» UK Patent Application

(19) GB (11) 2 430 772 (13) A

(43) Date of A Publication 04.04.2007
(21) Application No: 0520024.1 (51) INT CL:
G06Q 30/00 (2006.01)
(22) Date of Filing: 01.10.2005
(52) UK CL (Edition X ):
G4A AUXB
(71) Applicant(s): U1S S1359
Knowledge Support Systems Limited
(Incorporated in the United Kingdom) (56) Documents Cited:
St James’s Buildings, 79 Oxford Street, US 20040172372 A1 US 20030110043 A1
MANCHESTER, M1 6SS, United Kingdom "Gas Prices: How are they really set?" Report
prepared by the Majority staff of the Permanent
(72) Inventor(s): Subcommittee on Investigations. See Section V
David Charles McCaffrey pp283-284. Available at
http://www.senate.gov/~gov_affairs/042902gasreport.
(74) Agent and/or Address for Service: htm
Marks & Clerk
Sussex House, 83-85 Mosley Street, (58) Field of Search:
MANCHESTER, M2 3LG, United Kingdom UK CL (Edition X ) G4A
INT CL GO6F, G06Q
Other: EPOQUE; WPI; Internet
(54) Abstract Title: User interface method and apparatus
(57) A computer implemented method for displaying values for an output variable. The method comprises: displaying

a first user interface element configured to present values of a first input variable; displaying a second user
interface element configured to present values of a second input variable; displaying a third user interface
element configured to present values of an output variable, said output variable varying in dependence upon said
first and second input variables; receiving first user input of a value for said first variable via said first user
interface element; receiving second user input of a value for said second variable via said second user interface
element; and updating said third user interface element to indicate at least one value of said output variable in
response to said first user input and said second user input. The method finds particular application in
determining price estimates or rack prices for the wholesale fuel market.

V ¢/L0EV ¢ 99

Original Printed on Recycled Paper



1132

- 14

—0
0 | 18

FIG 1

23



2/32

Trading Data

o

~—

25

In house
system Data

Report

/26

Mid Day
Meeting
Pricing
Analysts

/

Area Av Target price Move

27

In house
system Data



3/32

29
30
Area Au Target Data

Price Move

Analyst
Collates
Data

y

Analyst ——132
Reconciles o
Data

y L 33

Terminal Price Move




36

Daily Competitor
Pnces (from OPIS
or other source)

——— e _..’.

Estimated market
closing prices
(manual input)

A

Actual closing
prices prior day

4/32

39 40 44
Pricing Rules, Recommended
Constraints, - ——» Rack price for next > Link to ERP
Exception mgmt day
A e
Competitor - 41
Data Engine p Predictionand
Understanding
35
42
) Exceptionsor | __—
falled constraints
37 Lo s
.43
> Reports —
38 Lo




Cub/Report
Generation

52

5/32

54

Database - “———'——>

Data Warehouse

57

<_A_...

/ Rule Set API
Rule Engine - »  Web Server
45
55
XML Import of XML Import of EMPL”EZEC:: 0
Price Data Vol Data
Implement
47 49 51
Price Data Source Volgme Data ERP System
ource
AN :
46 50

~—

Client Browser

56




6/32

55

58 59 60

Login

_J
Workbench F Select RuleSet

61 62

v Y Z

L

lE’r;l]ReVIew RuleSet —————{_»[_ Edit RuleSet ‘—I_;j Add Rule
“_—I _7:|

N\

Y
I

View Rule

Edit Rule

63

FIG 6

Y

L - 'Data Hierarchy 1

[:'—I: Navigation

64




70

7132

RuleSet Execution/
j Estimation Queue

2\

45

67
57

Rule Operations

M

Rack Price
Rule Enigine

RuleSet
Operations

==
=

—

RuleSet API

/

Price & Vol
Data

L

- r) XML
...... Supply Daily B Conversion
% Data
L XML T 73
Conversion 74
72
L_]— Datab Vol Data
atabase —
— A — 49
5 - \<____- \
71 \\\ 76

N
ﬁ . A Export Daily

] Prices

Prices to
Implement

/

51



79

80

8/32

Web chent

RackPrice
Webserver

—=

Data client

'
i
1
'
'

Web-services |

Rule Engine

55
/45
JMS
RackPrice Rule | 1
T ™ Engine
78 \ \
-
— Web-services
=

52

Data client

FIG9

77

Scheduling

Data import and 32
export i
RuleSet
calculation :
LT

- - \:\\

83



9/32

84

5

ImportWs

putRackPrices()
putVolumes()
putSpotPrices()

Importer

87 88

RackPricelmporter Volumelmporter SpotPricelmporter

FIG 10A

90
_—

—
<

O

ExportWs

getPricesTolmplement()

91

ExportWsEJB

B '-P}lceEcporter

FIG 10B



P
'
'
'
'
H

o

Import

10/

startimportService()

startimportService()
stoplmportService()
runDataValidationNow()
runDemandEstimationNow()
runPriceGenerationNow()

32

/93

engineQueue -

[ ImportEJB
ejbTimeout()
scheduleNextimport()
96 97
import ImportEJB | tmer Timer | JMSQueue
startTimer() o
P ejbTimeout()
Process
Message() o
scheduleNextimport()
] |
startTimer()
P ejbTimeout()
Message() .
b e L] .ru




11/32

- Export

o0 i
Export
startExportService()
stopExportService()
runExportNow()
99
ExportEJB
ejbTimeout()
scheduleNextExport()
95 101 107
client Clent export . ExportEJB timer Timer
i startExportService) |
startTimer() .
ejbTimeout()
~_scheduleNextExport()
startTimer()
L e/bTimeout()
H




12/32

F MarléetDaféVaIldatldf-\'huleSet )

165
EngineEJB
onMessage
R ge0 103
RuIeSet__-_ -
name String
focus Entity
constructor()
166 constructRuleSetData()
e /? populateRuleSetData()
//’ saveRuleSetData()
ParameteriseEJB runRules()
parameternise()
saveTransientOutput()
onMessage() deleteTransientOutput()
__________ _ populateParameteriseData()
/ﬁ
d B
/104 105 ; 106
DataVahdationRuleSet o DemandEs_hmatlonRuleSet_ ....... P rlceGenérahonRuleSet
A A A
107 5 108 ? 109

L - ]

MarketDé;\andEstlmatlonRule-Se't'

MarketPriceGenerationRuleSet




13/32

RuleSet
103
name . String
focus Entity
constructor()
constructRuleSetData()
populateRuleSetData()
saveRuleSetData()
runRules()
parameterise()
saveTransientOutput()
deleteTransientOutput()
populateParameteriseData()
110 111
_ _.
Rulelmplementation -~ RuleSetData
run() pointersToValues()
parametense() valuesWithPointers()
0.n 01
2 118
~ " prO "
112
! 119
Rule 120
0 n
setinputs()
getOutputs() DataPointer Fn - Entity o
run() topLevelName Strin myName String 1
getinputDTO() lopteve 9 myType _String
getOutputDTO() L
parametense() On
- 01 _on 4
RuleReturn RuleSetTransient -
113
115 116 117 \\\
N e - e —

Alarm Fallure DenvedQuantlty- "




HashMap

121

14/32

o
RuleSetData -
pointersToValues()
valuesWithPointers()
1
1n 122
LinkedList
0. 1 120
1n
Entity
M| myName String
myType String
1
o Elasticities
125
1
1n
,_,J Elasticity
13—

- CrossElasticity

132

[

124
EntityData
126
Values

0.1
127 130

0n

> BasicValue QualityFlag

DateVa]ue

/

T~-128

CumulativeValue

129




setinputs()
getOutputs()
run()
getlnputDTO()
getOutputDTO()
parametense()

15/32

133

FlatPriceValidationRule

VahdationRule

ValueGTValidationRule

134

ValuelL TValidationRule

IndexPerformanceToday

ManagementRule

’ .IndexPerformanceToDate

Indexf;fgetGeneratlonRule

MarginTargetGenerationRule

PricePredictionRule

135 /
— GenerationRule V'\(
<P
_ _ ] h T~
~
136
Prednctnc}nRL:le __td—-—
i '
137
Optlrr'{llzatlbﬁi?ule KF——

MonthlyOptimizationRule

138

ElasticityEstimateRule

CopyElasticityEstimationRule

139

140

141

142

143

144

145

146

147

148



16/32

153
/

149
RuleSetData —
151 150
S LinkedLst LinkedList |
key = SP key = RP
152 Entity Entity
T myType = A myType = A
nyName = 1 myName =2
154 155
Entity
\ myType = B /
myName = 1
156 ~ Entity Entity 157
myType=C myType =C —
myName = 1 myName = 2
158~ Entity Entity 159
myType =D myType =D -
myName = 1 myName = 2




17/32

DataPotnter 160
topLevelName = —
RP
Entity 161
myType = A "
myName = 1

4
Entity 162
myType = B —
myName = 1
Entity 163
myType =C —
myName = 2

4
Entity __-164
myType =D -
myName = 2

FIG 19A



18/32

RuleSetData

149a
/

151a
\ LinkedList

key = SP

150a
LinkedList /

key = RP

152a Entity
T~ myType = Product
nyName = ULR

Entity
myType = Product
myName = Gasoline

153a
/

154a
S [Entty Entity 1552
myType = Market myType = Market
myName = Dallas myName = El Paso
Entity Entity
156a\ myType = myType = ///,,/-157a
Competitor Competitor
myName = Shell myName = BP
158a. Entity Entity
S| myType = myType = 159
Channel Channel
myName = myName =
Branded Unbranded




19/32

" ndinowaisuelanes
! W [] <
D_ - ' ] ()eleiags|nyanes
m (sssuiodypasaniena !
()sindinQieb .
Ouni :
| e
D_ _ | (or@)sindupes
: ()senjeaa siapuiod
m m w (uns
m i ()sainyuni
 (eleqiesainyaiendod
- (Ondinojuaisuel | sya(ap _
m m w L - “
| m : ; (Jopnisuo)
| w w m < _
i ; | i h ()ebessapuo
elegiasany uonejuswsajdwaln 19g3|nyuonepieAe} }
! Iny uonepieAeleQINEN | anandSINP
ejep ey 8 jdwajns 1eg9|ns gr3suibuz qpw ananpssaoord
oLL Ll 691 891 191




20/32

t S1
Select Market
A’l S2 S4
Display Rule Sets Select Rule Set
S3 y S5
Select Activity Select Activity
y
s7 56
DELETE Activity? EXIT
ADD
EDIT
S8
Get Name
Delete
Archive
L
j__—__. -
] , ¢
- -———————— Dhsplay Rule Set
f S12
Select Rule y S11
I 31 3 Select Action
I
Select Action
Delete Archive  ———— . o
. L
S20
Y s
DELETE
Display Rule  [¢— ~——o EDIT Action >——

SUBMIT 7
ADD -
l s21 l s25 $15 y st

Edit Values Confirm Date Pre;;_ent Rule Configure Rule FIG 22
ypes
- v S26 v s16 y s s19
S22
Select Rule Type . L ) o
Update And Rule Name Specify Order Confirm >
Update Screen B

- L L.
LI . - e . .




