
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3

06
9

27
4

B
1

TEPZZ¥Z69 74B_T
(11) EP 3 069 274 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
22.08.2018 Bulletin 2018/34

(21) Application number: 14860555.3

(22) Date of filing: 11.11.2014

(51) Int Cl.:
G06F 17/30 (2006.01) H04L 12/24 (2006.01)

(86) International application number:
PCT/US2014/065061

(87) International publication number:
WO 2015/070239 (14.05.2015 Gazette 2015/19)

(54) MANAGED SERVICE FOR ACQUISITION, STORAGE AND CONSUMPTION OF LARGE-SCALE
DATA STREAMS

VERWALTETER DIENST ZUR ERFASSUNG, SPEICHERUNG UND KONSUMIERUNG VON
GROSSEN DATENSTRÖMEN

SERVICE GÉRÉ POUR L’ACQUISITION, LA MÉMORISATION ET L’UTILISATION DE FLUX DE
DONNÉES À GRANDE ÉCHELLE

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 11.11.2013 US 201314077173

(43) Date of publication of application:
21.09.2016 Bulletin 2016/38

(73) Proprietor: Amazon Technologies, Inc.
Reno, NV 89507 (US)

(72) Inventors:
• THEIMER, Marvin Michael

Seattle, Washington 98109-5210 (US)
• GHARE, Gaurav D.

Seattle, Washington 98109-5210 (US)
• DUNAGAN, John David

Seattle, Washington 98109-5210 (US)

• BURGESS, Greg
Seattle, Washington 98109-5210 (US)

• XIONG, Ying
Seattle, Washington 98109-5210 (US)

(74) Representative: D Young & Co LLP
120 Holborn
London EC1N 2DY (GB)

(56) References cited:
WO-A1-2012/168365 US-A1- 2009 238 262
US-A1- 2011 141 882 US-A1- 2011 161 291
US-A1- 2012 066 337 US-A1- 2012 166 401
US-A1- 2012 303 999 US-A1- 2012 317 274
US-A1- 2012 317 274 US-A1- 2013 166 556
US-A1- 2013 166 556 US-B1- 8 095 745
US-B1- 8 095 745

EP 3 069 274 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

[0001] As the costs of data storage have declined over
the years, and as the ability to interconnect various ele-
ments of the computing infrastructure has improved,
more and more data pertaining to a wide variety of ap-
plications can potentially be collected and analyzed. For
example, mobile phones can generate data indicating
their locations, the applications being used by the phone
users, and so on, at least some of which can be collected
and analyzed in order to present customized coupons,
advertisements and the like to the users. The analysis of
data collected by surveillance cameras may be useful in
preventing and/or solving crimes, and data collected from
sensors embedded at various location within airplane en-
gines, automobiles or complex machinery may be used
for various purposes such as preventive maintenance,
improving efficiency and lowering costs.
[0002] The increase in volumes of streaming data has
been accompanied by (and in some cases made possible
by) the increasing use of commodity hardware. The ad-
vent of virtualization technologies for commodity hard-
ware has provided benefits with respect to managing
large-scale computing resources for many types of ap-
plications, allowing various computing resources to be
efficiently and securely shared by multiple customers.
For example, virtualization technologies may allow a sin-
gle physical computing machine to be shared among
multiple users by providing each user with one or more
virtual machines hosted by the single physical computing
machine, with each such virtual machine being a soft-
ware simulation acting as a distinct logical computing
system that provides users with the illusion that they are
the sole operators and administrators of a given hard-
ware computing resource, while also providing applica-
tion isolation and security among the various virtual ma-
chines. Furthermore, some virtualization technologies
are capable of providing virtual resources that span two
or more physical resources, such as a single virtual ma-
chine with multiple virtual processors that spans multiple
distinct physical computing systems. In addition to com-
puting platforms, some large organizations also provide
various types of storage services built using virtualization
technologies. Using such storage services, large
amounts of data can be stored with desired durability
levels.
[0003] Despite the availability of virtualized computing
and/or storage resources at relatively low cost from var-
ious providers, however, the management and orches-
tration of the collection, storage and processing of large
dynamically fluctuating streams of data remains a chal-
lenging proposition for a variety of reasons. As more re-
sources are added to a system set up for handling large
streams of data, for example, imbalances in workload
between different parts of the system may arise. If left
unaddressed, such imbalances may lead to severe per-

formance problems at some resources, in addition to un-
derutilization (and hence wastage) of other resources.
Clients may also be concerned regarding the security of
their streaming data, or the results of analyzing streaming
data, if such data or results are stored at facilities that
the clients do not control. The failures that naturally tend
to occur with increasing frequency as distributed systems
grow in size, such as the occasional loss of connectivity
and/or hardware failure, may also have to be addressed
effectively to prevent costly disruptions of stream data
collection, storage or analysis.
[0004] US2011/161291 describes a spanning storage
interface facilitates the use of cloud storage services by
storage clients. The spanning storage interface presents
one or more data interfaces to storage clients at a network
location, such as file, object, data backup, archival, and
storage block based interfaces. The data interfaces al-
lows storage clients to store and retrieve data using non-
cloud based protocols. The spanning storage interface
may perform data deduplication on data received from
storage clients. The spanning storage interface may
transfer the deduplicated version of the data to the cloud
storage service. The spanning storage interface may in-
clude local storage for storing a copy or all or a portion
of the data from storage clients. The local storage may
be used as a local cache of frequently accessed data,
which may be stored data in its deduplicated form.

SUMMARY

[0005] The scope is set out in the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

[0006]

FIG. 1 provides a simplified overview of data stream
concepts, according to at least some embodiments.
FIG. 2 provides an overview of the flow of data
among various subcomponents of a stream man-
agement system (SMS) and a stream processing
system (SPS) comprising a collection of stream
processing stages, according to at least some em-
bodiments.
FIG. 3 illustrates examples of respective sets of pro-
grammatic interfaces that may be implemented at
an SMS an SPS, according to at least some embod-
iments.
FIG. 4 illustrates an example web-based interface
that may be implemented to enable SPS clients to
generate graphs of stream processing stages, ac-
cording to at least some embodiments.
FIG. 5 illustrates examples of programmatic record
submission interfaces and record retrieval interfaces
that may be implemented at an SMS, according to
at least some embodiments.
FIG. 6 illustrates example elements of an ingestion
subsystem of an SMS, according to at least some

