offering that takes structured
data and turns it into narrative stories, Chatbots that provide real-time, contextually specific
answers to questions in a dialog format, and many others. Furthermore, Al may impact a
wide variety of industries and sectors. For example, Al solutions may be used in healthcare
to take climical notes, patient files, research data, and other inputs 1o generate potential
treatment options for doctors to explore. Likewise, Al solutions may be used by retatfers to
personalize consumer recommendations based on a person’s digital footprint of behaviors,

profile data, or other data.
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[860156] Traning deep neural networks, however, requires both high guality input data and
large amounts of computation. GPUs are massively parallel processors capable of operating
on large amountis of data simultancously. When combined into a multi-GPU cluster, a high
throughput pipeline may be required to feed input data from storage to the compute engines.
Deep learming is more than just constructing and traiming models. There also exasts an entire
data pipeline that must be designed for the scale, iteration, and expenmentation necessary for
a data science tearm to succeed.

{000157] Data 1s the heart of modem Al and decp leamning algorithms. Before traming can
begin, one problem that must be addressed revolves around collecting the labeled data that is
crucial for training an accurate Al model. A full scale Al deplovment may be required to
continuousty collect, clean, transform, label, and store large amounts of data. Adding
additional high quality data points directly translates to more accurate models and better
msights. Data samples may ondergo a series of processing steps including, but not limited to:
1} ingesting the data from an external source mto the training system and storing the data in
raw form, 2) cleaning and transforming the data m a format convenient for training, including
hnking data samples to the appropriate label, 3) exploring paramecters and models, goickly
testing with a smaller dataset, and iterating to converge on the most promising models to push
into the production cluster, 4) executing training phases to select random batches of input
data, mcluding both new and older samples, and feeding those into production GPU servers
for computation to update model parameters, and 5) evaluating including using a holdback
portion of the data not used m training 1n order to evaluate model accuracy on the holdout
data. This lifecvcle may apply for any type of paralielized machine leaming, not just neural
networks or deep learning. For example, standard machine leaming frameworks may relv on
CPUs instead of GPUs but the data ingest and training workflows may be the same. Readers
will appreciate that a single shared storage data hub creates a coordination point throughout
the hifecvele without the need for extra data copies among the ingest, preprocessing, and
training stages. Rarely is the wngested data used for only one purpose, and shared storage
gives the flexibility to train multiple different models or apply traditional analvtics to the
data.

[860158] Readers will appreciate that each stage in the Al data pipeline may have varving
requirements from the data hub (e g, the storage system or collection of storage systemsg).
Scalc-out storage systerns must deliver uncompromising performance for all manner of
access types and patterns — from small, metadata-heavy to large files, from random to

sequential access patterns, and from low to high concurrency. The storage systems described
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above may serve as an ideal Al data hub as the systems may service unstructured workloads.
In the first stage, data is ideally ingested and stored on to the same data hub that following
stages witl use, in order to avoid excess data copying. The next two steps can be donc on a
standard compuie server that optionally includes a GPU, and then in the fourth and last stage,
full traming production jobs are run on powerful GPU-aceclerated servers. Often, thereisa
production pipcline alongside an experimental pipeline operating on the same dataset.
Further, the GPU-accelerated servers can be used independently for different models or
jomned together to fraim on one larger model, even spanning multiple svstems for distributed
traiming. I the shared storage tier is slow, then data muist be copied to local storage for each
phase, resulting in wasted time staging data onto different servers. The idcal data hub for the
Al traming pipeline delivers performance similar to data stored locally on the server node
while also having the simplicity and performance to enable all pipeline stages to operate
concusrenity.

[060159] A data scientist works to improve the usefitlness of the trained model through a
wide variety of approaches: more data, better data, smarter training, and deeper models. In
many cases, there will be teams of data scientists sharing the same datasets and working in
paralicl to produce new and improved training models. Often, there is a team of data
scientists working within these phases concurrently on the same shared datasets. Multiple,
concurrent workloads of data processing, experimentation, and full-scale trarning layer the
demands of multiple access patterns on the storage tier. In other words, storage cannot just
satisty large tile reads, but must contend with a mux of large and small file reads and writes.
Finallv, with multiple data scientists exploring datasets and models, it may be cnitical to store
data i its native format to provide flexability for each user to transform, clean, and use the
data in a unique way. The storage systems described above may provide a natural shared
storage home for the dataset, with data protection redundancy (¢.g., by using RAIDG) and the
performance necessary to be a common access point for multiple developers and multiple
experiments. Using the storage systems described above may avoid the need to carcfully
copy subscts of the data for local work, saving both engincering and GPU-accelerated servers
use time. These copies become a constant and growmg tax as the raw data set and desired
transformations constantly update and change.

{060168] Readers will appreciate that a fundamental reason why deep leaming has seena
surge in success is the continued improvement of models with larger data set sizes. In
contrast, classical machine learming algorithms, Iike logistic regression, stop improving in

accuracy at smaller data set sizes. As such, the separation of compute resources and storage
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resources may also allow independent scaling of each tier, avoiding many of the complexities
mherent in managing both together. As the data set size grows or new data sets are
considered, a scale out storage system must be able to expand casily. Simularly, if more
concurrent traming 1s required, additional GPUs or other compute resources can be added
without concern for their internal storage. Furthermore, the storage systems described above
may make building, operating, and growing an Al system easier due to the random read
bandwidth provided by the storage svstems, the ability to of the storage systems to randomly
read small files (S0KB) high rates (meaning that no extra effort is required to aggregate
mdividual data points to make larger, storage-friendly files), the ability of the storage systems
to scale capacity and performance as either the dataset grows or the throughput requirements
grow, the ability of the storage systems to support files or objects, the ability of the storage
systems to tune performance for large or small files (1.6, no need for the user to provision
filesystems), the ability of the siorage systems to support non-disruptive upgrades of
hardware and software even during production model training, and for many other reasons.
[860161] Small file performance of the storage tier may be critical as many types of mpuis,
mehuding text, avdio, or images will be natively stored as small files. If the storage tier does
not handle small files well, an extra step will be required to pre-process and group samples
mto larger files. Storage, built on top of spining disks, that relics on S8D as a caching tier,
may fall short of the performance neecded. Because training with random input batches
results in more accurate models, the entire data set must be accessible with full performance.
S5D caches only provide high performance for a small subsct of the data and will be
meffective at hiding the latency of spinning drives.

1800162] Although the preceding paragraphs discuss deep learning apphications, readers will
appreciate that the storage systems described herein may also be past of a distributed deep
learming (‘DDL) platform to support the execution of DD algorithms. Distributed deep
camning may can be used to sigmificantly accelerate deep leaming with distributed computing
on GPUs (or other form of accelerator or computer program mnstruction executor), such that
parallelism can be achieved. In addition, the output of training machine learning and deep
learning models, such as a fully trained machine learning model, may be used for a vanety of
purposes and in conjunction with other tools. For example, trained machine leaming models
may be used in conjunction with tools like Core ML to integrate a broad variety of machine
learmning model types into an application. In fact, trained models may be ron through Core
ML converter tools and inserted into a custom application that can be deploved on compatible

devices. The storage svstems described above may also be paired with other technclogies
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such as TensorFlow, an open-source software hibrary for dataflow programming across a
range of tasks that may be used for machine leaming applications such as neural networks, to
facilitate the development of such machine learning models, applications, and so on.
[B08163] Readers will further appreciate that the systems described above may be deploved
in a variety of ways to support the democratization of AL as Al becomes more available for
mass consumption. The democratization of Al may include, for example, the ability to offer
Al as a Platform-as-a-Service, the growth of Artificial general intelligence offerings, the
proliferation of Autonomous level 4 and Autonomous level 5 vehicles, the avaiability of
autonomous mobile robots, the development of conversational Al platforms, and many
others. For example, the systems described above may be deploved in cloud environments,
edge environments, or other environments that are useful in supporting the democratization
of Al As part of the democratization of Al, a movement may occur from narrow Al that
consists of highly scoped machine learning scolutions that target a particular task to artificial
general intelligence where the use of machine leaming is expanded to handle a broad range of
use cases that could essentially perform any intelligent task that a human could perform and
could learn dynamically, much like a homan.

{860164] The storage systems described above may also be used 18 a newromorphic
corputing environment. Neuromorphic computing is a form of computing that mimics brain
cells. To support nesromorphic computing, an architecture of inferconnected “neurons”
replace traditional computing models with low-powered signals that go directly between
neurons for more cfficient computation. Neuromorphic computing may make use of very-
large-scale integration {VLSI) systems containing electronic analog circuits to mimic neuro-

biclogical architecturcs present in the nervous system, as well as analog, digital, mixed-mode

analog/digital VLSE and software systems that implement models of neural systoms for
perception, motor control, or multisensory integration.

[B08165] Readers will appreciate that the storage systems described above may be configured
to support the storage or use of {among other types of data} blockchains. Such blockchaing
may be embodied as a continuously growing list of records, called blocks, which are linked
and secured using cryptography. Each block in a blockchain may contain a hash pomiter as a
hink to a previous block, a timestamp, transaction data, and so on. Blockchains may be
designed to be resistant to modification of the data and can serve as an open, distnbuted
ledger that can record transactions between two parties efficiently and in a verifiable and
permanent way. This makes blockchains potentially suitable for the recording of events,

medical records, and other records management activities, such as identity management,
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transaction processing, and others. In addition to supporting the storage and use of
blockchain technologies, the storage systems described above may also support the storage
and use of derivative items such as, for example, open source blockchains and related tools
that are part of the IBM™ Hyperledger project, permissioned blockchains in which a certain
number of trusted parties are allowed to access the block cham, blockchain products that
enable developers to build their own distributed ledger projects, and others. Readers will
appreciate that blockchain technologics may impact a wide varicty of industries and sectors.
For example, blockchain technologies may be used in real estate transactions as blockchain
based contracts whose use can climinate the need for 3™ parties and enable self-executing
actions when conditions are met. Likewise, universal health records can be created by
aggregating and placing a person’s health history onto a blockchain ledger for any healthcare
provider, or permissioned health care providers, to access and update.

1000166] Readers will appreciate that the usage of blockchains is not hoted to financial
transactions, contracts, and the like. in fact, blockchains may be leveraged to enable the
decentralized aggregation, ordering, timestamping and archiving of any type of information,
meluding structured data, correspondence, documentation, or other data. Through the usage
of blockchains, participants can provably and permaneotly agree on exactly what data was
entered, when and by whom, without relving on a trusted imtermediary. For cxample, SAP’s
recently launched blockchain platform, which supports MultiChain and Hyperledger Fabric,
targets a broad range of supply chain and other non-financial applications.

[060167] One way to use a blockchain for recording data is to embed cach picce of data
directly mside a transaction. Every blockcham transaction may be digitally signed by one or
more parties, replicated to a plurality of nodes, ordered and timestamped by the chaim’s
consgnsus algorithm, and stored permanently in a tamper-proof way. Any data within the
transaction will therefore be stored identically but independently by every node, along with a
proof of who wrote it and when. The chain’s users are able to retrieve this information at any
futare time. This type of storage may be referred to as on-chain storage. On-chain storage
may not be particularly practical, however, when attempting to store a very large dataset. As
such, in accordance with embodiments of the present disclosure, blockchains and the storage
systems described herein may be leveraged to support on-chain storage of data as well as off-
chain storage of data.

[000168] Off-chain storage of data can be implemented in a varicty of ways and can occur
when the data itseif is not stored within the blockchain., For example, in one embodiment, a

hash function may be otilized and the data itself may be fod into the hash function to generate
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a hash value. Tn such an example, the hashes of large pieces of data may be embedded within
transactions, instead of the data itself. Each hash may serve as a commitment to its input
data, with the data itself being stored owtside of the blockchain. Readers will appreciate that
any blockchai participant that needs an off-chain piece of data cannot reproduce the data
from its hash, but if the data can be retrieved in some other way, then the on-chain hash
serves to confirm who created it and when. Just bke regular on-chain data, the hash may be
embedded nside a digitally signed transaction, which was included in the chain by
CONSCNSUS.

[860169] Readers will appreciate that, in other embodiments, alternatives to Mockchains may
be used to facilitate the decentralized storage of mformation. For example, onc alternative to
a blockchain that may be used 13 a blockweave., While conventional blockchams store every
transaction to achieve validation, a blockweave permits secure decentralization without the
usage of the entire chain, thereby enabling low cost on-cham storage of data. Such
blockweaves may utilize a consensus mechanism that is based on proof of access (PoA) and
proof of work (PoW). While typical PoW systems only depend on the previous block in
order to generate each successive block, the PoA algorithm may incorporate data from a
randonly chosen previous block. Combined with the blockweave data structure, miners do
not need to store all blocks (forming a blockchain), but rather can store any previous blocks
forming a weave of blocks (a blockweave). This enables increased levels of scalability,
specd and low-cost and reduces the cost of data storage in part because miners need not store
all blocks, thereby resulting in a substantial reduction in the amount of clectricity that is
consumed during the mining process because, as the network expands, electnieity
consumption decreases because a blockweave demands less and less hashing power for
consensus as data is added to the system. Furthermore, blockweaves may be deployed on a
decentralized storage network in which incentives are created o encourage rapid data
sharing. Such decentralized storage networks may also make use of blockshadowing
techaigues, where nodes only send a mimimal block “shadow™ to other nodes that allows
peers to reconstruct a tull block, instead of transmiutting the full block itself.

{8601 78] The storage svstems described above may, either alone or in combination with
other computing devices, be used to support in-memory computing applications. In memory
computing involves the storage of mformation in RAM that s distributed across a cluster of
computers. In-memory computing helps business customers, including retailers, banks and
utititics, to quickly detect patierns, analyze massive data volumes on the flv, and perform

their operations quickly. Readers will appreciate that the storage systems described above,
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especially those that are configurable with customizable amounts of processing resources,
storage resources, and memory resources (e.g., those svstems in which blades that contain
configurable amounts of cach type of resource), may be configured in a way so as to provide
an infrastructure that can support in~-memory computing. Likewise, the storage svstems
described above may include component parts (¢.g., NVDIMMs, 3D crosspoint storage that
provide fast random access memaory that is persistent) that can actually provide for an
mproved in-memory computing environment as compared to in-memory computing
environments that rely on RAM disinbuted across dedicated servers.

[860171] In some embodiments, the storage systems described above may be configured to
operate as a hybrid in-memory computing environment that includes a universal interface to
all storage media {¢.g., RAM, flash storage, 3D crosspoint storage). In such embodiments,
users may have no knowledge regarding the details of where their data is stored but they can
still use the same full, unified APLto address data. In such embodiments, the storage system
may (in the background) move data to the fastest laver available — including mtelligently
placing the data in dependence upon various characteristics of the data or in dependence vpon
some other heuristic. In such an example, the storage systems may cven make ose of existing
products such as Apache Ignite and Grid(Gain to move data between the various storage
layers, or the storage systems may make use of custom sofiware to move data between the
various storage layers. The storage systems described hercin may implement various
optimizations to improve the performance of in-memory computing such as, for example,
having computations occur as close to the data as possible,

[860172] Readers will further appreciate that m some embodiments, the storage systems
described above may be paired with other resources to support the applications described
above. For example, one nfrastructure could inclede pamary compute in the form of servers
and workstations which specialize in using General-purpose computing on graphics
processing units {GPGPUT) to accelerate deep learning applications that are interconnected
mto a computation engine to train parameters for deep neural networks. Each system may
have Ethernet external connectivity, InfiniBand external connectivity, some other form of
external connectivity, or some combination thercof. In such an example, the GPUs can be
grouped for a single large training or used independently to train multiple models. The
mfrastructure could also inchude a storage system such as those described above to provide,
for example, a scale-out all-flash file or object store through which data can be accessed via
high-performance protocols such as NFS, §3, and so on. The infrastructure can also include,

for example, redundant top-of-rack Ethemet switches connected to storage and compate via

61



WO 2021/050875 PCT/US2020/050408

ports in MLAG port channels for redundancy. The nfrastructure could also include
additional compute in the form of whitebox servers, optionally with GPUs, for data ingestion,
pre-processing, and model debugging. Readers will appreciate that additional infrastructures
are also be possibie.

[0860173] Readers will appreciate that the systems described above may be better suited for
the applications described above relative to other systems that may include, for example, a
distributed direct-attached storage (DDAS) solution deploved 1 server nodes. Such DDAS
solutions may be built for handling large, less sequential accesses but may be less able to
handle small, random accesses. Readers will further appreciate that the storage systems
described above may be utilized to provide a platform for the applications described above
that 1s preferable to the utilization of cloud-based resources as the storage systems may be
mcluded in an on-site or in-house infrastructure that 1s more secure, more locally and
mternally managed, more robust in feature sets and performance, or otherwise preferable to
the utilization of cloud-based resources as part of a platform to support the applications
described above. For example, services built on platforms such as IBM’s Watson may
require a business enterprise to distribute individual user mformation, such as financial
transaction information or identifiable patient records, to other institutions. As such, cloud-
based offenings of Al as a service may be less desirable than intermally managed and offered
Al as a service that is supported by storage systems such as the storage systems described
above, for a wide array of technical reasons as well as for various business reasons.

[060174] Readers will appreciate that the storage systems described above, either alone orin
coordination with other computing machinery may be configured to support other Al relate
tools. For example, the storage systems may make use of tools like ONXX or other open
neural network exchange formats that make it easier (o transfer models written 1n different Al
frameworks, Likewise, the storage systems may be configured to support tools like
Amazon’s Gluon that allow developers to prototype, build, and tramn deep leaming models.
in fact, the storage systems described above may be part of a larger platform, such as IBM™
Cloud Private for Data, that includes integrated data science, data enginecring and application
building services. Such platforms may secamlessly collect, organize, secure, and analyze data
across an enterprise, as well as simplify hybnd data management, unified data governance
and integration, data science and business analytics with a single sclution.

[8060175] Readers will further appreciate that the storage systems described above may also
be deploved as an edge solution. Such an edge solution may be in place to optimize cloud

computing systems by performing data processing at the edge of the network, near the source
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of the data. Hdge computing can push applications, data and computing power (1.¢., services)
away from centralized points to the logical extremes of a network. Through the use of edge
solutions such as the storage systems described above, computational tasks may be performed
using the compute resources provided by such storage systems, data may be storage using the
storage resources of the storage system, and cloud-based services may be accessed through
the use of various resources of the storage system (including networking resources). By
performing computational tasks on the cdge solution, storing data on the edge solution, and
generally making use ot the edge solution, the consumption of expensive cloud-based
resovrces may be avoided and, in fact, performance improvements may be experienced
rclative to a heavier reliance on cloud-based resources.

{3081 76] While many tasks may bencfit from the utilization of an edge solution, some
particudar uses may be especially suited for deplovment in such an environment. For
exarple, devices like drones, antonomous cars, robots, and others may require exiremely
rapid processing — so fast, in fact, that sending data up to a cloud environment and back to
receive data processing support may simply be too slow. Likewise, machines hike
locomotives and gas turbines that generate large amounts of mformation through the use of a
wide array of data-generating sensors may benefit from the rapid data processing capabilitics
of an edge solution. As an additional example, some loT devices such as connected video
cameras may not be well-suited for the utilization of cloud-based resources as it may be
mmpractical (not only from a privacy perspective, security perspective, or a financial
perspective) to send the data to the cloud simply because of the pure volume of data that s
mvolved. As such, many tasks that really on data processing, storage, or communications
may be better suited by platforms that inchide edge sclutions such as the storage systems
described above.

000177} Consider a specific example of inventorv management in a warchouse, distribution
center, or similar location. A large mmventory, warehousmg, shipping, order-tulfillment,
manufactuning or sther operation has a large amount of inventory on inventory shelves, and
high resolution digital cameras that produce a firchose of large data. All of this data may be
taken into an image processing system, which may reduce the amount of data to a firchose of
small data. All of the small data may be stored on-prenmuises in storage. The on-premises
storage, at the edge of the facility, may be coupled to the cloud, for external reports, real-time
control and cloud storage. Inventory management may be performed with the results of the
mmage processing, so that mventory can be tracked on the shelves and restocked, moved,

shipped, modified with new products, or discontinued/obsolescent products deleted, cte. The
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above scenario is a prime candidate for an embodiment of the configurable processing and
storage systems described above. A combination of compute-only blades and offload blades
suited for the image processing, perhaps with deep learning on offload-FPGA or offload-
custom blade(s) could take in the firchose of large data from all of the digital cameras, and
produce the firchose of small data. All of the small data could then be stored by storage
nodes, operating with storage units in whichever combination of types of storage blades best
handles the data flow. This is an example of storage and function acceleration and
mtegration. Depending on external commumication needs with the cloud, and external
processing in the cloud, and depending on reliability of network connections and cloud
resources, the system could be sized for storage and compute management with bursty
workloads and vanable conductivity rehability. Also, depending on other inventory
management aspects, the system could be configured for schedvling and resonrce
management in a hybnd edge/cloud environment.

