
(12) United States Patent
de Icaza et al.

USOO9183020B1

US 9,183,020 B1
Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54) MULTI-SIZED DATA TYPES FOR MANAGED
CODE

(71) Applicant: Xamarin Inc., San Francisco, CA (US)

(72) Inventors: Miguel de Icaza, Boston, MA (US);
Rodrigo Kumpera, Boston, MA (US);
Sebastien Pouliot, Quebec City (CA);
Rolf Bjarne Kvinge, Madrid (ES);
Aaron Dean Bockover, Raleigh, NC
(US); Zoltan Varga, Budapest (HU)

(73) Assignee: Xamarin Inc., San Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/537,298

(22) Filed: Nov. 10, 2014

(51) Int. Cl.
G06F 9/45 (2006.01)
G06F 9/455 (2006.01)

(52) U.S. Cl.
CPC G06F 9/4552 (2013.01); G06F 8/41

(2013.01); G06F 8/437 (2013.01)
(58) Field of Classification Search

CPC ... G06F 8/437; G06F 9/4552; G06F 9/45525
USPC .. 717/146-148, 152
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,280,617 A 1/1994 Brender et al.
5,493,675 A 2, 1996 Faiman, Jr. et al.
6,389,590 B1* 5/2002 Miller et al. T17,140
8,006,239 B2 8/2011 Sankaranarayanan et al.

START

8,245,210 B2
2003/OO93780 A1
2003/O126590 A1
2005, 0132328 A1
2008/0320453 Al 12/2008 Meijer et al.
2010/0287536 A1 1 1/2010 Chung et al.

OTHER PUBLICATIONS

8/2012 Ng et al.
5/2003 Freudenberger et al.
7/2003 Burrows et al.
6/2005 Bulusu

Office Communication for U.S. Appl. No. 14,337,064 mailed on Sep.
9, 2014.
Achtenet al., “When Generic Functions Use Dynamic Values”, 2002,
Proceedings of the 14th International Conference on Implemention
of Functional Languages, pp. 17-33.
Office Communication for U.S. Appl. No. 14,337,064 mailed on Sep.
9, 2014 (21 pages).

(Continued)

Primary Examiner — Ryan Coyer
(74) Attorney, Agent, or Firm — John W. Branch; Lowe
Graham Jones PLLC

(57) ABSTRACT

Embodiments are directed towards generating applications
that include multi-sized types running in managed code. Dur
ing the compilation of an intermediate language version of an
application, if a multi-size type is encountered, a runtime
engine may perform actions to process the multi-size types.
Accordingly, architecture information associated with the tar
get computer may be determined. Data types corresponding
to the architecture of the target computer and the multi-sized
types may be determined based on the architecture informa
tion. Native code calls associated with an intermediate lan
guage code calls may be determined such that the parameters
of the native code calls match the architecture dependent data
types. And, a machine code version of the intermediate lan
guage code call may be generated. The generated machine
code version of the intermediate language code may be
executed with the data types specific to the target computer.

30 Claims, 7 Drawing Sheets

- 60

698 es
PROVIDENTEREDIATE
lAMIAGE CO32E FOR

8PLICATION TO TARGET
COPTER

6
w y

EXECUTE INTERAfEATE
ANCAF Cir. NARGET
OER SMGR.N.E.

ENGINE

COMPERENERATES INTERE3A
LNGGE CORE BASED ONSORCE

YES

GENERATE EXECITABE
MACHINE Oil FR3.

iNTERETE COJESNG
OTOMPER

614,
ww.
PRRIEEEXECTABLE

MACHINE CORETO TARGET
Co?pitFR

86.
- or

EXCTEACNECO). CN
ARGET COMPER

RERN

US 9,183,020 B1
Page 2

(56) References Cited Office Communication for U.S. Appl. No. 14/337,064 mailed on Feb.
23, 2015.

OTHER PUBLICATIONS Office Communication for U.S. Appl. No. 14,337,064 mailed on May
12, 2015.

Achten, P. et al., “When generic functions use dynamic values.” 2002 Office Communication for U.S. Appl. No. 14,670,218 mailed on May
Proceedings of the 14th International Conference on Implementation 27, 2015.
of Functional Language, Lecture Notes in Computer Science, (2003)
pp. 17-33. * cited by examiner

U.S. Patent Nov. 10, 2015 Sheet 1 of 7 US 9,183,020 B1

103 1 100
104

to Mobile Computer
Laptop Computer

102 Y 108
Tablet Computer

Client
Computer

WIDE AREA
NETWORK/
LOCAL AREA
NETWORK
(NETWORK)

110

116

Development Computer

FIG. 1

U.S. Patent Nov. 10, 2015 Sheet 2 of 7

CLIENT

- COMPUTER is

202
PROCESSOR

204

S

POWER
OPERATING 206 SLIPPLY
SYSTEM

DATA STORAGE 208 228

PROCESSOR
READABLE
STORAGE 4. APPLICATIONS 21 MEDIA

TARGET 216
APPLICATIONS

230
BROWSER 218

219
RUINTIME

220
OTHER

APPLICATIONS
226 GPS

232

US 9,183,020 B1

- 200

234

236

NETWORK b

INTERFACE(S)

238

ALIDIO —- b
INTERFACE

240

DISPLAYe-

242
KEYPAD a

244

ILL LINMINATOR

246
VIDEO

INTERFACE

2
INPLIT/ 48
OLITPLIT b

INTERFACE

250
HAPTIC

INTERFACE

FIG. 2

U.S. Patent Nov. 10, 2015 Sheet 3 of 7 US 9,183,020 B1

- 300

NETWORK
COMPLITER

PROCESSOR 302
304 338

330
PROCESSOR

306 READABLE
STORAGE

308 MEDIA NETWORK b
INTERFACE(S)

APPLICATION
310 SOLIRCE CODE INPLITV 332

OLITPLIT
INTERFACE(S)

312

334

HARD DISK
314 DRIVE

318

320 APPLICATION
COMPLER VIDEO 336

DISPLAY N/
ADAPTER

321 APPLICATION
DEVELOPER TOOLS

326

U.S. Patent Nov. 10, 2015 Sheet 4 of 7 US 9,183,020 B1

- 400

406

source 44 . 408 410 Ot Internediate Machine
Code C-7 Language (-7 Code

40? Compiler Code Runtine Engine For
H AOT Compiler Execution

Fig. 4A
416

412 414 int Add(int a, int b)

32-bit Executable
nint Add(nint a, ninth) print Addriirt a, ririt by Y 418

Source Code Intermediate Language Code 64-b facil
long Add(long a, long b)

64-bit Executable

Fig. 4B

U.S. Patent Nov. 10, 2015 Sheet 5 Of 7 US 9,183,020 B1

- 500

54 506 502

Native Type 32-bit Backing Type 64-bit Backing Type

int. System. Int32 long: System. Inté4

system.nuint unt system. unts ulong system. unts

Fig. 5

U.S. Patent Nov. 10, 2015 Sheet 6 of 7 US 9,183,020 B1

- so

PROVIDE SOURCE CODE TO
COMPILER

602

COMPLLER GENERATES INTERMEDIATE
LANGLIAGE CODE BASED ON SOLIRCE

CODE

604

612
d

PROVIDE INTERMEDIATE GENERATE EXECUTABLE
LANGULAGE CODE FOR MACHINE CODE FROM

APPLICATION TO TARGET INTERNMEDIATE CODE USING
COMPLITER AOT COMPILER

PROVIDE EXECLITABLE
MACHINE CODE TO TARGET

COMPUTER

610 D
EXECUTE INTERMEDIATE

LANGLLAGE CODE ON TARGET
COMPLITER LISING RLINTINME

ENGINE C
EXECLITE MACHINE CODE ON

TARGET COMPLITER

Fig. 6

U.S. Patent Nov. 10, 2015 Sheet 7 Of 7 US 9,183,020 B1

700 -
702

rNJ
RLINTIME PROCESSES

INTERMEDIATE LANGUAGE CODE
TO GENERATE NATIVE CODE

DETERMINE CORRECT TYPE
BASED ON TARGET COMPUTER

DETERMINE NATIVE CODE CALL
MAPPED TO INTERMEDIATE

LANGUIAGE CALL.

GENERATE MACHINE CODE NATIVE
CALL LISING DETERMINED TYPES

EXECUTE MACHINE CODE FOR THE
NATIVE CALL LISING VALUES FROM

MLLTI-SIZE TYPE

US 9,183,020 B1
1.

MULTI-SIZED DATA TYPES FOR MANAGED
CODE

TECHNICAL FIELD

This invention relates generally to Software application
development, and more particularly, but not exclusively, to
generating applications for hardware platforms that have dif
ferent architectures.