1 2

EP 3 069 274 B1

3

5

10

15

20

25

30

35

40

45

50

55

embodiments.
FIG. 7 illustrates example elements of a storage sub-
system of an SMS according to at least some em-
bodiments.
FIG. 8 illustrates example elements of a retrieval
subsystem of an SMS and examples of interactions
of the retrieval subsystem with an SPS, according
to at least some embodiments.
FIG. 9 illustrates examples of redundancy groups
that may be set up for nodes of an SMS or an SPS,
according to at least some embodiments.
FIG. 10 illustrates a provider network environment
in which the nodes of a given redundancy group may
be distributed among a plurality of data centers, ac-
cording to at least some embodiments.
FIG. 11 illustrates a plurality of placement destina-
tions that may be selected for nodes of an SMS or
an SPS, according to at least some embodiments.
FIG. 12a and 12b illustrate examples of security op-
tion requests that may be submitted by SPS clients
and SMS clients, respectively, according to at least
some embodiments.
FIG. 13a illustrates example interactions between a
stream data producer and an ingestion node of an
SMS, according to at least some embodiments.
FIG. 13b illustrates example elements of a sequence
number that may be generated for an ingested data
record at an SMS, according to at least some em-
bodiments.
FIG. 14 illustrates examples of ordered storage and
retrieval of stream data records at an SMS, accord-
ing to at least some embodiments.
FIG. 15 illustrates an example of a stream partition
mapping and corresponding configuration decisions
that may be made for SMS and SPS nodes, accord-
ing to at least some embodiments.
FIG. 16 illustrates an example of dynamic stream
repartitioning, according to at least some embodi-
ments.
FIG. 17 is a flow diagram illustrating aspects of op-
erations that may be performed to support respective
sets of programmatic interfaces for stream record
ingestion and stream record retrieval, according to
at least some embodiments.
FIG. 18a is a flow diagram illustrating aspects of op-
erations that may be performed to configure stream
processing stages, according to at least some em-
bodiments.
FIG. 18b is a flow diagram illustrating aspects of op-
erations that may be performed in response to invo-
cations of components of a client library for config-
uration of stream processing worker nodes, accord-
ing to at least some embodiments.
FIG. 19 is a flow diagram illustrating aspects of op-
erations that may be performed to implement one or
more recovery policies for stream processing, ac-
cording to at least some embodiments.
FIG. 20 is a flow diagram illustrating aspects of op-

erations that may be performed to implement a plu-
rality of security options for data streams, according
to at least some embodiments.
FIG. 21 is a flow diagram illustrating aspects of op-
erations that may be performed to implement a par-
titioning policy for data streams, according to at least
some embodiments.
FIG. 22 is a flow diagram illustrating aspects of op-
erations that may be performed to implement dynam-
ic repartitioning of data streams, according to at least
some embodiments.
FIG. 23 is a flow diagram illustrating aspects of op-
erations that may be performed to implement an at-
least-once record ingestion policy for data stream
records, according to at least some embodiments.
FIG. 24 is a flow diagram illustrating aspects of op-
erations that may be performed to implement a plu-
rality of persistence policies for data streams, ac-
cording to at least some embodiments.
FIG. 25 illustrates an example of a stream process-
ing system in which worker nodes of a processing
stage coordinate their workloads using a database
table, according to at least some embodiments.
FIG. 26 illustrates example entries that may be
stored in a partition assignment table used for work-
load coordination, according to at least some em-
bodiments.
FIG. 27 illustrates aspects of operations that may be
performed by worker nodes of a stream processing
stage to select partitions on which to perform
processing operations, according to at least some
embodiments.
FIG. 28 illustrates aspects of operations that may be
performed by worker nodes of a stream processing
stage to update a partition assignment table based
on information obtained from a stream management
service control subsystem, according to at least
some embodiments.
FIG. 29 illustrates aspects of load balancing opera-
tions that may be performed by worker nodes of a
stream processing stage, according to at least some
embodiments.
FIG. 30 is a block diagram illustrating an example
computing device that may be used in at least some
embodiments.

[0007] While embodiments are described herein by
way of example for several embodiments and illustrative
drawings, those skilled in the art will recognize that em-
bodiments are not limited to the embodiments or draw-
ings described. It should be understood, that the draw-
ings and detailed description thereto are not intended to
limit embodiments to the particular form disclosed, but
on the contrary, the intention is to cover all modifications,
equivalents and alternatives falling within the spirit and
scope as defined by the appended claims. The headings
used herein are for organizational purposes only and are
not meant to be used to limit the scope of the description

3 4

EP 3 069 274 B1

4

5

10

15

20

25

30

35

40

45

50

55

or the claims. As used throughout this application, the
word "may" is used in a permissive sense (i.e., meaning
having the potential to), rather than the mandatory sense
(i.e., meaning must). Similarly, the words "include," "in-
cluding," and "includes" mean including, but not limited
to.

DETAILED DESCRIPTION

[0008] Various embodiments of methods and appara-
tus for managing the creation, storage, retrieval, and
processing of large-scale data streams designed to han-
dle hundreds or even thousands of concurrent data pro-
ducers and data consumers are described. The term "da-
ta stream", as used herein, refers to a sequence of data
records that may be generated by one or more data pro-
ducers and accessed by one or more data consumers,
where each data record is assumed to be an immutable
sequence of bytes. A stream management service (SMS)
may provide programmatic interfaces (e.g., application
programming interfaces (APIs), web pages or web sites,
graphical user interfaces, or command-line tools) to en-
able the creation, configuration and deletion of streams,
as well as the submission, storage and retrieval of stream
data records in some embodiments. Some types of
stream operations (such as stream creation or deletion,
or the kinds of dynamic repartitioning operations de-
scribed below) that involve interactions with SMS control
components may be referred to as "control-plane" oper-
ations herein, while operations such as data record sub-
missions, storage and retrievals that typically (e.g., under
normal operating conditions) do not require interactions
with control components may be referred to herein as
"data-plane" operations. Dynamically provisioned sets of
compute, storage and networking resources may be
used to implement the service in some such embodi-
ments, based for example on various partitioning policies
that allow the stream management workload to be dis-
tributed in a scalable fashion among numerous service
components, as described below in further detail. The
acronym SMS may be used herein to refer to a stream
management service, and also to a stream management
system comprising the collection of virtual and/or physi-
cal resources used to implement a stream management
service.
[0009] Some customers of the SMS may develop ap-
plications that directly invoke the SMS programmatic in-
terfaces in various embodiments. In at least some em-
bodiments, however, in addition to the SMS interfaces,
a higher-level abstraction or application-level processing
framework may be provided for customers, which may
simplify various aspects of stream processing for those
clients that do not wish to develop applications using the
lower-level stream management functions supported di-
rectly by the SMS. Such a framework may provide its
own programmatic interfaces (built, for example, on top
of the SMS interfaces), enabling customers to focus more
on the business logic to be implemented using stream