1000178} The storage systems described above may alone, or in combination with other
computing resources, serves as a network edge platform that combines compute resources,
storage resources, networking resources, cloud technologies and network virtualization
technologies, and so on. As part of the network, the edge may take on characteristics similar
to other network facilitics, from the customer premise and backhaul aggregation facilities to
Points of Presence (PoPs) and regional data centers. Readers will appreciate that network
workloads, such as Virtual Network Functions (VNFs) and others, will reside on the network
edge platform. Enabled by a combination of contamers and virtual machines, the network
edge platform may rely on controilers and schedulers that are no longer geographically co-
located with the data processing resources. The functions, as microservices, may split into
control planes, user and data planes, or even state machines, allowing for independent
optimization and scaling technigues to be applied. 5Such user and data plancs may be enabled
through ncreased accelerators, both those residing i server platforms, such as FPGAs and
Smart NICs, and through SDN-enabled merchant silicon and programmable ASICs,
[660179] The storage svstems described above may also be optimized for use in big data
analvtics. Big data analvtics may be generally described as the process of examining large
and varied data sets to uncover hidden patterns, unknown correlations, market trends,
customer preferences and other usefidd information that can help organizations make more-
nformed business decisions. Big data analviics applications enable data scientists, predictive
modelers, statisticians and other analvtics professionals to analyvze growing volumes of

structured transaction data, plus other forms of data that are often left untapped by
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conventional business intelhigence (BI) and analviics programs. Ag part of that process,
semi-structured and unstructured data such as, for example, internet chickstream data, web
server logs, social media content, text from customer emails and survey responses, mobile-
phone call-detail records, loT sensor data, and other data may be converted fo a structured
form. Big data analytics is a form of advanced analytics, which involves complex
applications with elements such as predictive models, statistical algorithms and what-if
analyses powered by high-performance analviics svstems.

[860188] The storage svstems described above may also support (including implementing as
a system interface) applications that perform tasks in response to human speech. For
cxample, the storage svstems may support the execution miciligent personal assistant
applications such as, for example, Amazon’s Alexa, Apple Siri, Google Voice, Samsung
Bixby, Microsoft Cortana, and others. While the examples described in the previous sentence
make use of voice as input, the storage systems described above may also support chathots,
talkbots, chatterbots, or artificial conversational entitics or other applications that are
contigured o conduct a conversation via auditory or textual methods. Likewise, the storage
system may actually execute such an application to enable a user such as a system
administrator to interact with the storage system via speech. Such applications are generally
capable of voice interaction, music playback, making to-do lists, setting alarms, streaming
podcasts, plaving audiobooks, and providing weather, traffic, and other real time information,
such as news, although in embodiments in accordance with the present disclosure, such
applications may be utilized as interfaces to various system management operations,
[860181] The storage systems described above may also implement Al platforms for
delivering on the vision of self-driving storage. Such Al platforms may be configared to
deliver global predictive mtelligence by collecting and analyzing large amounts of storage
system telemetry data points to enable effortiess management, analytics and support. In fact,
such storage systems may be capable of predicting both capacity and performance, as well as
generating intelligent advice on workload deployment, interaction and optimization. Such Al
platforms may be configured to scan all incoming storage svstem telemetry data against a
library of issue fingerprints to predict and resolve ncidents i real-time, before they impact
customer environments, and captures hundreds of variables related to performance that are
used to forecast performance load.

[300182] The storage systems described above may support the serialized or simultancous
execution artificial intetligence applications, machine leaming applications, data analvtics

applications, data transformations, and other tasks that collectively may form an Al ladder.
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Such an Al ladder may effectively be formed by combining such elements to form a complete
data science pipeline, where exist dependencies between clements of the Al ladder. For
example, Al may require that some form of machine learning has taken place, maching
camning may require that some form of analvtics has taken place, analytics may require that
some form of data and information architecting has taken place, and so on. As such, each
clement may be viewed as a rung in an Al ladder that collectively can form a compiete and
sophisticated Al solution.

[860183] The storage systems described above may also, ¢ither alone or in combination with
other computing enviromments, be used to dehiver an Al everywhere experience where Al
permeates wide and expansive aspects of business and life. For example, Al may plav an
mmportant role in the delivery of deep learmning solutions, deep remforcement learning
soletions, artificial general intelligence solutions, autonomous vehicles, cognitive computing
solutions, commercial UAVs or drones, conversational user interfaces, entorprise taxonomics,
ontology management solutions, machine feaming solutions, smart dust, smart robots, smart
workplaces, and many others. The storage svstems described above may also, either alone or
i combination with other computing environments, be used to deliver a wide range of
transparently immersive experiences where technology can introduce transparency between
peaple, businesses, and things. Such transparentlv immersive experiences may be delivered
as augmented reality technologies, connected homes, virtual reality technologies, brain-
computer interfaces, human avgmentation technologies, nanotube electronics, volumetric
displays, 4D printing technologics, or others. The storage systems described above may also,
cither alone or in combination with other computing environments, be used to support a wide
variety of digital platforms. Such digital platforms can include, for example, 5G wireless
systerns and platforms, digital twin platforms, edge computing platforms, o1 platforms,
gquantum computing platforms, servertess PaaS, software-defined security, neuromorphic
computing platforms, and so on.

{0060184] Readers will appreciate that some transparently immersive experignces may involve
the use of digital twins of various “things” such as people, places, processes, systems, and so
on. Such digital twins and other immersive technologies can alter the way that humans
mteract with technology, as conversational platforms, avgmented reality, virtual reality and
mixed reality provide a more natural and immersive interaction with the digital world. In
fact, digital twins may be linked with the real-world, perbaps cven in real-time, to understand
the state of a thing or system, respond to changes, and so on. Because digital twins

consohidate massive amounts of information on individual assets and groups of assets (even
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possibly providing control of those assets), digital twins may communicate with each other to
digital factory models of multiple linked digital twins.

[300185] The storage systems described above may also be part of a muliti-cloud environment
m which multiple cloud computing and storage services are deploved n a single
heterogencous architecture. In order to facilitate the operation of such a multi-cloud
environment, DevOps tools may be deployed to enable orchestration across clouds.

Likewise, continuous development and continuous integration tools may be deploved to
standardize processes around continuous ntegration and delivery, new feature roliout and
provisiomng cloud workloads. By standardizing these processes, a multi-cloud strategy may
be tnplemented that enables the vtilization of the best provider for cach workload.
Furthermore, application monitoring and visibility tools may be deploved to move application
workloads around different clouds, identify performance issues, and perform other tasks. In
addition, security and comphiance tools may be deploved for to ensure compliance with
securnty requirements, government regulations, and so on. Such a multi-cloud environment
may also include tools for application delivery and smart workload management {o ensure
cfficient application delivery and help direct workloads across the distributed and
heterogeneous infrastracture, as well as tools that ease the deployment and maintenance of
packaged and custom applications in the cloud and enable portability amongst clouds. The
multi-cloud environment may simlarly melude tools for data portability.

10060186] The storage systems described above may be used as a part of a platform to enable
the use of crvpto~-anchors that may be used to authenticate a product’s origins and contents to
ensure that it matches a blockchain record associated with the product. Such crypto-anchors
may take many forms including, for example, as edible ink, as a mobile sensor, as a
microchip, and others. Similarly, as part of a suite of tools to secure data stored on the
storage system, the storage systerns described above may implement various encryption
technologies and schemes, including lattice cryptography. Lattice cryptography can mvolve
constructions of cryptographic pnimitives that invelve lattices, either in the construction self
or in the security proof. Unlike public-key schemes such as the RSA, Diffie-Hellman or
Elhptic-Curve cryptosystems, which are easily attacked by a guantum computer, some
lattice-based constructions appear to be resistant to attack by both classical and quantum
computers.

{000187] A quantum computer is a device that performs quantum computing. Quantum
coroputing is computing using quantum-mechanical phenomena, such as superposition and

entanglement. Quantum computers differ from traditional computers that are based on
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transistors, as such traditional computers require that data be encoded into biary digits (bits),
cach of which 1s always in one of two definite states {0 or 1}, In contrast to traditional
computers, quantum computers use quantum bits, which can be in superpositions of states. A
quantum computer maintans a sequence of qubits, where a single qubit can represent a one, a
zero, Or any quantum superposition of those two qubit states. A pair of qubits can be in any
guantum superposition of 4 states, and three qubits in any superposition of & states. A
guantum computer with 7 qubits can generally be m an arbitrary superposition of up to 27
different states simultancously, whereas a traditional computer can only be n one of these
states at any one time. A guantum Tuaring machine is a theoretical model of such a computer,
[3060188] The storage systems described above may also be paired with FPGA-accelerated
servers as part of a larger Al or ML infrastructure. Such FPGA-accelerated servers mayv
reside near {e.g., in the same data center) the storage systems described above or even
mcorporated info an apphiance that includes one or more storage systems, one or more FPGA-
accelerated servers, networking infrastructure that supports communications between the one
or more storage systems and the one or more FPGA-accelerated servers, as well as other
hardware and software components. Alternatively, FRGA-accelerated servers may reside
within a cloud computing environment that may be used to perform compute-related tasks for
Al and ML jobs. Any of the embodiments described above mayv be used to collectively serve
as a FPGA-based Al or ML platform. Readers will appreciate that, in some embodiments of
the FPGA-based Al or ML platform, the FPGAs that are contained within the FPGA-
accclerated servers may be reconfigured for different types of ML models (e g, L8TMs,
CNNs, GRUSs). The ability to reconfigure the FPGAs that are contained within the FPGA-
accelerated servers may enable the acceleration of a ML or Al application based on the most
optimal numencal precision and memory model being used. Readers will appreciate that by
treating the collection of FPGA -accelerated servers as a pool of FPGAs, any CPU in the data
center may wtilize the pool of FPGAs as a shared hardware microservice, rather than himating
a server to dedicated accelerators plugged indo it

[060189] The FPGA -accelerated servers and the GPU-accelerated servers described above
may implement a model of computing where, rather than keeping a small amount of datam a
CPU and running a long stream of mstructions over it as sccurred in more traditional
computing models, the machine learning model and parameters are pinned into the high-
bandwidth on-chip memory with lots of data streaming though the high-bandwidth on-chip

memory. FPGAs may even be more efficient than GPUs for this computing model, as the
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FPGASs can be programmed with only the instructions needed to run this kind of computing
model.

[3060190] The storage systems described above may be configured to provide paralle! storage.
for example, through the use of a paraliel] file system such as BeeGFS. Such paralie! files
systems may include a distributed metadata architecture. For example, the parallel file
system may mchide a plurality of metadata servers across which metadata is distributed, as
well as components that include services for clients and storage servers. Through the usec of a
parallel file system, file contents may be distributed over a plurality of storage servers using
striping and metadata may be distributed over a plurality of metadata servers on a directory
level, with cach server storing a part of the complete file system tree. Readers will appreciate
that mn some embodiments, the storage servers and metadata servers may run in userspace on
top of an exasting local file system. Furthermore, dedicated hardware 1s not required for
chient services, the metadata servers, or the hardware servers as metadata servers, storage
servers, and even the client services may be run on the same machines.

[860191] Readers will appreciate that, in part due 1o the emergence of many of the
technologies discussed above including mobile devices, cloud services, social networks, big
data analytics, and so on, an information technology platform may be needed to integrate all
of these technologies and drive new business opportunities by quickly delivering revenue-
generating products, services, and experiences - rather than merely providing the technology
to automate internal business processes. Information techuology organizations may need to
balance resources and investments needed to keep core legacy systems up and running while
also mtegrating technologies to build an information technology platform that can provide the
speed and Hexibility in areas such as, for example, exploiting big data, managing
pastructured data, and working with cloud applications and services. Ong possible
crbodiment of such an nformation techuology platform is a composable infrastructure that
meludes fluid resource pools, such as many of the systems described above that, can meet the
changing needs of applications by allowing for the composition and recomposition of blocks
of disaggregated compute, storage, and fabric infrastructure. Such a composable
mfrastructure can also include a single management interface to eliminate complexity and a
unmified AP to discover, ssarch, inventory, configure, provision, update, and diagnose the
composable wnfrastructure.

[3060192] The systems described above can support the execution of a wide array of software
applications. Such sofiware applications can be deploved i a variety of ways, including

contamer-based deployment models. Contamerized applications may be managed using a
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variety of tools. For example, contamerized applications may be managed using Docker
Swarm, a clustering and scheduling tool for Docker containers that enables IT administrators
and developers to establish and manage a cluster of Docker nodes as a single virtual system.
Likewise, containerized applications may be managed through the use of Kubemetes, a
contamner-orehestration system for antomating deployment, scaling and management of
containerized apphcations. Kubernetes may execute on top of operating systens such as, for
example, Red Hat Enterprise Linux, Ubuntu Server, SUSE Linux Enterprise Servers, and
others. In such examples, a master node mav assign tasks to worker/minion nodes.
Kubernetes can melude a set of components {¢.g., kubelet, kube-proxy, cAdvisor) that
manage individual nodes as a well as a set of components {¢.g., ctcd, API server, Scheduler,
Control Manager) that form a control plane. Various controliers {¢.g., Replication Controller,
DaemonSet Controller) can drive the state of a Kubemetes cluster by managing a set of pods
that includes one or more containers that are deploved on a single node. Containerized
applications may be used to facilitate a serverless, cloud native computing deployment and
management modcl for software applications. In support of a serverless, cloud native
computing deployment and management model for software applications, containers may be
used as part of an gvent handling mechanisims (e.g., AWS Lambdas) such that various events
cause a containerized application o be spun up to operate as an event handler,

[8080123] The systems described above may be deploved i a variety of ways, including being
deploved in ways that support fifth generation (*3G) networks. 56 networks may support
substantially faster data communications than previous generations of mobile
communications networks and, as a consequence may lead to the disaggregation of data and
compiting resources as modern massive data centers may become less prominent and may be
replaced, for example, by more-local, micro data centers that are close to the mobile-network
towers. The systems described above may be included in such local, micro data centers and
may be part of or paired to multi-access edge computing {'MEC’) systerns. Such MEC
systems may enable cloud computing capabilities and an 1T service environment at the edge
of the cellular network. By running applications and performing related processing tasks
closer to the cellular customer, network congestion may be reduced and applications mayv
perform better. MEC technology s designed to be mmplemented at the cellular base stations
or other edge nodes, and enables flexible and rapid deplovment of new applications and
services for customers. MEC may also allow cellular operators to open their radio access
network ({RANT) to authorized third-parties, such as application developers and content

provider. Furthermore, edge computing and micro data centers may substantially reduce the
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cost of smariphones that work with the 50 network because customer may not need devices
with such intensive processing power and the expensive requisiic components.

[000194] Readers will appreciate that 5G networks may generate more data than previous
network generations, cspecially in view of the fact that the high network bandwidth offered
by 5QG networks may cause the 30 networks to handle amounts and types of data (¢.g., sensor
data from self-driving cars, data generated by AR/VR technologics} that weren 't as feasible
for previous generation networks. In such examples, the scalability offered by the systerns
described above may be very valuable as the amount of data increases, adoption of emerging
technologies increase, and so on.

{0001 95} For further explanation, Figure 31 illustrates an exemplary computing device 350
that may be specitically configured to perform one or more of the processes described herein,
As shown in Figare 3D, computing device 350 may include 2 commumnication interface 352, a
processor 354, a storage device 356, and an input/output ("0 module 358
communicatively connected one to another via a communication infrastructure 360, While
an exemplary computing device 350 1s shown in Figure 3D, the components illustrated in
Figure 3D are not intended to be imiting. Additional or alternative components may be used
in other embodiments. Components of computing device 350 shown in Figure 30 will now
be described m additional detail.

[08060196] Commumication interface 352 may be configured to communicate with one or more
computing devices. Examples of communication mterface 352 include, without imitation, a
wired network mterface (such as a network interface card), a wircless network interface (such
as a wireless network mterface card}, a modem, an audiovideo connection, and any other
suitable interface.

1860197} Processor 354 generally represents any type or form of processing unit capable of
processing data and/or interpreting, executing, and/or directing execution of one or more of
the mstructions, processes, and/or operations described herein. Processor 354 may perform
operations by executing computer-executable instructions 362 {¢.g ., an application, software,
code, and/or other executable data instance) stored in storage device 356,

[860198] Storage device 356 may include one or more data storage media, devices, or
configurations and may employ any tvpe, form, and combination of data storage media
and/or device. For example, storage device 356 may include, but is not himited to, any
combination of the non-volatile media and/or volatile media described herein. Electronic
data, mcluding data deseribed herein, may be temporaniy and/or permanently stored in

storage device 356, For example, data representative of computer-executable instructions
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362 configured 1o direct processor 354 to perform any of the operations described herein may
be stored within storage device 356, In some examples, data may be arranged i one or more
databases residing within storage device 356.

{3001 99] I/O module 358 may include one or more I/0 modules configured to receive user
mput and provide user ootput. VO module 358 may inchude any hardware, firmware,
softwarg, or combination thereof supportive of input and cutput capabilities. For example,
170 module 358 may include hardware and/or software for capturing user input, inclhuding,
but not hmited to, a kevboard or keypad, a touchscreen component {e.g., touchscreen
display), a receiver {¢.g., an RF or infrared receiver), motion sensors, and/or one or more
mput buttons.

[B002080] /O module 358 may include one or more devices for presenting output to a user,
mcloding, but not limited to, a graphics engine, a display (¢.g., a display screen), one or more
cutput drivers {¢.g., display drivers), one or more audio speakers, and one or more audic
drivers. In certain embodiments, 1/0 module 358 is configured to provide graphical datato a
display for presentation to a user. The graphical data may be representative of one or more
graphical user interfaces and/or any other graphical content as may serve a particular
mplementation. o some examples, any of the systems, computing devices, and/or other
corponents described herein may be implemented by computing device 350

80602011 For further explanation, Figure 4A sets forth a block diagram tHustrating a plurality
of storage systems {402, 404, 406} that support a pod according to some embodiments of the
present disclosure. Although depicted in less detail, the storage systems (402, 404, 406)
depicted o Figure 4A may be similar to the storage systems described above with reference
to Figures 1A-1D, Figures 2A-2G, Figures 3A-3B, or any combination thereof. In fact, the
storage systems (402, 404, 406} depicted in Figure 4A may include the same, fewer, or
additional components as the storage systems described above.

[B002082] In the example depicted in Figure 4A, each of the storage systems (402, 404, 406)
is depicted as having at least one computer processor (408, 410, 412), computer memory
{414, 416, 418), and computer storage (420, 422, 424). Although in some cmbodiments the
computer memory {414, 416, 418} and the computer storage (420, 422, 424) may be part of
the same hardware devices, in other embodiments the computer memory (414, 416, 418} and
the computer storage (420, 422, 424 may be part of different hardware devices. The
distinction between the computer memory {414, 416, 418) and the computer storage (420,
422, 424} in this particular example may be that the computer memory (414, 416, 418} 1s

physically proximate to the computer processors (408, 410, 412) and may store computer
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program instructions that are executed by the computer processors (408, 410, 4172), while the
compiter storage (420, 422, 424) is embodied as non-volatile storage for storing user data,
metadata describing the user data, and so on. Referring to the example above in Figure 1A,
for example, the computer processors (408, 410, 412) and computer memory (414, 416, 418}
for a particudar storage system (402, 404, 406} may reside within one of more of the
controlers (110A-110D) while the attached storage devices (171A-171F) may serve as the
computer storage (420, 422, 424} within a particular storage system (402, 404, 406).
1000203] In the example depicted m Figure 4A, the depicted storage systems (402, 404, 406)
may attach to one or more pods (430, 432) according to some embodiments of the present
disclosure. Fach of the pods (430, 432) depicted in Figure 4A can include a dataset (426,
428). For example, a first pod (430} that three storage svstems (402, 404, 406} have attached
to includes a first dataset (426) while a second pod {432} that two storage systems (404, 406)
have attached to inchudes a second dataset (428). In such an example, when a particular
storage system attaches to a pod, the pod’s dataset is copied to the particular storage system
and then kept up to date as the dataset is modified. Storage svstems can be removed from a
pod, resulting in the dataset being no longer kept ap to date on the removed storage system.
In the example depicted in Figure 4A, any storage system which is active for a pod (it is an
up-~to-date, operating, non-faukted member of a non-faulted pod) can receive and process
requests to modify or read the pod’s dataset.