21/32

174 175 172 173

emet Explorer

3 hitp:/ flocathost:8080/ RackPr

Bl Y i, il et
{@) htip./flocathost:8080/RackPnckWebjworkbencHiAnatyst.do

/" KSS

RackPrice

Data Validation Alerts
Opis Scenaro DV RuleSet - Dallas @

EL_PASO Demand Estimation Alerts

All Markets
All Rule Sets for your Markets Management Alerts
Rule Set T | Execution Statys Parom Opis Scenanic MG RuleSet - Dallas @ #

Opis Scenario PG RuleSet - Dallas Mot Yet Impiemented  Fail
Opis Scenario MG RuleSet - Dall. . Not Yet Implemented  Fail
Opis Scenaria DV RuleSet - Daflas Not Yet Implemented  Fall
Opis Scenario DE RuleSet - Dallas Mot Yet Implemented  Fail
Scenario Alerts

BUCI dummy mgmt ruleset Test Fall
Opis Scenano PG RujeSet - Dalias @

R Price Generation Alerts
Favorites

Create RuleSe!] Heat Map ] "~ Reponts - }

Ebope T

176 177 178 179 180

FIG 22A



22/32

181

Mo IR Vew Fovorkes Yook Hilp

N Y YN — ST S

T35 41 . flocabes et

s

+ KSS

Baghfrice

Create Now Rule Set

Name [ Scenano P Kiiacet Balnmars ~ \
Type Pice cereration 182

Merket pailas %
5

Cheagn

183

184
185

ooy e . - . o e e

FIG 22B



Dﬂhm“b

Q- © B Pty .58 B8 T

23/32

188 186

187

TYpE" {price Gene-avon _ \

| Marker laatimors
i
|
i
i

'l'ﬁ"' | @) crpatorcoee wfoctioctuietet. moty ol
| e &
E Preduct Typesa i “
| PceTyee . i
| Chanoek 2L o Recklroce
|
e
s s e ———
Lo T R e - Edit Rule Sot
o data found:
—
Neme 3 scenana PG Suleset Baumare_ N T

195\

1945

196
N,

193 — oy

o= \

Quycomuter &

192 1 97

190 189

FIG 22C

191




24/32

200 199 198

0= -0 R @O Ormifwm 0.2 5
o 5ve lg] bt focabont: 00608

i) : e ity b | -

\ — 7

"B

}E
iv;L.’z ise

Name sy Aaded Pule \

Tepe Differartial Gersraton ¥
@3t

Margin Target Ganeratio
[Rounding Ganarhon
InGex Performarcs Today
[Marpm Pertormance Today

FIG 22D



25/32

202 186

1o TR Mew fvomes Tk [eb

0= 0 REG P hmn @2 B B-UA -
1 s o]

I e o=

i T KSS

Charnel A.Lﬂi RockPrise

Edit Rule Set

Nems s sinireie v

Type: ‘rce Gereraton

Market: i by e

192

FIG 22E



26/32

214 205 204 203

| PriceTypaiay aKss

Ldit Rule

. [/
Ty fdded e . f

TYPE Tarzet Indsx Gonerano -

Offfereatial ‘Output |
hame  ouT_pRICE I
Dae  Tomerruns
typs pricas te |
Progut REF UL 87 !
typ2 H
Chawt B !

I

\\\

AN

208 209 21 1 21 8 220

B #y compity

206 210 219 221

FIG 22F



27132

224 225 223

T Generation Analyst Riciewsd! Inferont Explare

o \mﬁa.@w*m eBeE UE
o B

Product Type:(REF 87 aff =
Price Type: ar|

Channel a0 F !“...S—Lf-——ﬂ’ L

Preacted Prices

D [ Ra N 7 i@
@ 8
& 2 Predcor :
$ 3 redaemon ] ! 5]
T
4 PredcITGO areo B . [}
Sl ;“‘ cop ] REF 187 20523 1 9964 E 0056 -0013
_%_5 Setfr R [ 77, owamonosH 8 REF UL &7 20862 2021 [ 0M5 00040
.6 Setunrur 8 FNa ] REF L8 87 21112 -
¥ 9 FANMA u REF L B7 2175
._,7 Pred AVERAGE B 10 FINTHSRS U REF L 87 2079 B
& s pred u Select (View][Ed)
§ s e
8 0 St LUndr 152 Implemented Prices
€ 1 Temmiszuy (o T Pkt Ty Ak s el Qo
l KSSOLCO B REF AL 67 ® 20 2.0087 E 0009 0083
2 Kkssonco U REFUE? O 20 1907 & o012 oo
&
o]
o RSN T .

226

FIG 22G



28/32

Predicted Change A

Prediction,

Prediction,,

FIG 23A



29/32

233

235

PricePoint

103%22

232

Bia-25
251615

o

@

Q‘ I L n
fon

s i

W

9

15100
081003
031003 °
03tc09
08t 16 .

SR T T LI

==Y =Y=E=]~

B

-4

161023,
23to34
34089

GSoo
[ BN

19502

aws yerreny one2d 0 e o

vt b g s e

VPR

p—

?“ .

frow s R e e R o
» * .

] b

m T " ‘e e

= [ S

Sl v

Ol ey 7
Y= A=)
oo o
r228c
Sgmmn g

TR0

oo
y

171024
24t08

121017 +u

oy

4

]
=

2%

205+0

230

2317

Dir_Ind

234

FIG 24



JReport - Mictosoft Internet Explorer

i

30/32

KSS

RackPrice

7 A O A AT, SRR

40 0706651€

10 106629696

0 1069417y

0 112310804

0 118811565

@ 10600379

0 1001€549

0 .041278¢

0 UB6ICTI3I4

0 066102924

Rack
Margin

Fztoz2

0 0A5SE7505

0 10412761

o 09745086

7 0887436

0 100062504

BN_Example_Trained_Model

o
Price Move

Ldtoz D

b 03592983
!

20t330

b.040564873'

30tod 0 r

0 0422092423

%2t a ]

b 045327928,

gil]t 60 r

0 0378875

botw70

40 05987842

70t0&0

0 040367167,

Botmon

;
003533932 |

10 0567040375

0 042043354]

) 04520125

) 16416008

0 046265204

1d 0to 150 I

) 038341004,

o 054151542,

oy
die, R

EiR

S

FIG 24A




31/32

SI0NYG'R LL'G 9P ¥6'E LS'E €6C LG

L It

4

Lyl

ulg

Ly

It

2922 €0°Z v2°1 05°L 81°L 89°0 680 90°0 G2'0-29 0- 16 0-0€"L- LG’ L-V6'L-¥2'2- 9 2-96'2-6€ €-6. €-vE v-22'G-9t 8L~

v H i
| L NI NILE L
|

=_.— e 0

- 001
T 002
T 00t
0ov
00s

009

sjuiod e}ed ¥N ¥6 - | Jo1adwon

004

Aouanbaig




32/32

9¢ Old

92’9 1E'G LL'Y L'V €8'E€ ZTE'E €62 8SZ SZ'T LL'L €F'L ¥O') §8°0 2€°0 90°0 ¥E'0-0L°0-V0'L-EE"L-CL b-11'2-067C-68'C '€ L9 £-CE ¥-98'V-01'9-16 6°

pyon oy

uig

R R PSR L sy

L
i § —_ T 1 —

-.-— Tt -—— i _ —-_

T

.—_’ . —.

1 ——.

_._..-__._ .._:_ __._ T

sjuiod e}jad ¥N LSl - Z Joyadwo)

0

0s

00t

0sl

002

0s¢

Kouanbaui4



1 2430772

USER INTERFACE METHOD AND APPARATUS

The present invention relates to a computer implemented method for displaying
values for an output variable. The invention also relates to a method for configuring a
rule, the rule being configured to process input data and to generate output data. The

invention additionally relates to a method of generating a price estimate.

In many industries, commercial organisations have to determine prices at which their
products are to be sold. Determination of such prices will need to take into account
various factors. For example, a particular commercial organisation may wish to
ensure that its prices are within a predetermined limit of a particular competitors
prices. Similarly, a commercial organisation may wish to ensure that a particular
constraint is applied such that prices of different products sold by that organisation

have a predetermined relationship with one another.

A particular industry in which prices need to be determined is the wholesale fuel
industry. In particular, it is necessary to determine so called “rack prices” at which
fuel is to be sold at oil terminals. It is at this stage that ownership of oil is transferred
from a wholesaler to secondary distributors. Accordingly, the rack price is the price
paid by the secondary distributors to the wholesaler. The rack price charged by a
particular wholesaler, will be determined by a number of different parameters. For
example, prices charged by the wholesaler’s competitors are likely to need to be taken
into account, as are prices of various other products sold by that wholesaler.
Typically, a plurality of wholesalers operate at a particular market or “rack”
comprising a plurality of terminals, and prices charged by different operators at a
particular rack will routinely need to be taken into account. Additionally, prices
charged at different racks within a particular region may also need to be taken into

account.

Traditionally, prices at which fuel wholesalers sell fuel have been determined by
highly skilled pricing analysts who have mentally collated and processed data

representing various paramcters which need to be taken into account. Having carried



out this processing, analysts can typically determine rack pricing, often convening at a

meeting at which a plurality of pricing analysts make various strategy decisions.

Although such a mechanism for determining rack pricing has been used for a number
of years, it has a number of disadvantages. For example the method requires that a
large number of highly skilled pricing analysts are always available to make the
necessary pricing decisions by mentally processing the necessary data. This problem
is exasperated given that prices are usually determined on a day by day basis, and
must be determined within a pricing window typically extending from lunch time to

the end of a working day.

Additionally, although the method described above has been used for a number of
years, it is difficult for pricing analysts to effectively take all necessary factors into
account, and indeed the subjective assessment carried out by pricing analysts cannot
be subjected to rigorous analysis. For example pricing analysts will often find it
difficult to determine price strategies employed by competitors, these strategies being
important so as to ensure that a price selected for a particular wholesalers products has

a predetermined relationship with prices of competitor products.

It is an object of the present invention o obviate or mitigate at least some of the

problems set out above.

According to the present invention, there is provided a computer implemented method
for displaying values for an output variable, the method comprising, displaying a first
user interface element configured to present values of a first input variable, displaying
a second user interface element configured to present values of a second input
variable, displaying a third user interface clement configured to present values of an
output variable, said output variable varying in dependence upon said first and second
input variables, receiving first user input of a value for said first variable via said first
user interface element, receiving second user input of a value for said second variable

via said second user interface element, and updating said third user interface element



to indicate at least one value of said output variable in response to said first user input

and said second user input.

According to the present invention there is also provided a method for configuring a
rule, said rule being configured to process input data to generate output data, the
method comprising: identifying an object associated with said rule, said object
defining at least one parameter for said rule, presenting a user interface configured to
receive rule configuration input data, receiving configuration input data, and updating
said at least one parameter of said object based upon said configuration input data,

said updating causing configuration of said rule.

The invention also provides a method of generating a price estimate, the method
comprising: generating a price prediction based upon first data, reading historical data
based upon said price prediction, said historical data indicating historical price data
related to said price prediction, and updating said price prediction in response to said

historical data to generate said price estimate.

According to a further aspect of the present invention, there is provided a method of
generating output data, the method comprising: storing a plurality of objects, each of
said objects comprising at least one identification parameter identifying a property of
data associated with a respective object, storing a rule configured to operate on input
data to generate said output data, said rule identifying an object of said plurality of
objects using at least one identification parameter, and executing said rule to generate
said output data, wherein executing said rule comprises reading data associated with
said identified object, and obtaining said input data using data associated with said

identified object.

The invention also provides a computer-implemented method for generating
wholesale oil price data, the method comprising: defining a plurality of rules
configured to exccute on input data to generate output data, said input data
representing data affecting said wholesale oil prices, executing said rules to generate

wholesale oil prices.



It will be appreciated that aspects of the invention can be implemented in a wide
range of forms. Such forms include, but are not limited to methods, apparatus,
systems, devices, computer programs, and suitable carrier media such as CD-ROMs,

floppy disks, and communication lines.

Embodiments of the present invention will now be described, by way of example,

with reference to the accompanying drawings, in which:

Figure 1 is a schematic illustration of a fuel distribution scenario to which the present

invention may be applied,

Figures 2 and 3 are schematic illustrations of prior art processes used to determine

pricing at oil terminals shown in Figure 1;

Figure 4 is a schematic illustration of processing carried out by an embodiment of the

invention;

Figure 5 is a schematic illustration of components used to implement the embodiment

of the present invention shown in Figure 4;

Figure 6 is a schematic illustration showing components making up the web server of

Figure 5;

Figure 7 1s a schematic illustration showing components making up the Rule Engine

of Figure 5;

Figure 8 is a schematic illustration of an architecture used to implement the present

invention;

Figure 9 is a schematic illustration showing an architecture for the Rule Engine of

Figure 8;



Figures 10A and 10B are class diagrams showing web services exposed by the Rule

Engine of Figure 9 to allow data import and export;

Figure 11 is a schematic illustration showing a webservice exposed by the Rule

Engine of Figure 9 to allow import scheduling;
Figure 12 is a sequence diagram showing operation of the class shown in Figure 11;

Figure 13 is a class diagram showing a webservice exposed by the Rule Engine of

Figure 9 to allow export scheduling;

Figure 14 is a sequence diagram showing operation of the class shown in Figure 13 in

further detail;

Figure 15 is a class diagram showing a hierarchy of classes used to implement a rule

set in the Rule Engine of Figure 9;

Figure 16 is a class diagram showing classes having relationships with the RuleSet

class of Figure 15;

Figure 17 is a class diagram showing classes having relationships with the

RuleSetData class of Figure 15;
Figure 18 is a class diagram showing a partial rule hierarchy;

Figure 19 is an object diagram showing a data structure suitable for use by rules in an

embodiment of the present invention;

Figure 19A is an object diagram of objects used to navigate the data structure of

Figure 19;



Figure 20 is an object diagram showing a data structure storing data suitable for use

by rules in an embodiment of the present invention.
Figure 21 is a sequence diagram representing execution of a rule set;

Figure 22 is a flowchart of a process for configuring a rule set represented by

instances of classes shown in Figure 16;

Figures 22A to 22G are screenshots taken from a graphical user interface (GUI)

configured to implement the process of Figure 22,

Figure 23 and 23A are schematic illustrations of an historical data set used in an

embodiment of the present invention;

Figures 24 and 24A are screenshots taken from a data manipulation module provided

by the present invention; and

Figures 25 and 26 are graphs showing data manipulated by an embodiment of the

present invention.