records than on lower-level stream management opera-
tions. The higher-level framework may be implemented
as a stream processing service (SPS) with its own con-
trol-plane and data-plane components in some embodi-
ments, which may provide advanced functionality such
as automated resource provisioning for stream process-
ing, automated failovers of processing nodes, the ability
to construct arbitrary stream processing workflow
graphs, support for ephemeral streams, dynamic repar-
titioning based on workload changes or other triggering
conditions, and so on. In at least some embodiments,
either the stream management service, the stream
processing service, or both services, may be implement-
ed as multi-tenant managed network-accessible services
in a virtualization environment. That is, various physical
resources (such as computer servers or hosts, storage
devices, networking devices and the like) may at least in
some cases be shared among streams of different cus-
tomers in such embodiments, without necessarily mak-
ing the customers aware of exactly how the resources
are being shared, or even making a customer aware that
a given resource is being shared at all. Control compo-
nents of the managed multi-tenant stream management
and/or processing managed services may dynamically
add, remove, or reconfigure nodes or resources being
used for a particular stream based on various applicable
policies, some of which may be client-selectable. In ad-
dition, the control components may also be responsible
for transparently implementing various types of security
protocols (e.g., to ensure that one client’s stream appli-
cation cannot access another client’s data, even though
at least some hardware or software may be shared by
both clients), monitoring resource usage for billing, gen-
erating logging information that can be used for auditing
or debugging, and so on. From the perspective of clients
of the managed multi-tenant service(s), the control/ad-
ministrative functionality implemented by the service(s)
may eliminate much of the complexity involved in sup-
porting large-scale streaming applications. In some sce-
narios, customers of such multi-tenant services may be
able to indicate that they do not wish to share resources
for at least some types of stream-related operations, in
which case some physical resources may be designated
at least temporarily as being single-tenant for those types
of operations (i.e., limited to operations performed on be-
half of a single customer or client).
[0010] A number of different approaches may be taken
to the implementation of SMS and/or SPS control-plane
and data-plane operations in various embodiments. For
example, with respect to control-plane operations, in
some implementations a redundancy group of control
servers or nodes may be set up. The redundancy group
may include a plurality of control servers, of which one
server is designated as a primary server responsible for
responding to administrative requests regarding various
streams, while another server may be designated to take
over as the primary in the event of a triggering condition
such as a failure at (or loss of connectivity to) the current

5 6

EP 3 069 274 B1

5

5

10

15

20

25

30

35

40

45

50

55

primary. In another implementation, one or more tables
created at a network-accessible database service may
be used to store control-plane metadata (such as parti-
tion maps) for various streams, and various ingestion,
storage or retrieval nodes may be able to access the
tables as needed to obtain the subsets of metadata re-
quired for data-plane operations. Details regarding vari-
ous aspects of the SPS and the SMS data-plane and
control-plane functionality in different embodiments are
provided below. It is noted that in some embodiments in
which a stream management service is implemented, a
stream processing service providing higher-level primi-
tives may not necessarily be implemented. In other em-
bodiments, only high-level programmatic interfaces of a
stream processing service may be exposed to custom-
ers, and lower-level stream management interfaces used
by the may not be made available to clients.
[0011] According to some embodiments, a stream
management system may comprise a plurality of inde-
pendently configurable subsystems, including a record
ingestion subsystem primarily responsible for obtaining
or collecting data records, a record storage subsystem
primarily responsible for saving the data record contents
in accordance with applicable persistence or durability
policies, and a record retrieval subsystem primarily re-
sponsible for responding to read requests directed at the
stored records. A control subsystem may also be imple-
mented in some embodiments, comprising one or more
administrative or control components responsible for
configuring the remaining subsystems, e.g., by dynami-
cally determining and/or initializing the required number
of nodes for each of the ingestion, storage and retrieval
subsystems at selected resources such as virtual or
physical servers. Each of the ingestion, storage, retrieval
and control subsystems may be implemented using a
respective plurality of hardware and/or software compo-
nents which may collectively be referred as "nodes" or
"servers" of the subsystems. The various resources of
an SMS may thus be logically said to belong to one of
four functional categories: ingestion, storage, retrieval or
control. In some implementations, respective sets of con-
trol components may be established for each of the other
subsystems, e.g., independent ingestion control subsys-
tems, storage control subsystems and/or retrieval control
subsystems may be implemented. Each such control
subsystem may be responsible for identifying the re-
sources to be used for the other nodes of the correspond-
ing subsystem and/or for responding to administrative
queries from clients or from other subsystems. In some
implementations, pools of nodes capable of performing
various types of SMS and/or SPS functions may be set
up in advance, and selected members of those pools
may be assigned to new streams or new processing stag-
es as needed.
[0012] Stream partitioning policies and associated
mappings may be implemented in at least some embod-
iments, e.g., to distribute subsets of the data records be-
tween different sets of ingestion, storage, retrieval and/or

control nodes. For example, based on the partitioning
policy selected for a particular data stream as well as on
other factors such as expectations of record ingestion
rates and/or retrieval rates, a control component may de-
termine how many nodes (e.g., processes or threads)
should be established initially (i.e., at stream creation
time) for ingestion, storage and retrieval, and how those
nodes should be mapped to virtual and/or physical ma-
chines. Over time, the workload associated with a given
stream may increase or decrease, which (among other
triggering conditions) may lead to repartitioning of the
stream. Such re-partitioning may involve changes to var-
ious parameters, such as the function to be used to de-
termine a record’s partition, the partitioning keys used,
the total number of partitions, the number of ingestion
nodes, storage nodes or retrieval nodes, or the place-
ment of the nodes on different physical or virtual resourc-
es. In at least some embodiments, the repartitioning may
be implemented dynamically without interrupting the flow
of the data records, using techniques described below in
further detail. Different partitioning schemes and repar-
tition-triggering criteria may be used for different data
streams in some embodiments, e.g., based on client-pro-
vided parameters or on heuristics of the SMS control
nodes. In some embodiments, it may be possible to limit
the number and/or frequency of repartitions, e.g., based
on client preferences, the expected lifetime of a stream,
or other factors.
[0013] A number of different record ingestion policies
and interfaces may be implemented in different embod-
iments. For example, in some embodiments, clients (e.g.,
executable components or modules configured to invoke
the programmatic interfaces of the SMS on behalf of cus-
tomers of the SMS) may utilize either in-line submission
interfaces, or by-reference submission interfaces. For in-
line submissions, the contents or body of the data record
may be included as part of the submission request in
such embodiments. In contrast, in a by-reference sub-
mission request, an address (such as a storage device
address, a database record address, or a URL (Uniform
record Locator)) may be provided from which the con-
tents or body of the data record can be obtained. In some
implementations, a hybrid submission interface may also
or instead be supported, in which up the first N bytes of
the data record may be included in-line, while the remain-
ing bytes (if any) are provided by reference. In such a
scenario, short records (whose bodies are less than N
bytes long) may be fully specified by the submission re-
quest, while portions of longer records may have to be
obtained from the corresponding address.
[0014] In addition to the different alternatives for spec-
ifying record contents during ingestion, in some embod-
iments a variety of acknowledgement or de-duplication
related ingestion policies may also be implemented. For
example, for some stream applications, clients may wish
to ensure that each and every data record is ingested
reliably by the SMS. In large distributed stream manage-
ment environments, packets may be lost, or various fail-

