
US 2003O142818A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2003/0142818A1 

Raghunathan et al. (43) Pub. Date: Jul. 31, 2003 

(54) TECHNIQUES FOR EFFICIENT SECURITY Related U.S. Application Data 
PROCESSING 

(60) Provisional application No. 60/325,189, filed on Sep. 
(75) Inventors: Anand Raghunathan, Princeton, NJ 28, 2001. Provisional application No. 60/342,748, 

(US); Srivaths Ravi, Princeton, NJ filed on Dec. 28, 2001. Provisional application No. 
(US); Nachiketh Potlapally, Princeton, 60/361,276, filed on Mar. 4, 2002. 
NJ (US); Srimat Chakradhar, 
Princeton, NJ (US); Murugan Publication Classification 
Sankaradas, Princeton, NJ (US) 

(51) Int. Cl." ....................................................... H04K 3/00 
Correspondence Address: (52) U.S. Cl. .................................................................. 380/1 
SUGHRUE MION, PLLC 
2100 Pennsylvania Avenue, NW (57) ABSTRACT 
Washington, DC 20037-3213 (US) 

A programmable Security processor for efficient execution of 
(73) Assignee: NEC USA, INC. Security protocols, wherein the instruction Set of the proces 

Sor is enhanced to contain at least one instruction that is used 
(21) Appl. No.: 10/259,569 to improve the efficiency of a public-key cryptographic 

algorithm, and at least one instruction that is used to improve 
(22) Filed: Sep. 30, 2002 the efficiency of a private-key cryptographic algorithm. 

cEoN CUSTOMINSTRUCTION 
FORMULATION 

Identify 
hot-spots 

CrOSS 
Compile 

Simulate SW Specify 
With SS (Complex ops, Custom sq. 

Security instructions 
primitives) Regression Generate macro-modeling A-D Curves for library routines SW library 

C (basic ops) 

FEs SWPLATFORM A-D Curves 
Candidate for SW libs for individual 
algorithms library routines Area, Delay 

COnStraints 

Ls 2 
Propagate 
A-DCUrves 

ALGORTHM thro. Call graph 
EXPLORATION SE, : 

SE INSTRUCTION 
instructions SELECTION 

Performance 
larget Achieved? 

LOGIC & PHYSICALDESIGN 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

    

  

  



US 2003/0142818A1 Jul. 31, 2003 Sheet 1 of 16 

SdqWZ000€ 
Patent Application Publication 

  



Patent Application Publication Jul. 31, 2003 Sheet 2 of 16 US 2003/0142818A1 

FIG 2 

1 1 1 1 1 1 1 1 ss. LipseLansLos 
u- RSA keygen.(...) 

Security primitives RSA encrypt(...) 
DES encrypt(...) Mod exp(. 

Mod mul(. 
SbOX(...) 

...) 

..) Complex opS. 

Gnu GMP-basic ops 2N. 

Std. C libraries 

mpn add n(...) 
mpn Submul 1 (...) 

Platform SW 

Platform HW 

Custom 
Peripheral 
HW 

  

  

  

  

  

  

  

  

  