BACKGROUND

A highly competitive application marketplace puts tremen
dous pressure on application developers to deliver high qual
ity user experiences for both consumers and employees
across a wide variety of computing platforms. Accordingly, it
may be advantageous to employ modern cross-platform Soft
ware development tools to enable application developers to
develop applications for a variety of target platforms. Thus, in
Some cases, application developers may write the Source code
for their applications in one computer programming language
and deploy compiled applications to multiple platforms.
However, Some computing platforms may include unique
and/or distinctive native interfaces that may reduce and/or
limit the ability for writing platform agnostic programs. In
particular, some native application programming interfaces
may obscure architectural details that may be important to
improve cross platform development. Thus, it is with respect
to these and other considerations that these innovations are
made.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the
present innovations are described with reference to the fol
lowing drawings. In the drawings, like reference numerals
refer to like parts throughout the various figures unless oth
erwise specified. For a better understanding of the present
innovations, reference will be made to the following Descrip
tion of the Various Embodiments, which is to be read in
association with the accompanying drawings, wherein:

FIG. 1 illustrates a system environment in which various
embodiments may be implemented;

FIG. 2 shows a schematic embodiment of a client com
puter;

FIG. 3 illustrates a schematic embodiment of a network
computer;

FIGS. 4A and 4B illustrate logical representations of the
compiling a source code file into intermediate language code
and/or machine code for deployment and execution on a
target computer;

FIG. 5 shows a table as an example of mapping platform
independent native types to target platform types in accor
dance with at least one of the various embodiments;

FIG. 6 shows an overview flowchart for a process using
multi-size data types for managed code in accordance with at
least one of the various embodiments; and

FIG. 7 illustrates an overview of a process for executing
intermediate language code that include multi-sized types in
accordance with at least one of the various embodiments.

DESCRIPTION OF THE VARIOUS
EMBODIMENTS

The present innovations now will be described more fully
hereinafter with reference to the accompanying drawings,
which form a part hereof, and which show, by way of illus

10

15

25

30

35

40

45

50

55

60

65

2
tration, specific embodiments by which the innovations may
be practiced. These innovations may, however, be embodied
in many different forms and should not be construed as lim
ited to the embodiments set forth herein; rather, these embodi
ments are provided so that this disclosure will be thorough
and complete, and will fully convey the various embodiments
to at least those skilled in the art. Among other things, the
present innovations may be embodied as methods, comput
ers, or devices. Accordingly, the embodiments may take the
form of an entirely hardware embodiment, an entirely soft
ware embodiment or an embodiment combining Software and
hardware aspects. The following detailed description is,
therefore, not to be taken in a limiting sense.

Throughout the specification and claims, the following
terms take the meanings explicitly associated herein, unless
the context clearly dictates otherwise. The phrase “In one of
the embodiments’ or “in at least one of the various embodi
ments' as used herein does not necessarily refer to the same
embodiment, though it may. Furthermore, the phrase “in
another embodiment” or “in some embodiments' as used
herein does not necessarily refer to a different embodiment,
although it may. Thus, as described below, various embodi
ments may be readily combined, without departing from the
Scope or spirit of the innovations disclosed herein.

In addition, as used herein, the term 'or' is an inclusive
“or operator, and is equivalent to the term “and/or unless
the context clearly dictates otherwise. The term “based on is
not exclusive and allows for being based on additional factors
not described, unless the context clearly dictates otherwise. In
addition, throughout the specification, the meaning of “a.
“an and “the include plural references. The meaning of
“in” includes “in” and “on.
The term “application” as used herein refers to a comput

ing/software application designed to operate on a computer.
While the term application is used throughout this descrip
tion, one of ordinary skillinart the will appreciate that various
types of applications may benefit from these innovations and
are well within the scope and spirit of the disclosed innova
tions, including, but not limited to, mobile applications, web
applications, web pages, “desktop' applications, or the like.
The term “application developer as used herein refers to

users that design and develop applications. Application devel
opers may create and deploy applications.
The term “computer as used herein refers to networked

computers and may include tablet computers, handheld com
puters, wearable computers, desktop computers, or the like.
Mobile computers may also include notebook computers,
desktop computers, microprocessor-based or programmable
consumer electronics, network appliances, mobile tele
phones, Smart telephones, pagers, radio frequency (RF)
devices, infrared (IR) devices, Personal Digital Assistants
(PDAs), televisions, integrated devices combining at least
one of the preceding computers, or the like.
The terms “target platform.” “target computer as used

herein refer to computers, such as, mobile computers, client
computers, Smart televisions, game consoles, set-top cable
boxes (for televisions). Smart home appliances, or the like,
upon which applications are intended to be deployed. In at
least one of the various embodiments, source code for an
application may be compiled into machine code that is com
patible for execution on one or more target computers. Dif
ferent types of target computers may require compilers to
generate machine code that is particular to the machine archi
tecture of the particular target computers.
The terms “machine code.” “machine code instructions.”

and “native code” as used herein refers to symbols represent
ing instructions that have been generated by compiling source

US 9,183,020 B1
3

code. Machine code comprises instructions designed for
execution by a CPU complex of a target computer. Further,
machine code may be instructions that may be executed
directly on a target computer without alteration. Also, the data
employed by an application may be included with the
machine code. In some cases, a compiler and/or other appli
cation development program may supply or generate machine
code that is not directly compiled from the source code. In
Some cases, the machine code may include call to application
programmer interfaces provided by the target computer.
These APIs may be provided at an operating system and/or
user-interface framework level rather than being limited to
low level CPU instructions. For example, machine code may
include system calls generally considered to be performing
high leveloperations, such as, managing UI elements/objects,
networking, UI message handling, file I/O, math functions,
memory management, or the like.
The terms “intermediate language code”, “intermediate

language' as used herein refer to the code symbols and infor
mation that may be generated by compiling Source code using
a compiler. For cross-platform development system, interme
diate language code may be platform independent. Interme
diate language is further compiled into machine code for
execution on a target computer by an ahead-of-time compiler
or a runtime engine performing just-in-time compiling on the
target computer.

The term “parameter as used herein refers to a variable
and/or variable name that is included either explicitly or
implicitly in the definition of a function. The precise syntax of
parameters will vary depending on the particular program
ming language that is being employed. In at least one of the
various embodiments, the parameters defined for a function
may be employed by a compiler to generate an identifier
and/or signature for the particular function. Accordingly, in
Some programming languages, function having the same
name may be distinguishable because they are defined using
different parameters.
The term “return value” as used herein refers to a variable

that is passed out of function (e.g., returned) after it runs to
completion. Note, depending on the programming language,
return values for functions may be optional.
The term “parameter type' as used herein refers to the type

of data type represented by a defined parameter. In at least one
of the various embodiments, parameters are often defined to
represent a specific/particular data type. Accordingly, a com
piler may be arranged to confirm in source code whether
arguments having the correct/specified argument types are
passed as arguments to functions. In generic programming,
one or more parameter types may be passed to as arguments
to generic functions. During runtime and/or compilation of
the application Source code, the parameter type arguments
may be determined enabling the runtime environment and/or
the compiler to generate a type specific machine code version
of the generic function.
The terms “multi-size data type', and “multi-size type' as

used herein refer to data types used in Source code and inter
mediate language code that may represent data type of inde
terminate size. The actual size of the data type may be deter
mined during just-in-time compiling by a runtime engine
and/or AOT compiling by a compiler. Multi-size types are
described in detail below.
The following briefly describes the embodiments of the

invention in order to provide a basic understanding of some
aspects of the invention. This brief description is not intended
as an extensive overview. It is not intended to identify key or
critical elements, or to delineate or otherwise narrow the

10

15

25

30

35

40

45

50

55

60

65

4
Scope. Its purpose is merely to present Some concepts in a
simplified form as a prelude to the more detailed description
that is presented later.

Briefly stated, various embodiments are directed towards
cross platform development tools that enable application
developers to target more than one target platform using that
same source code when developing applications. Further,
Some cross-platform development environments enable
application developers to use the familiar programming lan
guage and development environment to development appli
cations for different target platforms and/or target computers.

In at least one of the various embodiments, compiling the
intermediate language version of the application into a
machine code version of the application may include gener
ating the machine code version using a runtime engine that
executing on the target computer, Such that the runtime
engine may enable just-in-time compilation of the machine
code version of the application.

In some cases, the differences between two or more target
platforms may be obscured by the target platforms and/or the
target platform programming interfaces. For example, if two
target computers have different word sizes (e.g., 32-bit versus
64-bit) they may be similar in many ways except for the sizes
of data types used to access the native code. Also, for some
target platforms if machine code generated by the cross
platform development environment includes mismatch native
code calls the application may crash, or otherwise produce an
error, during execution or code generation of the application.
In some cases, the potential for mismatch may not be discov
ered until runtime. Thus, if there is possibility of an architec
tural mismatch occurring developers may generate an appli
cation for each possible target computer architecture.
However, this may be disadvantageous because it may pro
duce multiple application versions to manage and distribute,
as well, as the administration effort required to deploy the
correct version for a given target computer.

Accordingly, in at least one of the various embodiments,
Source code used by a cross-platform development environ
ment may be innovatively arranged to include multi-size data
types. The multi-sized data type may be employed in the
Source code for cross-platform development and then during
runtime a runtime engine may determine the correct data
types to employ based on the architecture of the target com
puter. For example, Source code used for a cross platform
development system may be arranged to have multi-sized
types referred to as native types. Here they are called native
types because during runtime they may take the form of a data
type corresponding to the architecture of the target computer.
Thus, if where there is a possibility of architectural mismatch
(e.g., word size differences) occurring on target computer, the
application programmer may employ the multi-size native
types in the source code. Accordingly, during the execution of
the application, the runtime engine may replace the multi-size
native types with the actual data types that Support the archi
tecture of the target computer.

Furthermore, briefly stated, various embodiments are
directed towards embodiments are directed to generating
applications that include multi-sized types that may be run
ning in managed code. In at least one of the various embodi
ments, during the compilation of an intermediate language
version of an application into a machine code version of the
application, if a multi-size type is encountered or used in an
intermediate language code, a runtime engine and/or an AOT
compiler may perform various actions to process the multi
size types. In at least one of the various embodiments, the
multi-size type may be a field embedded in a data structure.

US 9,183,020 B1
5

Further, in at least one of the various embodiments, the multi
size type may corresponds to one of a, an integer, an unsigned
integer, or a floating value.