7 8

EP 3 069 274 B1

6

5

10

15

20

25

30

35

40

45

50

55

ures may occur from time to time along the path between
the data producers and the ingestion nodes, which could
potentially result in some submitted data being lost. In
some embodiments, therefore, an SMS may implement
an at-least-once ingestion policy, in accordance with
which a record submitter may submit the same record
one or more times until a positive acknowledgement is
received from the ingestion subsystem. Under normal
operating conditions, a record may be submitted once,
and the submitter may receive an acknowledgement after
the receiving ingestion node has obtained and stored the
record. If the acknowledgement is lost or delayed, or if
the record submission request itself was lost, the sub-
mitter may resubmit the same data record one or more
times, until eventually an acknowledgement is received.
The ingestion node may, for example, generate an ac-
knowledgement for each submission, regardless of
whether it is a duplicate or not, based on an expectation
that the record would not be resubmitted if an acknowl-
edgement had already been received by the submitter.
The ingestion node may, however, be responsible in at
least some embodiments for recognizing that the same
data record has been submitted multiple times, and for
avoiding storing new copies of the duplicate data unnec-
essarily. In one embodiment, at least two versions of an
at-least-once ingestion policy may be supported - one
version (which may be termed "at-least-once ingestion,
no-duplication") in which the SMS is responsible for de-
duplicating data records (i.e., ensuring that data is stored
at the SMS storage subsystem in response to only one
of a set of two or more submissions), and one version in
which duplication of data records storage by the SMS is
permitted (which may be termed "at-least-once, duplica-
tion-permitted"). The at-least-once, duplication-permit-
ted approach may be useful for stream applications in
which there are few or no negative consequences of data
record duplication, and/or for stream applications that
perform their own duplicate elimination. Other ingestion
policies may also be supported, such as a best-effort
ingestion policy in which acknowledgements are not re-
quired for every data record submitted. The loss of a few
data records may be acceptable if a best-effort ingestion
policy is in effect in at least some embodiments. Clients
may select which ingestion policies they wish to use for
various streams in various embodiments.
[0015] With respect to the storage of stream records,
a number of alternative policies may also be supported
in at least some embodiments. For example, a client may
be able to choose a persistence policy from among sev-
eral supported by the SMS, which governs such aspects
of record storage as the number of copies of a given data
record that are to be stored, the type of storage technol-
ogy (e.g., volatile or non-volatile RAM, rotating disk-
based storage, solid state devices (SSDs), network at-
tached storage devices, and the like) to be used for the
copies, and so on. For example, if a client selects an N-
replica persistence policy to disk-based storage, a data
record submission may not be considered complete until

N copies of the record have been safely written to N re-
spective disk devices. In at least some embodiments in
which disk-based storage devices are used, the SMS
storage subsystem may attempt to write incoming data
records of a given partition sequentially to disk, e.g., to
avoid the performance impact of disk seeks. Sequence
numbers may be generated for (and stored with) data
records using various techniques as described below,
including for example timestamp-based techniques that
enable ordered record retrieval based on ingestion times.
Data records of a given partition may be stored together,
e.g., contiguously on disk, and separately from the data
records of other partitions in at least some embodiments.
In some implementations, in accordance with a retention
policy (selected by a client or by the SMS) or a de-dupli-
cation time window policy (indicating the time period, sub-
sequent to a submission of any given data record, during
which the SMS may be required to ensure that no dupli-
cates of that given data record are stored in the SMS
storage subsystem, even if some duplicates are submit-
ted), at least some data records may be archived to a
different types of storage service and/or deleted after a
time period from the SMS. Such removal operations may
be referred to herein as stream "trimming". Clients may
submit stream trimming requests in some embodiments,
e.g., notifying the SMS that specified data records are
no longer needed and can therefore be deleted from the
perspective of the client submitting the trimming request,
or explicitly requesting the deletion of specified data
records. In scenarios in which there may be multiple cli-
ents consuming the data records of a given stream, the
SMS may be responsible for ensuring that a given record
is not deleted or trimmed prematurely, before it has been
accessed by all the interested consumers. In some im-
plementations, if there are N data consumers of a given
stream, before deleting a given record R of the stream,
he SMS may wait until it has determined that all N data
consumers have read or processed R. The SMS may
determine that R has been read by all the consumers
based on respective trimming requests from the consum-
ers, for example, or based on respective indications of
how far within the stream the data consumers have pro-
gressed. In some embodiments, some types of data con-
sumers (such as testing-related applications) may accept
the deletion of at least a small subset of data records
before they have been accessed. Accordingly, applica-
tions may be able to notify the SMS regarding the ac-
ceptability of data deletion prior to retrieval in at least
some embodiments, and the SMS may schedule dele-
tions in accordance with the notifications. In some em-
bodiments, an archival policy may be implemented, e.g.,
as part of the data retention policy, indicating for example
the types of storage devices to which stream data records
should be copied, and the scheduling policies to be used
for such copies.
[0016] In at least some embodiments, a plurality of pro-
grammatic interfaces may also be supported for record
retrieval. In one embodiment, an iterator-based approach