US 2003/0142818A1 Jul. 31, 2003 Sheet 3 of 16 Patent Application Publication 

D LYHO L’O BSI 

Z 

uTqnSTudu 

pouTzdu 98Z7109 
|TÎnuppe Tudu 

7 

M??A 
18.178 

````IzºY - „r | 8889 
??9 |nuIT?du. 

  



Patent Application Publication Jul. 31, 2003 Sheet 4 of 16 US 2003/0142818A1 

CN 

o 

SN C 
ld S 

h 
CD CO ? & 

? 9 S V w 
Y & S. 

g S CD 5 
CD S C N1. 2S 

S L- & 5 
6 

Y S 11 CO 
ld Cd C d O w CN o oo co r CN O 

cN CN w - V - (OOO! x) 
X (000l. X) -H eMd./ eIOMoy -- eMQ/e/OMoy 

CN 

o 

Sg | 
CC cN O 

S. & S. S 
w- O 

CD S CD S 
a S & S - S 

Y S 
ld o ld Cd ld C w can o od co r CN o 
on on re re- v- w - ( X) 

(000l. X) 000 
-- 8/q/e/OMoy -- eMq/eIOMoy 

  



US 2003/0142818A1 Jul. 31, 2003 Sheet 5 of 16 Patent Application Publication 

EZIS E HOWO 
000 || 00800900700Z0 

0|| 0Z 0£ 07 09 09 01 08 06 00|| 

/ 

OWSH 

EZIS XOOT8 ] [\d|N| 00900700800Z00||0 
0|| 0Z 09 07 09 09 0/ 08 06 

OWLIH 

  

  

  

  



US 2003/0142818A1 

[L]------------------[L] 
JOSS0001) ?SOH 

Patent Application Publication 

  

  

    

  

  

  

  



US 2003/0142818A1 Jul. 31, 2003 Sheet 7 of 16 Patent Application Publication 

/ “SO|- 

}~~~~ ·öÑ” 
  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



US 2003/0142818A1 Jul. 31, 2003 Sheet 8 of 16 Patent Application Publication 

| 

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -–J[] 

9p00 00InOS 

  

  

  

  

  

  

  

    

  

  

  





US 2003/0142818A1 Jul. 31, 2003 Sheet 10 of 16 Patent Application Publication 

29]\j 0000||000800090007000Z 
0 09 

u?ppeTudu 
JO? ?Aun0 G-\/00|| 

OOZ 

?OOJ JOJ ?Aun0 G-7 

  

  

  

  

  

  

  

  



US 2003/0142818A1 Jul. 31, 2003. Sheet 11 of 16 Patent Application Publication 

(Sejo?o) eOueuJOued 

  

  

  

  



eeuw 0009||0000||0009 
US 2003/0142818A1 

E0000|| #0000Z ?00009 ?u?ppeTudul ||T|nuuppeTudul00007 00||09 

00009 

?00] 

00009 

Patent Application Publication 

(SeoAO) eoueuoped 

  



US 2003/0142818A1 Jul. 31, 2003. Sheet 13 of 16 Patent Application Publication 

  



Patent Application Publication Jul. 31, 2003. Sheet 14 of 16 US 2003/0142818A1 

  





US 2003/0142818A1 Jul. 31, 2003 Sheet 16 of 16 Patent Application Publication 

eAq|SeokoW) ( 

979Z pºsododd ejednooe-9|0ÁO 
OX SpuO09S 

eull u0)enuS 

  

  



US 2003/0142818 A1 

TECHNIQUES FOR EFFICIENT SECURITY 
PROCESSING 

I.A. RELATED APPLICATIONS 

0001. This application claims priority from co-pending 
U.S. Provisional Patent Application Serial No. 60/325,189 
filed Sep. 28, 2001; No. 60/342,748 filed Dec. 28, 2001 and 
No. 60/361,276 filed Mar. 4, 2002, the disclosures of each of 
which applications are incorporated herein by reference. 

I. DESCRIPTION 

0002 I.B. Field 
0003. This disclosure teaches techniques related to hard 
ware and Software architecture for efficient Security process 
ing. Also disclosed are techniques to design Such hardware 
and Software architectures as well as techniques for inte 
grating Such Software and hardware architecture platforms 
into a large computing System. 
0004 I.C. Background 
0005 1. References 
0006 The following papers provide useful background 
information, for which they are incorporated herein by 
reference in their entirety, and are Selectively referred to in 
the remainder of this disclosure by their accompanying 
reference numbers in triangular brackets (i.e., <42 for the 
fourth numbered paper by B. Schneier): 
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0011 <5> W. Stallings, Cryptography and Network 
Security: Principles and Practice. Prentice Hall, 
1998. 

0012 <6> S. K. Miller, “Facing the Challenges of 
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CO. 
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0047 <41> Z. Shi and R. Lee, “Bit Permutation 
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“Architectural Support for Fast Symmetric-Key 
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0051) 2. Introduction 
0.052 A large fraction of the applications and services 
that are of interest to Internet users involve access to, and 
transmission of, Sensitive information (e.g., e-commerce, 
access to corporate data, Virtual private networks, online 
banking and trading, multimedia conferencing, etc.), making 
Security a Serious concern <1, 2>. The deployment of 
high-Speed wireleSS data and multi-media communications 
ushers in even greater Security challenges. WireleSS com 
munication relies on the use of a public transmission 
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medium, making the physical Signal easily accessible to 
malicious entities. Surveys of current and potential users of 
mobile commerce (m-commerce) Services have indicated 
Security concerns as the Single largest bottleneck to their 
adoption <3>. 
0053 Several Security mechanisms have been developed 
for wired and wireleSS networks, based on providing Secu 
rity enhancements to various layers of the protocol Stack 
(e.g., IPSec at the network layer, SSL/TLS and WTLS at the 
transport layer, SET at the application layer, etc.) <4, 5>. 
While the above mechanisms provide satisfactory security if 
utilized appropriately, there is a critical bottleneck that 
impedes their use to address Security concerns in wireleSS 
networks. Wireless clients (e.g., Smart phones, PDAS) are, 
and will always be, much more resource (processing capa 
bility, battery) constrained than their wired counterparts. On 
the other hand, Security protocols significantly increase 
computational requirements at the network clients and Serv 
ers <6, 7, 8> to levels that exceed the capabilities of wireless 
handsets. For example, a Palm IIIxTM handset requires 
around 3.4 minutes to perform 512-bit RSA key generation, 
around 7 Seconds to perform digital Signature generation, 
and can perform (single) DES encryption at only around 
13kbps, assuming that the CPU is completely dedicated to 
Security processing <8>. Further, Security processing has 
been reported to rapidly drain the Palm's batteries <8>. The 
increase in data rates (due to advances in wireless commu 
nication technologies), and the use of Stronger cryptographic 
algorithms (to stay beyond the extending reach of malicious 
entities) threaten to further widen the gap between Security 
processing requirements and embedded processor perfor 
mance (the “security processing gap'). 
0054 FIG. 1 compares the projected trends in computa 
tional requirements (MIPS) for Security processing, and the 
increase in embedded processor performance (enabled by 
improvements in fabrication technology and innovations in 
embedded processor architecture). The inadequate perfor 
mance of embedded processors in processing Security pro 
tocols leads to high network transaction latencies, and low 
effective data rates. Another critical bottleneck to Security 
processing on wireleSS handsets is battery capacity, whose 
growth (5-8% per year) is far slower than the growth in 
processing requirements or processor performance <9>. In 
practice, various metricS Such as performance, power, and 
cost, need to be considered together and it is their interaction 
that poses the toughest challenges to the System designer. 
For example, power and cost are the main reasons why 
embedded processors for wireleSS handsets are slower than 
their desktop counterparts. Algorithm-Specific custom hard 
ware implementations can always provide the highest levels 
of efficiency <10, 11, 12, 13>. However, in practice, the need 
for efficiency in Security processing has to often be consid 
ered together with, and traded off against, the need for 
flexibility. Each Security protocol Standard typically Speci 
fies a wide range of cryptographic algorithms that the 
network Servers and clients need to execute in order to 
facilitate inter-operability <4, 5>. Further, a Security proces 
Sor is often required to execute multiple distinct Security 
protocol standards in order to Support (i) Security processing 
in different layers of the network protocol stack (e.g., WEP, 
IPSec, and SSL), or (ii) inter-working among different 
networks (e.g., an appliance that needs to work in both 3G 
cellular and wireless LAN environments). Finally, program 
mability is desirable in order to allow easy adaptation to 
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future Security protocols and evolving Standards. Hence, 
novel technologies to alleviate the computational burden of 
Security processing while maintaining Sufficient program 
mability are required. 

0055) 
0056 Wireless data communications can be secured by 
employing Security protocols that are added to various layers 
of the protocol Stack, or within the application itself. The 
role of Security mechanisms and protocols is to ensure 
privacy and integrity of data, and authenticity of the parties 
involved in a transaction. In addition, it is also desirable to 
provide functionality Such as non-repudiation, preventing 
the use of handsets in denial-of-Service attacks, filtering of 
Viruses and malicious code, and in Some cases, anonymous 
communication. It is important to recognize that wireleSS 
Security is an end-to-end requirement, and can be Sub 
divided into various Security domains. 

I.D. General Background Information 

0057. Appliance domain security attempts to ensure 
that only authorized entities can use the appliance, 
and acceSS or modify the data Stored on it. 

0058 Network access domain security ensures that 
only authorized devices can connect to a wireleSS 
network or Service, and ensures data privacy and 
integrity over the wireleSS link. 

0059 Network domain security addresses security 
of the infrastructure (voice and data) networks that 
Support a wireleSS network. Infrastructure networks 
are typically wired, could include public networks, 
and could span networks owned by multiple carriers. 

0060 Application domain security ensures that only 
Safe and trusted applications can execute on the 
appliance, and that transactions between applications 
executing on the client and application Servers acroSS 
the Internet are Secure. 

0061 Security protocols utilize cryptographic algorithms 
(asymmetric or public-key ciphers, Symmetric or private 
key ciphers, hashing functions, etc.) as building blocks in a 
Suitable manner to achieve the desired objectives (peer 
authentication, privacy, data integrity, etc.). In the wired 
Internet, the most popular approach is to use Security pro 
tocols at the network or IPlayer (IPSec), and at the transport 
or TCP layer (TLS/SSL) <45>. In the wireless world, the 
range of Security protocols is broader. Different Security 
protocols have been developed and employed in cellular 
technologies such as CDPD and GSM, wireless local area 
network (WLAN) technologies such as IEEE 802.11, and 
wireleSS personal area network technologies Such as Blue 
tooth. Many of these protocols address only network acceSS 
domain Security, i.e., Securing the link between a wireleSS 
client and the acceSS point, base Station, or gateway. Several 
studies have shown that the level of security provided by 
most of the above Security protocols may be insufficient, and 
that they can be easily broken or compromised by Serious 
hackers. While some of these drawbacks are being addressed 
in newer wireless standards Such as 3GPP and 802.11 
enhancements, it is generally accepted that they need to be 
complemented through the use of Security mechanisms at 
higher protocol layers. With the push to bring wired Internet 
data and applications to wireleSS handsets, and to enhance 
the wireleSS data experience, conventional Internet protocols 
are being increasingly used in wireleSS networks, by over 
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laying them on top of the underlying “bearer” technologies. 
This is leading to an increased adoption of widely accepted 
Internet Security protocols to Secure wireleSS data as well. 

0062) To illustrate how various security protocols fit into 
the context of a wireleSS handset, we consider a wireleSS 
network that uses the Wireless Application Protocol (WAP) 
<43>, in which a wireless client communicates with a web 
Server across the Internet, through a base Station and a 
wireless gateway. The WAP standard defines protocols for 
the wireleSS link, which can be overlaid on top of existing 
wireless bearer technologies, such as GSM, CDPD, CDMA, 
etc. The WAP gateway translates traffic to/from the wireless 
handset (which uses the WAP protocol stack), to conven 
tional Internet protocols (HTTP/TCP/IP), thereby facilitat 
ing inter-working with existing Internet Servers. The net 
work architecture described above allows for the use of 
Security Schemes at multiple layers of the protocol Stack. 

0063 Security protocols provided in the bearer tech 
nologies (such as CDPD, GSM, CDMA, etc.) may be 
used to provide network access domain Security, 
including user authentication to the Serving network, 
as well as a basic level of confidentiality and integ 
rity over the wireless link. Note that, these security 
protocols may be employed for both Voice and data, 
and independent of the nature of the data or appli 
cation. However, as mentioned earlier, Security pro 
tocols used in bearer technologies are may be insuf 
ficient for data requiring high levels of Security. 
Moreover, these techniques do not address the prob 
lem of maintaining end-to-end Security acroSS the 
wired infrastructure network. 

0064. The WAP protocol stack includes a transport 
layer security protocol, called WTLS, which pro 
vides higher layer protocols and applications with a 
Secure transport Service interface and Secure connec 
tion management functions. WTLS bears similarities 
to the Internet security standard TLS/SSL, while 
including additional features Such as datagram Sup 
port, optimized handshake, and dynamic key refresh. 

0065. Finally, specific applications may decide to 
directly employ Security mechanisms instead of, or 
in addition to, the aforementioned options (through 
an application-level Security protocol Such as SET 
<4.5>, or to provide additional functionality, Such as 
non-repudiation, that is not provided in the transport 
layer Security protocol). 