Referring first to Figure 1, a fuel distribution infrastructure is illustrated. As 1s
conventional, fuel is distributed from a market 1 at which two fuel wholesalers offer
fuel for sale from respective terminals 2, 3. The fuel wholesaler operating the terminal
2 receives fuel and uses a process 4 to separate different fuel products including a
gasoline product 5 and a distillate product 6 received from a pipeline. The gasoline
product 5 comprises unleaded road fuel and comprises three grades of such fuel,
namely regular, mid and premium. Again, the process 4 operates as a “switch” to
ensure that different products are kept separate. In general terms, the process 4 is
configured in accordance with fuel expected to be delivered through the pipeline at
various times so as to route fuel into appropriate tanks. It should be noted that at
“gwitch over” some fuel may be mixed, and such mixed fuel is discarded. The

distillate product 6 has broad commercial use including in on road trucking, home



heating, jet transportation and off road stationary applications such as agriculture. The
distillate product 6 comprises four distinct products namely two low sulphur products,
a jet transportation product and a high sulphur product. Again, these products are kept
separate by the process 4. The fuel wholesaler 3 operating at the terminal 1 similarly
operates a process 7 to keep different fuel products separate and again generates

gasoline product 8 and distillate product 9.

At a geographically distinct location, a further market 10 operates. At this market, two
fuel wholesalers offer fuel for sale from terminals 11, 12. The fuel wholesalers
operating at the market 10 may be the same as or different from the fuel wholesalers
operating at the market 1. The fuel wholesaler operating the terminal 11 again
operates a process 13 to separate various gasoline products 14 and various distillate
products 15. The fuel wholesaler operating the terminal 12 operates a process 16 to

separate various gasoline products 17 and various distillate products 18.

The fuel wholesalers operating the terminals 2, 3, 11, 12 sell fuel to customers who
typically take physical delivery of the fuel in road tankers. Customers of the fuel
typically own a fleet of such tankers and/or a network of filling stations. Contracts
between the fuel wholesalers operating the terminals 2, 3, 11, 12 and their customers
can take a variety of forms. However, in general terms the contracts can either be such
that the price paid by a customer is determined in advance or determined on a day to
day basis. When prices are determined in advance, they are typically based upon a
predetermined index linked either to previous prices or to spot fuel prices. Prices
determined on a day to day basis are typically calculated by the fuel wholesalers

operating the terminals 2, 3, 11, 12 on the basis of various factors.

As shown in Figure 1, the customers typically operate fuel tankers 19, 20, 21, 22. As
indicated above, operators of the fuel tankers 19, 20, 21, 22 may operate a fleet of
filling stations such that, for example, the fuel tanker 19 may deliver fuel only to
filling stations owned by its operator. However, in general terms the fuel tankers 19,
20, 21, 22 deliver fuel to filling stations 23 as well as other fuel consumers which are

not shown.



As described above, fuel wholesalers need to determine prices at which fuel is to be
sold. It is important that this process is carried out efficiently, given that processing
must be carried out between generation of estimates at midday, and a deadline for

posting prices for the next working day.

In one known system for determining prices, two complimentary processes are carried
out. A first process shown in Figure 2 is used to determine a pricing strategy for an
area comprising a plurality of terminals operated by a particular wholesaler. A second
process shown in Figure 3 determines actual prices for a particular terminal within
that area. That is, the process of Figure 3 is carried out for each terminal within the

area individually.

Referring first to Figure 2, trading data 24 and data 25 taken from appropriate in
house systems operated by the fuel wholesaler is processed to generate a report 26.
This report brings together pertinent data to assist pricing analysts in making pricing
decisions for a particular area. The report 26 is used together with further data 27
taken from in the house systems at a meeting of pricing analysts 28. This meeting
generates an average target price move 29 which terminals within the area should

seek to achieve.

In further detail, the trading data 24 is generated by traders and comprises actual mid-
day spot price data, as well as estimates of closing spot price and spot price change as
compared with the previous working day, the change computed on the basis of the
estimate of closing spot price. The data 25 comprises various average data taken from
across the area of interest. This data includes an average margin based upon the mid-
day spot price, an average spread between branded and unbranded fuel price, as well
as data comparing current prices with current competitor prices. Based upon the
trading data 24 and the data 25, the report 26 comprises four major data items. These
are an estimate in spot price variation as compared to the previous day, an estimated

profit margin based upon the closing estimate of spot price, an average spread



between branded and unbranded prices, and data indicating comparison with a

competitor’s prices.

As described, the report 26 is used alongside further data 27 at a meeting 28 in which
skilled pricing analysts determine a desired average price move. The data 27
comprises data indicating area inventory issues, current large discounts which the

wholesaler is offering, and any issues relating to the wholesaler’s large customers.

Thus, it can be seen that to determine an area pricing strategy using the processing of

Figure 2 requires a meeting to be convened at which data is manually processed by

skilled individuals.

Referring to Figure 3, it can be seen that the data 29 generated by the meeting 28 of
Figure 2 is used to determine a price for a particular terminal. The data 29 is used
alongside data 30 which indicates competitor price details. An analyst coliates the
data 29, the data 30 and various other strategic parameters which need to be taken into
account (denoted 31 in Figure 3). The collated information is then reconciled by the

analyst (denoted 32) to generate price 33 data for a particular terminal.

Thus, it can be seen that using the prior art processes of Figures 2 and 3 price data for
a particular terminal is generated. However, the generation of this data requires a
meeting of skilled analysts, and considerable manual and mental data collation and

reconciliation activities by analysts to determine the output price data 33.

Embodiments of the present invention are concerned with providing computer
implemented methods for aiding operators of fuel terminals in making pricing
decisions. Figure 4 schematically illustrates high-level processing carried out by a

computer in an embodiment of the present invention.

Referring to Figure 4, it can be seen that a data engine 35 takes various data as input,
and generates various data as output. Specifically, the engine 35 takes as input daily

competitor price data 36 which, obtained from a commercial source, and estimated



10

closing market prices 37 which are input manually or from an appropriate external
system. As can be seen, the estimated closing market prices 37 are generated by an
analyst on the basis of actual price data 38, indicating actual closing prices for the
previous day. The data engine 35 makes use of predefined rules, constraints, and
exception management 39 to use the described input data to generate output data. The
output data comprises recommended price data 40, generated by the data engine 35
using pricing rules 39. Additionally, the data engine 35 provides output data 41 which
can be used to predict competitor price changes, and to understand competitor pricing
policies. Data 42 is generated indicating constraints which are specified by the data 39
but which are not satisfied by the recommended price 40. Reports 43 are also

generated by the data engine 35.

It can further be seen that the recommended price data 40 is output to a module 44
which links to an Enterprise Resource Planning (ERP) system. Such systems provide
various business management functions such as stock control, purchasing, and

procurement functions. Suitable systems include SAP and JDE.

Having described high level processing carried out by an embodiment of the present
invention, components used to implement the invention are now described wth
reference to Figure 5. It can be seen that a rule engine 45 is provided which
communicates with other components and processes various data. As is described in
further detail below, the rule engine applies rules to input data to generate output data.
Indeed, it can be scen that rule engine 45 receives data from a price data source 40,
which is provided in an appropriately formatted file 47 specified in the extensible
markup language (XML). The rule engine 45 also receives data from a volume data
source 48 in the form of an appropriate XML file 49. The rule engine 45 outputs
generated data to an ERP system 50 in a file 51 adhereing to a predetermined file
format. The rule engine 45 also communicates with a database 52 which stores
pertinent data. The database 52 in turn communicates with a data warehouse 53
storing data input to and generated by the rule engine 45. Data is passed been the

database 52 and the data warehouse in the form of appropriate files 54.



11

The rule engine 45 is configured so as to allow access from computers connected to a
computer network. Therefore, the rule engine 45 is connected to a webserver 55,
which in turn communicates with an appropriate client web browser 56. In this way, a
user of the client web browser 56 can use an API 57 provided the rule engine 45 to
modify and interrogate rules used by the rule engine 45. This is described in further

detail below. The client web browser 56 can also access the Data warehouse 53

Referring now to Figure 6, software components of the web server 55 used to enable
review and editing of rules are shown at a high level. A login component 58 provides
user authentication functionality. A workbench component 59 provides various user-
selectable functionality. From the workbench component 59 a user can use a selection
component 60 to select a rule set, and from the selection component 60, a rule set can
be edited using a edit component 61. From the edit component 61, an add component
62 can be used to add a rule to the edited rule set. From either the edit component 61
or the add component 62 a component 63 can be used to edit a selected rule. The
editing process may also involve navigation of an appropriate data hierarchy using a
navigation component 64. From either the workbench component 59 or the selection
component 60, a review component 65 can be selected to review a rule set. From the
review component 65, the edit component 61 can be used to edit a rule set as
described above. Additionally, from the review component 65 a view component 66

can be used to view a rule of the rule set of interest.

Thus, from the description of Figure 6, it can be seen that the web server 55 provides
various components which allow a rule set associated with the rule engine 45 to be

viewed, configured and edited by a user.

Figure 7 shows software components used to implement the rule engine 45 of Figure
5 It can be seen that the rule set API 57 described with reference to Figure 5
communicates with a rule engine component 67. The API 57 provides an interface
between the web server 55 and components of the rule engine 48 described below. In
all cases, calls are made to functions provided by the API 57 and these calls are

passed to the rule engine components 67. The rule engine component in turn



12

communicates with various components of the rule engine 45. In particular, the rule
engine component 67 communicates with an execution component 68 which is
configured to apply particular rules of particular rule sets to input data so as to
generate output data. Additionally, the rule engine component 67 communicates with
a rule set operations component 69. The rule set operations component 69 is
configured to carry out various review and modification operations on rule sets. It can
be seen that the rule set operations component 69 itself communicates with the
execution components 68. The rule set operations component 69 also communicates
with a rule operations component 70 which is configured to carry out review and
modification operations on individual rules of individual rule sets. That is, while the
rules set operations component 69 is concerned with operating on a set of rules,
operations on rules within rule sets are carried out by the rule operations component

70.

It will be appreciated that in order to carry out operations on particular rule sets, the
rule set operations component 69 needs to access the database 52 shown in Figure 5.
This is achieved by the use of a database helper component 71 which provides
methods to allow communication between the rule set operations component 69 and
the database 52. Additionally, the rule engine component 67 communicates with a
supply daily data component 72. The supply daily data component 72 is configured to
receive input data and provide that data to the database 52. More specifically, price
data 47 is received in XML format, and converted into an internal format by means of
an XML conversion component 73. The converted data is then provided to the supply
daily data component 72, from where it is passed to the database helper component
71, and in turn to the database 52. Similarly, volume data 49 is received by the rule
engine 45 in XML format, and converted into an internal format by means of an XML
conversion component 74. The received data is then provided to the supply daily data
component 72 from where it is provided to the database helper component 71, before
being passed to the database 52. Having described the manner in which data input to
the rules engine is handled, it will be appreciated that it is similarly necessary to
handle data to be output from the rule engine, in particular the price data 51 (Figure

5). It can be seen that the rule engine component 67 communicates with an export



13

daily prices component 75. When data is to be exported, the rule engine 67
communicates with the export daily prices component 75, which in turn retrieves
appropriate data from the database 52 making use of the database helper component
71. Having retrieved appropriate data from the database 57, the export daily prices
component 75 passes this data to an XML conversion component 76. The XML
conversion component 76 is configured to convert data received in an internal format
into an XML format of predetermined structure. In this way, the XML conversion
component 76 converts the data received from the export daily prices component 75

into the output price data 51 in XML form.