In at least one of the various embodiments, architecture
information associated with the target computer may be
determined such that the architecture information includes at
least a word size of the target computer. In at least one of the
various embodiments, determining the word size of may
include determining the word size to beat least one of 16-bits,
32-bits, 64-bits, or the like.

In at least one of the various embodiments, one or more
data types corresponding to the architecture of the target
computer and the multi-sized types may be determined based
on the architecture information of the target computer.

In at least one of the various embodiments, one or more
native code calls associated with the intermediate language
code call may be determined such that the parameters of the
one or more native code calls match the architecture depen
dent data type. In at least one of the various embodiments,
determining the one or more native code call associated with
the intermediate language code call may be based on a pattern
match that includes the data types and the name of the native
code call.

In at least one of the various embodiments, a machine code
version of the intermediate language code call may be gen
erated that corresponds to the architecture information of the
target computer. In at least one of the various embodiments,
the generated machine code version of the intermediate lan
guage code call may include a portion of machine code that
corresponds to a calling convention Supported by the target
computer.

In at least one of the various embodiments, when the target
computer enables just-in-time compiling, the generated
machine code version of the intermediate language code may
be executed with at least one value of the multi-size types and
the one or more data types specific to the target computer.

In at least one of the various embodiments, when the target
computer disables just-in-time compiling, the generated
machine code version of the intermediate language code may
be inserted in the machine code version of the application
with at least one value of the multi-size types and the one or
more data types as determined for the target computer.

In at least one of the various embodiments, the intermedi
ate language code may be generated from at least one source
code file, such that the intermediate language code is deploy
able to a plurality of target platforms having different archi
tectures.

Illustrative Operating Environment
FIG. 1 shows components of one embodiment of an envi

ronment in which embodiments of the invention may be prac
ticed. Not all of the components may be required to practice
the invention, and variations in the arrangement and type of
the components may be made without departing from the
spirit or scope of the invention. As shown, system 100 of FIG.
1 includes local area networks (LANs)/wide area networks
(WANs)—(network) 110, wireless network 108, client com
puters 102-105, Development Computer 116, or the like.

At least one embodiment of client computers 102-105 is
described in more detail below in conjunction with FIG. 2. In
one embodiment, at least some of client computers 102-105
may operate over one or more wired and/or wireless net
works, such as networks 108, and/or 110. Generally, client
computers 102-105 may include virtually any computer
capable of communicating over a network to send and receive
information, perform various online activities, offline
actions, or the like. In one embodiment, one or more of client
computers 102-105 may be configured to operate within a

10

15

25

30

35

40

45

50

55

60

65

6
business or other entity to perform a variety of services for the
business or other entity. For example, client computers 102
105 may be configured to operate as a web server, firewall,
client application, media player, mobile telephone, game con
sole, desktop computer, or the like. However, client comput
ers 102-105 are not constrained to these services and may also
be employed, for example, as for end-user computing in other
embodiments. It should be recognized that more or less client
computers (as shown in FIG. 1) may be included within a
system such as described herein, and embodiments are there
fore not constrained by the number or type of client comput
ers employed.

Computers that may operate as client computer 102 may
include computers that typically connect using a wired or
wireless communications medium Such as personal comput
ers, multiprocessor Systems, microprocessor-based or pro
grammable electronic devices, network PCs, or the like. In
some embodiments, client computers 102-105 may include
virtually any portable computer capable of connecting to
another computer and receiving information Such as, laptop
computer 103, mobile computer 104, tablet computers 105, or
the like. However, portable computers are not so limited and
may also include other portable computers such as cellular
telephones, display pagers, radio frequency (RF) devices,
infrared (IR) devices, Personal Digital Assistants (PDAs),
handheld computers, wearable computers, integrated devices
combining one or more of the preceding computers, or the
like. As such, client computers 102-105 typically range
widely in terms of capabilities and features. Moreover, client
computers 102-105 may access various computing applica
tions, including a browser, or other web-based application.
A web-enabled client computer may include a browser

application that is configured to receive and to send web
pages, web-based messages, and the like. The browser appli
cation may be configured to receive and display graphics,
text, multimedia, and the like, employing virtually any web
based language, including a wireless application protocol
messages (WAP), and the like. In one embodiment, the
browser application is enabled to employ Handheld Device
Markup Language (HDML), Wireless Markup Language
(WML), WMLScript, JavaScript, Standard Generalized
Markup Language (SGML), HyperText Markup Language
(HTML), eXtensible Markup Language (XML), JavaScript
Object Notation (JSON), or the like, to display and send a
message. In one embodiment, a user of the client computer
may employ the browser application to perform various
activities over a network (online). However, another applica
tion may also be used to perform various online activities.

Client computers 102-105 also may include at least one
other client application that is configured to receive and/or
send content between another computer. The client applica
tion may include a capability to send and/or receive content,
or the like. The client application may further provide infor
mation that identifies itself, including a type, capability,
name, and the like. In one embodiment, client computers
102-105 may uniquely identify themselves through any of a
variety of mechanisms, including an Internet Protocol (IP)
address, a phone number, Mobile Identification Number
(MIN), an electronic serial number (ESN), or other device
identifier. Such information may be provided in a network
packet, or the like, sent between other client computers,
Development Computer 116, or other computers.

Client computers 102-105 may further be configured to
include a client application that enables an end-user to log
into an end-user account that may be managed by another
computer, such as Development Computer 116, or the like.
Such an end-user account, in one non-limiting example, may

US 9,183,020 B1
7

be configured to enable the end-user to manage one or more
online activities, including in one non-limiting example,
project management, software development, system admin
istration, configuration management, search activities, social
networking activities, browse various websites, communicate
with other users, or the like.

Wireless network 108 is configured to couple client com
puters 103-105 and its components with network 110. Wire
less network 108 may include any of a variety of wireless
Sub-networks that may further overlay stand-alone ad-hoc
networks, and the like, to provide an infrastructure-oriented
connection for client computers 103-105. Such sub-networks
may include mesh networks, Wireless LAN (WLAN) net
works, cellular networks, and the like. In one embodiment,
the system may include more than one wireless network.

Wireless network 108 may further include an autonomous
system of terminals, gateways, routers, and the like connected
by wireless radio links, and the like. These connectors may be
configured to move freely and randomly and organize them
selves arbitrarily, such that the topology of wireless network
108 may change rapidly.

Wireless network 108 may further employ a plurality of
access technologies including 2nd (2G), 3rd (3G), 4th (4G)
5th (5G) generation radio access for cellular systems, WLAN,
Wireless Router (WR) mesh, and the like. Access technolo
gies such as 2G, 3G, 4G, 5G, and future access networks may
enable wide area coverage for mobile computers. Such as
client computers 103-105 with various degrees of mobility. In
one non-limiting example, wireless network 108 may enable
a radio connection through a radio network access such as
Global System for Mobil communication (GSM), General
Packet Radio Services (GPRS), Enhanced Data GSM Envi
ronment (EDGE), code division multiple access (CDMA),
time division multiple access (TDMA), Wideband Code
Division Multiple Access (WCDMA), High Speed Downlink
Packet Access (HSDPA), Long Term Evolution (LTE), and
the like. In essence, wireless network 108 may include virtu
ally any wireless communication mechanism by which infor
mation may travel between client computers 103-105 and
another computer, network, a cloud-based network, a cloud
instance, or the like.

Network 110 is configured to couple network computers
with other computers, including, Development Computer
116, client computers 102-105 through wireless network 108,
or the like. Network 110 is enabled to employ any form of
computer readable media for communicating information
from one electronic device to another. Also, network 110 can
include the Internet in addition to local area networks
(LANs), wide area networks (WANs), direct connections,
such as through a universal serial bus (USB) port, otherforms
of computer-readable media, or any combination thereof. On
an interconnected set of LANs, including those based on
differing architectures and protocols, a router acts as a link
between LANs, enabling messages to be sent from one to
another. In addition, communication links within LANs typi
cally include twisted wire pair or coaxial cable, while com
munication links between networks may utilize analog tele
phone lines, full or fractional dedicated digital lines including
T1, T2, T3, and T4, and/or other carrier mechanisms includ
ing, for example, E-carriers, Integrated Services Digital Net
works (ISDNs), Digital Subscriber Lines (DSLs), wireless
links including satellite links, or other communications links
known to those skilled in the art. Moreover, communication
links may further employ any of a variety of digital signaling
technologies, including without limit, for example, DS-0.
DS-1, DS-2, DS-3, DS-4, OC-3, OC-12, OC-48, or the like.
Furthermore, remote computers and other related electronic

10

15

25

30

35

40

45

50

55

60

65

8
devices could be remotely connected to either LANs or
WANs via a modem and temporary telephone link. In one
embodiment, network 110 may be configured to transport
information of an Internet Protocol (IP).

Additionally, communication media typically embodies
computer readable instructions, data structures, program
modules, or other transport mechanism and includes any
information delivery media. By way of example, communi
cation media includes wired media Such as twisted pair,
coaxial cable, fiber optics, wave guides, and other wired
media and wireless media Such as acoustic, RF, infrared, and
other wireless media.
One embodiment of Development Computer 116 is

described in more detail below in conjunction with FIG. 3.
Briefly, however, Development Computer 116 includes vir
tually any network computer capable of performing actions
for generating applications for a client computer.