0.066 A well known concern with the WAP security 
architecture is the existence of a “Security gap' at the 
wireleSS gateway, which arises Since the translation between 
different transport-layer Security protocols causes data to 
exist in decrypted form. This problem can be somewhat 
alleviated by maintaining the WAP gateway within a secure 
network domain (e.g., behind the same firewall as the web 
Server). Alternatively, the use of an end-to-end Security 
protocol between the wireless handset and wired server 
eliminates this problem. For example, NTT DoCoMo's 
iMode Service uses SSL to Secure end-to-end connections 
<44>, and the recently released WAP 2.0 specification <43> 
includes a new mode that uses Standard Internet protocols 
(HTTP/TLS/TCP/IP) between the wireless client and a 
Server acroSS the Internet. 



US 2003/0142818 A1 

0067. 1. Background Information in Public-key Algo 
rithms 

0068 Public-key algorithms (also known as asymmetric 
algorithms) perform two basic tasks: key generation and 
encryption or decryption. Key generation consists of gen 
erating the “private key” and the “public key”, which are 
used in the encryption and decryption of input data. The 
“public key” is disclosed to the world, whereas the “private 
key' is kept Secret by the legitimate owner of the keys. It 
should be noted that the terms private-key algorithms and 
Symmetric-key algorithms are used interchangeably in the 
Specification. Likewise, encryption algorithms, cryptogra 
phy algorithms and cipher are used interchangeably. 
0069. The key generation step is typically performed 
quite infrequently. Encryption/decryption constitutes bulk of 
the work done by a public-key cryptographic algorithm. 
Thus, any attempts to improve public-key algorithm perfor 
mance should target this stage. In most public key algo 
rithms (e.g., RSA, El Gamal, Diffie-Hellman, etc.), encryp 
tion/decryption is performed using modular exponentiation 
(using the private key or the public key). Therefore, an 
optimization targeting modular exponentiation becomes 
applicable to a wide range of public-key algorithms. 
0070 Key generation consists of determining three quan 

tities: the modulus (n), the public exponent (e) and the 
private exponent (d). The two tuples (e.n) and (d.,n) consti 
tute the public and the private key, respectively. To encrypt 
a message m (plaintext), we divide m into blocks (m1), 
m2). . . , Mp). Then, encryption is performed through 
modular exponentiation, defined by 

ci=mi mod n, for i=1 top 

0071 where, cil is the cipher text block corresponding to 
mi). To decrypt a message, we take each encrypted block, 
ci, and compute 

mi=cil mod n, for i=1 top 

0072 I.B. Related Work 
0073. The security processing gap is simply a mismatch 
between the computational workload demanded by Security 
protocols and the computational horsepower Supplied by the 
processor in the System. Several attempts have been made to 
lower this gap either by making the Security protocols and 
their constituent cryptographic algorithms lightweight, or by 
enhancing the Security processing capabilities of the pro 
cessor. Most of the efforts towards improving the efficiency 
of Security processing have been targeted at addressing 
performance issues in e-commerce Servers, network routers, 
firewalls, and VPN gateways <7, 28, 29, 30>. The fact that 
public key algorithms often dominate Security processing 
requirements has driven the recent development of alterna 
tive public-key algorithms that offer reduced computational 
complexity <31, 32>. Various companies offer commercial 
Security processor ICs to improve the performance of trans 
action servers and network routers <33, 34, 35, 36, 37,38>. 
Architectural enhancements to high-end microprocessor 
Systems to improve their performance in Security processing 
have been investigated <28, 292. Embedded processor 
designers have also developed Security extensions to their 
products, typically based on the addition of application 
Specific co-processors and/or peripherals <39, 40>. Com 
puter architects have researched domain Specific instructions 
for private-key encryption algorithms, with an aim to maxi 
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mize efficiency without compromising programmability 
<41, 42>. Our target architecture and the System-level 
design methodologies presented here are complementary to 
most of the above efforts, and can enable high efficiency in 
Security processing while maintaining programmability. 

II. SUMMARY 

0074 The disclosed teachings are aimed at overcoming 
Some of the disadvantages and Solving Some of the problems 
in relation to conventional technologies. 
0075) A programmable security processor for efficient 
execution of Security protocols. The instruction Set of the 
processor is enhanced to contain at least one instruction that 
is used to improve the efficiency of a public-key crypto 
graphic algorithm. At least one instruction that is used to 
improve the efficiency of a private-key cryptographic algo 
rithm is also provided. 
0076. Other aspects of the present disclosure are also 
provided. Further, more specific enhancements are also 
provided, as should be clear from the claims as well as from 
the detailed description. 

III. BRIEF DESCRIPTION OF THE DRAWINGS 

0077. The above objectives and advantages of the dis 
closed teachings will become more apparent by describing 
in detail preferred embodiments thereof with reference to the 
attached drawings in which: 
0078 FIG. 1 shows a graph illustrating the security 
processing gap by depicting projected trends in Security 
processing requirements and embedded processor perfor 

CC. 

007.9 FIG. 2 presents an overview of the MOSES secu 
rity processing System architecture which is an exemplary 
implementation of Some of the disclosed techniques. 
0080 FIG. 3 shows a call graph for a modular exponen 
tiation algorithm. 

0081 FIG. 4 shows effect of (a) input block size, (b) 
CRT, (c) MM algorithm, and (d) radix size. 
0082 FIG. 5 shows effects of caching (pre-ME and 
intra-MM). 
0083 FIG. 6 shows an example of a system that includes 
a host processor and MOSES as a Security processor. 

0084 FIG. 7 shows an overview of the security process 
ing System design methodology. 

0085 FIG. 8 shows enhanced architectural simulation 
with pre-characterized Software libraries 
0.086 FIG. 9 depicts a performance profile of function 
mod(in2,in1) over different input bit-widths. 
0.087 FIGS. 10(a)-(c) depict different types of A-D 
CUWCS 

0088 FIG. 11 shows the Cartesian product of the points 
on the A-D curves for functions mpn add n and mpn ad 
dmul 1. 

0089 FIG. 11 depicts combining the design spaces of 
two area-delay (A-D) curves. 
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0090 FIG. 12 shows an example functional prototype of 
the Security processing platform. 

0091) 
actions. 

0092 FIG. 14 depicts accuracy (cycle count) and effi 
ciency (simulation time) comparisons of the proposed per 
formance estimation methodology with cycle-accurate tar 
get Simulation. 

FIG. 13 shows estimated speedups for SSL trans 

IV. DETAILED DESCRIPTION 

0093 IV.A. Synopsis 
0094. As an implementation of the disclosed techniques 
we have developed a programmable Security processor 
platform called MOSES (MObile SEcurity processing Sys 
tem) to address the challenges of Secure data and multi 
media communications in wireleSS handsets. It should be 
clear that MOSES is merely one non-limiting exemplary 
implementation of the techniques disclosed in this applica 
tion and should not be construed in any way to limit the 
Scope of the invention as defined by the claims. A skilled 
artisan would know that Several alternate implementations 
are possible without deviating from the Scope of the inven 
tion as defined by the claims. 
0.095 The addition of MOSES to an electronic system 
enables Secure communications at high data rates, e.g., 3G 
cellular (100 kbps-2 Mbps) and wireless LAN (10-60Mbps) 
technologies, while allowing for easy programmability in 
order to Support a wide range of current and future Security 
protocol Standards. AS explained above, the growth in com 
putational requirements for Security processing outstrips 
improvements in embedded processor performance, result 
ing in a significant performance gap. We believe that the use 
of novel System architectures and System-level design meth 
odologies is critical to bridge this gap. 
0096) The system architecture of MOSES consists of 

0097. A configurable and extensible processor based 
hardware architecture that is customized for efficient 
domain-specific processing, while retaining Suffi 
cient programmability, and 

0098 Layered software libraries implementing 
cryptographic algorithms that are optimized and 
tuned to the underlying hardware platform. 

0099 We describe the detailed hardware and software 
architecture of the MOSES platform, including the features 
that enable it to achieve high efficiency in Security proceSS 
ing. Further, we describe optimized Schemes to efficiently 
integrate MOSES into an electronic system that contains a 
host processor. 
0100. In order to design MOSES, we have developed an 
advanced System design methodology that is based on the 
co-design of optimized Security processing Software and an 
optimized System architecture. It allows the System design 
ers to efficiently match the software to the characteristics of 
the hardware platform, and Vice-versa. Our methodology 
includes novel techniques for algorithmic exploration and 
tuning as well as architecture refinement. 
0101 Concurrent development of the security algorithms 
and the underlying hardware architecture requires that the 
performance of algorithms be evaluated using either hard 
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ware models or instruction set simulation (ISS) models. In 
Such a Scenario, algorithmic exploration may be infeasible 
due to the Size of the algorithm Space, and the amount of 
time required to Simulate realistic network transactions with 
hardware models. For example, we estimated that Simulating 
a single transaction of the SSL handshake protocol over a 
Space of 495 RSA algorithm configurations would require 
over a month of simulation time with ISS models of the 
XtensatM processor, on a 440 Mhz. Sun Ultra 10 worksta 
tion with 1 GB memory. We propose a novel methodology 
to enable efficient and accurate exploration of the algorithm 
Space, based on automatic performance characterization and 
macro-modeling of Software functions that implement the 
various atomic Steps in the Security protocol or crypto 
graphic algorithm. 

0102 Architecture exploration is performed in our design 
flow through the generation and Selection of custom instruc 
tions that accelerate performance-critical, computation-in 
tensive operations. For programs where Several distinct parts 
(e.g. functions) need to be accelerated through custom 
instructions, the large number of candidate Sets of custom 
instructions make it difficult to evaluate all possibilities 
explicitly. The problem is further complicated by the fact 
that, it is often possible to have several different alternative 
custom instructions for accelerating a single Sub-program, 
which present a tradeoff between the performance improve 
ment and the overheads incurred by the hardware additions. 
We have developed techniques to automate the Selection of 
custom instructions from a given candidate Set, while con 
sidering the performance vs. hardware overhead tradeoffs. 
0103) We have evaluated the performance of the security 
processor platform through extensive System simulations, 
and through hardware implementation using a prototyping 
platform. Our experiments demonstrate large performance 
improvements for cryptographic algorithms (e.g., 31.0x for 
DES, 33.9x for 3DES, 17.4x for AES, and up to 66.4x for 
RSA) as well as complete Security protocols Such as SSL, 
compared to well-optimized Software implementations on a 
state-of-the-art embedded processor. We believe that 
advanced System architectures as well as System-level 
design methodologies, Such as the one proposed here, are 
critical to overcoming the challenges encountered in Security 
processing on wireleSS handsets. 

01.04] 
form 

0105 FIG.2 presents an overview of the MOSES system 
architecture. Efficient Security processing is attained in this 
architecture through (i) the use of a programmable (config 
urable and extensible) processor that is customized through 
the Selective addition of custom instructions, co-processors, 
and peripherals, which implement critical, computation 
intensive operations, and (ii) optimized Software libraries 
that are derived through extensive algorithmic exploration 
and tuning of the Security protocols and cryptographic 
algorithms that they implement. 

0106 1. HW Platform Architecture 
0107 The hardware platform in MOSES is based on an 
extensible and configurable processor. The base processor 
core features a 32-bit RISC-like architecture, which is tuned 
further through the Setting of configuration options, which 
include Selection of generic instructions (e.g., hardware 

IV.B. Overview of the Security Processing Plat 
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multiplier, MAC, floating point unit, etc.), exceptions and 
interrupt mechanisms, endianness, register window customi 
Zation, cache and memory interface configuration, debug 
and test hardware, etc. Any other processor could similarly 
be used. The base processor core is further enhanced through 
the addition of custom instructions (over and above the base 
processor core instruction Set) that execute on designer 
Specified custom hardware units, which are tightly inte 
grated into the processor execution pipeline. In MOSES, we 
exploit the customizability of the hardware platform in order 
to meet our performance objectives for Security processing. 
HW/SW partitioning at the granularity of custom instruc 
tions can often result in Satisfactory performance improve 
ments. Custom instructions are first derived for implement 
ing carefully Selected portions of private-key cryptographic 