Having described logical components of an embodiment of the invention, and having
described logical components of the rule engine and the web server in further detail, a
distributed architecture for implementing described embodiments of the invention is
now described with reference to Figures 8 and 9. Referring first to Figure 8, it can be
seen that the rule engine 45 runs on a rule engine server 77, while the web server 55
runs on a web server 78. As described above, the web server and rule engine
communicate with one another. In a preferred embodiment of the present invention,
the Java programming language and associated libraries are used to implement the
invention and the Java messaging system (JMS) is used to enable communication
between the web server 55 and the rule engine 45. Both the web server 55 and the rule
engine 45 make use of the database 52, and accordingly the rule engine server 77 and
the web server 78 are provided with communications links to the database 52.
Additionally, the rule engine server 77 communicates with a data client 79 which is
configured to provide data to and receive data from the rule engine 45.
Communication between the data client 79 and the rule engine 45 is achieved by the
rule engine 45 exposing web services which the data client uses for communication.
This is described in further detail below. Additionally, as described above, a web
based interface to the rule engine 45 is provided using the web server component 55
operating on the web server 78. In this way, a web client 80 can view pages provided
by the web server component 55 so as to access the rule engine 45. The web client 80

can therefore intcrrogate and modify rule sets associated with the rule engine 45.



14

Figure 9 shows groups of components of the rule engine 45 in further detail, and it is
with reference to these components that the embodiment is described in further detail
below. Referring to Figure 9 it can be seen that the data client 79 communicates with
data import and export components 81 which are provided by the rule engine 45. The
rule engine also provides scheduling components 82 and rule set calculation
component 83. Both the data import and export components 81, the scheduling
components 82, and the rule set calculation component 83 communicate with the
database 52. As indicated above, communication between the data client 79 and the
data import and export components 81 is carried out using web services provided by
the data import and export component. Figures 10A and 10B show classes configured

to implement these web services.

Referring first to Figure 10A, an import web service 84 provides three methods.
These methods can be called from the data client 79 so as to cause data to be imported
to the rule engine 45. Specifically, the import web service 84 provides a
putRackPrices() method, a putVolumes() method, and a putSpotPrices() method.
These methods are provided by an ImportWsEJB class 85. When one of these
methods is called, an appropriate call is made to an instance of an Importer class 86.
The Importer class 86 itself has three sub classes, and calls made from methods within

the ImportESEJB class 85 in fact target methods of the sub classes.

The Importer class 86 has as a sub class a RackPricelmporter class 87. Functionality
provided by the RackPricelmporter class 87 is used when the putRackPrices() method
provided by the import web service 84 is called. A Volumelmporter class 88 is also a
subclass of the Importer class 86. Functionality provided by the Volumelmporter class
88 is used when the putVolumes() method provided by the import web service 84 is
used. A SpotPricelmporter class 89 is also a subclass of the Importer class 86. The
SpotPriceImporter class 89 is used in response to a call to the putSpotPrices() method

provided by the import web service 84.

Thus, from Figure 10A and the descriptions set out above it can be seen that the

import web service 84 exposes three methods provided by the ImportWsEJB class 85.



15

In response to calls being made to one of these methods an appropriate instance of a
subclass of the Importer class 86 is used. It should be noted that the methods provided
by the import web service 84 allow appropriate XML data to be imported into the rule
engine 45. More particularly, the putRackPrices() method allows an XML file
containing a current day’s actual rack prices, a previous day’s actual spot prices, and a
previous day’s actual crude prices to be imported. This data corresponds to the XML
file 47 of Figure 5. The putVolumes() method enables an XML file containing a
previous day’s actual volumes to be imported. This XML data corresponds to the
XML file 49 of Figure 5. The putSpotPrices() method enables estimated spot prices
and estimated crude prices to be imported by way of an appropriate XML file.

It should be noted that each of the three methods provided by the import web service
84 have restrictions upon their use. In particular, the methods can only be called
within a particular time window each day. This ensures that in operation, prices are
fixed at times as specified by appropriate regulations. Additionally, the methods will
only process an XML file having a time stamp that is the current day’s date, and will

only process XML files conforming to a particular schema.

Having described the import web service 84 exposed by the rule engine 45, an export
web service 90 exposed by the rule engine 45 is now described with reference to
Figure 10B. The export web service 90 exposes a single getPricesTolmplement()
method. This method may be called from the data client 79 so as to obtain price data
calculated by the rule engine 45. The getPricesTolmplement() method is provided by
an ExportWsEJB class 91, and makes use of a PriceExporter class 92 which provides
functionality required to obtain the necessary price data. It should be noted that the
getPricesTolmplement() method is restricted such that it may only be called during a

fixed time each day, again so as to comply with appropriate regulatory requirements.

Referring back to Figure 9, operation of the scheduling components 82 is now
described with reference to Figures 11 to 14. In general, there are two types of
operation which need to be scheduled by the rule engine. A first type of operation

relates to operations performed after data has imported to the rule engine. These



16

operations are scheduled to occur when the window for relevant input closes. Data
validation rule sets are scheduled to execute at the end of the time window for
external systems to import price data via the import web service 84 described above.
Demand estimation rule sets are scheduled to execute at the end of the time window
for external systems to import actual volume data, again using the import web service
84. Price generation rule sets are also scheduled to execute at the end of the time
window for external systems to import today’s estimated spot prices, again, using the

import web service 84.

A second type of operation is performed before data can be exported from the rule
engine. These operations must be scheduled to occur when the window for relevant
export opens. These operations comprise preparing calculated price data for output via

the export web service 90.

The scheduling operations described above are carried out using two timed stateless
session Enterprise Java Beans (EJBs). An import EJB schedules the first type of
operations described above, while an export EJB schedules the second type of
operations described above. Java classes associated with the ImportEJB and the

ExportEJB are now described in further detail.

Referring now to Figure 11, a class diagram for the import EJB is illustrated. It can be
seen that an ImportEJB class 93 is provided, and that an import scheduler web service
94 provides an interface to the ImportEJB class 93. The Import scheduler web service
94 exposes five methods. Although it will be appreciated that different numbers of
methods may be exposed in alternative embodiments of the invention.
StartImportSerive() and stoplmportService() methods respectively start and stop
scheduling associated with import operations. A runDataValidationNow() method
causes data vailidation rules to be applied to received data at the time at which the
method is called. Similarly, a runDemandEstimationNow() method causes demand
estimation rule sets to be applied to received data at the time of the function call. A

runPriceGenerationNow() method similarly applies price generation rule sets to the



17

received data. The ImportEJB class further provides a ejbTimeout() method and a
scheduleNextImport() method.

Operation of the import scheduler web service 94 and the associated ImportEJB class
93 is now described with reference to Figure 12. It can be seen that a Client object 95
associated with a data client 79 (Figure 9) makes a call to the startImportService()
method provided by an Import object 96 which is an instance of the ImportEJB class
93. Upon receiving the startimportService() method call, the Import object 96 starts a
timer 97. It should be noted that the timer 97 is not an object in its own right, rather a
timer associated with the Enterprise Java Bean. The timer 97 causes a call to be made
to the ejbTimeout() method of the Import object 96 after a predetermined time has
elapsed. It should be noted that the ejbTimeout() method is called when the timer 97
times out, and the timeout associated with the timer 97 is set by the Import object 96.
After the call to the ejbTimeout() method is received by the Import object 96 any data
processing operations which are required are carried out. This may include data merge
and other data processing operations. A JMS message is then sent to a message queue
98. This message queue is monitored by rule sets which are to execute in response to
the ejbTimeout(). Thus, the message being sent to the message queue 98 causes
appropriate rule sets to execute. Having transmitted the message to the message queue
98, the Import object 96 calls its scheduleNextImport() method. At a time determined
by the scheduleNextImport() method an appropriate call is to the startTimer() method
which results in a call being made to the ejbTimeout() method as described above. A
further message is then transmitted to the message queue 98, again as described
above. Thus, the call to the startImportService() method causes the Import object 96
to schedule appropriate processing, by appropriately configuring the timeout of the

timer 97.

In addition to the methods described above, it has been indicated that the import
scheduler web service 94 exposes a stoplmportService() method which terminates the

processing illustrated in Figure 12.



18

With regard to other methods exposed by the import scheduler web service 94, the
runDataValidationNow() method creates a timer with an immediate timeout so as to
cause an appropriate message to be sent to the message queue 98 immediately,
thereby causing data validation rules to be applied. Similarly, the
runDemandEstimationNow() method and runPriceGenerationNow() method similarly
causes a timer to be created with an immediate timeout so as to cause the respective
rule sets to be applied immediately. It should be noted that although the processing
caused by the runDataValidationNow(), runDemandEstimationNow()  and
runPriceGenerationNow() methods is similar to that shown in Figure 12, these
methods do not cause a call to be made to the scheduleNextimport() method as

described above.

It was described above that the scheduler components 82 shown in Figure 9 also
included components configured to schedule export operations. Components
configured to provide such scheduling are now described with reference to Figures 13

and 14.

Referring to Figure 13, an ExportEJB class 99 provides an export scheduler web
service 100. The export scheduler web service 100 provides a startExportService()
method, a stopExportService() method and a runExportNow() method. These methods
are described in further detail below. The ExportEJB class 99 additionally provides a
ejbTimeout() method, and a scheduleNextExport() method.

Figure 14 shows opcrations associated with export scheduling. It can be seen that the
Client object 95 in this case calls the startExportService() method provided by an
Export object 101, the Export object 101 being an instance of the ExportEJB class 99.
When the startExportService() method is called, the Export object 101 calls a
startTimer() method associated with a timer 102. The startTimer() mthod configures a
timer having a predetermined timeout, and after expiry of this time, the ejbTimeout()
method associated with the Export object 101 is called. It should be noted that the
startTimer() method is called so as to configure a timer which times out when the

export operation to be scheduled is to take place. Therefore, after the call to the



19

ejbTimeout() method, the Export object 101 performs the required export operation.
Thereafter, the scheduleNextExport() method is called so as to configure the time at
which export operations should next take place. Having determined when export
operations should next take place, the scheduleNextExport() method calls the
startTimer() method associated with the timer 102, and the timer 102 in turn calls the
ejbTimeout() method at the appropriate time. Thus, the timer 102 is configured so as

to cause export operations to be carried out again after a predetermined time.

As was described above, the export web service 100 also provides a
stopExportervice() method which terminates processing of the type shown in Figure
14. Additionally, a runExportNow() method causes a timer to be created with a zero
timeout. This causes the ejbTimout() method to be called immediately, so as to cause
export operations to be carried out upon the call to the runExportNow() method.
Again, it should be noted that a call to the runExportNow() method does not cause

scheduling, so that no further exports are scheduled.

Classes and interfaces used to implement rules used in embodiments of the present
invention are now described with reference to Figures 15 to 20. Referring first to
Figure 15, it can be scen that a Rule set interface 103 is used to represent a set of rules
used in embodiments of the invention. A rule set encapsulates a set of rules, together
with data which those rules consume and produce. Advantages obtained by
associating rules with data are described below. It can be seen from Figure 15 that
there are three types of rule set, each represented by a respective interface which is a
subinterface of the rule set interface 103. Specifically, a DataValidationRuleSet
interface 104 represents sets of rules intended to carry out validation on incoming
data. A DemandEstimationRuleSet interface 105 is used to represent sets of rules
which are intended to estimate elasticity and predict volumes. A
PriceGenerationRuleSet interface 106 is used to represent rule sets which are intended
to predict prices and prices which are to be implemented. It can be seen that the
DataValidationRuleSet interface 104 is implemented by a
MarketDataValidationRuleSet class 107. Similarly, the DemandEstimationRuleSet

interface 105 is implemented by a MarketDemandEsitmationRuleSet class 108 and



20

the PriceGenerationRuleSet  interface 106  is implemented by a
MarketPriceGenerationRuleSet class 109. The MarketDataValidationRuleSet class
107, the MarketDemandEstimationRuleSet 108, and the
MarketPriceGenerationRuleSet  class 109 are used to represent —concrete

implementations of rule sets used in embodiments of the present invention.

Referring to Figure 16, relationships involving the RuleSet interface 103 are now
described. It can be seen that each class implementing the RuleSet interface 103 has
an association with a rule implementation class 110. Similarly, each class
implementing the RuleSet interface 103 has an association with a RuleSetData class
111. In Figure 16, relationships involving the Rulelmplementation class 110 are
illustrated. It can be seen that an instance of the Rulelmplementation class 110 has
relationships with zero or more instances of a Rule class 112. Objects of the Rule
class 112 represent rules within a rule set. It can be seen that the Rule class 112 refers
to a RuleReturn class 113 defining details of values returned by a rule represented as
an instance of the Rule class 112. The RuleReturn class 113 in turn has a relationship
with a RuleSetTransient class 114 which is a superclass of an Alarm class 115, a

Failure class 116 and a DerivedQuantity class 117.