9 10

EP 3 069 274 B1

7

5

10

15

20

25

30

35

40

45

50

55

may be used, in which one programmatic interface (e.g.,
getIterator) may be used to instantiate and position an
iterator or cursor at a specified logical offset (e.g., based
on sequence number or timestamp) within a partition of
a stream. A different programmatic interface (such as
getNextRecords) may then be used to read a specified
number of data records sequentially starting from the cur-
rent position of the iterator. The instantiation of an iterator
may in effect allow a client to specify an arbitrary or ran-
dom starting position for record retrieval within the stream
partition. If a client wishes to read data records in a ran-
dom access pattern in such an embodiment, the client
may have to repeatedly create new iterators. In rotating
disk based storage systems, disk seeks required for fre-
quent random accesses may impact I/O response times
significantly. Accordingly, as an incentive to clients to
read stream data records sequentially rather than ran-
domly, different (e.g., higher) billing rates may be applied
to random read accesses than are applied to sequential
read accesses in at least some embodiments. Thus, for
example, a client may be billed X currency units per ge-
tIterator call, and Y currency units per record retrieved
via getNextRecords, with X > Y in some implementations.
When alternative client interfaces are supported for other
operation categories (such as ingestion), in at least some
embodiments the billing rates or prices for the alterna-
tives may also differ - e.g., a client may be charged more
for a by-reference submission request than for an on-line
submission request, just as a client may be charged more
for random reads than for sequential reads. Other factors
may also influence billing in various embodiments, such
as the sizes of the data records, the distribution of write
versus read requests over time, the persistence policies
selected, and so on.
[0017] According to some embodiments, a stream
processing service (SPS) may allow clients to specify
arbitrarily complex processing workflows comprising nu-
merous processing stages, in which the output of the
processing performed at a given stage may be used as
input for zero or more other stages. Partitioning policies
(similar to those described for the SMS for ingesting, stor-
ing and retrieving data records) may be used to divide
the processing workload among a plurality of worker
nodes at various stages in some embodiments. In one
such embodiment, programmatic SPS interfaces may be
implemented enabling clients to specify various config-
uration settings for any given stage, including for example
the input data source(s) for the stage (e.g., one or more
streams from which data records are to be retrieved, to-
gether with the partitioning policies for the streams), the
processing operations to be performed at the stage, and
a descriptor or specification for output or result distribu-
tion from the stage (e.g., whether the output is to be saved
to storage locations, sent to a network endpoint, or fed
into one or more other processing stages in the form of
a different stream). In at least some embodiments, the
processing operations specified for an SPS stage may
be idempotent: that is, if a given processing operation is

performed multiple times on the same input data, the
result of the operation does not differ from the result that
would have been obtained if the operation were per-
formed just once. Recoveries from failures (e.g., a worker
node failure at an SPS stage) may be simplified if the
processing operations are idempotent, as described be-
low in further detail. According to some embodiments,
non-idempotent processing operations may be permitted
at some or all SPS stages.
[0018] Based at least in part on configuration informa-
tion such as the input stream partitioning policies and
then nature of the processing operations received via the
SPS programmatic interfaces, in various embodiments
SPS control servers may determine how many worker
nodes are to be set up initially for various stages of a
processing workflow. The performance capabilities of the
resources to be used for the worker nodes (e.g., the vir-
tual or physical machines being used) may also be taken
into account when determining the initial number and
placement of the worker nodes. The selected number of
worker nodes (which may in some implementations each
comprise an executable thread or an executable proc-
ess) may be instantiated. Each worker node may be con-
figured, for example, to obtain data records from the ap-
propriate input sources (e.g., from retrieval nodes of one
or more stream partitions), perform the specified
processing operations on the data records, and transmit
the results of the processing to the specified output des-
tination(s). In addition, in at least some embodiments, a
checkpoint scheme may be implemented, in accordance
with which a given worker node may be configured to
store progress records or checkpoints indicative of the
portion of a partition that has been processed at that
worker node, with the assumption that the partition
records are being processed sequentially. The worker
node may, for example, write a progress record to per-
sistent storage periodically in some implementations
(e.g., once every N seconds or once every R data records
have been processed), and/or in response to checkpoint
requests from an SPS control server.
[0019] The progress records may be used for rapid re-
covery from worker node failures in some embodiments.
For example, an SPS control server may monitor the
health status of the various worker nodes over time, e.g.,
using a heartbeat mechanism and/or by monitoring re-
source utilization levels (such as CPU utilization, I/O de-
vice utilization, or network utilization levels). In response
to a determination by the SPS control server that a par-
ticular worker node is in an undesired or unhealthy state
(e.g., if it is unresponsive or overloaded), a replacement
worker node may be instantiated to take over the respon-
sibilities of the particular worker node. The replacement
worker node may access the most recent progress record
stored by the replaced worker node to identify the set of
data records that the replacement worker node should
process. In embodiments in which the processing oper-
ations are idempotent, even if some operations are re-
peated (e.g., because the most recent progress record

11 12

EP 3 069 274 B1

8

5

10

15

20

25

30

35

40

45

50

55

was written some time prior to the replacement worker’s
instantiation), the overall results of the processing would
not be affected by the failure and replacement. In some
implementations, in addition to storing progress records
indicating the subset of a given stream or partition that
has been processed by it, a worker node may also be
configured to store accumulated application state infor-
mation. For example, if a stream processing workflow is
responsible for determining client billing amounts for a
particular service based on analyzing streaming data
records that indicate service usage metrics, a worker
node may periodically store the cumulative billing
amounts determined for various clients.
[0020] In at least some embodiments, the SPS control
servers may also be configured to respond to various
other triggers such as changing workload levels or de-
tected workload imbalances (e.g., if the ingestion rates
for one partition become disproportionately higher than
those of others) by initiating other actions, such as re-
questing dynamic repartitioning of the input streams for
various stages, changing the number of worker nodes
assigned to a given partition at a given stage., assigning
higher-performance worker nodes to some stages, or
transferring worker nodes from one physical resource to
another physical resource with a different performance
capability. In some embodiments, e.g., in response to a
determination by an SPS control server that a best-effort
recovery policy is to be implemented for a given stage
rather than a checkpoint-based recovery policy, progress
records of the type described above may not be stored
by worker nodes of at least some SPS stages. In some
implementations of such a best-effort recovery policy, a
replacement worker node may simply process new data
records as they are received, without requiring access
to progress records. In some embodiments, if a client
wishes to implement a best-effort recovery policy at an
SPS stage, the stream processing operations performed
at the stage need not necessarily be idempotent. In some
embodiments in which non-idempotent processing oper-
ations are to be performed on stream records at an SPS
stage, checkpoint-based recovery may not be supported,
and a different recovery scheme such as best-effort re-
covery may be used. In at least one embodiment, only
idempotent stream processing operations may be al-
lowed at SPS stages.
[0021] The data records of some streams may contain
sensitive or confidential information, or the processing
operations performed at the SPS stages may comprise
the use of proprietary algorithms whose discovery by
competitors may be problematic. Clients may thus be
concerned about the security of various categories of
stream management and processing operations, espe-
cially if the operations are performed using resources
located at provider network data centers that are not fully
controlled by the clients themselves. Networks set up by
an entity such as a company or a public sector organi-
zation to provide one or more network-accessible serv-
ices (such as various types of cloud-based database,