algorithms such as DES, 3DES and AES, as well as, 
public-key algorithms such as RSA, ECC, Diffie-Hellman 
and ElGamal used by Security protocols, primarily for data 
confidentiality and user authentication/key exchange. CuS 
tom instructions may also be derived for data integrity or 
message authentication cipherS Such as MD5 and SHA, and 
to implement random number generators needed for deriv 
ing the keys used by the cryptographic algorithms. It is 
important to note that custom instructions for public-key 
algorithms, private-key algorithms and Stage authentication 
algorithms may be significantly different in nature. 

0108 Finally, it is also important to note that speeding up 
cryptographic algorithms alone may not result in Satisfactory 
speedups of entire security protocols. Hence, MOSES can 
also include custom instructions to Speed up non-crypto 
graphic parts of a Security protocol, e.g., packet header 
parsing, byte order conversion, etc. The advantages of using 
custom instruction extensions Stems from the fact that they 
allow for ease of integration, and facilitate higher levels of 
programmability and HW re-use. The different custom 
instructions also share registers and computational modules 
for efficient realization of the final extended hardware imple 
mentation. 

0109 Integration with the processor pipeline also adds 
area overheads in terms of the modifications to the base 
processor micro-architecture. Therefore, Some coarse 
grained functions are mapped to custom hardware, which are 
integrated as HW co-processors that interface through the 
cache as well as peripheral units that are connected to the 
processor or System bus. 

0110 2. SW Architecture 
0111. The choice of a suitable software architecture is 
critical to enable an efficient System design methodology. 
The Software architecture for Our Security processor plat 
form uses a layered philosophy, much like the layering used 
in the design of network protocols <15>. At the top level, the 
SW architecture provides a generic interface (API) using 
which Security protocols and applications can be ported to 
our platform. This API consists of security primitives such 
as key generation, encryption, or decryption of a block of 
data using a specific public- or private-key cryptographic 
algorithm (e.g. RSA, ECC, DES, 3DES, AES, etc.). The 
Security primitive layer is implemented on top of a layer of 
complex mathematical operations Such as modular exponen 
tiation, prime number generation, Miller-Rabin primality 
testing etc. <42. The complex operations layer is, in turn, 
decomposed into basic mathematical operations, including 
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bit-level operations (typically used in private-key algo 
rithms) and multi-precision operations on large integers 
(typically used in public-key algorithms). The advantages of 
using the layered SW architecture approach include: 

0112 The API interface at each software layer was 
fixed before implementation, allowing the design of 
each layer, and the porting of Security protocols to 
our platform, to proceed concurrently. This reduced 
design time significantly, and enabled the use of 
more realistic application workloads to drive the 
design of each SW layer early in the design process. 

0113. The separation of the top-level algorithms 
from the primitives or building blocks that are used 
to implement them enabled us to characterize the 
primitives and derive high-level performance macro 
models, which were then used for efficient algorith 
mic exploration. AS illustrated by the experimental 
results we obtained, this novel performance charac 
terization methodology enabled the efficient explo 
ration of large number of candidate algorithms, 
which would have required several months of simu 
lation time using ISS models. 

0114. The generation of candidate custom instruc 
tions could proceed once the Software layer imple 
menting basic operations was available (i.e., without 
waiting for the entire SW implementation), since 
computations of the desired granularity are exposed 
in the basic operations. 

0115) 
0116. In this section, we illustrate the optimizations in the 
HW architecture of MOSES using a public-key algorithm 
(RSA) and a private-key algorithm (AES) as examples. 

IV. C. Optimizations for the HW Architecture 

0.117) 1. Implementing Symmetric Encryption Algo 
rithms. Using Custom Instructions 
0118 We consider the AES encryption algorithm as an 
example to illustrate how custom instructions can be for 
mulated to result in high efficiency of Security processing. 
Similar techniques are applicable to other Symmetric algo 
rithms (ciphers) as well. The design of the algorithm AES 
(block cipher Rijndael) is well documented in the literature. 
We used custom instructions to implement different portions 
of the AES algorithm. The top-level encryption function 
(function encrypt) is shown below. 

X=a; y=b; 
f State alternates between a and b if 

{ /* Nr is number of rounds. May be odd. */ 
f if Nb is fixed - unroll this next 

loop and hard-code in the values of f */ 
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-continued 

{ f deal with each 32-bit element of the State if 
f* This is the time-critical bit if 

yi-fkey|k++Iftable (BYTE)xi II 
ROTL8(ftable (BYTE) (xfmless)|) 
ROTL16(ftable (BYTE) (x film+1->16)) 
ROTL24(fiablex film+2>>24I); 

(C) 1999, Mike Scott 

0119) (C) 1999, Mike Scott' 
'The original copyright notice contained the following statement: Permission 
for free direct or derivative use is granted subject to compliance with any 
conditions that the originators of the algorithm place on its exploitation. 

0120) The computations shown in bold are selected to be 
implemented as a single custom instruction. The single 
custom instruction basically needs to perform a combination 
of Xors (corresponding to operations), shifts(correspond 
ing to >> operations), table look-ups (corresponding to 
fb-Sub) and rotates(corresponding to the functions ROTL8, 
ROTL16 and ROTL24, which rotate 32-bit words left by 1, 
2 or 3 bytes, respectively). Implementation of this custom 
instruction also require Special user registers to hold oper 
ands needed by the custom computations, and, hence, the 
asSociated custom load and Store instructions, as well. 

0121. In addition to functionality in the top-level encryp 
tion functions, we also use custom instructions to implement 
functionality in the key Scheduler (function gkey). 

0122) void gkey(int nb.int nk.char *key) 

{ /* blocksize=32*nb bits. Key=32*nk bits */ 
/* currently nb.bk = 4, 6 or 8 */ 
/* key comes as 4*Nk bytes */ 

int i,j,k,m,N: 
int C1, C2,C3; 
WORD CipherKey8: 
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-continued 

CipherKeyi=pack((BYTE *)&keyi); 

(C) 1999, Mike Scott 

0123 Functions SubByte and InvMixCol are good 
choices for implementation as custom instructions Since they 
are invoked multiple times in loop nests and can be imple 
mented with very low overheads in hardware. Therefore, 
these functions are completely implemented as custom 
instructions. These functions are shown below. 

static WORD SubByte(WORD a) 
{ 

BYTE b14: 
unpack (a, b); 
bO=fbsubbO: 
b1=fbsubb1: 
b2=fbsubb2: 
b3=fbsubb3: 
return pack(b); 

static WORD InvMixCol(WORD x) 
{ WORD yim; 

BYTE b|4: 
m=pack(InCo); 
b3=product(m,x); 
m=ROTL24(m); 
b2=product(m,x); 
m=ROTL24(m); 
b1=product(m,x); 
m=ROTL24(m); 
b0=product(m,x); 
y=pack(b); 
return y; 

(C) 1999, Mike Scott 
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0.124. In the above descriptions, function pack is used to 
pack bytes into a 32-bit word, while function unpack is used 
to unpack bytes from a word. The function product performs 
the dot product of two four byte arrays. 
0.125 2. Implementing Asymmetric Encryption Algo 
rithms. Using Custom Instructions 
0.126 FIG. 3 shows a call graph for a modular exponen 
tiation algorithm. We consider the RSA algorithm, which is 
a popularly used asymmetric encryption algorithm, to illus 
trate the features of the MOSES architecture. Similar opti 
mizations of MOSES can be easily applied to result in high 
processing efficiency for many other asymmetric encryption 
algorithms. 
0127. There are a number of operations in the SW imple 
mentation of the RSA, which are good candidates for 
implementation as custom instructions. The Source code of 
the basic RSA decryption function is shown as a call graph 
in FIG. 3. Basic operations used in the call graph are 
arithmetic operations that operate on operands of arbitrary 
sizes (organized into lists of limbs). Since the basic opera 
tions layer are the leaves of the call graph, they accelerate 
the entire range of applications (not restricted to RSA alone) 
that use these libraries. Custom instructions were developed 
for these basic operations. 

0128 mpn add n: This operation adds together two 
multi-bit operands. The functionality of mpn add n 
is described below. 

mpn add n (mp ptr res ptr, mp. Srcptr S1 pt?, mp. Sreptr S2 ptr, 
mp size t size) 

register mp limb t X, y; 
register mp size ti; 
mp limb t cy; 

i = -size; 
s1 ptr -= j. 
s2 ptr -= j. 
res ptr -= j. 
cy = 0; 
do 

(C) 1996, Free Software Foundation 

0129 (C) 1996, Free Software Foundation’ 
° The original copyright message of the Free Software Foundation included 
the following statement: The GNU MP Library is free software; you can 
redistribute it and/or modify it under the terms of the GNU Library General 
Public License as published by the Free Software Foundation; either version 
2 of the License, or (at your option) any later version. 

0130 mpn Sub n: This operation subtracts one 
multi-bit operand from another. The C code describ 
ing the functionality is shown below. AS Seen from 
the functionality of mpn Sub in and mpn add n, the 
corresponding custom instructions can share all the 
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hardware resources needed to implement the instruc 
tions by using an arithmetic unit that implements 
both addition and Subtraction. 

mpn Sub in (mp ptr res ptr, mp. Srcptr S1 ptr, mp. Sreptr S2 pt?, 
mp size t size) 
{ 
register mp limb t X, y; 
register mp size ti; 

cy = (y > x) + cy; 
res ptr = y; 

while (++j = 0); 
return cy; 

(C) 1996, Free Software Foundation 

0131 mpn mul 1: This operation multiplies a 
multi-bit operand with a single 32-bit limb. The C 
code implementing this operation is as follows. 

mp limb t impn mul 1 (res ptr, s1 ptr, S1 size, s2 limb) 
register mp ptr res ptr; 
register mp Srcptr S1 ptr; 
mp size t S1 size; 
mp limb t s2 limb; 
{ 

mp limb t cy limb; 
register mp size ti; 
register mp limb t prod high, prod low; 

j = 0; 
cy limb = 0; 
do 
{ 

umul ppmm (prod high, prod low, s1 ptr. S2 limb); 
prod low += cy limb; 
cy limb = (prod low < cy limb) + prod high; 
res ptr = prod low; 

while (++ < s1 size); 
return cy limb; 

(C) 1996, Free Software Foundation 

0132 mpn addmul 1: In this operation, a 32-bit 
limb multiplies a multi-bit operand, and the result is 
added back to the multi-bit operand. The C code 
implementing this operation is as follows: 



US 2003/0142818 A1 

mp limb t impn addmul 1 (res ptr, s1 ptr, s1 size, s2 limb) 
register mp ptr res ptr; 
register mp Srcptr S1 ptr; 
mp size t S1 size; 
mp limb t s2 limb; 
{ 

register mp size ti; 
register mp limb t prod high, prod low; 
register mp limb t X; 
mp limb t cy limb; 

cy limb=0; 
i = -s1 size; 
res ptr -= j. 
s1 ptr -= j. 
do 

{ 
umul ppmm (prod high, prod low, s1 ptr. S2 limb); 
prod low += cy limb; 
cy limb = (prod low < cy limb) + prod high; 
X = res ptr; 
prod low = x + prod low; 
cy limb += (prod low < x); 
res ptr = prod low; 

while (++j = 0); 
return cy limb; 

(C) 1996, Free Software Foundation 

0133 mpn submul 1: In this operation, a 32-bit 
limb multiplies a multi-bit operand, and the multi-bit 
operand is subtracted from the result. The C code 
implementing this operation is shown below. The 
functionality of mpn Submul 1 is similar to the 
functionality of mpn addmul 1, allowing for an 
effective sharing of hardware resources between the 
custom instructions. 

mp limb t impn submul 1 (res ptr, s1 ptr, S1 size, s2 limb) 
register mp ptr res ptr; 
register mp Srcptr S1 ptr; 
mp size t S1 size; 
mp limb t s2 limb; 

mp limb t cy limb; 
register mp size ti; 
register mp limb t prod high, prod low; 
register mp limb t X; 
unsigned ik,S1 size1.carry; 
i = -s1 size; 
res ptr -= j: 
s1 ptr -= j. 

cy limb = 0; 
do 

umul ppmm (prod high, prod low, S1 ptril, 
s2 limb); 
prod low += cy limb; 
cy limb = (prod low < cy limb) + prod high; 
X = res ptr; 
prod low = x - prod low; 
cy limb += (prod low > x); 
res ptr = prod low; 

while (++ = 0); 
return cy limb; 

(C) 1996, Free Software Foundation 

0134. Additional custom instructions are also present for 
performing the operation corresponding to dividing a 64-bit 
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operand by a 32-bit operand and determining the resulting 
quotient (udivisi3) as well as the modular remainder 
(modsi3). Custom instructions for loading (storing) the 
operands from (to) custom registers are also present. The 
user registers and the corresponding instructions are shared 
among the different custom instructions added to the pro 
CCSSO. 

0135) 
0.136. In this section, we illustrate the different optimi 
zations feasible for the SW architecture of MOSES by using 
public-key algorithms as an example. We first describe Some 
background material on public-key algorithms for the Sake 
of completeness (for further details, we refer the reader to 
<45). We then identify the different parameters in a public 
key algorithm, which need to be carefully tuned for efficient 
execution. Finally, we describe the inter-dependencies 
between these parameters and the resulting tradeoffs. 
0137) 1. Public-key Algorithmic Parameters 

IV.D. Optimizations for the SW Architecture 

0.138. The most significant factors that control the per 
formance of a public-key algorithm include the size of the 
input block, the algorithms used for performing modular 
exponentiation and modular multiplication and the use of 