1000204} In the example depicted in Figure 4A, each pod (430, 432) may also include a set of
managed objects and management operations, as well as a set of access operations to modify
or read the dataset (426, 428) that is associated with the particular pod (430, 432). In such an
example, the management operations may modify or query managed objects equivalently
through any of the storage systems. Likewise, access operations to read or modify the dataset
may operate equivalently through any of the storage svstems. In such an example, while cach
storage system stores a separate copy of the dataset as a proper subset of the datasets stored
and advertised for use by the storage system, the operations to modify managed objects or the
dataset performed and completed through any one storage system are reflected in subseguent
management objects to guery the pod or subsequent access operations to read the dataset.
[860285] Readers will appreciate that pods may implement more capabilities than just a
clustered synchronously replicated dataset. For example, pods can be used to implement
tenants, wherebv datascis are in some way securely isolated from cach other. Pods can also
be used to implement virtual arrays or virtual storage svstems where each pod is presented as

a unigue storage entity on a network {¢.g., a Storage Arca Network, or Internet Protocol
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network) with separate addresses. In the case of a multi-storage-system pod implementing a
virtual storage system, all physical storage systems associated with the pod may present
themselves as in some way the same storage systerm {¢.g., as if the multiple physical storage
gysterns were no different than multiple network ports mto a single storage svstem}.

[800206] Readers will appreciate that pods may also be units of administration, representing
a collection of volumes, file systems, object/analvtic stores, snapshots, and other
administrative entitics, where making admiunistrative changes (e.g., name changes, property
changes, managing exports or permissions for some part of the pod’s dataset), on any one
storage system 15 avtomatically reflected to all active storage systems associated with the pod.
In addition, pods could also be units of data collection and data analysis, where performance
and capacity metrics are presenied i ways that aggregate across all active storage svstems for
the pod, or that call out data collection and analysis separately for cach pod, or perhaps
presenting cach attached storage system s contribution to the incoming content and
performance for cach a pod.

[860267] Une model tor pod membership may be defined as a list of storage systems, and a
subset of that hist where storage systems are considered 1o be 1n-sync for the pod. A storage
systern may be considered to be in-syac for a pod if it is at keast within a recovery of having
identical idle content for the last written copy of the dataset associated with the pod. idle
content is the content after any in-progress modifications have completed with no processing
of new modifications. Sometimes this is referred to as “crash recoverable” consistency.
Recovery of a pod carries out the process of reconciling differences in applying concurrent
updates to in-svne storage systems n the pod. Recovery can resolve any inconsisiencies
between storage systems i the completion of concurrent modifications that had been
requested to various members of the pod but that were not signaled to any requestor as having
completed successfully. Storage systems that are listed as pod members but that are not histed
as in-sync for the pod can be described as “detached” from the pod. Storage systems that are
listed as pod members, are in-gync for the pod, and are currently available for actively
serving data for the pod are “onling” for the pod.

{000208] Hach storage system member of a pod may have its own copy of the membership,
mehuding which storage svstems it last knew were in-syne, and which storage systems it last
knew comprised the entire set of pod memtbers. To be online for a pod, a storage system
must consider itself to be in~sync for the pod and must be communicating with all other
storage systems it considers to be in-syne for the pod. If a storage system can’t be certain

that 1t 13 in-sync and commumicating with all other storage svstems that are in-syne, then i
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must stop processing new mcoming requests for the pod {or must complete them with an
crror or exception} unti it can be certain that it is in-sync and communicating with all other
storage systerms that are in-sync. A first storage system may conclude that a sccond paired
storage system should be detached, which will allow the first storage system to continue since
it 18 now in-sync with all storage aystems now in the list. But, the sccond storage system
must be prevented from concluding, alternatively, that the first storage system should be
detached and with the second storage system continuing operation. This would result ina
“splif brain” condition that can lead to irreconcilabie datasets, dataset corruption, or
application corraption, among other dangers.

{000209] The situation of needing to determine how to procced when not communicating
with paired storage systems can arise while a storage system is running normally and then
notices lost communications, while it is carrently recovering from some previous faslt, while
it is rebooting or resuming from a temporary power loss or recovered communication outage,
while it is switching operations from one set of storage system controller to another set for
whatever reason, or during or afler any combination of these or other kinds of events. In fact,
any time g storage system that is assoctated with a pod can’t communicate with all known
non-detached members, the storage system can either wait briefly wntil communications can
be established, go offline and continue waiting, or ©t can determine through some means that
it 18 safe to detach the non-communicating storage system without risk of incurring a sphit
brain due to the non-communicating storage system concluding the alternative view, and thea
continue. If a safc detach can bappen quickly enough, the storage svstem can remain onling
for the pod with hittle more than a short delay and with no resulting application outages for
applications that can issue requests to the remaining online storage systems.

{060218] One example of this situation is when a storage system may know that it is out-of-
datc. That can happen, for example, when a first storage system is first added to a pod that is
alreadv associated with one or more storage svstems, or when a first storage system
reconnects 1o ancther storage system and finds that the other storage system had already
marked the first storage system as detached. In this case, this first storage system will simply
wait until it connects 1o some other set of storage systems that are mn-sync for the pod.
[860211] This model demands some degree of consideration for how storage systems are
added to or removed from pods or from the n-sync pod members list. Since sach storage
systern will have its own copy of the list, and since two independent storage systers can’t
update their local copy at exactly the same time, and since the local copy is all that is

available on a reboot or in various favlt scenanos, care must be taken to ensure that transient
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meonsistencies don’t cause problems. For example, it one storage systems 1s in-syne tor a
pod and a second storage system is added, then if the second storage system is updated to list
both storage systems as in~sync first, then if there is a fault and a restart of both storage
systems, the second nught startup and wait to connect to the first storage system while the
first might be unaware that it should or could wait for the second storage system. [fthe
second storage system theo responds to an inability to connect with the first storage system
by going through a process to detach if, then it might succeed in completing a process that the
first storage system is unaware of, resulting i a split brain. As such, it may be necessary to
ensure that storage systems won't disagree inappropriately on whether they might opt to go
through a detach process it they aren’t communicating.

{80021 2] One way to ensure that storage svstems won't disagree inappropriately on whether
they might opt to go through a detach process if they aren’t compumnicating is to ensure that
when adding a new storage system to the in-sync member list for a pod, the new storage
system first stores that it 1s a detached member (and perhaps that it is being added as an in-
syne member). Then, the existing n-sync storage systems can focally store that the new
storage system is an in-sync pod member before the new storage system locally stores that
same fact. If there is a set of reboots or network cutages prior to the new storage system
storing its in~sync status, then the original storage systems may detach the new storage
system due to non-commaunication, but the new storage systems will wait. A reverse version
of this change night be needed for removing a communicating storage system from a pod:
first the storage system being removed stores that it 15 no longer m-syne, then the storage
systems that will remain store that the storage system being removed is no longer in-syne,
then all storage systems delete the storage system beimg removed from their pod membership
lists. Depending on the implementation, an intermediate persisted detached state may not be
necessary. Whether or not care is required n local copics of membership lists may depend
on the model storage svstems use for momtoring each other or for validating their
membership. If a consensus model is used for both, or if an external system {or an external
distributed or clustered svstem) is used to store and validate pod membership, then
meonsistencies in locally stored membership lists may not matter.

[860213] When communications fail or one or several storage systems in a pod fail, or when
a storage syster starts up (or fails over to a secondary controller) and can’t commumnicate
with paired storage systems for a pod, and it 1s time for one or more storage systems to decide
to detach one or more paired storage systems, some algorthm or mechanism must be

employed to decide that it is safe to do so and to follow through on the detach. One means of
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resolving detaches 1s use a majority {or guorum} mode! for membership. With three storage
systems, as long as two are commumicating, they can agree to detach a third storage system
that 1sn’t communicating, but that third storage system cannot by #tsclf choose to detach
either of the other two. Confusion can arise when storage system communication s
mconsistent. For example, storage system A might be communicating with storage system B
but not C, while storage system B might be communicating with both A and C. So, Aand B
could detach C. o1 B and C could detach A, but more communication between pod members
may be needed to figure this out.

1800214} Care needs to be taken in a quorum membership model when adding and removing
storage systeras. For example, if a fourth storage system is added, then a “majority” of
storage systerns is at that pomt three. The transition from three storage systems (with two
required for majority) to a pod including a fourth storage system (with three required for
majority} may require something similar to the model deseribed previously for carefully
adding a storage system to the in-syne list. For example, the fourth storage system might
start in an attaching state but not vet attached where it would never instigate a vote over
quorum. Once in that state, the original three pod members could each be updated to be
aware of the fourth member and the new requirement for a three storage system majority to
detach a fourth. Removing a storage svstem from a pod might sinularly move that storage
system to a locally stored “detaching™ state before updating other pod members. A vanant
scheme for this is to use a distributed consensus mechanism such as PAXOS or RAFT to
mplement any membership changes or to process detach requests.

[860215] Another means of managing membership transitions is to use an external system
that 1s cutside of the storage systems themselves to handle pod membership. In order to
become online for a pod, a storage system must first contact the external pod membership
system to verify that it 1s in-syne for the pod. Any storage system that is online for a pod
should then remain in communication with the pod membership system and should wait or go
offline if it loses communication. An external pod membership manager could be
mplemented as a highly available cluster using various cluster tools, such as Oracle RAC,
Linux HA, VERITAS Cluster Server, IBM’s HACMP, or others. An external pod
membership manager could also use distributed configuration tools such as Eted or
Zookeeper, or a rehiable distributed database such as Amazon’s DynamoDB.

{00216} In the cxample depicted 1n Figure 4A, the depicted storage systems (402, 404, 406}
may receive a request to read a portion of the dataset (426, 428) and process the request to

read the portion of the dataset locally according to some embodiments of the present
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disclosure. Readers will appreciate that although requests to modify {¢.g., a write operation)
the dataset (426, 428} require coordination between the storage systems (402, 404, 406y m a
pod, as the datasct (426, 428) should be consistent across all storage systems (402, 404, 406)
i a pod, responding to a request to read a portion of the dataset (426, 428) does not require
similar coordination between the storage systems (402, 404, 406). As such, a particular
storage system that receives a read request may service the read request locally by reading a
portion of the dataset (426, 428) that is stored within the storage system’s storage devices,
with no synchronous communication with other storage systems in the pod. Read requests
received by ong storage system for a replicated dataset in a replicated cluster are expected to
avoid any communication in the vast majority of cases, at least when received by a storage
gystern that is running within a cluster that is also running nominally. Such reads should
normally be processed simply by reading from the local copy of a clustered dataset with no
further interaction required with other storage systems in the cluster

{060217] Readers will appreciate that the storage systems mayv take steps to ensure read
consistency such that a read request will return the same result regardless of which storage
system processes the read request. For example, the resulting clustered dataset content for
any set of updates received by any set of storage systems in the cluster should be consistent
across the cluster, at least at any time updates are idle (all previous modifying operations
have been mdicated as complete and no new update requests have been received and
processed in any way). More specifically, the instances of a clustered dataset across a set of
storage systems can difter only as a result of updates that have not yet completed. This
means, for example, that any two write requests which overlap in their volume block range,
or any combination of a write request and an overlapping snapshot, compare-and-write, or
virtual block range copy, must vield a consistent result on all copies of the dataset. Two
operations should not vield a rosult as if they happened in one order on one storage system
and a different order on another sforage system 1n the replicated cluster.

1006021 8] Furthermore, read requests can be made time order consistent. For example, if one
read request is reccived on a replicated cluster and completed and that read is then followed
by another read request 1o an overlapping address range which is received by the replicated
cluster and where one or both reads in any way overlap in time and volume address range
with a modification request received by the replicated cluster (whether any of the reads or the
maodification are received by the same storage system or a different storage system in the
replicated cluster), then if the first read reflects the result of the update then the second read

should also reflect the resuits of that update, rather than possibly returning data that preceded
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the update. If the first read does not reflect the update, then the second read can either reflect
the update or not. This ensures that between two read requests “time” for a data segment
cannot roll backward.

[000219] In the example depicted mn Figure 4A, the depicted storage systems (402, 404, 406)
may also detect a disroption in data commanications with one or more of the other storage
systems and determine whether to the particular storage system: should remain in the pod. A
disruption in data communications with one or more of the other storage systems may occur
for a variety of reasons. For example, a disruption in data communications with one or more
of the other storage systems may occur because one of the storage systems hags failed, because
a network interconnect has failed, or for some other reason.  An important aspect of
synchronous replicated clustening 18 ensuring that any fault handling docsn’t result m
unrecoverable inconsistencies, or any nconsistency in responses. For example, if a network
fails between two storage systems, at most one of the storage systems can continug
processing newly incoming /0 requests for a pod. And, if one storage system continues
processing, the other storage system can’t process any new requests to completion, including
read requests.

{800228] In the example depicted 1n Figure 4A, the depicted siorage systems (402, 404, 406}

may also determine whether the particular storage svstem should remain m the pod in

response o detecting a disruption in data communications with one or more of the other
storage systems. As mentioned above, to be ‘online” as part of a pod, a storage system must
consider itself to be m-syne for the pod and must be communicating with all other storage
systems 1t considers to be in-sync for the pod. If a storage system can’t be certain that 1t is in-
sync and communicating with all other storage systems that are in-sync, then it may stop
processing new incoming requests to access the dataset {426, 428). As such, the storage
system may determine whether to the particular storage system should remain online as part
of the pod, for example, by determining whether it can communicate with all other storage
systems it considers to be in-sync for the pod {¢.g., via one or morg test messages), by
determining whether the all other storage systems it considers 1o be in-svne for the pod also
consider the storage system to be attached to the pod, through a combination of both steps
where the particular storage system must confirm that it can communicate with all other
storage systems it considers 1o be in-sync for the pod and that all other storage systems it
considers to be in-sync for the pod also consider the storage systent to be attached to the pod,

or through some other mechanism.
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[800221] In the example depicted m Figure 44, the depicted storage systems (402, 404, 406)
may also keep the dataset on the particular storage system accessible for management and
dataset opcrations 1 response to determining that the particular storage system should remain
m the pod. The storage system may keep the datasct (426, 428) on the particular storage
system accessible for management and dataset operations, for example, by accepting requests
to access the version of the dataset (426, 428) that is stored on the storage system and
processing such requests, by accepting and processing management operations associated
with the dataset (426, 428) that are issued by a host or authorized administrator, by accepting
and processing management operations associated with the dataset (426, 428) that are issued
bv one of the other storage systems, or in some other wav,

[000222] In the example depicted i Figure 4A, the depicted storage systems (402, 404, 406)
may, however, make the dataset on the particular storage system inaccessible for
management and dataset operations in response to determining that the particular storage
system should not remain in the pod. The storage system may make the dataset (426, 428) on
the particular storage system maccessible for management and dataset operations, for
example, by rejecting requests 1o access the version of the dataset (426, 428) that 1s stored on
the storage system, by rejecting management operations associated with the dataset {426,
428) that arc issued by a host or other authorized administrator, by rejecting management
operations associated with the dataset (426, 428) that are issued by one of the other storage
systems in the pod, or in some other way.

{006223] In the example depicted in Figure 4A, the depicted storage systems (402, 404, 406)
may also detect that the disruption in data communications with one or more of the other
storage systems has been repaired and make the dataset on the particular storage system
accessible for management and dataset operations. The storage system may detect that the
disruption in data communications with onc or more of the other storage systems has been
repaired, for example, by receiving a message from the one or more of the other storage
systems. In response to detecting that the disruption in data communications with one or
more of the other storage systems has been repaired, the storage system may make the dataset
{426, 428) on the particular storage system accessible for management and dataset operations
once the previously detached storage system has been resynchronized with the storage
systermns that remained atiached to the pod.

000224} In the cxample depicted 1 Figure 4A, the depicted storage systems (402, 404, 406}
may also go offline from the pod such that the particular storage svstem no longer allows

management and dataset operations. The depicted storage systems {402, 404, 406) may go
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offline from the pod such that the particular storage svstem no longer allows management and
dataset operations for a variety of reasons. For example, the depicted storage systems {402,
404, 406} may also go offline from the pod due to some fault with the storage system itself,
because an update or some other mamntenance 18 occurring on the storage svstem, due to
commumications faults, or for many other reasons. In such an example, the depicted storage
systems {402, 404, 406) may subsequently update the dataset on the particular storage system
to include all updates to the dataset since the particular storage system went offline and go
back onhine with the pod such that the particular storage system allows management and
dataset operations, as will be described in greater detail in the resynchromization sections
mcluded below.

[000225] In the example depicted i Figure 4A, the depicted storage systems (402, 404, 406)
may also identifving a target storage svstem for asynchronously receiving the dataset, where
the target storage system is not one of the plurality of storage systems across which the
dataset is synchronously replicated. Such a target storage system may represent, for example,
a backup storage svsiem, as some storage svstem that makes use of the svnchronously
replicated dataset, and so on. In fact, synchronous replication can be leveraged to distribute
copies of a dataset closer to some rack of servers, for betier local read performance. One
such case is smaller top-of-rack storage syvstems symmetrically replicated to larger storage
systems that are centrally located in the data center or campus and where those larger storage
systems are more carcfully managed for reliability or are connected to extemal networks for
asynchronous replication or backup services.

[860226] In the example depicted 1 Figure 44, the depicted storage systems (402, 404, 406)
may also dentify a portion of the dataset that s not being asynchronously replicated to the
target storage system by any of the other storages systems and asynchronously replicate, to
the target storage svstem, the portion of the datasct that is not being asvnchronously
replicated to the target storage system by any of the other storages svstems, wherein the two
or more storage systems collectively replicate the entire dataset to the target storage system.
In such a way, the work associated with asynchronously replicating a particular dataset may
be sphit amongst the members of a pod, such that each storage system in a pod is only
responsible for asvnchronously replicating a subset of a dataset to the target storage system.
1860227} In the example depicted in Figure 4A, the depicted storage systems (402, 404, 406}
may also detach from the pod, such that the particular storage svstem that detaches from the
pod s no longer included in the set of storage systems across which the dataset is

synchronously replicated. For example, if storage system (404} in Figure 4A detached from
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the pod (430} illustrated mn Figure 4A, the pod (430) would only include storage svstems
{402, 406} as the storage systems across which the dataset (426} that is included in the pod
{430} would be synchronouslv replicated across. In such an example, detaching the storage
system from the pod could also mclude removing the dataset from the paricular storage
system that detached from the pod. Continuing with the example where the storage svstem
{404} 1n Figure 4A detached from the pod (430) tHustrated in Figure 44, the dataset (426)
that 1s included in the pod (430) could be deleted or otherwise removed from the storage
system (404).

[860228] Readers will appreciate that there are a number of unique administrative
capabilitics enabled by the pod model that can further be supported. Also, the pod model
self introduces some issues that can be addressed by an implementation. For example, when
a storage system is offling for a pod, but is otherwise rnunning, such as because an
mterconnect falled and another storage system for the pod won out in mediation, there may
still be a desire or need to access the offline pod’s dataset on the offline storage system. One
solution may be simply to enable the pod n some detached mode and aliow the dataset to be
accessed. However, that solution can be dangerous and that solution can cause the pod’s
metadata and data to be much more difficult to reconcile when the storage systems do regain
communication. Furthermore, there could still be a separate path for hosts to access the
offline storage system as well as the still online storage svstems. In that case, a host might
igsue /O to both storage systems even though they are no longer being kept 1n sync, because
the host sces target ports reporting volumes with the same identifiers and the host /0 drivers
presume it sees additional paths to the same volume. This can result n fairly damaging data
corruption as reads and writes issued to both storage systems are no longer consistent even
though the host presumes they are. As a variant of this case, in a clustered application, such
as a shared storage clustered database, the chustcred application running on one host might be
reading or writing {0 one storage system and the same clustered application running on
ancther host nuight be reading or writing to the “detached” storage system, yet the two
mstances of the clustered application arc communicating between each other on the
presumption that the dataset they cach see is entirely consistent for completed writes. Since
they aren’t consistent, that presumption is violated and the application’s dataset (e g, the
database} can quickly end up being corrupted.