The RuleSetTransient class 114 is used to represent messages returned from execution
of a rule and intended for communication to the user. This class is named “transient”
because data is only stored for a current day. The Alarm class 115 is used to represent
a warning that there was a problem in executing a rule, or with a value used by the
rule. However, it should be noted that the Alarm class 115 is only used when an error
occurs which is not serious enough to cause failure of execution, or to cause the value
calculated by the rule to be flagged as “bad”. In contrast, the Failure class 116 is used
when execution fails, or when a value created by a rule is flagged as “bad”. The
derived quantity class 117 is used for communication of data to the user, but is not

intended for permanent storage in the database.

It can be seen in Figure 16 that an instance of the Rulelmplementation class 110 has a

relationship with two instances of a DTO class 118. One instance of the DTO class



21

118 is used to refer to inputs to the Rule, while the other instance of the DTO class
118 represents outputs from the Rule. Each instance of the DTO class 118 refers to
zero or more instances of a DataPointer class 119. The DataPointer class 119 in turn
refers to an Entity class 120. In general terms, the DataPointer class 119 and the
Entity class 120 are used by an instance of the RuleImplementation class 110 to
identify locations from where data should be read or to which data should be written.

This is described in further detail below.

It was mentioned with reference to Figure 16 that the RuleSet class 103 has a
relationship with the RuleSetData class 111. Classes associated with the RuleSetData
class 111 are now described with reference to Figure 17. It can be seen that the
RuleSetData class 111 is a subclass of a HashMap class 121. The RuleSetData class
111 essentially contains a linked list containing appropriate data. Therefore, the
RuleSetdata class 111 has a relationship with a LinkedList class 122 providing a
linked list data structure. As is conventional, the LinkedList class 122 comprises a
plurality of entities, each being represented as an instance of the Entity class 120.
Each instance of the Entity class 120 has associated data which is represented as an
instance of an Entity data class 124. The Entity data class 124 is a super class for an
Elasticities class 125 and a Values class 126, and data within the LinkedList can be
represented as an instance of the Elasticities class 125 or the Values class 126 as
appropriate, depending upon the data. It can be seen that the values class 126 has a
relationship with a BasicValue class 127, representing a basic value. The BasicValue
class 127 acts as a super class for a DateValue class 128 and a CumulativeValue class
129. The DateValue class 128 and CumulativeValue 129 are used to represent
appropriate values. It can be further be seen that the BasicValue class 127 has

relationship with a QualityFlag class 130.

As described above, the Elasticities class 125 is used to represent entries within the
linked list which represents elasticity data. The Elasticities class 125 has a
relationship with an Elasticity class 131 which is itself a subclass of the BasicValue
class 127. The Elasticity class 131 is itself a superclass for a CrossElasticity class 132

representing cross elasticity data.



22

Referring back to Figure 16, subclasses of the Rule class 112 are now described with
reference to Figure 18. It can be seen that the Rule class 112 is a superclass for six
subclasses. A ValidationRule class 133 is used to represent validation rules, a
ManagementRule class 134 is used to represent management rules, and a
GenerationRule class 135 is used to represent generation rules. Similarly, a
PredictionRule class 136 represents prediction rules, an OptimizationRule class
represents optimisation rules, and an ElasticityEstimationRule class 138 represents
elasticity estimation rules. It will be appreciated that the Rule Class 112 may have

other subclasses which are used to represent other rule types.

The classes of Figure 18 described above are all generic to a particular class of rules.
However Figure 18 also shows some particular implementations of the sub classes of
the Rule class 112. For example, it can be seen that the ValidationRule class 133 is a
superclass for a FlatPriceValidationRule class 139, a ValueGTValidationRule class
140 and a ValueLTVaildationRule class 141. Instances of the subclasses of the
ValidationRule class 133 will represent particular rules which are to be executed on
data. Similarly, the ManagementRule class 134 has as subclasses an
IndexPerformanceToday class 142, and an IndexPerformanceToDate class 143. The
GenerationRule class 135 is a superclass for an IndexTargetGenerationRule class 144
and a MarginTargetGenerationRule class 145. The PredictionRule class 136, the
OptimizationRule class, and the ElasticityEstimationRule class 138 all have a single
illustrated subclass in Figure 18. Specifically, a PricePredictionRule class 146 is a
subclass of the PredictionRule class 136, a MonthlyOptimizationRule class 147 is a
subclass of the OptimizationRule class 137 and a CopyElasticityEstimationRule class
148 is a subclass of the ElasticityEstimationRule class 138. It will be appreciated that
additional subclasses can be provided, either as subclasses of the Rule class 112, or as

subclasses of classes having the Rule class 112 as a parent class.

Having described classes used to implement rule sets in embodiments of the
invention, Figure 19 represents a data structure created using the classes shown in

Figure 17. It can be seen that a RuleSetData object 149 is provided which is an



23

instance of the RuleSetData class 111. The RuleSetData object 149 has two associated
LinkedList objects 150, 151 which are instances of the LinkedList class 122. The
linked list associated with the LinkedList object 151 is not shown in Figure 19,
although entities associated with the linked list of the LinkedList object 150 are
shown in Figure 19. Specifically, it can be seen that the LinkedList object 150 has two
associated Entity objects 152, 153. Each of these Entity objects has suitably
instantiated myType and myName parameters. In turn, the Entity object 152 has links
to entity objects 154, 155, and the Entity object 154 itself has relationships with Entity
objects 156, 157. The Entity object 157 in turn has relationships with an Entity object
158 and an Entity object 159.

Having described an example data structure represented by the classes of Figure 17
with reference to Figure 19, navigation of this data using objects which are instances
of the DataPointer class 119 and the Entity class 120 (Figure 16) is now described
with reference to Figure 20. A DataPointer object 160 has a relationship with an
Entity object 161. The Entity object 161 in turn has a relationship with an Entity
object 162, which in turn has a relationship with an Entity object 163, which in turn
has a relationship with an Entity object 164. Using the DataPointer object 160, and the
Entity objects 161, 162, 163, 164 shown in Figure 20, the linked list data structure of
Figure 19 can be traversed. Specifically, it can be seen that the DataPointer object 160
has an associated topLevelName parameter having a value “RP”. Thus, the
LinkedList object 150 is identified. Having identified the LinkedList object 150, the
Entity object 161 has a myType parameter with a value of “A” and a myName
parameter with a value of “1”. This matches the Entity object 152 of the linked list
data structure and accordingly, the Entity object 152 is selected from the Entity
objects 152, 153. Similarly, given the values of parameters associated with the Entity
object 162, the Entity object 154 is selected in preference to Entity object 155, and
again, similarly, the Entity object 163 selects the Entity object 157 of the linked list of
Figure 19 in place of the Entity object 156. Having selected the Entity object 157, the
values of the Entity object 164 cause selection of the Entity object 159 in preference
to the Entity object 158. Thus, it can be seen that the objects illustrated in Figure 19A

cause a path to be followed through the linked list which is shown in bold lines.



24

Having described an example data structure in general terms with reference to Figures
19 and 19A, a data structure used to store data used by an embodiment of the present
invention is now described with reference to Figure 20. It can be seen that the data
structure of Figure 20 has an identical structure to that of Figure 19, however data
represented by the data structure of Figure 20 is applicable to embodiments of the

invention.

Referring to Figure 20, a RuleSetData object 149a has two linked list objects 150a
and 151a as children. The linked list object 150a is described in further detail in this
example. The linked list object 150a has two child objects 152a, 153a which represent
different products which are to be priced in an embodiment of the invention. Each of
the child objects 152a, 153a has a myType parameter set to “Product”. The child
object 152a has a myName parameter set to “ULR”, while the child object 153a has a
myName parameter set to “Gasoline”. Objects associated with the child object 152a
are described in further detail here. The child object 152a has two child objects 154a,
155a, each having a myType parameter set to “Market”. The child object 154a has a
myName parameter set to “Dallas”, while the child object 155a has a myName
parameter set to “El Paso”. Taking the child object 154a as an example, it can be seen
that it represents data relating to ULR product (given that it is a child of the object
152a described above). Additionally, it represents data relating to the Dallas market

given its own parameter values.

The object 154a has two child objects 156a, 157a, both having a myType parameter
set to “Competitor”. The child object 156a has a myValue parameter set to “Shell”
while the child object 157a has a myValue parameter set to “BP”. Thus, the objects
156a, 157a represent data for different competitors which are to be modelled. The
object 157a has two child objects 158a, 1594, each having a myType parameter set to
channel, thus the myValue parameters of the objects 158a, 159a differentiate between

channels of fuel sold by the competitor “BP”.



25

It will be appreciated that the myType and myValue parameters can be used by a rule
to identify objects of interest as described above with reference to Figures 19 and
19A. Furthermore, having identified objects which are required, the myType and
myValue parameters can be used to query a conventional database (such as an SQL

database) to obtain data values for use by a rule.

From the preceding description, it will be appreciated that the classes of Figure 17,
instantiated as described with reference to Figure 20, provide a convenient mechanism
for representing data upon which a rule is to act. Furthermore, the use of such classes
simply requires a user configuring a rule to have knowledge of the data required, not
knowledge of the underlying data itself which may be “hidden” from a user through
the object based interface. Another advantage of this approach arises because there is
separation from logical rule definition (in terms of data required) and the data itself.
Thus, even if data (e.g. data for a particular competitor) is currently unavailable, it can
still be represented within an object structure of the type described in Figure 20. In
such a case, although a rule is correctly logically defined, its execution will fail
because the database lookup cannot be carried out. However it should be noted that

separation between logical definition and data availability has been achieved.

It should be noted that in Figure 15 the RuleSet class 103 has relationships with an
EngineEJB class 165, and a ParameteriseEJB class 166. In general terms, these

classes 165, 166 trigger use of a Rule set and this is now described with reference to

Figure 21.

Referring to Figure 21, use of a Rule set is triggered by receipt of a message in the
message queue 98. It will be recalled that the schedule operations described above
with reference to Figure 12 cause messages to be placed in the message queue 98.
When a message is received by the message queue 98, an onMessage() function
provided by an mdb object 167 (being an instance of the EngineEJB class 165) is
called. On recept of the call to the onMessage() method, the mdb object 167 calls a
constructor method associated with a ruleset object 168. In the embodiment shown in

Figure 21, the ruleset object 168 is an instance of the MarketDataValidationRuleSet



26

class 107, although it will be appreciated that the processing described with reference
to this class is repeated for both the MarketDemandEstimationRuleSet class 108 and
the MarketPriceGenerationRuleSet class 109. Having called a constructor function
associated with the ruleset object 168, a deleteTransientOutput() method is then called
to delete any transient output associated with the ruleset object. Data associated with
the ruleset is then populated by use of the populateRuleSetData() method, and having
populated data appropriately, a runRules() method is called to cause rules associated

with the ruleset object 168 to be applied.

The rule set object 168 then calls a run() method associated with a Ruleimpl object
169 which is an instance of the RuleImplementation class 110. The Ruleimpl object
169 then cause pointers to appropriate data values to be obtained using a data object
170 which is an instance of the RuleSetData class 111. Having obtained appropriate
pointers to data (by traversing a linked list data structure of the type described above)
the ruleimpl object 169 calls a setInputs method provided by a rule object 171 which
is an instance of the Rule class 112. This provides appropriate data to the rule, and a
run() method is then called by the ruleimpl object 169 so as to cause the rule object
171 to apply the rules. This method call will return a ruleReturn object which is an
instance of the RuleReturn class 113. A getOutput method is then used to obtain
output data from the rule, and output data obtained in this way is provided to the data

object 170 for storage.

Having completed this processing, the mdb object 167 then calls a saveRuleSetData()
method to store outputs of the rules in the database, and a saveTransientOutput()
method stores transient objects created by the rules in the database in a serialised
form. The processing described with reference to Figure 21 has been concerned with
processing of a single rule set and of a single rule within that rule set. It will be

appreciated that similar processing is required for each constituent rule of each rule

set.