Special-purpose enhancements like the Chinese Remainder 
Theorem. In addition, Software engineering techniques can 
also speed up the implementation of an algorithm. We look 
at a specific optimization (Software caches) relevant to this 
work. Each of these optimizations can lead to Several 
different alternative implementations of the public-key 
encryption algorithm. Many optimized implementations of 
public-key algorithms exist, however, to our knowledge, 
none of them consider all the algorithm optimizations in 
Systematic manner. In order to provide a global view of the 
Space of all possible algorithm configurations, we represent 
each of the optimizations as an algorithmic parameter. The 
different parameters controlling the implementation of an 
algorithm define the algorithm design space. The purpose of 
our Study is to first identify the various algorithm parameters 
that control the implementation of modular exponentiation. 
With the algorithm design space defined, we not only want 
to identify the best value for each parameter (for a particular 
underlying hardware platform), but also to examine if there 
is an interplay, among the various parameters, which can be 
exploited to improve the overall performance of the algo 
rithm. 

0.139. Each of the optimizations considered in this work 
is detailed next, following which we comment on inter 
dependencies between the various optimizations. 

0140 FIG. 4 shows effect of (a) input block size, (b) 
CRT, (c) MM algorithm, and (d) radix size, as described in 
Subsections below. 

0141) 2. Input Block Size 
0.142 A plaintext message is typically divided into sev 
eral input blocks before encryption. A Smaller input block 
Size would reduce the size of the input value to each modular 
exponentiation step (simplifying its complexity), while 
increasing the number of calls to modular exponentiation. 
The effect of input block size on performance, was Studied 
by performing encryption and decryption for varying input 
block sizes, i.e., 32, 64, 128, 256 and 512 (on the same 
input). The number of Kilo cycles per byte of input data 
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(Kcycles per byte) consumed for encryption and decryption 
on an Xtensa" embedded processor was used to quantify 
performance. The results, plotted in FIG. 4(a), were 
obtained by adding the Kcycles consumed by RSA encryp 
tion and decryption, for various input block sizes. FIG. 4(a) 
shows that the greater the block size, the better the perfor 
mance. But, the performance obtained for block sizes greater 
than 512 were not significantly greater than that obtained by 
a block size of 512. Note that the block size cannot be 
increased beyond the “modulus” (1024-bits in this case) of 
the public-key algorithm in order to ensure loSS-leSS encryp 
tion. 

0143) 3. Modular Exponentiation (ME) Algorithms 
0144. There are two ways of performing modular expo 
nentiation <16>, depending on how the bits in the exponent 
are Scanned, namely: left-to-right (LR) and right-to-left 
(RL). Suppose that the exponent can be represented in 
binary form as (ek-1ek-2). . . , eO).In encryption, the 
cipher text C corresponding to the input block M (or 
Vice-versa for decryption) is obtained as follows: 

0145 Left-to-Right (LR) Algorithm: Initially set 
C=1. For i from (k-1) down to 0. Set C=CC (mod 
n). In addition, if (ei==1), set C=CM (mod N) 

0146 Right-to-Left (RL) Algorithm: Initially set 
C=1. For ii from 0 up to (k-1), set C=CM (mod n). 
In addition, if (ei==1), set M=M*M (mod N) 

0147 Unlike in the LR algorithm, the operations in an 
iteration of the RL algorithm are independent of each other. 
Thus, the RL algorithm can potentially result in a Speedup 
over the LR algorithm. However, the speedup obtained in 
practice depends on whether Sufficient parallelism (e.g., 
parallel MM units) is available in the target processor. 
0148 Chinese Remainder Theorem 
014.9 The exponent size (of ME) in decryption (usually, 
1024 bits) is much larger than in encryption (normally, 16 
bits or less). Therefore, decryption is much more computa 
tionally intensive and time consuming than encryption. The 
Chinese remainder theorem (CRT) <17> is employed for 
reducing decryption times. Using CRT, intermediate values 
are obtained by performing ME using a reduced exponent 
size, and these values are combined to obtain the final 
decrypted result. This is made possible by the knowledge of 
the Secret primes p and q (used to obtain the modulus n). 
There are two ways of implementing CRT, namely: Single 
radix conversion (SRC) and mixed-radix conversion (MRC) 
<16>. We describe the MRC method here. The decryption 
operation, M=C mod n, (M., C and dare the plaintext, cipher 
text and private key respectively) is broken down to M=M1+ 
M3*p, where, 

0150 and 
M3=(M2-M1)*(1/p mod q)(mod q), 

0151. The values d1 =d (mod (p-1)) and d2=d(mod(q-1)) 
are pre-computed for a given private key d. Note that d1 and 
d2 are half the size of the private key, d, which explains the 
improvement obtained by CRT FIG. 4(b) illustrates the 
Superiority of decryption using CRT (lower curve) over 
decryption without CRT (upper curve). 
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0152 5. Modular Multiplication (MM) Algorithms 
0153. Each modular exponentiation (ME) operation is 
implemented as a sequence of modular multiplication (MM) 
operations. Each ME operation involves roughly 1.5 k MM 
operations, where k is the bit-size of the exponent <18>. For 
example, when the exponent in ME is 1024 bits, the MM 
operation is invoked 1500 times, on an average, by each ME 
operation. Thus, the performance of the MM operation can 
have a major influence on that of the ME operation (and 
thereby on the encryption/decryption performance). There 
are as many ways of performing MM, as there are of 
performing multiplication and mod operations. Depending 
on the constituent operations, each MM technique has a 
varying impact on the performance of the encryption/de 
cryption operations. The main trade-off among the various 
MM algorithms is between the Speed and Storage required 
(to hold intermediate values). In our study, five different MM 
algorithms were analyzed, whose details are as follows: 

0154) Montgomery MM (MM-Algo 1): This algo 
rithm <19> implements the mod operation (reduc 
tion of the product) as divisions by a power of 2. 
However, there is an overhead incurred in the form 
of mapping the given inputs to Montgomery residue 
Space before starting the MM computation(prepro 
cessing), and then mapping the result back to the 
normal Space (post-processing). 

O155 Radix-r, Separate Montgomery MM (MM 
Algo 2): In this variation of Montgomery MM, the 
reduction of the product is broken into a series of 
atomic Steps, where each atomic Step operates on a 
part (determined by radix r) of the product <20>, i.e., 
instead of reducing the whole product at once (as in 
MM-Algo 1), it is broken into chunks (determined 
by radix r), each of which is Successively reduced. 
The complexity of individual operations in the algo 
rithm is reduced, but the number of operations 
required increases (compared to MM-Algo 1). 

0156 Radix-r, Interleaved Montgomery MM (MM 
Algo 3): In this Montgomery MM implementation, 
the product is accumulated in discrete steps (com 
pared to MM-Algo 2) and Successively reduced, and 
this proceSS proceeds until the entire product is 
computed (and reduced) <20>. This implementation 
reduces the storage requirements (because of the 
partial product accumulation and reduction). The 
Storage and computational complexity of the algo 
rithm are reduced, but the number of Steps increases 
(compared to MM-Algo 1). 

O157 Normalization based MM (MM-Algo 4): This 
algorithm involves obtaining the product using Kar 
atSuba-Ofman method <16>, and then reducing the 
result using the optimized normalization method 
<21>. Due to the absence of pre- and post-processing 
operations, this technique has fewer number of 
operations than the previous implementations 
(Algo's 1,2 and 3). 

0158 Binary Montgomery MM (MM-Algo 5): This is a 
Special case of MM-Algo 3, where the radix is 2, i.e., r=2 
This particular value of the radix drastically simplifies the 
operations in Montgomery MM algorithm through the use of 
very Simple and fast bit-wise operations. However, the 
number of bit-wise operations required is large. 
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0159 FIG. 4(c) shows the performance of encryption/ 
decryption using the above mentioned MM algorithms in 
sample ME operations. MM-Algo 5 turns out to be very 
costly. This can be explained by the large number of bit-wise 
operations that the algorithm has to perform, together with 
the poor efficiency of general purpose processors in execut 
ing bit-level operations. MM-Algo 4 performs the best. 

0160 6. Radix in MM Algorithms 

0161 The performance of MM algorithms (MM-Algos 2 
and 3) is affected by the choice of the radix. FIG. 4(d) shows 
the cumulative performance of encryption and decryption 
using MM-Algo 3 (in ME), as the radix is varied from 8 to 
512. The plot shows that minimum cost is obtained by 
using a radix of size in MM algorithms. MM-Algo 2 exhibits 
similar behavior. 

0162 7. Caching 
0163 Modular exponentiation is a very costly operation 
and appreciable time Savings can be obtained, if the ME 
operation can be avoided for repeated input blocks (using 
the previously computed cipher text instead). This observa 
tion prompted us to examine the usage of Software caches 
before the ME operation. The encryption process in the 
presence of caches can be described as: if (Mi) present in 
cache) then use Ci from the cache, else Ci=Mill mod N. 
Decryption can be implemented in the same way. This kind 
of cache is referred to as the pre-ME cache. 

0164 FIG. 5 shows effects of caching (pre-ME and 
intra-MM). As mentioned earlier, a typical 1024-bit expo 
nent ME operation results in 1500 MM operations on 
average. This increases the chances of inputs, to the costly 
multiplication and mod operations in the MM operation, 
being repeated. This motivates the use of Software caches 
inside the MM units. Although, multiply and mod operations 
are not as costly as the ME operation, appreciable Savings 
can Still be obtained for a moderate hit-ratio. For example, 
MM-Algo1 has a step M=TN (mod R), in which N and R 
are fixed for the entire duration of encryption (or decryp 
tion). We use a cache in the following manner: if (T is 
present in the cache) then assign the corresponding com 
puted value from the cache to M, else compute M=TN (mod 
R). This type of cache is called intra-MM cache. 

0165 FIG. 5(a) shows the variation in the hit ratios of 
pre-ME (lower curve) and intra-MM (upper curve) caches as 
a function of the input block size. Intra-MM caches exhibit 
better performance Scaling compared to pre-ME caches, as 
the input block Size is increased. For this experiment, we 
assumed unlimited cache Sizes, i.e., the modular exponen 
tiation result computed on each unique input block is added 
to the cache. Due to the overheads associated with main 
taining a Software cache, in practice, it is necessary to limit 
the cache Size and consequently use a replacement policy. 

0166 In order to evaluate the cache size necessary for a 
good hit ratio, we performed experiments with associative 
cache sizes of varying sizes. The results indicate that a 1K 
cache results in a hit-ratio almost equal to the “ideal” 
hit-ratio (FIG. 5(a)) for pre-ME caches (FIG. 5(b)). The 
same behavior is observed for intra-MM caches also. Thus, 
1K associative caches were used for pre-ME and intra-MM 
caches. 
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0.167 8. Inter-dependences and Trade-offs 

0.168. The different combinations of the parameters seen 
above result in a very large design space. Such a design 
Space needs to be explored completely in order to determine 
the optimal choice of parameter values. This is necessary 
because the best-performing value for one parameter may 
not appear in the overall best configuration (with other 
parameters included) for the public-key algorithm. For 
example, FIG. 4(a) indicates that the input block size of 512 
bits is potentially a good choice for public-key encryption/ 
decryption. With this block-size (along with 1024-bit RSA 
modulus and "algo 1'), the cost of encrypting an example 
wireless data transaction is 64301.07 Kcycles on the target 
processor. On the other hand, the cost of encrypting the same 
transaction with a 32-bit input block size and a pre-ME 
cache reduces to 15714.5 Kcycles, which reflects a perfor 
mance improvement of 75.5% with respect to the 512-bit 
input block size (after accounting for the overhead intro 
duced by the cache). The above experiment demonstrates 
that performing each algorithmic optimization Separately 
(independently) can lead to significantly Sub-optimal per 
formance. Exploring the large design Space to determine the 
optimal configuration of parameters, therefore, becomes 
inevitable. We have developed an efficient algorithmic 
design space exploration Strategy to address this need, which 
we describe later. 

0169 IV.E. Optimized Architecture for a System Con 
taining MOSES 

0170 In this section, we describe how MOSES can be 
integrated into a host System (e.g., a wireless phone, PDA, 
etc.) as a Security processor, to render the System capable of 
efficient Security protocol processing. These benefits effec 
tively result in enabling advanced Secure applications, 
higher application-level performance, and a better overall 
user experience. An optimized System-level architecture 
enables the best utilization of MOSES security processing 
capabilities. Further, the System architecture needs to 
designed to minimize or eliminate the risk of malicious or 
buggy Software running on the host CPU (or any other 
System component) compromising the Security of Sensitive 
information that is contained in the System. 
0171 FIG. 6 shows an example of a system that includes 
a host processor and MOSES as a Security processor (many 
alternative architectures, including direct connection of 