Although FIG. 1 illustrates Development Computer 116 as
a single computer, the innovations and/or embodiments are
not so limited. For example, one or more functions of Devel
opment Computer 116 may be distributed across one or more
distinct network computers. Moreover, Development Com
puter 116 is not limited to a particular configuration Such as
the one shown in FIG. 1. Thus, in one embodiment, Devel
opment Computer 116 may be implemented using a plurality
of network computers and/or client computer. In other
embodiments, development computer may operate as a plu
rality of network computers within a cluster architecture, a
peer-to-peerarchitecture, or the like. Further, in at least one of
the various embodiments, Development Computer 116 may
be implemented using one or more cloud instances in one or
more cloud networks.

Illustrative Client Computer
FIG. 2 shows one embodiment of client computer 200 that

may be included in a system in accordance with at least one of
the various embodiments. Client computer 200 may include
many more or less components than those shown in FIG. 2.
However, the components shown are sufficient to disclose an
illustrative embodiment for practicing the present invention.
Client computer 200 may represent, for example, one
embodiment of at least one of client computers 102-105 of
FIG 1.
As shown in the figure, client computer 200 includes a

processor 202 in communication with a mass memory 226 via
a bus 234. In some embodiments, processor 202 may include
one or more central processing units (CPU). Client computer
200 also includes a power supply 228, one or more network
interfaces 236, an audio interface 238, a display 240, a keypad
242, an illuminator 244, a video interface 246, an input/output
interface 248, a haptic interface 250, and a global positioning
system (GPS) receiver 232.
Power supply 228 provides power to client computer 200.

A rechargeable or non-rechargeable battery may be used to
provide power. The power may also be provided by an exter
nal power source, such as an alternating current (AC) adapter
or a powered docking cradle that Supplements and/or
recharges a battery.

Client computer 200 may optionally communicate with a
base station (not shown), or directly with another computer.
Network interface 236 includes circuitry for coupling client
computer 200 to one or more networks, and is constructed for
use with one or more communication protocols and technolo
gies including, but not limited to, GSM, CDMA, TDMA,
GPRS, EDGE, WCDMA, HSDPA, LTE, user datagram pro
tocol (UDP), transmission control protocol/Internet protocol
(TCP/IP), short message service (SMS), WAP, ultra wide
band (UWB), IEEE 802.16 Worldwide Interoperability for

US 9,183,020 B1

Microwave Access (WiMax), session initiated protocol/real
time transport protocol (SIP/RTP), or any of a variety of other
wireless communication protocols. Network interface 236 is
Sometimes known as a transceiver, transceiving device, or
network interface card (NIC).

Audio interface 238 is arranged to produce and receive
audio signals such as the sound of a human Voice. For
example, audio interface 238 may be coupled to a speaker and
microphone (not shown) to enable telecommunication with
others and/or generate an audio acknowledgement for some
action.

Display 240 may be a liquid crystal display (LCD), gas
plasma, light emitting diode (LED), organic LED, or any
other type of display used with a computer. Display 240 may
also include a touch sensitive screen arranged to receive input
from an object Such as a stylus or a digit from a human hand.

Keypad 242 may comprise any input device arranged to
receive input from a user. For example, keypad 242 may
include a push button numeric dial, or a keyboard. Keypad
242 may also include command buttons that are associated
with selecting and sending images.

Illuminator 244 may provide a status indication and/or
provide light. Illuminator 244 may remain active for specific
periods of time or in response to events. For example, when
illuminator 244 is active, it may backlight the buttons on
keypad 242 and stay on while the client computer is powered.
Also, illuminator 244 may backlight these buttons in various
patterns when particular actions are performed, such as dial
ing another client computer. Illuminator 244 may also cause
light sources positioned within a transparent or translucent
case of the client computer to illuminate in response to
actions.

Video interface 246 is arranged to capture video images,
Such as a still photo, a video segment, an infrared video, or the
like. For example, video interface 246 may be coupled to a
digital video camera, a web-camera, or the like. Video inter
face 246 may comprise a lens, an image sensor, and other
electronics. Image sensors may include a complementary
metal-oxide-semiconductor (CMOS) integrated circuit,
charge-coupled device (CCD), or any other integrated circuit
for sensing light.

Client computer 200 also comprises input/output interface
248 for communicating with external devices, such as a head
set, or other input or output devices not shown in FIG. 2.
Input/output interface 248 can utilize one or more communi
cation technologies, such as USB, infrared, BluetoothTM, or
the like.

Haptic interface 250 is arranged to provide tactile feedback
to a user of the client computer. For example, the haptic
interface 250 may be employed to vibrate client computer 200
in a particular way when another user of a computeris calling.
In some embodiments, haptic interface 250 may be optional.

Client computer 200 may also include GPS transceiver 232
to determine the physical coordinates of client computer 200
on the surface of the Earth. GPS transceiver 232, in some
embodiments, may be optional. GPS transceiver 232 typi
cally outputs a location as latitude and longitude values. How
ever, GPS transceiver 232 can also employ other geo-posi
tioning mechanisms, including, but not limited to,
triangulation, assisted GPS (AGPS). Enhanced Observed
Time Difference (E-OTD), Cell Identifier (CI), Service Area
Identifier (SAI), Enhanced Timing Advance (ETA), Base Sta
tion Subsystem (BSS), or the like, to further determine the
physical location of client computer 200 on the surface of the
Earth. It is understood that under different conditions, GPS
transceiver 232 can determine a physical location within mil
limeters for client computer 200; and in other cases, the

5

10

15

25

30

35

40

45

50

55

60

65

10
determined physical location may be less precise, such as
within a meter or significantly greater distances. In one
embodiment, however, client computer 200 may through
other components, provide other information that may be
employed to determine a physical location of the computer,
including for example, a Media Access Control (MAC)
address, IP address, or the like.
Mass memory 226 includes a Random Access Memory

(RAM) 204, a Read-only Memory (ROM) 222, and other
storage means. Mass memory 226 illustrates an example of
computer readable storage media (devices) for storage of
information Such as computer readable instructions, data
structures, program modules or other data. Mass memory 226
stores a basic input/output system (BIOS) 224, or the like, for
controlling low-level operation of client computer 200. The
mass memory also stores an operating system 206 for con
trolling the operation of client computer 200. It will be appre
ciated that this component may include a general-purpose
operating system such as a version of UNIX, or LINUXTM, or
a specialized client communication operating system Such as
Microsoft Corporation's Windows MobileTM, Apple Corpo
ration's iOSTM, Google Corporation's Android TM, or the like.
The operating system may include, or interface with a Java
virtual machine module that enables control of hardware
components and/or operating system operations via Java
application programs.
Mass memory 226 further includes one or more data stor

age 208, which can be utilized by client computer 200 to
store, among other things, applications 214 and/or other data.
For example, data storage 208 may also be employed to store
information that describes various capabilities of client com
puter 200. The information may then be provided to another
computer based on any of a variety of events, including being
sent as part of a header during a communication, sent upon
request, or the like. Data storage 208 may also be employed to
store social networking information including address books,
buddy lists, aliases, user profile information, user credentials,
or the like. Further, data storage 208 may also store messages,
web page content, or any of a variety of user generated con
tent.

At least a portion of the information stored in data storage
208 may also be stored on another component of client com
puter 200, including, but not limited to processor readable
storage media 230, a disk drive or other computer readable
storage devices (not shown) within client computer 200.

Processor readable storage media 230 may include vola
tile, non-transitive, non-transitory, nonvolatile, removable,
and non-removable media implemented in any method or
technology for storage of information, Such as computer- or
processor-readable instructions, data structures, program
modules, or other data. Examples of computer readable Stor
age media include RAM, ROM, Electrically Erasable Pro
grammable Read-only Memory (EEPROM), flash memory or
other memory technology, Compact Disc Read-only Memory
(CD-ROM), digital versatile disks (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other physi
cal medium which can be used to store the desired informa
tion and which can be accessed by a computer. Processor
readable storage media 230 may also be referred to herein as
computer readable storage media and/or computer readable
storage device.

Applications 214 may include computer executable
instructions which, when executed by client computer 200,
transmit, receive, and/or otherwise process network data.
Network data may include, but is not limited to, messages
(e.g. SMS, Multimedia Message Service (MMS), instant

US 9,183,020 B1
11

message (IM), email, and/or other messages), audio, video,
and enable telecommunication with another user of another
client computer. Applications 214 may include, for example,
a browser 218, and other applications 220. Further, applica
tions 214 may include one or more target applications 216
generated by a development computer. Further, in embodi
ments enables to runtime compile intermediate language
code, runtime 219 may be included for processing interme
diate language code into native operations on client computer
2OO.

Browser 218 may include virtually any application config
ured to receive and display graphics, text, multimedia, mes
sages, and the like, employing virtually any web based lan
guage. In one embodiment, the browser application is enabled
to employ HDML, WML, WMLScript, JavaScript, SGML,
HTML, XML, and the like, to display and send a message.
However, any of a variety of other web-based programming
languages may be employed. In one embodiment, browser
218 may enable a user of client computer 200 to communicate
with another network computer, such as Development Com
puter 116 as shown in FIG. 1.

Other applications 220 may include, but are not limited to,
calendars, search programs, email clients, IM applications,
SMS applications, voice over Internet Protocol (VOIP) appli
cations, contact managers, task managers, transcoders, data
base programs, word processing programs, Software devel
opment tools, security applications, spreadsheet programs,
games, search programs, and so forth.

Illustrative Network Computer
FIG.3 shows one embodiment of a network computer 300,

according to one embodiment of the invention. Network.com
puter 300 may include many more or less components than
those shown. The components shown, however, are sufficient
to disclose an illustrative embodiment for practicing the
invention. Network computer 300 may be configured to oper
ate as a server, client, peer, a host, cloud instance, or any other
computer. Network computer 300 may represent, for example
Development Computer 116, and/or other network comput
CS.