[660229] Onc way to solve both of these problems is to allow for an offline pod, or perhaps a
snapshot of an offline pod, to be copied to a new pod with new volumes that have sufficiently

new identities that host VO drivers and clustered applications won’t confuse the copied
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volumes as being the same as the still onlme volumes on another storage system. Since each
pod mamtaing a complete copy of the dataset, which is crash consistent but perhaps slightly
different from the copy of the pod dataset on another storage system, and since each pod has
an independent copy of all data and metadata needed to operate on the pod content, itis a
straightforward problem to make a virtual copy of some or all volumes or snapshots in the
pod to new volumes in a new pod. In a logical extent graph implementation, for example, all
that 1s needed is to define now volumoes in a new pod which reference logical extent graphs
from the copied pod associated with the pod’s volumes or snapshots, and with the logical
extent graphs being marked as copy on write. The new volumes should be treated as new
volumes, similarly to how volume snapshots copied to a new volume might be implemented.
Volumes may have the same admmistrative name, though within a new pod namespace. But,
they should have different underlving identifiers, and differing logical unit identifiers from
the original volumes.

{060230] In some cases it may be possible to use virtual network isolation techniques (for
example, by creating a virtual LAN in the case of [P networks or a virtual SAN 1n the case of
fiber channel networks} in such a way that isolation of volumes presented to some interfaces
can be assured to be inaccessible from host network mterfaces or host SCSI mnitiator ports
that might also see the original volumes. In such cases, 1t may be safe to provide the copies of
volumes with the same SCSI or other storage identifiers as the original volames. This could
be used, for example, in cases where the applications expect to see a particular set of storage
wdentifiers in order to function without an undue burden in reconfiguration.

[860231] Some of the technigues described herein could also be used ouiside of an active
fault context to test readingss for handling faolts. Readiness testing (sometimes referred to as
“fire drills™) is commonly required for disaster recovery configurations, where frequent and
repeated testing is considercd a necessity to ensure that most or all aspects of a disaster
recovery plan are correct and account for any recent changes to applications, datasets, or
changes in equipment. Readiness testing should be non-disruptive to current production
operations, including replication. In manv cases the real operations can’t actually be mvoked
on the active configuration, but a good way fo get close is to use storage operations to make
copics of production datasets, and then perhaps couple that with the use of virtual
networking, to create an isoclated environment containing all data that is belicved necessary
for the important applications that must be brought up successfully in cases of disasters.
Making such a copy of a synchronously replicated {or even an asynchronously replicated)

dataset available within a site {or collection of sifes) that s expected to perform a disaster
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recovery readiness test procedure and then starting the important applications on that dataset
to ensure that it can startup and function is a great tool, since it helps ensure that no important
parts of the application datasets were left out in the disaster recovery plan. 1f necessary, and
practical, this could be coupled with virtual 1solated networks coupled perhaps with isolated
collection of physical or virtual machines, to get as close as possible to a real world disaster
recovery takeover scenaro. Virtually copying a pod (or set of pods) to ancther pod as a
point-in-time image of the pod datascts immediately creates an isolated dataset that contains
all the copied elements and that can then be operated on essentially identically to the
originally pods, as well as allowing isolation to a single site {or a few sites) separately from
the original pod. Further, these are fast operations and they can be torn down and repeated
casily allowing testing to repeated as ofien as 1s desired.

0302321 Some enhancements could be made to get further toward perfect disaster recovery
testing. For example, in conjunction with isolated networks, SCSI logical unit identities or
other types of identitics could be copied into the target pod so that the tost servers, virtual
machines, and applications sec the same 1dentities. Further, the adnunistrative environment
of the servers could be configured to respond to requests from a particular virtual set of
virtual networks to respond to requests and operations on the original pod name 50 soripis
don’t require use of test-vanants with altemate “test” versions of object names. A further
enhancement can be used in cases where the host-side server mfrastructure that will take over
i the case of a disaster takeover can be used during a test. This includes cases where a
disaster recovery data center is completelv stocked with alternative server infrastructure that
won't generally be used until divected to do so by a disaster. 1f also includes cases where that
mfrastructure might be used for non-critical operations (for example, running analytics on
production data, or simply sapporting application development or other functions which may
be taportant but can be halted if needed for more critical functions). Specifically, host
definitions and configurations and the server infrastructure that will use them can be set up as
they will be for an actual disaster recovery takeover event and tested as past of disaster
recovery takeover testing, with the tested volumes being connected to these host definitions
from the virtual pod copy used to provide a snapshot of the dataset. From the standpoint of
the storage systems involved, then, these host definttions and configurations used for testing,
and the volume-to-host connection configurations used during testing, can be reused when an
actual disaster takcover event is triggered, greatly nunimizing the configuration differences
between the test configuration and the real configuration that will be used in case of a disaster

recovery takeover.
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[800233] In some cases it may make sense to move volumes out of a first pod and mto a new
second pod including just those volumes. The pod membership and high availability and
recovery characteristics can then be adjusted separately, and admmistration of the two
resulting pod datasets can then be isolated from each other. An operation that can be done in
one direction should also be possible in the other direction. At some point, it may make
sense to take two pods and merge them into one so that the volames in each of the onginal
two pods will now track cach other for storage system membership and high availability and
recovery characteristics and events. Both operations can be accomphlished safely and with
reasonably minimal or no disruption to running apphcations by relving on the characteristics
suggested for changing mediation or quorum propertics for a pod which were discussed inan
carlier section. With mediation, for example, a mediator for a pod can be changed using a
sequence consisting of a step where each storage system in a pod is changed to depend on
both a first mediator and a second mediator and each is then changed to depend only on the
second mediator. If a fanlt occurs in the middle of the sequence, some storage systems may
depend on both the first mediator and the second mediator, but in no case will recovery and
fault handhing result 1n some storage systems depending only on the first mediator and other
storage systems only depending on the second mediator. (Quonum can be handled similarly
bv temporarily depending on winning against both a first quorum model and a second
guorem model in order to proceed to recovery. This may result in a very short time pertod
where availability of the pod in the face of {aults depend on additional resources, thus
reducing potential availability, but this time period is very short and the reduction in
availability 1s often very hittle. With mediation, if the change in mediator parameters is
nothing more than the change in the key used for mediation and the mediation service used is
the same, then the potential reduction in availability is even less, since it now depends only
on two calls to the same service versus one call to that service, and rather than separate calls
to two separate services.

1000234} Readers will note that changing the quorum model may be quite complex. An
additional step may be necessary where storage systems will participate i the second guorum
model but won’t depend on winning in that sccond guorum model, which is then followed by
the step of also depending on the second quorum model. This may be necessary to account
for the fact that if only one system has processed the change to depend on the quoran model,
then 1t will never win quorum since there will never be a majority. With this model in place
for changing the high availability parameters (mediation relationship, guorom model,

takeover preferences), we can create a safe procedure for these operations to split a pod into
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two or 1o join two pods mto one. This may require adding one other capability: linking a
second pod to a first pod for high avalability such that if two pods include compatible high
availabtlity parameters the second pod linked to the first pod can depend on the first pod for
determining and instigating detach-related processing and operations, offline and in-syne
states, and recovery and resynchronization actions.

1060235] To split a pod mto two, which is an operation to move some volumes into a newly
created pod, a distributed operation may be formed that can be described as: form a second
pod mte which we will move a set of volumes which were previousiy n a first pod, copy the
high availability parameters from the first pod into the second pod to ensure they are
corapatiblic for linking, and link the second pod to the first pod for high availability. This
operation may be encoded as messages and should be implemented by each storage system in
the pod in sach a way that the storage system ensures that the operation happens completely
on that storage system or does not happen at all if processing is interrupted by a fault. Once
all in-sync storage systers for the two pods have processed this operation, the storage
systems can then process a subsequent operation which changes the second pod so that it 1s
no longer linked to the first pod. As with other changes to high availability characternistics for
a pod, this mmvolves first having each 1o-sync storage system change to rely on both the
previous model {that modcl being that high availability is linked to the first pod) and the new
model (that model being its own now independent high availability). In the case of mediation
or gquorum, this means that storage systems which processed this change will first depend on
mediation or quorum being achicved as appropriate for the first pod and will additionally
depend on a new separate mediation (for example, a new mediation key) or guorum being
achieved for the second pod befors the second pod can proceed following a fault that required
mediation or testing for quorum. Ag with the previous description of changing quonum
models, an intermediate step may set storage systems to participate in quorum for the second
pod before the step where storage systems participate in and depend on quorum for the
second pod. Once all in-svne storage systems have processed the change to depend on the
new parameters for mediation or quorum for both the first pod and the second pod, the split is
complete.

1860236] Joining a second pod nto a first pod operates essentially i reverse. First, the
second pod must be adjusted to be compatible with the first pod, by having an identical list of
storage systerns and by having a compatible high availability model. This may involve some
set of steps such as those descnbed elsewhere in this paper to add or remove storage systems

or to change mediator and guorum models. Depending on implementation, it may be
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neccasary only to reach an 1dentical list of storage systems. Joining proceeds by processing
an operation on cach m-sync storage system to link the second pod to the first pod for high
availabtiity. Hach storage system which processes that operation will then depend on the first
pod for high availability and then the second pod for high availability. Once all in-syne
storage systems for the second pod have processed that operation, the storage systems will
then each process a subsequent operation to climinate the hink between the second pod and
the first pod, migrate the volumes from the second pod into the first pod, and delete the
second pod. Host or application dataset access can be preserved throughout these operations,
as long as the implementation allows proper direction of host or application dataset
modification or read operations to the volume by identity and as long as the identity is
preserved as appropriate to the storage protocol or storage model (tfor example, as long as
logical unit identifiers for volumes and use of target ports for accessing volumes are
preserved in the case of SCSI).

{006237] Migrating a volume between pods may present issues. 1f the pods have an identical
set of in-gync membership storage sysiems, then it may be straightforward: temporanly
suspend operations on the volumes being migrated, switch control over operations on those
volumes to controlling software and structures for the new pod, and then resume operations,
This allows for a scamless nugration with continuous uptime for applications apart from the
very brief operation suspension, provided network and ports migrate properly between pods.
Depending on the implementation, suspending operations may not even be neegssary, or may
be so internal to the systern that the suspension of operations has no impact. Copying
volumes between pods with different in-syne membership sets 1s more of a problem. If the
target pod for the copy has a subset of in-sync members from the source pod, this isn’t much
of a problem: a member storage system: can be dropped safely enough without having to do
more work, But, if the target pod adds in-sync member storage svstems to the volume over
the source pod, then the added storage systems must be synchronized to include the volume’s
content before they can be used. Until synchronized, this leaves the copied volumes
distinctlv different from the already synchronized volumes, in that fault handling differs and
request handling from the not vet synced member storage systems either won't work or must
be forwarded or wont be as fast becaunse reads will have to traverse an interconnect. Also,
the internal implementation will bave to handle some vohumes being in sync and ready for
fault handling and others not being in sync.

[300238] There are other problems relating to reliability of the operation in the face of faults.

Coordinating a migration of volumes between muldti-storage-system pods 1s a distributed
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operation. If pods are the unit of fault handling and recovery, and if mediation or guorum or
whatever means are used to avoid split-brain situations, then a switch in volumes from one
pod with a particular sct of state and contigurations and relationships for fault handling,
recovery, mediation and quorum to another then storage svstems in a pod have to be careful
about coordinating changes related to that handling for any volumes. Operations can’t be
atomically distributed between storage systems, but must be staged in some way., Mediation
and guorum models cssentially provide pods with the tools for implementing distributed
transactional atomicity, but this may not extend to mter-pod operations without adding to the
mplementation.

{00023 Consider even a simple migration of a volume from a first pod to a second pod even
for two pods that share the same first and second storage systems. At some point the storage
aystems will coordinate to define that the volume is now in the second pod and is no fonger in
the first pod. H there is no inherent mechanism for transactional atomicity acrogs the storage
systems for the two pods, then a natve implementation could leave the volume in the first pod
on the first storage svstem and the second pod on the second storage sysiem at the time of a
network fault that results in fault handling to detach storage systems from the two pods. If
pods separately determine which storage system succeeds in detaching the other, then the
resudt could be that the same storage svstem detaches the other storage system for both pods,
in which case the result of the volume migration recovery should be conststent, or it could
result in a different storage systom detaching the other for the two pods. If the first storage
system detaches the second storage system for the first pod and the second storage system
detaches the first storage system for the second pod, then recovery might result in the volume
being recovered to the first pod on the first storage svstem and into the second pod on the
second storage system, with the volume then nunning and ¢xported to hosts and storage
applications on both storage systems. If instead the second storage svstem detaches the first
storage system for the first pod and first storage detaches the second storage system for the
second pod, then recovery might result in the volume being discarded from the second pod by
the first storage system and the volume being discarded from the first pod by the second
storage system, resuliing in the volume disappearing entirely. If the pods a volume 1s being
migrated between are on differing sets of storage systems, then things can get even more
complicated.

[600240] A solution to these problems may be to use an intermediate pod along with the
techniques described previously for splitting and joning pods. This mtermediate pod may

never be presented as visible managed objects associated with the storage systems. In this
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model, volumes to be moved from a first pod to a second pod are tirst sphit from the first pod
mto a new intermediate pod using the split operation described previously. The storage
systerm members for the intermediate pod can then be adjusted to match the membership of
storage systems by adding or removing storage systems from the pod as necessary.
Subsequently, the intermediate pod can be joined with the second pod.

1000241 ] For further explanation, Figure 4B sets forth diagrams of metadata representations
that may be implemented as a structured collection of metadata objects that, together, may
represent a logical volume of storage data, or a portion of a fogical volume, 1n accordance
with some embodiments of the present disclosure. Metadata representations 451-50, 451-54,
and 451-60 may be stored within a storage svstem (451-06), and one or more metadata
representations may be generated and maintamed for cach of multiple storage objects, such as
volumes, or portions of volumes, stored within a storage system {451-06).

10602421 While other types of structured coliections of the metadata objects are possible, in
this example, metadata representations may be structured as a directed acvelic graph (DAG)
of nodes, where, to maintain efficient access to any given node, the DAG may be structured
and balanced according to vanous methods. For example, a DAG for a metadata
representation may be defined as a type of B-tree, and balanced accordingly in response to
changes to the structure of the metadata representation, where changes to the metadata
representation may occur 1n response to changes to, or additions to, underlying data
represented by the metadata representation. While in this example, there are only two levels
for the sake of simplicity, 1n other examples, metadata representations may span across
multiple levels and may include hundreds or thousands of nodes, where each node may
mehide any number of links to other nodes.

{860243] Further, in this example, the leaves of a metadata representation may include
pointers to the stored data for a volume, or portion of a volume, where a logical address, ora
volume and offset, may be used to wdentity and navigate through the metadata representation
to reach one or more leaf nodes that reference stored data corresponding to the logical
address. For example, a volume {451-52) mav be represented by a metadata representation
{451-50), which includes multipic metadata object nodes (451-32, 451-524-451-52N}, where
leaf nodes (451-52A-451-52N) include pointers to respective data objects (451-33A-451-
33N, 451-37). Data objects may be any size vuit of data within a storage system (451-06).
For example, data objects (451-33A-451-53N, 451-57) may cach be a logical extent, where

logical extents may be some specified size, such as IMB, 4MB, or some other size.
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[860244] In this example, a snapshot {451-56) may be created as a snapshot of a storage
obiect, in this case, a volume (451-32), where at the point it ttime when the snapshot (451-56)
is created, the metadata representation (451-34) for the snapshot (451-56) mcludes all of the
metadata objects for the metadata representation (451-50) for the volume (451-32). Further,
in response to creation of the snapshot (451-56), the metadata representation (451-54) may be
designated to be read only. However, the volume (451-52} channg the metadata
representation may continue to be modified, and while at the moment the snapshot 1s created,
the metadata representations for the volume (451-52) and the snapshot (451-36) are identical,
as modifications are made to data corresponding {o the volume (451-52), and in response to
the modifications, the metadata representations for the volume (451-52) and the snapshot
(451-56) may diverge and become different.

{000245] For example, given a metadata representation (451-30} to represent a vohume (451
52y and a metadata representation {451-54) to represent a snapshot (451-56), the storage
system (451-06} may receive an /O operation that writes to data that 15 ultimately stored
within a particular data object (451-53B), where the data object (431-53B) is pomted to bv a
leaf node pointer (451-52B), and where the leaf node pomnter (451-52B) is part of both
metadata representations {451-50, 451-54). In respounse to the write operation, the read only
data objects (451-53A-451-33N) referred to by the metadata representation (451-54) remain
wnchanged, and the pomter (451-32B) may also remain unchanged. However, the metadata
representation (451-503, which represents the current volume {(451-32), is modified to include
anew data object to hold the data written by the write operation, where the modified
metadata representation 1s depicted as the metadata representation (451-60). Further, the
write operation may be dirgcted to only a portion of the data object (451-53B), and
consequently, the new data object (451-37) may toclude a copy of previous contents of the
data object (451-53B) i addition to the payiocad for the write operation.

[B00246] In this example, as part of processing the write operation, the metadata
representation (451-60} for the volume {451-32) is modified to remove an existing metadata
object pointer (451-328) and to include a new metadata object pointer (451-538), where the
new metadata object pointer (451-38) is configured to pont to a new data object (451-57),
where the new data object (451-57) stores the data written by the write operation. Further,

the metadata representation (451-60} for the volume {451-532) contimues to inclade all

metadata objects included within the previous metadata representation (451-50)—with the

exclusion of the metadata object pointer (451-528) that referenced the target data object,
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where the metadata object pointer (451-52B) continues to reference the read only data object
{451-53B} that would have been overwritten.

[000247] In this way, using metadata representations, a volume or a portion of a volume may
be considered to be snapshotied, or considered to be copied, by creating metadata objects,
and without actual deplication of data objects—where the daplication of data objects may be
deferred until a write operation is dirgcted at one of the read only data objects referred to by
the metadata representations.

[860248] 1n other words, an advantage of using a metadata representation to represent a
volume s that a snapshot or a copy of a volume may be created and be accessible in constant
order time, and specifically, in the time it takes to create a metadata object for the snapshot or
copy, and to create a reference for the snapshot or copy metadata object 1o the existing
metadata representation for the volume being snapshotted or copied.

10060249] As an example use, a virtualized copy-by-reference may make use of a metadata
representation in a manner that is sinilar to the use of a metadata reprosentation in creating a
snapshot of a volume—where a metadata representation for a virtualized copy-by-reference
may often correspond to a portion of a metadata representation for an entire volume. An
example implementation of virtualized copy-by-reference may be within the context of &
virtualized storage system, where multiple block ranges within and between volumes may
reference a anificd copy of stored data. In such virtualized storage system, the metadata
described above may be vsed to handle the relationship between virtual, or logical, addresses
and physical, or real, addresses—in other words, the metadata representation of stored data
cnables a virtualized storage system that may be considered flash-friendly m that it reduces,
or miinimizes, wear on flash memory.

{060258] In some examples, logical extents may be combimed in vanous ways, mchuding as
simple collections or as logically related address ranges within some larger-scale logical
extent that is formed as a set of logical extent references. These larger combinations could
also be given logical extent wdentities of varicus kinds, and could be further combined into
still larger logical extents or collections. A copv-on-write status could apply to various
lavers, and in various ways depending on the implementation. For example, a copy on write
status applicd o a logical collection of logical collections of extents might result 1n a copied
collection retaining references to unchanged logical extents and the creation of copied-on-
write logical extents (through copying references to anv unchanged stored data blocks as

needed) when only part of the copy-on-write logical collection is changed.
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{000251] Deduplication, volume snapshots, or block range snapshots may be implemented in
this model through combinations of referencing stored data blocks, or referencing logical
cxtents, or marking logical extents {or identified collections of logical extents) as copy-on-
wriie.