MOSES and the host CPU, may be possible). The figure 
indicates the hardware integration of MOSES into the sys 
tem, as well as the relevant Software that runs on the host 
processor and MOSES. From a hardware perspective, 
MOSES is connected to the host system bus through a 
bridge. If MOSES is required to access the system main 
memory independent of the host processor, the bridge 
should include the capability to act as a master on the System 
bus. Further, the bridge may feature Direct Memory Access 
(DMA) and other burst transfer capabilities to minimize 
memory access overheads and allow for a greater degree of 
parallel operation between MOSES and the host processor. 
A dedicated memory, called a “secure scratchpad” in FIG. 
6, may be connected to MOSES. This memory can be 
directly accessed only by MOSES, and may be used for 
Storing Sensitive information, Such as keys, passwords, etc., 
as well as for Storing intermediate results generated during 
the execution of MOSES. In addition to the secure Scratch 
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pad, it is also possible to denote a portion of the System main 
memory as a Secure Segment, to which access is restricted to 
a limited Set of System components and/or Software func 
tions running on the host processor or MOSES. Such access 
policies are enforced through the use of an enhanced bus 
controller. The enhanced bus controller observes each bus 
transaction, and determines whether it legal, i.e., complies 
with the defined access policy. If the buS transaction is 
determined to be illegal, the enhanced bus controller may 
either reject the bus acceSS request, or Signal an error or 
exception to abort the transaction. 
0172 The software running on the host processor and 
MOSES are also indicated in FIG. 6. The Software execut 
ing on the host processor includes a Security protocol that 
contains routines offloading part of the Security protocol to 
MOSES. In addition, the host processor may execute an 
operating System (OS), network protocol stacks (e.g., TCP/ 
IP), and one or more applications. 
0173 It is important to note that, since MOSES includes 
a programmable processor, there is great flexibility in deter 
mining with portions of the Security protocol are offloaded 
to MOSES. This feature may be exploited to result in the 
following benefits: 

0.174 Portions of the security protocol other than the 
core cryptographic algorithms to MOSES. It may 
often be necessary to offload Such functionality (e.g., 
packet processing functions Such as byte re-ordering 
or packet header parsing) in order to truly optimize 
application-level performance (or energy efficiency). 

0175 The partitioning (or allocation) of functional 
ity between the host processor and MOSES can be 
determined to minimize the communication require 
ments between them. 

0176 Multiple allocations of the security protocol 
functionality may be derived. The choice of alloca 
tions, as well as the choice of when to use each 
allocation, may be performed Statically or dynami 
cally (during System execution), based on various 
factors, including the application's data rate and 
Security requirements, host processor workload, 
MOSES workload, and system bus workload. 

0177. It may be often necessary for a system containing 
MOSES to execute multiple concurrent applications. In such 
Scenarios, more then one application may require to utilize 
MOSES for efficient execution of security protocols. The 
hardware architecture of MOSES, as well as the Software it 
executes, can be optimized to provide further efficiency in 
the processing of multiple Secure data Streams. Such opti 
mizations can include techniques for low overhead multi 
plexing (or interleaving) of computations corresponding to 
different data Streams. Further, the amount of data that has 
to be transferred to/from MOSES when Switching to a 
different Security Stream can be minimized by Storing Some 
of this context information in the dedicated memory that is 
connected to MOSES. The context information for each 
Stream includes a stream identifier, protocol State (e.g., 
Session context and key information), and cryptographic 
algorithm State (e.g., the feedback vector for ciphers that are 
employed in output feedback mode). In addition, the allo 
cation of security protocol functionality between MOSES 
and the host processor may be determined independently for 
each Stream based on its unique requirements. 
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0178) 
0179. In this section, we present methodologies used for 
designing a wireleSS Security processing platform. We first 
present an overview of the entire methodology. Subse 
quently, we detail the Selection of the Software constituents 
of the platform, followed by a description of the steps 
involved in customizing the hardware platform. 
0180 FIG. 7 shows an overview of the security process 
ing System design methodology. 

0181 1. Overview 
0182 FIG. 7 outlines system-level design steps that were 
used during the design of MOSES. 

IV.F. Design Methodologies 

0183) There are four major phases in the flow: (i) per 
formance characterization of Software libraries, (ii) algo 
rithm exploration, (iii) formulation of candidate custom 
instructions to accelerate individual library routines, and (iv) 
global custom instruction Selection to generate the required 
performance for each Security algorithm. The methodology 
exploits the layered SW architecture in order to separate the 
above Steps in a clean manner. Specifically, only implemen 
tations of the lower SW layers (standard libraries, basic 
operations) are required for performance characterization 
and formulation of custom instruction candidates, while 
algorithm exploration and global custom instruction Selec 
tion are performed using the higher SW layers (complex 
operations, Security primitives) while regarding the lower 
SW layers as a black box. 
0184 We now briefly describe the salient steps of our 
methodology, details of which are found in later explana 
tions. 

0185. The simulation time required for performance 
estimation is a Significant bottleneck in algorithm 
design space exploration (in our context, several 
hours to few days per candidate algorithm). The 
performance macro-modeling phase effectively 
addresses this problem by enabling performance 
estimation through native compilation and execu 
tion, which can be orders of magnitude faster than 
Instruction Set Simulation. During the performance 
macro-modeling phase, we characterize the Software 
library routines that constitute the basic Steps of the 
algorithm, using a cycle-accurate ISS. We use Sta 
tistical regression techniques to build macro-models 
that express the execution time of each routine as a 
function of parameters characterizing its input vari 
ables. The performance macro- modeling phase is 
explained in further detail later in this Section. 

0186 The algorithm exploration phase attempts to 
identify optimal algorithmic implementations of 
Security processing algorithms Such as RSA, AES, 
3DES etc. For each algorithm candidate, we instan 
tiate the performance macro-models for library rou 
tines in the Source code, and replace ISS runs with 
native compilation and direct execution on a host 
WorkStation, resulting in large Speedups in Simula 
tion time. In our context, that allows exhaustive 
exploration of the algorithmic design space to be 
performed. 

0187. In most scenarios, the optimized algorithm 
running on the base hardware platform does not 
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achieve the target performance. Therefore, it 
becomes necessary to customize the underlying HW 
architecture, through custom instruction extensions 
in our case. During the custom instruction formula 
tion phase, we focus on Speeding up individual 
Software library routines. That allows our designers 
to focus on Small problem instances, where they best 
apply their creativity, leaving the global tradeoffs to 
the Subsequent phase. The routine under consider 
ation is profiled using traces derived from Simulation 
of the entire algorithm. The computation-intensive 
parts of the routine are specified as a custom instruc 
tion. The hardware resources (functional units, reg 
ister files, lookup tables, etc.) used in the custom 
instruction are varied to create a local area VS. delay 
tradeoff for the individual library routine. Having a 
rich Set of alternatives is critical to achieving a 
high-quality Solution in the global custom instruction 
Selection phase. The custom instruction formulation 
phase is discussed further later in this Section. 

0188 The global custom instruction selection phase 
determines a combination of (possibly Several) cus 
tom instructions to result in maximum speedup for 
the entire Security algorithm Subject to any appli 
cable area constraints. This phase proceeds by propa 
gating A-D curves for library routines through the 
function call graph of the entire algorithm. The 
potential explosion in the number of instruction 
combinations is contained using Several techniques. 
The global custom instruction Selection phase is 
described in detail later in this Section. 

0189 2. Performance Macro-modeling for Algorithm 
level Design Space Exploration 
0190. In this section, we present an overview of the 
proposed methodology for evaluating algorithmic trade-offs 
in wireless Security processing. Note that, the proposed 
flow is general enough to be applied for exploring the 
algorithmic design space of other embedded Software appli 
cations. 

0191 Most algorithms, including security algorithms, are 
designed as high-level entities that invoke functions from 
one or more pre-existing Software libraries. Such an 
approach is used in design of our Security processing plat 
form, wherein the Security algorithm sits atop a layer of 
Software libraries, which in turn sit above the actual target 
architecture. AS Seen from earlier Sections, there are many 
algorithmic choices or combinations of optimizations that 
must be examined So as to arrive at the best possible 
Software implementation. The best choice is the one that 
requires the least number of CPU cycles, on an average. 
0.192 FIG. 8 shows enhanced architectural simulation 
with pre-characterized software libraries. Traditional meth 
ods of performing this evaluation would require running 
each candidate algorithm (Serially, or, in parallel) on a target 
architecture ISS to derive performance metrics. Since each 
Simulator run is Slow and computationally expensive, we 
propose an alternative evaluation flow as shown in FIG. 8. 
In this flow, we migrate the Simulation runs to the native 
architecture and estimate the performance of an algorithm 
on the target architecture. Such a flow uses models of the 
Software library routines that replicate (to a high degree of 
accuracy) their performance characteristics on the target 
architecture. 

13 
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0193 A performance model is a function that parameter 
izes the number of cycles incurred by the actual run of a 
library routine with some input data in terms of variables 
that characterize the input data. This characterization is 
performed by regression macro-modeling (as shown in FIG. 
8) that takes as its input, (a) performance data of the library 
routine on the target for different input samples, and, (b) data 
values for the variables characterizing those input Samples. 

0194 The performance data is collected from the profil 
ing Statistics generated by Simulation runs on test programs 
containing the library routines for different input Stimuli. 
This is a one-time cost, thereby accelerating the overall 
Simulation process. Since the input Space for a library 
routine can potentially be infinite, test bench generation is 
application-driven in the Sense that the input Samples are 
generated for the input Space used by the application. For 
example, the GNUMP library provides a wide variety of C 
functions that can perform arbitrary precision arithmetic on 
integers, rational numbers and floating point numbers. How 
ever, a 1024-bit RSA algorithm requires only a few of those 
arithmetic functions with the operations restricted to (less 
than or equal to) 1024-bit arithmetic. Therefore, we char 
acterize the library routines for this restricted domain only. 

0195 FIG. 9 depicts a performance profile of function 
mod(in2,in1) over different input bit-widths. The perfor 
mance profiles of arithmetic functions show a regular behav 
ior (piecewise linear, quadratic, etc.) over input bit-width 
Subspaces. For example, the average performance of func 
tion mod for different input bit-widths (the Cartesian product 
of BW1: (32,96 . . .992)xBW2: (32,96 . . . , 992) on a 
Specific Xtensa processor configuration is shown in FIG. 
9. The plot indicates that a single function 

0196) cannot fit the profile in an accurate manner. There 
fore, the profile is partitioned along the lines (bw1<bw2), 
((bw1>=bw2)&&(bw2>32)) and ((bw1>=bw2)&&(bw2<= 
32)). The corresponding fits obtained using S-PLUS <22> 
are indicated below. 

cost=0.06990126-0.0005330226*bw1-2.62605e 
O6*2 

0197) The mean absolute errors of this model are very 
small (0.01853528, 0.01337336 and 0.128225 for the three 
fits). To understand the accuracy of this fit, we can compare 
the performance estimate for an input Sample not used in the 
regression macro-modeling process with the measured 
value. For example, the performance estimate for (BW1= 
1024, BW2=1024) is 1.385 Kcycles, while an actual simu 
lation run with 500 uniform random values averages to 1.35 
Kcycles. 

0198 In this way, the performance model for a library 
routine can be derived fairly easily and accurately using 
regression based approaches. All library routines instanti 
ated in the Source code of an algorithm can now be aug 
mented with their respective performance models to esti 
mate the overall performance of the algorithm on the target 
architecture, while running Solely through native eXecution. 
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0199 3. Formulating Custom Instruction Candidates and 