computing or storage services) accessible via the Inter-
net and/or other networks to a distributed set of clients
may be termed provider networks herein. In some em-
bodiments, clients may be able to choose from among a
plurality of security-related options for their data streams.
As described above, a combined SPS and SMS config-
uration may comprise nodes belonging to a number of
different functional categories, such as control nodes for
the SMS and/or the SPS, SMS ingestion nodes, SMS
storage nodes, SMS retrieval nodes, and SPS process-
ing or worker nodes. The security-related choices made
available to clients may include options for placement or
locations of various types of nodes in some embodi-
ments. For example, in one embodiment, a client may
be able to request that SPS worker nodes for one or more
processing stages of a stream workflow be implemented
at computing devices located on client-owned facilities,
even if the stream records are initially collected and/or
stored using resources located at a provider network. In
response to such placement requests, nodes of different
functional categories for a given stream may be instan-
tiated at respective resource sets with differing security
characteristics or profiles.
[0022] The resource sets may differ from one another
in various security-related characteristics in different em-
bodiments, including for example physical location, phys-
ical security protocols being used (e.g., who has physical
access to the resources), network isolation levels (e.g.,
the extent to which network addresses of the resources
are visible to various entities), multi-tenancy versus sin-
gle-tenancy, and so on. In some embodiments, clients
may be able to establish isolated virtual networks (IVNs)
within a provider network, with a given client being given
substantial control over networking configurations of var-
ious devices included within that client’s IVN. In particu-
lar, clients may be able to restrict access to the network
addresses (e.g., Internet Protocol or IP addresses) as-
signed to various servers or compute instances within
their IVNs. In such embodiments, clients may request
that certain subsets of their SMS or SPS nodes be in-
stantiated within specified IVNs. In embodiments in which
provider network resources such as virtualization in-
stance hosts (which may typically be configured as multi-
tenant hosts) are being used for various categories of
SMS or SPS nodes, a client may request that some set
of nodes be instantiated on instance hosts that are re-
stricted to implementing instances belonging to that client
alone (i.e., some SMS or SPS nodes may be implement-
ed at instance hosts configured as single-tenant hosts).
[0023] In some embodiments, as another security-re-
lated option, clients may request that the data records of
a particular stream be encrypted before they are trans-
mitted over a network link - e.g., before being ingested
at the SMS, between the ingestion and storage subsys-
tems, between the storage and retrieval subsystems, be-
tween the retrieval subsystems and the SPS worker
nodes, and/or between the worker nodes and the SPS
output destinations. Clients may specify the encryption

13 14

EP 3 069 274 B1

9

5

10

15

20

25

30

35

40

45

50

55

algorithms to be used in some embodiments. In one em-
bodiment, secure networking protocols such as TLS
(Transport Layer Security) or SSL (secure sockets layer)
protocols may be used for data record transmissions
and/or for transmitting SPS processing results.

Data stream concepts and overview

[0024] FIG. 1 provides a simplified overview of data
stream concepts, according to at least some embodi-
ments. As shown, a stream 100 may comprise a plurality
of data records (DRs) 110, such as DRs 110A, 110B,
110C, 110D and 110E. One or more data producers 120
(which may also be referred to as data sources), such
as data producers 120A and 120B, may perform write
operations 151 to generate the contents of data records
of stream 100. A number of different types of data pro-
ducers may generate streams of data in different embod-
iments, such as, for example, mobile phone or tablet ap-
plications, sensor arrays, social media platforms, logging
applications or system logging components, monitoring
agents of various kinds, and so on. One or more date
consumers 130 (such as data consumers 130A and
130B) may perform read operations 152 to access the
contents of the data records generated by the data pro-
ducers 120. Data consumers 130 may comprise, for ex-
ample, worker nodes of a stream processing stage in
some embodiments.
[0025] In at least some embodiments, a given data
record 110 as stored in an SMS may comprise a data
portion 101 (e.g., data portions 101A, 101B, 101C, 101D
and 101E of DRs 110A, 110B, 110C, 110D and 110E
respectively) and a sequence number SN 102 (e.eg.,
SNs 102A, 102B, 102C, 102D and 102E of DRs 110A,
110B, 110C, 110D and 110E respectively). The se-
quence number 102 may be indicative of the order in
which the DRs are received at a stream management
system (or at a particular node of a stream management
system) in the depicted embodiment. The data portions
101 may comprise immutable un-interpreted byte se-
quences in some implementations: that is, once a write
operation 152 is completed, the contents of the DR gen-
erated as a result of the write may not be changed by the
SMS, and in general the SMS may not be aware of the
semantics of the data. In some implementations, different
data records of a given stream 100 may comprise differ-
ent amounts of data, while in other implementations, all
the data records of a given stream may be of the same
size. In at least some implementations, nodes of the SMS
(e.g., ingestion subsystem nodes and/or storage subsys-
tem nodes) may be responsible for generating the SNs
102. As described below in further detail, the sequence
numbers of the data records need not always be consec-
utive. In one implementation, clients or data producers
120 may provide, as part of a write request, an indication
of a minimum sequence number to be used for the cor-
responding data record. In some embodiments, data pro-
ducers 120 may submit write requests that contain point-

ers to (or addresses of) the data portions of the data
records, e.g., by providing a storage device address
(such as a device name and an offset within the device)
or a network address (such as a URL) from which the
data portion may be obtained.
[0026] The stream management service may be re-
sponsible for receiving the data from the data producers
120, storing the data, and enabling data consumers 130
to access the data in one or more access patterns in
various embodiments. In at least some embodiments,
the stream 100 may be partitioned or "sharded" to dis-
tribute the workload of receiving, storing, and retrieving
the data records. In such embodiments, a partition or
shard may be selected for an incoming data record 110
based on one or more attributes of the data record, and
the specific nodes that are to ingest, store or retrieve the
data record may be identified based on the partition. In
some implementations, the data producers 120 may pro-
vide explicit partitioning keys with each write operation
which may serve as the partitioning attributes, and such
keys may be mapped to partition identifiers. In other im-
plementations, the SMS may infer the partition ID based
on such factors as the identity of the data producer 120,
the IP addresses of the data producers, or even based
on contents of the data submitted. In some implementa-
tions in which data streams are partitioned, sequence
numbers may be assigned on a per-partition basis - for
example, although the sequence numbers may indicate
the order in which data records of a particular partition
are received, the sequence numbers of data records DR1
and DR2 in two different partitions may not necessarily
indicate the relative order in which DR1 and DR2 were
received. In other implementations, the sequence num-
bers may be assigned on a stream-wide rather than a
per-partition basis, so that if sequence number SN1 as-
signed to a data record DR1 is lower than sequence
number SN2 assigned to data record DR2, this would
imply that DR1 was received earlier than DR2 by the
SMS, regardless of the partitions to which DR1 and DR2
belong.
[0027] The retrieval or read interfaces supported by an
SMS may allow data consumers 130 to access data
records sequentially and/or in random order in various
embodiments. In one embodiment, an iterator-based set
of read application programming interfaces (APIs) may
be supported. A data consumer 130 may submit a re-
quest to obtain an iterator for a data stream, with the
initial position of the iterator indicated by a specified se-
quence number and/or a partition identifier. After the in-
itiator is instantiated, the data consumer may submit re-
quests to read data records in sequential order starting
from that initial position within the stream or the partition.
If a data consumer wishes to read data records in some
random order, a new iterator may have to be instantiated
for each read in such embodiments. In at least some
implementations, the data records of a given partition or
stream may be written to disk-based storage in sequence
number order, typically using sequential write operations