Network computer 300 includes processor 302, processor
readable storage media 328, network interface unit 330, an
input/output interface 332, hard disk drive 334, video display
adapter 336, and memory 326, all in communication with
each other via bus 338. In some embodiments, processor 302
may include one or more central processing units.
As illustrated in FIG. 3, network computer 300 also can

communicate with the Internet, or other communication net
works, via network interface unit 330, which is constructed
for use with various communication protocols including the
TCP/IP protocol. Network interface unit 330 is sometimes
known as a transceiver, transceiving device, or network inter
face card (NIC).

Network computer 300 also comprises input/output inter
face 332 for communicating with external devices, such as a
keyboard, or other input or output devices not shown in FIG.
3. Input/output interface 332 can utilize one or more commu
nication technologies, such as USB, infrared, NFC, Blue
toothTM, or the like.
Memory 326 generally includes RAM 304, ROM 322 and

one or more permanent mass storage devices, such as hard
disk drive 334, tape drive, optical drive, and/or floppy disk
drive. Memory 326 stores operating system 306 for control
ling the operation of network computer 300. Any general
purpose operating system may be employed. Basic input/
output system (BIOS) 324 is also provided for controlling the
low-level operation of network computer 300.

10

15

25

30

35

40

45

50

55

60

65

12
Although illustrated separately, memory 326 may include

processor readable storage media 328. Processor readable
storage media 328 may be referred to and/or include com
puter readable media, computer readable storage media, and/
or processor readable storage device. Processor readable stor
age media 328 may include Volatile, nonvolatile, non
transitory, non-transitive, removable, and non-removable
media implemented in any method or technology for storage
of information, such as computer readable instructions, data
structures, program modules, or other data. Examples of pro
cessor readable storage media include RAM, ROM,
EEPROM, flash memory or other memory technology, CD
ROM, digital versatile disks (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other media which can
be used to store the desired information and which can be
accessed by a computer.
Memory 326 further includes one or more data storage 308,

which can be utilized by network computer 300 to store,
among other things, applications 314 and/or other data. For
example, data storage 308 may also be employed to store
information that describes various capabilities of network
computer 300. The information may then be provided to
another computer based on any of a variety of events, includ
ing being sent as part of a header during a communication,
sent upon request, or the like. Data storage 308 may also be
employed to store messages, web page content, or the like. At
least a portion of the information may also be stored on
another component of network computer 300, including, but
not limited to processor readable storage media 328, hard disk
drive 334, or other computer readable storage medias (not
shown) within network computer 300.

Data storage 308 may include a database, text, spreadsheet,
folder, file, or the like, that may be configured to maintain and
store user account identifiers, user profiles, email addresses,
IM addresses, and/or other network addresses; or the like.
Data storage 308 may further include program code, data,
algorithms, and the like, for use by a processor, Such as
processor 302 to execute and perform actions. In one embodi
ment, at least some of data store 308 might also be stored on
another component of network computer 300, including, but
not limited to processor-readable storage media 328, hard
disk drive 334, or the like.

Data storage 308 may include application source code 310.
In at least one of the various embodiments, application source
code 310 may include information, such as, one or more files,
resources, projects, or the like, used for generating interme
diate language code and/or executable applications. Also, in
at least one of the various embodiments, data storage 308 may
include, one or more of application development kits 312
representing information and/or tools for generating interme
diate language code and/or executable applications targeted
for one or more target platforms.

Applications 314 may include computer executable
instructions, which may be loaded into mass memory and run
on operating system 306. Examples of application programs
may include transcoders, schedulers, calendars, database pro
grams, word processing programs, Hypertext Transfer Proto
col (HTTP) programs, customizable user interface programs,
IPSec applications, encryption programs, security programs,
SMS message servers, IM message servers, email servers,
account managers, and so forth. Applications 314 may also
include, application compiler 320 for performing actions for
generating executable applications for one or more target
platforms.

Website server 318 may represent any of a variety of infor
mation and services that are configured to provide content,

US 9,183,020 B1
13

including messages, over a network to another computer.
Thus, website server 318 can include, for example, a web
server, a File Transfer Protocol (FTP) server, a database
server, a content server, email server, or the like. Website
server 318 may provide the content including messages over
the network using any of a variety of formats including, but
not limited to WAP, HDML, WML, SGML, HTML, XML,
Compact HTML (cHTML), Extensible HTML (XHTML), or
the like.
Illustrative Architecture

FIGS. 4A and 4B illustrate logical representations of the
compiling a source code file into intermediate language code
and/or machine code for deployment and execution on a
target computer. In at least one of the various embodiments,
application developer tools 321 and/or application compiler
320 may be arranged to include one or more of the tools and
facilities that enable Software programmers to create and
generate applications. For example, Source code editors,
compilers, linkers, software development kits, libraries, user
interface design tools, or the like, or combination thereof.

In at least one of the various embodiments, system 400
comprises components and stages for developing Software
applications targeted to one or more computers. Such as,
mobile computers, client computers, game consoles, set-top
television boxes, Smart televisions, media broadcasting appli
ances, or the like. In at least one of the various embodiments,
the logical components of system 400 may be provided by
development computers, such as, network computer 300 it
may be a network computer or a client computer that is
arranged to include tools and facilities that enable software
programmers/application developers to create and generate
applications for one or more target computers/devices.

FIG. 4A shows a logical schematic for system 400 for
generating executable machine code from a source code file
using one or more software development applications/tools,
Such as a compiler, in accordance with at least one of the
various embodiments. In at least one of the various embodi
ments, source code 402 may represent one or more files,
documents, or resources, for a software application or one or
more portions of a Software application. In at least one of the
various embodiments, source code 402 may include one or
more files of human readable/editable source code composed
in one or more computer programming languages. Source
code 402 may include high level instructions for performing
one or more specific actions (a computer program) on a pro
cessor device, such as, processor 202, processor 302, or the
like.

In at least one of the various embodiments, compiler 404
may represent one or more applications used for generating
intermediate language code 406 from provided source code,
Such as, Source code 402. In at least one of the various
embodiments, compiler 404 may comprise application com
piler 320, application developer tools 321, cross-platform
development tools, or the like, or combination thereof.

In at least one of the various embodiments, intermediate
language code 406 may represent Source code that is com
piled into a platform independent instructions that may be
executed by a runtime engine, Such as, runtime engine 408. In
at least one of the various embodiments, intermediate lan
guage code 506 represents a collection of instructions and
data for an application that may be installed on a target com
puter and executed by a runtime engine. In at least one of the
various embodiments, the instructions included in intermedi
ate language code 506 may include architecture/machine
independent instructions for implementing/executing the
instructions described in source code 402.

5

10

15

25

30

35

40

45

50

55

60

65

14
In at least one of the various embodiments, runtime engine

408 may be arranged to take intermediate language code and
perform Just-In-Time compiling into machine code for
execution on a target platform. Runtime engine 408 may be
arranged to include platform specific characteristics that
enable runtime engine 408 to execute instructions on a target
platform. Runtime engines may be arranged to Support target
computers that may have different machine/processor archi
tectures. One of ordinary skill in the art will be familiar with
the general process of compiling source code into intermedi
ate language code for execution by a runtime engine for a
target computer.

In at least one of the various embodiments, some target
platforms may restrict JIT compiling of machine code.
Accordingly, intermediate language code 406 may be pre
compiled (e.g. Ahead-of-Time compiling) into executable
machine code that may be deployed directly to the target
computer.

In at least one of the various embodiments, machine code
410 may represent instructions that may be executed on a
target computer. In at least one of the various embodiments,
machine code 410 represents a collection of instructions and
data for an application that may be installed and/or executed
by a target computer. For target computer that enables JIT
compiling, the machine code may be generated as needed, or
on the fly, by a runtime engine. In contrast for target comput
ers that require AOT compiling, machine code 401 may be
generated and installed directly on that target computer. In
these cases, intermediate language code 406 and runtime
engine 408 are not installed on the target computer.

In at least one of the various embodiments, the instructions
included in machine code 410 may include architecture/ma
chine specific instructions for implementing/executing the
instructions described in source code 402. Machine code
targeted for target computers that have different machine?
processor architectures may each represent the same source
code instructions differently since they are based on instruc
tion sets that may vary depending on the target computers
architecture. One of ordinary skill in the art will be familiar
with the general process of compiling source code into
machine code where the same source code may produce
different machine code depending on the architecture of the
target computers.

FIG. 4B shows a logical representation of generating at
least a portion of machine code 410 in accordance with at
least one of the various embodiments. In at least one of the
various embodiments, source code files may include various
elements and/or features for describing the instructions for
implementing an application, Such as the definition of func
tions. One of ordinary skill in the art will be familiar with the
variety of ways how functions may be represented in source
code using one or more programming languages. In this
example, Source code 402 includes a functions. Such as,
Source code function 412. In this example, source code func
tion 412 includes a function for adding two integers. Function
412 has parameters types and a return value shown here using
a common convention in many programming languages.

In at least one of the various embodiments, function 412
may be considered to be a platform independent representa
tion of an operation that an application want the application to
perform. Accordingly, a compiler and/or runtime engine must
be able to generate target computer specific machine code for
the function. In some embodiments, function 412 may be
implemented various computer programming languages,
such as, CH, C, C++, Java, or the like. Here function 412 is
represented as more or less in a C-style that may be compat
ible with many programming languages. Note, one of ordi

US 9,183,020 B1
15

nary skill in the art will appreciate that for many program
ming languages the Source code representation of a function
may vary depending on the specification of the programming.
However, the innovations described herein are not limited to
a particular programming language. The innovations may
apply to any programming language that may represent target
independent functions that may be compiled into target spe
cific machine code—either JIT compiled or AOT compiled.