[8060252] Further, with flash storage svstems, stored data blocks may be organized and
grouped together in various ways as collections are written out into pages that are part of
larger erase blocks. Eventual garbage collection of delcted or replaced stored data blocks
may involve moving content stored in some number of pages elsewhere so that an entire
crase block can be erased and prepared for reuse. This process of selecting physical flash
pages, cventually migrating and garbage collecting them, and then crasing flash erase blocks
for reuse may or may not be coordinated, driven by, or performed by the aspect of a storage
system that is also handling logical extents, deduplication, compression, snapshots, virtual
copying, or other storage system functions. A ¢oordinated or driven process for selecting
pages, migrating pages, garbage collecting and erasing crase blocks may further take into
account various charactenistics of the tlash memory device cells, pages, and erase biocks such
as number of uses, aging predictions, adjustments to voltage levels or numbers of retries
needed in the past to recover stored data. They may also take into accouunt analysis and
predictions across all flash memory devices within the storage system.

[8060253] To continue with this example, where a storage system may be implemented based
on directed acyclic graphs comprising logical extents, logical extents can be categonized mto
two types: leaf logical extents, which reference some amount of stored data in some way, and
composite logical exients, which reference other leaf or composite logical extents.

[80602534] A leaf extent can reference data in a vanety of ways. It can point directly to a
single range of stored data {¢.g., 64 kilobytes of data), or it can be a collection of references
to stored data {c.g., a | megabyie “range” of content that maps some number of virtual blocks
associated with the range to physically stored blocks). In the latter case, these blocks may be
referenced using some identity, and some blocks within the range of the extent may not be
mapped to anvthing. Also, in that latier case, these block references need not be unique,
atllowing multiple mappmgs from virtual blocks within some number of logical exients within
and across some number of volumes to map to the same physically stored blocks. Instead of
stored block references, a logical extent could encode simpile patterns: for example, a block
which is a string of identical bytes could simply encode that the block is a repeated pattern of

wdentical bvies.
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[860255] A composite Jogical extent can be a logical range of content with some virtual size,
which comprises a plurality of maps that each map from a subrange of the composite logical
cxtent logical range of content to an underlying leaf or composite logical extent.
Transforming a request related 1o content for a composite logical extent, then, involves taking
the content range for the request within the context of the composite logical extent,
determining which aanderlying leaf or composite logical extents that request maps to, and
transforming the request to apply to an appropriate range of content within those underlving
leaf or composite logical extents.

[860256] Volumes, or files or other types of storage obiccts, can be described as composite
logical extents. Thus, these presented storage objects can be organized using this extont
model.

{000257] Depending on mplementation, leaf or composite logical extents could be
referenced from a plurality of sther compostte logical extents, effectively allowing
mexpensive duplication of larger collections of content within and across volumes. Thus,
logical extents can be arranged essentially within an acyclic graph of references, each ending
int leaf logical extents. This can be used to make copies of volumes, to make snapshots of
volumes, or as part of supporting virtual range copies within and between volumes as part of
EXTENDED COPY or similar types of operations.

[6060258] An implementation may provide cach logical extent with an identity which can be
used to name it. This simplifies referencing, since the references within composite logical
extents become lists comprising logical extent identities and a logical subrange corresponding
to each such logical extent identity. Within logical extents, each stored data block reference
may also be based on some identity used to name it.

18602591 To support these duplicated uses of extents, we can add a further capability: copy-
on-write logical extents. When a modifving operation affects a copy-on-write leat or
coraposite logical extent the logical extent i1s copied, with the copy being a new reference and
possibly having a new identity {depending on implementation). The copy retains ail
references or identities related to underlying leaf or composite logical extents, but with
whatever modifications result from the modifving operation. For example, a WRITE,
WRITE SAME, XDWRITEREAD, XPWRITE, or COMPARE AND WRITE request may
store new blocks in the storage system {or use deduplication techniques to identify existing
stored blocks), resulting 1o modifying the corresponding leaf logical extents to refercnce or
store identities to a new set of blocks, possibly replacing references and stored identities fora

previous set of blocks. Alternately, an UNMAP request mayv modify a leaf logical extent to
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remove one or more block references. In both types of cases, a leaf logical exient 1s
modified. If the leaf logical extent 15 copy-on-write, then a new leaf logical extent will be
created that is formed by copying unaffected block references from the old extent and then
replacing or removing block references based on the modifying operation.

[8080260] A composite logical extent that was used to locate the leaf logical extent may then
be modified to store the new leaf logical extent reference or identity associated with the
copied and moditied leat logical extent as a replacement for the previous leaf logical extent.
If that composite logical extent is copy-on-write, then a new composite logical extent is
created as a new reference or with a new identity, and any unaffected references or identities
to its underlying logical extents are copied to that new composite logical extent, with the
previous leat logical extent reference or identity being replaced with the new leaf logical
extent reference or wdentity.

1000261} This process continues further backward from referenced extent to referencing
composite extont, based on the scarch path through the acyclic graph used to process the
modifying operation, with all copy-on-write logical extents being copied, modified, and
replaced.

18602621 These copiad leaf and composite logical extents ¢an then drop the characternistic of
being copy on write, so that further modifications do not result in an additional copy. For
example, the first ime some underlving logical extent within a copy-on-write “parent”
composite extent is modified, that underdying logical extent may be copied and modified,
with the copy baving a new identity which is then written into a copied and replaced instance
of the parent composite logical extent. However, a second time some other underlyving
logical extent is copied and modified and with that other underlying logical extent copy’s
new identity being written to the parent composite logical extent, the parent can then be
maodificd m place with no further copy and replace necessary on behalf of references to the
parent composite logical extent.

1000263] Modifving operations to new regions of a volume or of a composite logical extent
for which there is no curmrent leaf logical extent may create a new leaf logical extent to store
the results of those modifications. If that new logical extent is to be referenced from an
existing copy-on-write composite logical extent, then that existing copy-on-write compostte
logical extent will be modified to reference the new logical extent, resolting in another copy,
modify, and replace sequence of operations similar to the sequence for modifving an cxisting

caf logical extent.
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[860264] If a parent composite logical extent cannot be grown large enough (based on
mplementation} to cover an address range associated that includes new leaf logical extents to
create for a new modifying operation, then the parent composite logical extent may be copied
mto two or more new composite logical extents which are then referenced from a single
“grandparent” composite logical extent which vet again is a new reference or a new identity.
if that grandparent logical extent is itself found through another composite logical extent that
1s copy-on-write, then that another composite logical extent will be copied and modified and
replaced 1o a similar way as described m previous paragraphs. This copy-on-write model can
be used as part of implementing snapshots, volume copies, and virtual volume address range
copics within a storage system implementation based on these directed acyclic graphs of
togical extents. To make a snapshot as a read-only copy of an otherwise writable volume, a
graph of logical extents associated with the volume is marked copy-on-write and a reference
to the onginal composite logical extents are retained by the snapshot. Modifving operations
to the volume will then make logical extent copies as necded, resulting in the volume storing
the results of those modifving operations and the snapshots retaining the original content.
Vohlume copies are similar, except that both the oniginal volume and the copied volume can
modify content resulting in their own copied logical extent graphs and subgraphs.

[800265] Vutual volume address range copies can operate cither by copving block references
within and between leaf logical extents (which does not itself mvolve using copy-on-write
techaiques unless changes to block references modifies copy-on-write leaf logical extents).
Alternately, virtual volume address range copies can duplicate references to leaf or composite
logical extents, which works well for volume address range copies of larger address ranges.
Further, this allows graphs to become directed acvelic graphs of references rather than merely
reference trees. Copy-on-write techriques associated with duplicated logical extent
references can be used to ensure that modifying operations to the source or target of a virtual
address range copy will result in the creation of new logical extents to store those
modifications without affecting the target or the source that share the same logical extent
mmmediately after the volume address range copy operation.

[860266] Input/output operations for pods may also be implemented based on replicating
directed acyclic graphs of logical extents. For example, each storage svstem within a pod
could implement private graphs of logical extents, such that the graphs on onge storage system
for a pod have no particular relationship to the graphs on any second storage system for the
pod. However, there 15 value i synchronizing the graphs between storage svstems 1o a pod.

This can be useful for resynchronization and for coordimating features sach as asynchronous
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or snapshot based replication {o remote storage systems. Further, it may be useful for
reducing some overhead for handling the distribution of snapshot and copy related
processing. In such a model, keeping the content of a pod in sync across all in-svne storage
systems for a pod is essentially the same as keeping graphs of leaf and composite logical
extents in sync for all volumes across all in-svne storage systems for the pod, and ensuring
that the content of all logical extents is in-sync. To be m sync, matching leaf and composite
logical extents should either have the same identity or should have mappable identities.
Mapping could mvolve some set of intermediate mapping tables or could involve some other
type of identity translation. In some cases, identities of blocks mapped by leaf logical extents
could also be kept n sync.

[300267] In a pod implementation based on a leader and followers, with a single leader for
each pod, the leader can be in charge of determining anv changes to the logical extent graphs.
If a new leaf or composiie logical extent is 1o be created. it can be given an idenfity. Ifan
existing leaf or composiic logical extent 1s to be copied to form a new logical extent with
modifications, the new logical extent can be described as a copy of a previous logical extent
with some set of modifications. If an existing logical extent 18 to be split, the split can be
described along with the new resulting ideatities. If a logical extent is to be referenced as an
uvnderlying logical extent from some additional composite logical extent, that reference can
be described as a change to the composite logical extent to reference that underlying logical
extent.

{000268] Modifyving operations in a pod thus comprises distributing descriptions of
modifications o logical extent graphs (where new logical extents are created to exiend
content or where logical extents are copied, modified, and replaced to handle copy-on-write
states related to snapshots, volume copies, and volume address range copies) and distributing
descriptions and content for modifications to the content of leaf logical extents. An
additional benefit that comes from using metadata m the form of directed acvchc graphs, as
described above, 1s that /0 operations that modify stored data in physical storage may be

given effect at a user level through the modification of metadata corresponding to the stored

data in physical storage—without modifying the stored data in physical storage. In the
disclosed embodiments of storage systems, where the physical storage may be a solid state
drive, the wear that accompanies modifications to flash memory may be avoided or reduced
due to 1/ operations being given cffect through the modifications of the metadata
representing the data targeted by the /0 operations instead of through the reading, erasing, or

writing of flash memory. Further, as noted above, in such a virtualized storage system, the

a6



WO 2021/050875 PCT/US2020/050408

metadata described above mayv be used to handle the relationship between virtual, or logical,
addresses and physical, or real, addresscs—in other words, the metadata representation of
stored data enables a virtualized storage system that may be considered flash~friendly in that
it reduces, or minimuizes, wear on flash memory.

{000269] Leader storage systems may perform their own local operations to mplement these
descriptions in the context of their local copy of the pod dataset and the local storage
systent’s metadata. Further, the in-svnc followers perform their own separate local
operations to implement these descriptions in the context of their separate local copy of the
pod dataset and their separate local storage system’s metadata. When both leader and
follower operations are complete, the result is compatible graphs of logical extents with
corapatible leaf logical extent content. These graphs of logical extents then become a type of
“common metadata” as described in previous examples. This common metadata can be
described as dependencies betwoen modifying operations and required common metadata.
Transformations to graphs can be described as separate operations within a set of or more
predicates that may describe relationships, such as dependencies, with one or more other
operations. In other words, interdependencies between operations may be described as a set
of precursors that one operation depends on i some way, wherg the set of precursors may be
considered predicates that must be true for an operation to complete. A fuller description of
predicates may be found within Application Reference No. 15/696,418, which s inchuded
herein by reference in its entirety. Alternately, cach modifying operation that relieson a
particular same graph transformation that has not vet been known to complete across the pod
can include the parts of any graph transformation that it relies on. Processing an operation
description that identifies a “new” leaf or compostte logical extent that already exists can
avoid creating the new logical extent singe that part was already handled in the processing of
some carlier operation, and can instead implement only the parts of the operation processing
that change the content of leaf or composite logical extents. It is a role of the leader to ensure
that transformations are compatible with cach other. For example, we can start with two
writes come that come 1 for a pod. A first write replaces a composite logical extent A with a
copy of formed as composite logical extent B, replaces a leaf logical extent € with a copv as
leaf logical extent I and with modifications to store the content for the sceond write, and
further writes leaf logical extent D into composite logical extent B. Meanwhile, a second
write implics the same copy and replacement of compostte logical extent A with composite
logical extent B but copies and replaces a different leaf logical extent E with a logical extent

F which 1s modified to store the content of the second write, and further writes logical extent
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Finto logical extent B. Tn that case, the description for the first write can include the
replacement of A with B and C with D and the writing of D into composite logical extent B
and the writing of the content of the first write mto leaf extend B; and, the description of the
second write can include the replacement of A with B and E with F and the writing of F into
composite logical extent B, along with the content of the second write which will be written
to leaf extent F. A leader or any follower can then separately process the first write or the
second write in any order, and the end result is B copying and replacing A, I3 copving and
replacing C, F copying replacing E, and D and F being written into composite logical extent
B. A second copy of A to form B can be avoided by recognizing that B already exists. In
this way, a leader can ensure that the pod maintains compatible common metadata for a
togical extent graph across in-sync storage systems for a pod.

[8060270] Given an implementation of storage systems using directed acyclic graphs of
logical extents, recovery of pods based on replicated directed acyclic graphs of logical extents
may be mmplemented. Specifically, in this example, recovery in pods may be based on
replicated extent graphs then involves recovering consistency of these graphs as well as
recovering content of leaf logical extents. In this implementation of recovery, operations
may include querving for graph transformations that are not known to have completed on all
m-syne storage svstems for a pod, as well as all leaf logical extent content modifications that
are not known to have completed across all storage systems for the pod. Such gquerying could
be based on operations since some coordinated checkpoint, or could simply be operations not
known to have completed where cach storage system keeps a list of operations during normal
operation that have not vet been signaled as completed. In this example, graph
transformations are straightforward: a graph transformation may create new things, copy old
things to new things, and copy old things into two or more split new things, or they modify
corposite extents to modify their references to other extents. Any stored operation
description found on any in-syng storage svstem that creates or replaces any logical extent
can be copied and performed on any other storage system that does not yet have that logical
extent. Operations that describe modifications to leaf or composite logical extents can apply
those modifications to any in-gync storage svstem that had not vet applied them, as long as
the mvolved leaf or composite logical extents have been recovered properly.

1860271} In ancther example, as an alternative to using a logical extent graph, storage may be
mplemented based on a replicated content-addressable store. In a content-addressable store,
for each block of data (for example, every 312 bvtes, 4096 bytes, 8192 bytes or even 16384

bvtes) a umque hash value (sometimes also called a fingerpnint) i3 calculated, based on the
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block content, so that a volume or an extent range of a volume can be descrnibed as a list of
references to blocks that have a particular hash value. In a synchronously replicated storage
system implementation based on references to blocks with the same hash value, replication
could mvolve a first storage system receiving blocks, calculating fingerprints for those
blocks, identifying block references for those fingerprints, and delivering changes toone or a
plurality of additional storage systems as updates to the mapping of volume blocks to
referenced blocks. If a block is found to have already been stored by the first storage system,
that storage system can use 11s reference to name the reference in each of the additional
storage systerns {either because the reference uses the same hash value or because an
identifier for the reference is either identical or can be mapped readily). Alternately, ifa
block 1s not found by the first storage system, then content of the first storage svstem may be
delivered to other storage systems as part of the operation description along with the hash
value or identity associated with that block confent. Further, each in-sync storage system’s
volume descriptions are then updated with the new block references. Recovery insuch a
store may then include comparing recently updated block references for a volume. If block
references differ between different in-sync storage systems for a pod, then one version of
cach reference can be copied to other storage systems to make them consistent. Hthe block
reference on one system does not exist, then it be copied from some storage system that does
store a block for that reference. Virtoal copy operations can be supported in such a block or
hash reference store by copying the references as part of implementing the virtual copy
operation.

1860272} For further explanation, Figure S sets forth a flow chart iltustrating steps that may
be performed by storage systems (402, 404, 406) that support a pod according to some
embodiments of the present disclosure. Although depicted in less detail, the storage systems
{402. 404, 406), communicating over data communications links (502, 504, 506), and
depicted in Figure 5 may be similar to the storage systems described above with reference to
Figures 1A-1D, Figures ZA-2G, Figures 3A-3B, Figures 4A and 4B, or any combination
thercof. In fact, the storage systems (402, 404, 406) depicted in Figure 5 may include the
same, fewer, additional components as the storage svstems described above.

1860273] In the example method depicted in Figure 5, a storage system (402} may attach
{508} to a pod. The model for pod membership may include a list of storage systems and a

subset of that list where storage svstems are presumed 1o be m-syne for the pod. A storage

[}
"

vstem 1s in-syne tor a pod if it is at least within a recovery of having identical wdle content

for the last written copy of the dataset associated with the pod. Idle content 1s the content
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after any n-progress modifications have completed with no processing of new modifications.
Sometimes this 1s referred to as “crash recoverable” consistency. Storage systems that are
listed as pod members but that are not listed as in-svnc for the pod can be described as
“detached” from the pod. Storage systems that are histed as pod members, are in-syne for the
pod, and are currently available for actively serving data for the pod are “online™ for the pod.
10060274] In the example method depicted in Figure 3, the storage system (402) may attach
(508) to a pod, for example, by synchronizing its locally stored version of the dataset (426}
along with an up-to-date version of the dataset (426) that 1s stored on other storage systems
{404, 406} in the pod that are onling, as the term 1s described above. In such an example, in
order for the storage system (402) to attach (508) to the pod. a pod definition stored locally
within each of the storage svstems (402, 404, 406} in the pod may need to be updated in order
for the storage system (402} to attach {508) to the pod. In such an example, each storage
system member of a pod may have its own copy of the membership, meluding which storage
systems it last knew were in-syne, and which storage systems it last knew comprised the
entire set of pod members.

1860275] In the example method depicted in Figure 5, the storage system (402) may also
recetve {510} a request to read a portion of the dataset (426) and the storage system {402}
may process {512) the request to read the portion of the dataset (426} locallv. Readers will
appreciate that although requests to modify (¢.g., a write operation} the dataset (426) require
coordination between the storage systems (402, 404, 406) in a pod, as the dataset {(426)
should be consistent across all storage systems (402, 404, 406) in a pod, responding to a
request 1o read a portion of the dataset (426) does not require similar coordination between
the storage systems {402, 404, 406). As such, a particular storage system (402) that receives
a read request may service the read request locally by reading a portion of the dataset (426}
that is stored within the storage system’s (402) storage devices, with no synchronous
communication with other storage svstems (404, 406) i the pod. Read requests received by
one storage system for a replicated dataset in a replicated cluster are expected to avoid any
communication in the vast majority of cases, at least when received by a storage system that
18 running within a cluster that is also ranning nominally. Such reads should normally be
processed simply by reading from the local copy of a clastered dataset with no further
mteraction required with other storage systems in the cluster

[3060275] Readers will appreciate that the storage systems may take steps to ensure read
consisiency such that a read request will return the same result regardless of which storage

system processes the read request. For example, the resulting clustered dataset content for
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any set of updates received by any set of storage svstems in the cluster should be consistent
across the cluster, at least at any time updates are idle {all previcus modifying operations
have been indicated as complete and no new update requests have been received and
processed in any way). More specifically, the instances of a clustered dataset across a set of
storage systems can differ only as a result of updates that have not vet completed. This
means, for cxample, that any two write requests which overlap in their volume block range,
or any combination of a write request and an overlapping snapshot, compare-and-write, or
virtual block range copy, must vield a consistent result on all copies of the dataset. Two
operations cannot yield a result as if they happened in one order on one storage system and a
different order on another storage system in the replicated cluster.

[B00277] Furthermore, read requests may be time order consistent. For example, 1f one read
request 1s received on a rephicated cluster and completed and that read 1s then followed by
ancther read request to an overlapping address range which is received by the replicated
cluster and where one or both reads in any way overlap in time and volume address range
with a modification request received by the replicated cluster (whether any of the reads or the
modification are received by the same storage system or a different storage svstem in the
replicated cluster), then if the first read reflects the result of the update then the second read
should also reflect the resuits of that update, rather than possibly retuming data that preceded
the update. If the first read does not reflect the update, then the second read can either reflect
the update or not. This ensures that between two read requests “time” for a data segment
cannot roll backward.