15 16

EP 3 069 274 B1

10

5

10

15

20

25

30

35

40

45

50

55

that avoid disk seeks. Sequential read operations may
also avoid the overhead of disk seeks. Accordingly, in
some embodiments, data consumers may be encour-
aged to perform more sequential reads than random
reads using pricing incentives: e.g., random-access read
operations such as iterator instantiations may have high-
er associated billing rates than sequential-access read
operations.

Example system environment

[0028] FIG. 2 provides an overview of the flow of data
among various subcomponents of a stream manage-
ment system (SMS) and a stream processing system
(SPS) comprising a collection of stream processing stag-
es, according to at least some embodiments. As shown,
the SMS 280 may comprise an ingestion subsystem 204,
a storage subsystem 206, a retrieval subsystem 208, and
an SMS control subsystem 210. Each of the SMS sub-
systems may include one or more nodes or components,
implemented for example using respective executable
threads or processes instantiated at various resources
of a provider network (or a client-owned or third-party
facility) as described below. Nodes of the ingestion sub-
system 204 may be configured (e.g., by nodes of the
SMS control subsystem 210) to obtain data records of a
particular data stream from data producers 120 (such as
120A, 120B, and 120C) based on a partitioning policy in
use for the stream, and each ingestion node may pass
received data records on to corresponding nodes of the
storage subsystem 206. The storage subsystem nodes
may save the data records on any of various types of
storage devices in accordance with a persistence policy
selected for the stream. Nodes of the retrieval subsystem
208 may respond to read requests from data consumers,
such as worker nodes of SPS 290. Stream processing
stages 215, such as stages 215A, 215B, 1215C and
215D of the SPS 290 may be established with the help
of SPS control subsystem 220. Each stage 215 may in-
clude one or more worker nodes configured by the SPS
control subsystem 220 to perform a set of processing
operations on received data records. As shown, some
stages 215 (such as 215A and 215B) may obtain data
records directly from the SMS 280, while others (such as
215C and 215D) may receive their inputs from other stag-
es. Multiple SPS stages 215 may operate in parallel in
some embodiments, e.g., different processing opera-
tions may be performed concurrently on data records re-
trieved from the same stream at stages 215A and 215B.
It is noted that respective subsystems and processing
stages similar to those illustrated in FIG. 2 for a particular
stream may be instantiated for other streams as well.
[0029] In at least some embodiments, at least some of
the nodes of the subsystems and processing stages
shown in FIG. 2 may be implemented using provider net-
work resources. As noted earlier, networks set up by an
entity such as a company or a public sector organization
to provide one or more network-accessible services

(such as various types of cloud-based database, com-
puting or storage services) accessible via the Internet
and/or other networks to a distributed set of clients may
be termed provider networks herein. Some of the serv-
ices may be used to build higher-level services: for ex-
ample, computing, storage or database services may be
used as building blocks for a stream management service
or a stream processing service. At least some of the core
services of a provider network may be packaged for client
use in service units called "instances": for example, a
virtual machine instantiated by a virtualized computing
service may represent a "compute instance", and a stor-
age device such as a block-level volume instantiated by
a storage service may be referred to as a "storage in-
stance", or a database management server may be re-
ferred to as a "database instance". Computing devices
such as servers at which such units of various network-
accessible services of a provider network are implement-
ed may be referred to as "instance hosts" or more simply
as "hosts" herein. Nodes of the ingestion subsystem 204,
the storage subsystem 206, the retrieval subsystem 208,
the SMS control system 210, the processing stages 215,
and/or the SPS control subsystem 220 may comprises
threads or processes executing at various compute in-
stances on a plurality of instance hosts in some embod-
iments. A given instance host may comprise several com-
pute instances, and the collection of compute instances
at a particular instance host may be used to implement
nodes for various different streams of one or more clients.
Storage instances may be used for storing the data
records of various streams in some embodiments, or as
destinations of the results of stream processing stages.
Over time, control subsystem nodes may modify the pop-
ulations of other subsystems dynamically in response to
various triggering conditions, e.g., by adding or removing
nodes, changing the mappings of nodes to processes or
compute instances or instance hosts, or re-partitioning a
given stream while still continuing to receive, store and
process data records as described below with reference
to FIG. 15 and FIG. 16.
[0030] In the context of embodiments in which provider
network resources are used for stream-related opera-
tions, the term "client", when used as the source or des-
tination of a given communication, may refer to any of
the computing devices, processes, hardware modules or
software modules that are owned by, managed by, or
allocated to, an entity (such as an organization, a group
with multiple users or a single user) that is capable of
accessing and utilizing at least one network-accessible
service of a provider network. Clients of one service may
themselves be implemented using resources of another
service - e.g., a stream data consumer (a client of a
stream management service) may comprise a compute
instance (a resource provided by a virtualized computing
service).
[0031] A given provider network may include numer-
ous data centers (which may be distributed across dif-
ferent geographical regions) hosting various resource

17 18

EP 3 069 274 B1

11

5

10

15

20

25

30

35

40

45

50

55

pools, such as collections of physical and/or virtualized
computer servers, storage servers with one or more stor-
age devices each, networking equipment and the like,
needed to implement, configure and distribute the infra-
structure and services offered by the provider. A number
of different hardware and/or software components, some
of which may be instantiated or executed at different data
centers or in different geographical regions, may collec-
tively be used to implement each of the services in var-
ious embodiments. Clients may interact with resources
and services at the provider network from devices located
at client-owned or client-managed premises or data cent-
ers external to the provider network, and/or from devices
within the provider network. It is noted that although pro-
vider networks serve as one example context in which
many of the stream management and processing tech-
niques described herein may be implemented, those
techniques may also be applied to other types of distrib-
uted systems than provider networks, e.g., to large-scale
distributed environments operated by a single business
entity for its own applications.