Returning to this example, function 412 is a function for
Summing two integers (a and b) and returning the result. In
this example, values provided as parameters to function 412
have an explicit type requirement, defined here as “nint”
indicating that the parameters passed to function 412 must be
integers. However, in some target computerarchitectures one
or more native data types may vary depending on character
istics of the target platform. For example, in Some targets an
integer may be represented by 32-bit while in others it may be
represented by 64-bits. Accordingly, depending on the target
computer, a single type definition in the Source file may
correspond to different native target types depending on the
characteristics of the target computer. Typically, the differ
ences may be seen on using when the machine word width
size of the target computer may be different.

For example, Apple Computer platforms may employ
parameters having types such as NSInteger, NSUInteger,
CGFloat, or the like, almost exclusively in their APIs.
Accordingly, machine code generated by a runtime engine
using Such native APIs must also be generated to use these
types, otherwise there may be a type-mismatch error during
compiling and/or code generation. However, the underlying
low level data type value for these types may vary depending
on if the target machine is 32-bit or 64-bit. For example, the
integral types are typedefs of the long C type, which is 32-bits
or 64-bits in size. Likewise, CGFloat is a C float on 32-bit and
a C double on 64-bit machines.

In at least one of the various embodiments, to avoid mis
matches caused by different types sizes for different target
computers, a set of types may be defined for use in the Source
code that may be used instead of architecture dependent
types. In at least one of the various embodiments, since these
types are employed to replace one or more native types they
may be referred to as native types and/or multi-size types. For
example, in at least one of the various embodiments, multi
size types may include, "nint for signed integers, “nuint' for
unsigned integers, “nfloat” for representing floating point
values, and so on. One of ordinary skill are will appreciate
that the scope of these innovations include more or fewer
kinds of data and are not limited to integers, unsigned integers
and floating point values. Accordingly, more or fewer data
types may have correspondent multi-size types. Also, as dis
cussed below multi-size type analogs for various data struc
tures and/or objects that include fields that are architecture
dependent may be provided as well.

Accordingly, in at least one of the various embodiments,
anywhere an architecture dependent type may be used in a
target computer's native code API, an appropriate native type,
Such as nint, nuint, or infloat, may be used.

In at least one of the various embodiments, function 412
may be compiled from source code into intermediate lan
guage, represented by intermediate language code function
414. Code generating computing environments may produce
intermediate language code that is specific the particular code
generating computing environment. For example, Java Source
code may be compiled into an intermediate language known
as Java byte-code for execution by a Java Virtual Machine.
Likewise, cross platform development systems and/or code
generation computing environments that Support the C# lan

10

15

25

30

35

40

45

50

55

60

65

16
guage may often be arranged to compile source code into
intermediate language code compatible with Common Inter
mediate Language (CIL). Generally, a compiler, (compiler
404) will be provided source code and produce intermediate
language code. The specifics of the intermediate language are
not shown in function 414. Though it may be assumed that it
will be compatible with the runtime engine and/or AOT com
piler used in the computing environment.

However, in at least one of the various embodiments, inter
mediate language code function 414 will include the native
type as defined in the Source code. This enables a program that
is compiled into intermediate language code to avoid having
target computer specific information included in the interme
diate language code. As described above, the runtime engine
that executes the intermediate language version of the pro
gram will be arranged to accommodate the particular archi
tecture of the target computer at runtime.

In at least one of the various embodiments, if the interme
diate language code includes native types for representing
types that may be architecture dependent, the runtime engine
may be arranged to replace the indefinite native type with a
particular type for the particular architecture. Accordingly,
the platform/architecture independent intermediate language
code function, function 414, may be processed by a runtime
engine to produce platform/architecture machine code that
conforms to the type restrictions and calling conventions of
the target computer.

For example, if the runtime engine is on a machine with a
32-bit architecture it may produce a function Such as function
416, where the native type (nints in this example) are replaced
with the appropriate target computer type. Accordingly, in
this example, for function 416 the nints are replaced withints
(assuming that the “int' type represents 32-bit signed integers
for the target platform). Also, in this example, machine code
function 418 is generated/executed for a target platform with
64-bit architectures, where 64-bit signed integers are repre
sented by the long data type.

FIG. 5 shows table 500 as an example of mapping platform
independent native types to target platform types in accor
dance with at least one of the various embodiments. In at least
one of the various embodiments, one or more native types
may be associated with specific types as defined in code
generation environment to be mapped to specific data types in
the native environment of the target platform.

In at least one of the various embodiments, during execu
tion of an application a runtime engine may make calls to
native functions and procedures of the target computer. These
native functions may include various built-in services pro
vided by the underlying target platform. Accordingly, the
runtime engine may be required to map operations from inter
mediate language code into native operations. In this docu
ment, native operations may be referred to as machine code
indicating that code may be generated for accessing native
services provided by the target computer. Accordingly,
machine code may include high-level and/or low-level sys
tem/service calls that may be provided by the target system.
These service/system calls may often require particular data
types to be provided by the runtime engine for passing param
eters.

Accordingly, type mappings as shown in table 500 may be
arranged. Table 500 illustrates one example of a mapping for
at least one of the various embodiments. This example is
illustrated as being compatible with code generating environ
ment that uses an object-oriented programming language
such as Cit. Native type column 502 shows platform indepen
dent types that may support multiple sizes; column 504 shows
size specific data types for 32-bit architectures; and column

US 9,183,020 B1
17

506 shows size specific data types for 64-bit architectures.
Likewise, row 508 shows types for signed integers; row 510
holds types for unsigned integers; and row 512 shows types
for representing floating point numbers.

In at least one of the various embodiments, a native type
shown in column 502 may be considered multi-sized because
it may represent a 32-bit sized value or a 64-bit sized depend
ing on the target computer an application is executed on. As
discussed above, at execution time, the runtime engine may
be arranged to replace a multi-sized (native) type with the
specific sized type that is required for the target computer. At
least one advantage of using multi-sized data types is that
Source code may be compiled into intermediate language
code that may be executed an target platforms having differ
ent architectures (e.g., 32-bit versus 64-bit)

In at least one of the various embodiments, if the target
computer does not Support runtime code generation (e.g.,
Some Smartphones, game consoles, cable set-top boxes, or
the like), the Source code and its corresponding intermediate
language code may be pre-compiled into an executable appli
cation before it is deployed to the target computer. If this is the
case, the process of converting multi-size types (nints, nuints,
infloats) to target specific types may occur during the pre
compiling operation.

In at least one of the various embodiments, one or more
frameworks and/or code libraries provided for use in source
code may be arranged to use multi-size types. In some
embodiments, each API call provided that would otherwise
use a target computer dependent data type may be modified to
employ correspondent multi-size data type. For example, API
functions that include parameters having data types that vary
in size depending on if the target computer uses a 32-bit
architecture or a 64-bit architecture may be replaced with
versions that use the multi-size types. Accordingly, in at least
one of the various embodiments, if the runtime encounters
these types during execution it may call underlying target
computer function calls (native code call) using the correct
size type.
Generalized Operation

FIGS. 6-7 represent the generalized operations of generat
ing application that may include generic function in accor
dance with at least one of the various embodiments. In at least
one of the various embodiments, processes 600, and 700
described in conjunction with FIGS. 6-7 may be implemented
by and/or executed on a single network computer, Such as
network computer 300 of FIG.3. In other embodiments, these
processes or portions of process thereofmay be implemented
by and/or executed on a plurality of network computers, such
as network computer 300 of FIG. 3. Further, in at least one of
the various embodiments, the processes described in conjunc
tion with FIGS. 6-7 may be operative in generating and/or
execution of machine code versions of applications as
described in conjunction with FIGS. 4A and 4B and FIG. 5.

FIG. 6 shows an overview flowchart for process 600 using
multi-size data types for managed code in accordance with at
least one of the various embodiments. After a start block, at
block 602, source code may be provided to a compiler. As
described, source code files comprising an application may be
provided to a compiler. In at least one of the various embodi
ments, the source code may comprise one or more files and/or
documents.

At block 604, in at least one of the various embodiments,
the compiler may generate intermediate language code based
on the provided source code. In at least one of the various
embodiments, the compiler may compile the source code into
intermediate language code that is compatible with a particu
lar runtime engine. In at least one of the various embodi

10

15

25

30

35

40

45

50

55

60

65

18
ments, compilers may be arranged to compiles various com
puter programming languages into intermediate language
code for a runtime engine.

Accordingly, compilers may compile source code written
in different languages for the same runtime engine. For
example, Source code may be written in various languages,
such as, C#, Java, C, C++, F#, Visual Basic, or the like. A
corresponding compiler may be designed to produce inter
mediate language code compatible with the same runtime
engine for each language.