[860278] In the example method depicied in Figure 5, the storage system {402) may also
detect (514} a disruption in data communications with one or more of the other storage
systerns {404, 406}. A disruption in data communications with one or more of the other
storage systems (404, 406) may occur for a varicty of reasons. For example, a disruption in
data communications with one or more of the other storage systems (404, 406) may occur
because one of the storage svstems {402, 404, 406) has failed, because a network mterconnect
has failed, or for some other reason. An important aspect of synchronous replicated
clustering is ensurning that any fault handling doesn’t result in unrecoverable inconsistencies,
or any inconsistency in responscs. For example, if a network fails between two storage
systemas, at most one of the storage systems can continue processing newly mcoming VO
requests for a pod. And, if one storage system continugs processing, the other storage system

can’t process any new requests to completion, including read requests.
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[860279] In the example method depicied in Figure 5, the storage system {402) may also
determine (516} whether to the particular storage system (402} should remain online as part
of the pod. As mentioned above, 1o be “online” as part of a pod, a storage system must
consider itself to be in-sync for the pod and must be communicating with all other storage
systems it considers to be in-sync for the pod. If a storage svstem can’t be certain that it 18 in-
sync and commugiicating with all other storage systems that are in-sync, then i may stop
processing new incoming requests to access the dataset (426). As such, the storage system
{402) may determine {516} whether to the particular storage system {402) should remain
online as part of the pod, for example, by determining whether it can communicate with all
other storage systems (404, 406} it considers to be m-syne for the pod {(¢.g., via one or more
test messages), by determining whether the all other storage systems {404, 406) it considers
to be in-sync for the pod also consider the storage system (402} 1o be attached to the pod,
through a combination of both steps where the particular storage system (402) must confirm
that 1t can commumnicate with all other storage systems (404, 406) it considers to be in-sync
for the pod and that all other storage systerms (404, 406} it considers to be m-sync for the pod
also consider the storage system (402) to be attached to the pod, or through some other
mechanism,

[000280] In the cxample method depicted m Figure 3, the storage svstem (402) may also,
responsive to affirmatively (518) determining that the particular storage system (402} should
remain onling as part of the pod, keep (522} the dataset (426) on the particular storage system
{402} accessible for management and dataset operations. The storage system (402} may keep
{522} the dataset (426} on the particular storage svstem (402} accessible for management and
dataset operations, for example, by accepting requests to access the version of the dataset
{426} that is stored on the storage system {402} and processing such requests, by aceepting
and processing management operations assoctated with the dataset (426) that are tssued by a
host or authorized administrator, bv accepting and processing management operations
associated with the dataset (426) that are issued by one of the other storage systems {404,
406} in the pod, or in some other way.

[860281] In the example method depicied in Figure 5, the storage system {402) may also,
responsive to determining that the particular storage system should not (520) remain online as
part of the pod, make (524} the dataset {426) on the particular storage system (402)
mnaccessible for management and dataset operations. The storage system (402) may make
{524} the dataset (426} on the particular storage system (402) maccessible for management

and dataset operations, for example, by rejecting requests to access the version of the dataset
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{426) that is stored on the storage system (402), by rejecting management operations
associated with the dataset (426) that are issued by a host or other authorized adminstrator,
bv rejecting management operations associated with the dataset (426) that are issued by one
of the other storage systems (404, 406} in the pod, or in some other way.

[6060282] In the example method depicted i Figure 3, the storage svstem (402} may also
detect {526} that the disruption in data communications with one or more of the other storage
systems (404, 406} has been repaired. The storage system (402) may detect (526) that the
disruption 1n data communications with one or more of the other storage systems (404, 406)
has been repaired, for example, by receiving a message from the one or more of the other
storage systems (404, 406). In response to detecting (526} that the disruption in data
communications with one or more of the other storage svstems (404, 406) has been repaired,
the storage system (4023 may make (528) the dataset (426) on the particelar storage system
{402} accessible for management and dataset operations.

{060283] Readers will appreciate that the example depicted in Figure 5 descrbes an
embodiment i which various actions are depicted as occurring within some order, although
no ordering s required. Furthermore, other embodiments may exist where the storage system
{402} only carries out a subset of the described actions. For example, the storage system
{402} may perform the steps of detecting (514) a disruption in data communications with one
or more of the other storage systems (404, 406), determining {516} whether to the particular
storage system {402) should remain o the pod, keeping (522) the dataset (426} on the
particular storage system (402) accessible for management and dataset operations or making
{524} the dataset {426} on the particular storage svstem {402) maccessible for management
and dataset operations without first receiving (510} a request to read a portion of the dataset
{426} and processing {512} the request to read the portion of the dataset {426) locally.
Furthermore, the storage system (402} may detect (526) that the disruption in data
communications with one or more of the other storage svstems (404, 406) has been repaired
and make {528} the dataset (426} on the particular storage system (402} accessible for
management and dataset operations without first receiving (510) a request to read a portion of
the dataset (426) and processing (512) the request to read the portion of the dataset (426)
locally. In fact, none of the steps described herein are explicitly required in all embodiments
as prerequisites for performing other steps described herein.

[000284] For further explanation Figure 6 illustrates a configurable rephication system that
provides continuous replication with mimimal batching and an adjustable recovery pont

ohiective. In contrast to the example storage systems described with reference to Figure 5,
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which describes use of pods m implementing synchronous replication, in this example, pods
are used for asynchronous, or near-synchronous replication.

[3060285] However, as described further below, while replication may be asynchronous,
efficient use of hightweight joumals, also referred 1o as metadata logs, allows for a short,
typical recovery point (the time difference between last update on a source data repository
and the clock value of the source data repostiory associated with the latest consistent dataset
available at a target data reposttory) that can be on the order of a fow to 50 or 100
milliseconds, or a short intrinsic or contigured recovery point objective (RPO), where the
RPO represents a measurement of the maximum tolerable amount of data to lose. For
example, in some cases, the RPO may specify that losing data written within the last ton
mithiseconds may be tolerable, whereas in other cases the RPO mav specify that losing data
written within fow minates may be tolerable. In some examples, the RPG imit may be more
of a function of a typical maximum transfer ime. As an tlustrative scenario, the carth’s
moon is a little over one light-second away from the carth, so with sufficient bandwidth to
avoid queue delay, an RPO to the moon of 1.2 seconds is possible with a lightweight journal
mplementation {receiving an acknowledgement from the moon for the primary to confirm
the recovery point will take at least another 1.2 seconds).

[800286] In some implementations, the configurable replication system provides for disaster
recovery from a failure at a source data repository based on a target data repository being able
to provide read and write access with a consistent version of the source data repository in
response to the failure of the source data reposttory. As an example, consider a set of clock
values associated with an original dataset that is being updated, where a source time
represents a clock value for the source dataset, and includes all updates which were signaled
as completed on the original dataset prior to that time and exc/udes all updates which were
received to be processed against the dataset after that time. In this example, any updates
which were received to be processed against the dataset at the source time but had not yet
been signaled as completed can in gencral be arbitrarily included or excluded barring any
transactional interdependencies.

[860287] Further, a snapshot may represent one such source time for a dataset, and where
rolling lightweight checkpoints may represent a sequence of dataset source times. In near-
sync replication, checkpoints may be applied as they come in or when they are completely
ready to be applied. As a result, in some examples, a tracking dataset always represents some
replicated source time clock value which 1s generally some amowunt behind the hive dataset’s

source time clock value. In this example, the difference between the replicated dataset source
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tme clock value and the live dataset source time clock value may be reported as the current
available “recovery point” — the distance between the replicated dataset source time clock
value and the live dataset source time clock {(though propagation delays hikely mean that
neither source nor target know exactly what this time distance 1s).

000288} In some implementations, the lightweight journals may be a basis for implementing
continuous data protection —— with or without any implementation of data replication. In
some cxamples, continuous data protection provides relatively fine-grained versioning of a
dataset for extended periods of time, to allow roll-back or other access to any of those fine-
grained versions. For example, these versions can be examined to determine when some
update or corruption occurred, allowing a roll-back or other access (such as the formation of a
usable snapshot or clone) to the version immediately prior to that update. In some cases, it
makes sense to provide access to both the pre-change/pre-corruption dataset as well as the
morg recent data {or even a set of pomts-in-time of the dataset before or since the time of the
update/corruption) so that other changes can be copied or otherwise reconciled, or for
diagnosiic purposes.

[860289] Further, continuing with this example, 1n continuous data protection, checkpoints of
a dataset may be replayed up to some himit in order to construct a consistent image. In some
cases, such checkpoints may be transformed into a read-only snapshot, or the dataset may
also be cloned {or the read-only snapshot may be cloned) to form a read-write volume that
may be used for various purposes. In this example, an implementation of continuous data
protection may clone a volume to match some point in time, test i to deternune whether the
volume mcludes or excludes some data or some corruption, and then if needed re-clone the
volume to match some other point 1n time and test the volume agam. In this example, when a
point-in-time is determined, that point-in-time may be vsed as a basis {c generate a primary
volume or simply copy data out of the volume at that point-in-time.

[B00290] Further still, 0 some implementations, continuous data protection may provide
more granular access to these named source time clock values from the source dataset, with
granwlanty bimited to the granularity of checkpoints. In some cases, contimuous data
protection could be either local {the checkpoints are retained on a local storage system and
are available for local access)y, or they can be on a replication target {the checkpoints are
retained on a replication target), or both, with each possibly having different retention periods
and models for merging checkpoints or converting them to long-duration snapshots.

[B060291] In some implementations, a “pod’, as the term 1s used here and throughout the

present application, may be embodicd as a management entity that represents a dataset, a set
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of managed objects and management operations, a set of access operations to modify or read
the dataset, and a plurality of storage systems. Such management operations may modify or
query ranaged objects through a storage svstem with proper access. Each storage svstem
may store a separate copy of the dataset as a proper subset of the datasets stored and
advertised for use by the storage svstem, where operations to modify managed objects or the
dataset performed and completed through any one storage system are reflected in subsequent
management objects to query the pod or subsequent access operations to read the dataset.
[860292] In some implementations, a replication relationship is formed as a set of storage
systems 602, 624 that replicate some dataset 612 between independent stores, where each
storage system 602, 624 may have its own copy and its own scparate idernal management of
relevant data structures for defining storage objects, for mapping objects to physical storage,
for deduplication, for defining the mapping of content to snapshots, and so on. In this way, a
replication system may use a common management model that is a same, or similar,
management model, and usc a same, or similar, implementation model and persistent data
structures for both synchronous replication and asynchronous replication.

[860293] As illustrated, a source data repository 602 receives storage system operations 652
and may communicate with a target data repository 624 to generate replica data. In this
cxample, the source data repository 607 may be similar to computing device 350 or similar to
a storage system 100, 306, 318, as described above with reference to Figures 1A-3D. While
exernplary systems are depicted in Figure 6, the components illustrated 1 Figure 6 are not
mtended to be exhaustive or limiting,

[860294] As noted above, mcoming data storage operations 652 may be received and handled
by the source data repository 602, and the data storage operations that update or modify a
volume 658, or more generally, modify one or more datasets, may be streamed or transmitted
to the target data ropository 624 as the data storage operations arrive. In other words, the
source data repository 602 may be considered “active’ in that the source data repository 602
accepts write operations and other operations that may modify the stored data, where the
target data repository 624 may be considered “passive’ in that the target data repository 524
may accept read operations, but not storage operations that may modify the stored data.
1800295] In this example, the source data repository 602 mamtains a metadata log 604, which
may be referred to as a journal of modifying data storage operations ordered by checkpoint.
In some cases, a journal may equivalently be referred to as a lightweight journal due to the
journal including only metadata information, but little or no storage data provided by a user

to be stored. In some examples, the metadata log 604 may be generated or updated during a
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flush of storage data from NVRAM 1o a backend bulk storage — where a storage system
architecture with NVRAM, and example backend bulk storage, are described above with
reference to Figure 2D, In some examples, the metadata, such as checkpoints 604, may be
stored in the source data repository 602 as metadata, without being included withm a joumal,
or metadata log structure, where the journal, or metadata log 604 may be constructed on
demand, such ag in response to one or more checkpoints being ready for transmission to a
target data repository 624,

[860296] In some implementations, a checkpoint may also be referred to as an ordered
“lightweight checkpoint™ of a dataset. A lightweight checkpoint 13 a data structure that
ncludes metadata describing a set of updates to one or more datasets stored within a data
repository. Such a checkpoint is referred to herein as being ‘hightweight’ because the data
structure only includes a reference the actual data associated with a corresponding set of
updates {e.g.. the data structure only includes a reference to data that was written to a dataset
when performing a particular update rather than containing the actual data that was written to
the dataset as part of performing the particular update) by holding references to where the
actual data associated with a corresponding set of updates is stored. A given set of updates
may begin to be staged in NVRAM, or a first tier of 3 storage system s storage, before the set
of updates, or at least a portion of these of updates is flushed to backing storage. or a second
tier of the storage svstem.

10602971 However, in this example, the data referenced by a set of updates within a given
checkpoint may survive logical (or address range) overwrites and garbage collection and is
not duplicated into a separate metadata journal. Further, ightweight checkpoints may be
ordered in that fo arrive at a complete and consistent pomt-in-time image of some point in
time of the original dataset, each set of updates described in each hightweight checkpoint
between some prior consistent image and the point in tume corresponding to a particular
hightweight checkpoint should either be applied to form that point-in-time image or the
update could be determined to be unnecessary, for example, being due to an overwrite or
deletion. In some examples, lightweight checkpoints may be merged, which can be beneticial
because merging may release some backing store data that has been overwritien or deleted,
for example by having been written in an earlier checkpont and overwritten in a later one
that i1s merged with the earlier one (in which case the data for the earlier write may no longer
be needed), thereby allowing some otherwise beld data to be garbage collected.

[600298] Contimuing with this example, such lightweight checkpomts are intended to

represent very fine-gramned consistency point moments in thne as consistency points, with
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cach hghtweight checkpoint associated with a set of updates that have been signaled as
completed, excluding a set of updates whose processing has not vet started, and potentially
mcluding or excluding updates that are concurrent with the moment in time the checkport
represents. In some examples, formation of a new lightweight checkpomt or a duration, or
period, between two checkpomts may be based on time slices, such as gvery fow
mifliseconds, or operation count slices, such as every 50 to 500 update operations, or based
on transfer size or some more complex relationship to update operations, such as counting a
few megabyvies of modifications or some number of logical extent updates, or they can relate
to some explicit operation, such as an operation to explicitly tag or name a particular point-in-
time so it can be referenced later such as by a program noticing or being notified when it is
received and applied by to replication target, any combination of these and other tniggers.
Such tags or names could also be searched for within a contimuous data protection
inplemeniation.

1006299] In some unplementations, lightweight checkpoints may differ from snapshots in
that thev do not affect the durable structure of the storage system bevond whatever side
structure is used to store them, apart from the garbage collection or overwrite holds, and
hightweight checkpoints may be discarded with minimal effect, other than the release of those
garbage collection or overwrite holds. Further, in some cases, lightweight checkpoints may
also lack mdividual administrative handles, perhaps apart from lightweight checkpoints that
are explicitly tagged or named. In some example, Hghtweight checkpoints exist almost
exclusively as an ordered list of metadata bundles describing updates, where the ordered hist
of metadata may be stored in a log-style structure. Further, hghtweight checkpomnts may be
persistent or not persistent, in dependence at least upon an intended use of the lightweight
checkpomt. In particular, near-sync replication may have crash or resynchronization
recovery mechanisms that may operate mdependently of lightweight checkpomts and that
may then not require persisting of lightweight checkpoint logs, while the target of replication
might separately benefit from persisting checkpoints on the target storage system for fault
recovery purposes, such as part of making application of lightweight checkpoints atomic.
[860388] 1n some implementations, if the metadata for a lightweight checkpoint represents
logical composite and leaf extents, as described in prior patents, then a hightweight
checkpoint may be a set of descriptions for updating these logical composite and leaf extents
which are themselves metadata descriptions that reference stored data by content identifier
references In some cases, use of content identifiers irrespective of the use of an extent modet

may also be beneficial in that such use preserves mformation about duplicates and may be
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used as part of a strategy 1o avoid transter of content that a target storage svstem may already
be known to store. For further clanfication, these prior patents include, U.S. Patent Serial
Nos. 16/050,385, 62/598,989, and 15/842,850, which arc incorporated herein for all purposes.
[800381 ] Contimuing with this example, the structure of a metadata representation of a
dataset may be particularly effective in a Flash storage system because Flash does not allow
overwrte in place at the chip level and may generally be driven, at some level, by garbage
collection algorithms that can readily accownt for a wide variety of references that have holds
on written data. In some cases. some details may account for the NVRAM aspects which do
not have to follow the same write-elsewherg-with-garbage-coliection model, but at least the
buik data writes for hightweight checkpoints are not separate writes that require separate
storage.

606030621 In some implementations, and as described tn other sections of this reference, some
applications of lightweight checkpoints may include normal operation of near-sync
replication (in contrast to nitialization or resynchronization), which may also be referred to
as asynchronous replication. In this example, hightweight checkpoints may be transferred
over a network link to some target repository that may then apply the lightweight checkpoints
to a tracking copy of the original dataset, with lightweight checkpoints {and their referenced
data) being held at least until the tracking copy has been updated.

[880303] In some cases, if checkpoints may be received or applied out-of-order, then all
mtermediate checkpoints may need to be received and applied before the lightweight
checkpoint on the source system can be released. Generally, ightweight checkpoints should
be apphied atomically, such as by using some transaction mechanism. One transaction
mechanism is to receive the metadata for a hightweight checkpoint, recetve all the data
content for a lightweight checkpoint and stoning it locally on the target, and then roli forward
the tracking copy to mcorporate the metadata updates in the hightweight checkpount with its
data references updated to reference the data content stored locally on the target.

10030304] Further, other applications of lightweight checkpoints may include:

# In some cxamples, a tracking copy may be converted into a snapshot or a clone 1o
provide a stable tmage at some pont in time, thereby allowing use of a point-in-time
image for testing purposes or fallover purposes;

¢ In some examples, if a source-to-target interconnect and the target storage repository
are not roughly keeping up with the rate that the source storage system itselt 1s

receiving data, storing it, and forming and transfernng lightweight checkpoints, then

109



WO 2021/050875 PCT/US2020/050408

these lightweight checkpoints can start building up. In this scenario, there are several
reactions {o this that can be used: lightweight checkpomts could be merged to reduce
their cost (the source dataset points-in-time associated with named or tagged
checkpoints might be preferentially retained); back pressure could be put on the
source storage svstem to reduce the rate at which it receives, processes, or completes
updates; a subset of checkpoints could be converted to more durable snapshots; or
lightweight checkpoint-based replication could be discarded in favor of replication
based on periodic snapshots. In some cases, some number of penodic snapshots might
already be kept for resync or connection loss/reconnect purposes so switching to
snapshot replication may already be fully ready to go — meaning that hightweight
checkpoints since the last snapshot may simply be discarded 1f replication is not
keeping up sufficiently for the lightweight snapshots to be useful (further clarification
may be found within U S, Patent Senial No. 15/842 850, which is incorporated herein
for all purposes);

= In some examples, connection loss or other kinds of mterruptions to replication may
generally be handled by switching to some other scheme, such as snapshot based
rephication, or by using a resyne model similar to what is described for synchronous
replication recovery, though without the need to catch all the way up at the very end;

e In some examples, the transfer of data can be initiated by the sender side by simply
sending the referenced data to the target storage system along with sending the
hightweight checkpoint metadata updates. Further, the transfer of data may instead be
mitiated by the target storage system: if the lightweight checkpomt metadata lists
content identifiers, then the target storage system can reuse references to content i
already stores but can then request retrieval of content it does not current store. This
can reduce total bandwidth required, though if the network link has to be sized for the
update rate, the benefit may be low; and

¢ In some examples, if the source storage system itself stores content compressed as
some kind of compressed blocks, then the compressed blocks may in many cases be
transferred directly rather than being uncompressed and then possibly recompressed
before being transmitted over the network.