The description above referring to Figure 21 has been concerncd with operation of a

rule set. However, it should be noted that before processing Figure 21 can be carried



27

out the Rule Set must be created. This process involves making a call to a constructor
or set data method associated with the Rule set. This method call constructs a
RuleSetData object and its substructures, and fixes data scope of the RuleSet. That is,
data to be associated with the rule is specified, as described further below.
Additionally, before being run, the rule set must be parameterised. Parameterisation of
a rule set is an asynchronous process which is triggered by an object of the
parameterisedEJB class 166 calling a parameterise() method provided by the Rule set
class 103. Having parameterised the rule set, it can be serialised in an XML form and
stored in a database. The stored XML is then retrieved when the rule set is to be

applied.

Reference has been made above to a database from which data is read, and to which
data is written. This database is a relational database comprising a plurality of tables.
Creation and population of such database will be well known to one of ordinary skill

in the art, and is therefore not described in further detail here.

It has been described above that rule sets used in an embodiment of the invention are
represented by instances of the MarketDataValidationRuleSet class 107, the
MarketDemandEstimationRule set class 108, or the MarketPriceGenerationRuleSet
class 109. Details of the way in which these classes are used, and that which 1is
represented by these classes, are now described. Considering first market data
validation rule scts represented by instances of the market data ValidationRuleSet
class 107, these rule sets are in general concerned with validating data relating to a
particular market, where a market is represcnted by a plurality of competing
wholesalers operating at a single terminal of the type shown in Figure 1. A market
data validation rule set will contain all rack prices for a given day at that terminal, the
data identifying product type, competitor and demand/channel combinations at the
terminal. The previous day’s actual spot prices for primary and secondary spot supply
regions containing the market will also be included. Cost data relevant to the terminal
will also be included within the input data. The output data will comprise status flags
on all the current day’s rack prices at the market, and status flags on all the previous

day’s actual spot prices for the primary and secondary spot supply regions containing



28

the terminals. The status flags will indicate whether or not the required input data has
been received. The input data will be arranged with respect to a predetermined
product hierarchy. That is, if a rule is scoped at product type level, then a specific
choice of product type is made and only data items associated with the product type
value are visible. Similarly, if a rule is scoped at product grade level within a
particular product type, then a specific choice of product grade is made and all data
items with product type values within the specified product grade are visible. Market
data validation rule sets will comprise only data validation rules, which are described

in further detail below.

Market price generation rule sets represented by instances of the
MarketPriceGenerationRuleSet class 109 take as input data rack prices for a given day
at that terminal, and all a following day’s predicted rack prices at that terminal. The
previous day’s actual spot prices and the current day’s estimated spot prices will also
be comprised within the input data. Volumes of products sold at that terminal on the
preceding day will also be included, as will predicted volumes for the day being
processed. Other data such as cost data and elasticity estimates is also included within
the input data. The output data will include all the following day’s prices to be
implemented for the wholesaler carrying out the processing, together with predictions
for prices for other wholesalers. The input data scope is arranged in a manner
analogous to that of market data ValidationRuleSets described above. Market price
generation rule sets comprisc price prediction rules, price generation rules, price
generation rules of optimisation type, price validation rules and management rules.

Rules which are described in further detail below.

Market demand estimation rule sets represented by instances of the
MarketDemandEstimationRuleSet class 108 will operate on input data comprising
rack prices for a current day and a previous day. Spot prices for the previous day and
indeed earlier spot prices may also be included within the input data. Volumes of
products sold on the previous day together with elasticity estimates for the previous
day will also be included. Output data will comprise elasticity data and predicted

volume data for the current day.



29

Using instances of the MarketDataValidationRuleSet  class 107,  the
MarketDemandEstimationRuleSet class 108, and the MarketPriceGenerationRuleSet
class 109, users create pricing rules which are to be applied to all products to be
priced at a given terminal or market. When rules are executed, all pricing rules related
to price items at a single terminal will execute in one block in user-specified

sequence.

Having described various rule set types, the rules included within those RuleSets are

now described.

Validation rules are used in two contexts. General data validation is performed on
new sets of actual rack price data and previous day closing spot price data after it is
received. Price validation is performed on generated prices to ensure that price
objectives are met. Although validation rules are used in two contexts, a common

generic structure is used for both contexts.

In general, validation rules return a Boolean value indicating pass or fail. Various
types of validation rules are shown in Table 1, which indicates properties associated

with the various types of rules.

Rule Type Properties

Flat Price Maximum allowed period

Value greater than Limit

Value less than Limit

One day change greater than Limit

One day change less than Limit

Differential greater than Limit and reference value

Differential less than Limit and reference value

One day change in differential greater Limit, current reference value, previous

than reference value

One day change in differential less than Limit, current reference value, previous
reference value

Table 1



30

Price generation rules generate prices at which the wholesaler is to offer products for

sale at a particular terminal. These rules in general return either a price value or an

indication of failure. Table 2 shows the various types of price generation rules.

Rule Type

Inputs

Properties

Index Target rule
(outputs value)

Predicted competitor
prices

Definition of Competitors
and Demand Channels (for
same Product and Area)
making up the index price
Weights to apply to each
price in the index

Targeted Differential to the
index price

Index Constraint rule
(outputs range)

Predicted competitor
prices

As above, but with
Constraint defined as a
Differential to index price

Margin Target rule
(outputs value)

Unit Cost (either spot
plus transport and
terminalling or own cost)

Targeted differential to the
unit cost

Margin Constraint rule
(outputs range)

Unit Cost

As above, but with
Constraint defined as a
Differential to unit cost

Product Differential rule
(outputs value)

Price of reference grade

Differential to reference
grade

Price rounding rule Unrounded price e List of permitted price
(outputs value) points
Default price rule .
(outputs value)
Table 2

Management rules are concerned with performance monitoring and produce a derived

quantity such as a margin or alternatively an alarm or failure condition. An alarm may

be generated if the derived quantity exceeds or is below some predefined limit. Table

3 shows various characteristics of various types of management rules.

Rule Type

Inputs

Properties

Index Performance
Today rule - outputs
deviation today between
own price and index if it
exceeds threshold

o Actual Competitor
prices
e Actual Own price

Definition of Competitors
and Demand Channels (for
same Product and Area)
making up the index price
Weights to apply to each




31

price in the index

Targeted Differential to the
index price

Threshold at which to
report deviation

Index Performance To
Date rule - outputs
running total of (signed)
daily deviation between
own price and index over
reporting period if it
exceeds threshold

Vectors of actual
Competitor prices to
date within reporting
period

Vector of actual Own
price to date within
reporting period
Current day index
within reporting
period

As above

Plus definition of reporting
period (e.g. monthly) and
renewal point (start of
month)

Predictive Performance
Today rule - outputs
deviation between
today’s actual price and
yesterday’s predicted
price, if it exceeds
threshold

Today’s actual price
Yesterday’s
predicted price

Threshold at which to
report deviation

Predictive Performance
To Date rule - outputs
root mean square
deviation between
today’s actual price and
yesterday’s predicted
price over reporting
period, if it exceeds
threshold

Vector of actual
prices to date within
reporting period
Vector of
corresponding
predicted prices to
date within reporting
period

Threshold at which to
report deviation

Margin Performance
Today rule - outputs
deviation today between
actual and target margin
if it exceeds threshold

Today’s actual own
price

Today’s actual own
unit cost (e.g.
yesterday’ spot plus
T&T)

Target margin
Threshold at which to
report deviation

Margin Performance To
Date rule - outputs
deviation between
average daily margin
over reporting period and
target daily margin if it
exceeds threshold

Vector of actual own
price to date within
reporting period
Vector of actual own
unit cost to date
within reporting
period

Target margin
Threshold at which to
report deviation

Table 3




32

Price prediction rules use predictive models to predict competitor prices. When such a
rule is created, a stepwise regression algorithm is invoked to estimate model
parameters, and during use, a price prediction model monitors its predictive ability

using diagnostic statistics, so as to update the stepwise regression model over time.

Elasticity estimation models take as input a current elasticity estimate in the form of a
multivariate prior distribution, a new observation vector of prices, and corresponding
new estimation of volume. As output, such rules generate updated elasticity estimates

in the form of a multivariate posterior distribution.

Price optimisation rules are a specific type of price generation rules. They take a
variety of price data as input, and generate a sequence of optimised prices for an

entire planning period.

Having described both the classes used to implement rules and rule sets, and the use
of various rules and rule sets, configuration of such rules and rule sets is now
described with reference to Figure 22, and Figures 22A to 22G. Figure 22 is a
flowchart of a process for user configuration of rule sets and associated rules, while
Figures 22A to 22G are screenshots of a GUI configured to carry out the processing

of Figure 22.

Referring to Figure 22A, a GUI 172 used to implement early stages of processing
shown in Figure 22 is illustrated. It can be seen that the GUI 172 is web-based being
displayed in a web-browser window 173. The GUI 172 includes a list of markets 174
for which rule sets can specified and modified. At step S1 of Figure 22, a user selects
a market from the list of markets 174 for which rule sets and/or rules are to be
configured. Having selected a market at step S1, at step S2 a set of rule sets associated

with the selected market is displayed to the user in a list 175.

Thereafler, at step S3, a user selects an activity associated with the rule sets displayed
in the list of rule sets 175. Activities are selected using buttons provided in a

favourites area of the GUI 172. Supported activities include addition of a rule set,



33

deletion of a rule set, editing of a rule set, or Exit. Creation, editing and deletion of
rule sets are all accessed using a Create Rule Set button 176, editing and deletion
being possible only when a rule set is selected in the rule set list 175. Accordingly,
processing may pass from step S2 to step S4 where a particular rule set is selected,
and an activity (i.e. editing or deletion of a rule set) is then selected at step S5. The
GUI 172 additionally provides a Heat Map button 177 used to access a heat map (also
known as a tree map) display of performance data by market in a visual presentation
in which each market is represented by a square on the screen and in which urgency
and importance are visually displayed using the colouring and sizing of the squares, a
Reports button 178 used to access various reporting functionality, an OLAP button
179 used to access Online Analytic Processing (OLAP) functionality providing slice-
and dice analysis of data and a Simulation button 180 using to access simulation

functionality.

From either step S3 or step S5, processing passes Lo step S6 which is a decision block
determined by the selected activity. If a user selects Exit (using a button not shown in
Figure 22A), processing simply returns to step S1. If, however, the user selects
deletion of a selected rule set (again using a button not shown in Figure 22A), the user
is prompted to confirm deletion at step S7, and if deletion if confirmed, then deletion
of the Rule set occurs at step S8, although the deleted Rule set is written to an archive,
so as to be retained for audit purposes. Processing then returns to step S1. If, when
prompted at step S7, the user fails to confirm deletion, no deletion takes place, but

processing simply returns to step S2.

If the user selects an Edit activity at step S5 (using GUI elements not shown in the
Figures), processing passes from step S6 to step S9 where the selected Rule set is
displayed within an appropriate graphical user interface as is described in further

detail below.

If at step S3 a user selects addition of a rule set (using the Create Rule Set button
176), processing passcs from step S6 to step S10 where the new rule set is configured

using a GUI 181 shown in Figure 22B. Referring to Figure 22B, it can be seen that the



34

GUI 181 comprises a textbox 182 used to specify a name for the new rule set, a drop
down list 183 used to specify a type for the new rule set and a drop down list 184 used
to specify a market. Having carried out appropriate configuration of the new rule set,

creation is caused by the user selecting an OK button 185.

It was described above that if at step S3 a user chooses to edit a rule set, processing
passed to step S9. Having carried out configuration using the GUI 181 of Figure 22B,
processing for creation of a new rule set also continues at step S9. Thus, the following
description is applicable both to editing of an existing rule set, and configuration of a
rule set newly created using the GUI 181 of Figure 22B. At step S9, the rule set is
displayed using a GUI 186 (Figure 22C).

Referring to Figure 22C, the GUI 186 comprises an area 187 containing filtration
parameters which can be used to affect data displayed using the GUI 186. An area 188
includes a text box 189 indicating the rule set’s name, a text box 190 containing the
rule set’s type and a text box 191 indicating the market associated with the rule set.
Thus, the rule set configuration data input via the GUI of Figure 22B is included
within the area 188 of the GUI 186. The GUI 186 further comprises an area 192

which lists rules which are members of the displayed rule set.

Referring back to Figure 22, from step S9, a user selects an action to be carried out at
step S11. This selection is carried out using buttons 193 (Figure 22C) which are
described in further detail below. Actions which can be selected include addition
(using a button 194), editing (using a button 195) deletion (using a button 196) and
viewing (using a button 196a) of Rules. Exit and Submit actions are also available, the
Exit action being carried out using a button 197. In a similar way to the selection of
activities, editing and deletion can only be selected if a particular rule within the
selected rule set is selected. Therefore, processing may pass from step S9 to step S12
where a particular rule of the displayed rule set is selected, and then to step S13 where
a particular action to be associated with the selected rule is selected. Processing passes
from step S11 or step S13 to step S14 which is a decision block determined by the

selected action. If a user selects the Exit action, processing returns to step S9.