Likewise, in at least one of the various embodiments, inter
mediate language code may be arranged to be platform inde
pendent, Such that, compiler generated intermediate language
code may be compatible with runtime engines for different
target computers.
At decision block 606, in at least one of the various

embodiments, if the target platform requires ahead-of-time
compiling, control may flow to block 612; otherwise, control
may flow to block 608. As discussed above, some target
computers may be restricted from employing JIT code gen
eration. Accordingly, target computers that Support JIT code
generation may be handled differently that target computers
that are restricted from using JIT code generation.
At block 608, in at least one of the various embodiments,

the intermediate language code may be provided to the target
platform. After the intermediate language code is generated it
may be provided to a target computer. For many code gen
eration environments the intermediate language code may be
packaged and/or bundled for delivery—not unlike normal
executable application may be provided to a target computer.
At block 610, in at least one of the various embodiments,

the intermediate language code may be executed on the target
platform using a runtime engine. A runtime engine that is
arranged to generate and execute machine code for the target
computer may be employed to generate and execute machine
code correspondent to the provided intermediate language
code. In practice, in at least one of the various embodiments,
the target computer may be arranged/configured to automati
cally/transparently provide the intermediate language code to
the runtime engine when a user or system process indicates
that the intermediate language code should be executed. E.g.,
the provided intermediate language code may look like an
executable application. And, if activated the runtime engine
may be launched and provided the intermediate language
code for execution. Next, control may be returned to a calling
process.
At block 612, in at least one of the various embodiments,

since the target computer may be restricted from performing
onboard code generation, the intermediate language code for
the application must be pre-compiled into machine code
using an AOT compiler. In at least one of the various embodi
ments, the AOT compiler may be substantially similar to a
runtime engine except that it may be arranged to compile the
intermediate language code to executable machine code that
may run as a standalone application on the target computer.
At block 614, in at least one of the various embodiments,

the executable machine code comprising the application may
be provided to the target computer. This may be accomplished
by an installation procedure, or the like, similar to installing
other executable applications on the target computer.
At block 616, in at least one of the various embodiments,

the executable machine code application may be executed on
the target computer. The executable machine code may be
executed on the target computer just as other applications that
may be located on the target computer (e.g., no runtime
engine required). Next, control may be returned to a calling
process.

US 9,183,020 B1
19

FIG. 7 illustrates an overview of process 700 for executing
intermediate language code that include multi-sized types in
accordance with at least one of the various embodiments.
After a start block, at block 702, in at least one of the various
embodiments, the runtime engine on a target computer may
process intermediate language code corresponding to an
application to generate machine code for the target computer.
As discussed above, applications developed in a code-gener
ating environment may be executed by providing the inter
mediate language code that corresponds to the application to
a runtime engine that generates and/or executes machine code
based on the intermediate language code. As such, in at least
one of the various embodiments, runtime engines may be
designed to operate on specific target computers. Accord
ingly, while the intermediate language code may have some
degree of platform independence, the runtime engine may be
designed for a particular target platform and/or target com
puter.

At decision block 704, in at least one of the various
embodiments, if a multi-size type is encountered by the runt
ime engine, control may flow to block 706 for further pro
cessing, otherwise, control may flow to decision block 714.

In at least one of the various embodiments, the runtime
engine may be executing the application on the target com
puter by generating machine code in real-time (JIT compil
ing/code generation). During this process the runtime engine
may determine that a pending intermediate language code
operation includes one or more multi-sized data types. For
example, the runtime engine may employ a type map Such as
shown in FIG. 5 for determining if a multi-size type is
encountered. In some embodiments, the multi-size types may
be indicated in the intermediate language code using abbre
viated indicators, such as, flags, tags, or the like. Accordingly,
if a multi-size type is identified, the runtime engine may take
further action to disambiguate the type sizes.

In at least one of the various embodiments, the multi-size
type may be included/embedded in a function call that maps
to native function call for the target platform. In at least one of
the various embodiments, the multi-size type may be a field in
a higher level data structure. Such as, a rectangle, coordinate
point, or the like. Accordingly, the intermediate language
code that includes Such higher level data structures may have
multi-size types embedded in those data structures.

At block 706, in at least one of the various embodiments,
the runtime engine may determine the appropriate type based
on the target computer. In at least one of the various embodi
ments, since the runtime engine arranged to operate on the
target computer it will have access to target computer specific
architecture information of the target computer for determin
ing the word size, memory size, or the like, appropriate for the
multi-size types. Alternatively, the runtime engine may be an
application that is specifically targeted to the target computer
so it may be configured with the architecture information
embedded in the runtime engine. For example, the runtime
engine may be arranged to determine if it is running on 32-bit,
64-bit, 128-bit, or the like, architecture target computer.

Further, in at least one of the various embodiments, the
architecture information may be employed for determining
addition information that may be used for generating the
machine code calls, such as, calling conventions, byte word
order (e.g., big endian, little endian), return value conven
tions, or the like.

At block 708, in at least one of the various embodiments,
the native call that may be mapped to the intermediate lan
guage call may be determined. In at least one of the various

10

15

25

30

35

40

45

50

55

60

65

20
embodiments, the runtime engine may determine the native
call that is correspondent to the intermediate language code
that is pending.

For example, if the intermediate language code corre
sponds to a function Such as Add(nint a, nint b), the runtime
may choose between native code functions Add(int a, int b)
for 32-bit machines and Add(long a, long b) for 64-bit
machines. Accordingly, it may make the determination of the
function to execute based on the size information determined
in block 708.

In at least one of the various embodiments, the determina
tion of the appropriate function may be critical because some
target computers may crash or otherwise generate an error if
the parameters types are incorrect. For example, if the runt
ime engine generated code for calling Add (inta, intb) when
the target computer expects Add(longa, long b) it may cause
an error during runtime.

In at least one of the various embodiments, the runtime
engine and/or the AOT compiler may determine the appro
priate native code function (e.g., native code calls) by using a
pattern matching engine that determines matches based on
the name of the function and the architecture specific data
types used for the particular architecture of the target com
puter.
At block 710, in at least one of the various embodiments,

the machine code for the native call may be generated by the
runtime engine. In this context, the machine code for the
native call may be native function call provided by the target
computer for performing the operations corresponding the
intermediate language code. In at least one of the various
embodiments, there may be a relatively close one-to-one
mapping of Source code functions to target computer func
tions. In other cases, for Some embodiments, the runtime
engine may generate multiple native function calls to imple
ment to the operations corresponding to the Source code/
intermediate language code.
At block 712, in at least one of the various embodiments,

the machine code for the native call may be executed using
values provided using the multi-sized type parameters. In at
least one of the various embodiments, the multi-size data type
may be associated with data values. Thus, if the native call
appropriate for the machine architecture of the target com
puter has been determined, the call may be executed by the
runtime engine with values for the sized-parameters passed
into the native function call.

In at least one of the various embodiments, the multi-size
types may include a value property that hold a value for an
instance of the multi-size type. For example, if nint a has a
value of 1000 and nint b has a value of 200, for a runtime
engine may execute the native function Add(1000, 200) using
Add(inta, int b) for a 32-bit machine or Add(longa, long b)
for a 64-bit machine.

Likewise, in at least one of the various embodiments, if the
multi-size types are fields in a data structure, such as a rect
angle, or coordinate point, the data structures may be replaced
with a similar data structure that has the appropriate architec
ture specific data type. For example, a structure. Such as, Rect
(for rectangle) may be defined using multi-size types as such:
Rect nint X, ninty, nint height, nint width accordingly for a
32-bit architecture Rect {int X, inty, int height, int width}
would be used while for a 64-bit architecture Rect long x,
long y, long height, long width, and so on.

Further, in at least one of the various embodiments, differ
ent architectures for target computers may require different
calling conventions for passing arguments and received

US 9,183,020 B1
21

return values. Accordingly, the runtime engine may arrange
the machine code to employ the specific calling conventions
for the target platform.

At decision block 714, in at least one of the various
embodiments, if the application is still running, control may
loop back to block 702; otherwise, control may be returned a
calling process. In at least one of the various embodiments,
process 700 may be an ongoing operation whether it is per
forming just-in-time compiling/code generation or ahead-of
time compilation.

It will be understood that each block of the flowchart illus
tration, and combinations of blocks in the flowchart illustra
tion, can be implemented by computer program instructions.
These program instructions may be provided to a processor to
produce a machine. Such that the instructions, which execute
on the processor, create means for implementing the actions
specified in the flowchart block or blocks. The computer
program instructions may be executed by a processor to cause
a series of operational steps to be performed by the processor
to produce a computer-implemented process such that the
instructions, which execute on the processor to provide steps
for implementing the actions specified in the flowchart block
or blocks. The computer program instructions may also cause
at least some of the operational steps shown in the blocks of
the flowchart to be performed in parallel. These program
instructions may be stored on Some type of machine readable
storage media, Such as processor readable non-transitive stor
age media, or the like. Moreover, some of the steps may also
be performed across more than one processor, such as might
arise in a multi-processor computer system. In addition, one
or more blocks or combinations of blocks in the flowchart
illustration may also be performed concurrently with other
blocks or combinations of blocks, or even in a different
sequence than illustrated without departing from the scope or
spirit of the invention.

Accordingly, blocks of the flowchart illustration support
combinations of means for performing the specified actions,
combinations of steps for performing the specified actions
and program instruction means for performing the specified
actions. It will also be understood that each block of the
flowchart illustration, and combinations of blocks in the flow
chart illustration, can be implemented by special purpose
hardware-based systems, which perform the specified actions
or steps, or combinations of special purpose hardware and
computer instructions. The foregoing example should not be
construed as limiting and/or exhaustive, but rather, an illus
trative use case to show an implementation of at least one of
the various embodiments of the invention.