[860365] In some implementations, lightweight checkpoints may be used to implement
continuous data protection cither on the original storage system — with or withowut replication

being involved — or on a replication target system by storing the lightweight checkpoints on
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the target storage system rather than simply applving and then discarding them. In
continuous data protection, various point-in-time images of a dataset can be accessed by
rolling torward a copy of a dataset to include all lightweight checkpoints up to the
hightweight checkpoint corresponding to some source dataset point-in-time of interest.
{800306] For example, if the storage system also implements durable snapshots, then only
lightweight checkpoints since the point-in-time of the most immediately prior snapshot may
need to be applied. Generally, higher granularity is more interesting for more recent history
of a dataset and less granularity 1s needed farther back, allowing for the possibility of ever
more aggressive lightweight checkpoint merging as points-in-time recede, or eventually
discarding them in favor of less frequent snapshots.

[B883687] Further, if continuous data protection 1s used to locate a point in time just before
where an unwanted change or corruption was introduced, then relatively fing grained
lightweight checkpoints (milliseconds to a few seconds to every fow minutes) might only
need to be kept until plenty of time has clapsed to ensurc that corruption will have been
noticed and recovery procedures started.  After that, 30 minute or hourly or even daily
snapshots might be preferable (or such rollbacks may be considersd unnecessary). Any
specific lightweight checkpoint can be converted into a durable snapshots if snapshots hadn™t
been created explicitly. f lightweight checkpoints can be named or tagged, continuous data
protection could support locating and accessing those named hightweight checkpoints.
1060308] In some implementations, as noted below, under some storage system conditions, or
m response to a user-specified configuration, near-synchronous replication may be
transitioned to different tvpe of replication, including periodic replication or synchronous
replication. Further, in some implementations, a source data storage system may implement
synchronous replication that is pod-based among a chuster of storage systems, but where one
or more of the source data storage systems also implement lightweight checkpoints for near-
synchronous replication with a target storage system that may be imbiated in the event of a
commumnication fault with the other storage systom in the cluster of storage systems —
thereby allowing the source storage systom to maintain both synchronous data replication
over near distances and to maintain data resibiency over longer distances. Further, in some
examples, RPO may be configurable, where the time or operation size of lightweight
checkpoints may be configured or adjusied based on, at ieast. available network bandwidth or
supporting flow-control (as discussed above). In some cases, if a set of synchronously
replicating storage systems exchange checkpoint information between them as part of their

operation, then near-synchronous replication can operate and continug from any of the
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storage systems that synchronously replicate the checkpoint information, including
continuing after the failure of one such storage system, inchuding parallel transfer of data and
metadata from multiple of the svnchronously replicating storage systems. Such paraliel data
transfer could, for example, involve the target of near-synchronous replication requesting
data for referenced compostite or logical extents or content identifiers from any set or subset
of the synchronously replicating storage systems.

{000309] Further, in some implementations, an addition to near-svachronous replication is
short-distance synchronous rephication of metadata and data updates, combined with longer-
distance non-synchronous replication of hightweight checkpoints. In such an example, this
may provide what is sometimes called “bunker” replication where a storage system within
synchronous replication distance is sized to store enough for in-transit data and metadata but
is not sized to store a complete dataset. In this example, if the primary (complete) copy fails
but the intermediate “bunker” storage survives, then the further distant non-synchronous
target can be caught up by applving the updates that were stored syvochronously on the bunker
storage. Further, in this example, if both primary and bunker storage fail, then at least the
longer-distance storage is consistent and within the longer distance RPO. Continuing with
this example, the lightweight checkpoints mayv be formed and transferred by either the bunker
storage system or by the primary storage system, or can be formed and transferred by a
combination of the primary storage system and the bunker storage system.

10603108] In some implementations, a metadata log 604 schema may be sorted by (pod,
checkpoint), which allows for traversal in a comrect order, where a same schema may be used
on both a source data repository 602 and a target data repository 624, In this example, a write
operation may be encoded 1n a metadata log 604 by indicating both a physical extent
ilentification along with address information of all writes for a given checkpomnt. Further, in
some cases, a metadata log 604 may contain operations to modify a metadata representation
614 of the dataset that correspond to system operations, such as copv-on-write {CoW}. For
example, modifications to a metadata representation 614 may include modifications due to an
XCOPY, WSAME, snapshots, CoW, among others. An example of such operation-style
metadata may include a sequence of updates to logical and composite exients, with any
written content tied to a checkpoint being retained at least until the checkpoint ts no longer
needed for replication or other purposes. In this case, the metadata log may contain the
logical and composite logical extent updates including references to any stored data, with the
stored data being a held reference to the content stored in the storage system for its regular

use but with any garbage collection or overwrite held off as long as the checkpoint s
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retamed. Further, in some cases, content overwrites within a checkpoint (including within
merged chockpoints if checkpoint merging is supported) may discard the hold on the earlier
content replaced by later content described by the checkpoint. In some examples, a metadata
log 604 may mclude metadata representation 614 identifier allocations on a source data
repository 602, which allows the target data repository 624 to avoid trying to look up content
wdentifiers that do not exist on the target data repostiory 624,

[060311] In different embodiments, the lifetime of checkpoint entries 606a, 606b may be
configurable to allow for different options for data recovery, including a lifetime extending
for an ongoing length of storage services that allows for continvous data protection. In this
cxample, the configurable replication system may provide continuous replication, where as
data storage operations that modify a volume or dataset arrive, the storage operations are
grouped into checkpoints, and where a given checkpoint may mclude varying numbers of
storage operations. In some examples, a given checkpoint may include metadata forup o
100 storage operations. As noted herein, because a garbage collection process may keep
stored data based on references to the stored data location being referenced by either general
storage system references within the storage system’s general metadata or by a metadata log
that mcludes checkpoints, then the length of the lifetime of the checkpoints corresponds fo a
length of time for a recovery window for continuous data protection.

{66031 2] In this example, a checkpoint may be considered a smallest onit of data
consistency, where if the metadata log 626 received at the target data ropository 624 includes
a particular checkpount, then a replica dataset 634 that is generated by replaying the storage
operations in the particular checkpoint will include all storage operations from all
checkpoints that were generated prior to the particular checkpoint — and such a pohicy
provides for a crash consistent recovery point for the replica dataset 634. Further, if there is a
snapshot that is from a point-in-time carlier than the desired replay point, then only replay
checkpoints since that snapshot may be needed during a recovery. In this example,
checkpoints may be merged to allow garbage collection of overwritten data, and checkpoints
may also be penodically converted to snapshots if that results in a cleaner format or a better
or simpler relationship with garbage collection.

186031 3] In some implementations, snapshots may be used to coordinate a point 1n time in
the update stream. For example, an application can make some update then issue a snapshot
request, and if snapshots are a tvpe of update that is replicated, then when the snapshot
appears on the target storage system, that point in time for the application is present. In this

gxample, this could be generalized to some kind of tag, such that a snapshot is not necessarily
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needed. Further in this example, 1f some metadata tag is set on a dataset, or on some
component within a dataset, and that tag is handled as a type of update within the
log/checkpoint model, then a montitoring program on the target storage system could detect
when that point n time of the source dataset has been reached on the target by noticing the
appearance of the tag. The storage system could further support a means of notifying
programs waiting for such snapshots or named or tagged checkpoints being received and
processed on a target storage system. Yet further, when the target storage svstem has
received and processed such snapshots or named or tagged checkpoints, it could send a
notification back to the source storage system, which could then, in turm, notify interested
prograns that the snapshot or named or tagged checkpoint is known 1o have been received
and processed on the target svstem. Continuing with this example, such a process could be
used, for example, by a program running against the source storage system that updates some
data, tags a checkpoint, and then takes some action when notified by the source storage
system that the tagged checkpoint {and thus the update) 1s known to have been replicated.
For example, a high level task could perform a set of updates which are replicated, and where
the action taken is that aspects of the continue only affer receiving that notification. In some
cases, this in tum allows higher level tasks to be replicated effectively synchronously across
long distances cven when performing many smaller operations that are not themselves
replicated synchronously. For example, a web application might use this to ensure that some
requested update to, for example, a user profile is durable across distances before a web page
shows the durable change to the user profile.

[860314] While in this example, replication 1s described in the context of replicating a
“volume”, m general, the described replication technigues may be applied to any generalized
dataset. In other words, in the general case, replication applies to a dataset, which may
nclude one or more volumes, and/or one or more other types of data or collections of data, at
a given point in time. In some cases, a dataset may be a dataset specified by a pod, where in
a pod the actual set of volumes may change as volumes are added to and removed from the
pod, and tracking will reflect that by adding and removing volumes. Further, in some
examples, continuous data protection of a pod may result in volumes existing or not existing
based on which checkpomt we roll backward to or forward o, and on the volume
membership at the pod’s source time for that checkpoint.

[0060315] Continuing with this example, each incoming write operation may be persisted as
described above with reference to Figures 1A-3D, where in addition to the source volume

658 being updated, a reference to the storage location of the data corresponding to the write
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operation 1s added to the metadata log 604, In this way, the metadata log 604 may serve as a
buffer that allows recovery after a network outage and support bursts of write operations
without impeding the reception or handling of storage operations by the source data
repository 602, In this example, as checkpoints 606a, 606b are completed and created within
the metadata log 604, the checkpoints 606a, 606b may be replicated to the target data
repository 624 by, for example, transmission of one or more messages that include metadata
log 608 using a standard communication protocol over one or more networks 639, in this
example, independent of the transmission of the metadata log 604, the source data repository
602 may also transmit data 610 corresponding to the checkpoints 606 within the metadata log
604,

[300316] In some implementations, as checkpoints are created within the source data
repository 602, a monmitoring service may monitor which checkpoints are complete, and
determine where the checkpoints may be read. In some examples, a checkpoint may be
created as a checkpoint is written ito NVRAM, or a first tier of fast data storage. In some
cases, the monmitoring service may provide an interface for accessing checkpoint data from
NVRAM or from a given storage location.

1860317} Continuing with this example, a target data repository 624 may open one or more
forwarding streams from the source data repository 602, where on the source data reposiiory
602, cach forwarding stream may claim a mumber of checkpomnts from the monitoring
service. In this example, a given forwarding stream may fetch metadata log 614 information
for one or more checkpoints 606, Similarly, 1o this example, a given forwarding stream may
fetch corresponding storage data for the one or more checkpomnts 606. In this way, one or
more communication channels may be opened, in some cases i parallel, between the source
data repository 602 and the target data repository 624, where the one or more communication
channels operate to transter the metadata log 614 and corresponding data 612 between the
source data repository 602 and the target data repository 624,

10060318] In this example, in response to receiving the metadata log 608, the target data
reposttory 624 may persist the checkpoints 628a, 628b into a local metadata log 626, Based
on a successtul write of the checkpoints 628 mio the local metadata log 626, the target data
reposttory 624 may respond to the source data repository 602 with an acknowledgment,
where in response to the acknowledgment, the source data repository 602 may — in
dependence upon a configuration setting — delete or maintain the checkpoints 606a, 606b.
{88319} In some examples, the target data repository 624 may periodicaily, or in response to

receiving metadata log 626 mformation from the source data repository 602, replay the
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storage operations within the checkpoints 628 to generate and update a tracking volume 632,
In some examples, replayving the storage operations may mchude converting metadata log 626
mformation into regular formatied metadata for the storage system and converting global
content identifiers into local content identifiers; for example, such converting may include
mapping content identifiers between the source data repository 602 and the target data
repository 624. In this example, a metadata representation 630 may be mmplemented
similarly to metadata representation 614 on the source data repository 602, where the
physical location information may be different based on use of physical storage on the target
data repository. In some examples, a tracking volume may also be referred to as a “shadow”
volume.

[B00320] In some implementations, content identifiers may be used to mark written content,
mcluding content that the source has already determined was a duplicate of other content that
the source knows of {for example, through tracking the source write history, source snapshot
history, source virtual copy history, and/or any local duplicate detection). In some examples,
the content 1dentifiers may be leveraged when doing recovery, such as after an extended
outage, or when converting from near-sync replication to periodic or asynchronous
replication.

[000321] In some implementations, delivery of a checkpoint as a set of metadata updates and
content identifiers may result in the target storage system noticing which content identifiers
the target storage system is already aware of and already stores —— the target storage system
may then request from the source storage svstem any content whose content identifiers the
target storage svstem does not already store or 1s not already aware of. In some cases, exeept
at moon-level distances, checkpoint delivery may still result in sub-second RPOs, and may
also reduce data transfer bandwidth if duplicates are common. Further, in this example, unti]
all missing content has been requested and received by the target storage svstem, the
checkpoint may not be considered completed so the checkpoint may not be deleted to allow
garbage collection.

1000322] Tn some examples, the tracking volume 632 1s generated in response to a promotion
event, where a promotion event may be based on a detected failure, detected impending
fathire, or detected degradation of reaponsiveness bevond a compliance policy threshold of
the source data repository. In some cases, the promotion event may be automatically
generated based on such a detection of a promotion event, and in other cases, the promotion
event may be responsive to a user specifying that the replica data on the target data repository

624 be promoted.

116



WO 2021/050875 PCT/US2020/050408

[800323] In some implementations, a user may promote a tracking volume 632 in order to
use a replica of the source data for different uses, such as for testing — where testing may
mclude modification of the replica data in the tracking volume 632. However, based on a
promotion event generating a replica volume 634, any modifications or corruption to the
tracking volume that may occur during testing may be undone or reversed by referencing the
replica volume 634, In this example, promotion of the tracking volume 632 also includes
configuration tiltering and/or reconciliation as part of making the tracking volume 632 a new
volume available for use by a computational process, a computing device, or a compute node.
Further, demotion or deletion of a volume may cause a host to reconfigure a connection to
continue to access replica data on the target data repository 624.

[B00324] While in some implementations, received metadata log 608 information may be
plaved to generate the tracking volume 632 without storing the metadata log 608, or keeping
a stored metadata log 626, the stored metadata log 626 may serve as a basis for providing
data consistency guarantees described above with regard to the storage operations in a
checkpomt.

1800325] Further, separating the genceration of the tracking volume from dependence upon
checkpomts as they are received, and instead generating the tracking vohime from stored
checkpoints supports receiving checkpoints out of order and the option to order the
checkpoints prior to building the tracking volume 632, In other words, checkpoints may be
transmitied and received out of order, but in general, checkpoint may not be applied out of
order, so in some cases applving the checkpoints to a tracking dataset or volume may be
delayed until intervening checkpoints are received. This example may be generalized as
requiring that all intermediate checkpoints be received before the tracking dataset or volume
may be advanced to the time associated a received dataset {irrespective of how checkpoint
updates are actually apphed).

[B08326] Further, in this example, if for some reason, such as a recovery event on the source
data repository 602 based on data loss or based on a user or application requesting access o
the replica volume or based on a failover request to begin using the replica volume 634 as a
primary or user-accessible volume, then the target data repository 624 may promote, or
activate, the replica volume 634, In response, the existing checkpoints in the metadata log
626 may be replaved to generaie a version of the tracking volume 632 consistent with a most
recent checkpoint received, and the tracking volume 632 may be used to create a version of

the source volume 658,
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[860327] In some examples, in response {0 a recovery event—such as a source data
repository 602 losing a connection with a host computer (not depicted) or applications
sending storage operations, performance degradation bevond a threshold value, storage
capacity exceeding a threshold value, or a degradation i response times—the target data
repository 624 may be promoted to handle all further storage operations from the host
computer, and another data reposttory may be selected. In this example, the replica link from
the original source data reposttory 602 to the target data repository 624 may be reconfigured
to flip directions, where the target data repository 624 becomes a new source data repository
and another data repository becomes a new target data repository, and where other replica
link characteristics stay the same.

[860328] The continuous replication from the source data repository 602 to the target data
reposttory 624 may also be described in terms of pods, where pods and pod characteristics are
described above with reference to Figures 4 and 5. As noted above, where Figure 5 describes
use of pods in implementing synchronous replication, in this example, pods are used for
asynchronous, or near-svnchronous rephication. In other words, in this example, source
volume 658 may be included within a pod 640, and the replica vohime 634 may be mehuded
within pod 642, [n this way, in response to an indication that a user or application intends to
use the replica data, and the tracking volume 632 being promoted, the replica pod 647 is
updated with the most carrent contents from the tracking volame 632, While in this example
a pod is depicted as include a single volume, in other examples, a pod may generally hold anv
type and quantity of data, including multiple volumes and/or multiple structured or
unstructured datasets.

[860329] Further, in some implementations, as discussed above, there may be a dvnamic
relationship of volumes to pods, where the dynamic collection of volumes within a pod may
be related to a clock value within the update stream on a source storage system. For example,
a checkpomnt may introduce volumes to a pod, change volume characternistics (name, size,
etc.) and may remove volumes. In this example, if there are protection groups or some
similar organizational concept within a pod, then these protection groups may also change
with those changes being propagated through checkpomts. In this way, a near-sync target
storage system may actually take over relatively seamlessty as a periodic replication source
with all relationships intact, minus whatever time difference the last processed checkpoint is
from the previous active source. In short, in some cases, it 15 the unified nature of the
metadata model between synchronous replication, near synchronous replication (near-sync}),

and periodic replication {or asynchroncus) replication, coupled with the local-to-global-to-
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local content identifier and logical and composite extent identifier transformations that
provides improvenments £ various aspects of a storage system and of a storage system
replication process.

[300330] As depicted 1 Figure 6, a data repository 602 stores both data 612 from incoming
storage operations 652, and a metadata representation 614 of the data 612, In this example, a
metadata representation 614 may be implemented as a structured collection of metadata
objects that, together, may represent a logical volume of storage data, or a portion of a logical
volume, in accordance with some embodiments of the present disclosure. Metadata
representation 614 may be stored within the source data repository 602, and one or more
metadata representations may be generated and maintained for cach of multiple storage
objects, such as volumes, or portions of volumes, stored within the data repository 602,
[6060331] In other examples, other types of structured collections of the metadata objects are
possible; however, in this example, metadata representations may be structured as a directed
acyclic graph (DAG) of nodes, where, to maintain efficient access 1o any given node, the
DAG may be structured and balanced according to vanous methods. For example, a DAG
for a metadata representation may be defined as a tvpe of B-tree, and balanced accordingly in
response to changes to the structure of the metadata representation, where changes to the
metadata representation may occur in response to changes to, or additions to, underlying data
represented by the metadata representation. Generally, metadata representations may span
across multiple levels and may include hundreds or thousands of nodes, where each node
may include any number of links to other nodes.

[860332] Further, in this example, the leaves of a metadata representation may include
pointers to the stored data for a volume, or portion of a volume, where a logical address, ora
volume and offset, may be used to identify and vavigate through the metadata representation
to reach one or more leaf nodes that reference stored data corresponding to the logical
address. Data objects may be any size unit of data withan the data repository 602. For
exarple, data objects may each be a logical extent, where logical extents may be some
specified size, such as 1MB, 4MB, or some other size, such as a system-specified block size.
[860333] In some implementations, as described above with reference to Figures 1A-3D, the
data reposttory 602 may include multiple tvpes of data storage, including NVRAM and Flash
storage, where NVRAM may be used as a staging area for incoming storage operations, and
where Flash storage may provide long-term, durable storage. In this example, the source
volume 658, or portions of the source volume 658, may be stored in NVRAM, and the entire

source volome may be stored within Flash memory, or as depicted i Figure 6, data store 660.
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[860334] In some implementations, the metadata log 604 1s ordered according to
checkpoints, and 1s a journal, or log, descnbing all changes to stored data, and where
checkpoints within the metadata log 604 that have not already been transmitted 1o the target
data repository 624 are transmitied in response to generation or completion of a single
checkpoint, or a set of checkpoints, in dependence upon a target RPO. For example,
depending on a size of a checkpoint, or a quantity of data-modifving operations described by
the checkpoint, more frequent transmission may be made in dependence upon a lower target
RPO.