35

The various actions are now described with reference to Figure 22. The GUIs used to

implement such actions are described in further detail below.

If a user selects the Add action, processing passes to step S15 where various rule
types together with their associated subtypes are presented for selection by the user.
Such selection is carried out at step S16. Having selected a particular rule type,
processing passes to step S17 where the rule is configured using an appropriate
configuration screen. This configuration involves entry of parameter values into text
boxes and identification of data input by navigating through available data associated
with the rule set within which the rule is contained. The user is then prompted to
specify a position for the new rule in the execution sequence, and such a position is
specified at step S18. Addition of the rule is then confirmed at step S19, processing

then returns to step S9 where the rule set is again displayed.

If at step S13 the user selects an Edit action, the configuration screen for the selected
Rule is displayed at step S20. A user can then modify parameter values using
appropriate text boxes, and also modify specification of input data by navigating
appropriate data structures. The position of the Rule within the execution sequence
can also be modified. Such modification is carried out at step S21. In response to
modification carried out at step S21, the Rule set is updated (step S22), before

processing returns to step S9 where the Rule set is again displayed.

If a user selects a Delete action at step S13, processing passes from step S14 to step
$23. Again, the user is prompted to confirm deletion, and if such confirmation is
made then processing passes from step S23 to step S24 and then back to step S9,
where the Rule set is displayed. It should be noted that in addition to deletion of the
selected Rule, step S24 also writes the deleted Rule to an archive for audit purposes.
[f, when prompted to confirm deletion at step 23, a user fails to confirm deletion,

processing simply returns to step S9.



36

If at step S11 the user selects the Submit action, processing passes from step S14 to
step S25. At step S25 the user is prompted to indicate whether the update should
apply immediately, or at the next pricing run. The specification made at step S25 is

applied at step S26, and processing then returns to step S9.

Referring back to Figure 22C, addition of a rule is triggered by using the button 194,
in response to which a GUI 198 (Figure 22D) is displayed. The GUI 198 comprises a
text box 199 which is used to assign a name to the new rule and a drop down list 200
which is used to assign a type to the rule. Having assigned a name and type to the rule
(at steps S15 and S16 of Figure 22), the rule is added using an OK button 201, at
which time the GUI 186 is again displayed, as shown in Figure 22E. Here it can be
seen that the list of rules 192 includes a newly added rule 202, being the rule created
using the GUI of Figure 22D.

Figure 22F shows a GUI 203 used to edit a rule. A text box 204 displays a name for
the rule and allows this name to be modified. A text box 205 displays the rule’s type
and allows this to be modified. An input table 206 is used to specify input data upon
which the rule is to act. It can be seen that the input table 206 comprises a type
column 207 indicating data type, a product type column 208 a competitor column
209, a channel column 210 and a weight column 211. It will be appreciated that the
columns displayed in the input table 206 will vary depending upon the nature of the
data which is to be used by the rule. Data items are added to the input table 206 using
an add button 212, and appropriate drop down lists. Existing entries can be edited

using an edit button 213.

The GUI 203 also comprises an area 214 which is used to limit values which can be
selected from drop down lists used to add data items to the input table 206.
Specifically, it can be seen that a drop down list 215 has been used to restrict product
type selections to “REF UL 977, and a channel drop down list 207 has been used to
limit channel selections to “B” (indicating branded). A price type drop down list 217

has not been used to limit user selections, and accordingly a user can call all price



37

types to the input table 206. It should be noted that the area 214 therefore effectively

allows data items selectable by a user to be restricted.

The GUI 203 also comprises a differential parameter 218 which is set using an edit
button 219. An area 220 indicates details of data output by the rule, and this is edited

using an edit button 222.

It will be appreciated that the GUI of Figure 22F can be used to edit rules as described

with reference to Figure 22.

Referring to Figure 22G, a GUI 223 is illustrated which is displayed during execution
of a rule set. An area 224 lists rules to be executed in execution order, an area 225
indicates predicted prices generated by the rules, and an area 226 indicates prices that

have been implemented.

From the preceding description of Figure 22 it will be appreciated that the present
invention provides an interactive interface which the user may use to configure
various rules to affect operation of the system. The rules to be configured can affect
both price generation, price prediction and general operation of the system (e.g. data
validation). As has been described above, all rules and rule sets implemented by
embodiments of the invention use a common set of classes, and configuration of these
rule sets and rules is therefore carried out through appropriate population of variables
associated with those classes. It will be readily understood that the operations
described above, particularly relating to the configurations of values associated with
rule sets and particular rules, can be affected simply by modifying appropriate

parameters associated with instances of the classes.

As described above, embodiments of the invention provide methods which can be
used to predict competitor prices. The rules generally generate a plurality of values

for:

p(predicted change) (1)



38

which indicates the probability of a predicted price change. However, predictions can
be improved by collating historical data in a table of the form shown in Figure 23.
The table comprises two columns a first indicating predicted change values, and a
second indicating delta values (A), where the delta values indicate actual changes

which have taken place in response to the same combination of input values.

Given the table of the form shown in Figure 23, and the value of equation (1) shown

above equation (2) set out below can be evaluated:

p(A, | predicted change) = Np (predicted change | A, ) p(4,) 2)

Z p(predicted change | A ) p(A ;)

=1

By evaluating equation (2) a probability of actual changes based upon historical data
can be determined and the most likely actual change based upon this calculation can
then be used to predict price change. Using this technique it is likely that accuracy of
prediction will be increased. In particular, it should be noted that in general the
techniques for determining the value of equation (1) will be based upon continuous
mathematics and a continuous range of predicted change values can therefore be
selected. However, it is known from data analysis that some price changes are far
more likely than others, such knowledge is effectively taken into account by

evaluation of equation (2) sct out above.

In order to obtain the conditional probability values required by equation (2) it is
necessary to generate from the table of Figure 23 a table of the form shown in Figure
23A. That is, for each discrete prediction value in the table of Figure 23 a number of
occurrences of a particular change (A) is counted so as to generate the table of the
form shown in Figure 23A. Having done this p(predicted change|A) terms of equation
(2) can be computed by selecting a value of A upon which the probability is
conditional and then determining from values stored in Figure 23A the probability of

a given prediction.



39

Although the method described above can be used to improve accuracy of of pricing
decisions it should be noted that the table of Figure 23A is very large, thereby
necessitating a large quantity of storage space. Furthermore, much of this storage

space is in fact wasted because many cells of the table will contain ‘0’ values.

Therefore, in a preferred embodiment of the present invention, equation (2) is

replaced by equation (3) set out below.

€)

p(predictedchange, N (A, a))p(Ai)
N

Z p(predictedchange, N (A, o)) p(A )

/=1

p(Ai | predictedchange) =

Here, it can be seen that the conditional probability terms of equation (2) have been
replaced by terms p(predicted change, N(Ai, ¢)) which represent the probability of
observing the value “predicted change” in a normally distributed population having
mean Ai and variance ¢. The value of ¢ for the normal distribution is computed from
Figure 23A. More specifically, approximately 90% of the data is used as a training set
to determine the value of ¢. Having carried out this training operation the remaining
10% of the data is used to determine whether the results are within a predetermined
precision threshold. It will be appreciated that this process may be repeated until
appropriate ¢ value is determined. It will also be appreciated that a different normal

distribution is computed for each column of the table of Figure 23A.

It will be appreciated that the use of equation (3) in conjunction with normal
distributions is preferred given that table 23A need only be stored for a short time

during which the normal distributions are being determined.

In preferred embodiments of the invention improved accuracy achieved using

equation (2) or (3) is used only if specified by a user.



40

In addition to providing improved techniques for price prediction, embodiments of the
invention also provide techniques for monitoring the affect of various variable

changes on competitor pricing. Such techniques are now described.

In particular, these techniques provide a convenient user interface for monitoring

competitor prices trends. Such user interfaces shown in Figure 24.

Referring to Figure 24, the illustrated interface comprises six user interface elements.
Four of these user interface elements are concerned with receiving user input data.
Specifically, a first input user interface element 230 receives data indicating a
previous day’s change in spot price. A second input user interface element 231
indicates a previous day’s differential to average unbranded price. A third input user
interface element 232 indicates a previous days margin on the basis of the price at
which fuel was sold, while a fourth input user interface element 233 indicates whether
spot price trend turned direction on the previous day as compared to the day before. A
user interface element 234 provides data indicating relationships between data
represented by the second user interface element 231 and the third user interface
element 232. An output user interface element 235 shows historical data indicating
probabilities of competitor price changes based upon input values specified using the
first to fourth input user interface elements 230, 231, 232, 233. It can be seen for the
values specified using the input user interface elements 230, 231, 232, 233 there is a
38.8% probability of no price change, a 31.2% probability of a half cent increase, a
15.8% probability of a 0.7 cent increase, and an 8.08% probability of a 0.25 cent

increase.

Thus, from Figure 24 it can be seen that a user is provided with convenient interactive
user interface elements with which parameters which affect a competitors pricing can
be specified, and in response to specification of these parameters competitor price
changes are displayed in the output user interface element 235. It should be noted that
in general terms the input user interface elements 230, 231, 232, 233 can receive a

plurality of values for respective input variables, each having an associated



41

probability. These probabilities can then be used to compute output data. An

alternative embodiment of the user interface of Figure 24 is shown in Figure 24A.

A computer program configured to process the input data shown in Figure 24 so as to
generate the requisite output data can function in a number of ways. In one simple
implementation, a table is stored storing all possible combinations of the four input
variables, together with a price change caused by that combination of variables. That
is, for each combination of input variables a plurality of rows will exist within the
table, each specifying an output value, the table being populated with historical data.
When input data is received via the user interface of Figure 24 all rows of the table
having values for the input data as specified by the input user interface elements are
selected, and price changes associated with those rows are processed so as to
determine probabilities for display in the output user interface element 235 in the

manner described above.

In an alternative implementation of the interface of Figure 24, a Bayesian Belief
Network (BBN) model is used. Such a model involves a network comprising six
nodes, one node for each of the user interface elements shown in Figure 24. Each of
the node objects has properties which define their state and the probabilities
associated with those states. Thus, in order to generate output data for display using
the output user interface element 235 a belief property associated with each of the
four nodes representing input data is set as illustrated in Figure 24. Having set nodes
representing input data in this way node representing output data will be automatically

be updated by the BBN model with output data in that way can be determined.

Additionally, when using a BBN model, it must be trained from historical data so as
to learn relevant conditional probabilities. Again, this process starts with a saved
template defining input variables, and the dependencies between those variables and
the output variables. In order to train the BBN model it is first necessary to select a
target competitor and then select a number of terminals over which pricing behaviour

is to be analysed.



42

Competitor price history can be represented in one of two ways. Prices can be
represented as a finite set of about twenty of the most frequently occurring price
moves made by that competitor within the specifies price period. Such a technique 1s
likely to be appropriate where competitor price data is of a form as shown in Figure
25 where a small number of price moves accounts for the vast majority of price
changes made by that competitor. However, in a situation as illustrated in Figure 26,
where a far larger number of price moves are routinely made by a competitor
selecting only the twenty most frequently occurring price moves would eliminate a
large quantity of data. In such a circumstance it is preferred that all data is clustered
within a plurality (for example twenty) price move groups. Before defining these
groups very large and very small price changes which are made very infrequently are
removed from the data, and the remaining data is then divided into a contiguous set of
bins. Having determined how the price data is to be processed, probabilities for
various price moves in response to various values of the input variables can then be

computed and used to generate conditional probabilities.

It will be appreciated that although the description set out above is focused upon a

single competitor data from a plurality of competitors can be used in embodiments of

the invention.

Although preferred embodiments of the present invention have been described above,
it will be appreciated that various modifications to those embodiments can be made

without departing from the spirit and scope of the present invention.



43

Claims

1. A computer implemented method for displaying values for an output variable,
the method comprising:

displaying a first user interface element configured to present values of a first
input variable;

displaying a second user interface element configured to present values of a
second input variable;

displaying a third user interface element configured to present values of an
output variable, said output variable varying in dependence upon said first and second
input variables;

receiving first user input of a value for said first variable via said first user

interface element;

receiving second user input of a value for said second variable via said second

user interface element; and

updating said third user interface element to indicate at least one value of said

output variable in response to said first user input and said second user input.