What is claimed as new and desired to be protected by
Letters Patent of the United States is:

1. A method for generating an application using a computer
that performs actions, including:

responsive to encountering a multi-size type during com
pilation of an intermediate language version of the appli
cation into a machine code version of the application,
performing actions, including:
determining architecture information of a target com

puter, wherein the architecture information includes
at least a word size of the target computer;

determining one or more data types associated with the
target computer that corresponds to the multi-sized
type based on the architecture information;

determining one or more native code calls that perform
actions associated with an intermediate language
code call, wherein parameters to the one or more
native code calls match the one or more data types;

5

10

15

25

30

35

40

45

50

55

60

65

22
generating a machine code version of the intermediate

language code call that at least corresponds to the one
or more determined native code calls and also corre
sponds to the architecture information;

when the target computer enables just-in-time compil
ing, executing the generated machine code version of
the intermediate language code call with one or more
values correspondent to the multi-size type and the
one or more data types by executing the one or more
determined native code calls using the one or more
determined data types that correspond to the architec
ture information; and

when the target computer disables just-in-time compiling,
inserting the generated machine code version of the
intermediate language code call in the machine code
version of the application with the one or more values
correspondent to the multi-size type and the one or more
data types, wherein the generated machine code version
includes instructions to execute the one or more deter
mined native code calls.

2. The method of claim 1, further comprising, generating
the intermediate language code from one or more source code
files, wherein the intermediate language code is deployable to
a plurality of target platforms that have different architec
tures.

3. The method of claim 1, wherein the generated machine
code version of the intermediate language code call, further
comprises, a portion of machine code that corresponds to a
calling convention Supported by the target computer.

4. The method of claim 1, wherein determining the one or
more native code calls that is associated with the intermediate
language code call, further comprises, determining the one or
more native codes call based on a pattern match that includes
the one or more data types and a name of the one or more
native code calls.

5. The method of claim 1, wherein the multi-size type is a
field embedded in a data structure.

6. The method of claim 1, wherein the multi-size type
corresponds to one of an integer, an unsigned integer, or a
floating point value.

7. The method of claim 1, wherein compiling the interme
diate language version of the application into the machine
code version of the application, further comprises, generating
the machine code version using a runtime engine that is
executing on the target computer, wherein the runtime engine
enables just-in-time compilation of the machine code version
of the application.

8. The method of claim 1, wherein determining the word
size of the target computer of the target computer, further
comprises, determining the word size to be one or more of
16-bits, 32-bits, 64-bits, or 128 bits.

9. A system for generating an application, comprising:
a computer, including:

a transceiver for communicating over the network;
a memory for storing at least instructions; and
a processor device that executes instructions that per

form actions, including:
responsive to encountering a multi-size type during

compilation of an intermediate language version of
the application into a machine code version of the
application, performing actions, including:
determining architecture information of a target

computer, wherein the architecture information
includes at least a word size of the target com
puter;

US 9,183,020 B1
23

determining one or more data types associated with
the target computer that corresponds to the
multi-sized type based on the architecture infor
mation;

determining one or more native code calls that per
form actions associated with an intermediate
language code call, wherein parameters to the
one or more native codes call match the one or
more data types;

generating a machine code version of the interme
diate language code call that at least corresponds
to the one or more determined native code calls
and also corresponds to the architecture informa
tion;

when the target computer enables just-in-time
compiling, executing the generated machine
code version of the intermediate language code
call with one or more values correspondent to the
multi-size type and the one or more data types by
executing the one or more determined native
code calls using the one or more determined data
types that correspond to the architecture infor
mation; and

when the target computer disables just-in-time
compiling, inserting the generated machine code
version of the intermediate language code call in
the machine code version of the application with
one or more values correspondent to the multi
size type and the one or more data types, wherein
the generated machine code version includes
instructions to execute the one or more deter
mined native code calls; and

a network computer, including:
a transceiver for communicating over the network;
a memory for storing at least instructions; and
a processor device that executes instructions that enable

actions, including:
providing the intermediate language code version of

the application to the computer.
10. The system of claim 9, wherein the computer's proces

Sor device performs actions, further comprising, generating
the intermediate language code from one or more source code
files, wherein the intermediate language code is deployable to
a plurality of target platforms that have different architec
tures.

11. The system of claim 9, wherein the generated machine
code version of the intermediate language code call, further
comprises, a portion of machine code that corresponds to a
calling convention Supported by the target computer.

12. The system of claim 9, wherein determining the one or
more native codes call that is associated with the intermediate
language code call, further comprises, determining the one or
more native codes call based on a pattern match that includes
one or more data types and a name of the one or more one
native code calls.

13. The system of claim 9, wherein the multi-size type is a
field embedded in a data structure.

14. The system of claim 9, wherein the multi-size type
corresponds to one of an integer, an unsigned integer, or a
floating point value.

15. The system of claim 9, wherein compiling the interme
diate language version of the application into the machine
code version of the application, further comprises, generating
the machine code version using a runtime engine that is
executing on the target computer, wherein the runtime engine
enables just-in-time compilation of the machine code version
of the application.

10

15

25

30

35

40

45

50

55

60

65

24
16. The system of claim 9, wherein determining the word

size of the target computer of the target computer, further
comprises, determining the word size to be one or more of
16-bits, 32-bits, 64-bits, or 128 bits.

17. A computer for generating an application, comprising:
a transceiver for communicating over the network;
a memory for storing at least instructions; and
a processor device that executes instructions performing

actions, including:
responsive to encountering a multi-size type during

compilation of an intermediate language version of
the application into a machine code version of the
application, performing actions, including:
determining architecture information of a target com

puter, wherein the architecture information
includes at least a word size of the target computer;

determining at least one data type associated with the
target computer that corresponds to the multi-sized
type based on the architecture information;

determining one or more native codes call that per
form actions associated with an intermediate lan
guage code call, wherein parameters to the one or
more native codes call match the one or more data
types;

generating a machine code version of the intermediate
language code call that at least corresponds to the
one or more determined native code calls and also
corresponds to the architecture information;

when the target computer enables just-in-time com
piling, executing the generated machine code Ver
sion of the intermediate language code call with
one or more values correspondent to the multi-size
type and the one or more data types by executing
the one or more determined native code calls using
the one or more determined data types that corre
spond to the architecture information; and

when the target computer disables just-in-time com
piling, inserting the generated machine code Ver
sion of the intermediate language code call in the
machine code version of the application with the
one or more values correspondent to the multi-size
type and the one or more data types, wherein the
generated machine code version includes instruc
tions to execute the one or more determined native
code calls.

18. The computer of claim 17, wherein processor device
performs actions, further comprising, generating the interme
diate language code from one or more source code files,
wherein the intermediate language code is deployable to a
plurality of target platforms that have different architectures.

19. The computer of claim 17, wherein the generated
machine code version of the intermediate language code call,
further comprises, a portion of machine code that corresponds
to a calling convention Supported by the target computer.

20. The computer of claim 17, wherein determining the one
or more native code calls that is associated with the interme
diate language code call, further comprises, determining the
one or more native code calls based on a pattern match that
includes the one or more data types and a name of the one or
more native code calls.

21. The computer of claim 17, wherein the multi-size type
is a field embedded in a data structure.

22. The computer of claim 17, wherein the multi-size type
corresponds to one of an integer, an unsigned integer, or a
floating point value.

23. The computer of claim 17, wherein compiling the inter
mediate language version of the application into the machine

US 9,183,020 B1
25

code Version of the application, further comprises, generating
the machine code version using a runtime engine that is
executing on the target computer, wherein the runtime engine
enables just-in-time compilation of the machine code version
of the application.

24. A processor readable non-transitory storage media that
includes instructions for generating an application, wherein a
computer that executes at least a portion of the instructions
performs actions, comprising:

responsive to encountering a multi-size type during com
pilation of an intermediate language version of the appli
cation into a machine code version of the application,
performing actions, including:

determining architecture information of a target computer,
wherein the architecture information includes at least a
word size of the target computer;

determining one or more data types associated with the
target computer that corresponds to the multi-sized type
based on the architecture information;

determining one or more native code calls that perform
actions associated with an intermediate language code
call, wherein parameters to the one or more native codes
call match the one or more data types:

generating a machine code version of the intermediate
language code call that at least corresponds to the one or
more determined native code calls and also corresponds
to the architecture information;

when the target computer enables just-in-time compiling,
executing the generated machine code version of the
intermediate language code call with one or more values
correspondent to the multi-size type and the one or more
data types by executing the one or more determined
native code calls using the one or more determined data
types that correspond to the architecture information;
and

5

10

15

25

30

26
when the target computer disables just-in-time compiling,

inserting the generated machine code version of the
intermediate language code call in the machine code
Version of the application with the one or more values
correspondent to the multi-size type and the one or more
data types, wherein the generated machine code version
includes instructions to execute the one or more deter
mined native code calls.

25. The media of claim 24, further comprising, generating
the intermediate language code from one or more source code
files, wherein the intermediate language code is deployable to
a plurality of target platforms that have different architec
tures.

26. The media of claim 24, wherein the generated machine
code Version of the intermediate language code call, further
comprises, a portion of machine code that corresponds to a
calling convention supported by the target computer.

27. The media of claim 24, wherein determining the one or
more native code calls that is associated with the intermediate
language code call, further comprises, determining the one or
more native codes call based on a pattern match that includes
the one or more data types and a name of the one or more
native code calls.

28. The media of claim 24, wherein the multi-size type is a
field embedded in a data structure.

29. The media of claim 24, wherein the multi-size type
corresponds to one of an integer, an unsigned integer, or a
floating point value.

30. The media of claim 24, wherein compiling the inter
mediate language version of the application into the machine
code Version of the application, further comprises, generating
the machine code version using a runtime engine that is
executing on the target computer, wherein the runtime engine
enables just-in-time compilation of the machine code version
of the application.