[860335] Further, as descnibed above, checkpoints 606 within the metadata log 604 may
mclude references to stored content such as blocks within data store 660 where that stored
content consists of what the storage system would have stored were 1t not for the replicated
checkpoint. In this way, the storage required for the metadata log and checkpoints 1s reduced
considerably versus what would be required for a complete log of all updates that includes
both metadata and a duplicate copv of data that was being written to the source storage
system. In some examples, a service, or process, or controller, operating on the source data
reposttory 602 may monttor creation of checkpomts, and forward or transmit the checkpoint,
or set of chackpoints, to the target data repository 624,

[B060336] In some implementations, references within checkpoints, and as a conseguence,
references within a metadata log, may refer to objects or data stored on the source data
repository 602 that have been modified by subsequent storage operations, but where the data
stored on the source data repository 602 has not yet been transferred to the target data
reposttory 624, In such a scenario, if'a garbage collection process on the source data
repository 602 relies only on a reference table maintained by a storage controlier managing
data within the scurce data repository 602, then the garbage collection process may delete
data or reallocate or otherwise overwrite a storage location that results in data referenced by a
metadata log becoming unavailable or no longer valid as a source of content for a replicated
checkpoint, thereby compromising the replication. To overcome such a scenario, in some
examples, a garbage collection process on the source data repository 602 may reference both
a reference table maintained by a storage controller or source data repository 602 process and
also a list of references held by lightweight checkpoints, and specifically, a list of references
within one or more checkpoints within a metadata log. Over time, checkpoints can be
merged together to allow some overwriticn content to be released for garbage collection.
[B08337] In this way, based at least on both sources of data references — system references

and metadata log references — a garbage collection process may preserve data that has not
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vet been rephicated, but would otherwise be modified or deleted by subsequent storage
operations. Such data preservation during garbage collection also holds true for continuous
data protection, when checkpoints arc retamed on a source storage system for some period of
time in order to allow for flexable rollback, where the period of time may be configurable to
an arbitrary quantity of time. In other words, a garbage collection process may determine
that content at a storage location is not needed, and may be reclaimed or garbage collected,
based on the content at the storage location not being referenced by any checkpoints in a
metadata log or referenced by a storage system reterence table.

[860338] In some implementations, as noted above, each checkpomt is exclusive of every
other checkpoint, and based on the checkpoints being ordered, the checkpoints may be
transmitied 1 any order to the target data repository 624, In this example, on the target data
reposttory 624, the checkpomnts are applied, or replayved, 1n order to create a consistent
version of the data stored on the source data repository 602. In some cases, the data
transmitted from the source data repository 602 to the tarset data repository 624 may be read
from data storage within data store 660, for exampie if the data has been flushed from the
NVRAM to Flash, or from the NVRAM, for example if the data continues to be stored in the
NVRAM,

{00033%] In some implementations, depending on configuration scttings with respect to RPO,
data may remain on the source data repository 602 for more or less time. In some cases, the
longer that data remains on the source data repository 602, the greater the opportanity to
perform transformations that may reduce the quantity of data transferred to the target data
reposttory 624, For example, incoming data may be deduplicated, or overwriie previously
written data, or may be deleted, among other operations or transformations, which may
reduce the quantity of data that i transferred from the source data reposttory 602 to the target
data repository 624,

[B00340] In some implementations, the messaging mechamsms may be implemented
similarly to the messaging mechanisms described above for synchronous data replication,
with reference to Figures 4 and 5.

[860341] For further explanation Figure 7 llustrates a configurable rephication system that
provides continuous rephication with minimal batching and an adjustable recovery point
obijective. In this example, a management object that specifies a replication policy between a
source pod and a replica pod may be referred to as a “replica link™.

[300342] A replica link specification may include a specification for a source of data for

replication and a target for replica data, inchuding storage data, checkpoints, metadata
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representations, or metadata logs {or joumals). In some cases, the source of datamay be a
volume, a structured or unstractured dataset, a bucket, a file within a file system, an entire file
system directory, or a combination of sources — where the data sources are stored within a
source data reposifory 602,

[800343] In some cases, there may be one or more rephication data targets, where, for
example, a source data repository 602 includes multiple pods 640, 704 and multiple,
respective replication data targets, Hustrated as target data repositories 750, 752, Inthis
example, source pod 640 includes a volume 658, source pod 704 includes a volume 702,
replica pod 706 mchudes replica volume 708, and replica pod 710 includes replica volume
712. Further, as tlustrated in Figure 7, there may be one or more replica links 760, 762 that
manage rephication from the source data repository to one or more target data repositories
750,752,

1000344} In some implementations, in an example where replication includes the use of
snapshots of the source data, a replica link may specify a snapshot policy, which may specify
conditions under which a snapshot may be taken. For example, if asynchronous replication,
as described above with reference to Figure 6, becomes backed up —— such as where the
quantity of backed up data and/or metadata pending transfer would result in an RPO that is
bevond a threshold RPO value — then a snapshot may be taken. In other examplcs, the
snapshot policy may specify that snapshots are to be taken at a specified schedule, and may
specify a length of time for keeping snapshots available.

[060345] Further, in some cxamples, instead of or in addition to generating snapshots fora
source data repository to reduce a backlog of metadata and/or data transmissions fo a target
data reposttory, a source data repository may perform one or more transformations or
optimizations on the data and/or metadata to be transoutted. For example, if a source data
repository determines that data pending transfor is 1dentical to data already transferred, then
the source data repostiory may avoid sending the duplicate data that is pending transfer. Ag
ancther example, checkpoints within a metadata log may be folded together, where if there s
an overwrite between two checkpoints, then the source data repository may avoid sending
data that has been overwriiten, as reflected by the folded checkpomts.

{800346] Further, a replica link may also specify a replica policy, where the replica policy
may include or be exclusively snapshots, specify continuous, but not synchronous replication,
ot specify synchronous replication. In all cases, a user may be provided with a single user
mierface, with a single workflow, for a replica link specification allowing for specification of

one or more characteristics for data rephication.
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1800347} In some implementations, a replica link may also specify a comphiance policy. For
example, a comphance policy may specify that for a particalar type of replication policy —
for cxample, continuous, synchronous, asynchronous, snapshot — the replication should
adhere to specified parameters. As one exaraple, for a snapshot rephication policy, the
compliance policy may specify that if a frequency, or schedule, according to which snapshots
are taken fails to meet a threshold level of compliance, then a system warning may be
generated. Sinularly, if data and/or metadata is not being transferred quickly enough to
satisty a specified RPO, or other performance metnic, then a system warming or alert may also
be gencrated. Alternately, updates on the source storage system can be slowed down in order
to avoid exceeding the RPO.

[B08348] However, in other cases, in response to fatling to satisfy a threshold level of
compliance, other corrective actions may be taken, for example, of a target data repository is
a cause of a backup, or has had a drop in performance, o1 is nearing capacity, then a
diagnostic may be mitiated to identify correctable 1ssucs or an alternate target data repository
may be identified for transferring the target replica data to the new target data repository. In
some implementations, the replica ink may also store attributes of the replication history,
such as identifving a poiot at which a source data repository became frozen or unavailable.
[000349] Generally, a replica link may be used to specify a replication relationship, and
depending on whether a pod 1s active or passive, determines a direction of the replication,
where replication occurs in the direction of an active {or activated or promoted) pod to a
passive {or deactivated or demoted) pod. In this example, a replication direction may also be
changed if all pods connected to the replica link are in communication and reach consensus
on a change in replication direction. In this way, a source pod may be protected by creating a
replica hink to ancther, deactivaied, pod on another data repository, where hosts or host
groups may be connected to the deactivated pod on the target data repository to read —
nearly svnchronous — data from the source pod.

{060350] For further explanation Figure 8 illustrates a configurable data replication system
that provides continuous replication with minimal batching and an adjustable recovery point
objective. In this example, a target data repository 624 generates replica data based on
ordered metadata logs 854 received from a source data repository 602,

{060351] As described above, and in this example, continuous replication is pod-based and
provides multiple recovery options. As illustrated in Figure 8, the example method includes:
receiving (802), at a source data repository 602, one or more updates 832 to one or more

datasets stored within the source data repository 602; generating {804}, based on the ong or
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more updates 852 to the one or more datasets, a metadata 854 describing the one or more
updates to the one or more datasets; and generating (806}, based on the metadata 854
describing the one or more updates to the one or more datasets, a lightweight checkpoint 836
describing an ordered application of the one or more updates to the one or more datasets.
[8060352] Receiving (802), at the source data repository 602, one or more updates 852 to one
or more datasets stored within the source data repository 602 may be carried out as desenibed
above with regard to Figures 1A-3D, where data may be received at one or more network
ports over one or more networks using one or more network communication protocols.
[8603583] Generating (804}, based on the one or morg updates 852 to the one or more
datasets, metadata 854 describing the one or more updates to the one or more datasets may be
carnied out as described above with reference to Figures 6 and 7.

[0060354] Generating (806), based on the metadata 854 describing the one or more updates
852 to the one or more datasets, a lightweight checkpoint 856 describing an ordered
application of the one or more updates 852 to the one or more datasets may be carried out as
described above with reference to Figures 6 and 7, where operations within a given
checkpoint within a metadata log for a given dataset, or volume, may be plaved to generate a
replica one or more datasets.

[B060355] For further explanation Figure 9 illustrates a continuous data replication svstem that
provides continuous replication for local recovery of lost data. In this example, a source data
repository 602 generates ordered metadata logs usable o recover a previous state of a dataset,
where the metadata log is also a basis for ensuring that data corresponding to the metadata is
not garbage collected.

[8603586] As illustrated in Figure 9, the example method includes: sending (902), to a target
data reposttory 624 from a source data repository 602, metadata 952 descnbing one or more
updates to one or more datasets stored within the source data repository 602; gencrating
{904}, based on the metadata 952 describing the one or more updates to the one or more
datasets, an ordered log of metadata 854 describing an ordered application of the one or more
updates to the one or more datasets; and respousive 1o a recovery event, gencrate (906), on
the source data repository 602 and based on the ordered log of metadata 854, at least a
portion of the one or more datasets m accordance with the one or more updates corresponding
to a specified point in time.

{000357] Sending (902), to a target data repository 624 from a source data reposttory 602,

metadata 9352 describing one or more updates to one or more datasets stored within the source
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data repository 602 may be camed out as described above with reference to Figure 8 and
sending (802) metadata 952 to a target data repository 624 from a source data repository 602,
[000358] Generating (904), based on the metadata 932 describing the one or more updates to
the one or more datasets, an ordered log of metadata 854 describing an ordered application of
the one or more updates to the one or more datasets may be carried out as described above
with reference to Figure 8 and generating (804) an ordered log of metadata 854

[060359] Generating (906}, responsive 1o a recovery event 950 and on the source data
reposttory 602 and based on the ordered log of metadata 834, at least a portion of the one or
more datasets in accordance with the one or more updates corresponding to a specified point
in time may be carried out as described above with reference to Figures 4A-7 describing how
references to storage locations for data corresponding to one or more checkpoints within a
metadata log may be used to access data at storage locations corresponding to the updates
specified in the checkpoints. Further, recovery data for the specified point in time may be
generated as described above with reference to Figures 4A~7, where updates may be
replaved, m order, to generate recovery data.

[860360] As described above, data corresponding to the updates specified n the checkpoints
of the metadata log is protected from garbage collection based on a garbage collection
process using both storage system reference tables and also reference information within a
metadata log.

100603611 Although embodiments are deseribed above that include receiving, at a source data
reposttory, one or more updates to one or more datascts stored within the source data
reposttory, generating, based on the one or more updates, metadata describing the one or
more updates, and generating, based on the metadata describing the one or more updates, a
hightweight checkpoint of metadata describing an ordered application of the one or more
updates, other embodiments are within the scope of the present disclosure. For example,
some embodiments may include receiving one or more updates (o one or more datasets stored
within the source data repository, generating metadata describing the one or more updates,
and generating, based on the metadata describing the one or more updates, a lightweight
checkpoint of metadata describing an ordered application of the one or more updates. Gther
embodiments may inclade only recetving, at a source data repository, one or more updates {o
ong or more datasets stored within the source data repository and generating, based on the
one or more updates, a lightweight checkpoint of metadata descrbing an ordered application
of the one or more updates. Alternatively, some embodiments may include only generating,

based on one or more updates, metadata desceribing the one or more updates and gencrating,
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based on the metadata descubing the one or more updates, a hightweight checkpoint of
metadata describing an ordered application of the one or more updates.

000362} Example embodiments are described largely in the context of a fully functional
coraputer systern. Readers of skill i the art will recognize, however, that the present
disclosure also may be embodied in a computer program product disposed upon computer
readable storage media for use with any suitable data processing system. Such computer
readable storage media may be any storage medium for machine-readable information,
mehuding magnetic media, optical media, or other suitable media. Examples of such media
mclude magnetic disks in hard drives or diskettes, compact disks for optical drnives, magnetic
tape, and others as will occur to those of skill in the art. Persons skilled in the art will
mmmediately recognize that any computer system having suitable programming means will be
capable of execoting the steps of the method as embodied i a computer program product.
Persons skilled 1o the art will recognize also that, although some of the example embodiments
descnbed in this specification are oriented to software installed and executing on computer
hardware, nevertheless, alternative embodiments implemented as firmware or as hardware are
well within the scope of the present diselosure.

{860363] Embodiments can mchude be a system, a method, and/or a computer program
product. The computer program product may include a computer readable storage medium
{or media) having computer readable program nstructions thereon for causing a processor to
carry out aspects of the present disclosure,

[060364] The computer readable storage medium can be a tangible device that can retain and
store mstructions for use by an instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an electronic storage device, a magnetic
storage device, an optical storage device, an electromagnetic storage device, a semiconduator
storage device, or any suitable combmation of the foregoing. A non-cxhaustive list of more
specitic examples of the computer readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access memory (RAM), a read-only
memory {ROM), an erasable programmable read-only memorv (EPROM or Flash memory),
a static random access memory {(SRAM), a portable compact dise read-onlv memory (CD-
ROM), a digital versanle disk (DV D}, a memory stick, a floppy disk, a mechanically encoded
device such as punch-cards or raised structures in a groove having instructions recorded
thereon, and any surtable combination of the foregoing. A computer readable storage
medium, as used herein, 1s not to be construed as being transitory signals per se, such as radio

waves or other freely propagating clectromagnetic waves, electromagnetic waves propagating
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through a waveguide or other transmission media (e.g., light pulses passing through a fiber-
optic cable}, or electrical signals transmitted through a wire.

{000365] Computer readable program instructions described herein can be downloaded to
respective computing/processing devices from a computer readable storage medium or to an
external computer or external storage device via a network, for example, the Internet, a local
arca network, a wide area network and/or a wireless network. The network may comprise
copper transmission cables, optical transmission fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers. A network adapter card or
network mterface in each computing/processing device receives compuier readable program
mstructions fron the network and forwards the computer readable program instructions for
storage in a computer readable storage medium within the respective computing/processing
device.

10060366] Computer readable program instructions for carrving out operations of the present
disclosure may be assembler instructions, mstruction-set-architecture (ISA) mstructions,
machine instructions, machine dependent imstructions, microcode, firmware instructions,
state-setting data, or either source code or object code written in any combination of one or
more programming languages, including an object oriented programiming language such as
smalltalk, C++ or the like, and conventional procedural programming languages, such as the
"C" programming language or similar programming languages. The computer readable
program instructions may ¢xecute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or server. In the latter scenanio, the
remote computer may be connected to the user's computer through any type of network,
meluding a local area network (LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the Tnteret using an Intemet Service
Provider). In some embodiments, electronic circuitry including, for example, programmable
logic circuitry, field-programmable gate arravs (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by utilizing state information of the
computer readable program instructions to personalize the electronic circuitry, n order to
perform aspects of the present disclosure.

{800367] Aspects of the present disclosure are descrnibed herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems), and computer program
products according to some embodiments of the disclosure. 1t will be understood that each

block of the flowchart llustrations and/or block diagrams, and combinations of blocks in the
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flowchart ltustrations and/or block diagrams, can be implemented by computer readable
program instructions.

[3060368] These computer readable program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other programmable data processing
apparatus to produce a machine, such that the mstractions, which execute via the processor of
the computer or other programmable data processing apparatus, create means for
mmplementing the functions/acts specified o the flowchart and/or block diagram block or
blocks. These computer readable program nstructions may also be stored in a computer
readable storage medium that can direct a computer, a programmable data processing
apparatus, and/or other devices to function in a particular manner, such that the computer
readable storage medium having instructions stored therein comprises an article of
manufacture including tnstructions which mmplement aspects of the function/act specified in
the flowchart and/or block diagram block or blocks.

1000369] The computer readable program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other progranmimable apparatus or other
device to produce a computer implemented process, such that the instructions which execute
on the computer, other programmable apparatus, or other device implement the functions/acts
specified in the flowchart and/or block diagram block or blocks.

1060370] The flowchart and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to vanious embodiments of the present disclosure. In this regard,
cach block m the flowchart or block diagrams may represent a modale, segment, or portion of
mstructions, which comprises one or morg executable tostructions for implementing the
specified logical function{s). In some alternative implementations, the functions noted in the
block may occur out of the order noted 1 the figures. For example, two blocks shown in
succession may, in fact, be executed substantially concurrently, or the blocks may sometimes
be executed i the reverse order, depending upon the functionality involved. 1t will also be
noted that each block of the block diagrams and/or Hlowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart llustration, can be implemented by special
purposs hardware-based systems that perform the specified functions or acts or carry out

combinations of special purpose hardware and computer instructions.
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CLAIMS

What is claimed 1s:

L.

~

A method comprising:

receiving, at a source data repository, one or more updates to one or more datasets
stored within the sowurce data repository;

generating, based on the one or more updates, metadata describing the one or more
updates; and

generating, based on the metadata describing the one or more updates, a lightweight
checkpoint of metadata describing an ordered application of the one or more updates.
The method of claim 1, further compuising:

sending, from the source data repository {o a target data repository and mdependent
from sending the hightweight checkpoint to the target data repository, data
corresponding to the Hghtweight checkpoint.

The method of claim | or 2, wherein an ordered log of mcetadata includes one or more
hightweight checkpoints.

The method of claims 1, 2, or 3, wheremn a quantity of updates described by a given
lightweight checkpoint is specified by a configurable setting.

The method of claims 4, wherein the configurable setting includes a target recovery
point obiective.

The method of claim 1, 2, 3, 4, or 5, further comprising generating, responsive 10 &
recovery cvent at least a portion of the one or more datasets in accordance with the
one or more updates corresponding to a specified point m time.

The method of claim 6 wherein the recovery event is responsive (o a detected
degradation of responsivencss beyond a compliance policy threshold of the source
data repository.

A storage system that includes a computer memory and a computer processor, the
computer memory including program mstructions that, when executed by the
compuier processor, cause the storage system to carry out the steps of

recelving, at a target data repository from a source data repository, metadata
describing one or more updates to one or more datasets stored within the sowrce data
repostiory;

gencrating, based on the metadata describing the one or more updates, an ordered log

of metadata describing an ordered application of the one or more updates; and
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generating, based on the ordered log of metadata, the one or more datasets in
accordance with the one or more updates.

9, The storage system of claim 8, wherein the program instructions, when executed by
the computer processor, further cause the storage system to carry out the step of!
receiving, at the target data repository from the source data repository and
independent from receiving the metadata describing the one or more updates, data
corresponding to the one or more updates.

10.  The storage system of claim 8 or 9, wherein the ordered log of metadata includes one
or more lightweight checkpomts.

1L The storage system of claims 8, 9, or 10, whercin a quantity of updates described by a
given lightweight checkpoint is specified by a configurable setting.

12. The storage system of claims 11, wherein the configurable setting includes a target
recovery point objective.

13. The storage system of claim 8, 9, 10, 11, or 12, wherein the program instructions,
when executed by the computer processor, further cause the storage system to carry
out the step of generating, responsive to a recovery event at feast a portion of the one
or moreg datasets in accordance with the one or more updates corresponding 1o a
specified point in time.

14.  The storage system of claim 13, wherein the recovery event is responsive to a
detected fatlure.

15, The storage system of claim 13, wherein the recovery event 1s responsive to a
detected impending failure.

16, The storage system of claim 13, wherein the recovery event is based on a promotion
event to prepare, for testing on the target data repository, a replica of the stored data at
the source data repository.

17. A method comprising:
generating, based on the metadata describing the one or more updates to the one or
more datasets, an ordered log of metadata desenbing an ordered application of the one
or more updates; and
generating, on the source data repository and based on the ordered log of metadata, at
least a portion of the one or more datasets in accordance with the one or more updates
corresponding to a specified point 1o time.

18. The method of claim 17, wherein stored data to generate the one or more datasets is

available based on garbage collection on the source data repository using both a
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reference table mamntained by a storage controller and also a list of references within
the ordered log of metadata.

19, The method of claim 17 or 18, wherein a guantity of updates described by a given
lightweight checkpoint is specified by a configurable setting.

20 The method of claims 17, 18, or 19 wherein the configurable setting specifics a

recovery window of time.
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