2. A method according to claim 1, further comprising:

storing a set of values of said output variable; and

determining a probability for each of said values of said output variable based
upon values of said first and second input variables;

wherein updating said third user interface element comprises representing said

determined probabilities.

3. A method according to claim 2, whercin said third user interface element

comprises a graphical representation of said determined probabilities.

4. A method according to claim 3, wherein said graphical representation is a bar

graph.



44

5. A method according to claim 2, 3 or 4, wherein said set of output values

comprises a predetermined number of discrete values for said output variable.

6. A method according to claim 6, further comprising selecting said
predetermined number of discrete values for said output variable, the selecting
comprising:
processing historical data indicating values of said output variable; and
selecting a predetermined number of values of said output variable which

occur most frequently in said historical data.

7. A method according to claim 2, 3 or 4, wherein said set of output values

comprises a predetermined number of ranges of values for said output variable.

8. A method according to claim 7, further comprising selecting said ranges of
values for said output variable, said selecting comprising:
processing historical data indicating values of said output variable; and

defining a predetermined plurality of ranges of values of said output variable.

9. A method according to claim 8, wherein said defining said predetermined
plurality of ranges comprises defining a plurality of equally sized ranges containing a
at least a subset of values of said output variable between an upper value and a lower

value.

10. A method according to claim 9, wherein said ranges together form a

contiguous range between said upper value and said lower value.

11. A method according to claim 9 or 10, further comprising selecting said upper
value and said lower value, said upper value and said lower value being selected so as

to eliminate outlying values in said historical data.



45

12. A method according to any preceding claim, further comprising updating said
first user interface element in response to said first user input, and updating said

second user interface element in response to said second user input.

13. A method according to any preceding, wherein each of said first and second

user interface elements presents discrete values for each of said first and second

variables respectively.

14. A method according to claim 13, wherein receiving said first user input and
said second user input comprises receiving selection of at least one discrete value

presented by said first user interface element, and said second user interface element

respectively.

15. A method according to any one of claims 1 to 12, wherein each of said first
and second user interface elements presents discrete ranges of values for each of said

first and second variables respectively.

16. A method according to claim 13, wherein receiving said first user input and
said second user input comprises receiving selection of at least one range of values
presented by said first user interface element, and said second user interface element

respectively.

17. A method according to any preceding claim, wherein receiving at least one of
said first user input and said second user input comprises:
receiving specification of a plurality of values for said variable, each of said

values having an associated probability value.

18. A method according to any preceding claim, further comprising:

generating said output value in response to said first user input and said

second user input.

19. A method according to claim 18, further comprising:



46

processing historical data comprising a plurality of data sets, each data set
comprising values for said first and second input variables, and an associated value
for said output variable;

wherein generating said output value comprises:

selecting data sets using said first input data and said second input data; and

generating said output value using said selected data sets.

20. A method according to claim 18, wherein generating said output value

comprises using a Bayesian Belief Network (BBN).

21. A method according to any preceding claim, wherein said output variable is a

price variable.

22, A method according to claim 21, wherein said output variable is a price

change variable.

23. A method according to claim 21 or 22, wherein said input variables represent

factors affecting said price variable.

24. A method according to any one of claims 21 to 23, wherein said output

variable is a fuel price variable.

25, A method according to claim 24, wherein said output variable is a wholesale

fuel price variable.

26. A data carrier carrying computer readable program code configured to cause a

computer to carry out a method according to any preceding claim.

27. Computer apparatus configured to display values for an output variable, the

apparatus comprising:

a program memory storing processor readable instructions; and



47

a processor configured to read and execute instructions stored in said program
memory;
wherein said program memory contains instructions configured controlling the

processor to carry out a method according to any one of claims 1 to 25.

28.  Apparatus for displaying values for an output variable, the apparatus
comprising:

a display device; and

a processor configured to:

display a first user interface element configured to present values of a first
input variable on said display device;

display a second user interface element configured to present values of a
second input variable on said display device;

display a third user interface element configured to present values of an output
variable on said display device, said output variable varying in dependence upon said
first and second input variables;

receive first user input of a value for said first variable via said first user
interface element;

reccive second user input of a value for said second variable via said second
user interface element; and

update said third user interface element to indicate at least one value of said

output variablc in response to said first user input and said second user input.

29. A method for configuring a rule, said rule being configured to process input
data to generate output data, the method comprising:

identifying an object associated with said rule, said object defining at least one
parameter for said rule;

presenting a user interface configured to receive rule configuration input data;

receiving configuration input data; and

updating said at least one parameter of said object based upon said

configuration input data, said updating causing configuration of said rule.



48

30. A method according to claim 29, wherein said identified object represents data

processed by said rule.

31. A method according to claim 30, further comprising:
identifying an object representing said rule;
wherein identifying an object associated with said rule comprises identifying

an object associated with the object representing said rule.

32. A method according to claim 31, wherein said updating further comprises:
generating an association between said object representing said rule and an

object representing data to be processed by said rule.

33. A method according to claim 32, wherein said generating said association
comprises:
displaying details of objects representing data to a user via said graphical user

interface;

receiving input data indicative of user selection of one of said objects; and

generating said association based upon said input data.

34. A method according to claim 33, further comprising:
displaying a filter user interface element to a user; and
receiving filter data input using said filter user interface element;
wherein displaying details of objects representing data comprises displaying

objects in accordance with said filter data.

35. A method according to any one of claims 31 to 34, further comprising:

updating at least one parameter of said object representing said rule.

36. A method according to any one of claims 29 to 35, wherein said rule is a

pricing rule.



49

37. A method according to claim 36, wherein said pricing rule is configured to

process a plurality of parameters and to generate predicted price data.

38. A data carrier carrying computer readable program code configured to cause a

computer to carry out a method according to any one of claims 28 to 37.

39.  Computer apparatus configured to display values for an output variable, the
apparatus comprising:

a program memory storing processor readable instructions; and

a processor configured to read and execute instructions stored in said program
memory;

wherein said program memory contains instructions configured controlling the

processor to carry out 2 method according to any one of claims 28 to 37.

40. A method of generating a price estimate, the method comprising:

generating a price prediction based upon first data;

reading historical data based upon said price prediction, said historical data
indicating historical price data related to said price predication; and

updating said price prediction in response to said historical data to generate

said price estimate.

41. A method according to claim 40, wherein said historical data is represented by
a probability density function, and reading said historical data comprises reading a

value of said probability density function based upon said price prediction.

42. A method according to claim 41, wherein said probability density function

represents a Normal probability distribution.

43. A method according to claim 41 or 42, further comprising generating said

probability density function from stored data values.



50

44. A method according to claim 43, further comprising processing said stored

data values to determine a parameter of said probability density function.

45. A method according to any one of claims 40 to 44, wherein said updating

comprises evaluating a function:

p(predictedchange, N (A, o))p(ai )

N
Z p(predictedchange, N (o, o)) (A7)

=1

p(Ai | predictedchange) =

where A represents historical data values; and

said price estimate is the value of A for which said function has a maximum

value.

46. A data carrier carrying computer readable program code configured to cause a

computer to carry out a method according to any one of claims 40 to 45.

47.  Computer apparatus configured to display values for an output variable, the
apparatus comprising:

a program memory storing processor readable instructions; and

a processor configured to read and execute instructions stored in said program
memory,

wherein said program memory contains instructions configured controlling the

processor to carry out a method according to any one of claims 40 to 45.

48. A method of generating output data, the method comprising:

storing a plurality of objects, cach of said objects comprising at least one
identification parameter identifying a property of data associated with a respective
object;

storing a rule configured to operate on input data to generate said output data,
said rule identifying an object of said plurality of objects using at least one

identification parameter; and



51

executing said rule to generate said output data,
wherein executing said rule comprises reading data associated with said
identified object, and obtaining said input data using data associated with said

identified object.

49. A method according to claim 48,wherein obtaining said input data comprises:
obtaining said input data using said at least one identification parameter of

said identified object.

50. A method according to claim 48 or 49 wherein obtaining said input data

comprises:

reading said input data from a data repository.

51. A method according to claim 50, wherein obtaining said input data further
comprises:

querying said data repository to obtain said input data.

52, A method according to claim 51, wherein querying said data repository
comprises querying said data repository using said at least one identification

parameters.

53. A method according to claim 50, 51 or 52, wherein said data repository is an

SQL database.

54. A method according to any one of claims 48 to 53, further comprising:
receiving user input data, said user input data comprising an identification
parameter value for at least one object; and
generating data identifying an object of said plurality of object based upon

said received identification parameter value.

55. A method according to any one of claims 48 to 54, wherein said rule is

configured to generate price data.



52

56. A method according to any one of claims 48 to 55, wherein said input data

comprises price altering data.

57. A data carrier carrying computer readable program code configured to cause a

computer to carry out a method according to any one of claims 46 to 56.

58.  Computer apparatus configured to display values for an output variable, the
apparatus comprising:
a program memory storing processor readable instructions; and

a processor configured to read and execute instructions stored in said program

memory;
wherein said program memory contains instructions configured controlling the

processor to carry out 2 method according to any one of claims 46 to 50.

59. A computer-implemented method for generating wholesale oil price data, the
method comprising:

defining a plurality of rules configured to execute on input data to generate
output data, said input data representing data affecting said wholesale oil prices;

executing said rules to generate wholesale oil prices.

60. A method according to claim 59, wherein said input data comprises competitor

price data.

61. A method according to claim 59 or 60, wherein said input data comprises

volume data.

62. A method according to claim 59, 60 or 61, wherein said input data comprises

historical price data.

63. A method according to any one of claims 59 to 62, wherein said generated

wholesale oil prices are predicted competitor prices.



53

64. A method according to any one of claims 59 to 62, wherein said generated

wholesale oil prices are suggested wholesale oil prices.

65. A data carrier carrying computer readable program code configured to cause a

computer a to carry out a method according to any one of claims 59 to 64.

66. A computer apparatus for generating wholesale price data, the apparatus
comprising:

a program memory storing processor readable instructions; and

a processor configured to read and execute instructions stored in said program
memory;

wherein said program memory contains instructions configured controlling the

processor to carry out a method according to any one of claims 59 to 64.

67.  An apparatus for configuring a rule, the rule being configured to process input
data to generate output data, the apparatus comprising a processor configured to:
identify an object associated with said rule, said rule defining at least one
parameter for said rule;
present a user interface configured to receive rule configuration input data;
receive configuration input data;
and update said at least one parameter of said object based upon said

configuration input data, said updating causing configuration of said rule.

68.  An apparatus for generating a price estimate, the apparatus comprising: a
processor configured to:

generate a price prediction based upon on first data,

read historical data based upon said price prediction, said historical data
indicating historical price data related to said price prediction and;

update said price prediction in response to said historical data to generate said

price estimate.



54

69.  An apparatus for generating output data, the apparatus comprising;

a storage device storing a plurality of objects, each of said objects comprising
at least one identification parameter identifying a property of data associated with a
respective object; and storing a rule configured to operate on input data to generate
said output data, said rule identifying an object of said plurality of objects using at
least one identification parameter; and

a processor configured to execute said rule to generate said output data;

wherein said processor is configured to execute said rule by reading data
associated with said identified object and obtaining said input data using data

associated with said identified object.



For Innovation 5 5

Application No: GB0520024.1 Examiner: Mr Neil Franklin
Claims searched: 1-69 Date of search: 21 December 2006

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category[Relevant | Identity of document and passage or figure of particular relevance
to claims
A - US 2004/0172372 Al
(WELLS) Automated price management system
A - US 2003/0110043 Al
(MORRISON) System for facilitating pricing, sale and distribution of
fuel
A - "Gas Prices: How are they really set?" Report prepared by the Majority
staff of the Permanent Subcommittee on Investigations. See Section V
pp283-284. Available at
http://www.senate.gov/~gov_affairs/042902gasreport.htm
Categories:
X Document ndicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention
same category,
& Member of the same patent family E  Patent document published on or after, but with priority date
earlier than, the filing date of this application
Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKC :
| G4A |
Worldwide search of patent documents classified in the following areas of the IPC
[ GO6F; G06Q |

The following online and other databases have been used in the preparation of this search report

[ EPOQUE; WPI Internet |

[ dts ADTISERvICE




	BIBLIOGRAPHY
	DRAWINGS
	DESCRIPTION
	CLAIMS
	SEARCH_REPORT