A-D Curves 

0200 FIG. 3 shows the profile statistics of an optimized 
modular exponentiation algorithm as a function call graph, 
with nodes representing function names, and edges weighted 
by the number of calls made to each function. For example, 
the function decrypt makes 4, 4, 2, 2 and 2 calls, to functions 
mpZ. mul, modPow, mp.Z. mod, mpz add and mpZ. Sub, 
respectively. Each node in the call graph may have more 
than one parent, Since a function may be invoked by multiple 
higher-level functions. For example, 
0201 mpz mul is called by three functions decrypt, 
modMul and mpz gcdext. For the sake of simplicity, the call 
graph in FIG. 3 is truncated at functions that are highlighted 
with bold text, i.e., calls to lower-level functions are not 
shown. The leaf nodes of the call graph in FIG.3 correspond 
to the library routines for which custom instructions are 
added in an interactive manner with the designer's involve 
ment. It bears mentioning that, the granularity of the leaf 
nodes is a critical choice that determines the effectiveness of 
the custom instructions. Ideally, a function chosen to be a 
leaf node should contain Sufficient amount of computation 
So as to provide Scope for optimization, while being Small 
enough that it is easy for a designer to understand and 
optimize. Our methodology contains heuristics for the 
choice of the leaf node based on the functions size and the 
fraction of the total program execution time it accounts for. 
However, we also provide the designer with an option to 
override automatic choices and manually Specify the leaf 
nodes. 

0202 Since the added custom instructions can be pro 
Vided with a variable number of hardware resources, we can 
associate an area-performance trade-off curve (also called 
A-D curve) with each custom instruction. The lower-most 
set of points in FIG.10(a) shows the A-D curve for a sample 
library routine mpn add n that performs the addition of two 
vectors. The original library routine is represented by the 
design point that has a Zero area overhead and a performance 
of 202 cycles, as shown. All other design points are derived 
through custom instruction additions with varying number 
of adder resources, and hence, have non-Zero area over 
heads. For example, the Second design point is achieved by 
adding custom load/store instructions load UR1, load UR2 
and Store UR3, and an addition instruction add 2 that uses 
two 32-bit adder resources. When the number of adders is 
changed to 4 (add 4 ), performance improves at increased 
area costs, creating the next design point in the A-D curve. 
At Some point, additional resources bring diminishing 
returns (e.g., due to limits on parallelism or memory bottle 
necks). 
0203 4. Global Custom Instruction Selection 
0204. In this section, we describe our methodology for 
Selecting custom instructions using A-D curves of Software 
library routines and the annotated call graph of the entire 
algorithm. Our procedure for Selecting custom instructions 
involves combining and justifying A-D curves in a bottom 
up fashion to derive a composite A-D curve for the root node 
of the call graph. The area and performance constraints for 
the platform can then be applied at the root node to pick the 
final custom instruction(s). 
0205 For any subgraph rooted at a node f, with children 
given by the set children(f)f, the performance of f f is 
governed by the following equation 
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cycles.(f)=local cycles.(f)+X cycles(g); 

0206 where, ge children(f) 
0207. In the above equation, local cycles(f) refers to the 
number of cycles spent in computations local to f, which do 
not involve calls to any of its children. The above equation 
can be directly applied when all members of the set chil 
dren(f) have a single performance number associated with 
them (i.e., no A-D curves). However, when A-D curves of 
one or more functions in children(f) need to be combined, 
there are a few issues involved, as illustrated below. When 
the root node of a Sub-graph in the call graph has multiple 
children, the A-D curve computation simply degenerates to 
repeated application of the following cases. 

0208 FIGS. 10(a)-(c) show different types of A-D 
curves. Two child nodes-one child with an A-D curve and 
another with no A-D curve: FIG. 10(a) illustrates this case 
for the graph rooted at node root, with one child mpn add n 
(which has an A-D curve), and a second child other (which 
requires 10 cycles per call). In this case, for every design 
point in the A-D curve of root, we have a corresponding 
design point in the A-D curve of mpn add n, with the 
performance computed using Equation (4). 

0209. Two child nodes with A-D curves: FIG. 10(c) 
illustrates this case using a graph rooted at node root with 
two children, mpn add n and mpn addmul 1, whose A-D 
curves are shown in FIGS. 10(a) and 10(b), respectively. As 
in the previous case, the performance of root is the Sum of 
the performances of its children, each weighted by the 
number of calls made to them. In general, every combination 
of design points (Cartesian product) from the A-D curves of 
mpn add n n and mpn addmul 1 must be represented as a 
distinct point in the A-D curve of root. However, it turns out 
that whenever instructions are shared or dominated between 
design points, the number of design points in the composite 
A-D curve can be significantly reduced, as explained next. 

0210 FIG. 11 shows the Cartesian product of the points 
on the A-D curves for mpn add n n and mpn addmul 1. 
Each entry corresponds to the union of the custom instruc 
tions that constitute the individual design points (we ignore 
load/Store instructions, which are shared acroSS both the 
children). For example, the shaded entry add 2, mul 1 is 
the union of custom instructions add 2, mul 1 for function 
mpn addmul 1, and add 2 d for function mpn add nn. 
The Symbol () is used to denote the null Set, i.e., no custom 
instructions. Observe that the shaded entry add 2, add 4, 
mul 1 in FIG. 11 is equivalent with many other design 
points. This is possible (i) when entries have the same 
custom instructions or (ii) when entries reduce to the same 
custom instructions. For example, the entry add 2, add 4, 
mul 1 has two add instructions add 2 and add 4, which 
differ only in the number of adder resources available while 
realizing the same functional capabilities. Given that add 
4 can be used to perform add 2 with equal or better 
performance, we say that add 4 dominates add 2dd, and 
reduce add 2, add 4, mul 1 to add 4, mul 1. FIG. 11 
contains 25 candidate design points, which can be reduced 
to only 9 points corresponding to the shaded entries in FIG. 
11. The reduced set of 9 points are represented in the A-D 
curve for rootot, as shown in FIG. 11(c). 
0211 FIG. 11 depicts combining the design spaces of 
two area-delay (A-D) curves. Note that, at the root node of 
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the entire call graph, the Standard notion of Pareto-optimal 
ity can be applied to eliminate inferior points. In FIG. 10(c), 
we can prune away design point P1, which has inferior 
performance while incurring more area with respect to 
design points P2 and P3. 

0212 
0213 The security processing platform MOSES was 
designed and evaluated in the context of popular network 
layer and transport-layer Security protocols (e.g., IPSec, 
SSL, WTLS, etc.). We first describe the experimental meth 
odology used to evaluate MOSES. We then illustrate the 
performance of MOSES in speeding up the secure socket 
layer (SSL) protocol and its constituents, as well as its 
performance as a Security co-processor for a handheld 
device. We also discuss the results of the algorithmic design 
Space exploration methodology, as well as the efficiency and 
accuracy of the macro-modeling based performance estima 
tion technique. 
0214) 1. Experimental Methodology 

IV.G. Experimental Results 

0215 For algorithmic design space exploration, each 
algorithm candidate was implemented as a highly modular, 
optimized C implementation using library routines from two 
well-known software libraries: (i) The GNU MP library 
<21> provides a wide variety of functions that can perform 
arbitrary precision arithmetic on integers, rational numbers 
and floating point numbers, and (ii) a hash library that 
provides a reliable means for creating hash tables. The GNU 
based cross-compiler, and the instruction Set Simulator for 
the target processor (an Xtensa" processor core from 
Tensilica Inc. <14>, running at 188 MHz in 0.18 micron 
technology) were used to profile the different library rou 
tines. Performance macro-models were constructed using 
the statistical modeling tool S-Plus <22>. Native simulation 
was then performed on a SUN Ultra 10 440 MHz worksta 
tion with 1 GB of memory to select the best algorithm 
configuration for the given target hardware. 

0216) The different custom instructions were imple 
mented as Tensilica Instruction Extension (TIETM) descrip 
tions and parameterized for generating A-D curves. The 
TIETM descriptions were compiled using the TIETM compiler 
<14>, which generates both C-stubs and synthesizable RTL 
Verilog descriptions. The C-stubs were then instantiated as 
intrinsics in test programs to derive the performance num 
bers in the A-D curves. The RTL descriptions of any custom 
hardware additions were Subject to logic Synthesis using 
Synopsys Design CompilerTM <23> and technology mapped 
to the NEC CB-11 0.18 micron technology library <24> to 
determine the area numbers. The global instruction Selection 
procedure described earlier was then used to evaluate the 
different TIETM candidates. The TIETM Solutions determined 
were combined with the base Xtensa TM processor core using 
the XtensaTM processor generator <14> to build the 
enhanced target hardware. 
0217 FIG. 12 shows an example functional prototype of 
the Security processing platform. 

0218 2. Evaluation of MOSES 
0219. We evaluated the performance of our security pro 
ceSSor platform using Standard implementations of private 
key algorithms such as DES, 3DES, and AES, as well as the 
public-key algorithm RSA. The optimized HW platform and 
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SW implementation resulting from our System design meth 
odology were used to build a board-level prototype imple 
mentation of the Security processing platform, which is 
shown in FIG. 12. The prototype was built using the 
XT-2000TM emulation board <25> with an EPSON graphics 
controller card <26> interfacing with an NEC LCD panel 
<27>. The System prototype was used to demonstrate Secu 
rity processing performance improvements under various 
application Scenarios, including real-time Video decryption 
and SSL transaction acceleration. 

TABLE 1. 

Performance speed-ups for popular security 
processing algorithms 

Processing Rates 

Orig. Final 
Sec. Algo. (cycle?byte) (cycle?byte) Speedup 

DES enc.f dec. 476.8 15.4 31.OX 
3DES enc.fdec. 1426.4 42.1 33.9X 
AES enc.fdec. 1526.2 87.5 17.4X 
RSA enc. 34.29E3 3.16E3 10.8X 
RSA dec. 12658E3 190.78E3 66.4X 

0220 Table 1 illustrates the performance speed-ups for 
the individual Security processing algorithms: 31.0x for 
DES, 33.9x for 3DES, 17.4x for AES, and upto 66.4x for 
RSA. Note that, these improvements are obtained compared 
to already optimized Software implementations. We next see 
how the enhancements made to these Security algorithms 
help in Speeding up the popularly used transport layer 
security protocol, SSL <5>. SSL uses a combination of 
private-key and public-key algorithms to Secure the data 
transferred between a client and a server. The SSL hand 
Shake first allows the Server and client to authenticate each 
other, using public-key techniques Such as RSA. Then, it 
allows the Server to create Symmetric keys, which are 
eXchanged and used for rapid encryption and decryption of 
bulk data transferred during the session. FIG. 13 shows the 
estimated Speedup of SSL transactions through the use of 
our Security processing platform. The breakup of the com 
putation workload for SSL processing between the private 
key algorithm, public-key algorithm, and other miscella 
neous computations, is also indicated in FIG. 13. 

0221 FIG. 13 shows estimated speedups for SSL trans 
actions. Note that, the breakup depends on the Session size, 
hence we considered various Session sizes ranging from 1 
KB to 32 KB. For small data transactions (where public-key 
algorithm computations in the SSL handshake dominate), 
MOSES contributes to an overall transaction speedup of 
around 2.18x. In the case of large transactions, (where the 
private-key algorithm starts to dominate the overall compu 
tation) MOSES achieves an overall transaction speedup of 
3.05X. 

0222 MOSES was also used as a co-processor in a 
handheld device to accelerate Security-specific computa 
tions. Functioning as a co-processor to an IPAQ 3870 PDA 
playing a 10 Mbyte secure real-time video, MOSES facili 
tates a 9x reduction in connection Setup latency and a 32x 
improvement in effective data rate. 
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0223) 3. Algorithm Design Space Exploration 
0224. In this section, we examine in detail how an 
optimum configuration in the public-key algorithm design 
Space for use in a popular handshake protocol (SSL) was 
determined. We describe the SSL handshake protocol and its 
public-key components, and present the results of our 
experiments, including the optimal algorithm identified 
therein. Efficiency and accuracy results for design space 
exploration are Subsequently reported. 

TABLE 2 

SSL handshake protocol: Characteristics of 
public-key functions used 

Parameter Stage 1 Stage 2 Stage 3 

Data Size 1024 bits 288 bits 384 bits 
Key Size 16 bits 1024 bits 16 bits 

0225 a) Public-Key Computations in SSL Handshake 
0226. The SSL handshake constitutes the initialization 
part of the SSL protocol. It is primarily used to securely 
exchange the key (used Subsequently for Secure bulk data 
transfers) between the client and the server, and is dominated 
by public-key algorithm computations. The client is required 
to perform public-key operations at three Stages of the SSL 
handshake protocol, which are: 

0227 Stage 1: To verify the digital signature of the 
certificate authority (CA) who has signed the server 
certificate. This involves decryption using the public 
key of the CA. 

0228 Stage 2: To prepare its (client) digital signa 
ture. This is achieved by encrypting a piece of data 
using the private key of the client. 

0229 Stage 3: Encrypting the pre-master secret 
using the public key of the Server. The “pre-master 
secret” is used both by the client and the server to 
derive the Session key. 

0230. The sizes of the data handled (encrypted or 
decrypted) in each stage and corresponding key sizes 
are given in Table 2. 

TABLE 3 

Optimal stage-wise parameter values and 
Speedups for the SSL handshake protocol 

Parameter Stage 1 Stage 2 Stage 3 

Input Block Size 512 512 512 
Radix 256 256 256 
MM Algorithm Algo 4 Algo 4 Algo 4 
CRT SRC MRC SRC 
Pre-ME Cache No No No 
Intra-MM Cache Yes No Yes 
Speedup 74.6% 82.9% 66.37% 

0231 b) SSL Handshake Protocol: Optimal Algorithm 
Choice 

0232. In order to determine the optimal public-key algo 
rithm choice for SSL Handshake, over 450 algorithm can 
didates must be evaluated due to the permutations arising 
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from two ME algorithms, five MM algorithms, five input 
block sizes, three CRT implementations (two distinct imple 
mentations, in addition to the absence of CRT), and three 
cache options (no cache, only pre-ME cache and only 
intra-MM cache). Simulating a single transaction of the SSL 
handshake protocol over a space of over 450 RSA algorithm 
configurations requires nearly 38 days of CPU time. In order 
to identify the optimum algorithm configuration, we used 
the Software performance estimation methodology based on 
automatic characterization and macro-modeling of the Soft 
ware library routines. 
0233 Table 3 summarizes the results of design space 
exploration with the algorithm parameter values determined 
for optimal performance of the three public-key Stages in the 
SSL Handshake protocol. The presence of CRT introduced 
a significant performance gain in Stage 2, and to a lesser 
degree in Stages 1 and 3. But, single-radix conversion (SRC) 
implementation of CRT results in better performance in 
Stages 1 and 3, while mixed-radix conversion method of 
implementing CRT performs better in Stage 2. The presence 
of Pre-ME cache did not contribute to a performance gain in 
any of the stages, while the Intra-MM cache resulted in 
modest gains only in Stages 1 and 3. MM-Algo 4 resulted in 
the best performing RSA encryption and decryption, in all 
the Stages. Likewise, an input block size of 512 bits resulted 
in optimal performance acroSS all the Stages. The radix value 
applies to MM-Algo 2, which was observed to be the next 
best performing MM algorithm. The radix value of 256 
considerably improved the performance of MM-Algo 2 over 
the conventional Montgomery implementations (MM-Algo 
1). The last row in the table indicates the overall perfor 
mance gain of the optimal algorithmic configuration indi 
cated for each stage over the conventional choice (that uses 
Montgomery MM algorithm, with 128 bit input block sizes 
<5>, and radix size of 32 <20>) 
0234 Table 4 illustrates the performance impact of 
replacing a single design parameter in a conventional public 
key algorithmic configuration with its corresponding opti 
mal value (Table 3). We can see that by making only the 
input block size optimal (i.e., 512 bits), performance 
improves by 70.5%, 63.1% and 62.08% in Stages 1,2 and 3, 
respectively. The presence of CRT improves the perfor 
mance of Stage 2 by 63% (using MRC method), and by 32% 
and 30.2% in Stages 1 and 3 (by using SRC method). The 
presence of the Intra-MM cache enhances the performance 
of Stages 1 and 3 only. 

0235 From Table 3, we also note that a particular set of 
values result in optimal performance in Stages 1 and 3, while 
a different Set of values yield the best performance in Stage 
2 (especially with respect to using the Intra-MM cache and 
the CRT algorithm). 
0236 Table 4: Effect of optimal parameter values on 
performance: 

TABLE 4 

Effect of Optimal parameter values on performance 

Parameter Stage 1 Stage 2 Stage 3 

Input Block Size 70.5% 63.1% 62.1% 
Radix 10.6% 11.8% 10.5% 
MM Algorithm 43.7% 43.2% 45.2% 
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TABLE 4-continued 

Effect of optimal parameter values on performance 

Parameter Stage 1 Stage 2 Stage 3 

CRT 32.0% 63.0% 30.2% 
Pre-ME Cache 
Intra-MM Cache 5.1% 4.6% 

0237 Table 5 gives the cost of a SSL handshake session 
on a wireleSS client using the conventional configuration, 
only the optimal configuration determined for Stage 1 for all 
the three Stages (fixed Solution) and the optimal configura 
tion for each stage (adaptive). SSL handshake incorporating 
optimal parameter assignment (fixed and adaptive) demon 
Strates nearly a 5x Speedup over SSL handshake using the 
conventional public-key parameters. We can also see that 
while the difference in performances from using the adaptive 
and fixed Solutions is not large, the adaptive Solution comes 
at practically no extra cost. This observation justifies the use 
of the adaptive solution for effective execution of public-key 
operations in the SSL handshake protocol. 

TABLE 5 

Performance of conventional, fixed and adaptive 
public-key solutions to SSL Handshake Protocol 

Parameter Assignment Total Cost (Kilo Cycles) 

Conventional 562115.54 
Fixed 98.968.86 
Adaptive 98.744.42 

0238) 
odology 

c) Efficiency and Accuracy of the Proposed Meth 

0239). This section presents some results that demonstrate 
the accuracy and efficiency of performance macro-model 
based methodology for algorithmic design space explora 
tion. FIG. 14(a) plots the actual and estimated cycle counts 
per byte of input data, for six configurations in the design 
Space of modular exponentiation. The plot shows that the 
performance profile determined by the proposed methodol 
ogy accurately tracks the profile determined by actual target 
Simulation. The mean absolute error in the macro-model 
based estimates was only 11.8%. FIG. 14(b) indicates the 
corresponding Speed-up in Simulation time obtained by 
using the proposed methodology. Note that the Y-axis units 
are multiples of 1000 seconds. Macro-model-based perfor 
mance estimation completes for all the configurations (not 
just the Six shown) in under 4 hours and 40 minutes. 
However, using target Simulation, we could cover only six 
configurations in nearly 66 hours of CPU time. On an 
average, macro-model-based performance estimation was 
found to be 1407 times faster than target simulation. 
0240 FIG. 14 depicts accuracy (cycle count) and effi 
ciency (simulation time) comparisons of the proposed meth 
odology with cycle-accurate target Simulation. 

0241 IV.H. Conclusions 
0242 We presented the system architecture of a program 
mable security processing platform called MOSES as well 
as the System-level design methodologies used to design it. 

17 
Jul. 31, 2003 

0243 The methodology was constructed using off-the 
Shelf commercial tools as well as novel in-house compo 
nents where needed, in order to enable the efficient co 
design of optimal cryptographic algorithms and an 
optimized HW platform architecture. Our experiments dem 
onstrate large performance improvements compared to Soft 
ware implementations on a State-of-the-art embedded pro 
ceSSor. We believe that advanced System architectures Such 
as MOSES as well as the system-level design methodolo 
gies, Such as the one described here, are critical to meeting 
the challenging objectives and constraints encountered in 
Security processing. 

0244. Other modifications and variations to the invention 
will be apparent to those skilled in the art from the foregoing 
disclosure and teachings. Thus, while only certain embodi 
ments of the invention have been specifically described 
herein, it will be apparent that numerous modifications may 
be made thereto without departing from the Spirit and Scope 
of the invention. 

What is claimed is: 
1. A programmable Security processor for efficient execu 

tion of Security protocols, wherein the instruction Set of the 
processor is enhanced to contain at least one instruction that 
is used to improve the efficiency of a public-key crypto 
graphic algorithm, and at least one instruction that is used to 
improve the efficiency of a private-key cryptographic algo 
rithm. 

2. The processor of claim 1 wherein the instruction Set 
also contains at least one instruction that is used to improve 
the efficiency of a message authentication algorithm. 

3. The processor of claim 1 wherein the instruction set 
also contains at least one instruction that is used to improve 
the efficiency of random number generation. 

4. The processor of claim 1 wherein the instruction set 
also contains at least one instruction that is used to improve 
the efficiency of portions of a Security protocol other than the 
cryptographic algorithms, which may include packet pro 
cessing functions. 

5. The processor of claim 1 wherein Said instructions are 
implemented as functional units within the processor. 

6. The processor of claim 1 wherein the said functional 
units are integrated as part of the processor's pipeline. 

7. The processor of claim 1 wherein, in addition to the 
Said instructions, at least one co-processor is used to accel 
erate Security protocol computations. 

8. The processor of claim 1 wherein, in addition to the 
Said instructions, at least one peripheral unit connected to the 
processor bus or System bus is used to accelerate Security 
protocol computations. 

9. The processor of claim 1 wherein specific instructions 
are used for each cryptographic algorithm. 

10. A layered software library for efficient execution of 
Security protocols that consists of a basic operations layer, a 
complex operations layer, and a cryptographic algorithms 
layer. 

11. The Software library of claim 10 wherein a the specific 
structure of the software library is provided. 

12. A Security processing platform consisting of a pro 
grammable Security processor and a layered Software library 
wherein at least one of the functions in the software library 
invokes a Security-specific instruction of the programmable 
processor. 



US 2003/0142818 A1 

13. An electronic System optimized for efficient Security 
processing that comprises of at least one host processor and 
at least one programmable Security processor. 

14. The system of claim 13 wherein the security protocol 
processing functionality is divided between a host processor 
and a Security processor So that the Said Security processor 
executeS portions of a Security protocol other than the 
cryptographic algorithms, which may include packet pro 
cessing functions. 

15. An electronic system optimized for efficient security 
processing that comprises of at least one host processor and 
at least one Security processor, wherein at least two distinct 
allocations of Security protocol functionality between a host 
processor and a Security processor exist. 

16. The electronic system of claim 15 wherein the said 
distinct allocations of Security protocol functionality are 
fixed Statically. 

17. The electronic system of claim 15 wherein the said 
distinct allocations of Security protocol functionality are 
varied dynamically during System execution. 

18. The electronic system of claim 15 wherein the time 
intervals at which each allocation of Security protocol func 
tionality is used are determined Statically. 

19. The electronic system of claim 15 wherein the time 
intervals at which each allocation of Security protocol func 
tionality is used are determined dynamically during System 
execution. 

20. The electronic system of claim 15 wherein a security 
processor is enhanced for efficiently interleaving the pro 
cessing of multiple data Streams. 

21. The electronic system of claim 20 wherein said 
enhancement is performed by Storing identification and 
context information for each data Stream in the Security 
processor. 

22. The electronic system of claim 15 wherein the allo 
cation of Security protocol functionality is different for at 
least two data Streams. 
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23. The electronic system of claim 15 wherein at least two 
different allocations of Security protocol functionality are 
used for at least one data Stream. 

24. An electronic System containing at least one program 
mable Security processor, wherein a dedicated memory is 
attached to a programmable Security processor. 

25. The system of claim 24 wherein a portion of said 
dedicated memory can be accessed only by the Said pro 
grammable Security processor. 

26. A method of designing an efficient hardware and 
Software architecture for Security processing, comprising of 
algorithm exploration to optimize the Software architecture 
and Selection of custom instructions that augment a pro 
grammable processor in order to optimize the hardware 
architecture. 

27. The method of claim 26 wherein algorithm explora 
tion is performed through native Simulation of the Source 
code of each candidate algorithm while using performance 
macro-models to estimate performance. 

28. The method of claim 26 wherein custom instruction 
Selection is performed by constructing a function call graph 
representation of the Software, formulating custom instruc 
tion candidates for Selected functions in the call graph, and 
performing a global custom instruction Selection to deter 
mine the final Set of custom instructions. 

29. The method of claim 28 wherein the said formulation 
of custom instruction candidates is used to generated area VS. 
delay curves for the Selected functions. 

30. The method of claim 28 wherein the said global 
custom instruction Selection is performed by propagating 
area VS. delay curves upwards to the root of the call graph 
and choosing the final custom instructions based on the area 
vs. delay curve for the root. 