Programmatic interface examples

[0032] As indicated above, in at least some embodi-
ments an SPS may utilize SMS programmatic interfaces
to build higher-level functionality that can more easily be
used by SPS clients to implement the desired business
logic for various stream-based applications. When con-
sidering the differences between SPS and SMS function-
ality, an analogy may be helpful: SPS functions may in
general be compared to programming language con-
structs in higher-level languages such as C++, while SMS
functions may in general be compared to the assembly
language instructions to which the programming lan-
guage constructs are translated by a compiler. It may be
possible to implement the same operations using the as-
sembly language instructions directly, but programming
in the higher-level language may typically be easier for
many categories of customers or users. Similarly, it may
be possible to implement various applications using the
primitives provided by an SMS, but it may be easier to
do so using SPS features. SPS processing operations
(such as idempotent processing operations performed
on data records) may be implemented on the data con-
tents of the stream records, while the SMS operations
are performed to acquire, store and retrieve the records
themselves, usually without considering the contents of
the records. FIG. 3 illustrates examples of respective sets
of programmatic interfaces that may be implemented at
an SMS an SPS, according to at least some embodi-
ments. A number of different application programming
interfaces (APIs) are indicated for both the SMS and the
SPS by way of example. The APIs illustrated are not in-
tended to be exhaustive lists of those supported in any
given implementation, and some of the illustrated APIs
may not be supported in a given implementation.
[0033] As indicated by arrow 350, SPS clients 375 may

invoke SPS programmatic interfaces 305 to configure
processing stages. Various types of SPS programmatic
interfaces 305 may be implemented in different embod-
iments. For example, a createStreamProcessingStage
API may enable clients to request the configuration of a
new processing stage 215 for a specified input stream,
such that worker nodes of the stage are each configured
to perform a set of idempotent operations specified in the
interface invocation, and to distribute the results to des-
tinations indicated by an output distribution descriptor or
policy. In some versions of the createStreamProcessing-
Stage API or its equivalent, a client may request the cre-
ation of the input stream as well, while in other versions,
an input stream may have to be created before the
processing stage is created. A recovery policy may be
specified for the worker nodes, indicating for example
whether a checkpoint-based recovery technique is to be
used or a best-effort recovery technique is preferred. In
some embodiments an initializeWorkerNode API may be
supported to request the explicit instantiation of worker
nodes at a specified stage. In embodiments in which
checkpoint-based recovery is implemented, a save-
Checkpoint API may be supported to allow clients to re-
quest that progress records be generated by worker
nodes.
[0034] Various types of SPS output management APIs
may be supported in different embodiments, such as a
setOutputDistribution API by which a client may indicate
one or more streams to be created using the results of
the processing operations performed at a specified
stage, and the particular partitioning policies to be used
for the newly created streams. Some processing stages
may be configured primarily for repartitioning - e.g., one
partitioning function PF1 that maps data records to N1
partitions based on record attribute set A1 may be in use
for an input stream S1, and a processing stage may be
used to implement a different partitioning function PF2
to map those same data records to N2 partitions (using
either a different attribute set A2, or the same attribute
set A1). Some SPS APIs such as linkStages may be used
to configure arbitrary graphs (e.g., directed acyclic
graphs) comprising a plurality of stages. In some embod-
iments, connectors to third-party or open-source stream
processing frameworks or services may be supported.
In one such embodiment, an SPS stage may be used to
prepare data records (e.g., by appropriately formatting
results of the processing operations performed at the
stage) for consumption by existing third-party or open-
source systems. An API such as createThirdPartyCon-
nector may be used to set up such connectors in the
depicted embodiment, and the appropriate transforma-
tions of the results of the SPS stage into a format com-
patible with the third party system may be performed by
one or more connector modules instantiated as a result
of a createThirdPartyConnector invocation.
[0035] The SPS may invoke SMS APIs 307 to perform
at least some of its functions, as indicated by arrow 352.
The SMS APIs 307 may include, for example, creat-

19 20

EP 3 069 274 B1

12

5

10

15

20

25

30

35

40

45

50

55

eStream and deleteStream (to create and delete a
stream, respectively) and getStreamInfo (to obtain meta-
data for a stream, such as the network addresses of var-
ious types of nodes responsible for a given partition) in
the depicted embodiment. A putRecord interface may be
used to write data records, while the getIterator and get-
NextRecords interfaces may be used for non-sequential
and sequential reads respectively. A repartitionStream
interface may be used to request dynamic repartitioning
of a specified stream in some embodiments. Clients 370
that wish to do so may invoke the SMS APIs 307 directly,
as indicated by arrow 354. As indicated earlier, various
other SMS and/or SPS APIs may also be implemented
in other embodiments, and some of the APIs listed in
FIG. 3 may not be implemented in some embodiments.
[0036] In various embodiments, programmatic inter-
faces other than APIs may also or instead be implement-
ed for either the SPS or the SMS. Such interfaces may
include graphical user interfaces, web pages or web
sites, command-line interfaces, and the like. In some cas-
es web-based interfaces or GUIs may use the APIs as
building blocks - e.g., a web-based interaction may result
in the invocation of one or more APIs at control compo-
nents of the SMS or SPS. FIG. 4 illustrates an example
web-based interface that may be implemented to enable
SPS clients to generate graphs of stream processing
stages, according to at least some embodiments. As
shown, the interface comprises a web page 400 with a
message area 402, a graph menu area 404 and a graph
design area 403.
[0037] Users may be provided general instructions re-
garding the construction of stream processing graphs in
message area 402, as well as links to enable used to
learn more about stream concepts and primitives. A
number of graphical icons may be provided as part of a
stream processing graph toolset in menu area 404. For
example, clients may be allowed to indicate, as inputs or
outputs of various SPS processing stages, persistent
streams 451, ephemeral streams 452, or connectors 453
to third-party processing environments. With respect to
the SPS/SMS for which the web-based interface is im-
plemented, a persistent stream 451 may be defined as
a stream whose data records are stored on persistent
storage devices such as disks, non-volatile RAMs, or
SSDs, and an ephemeral stream 452 may be defined as
one whose data records need not be stored at persistent
storage devices. An ephemeral stream may be created,
for example, from the output of an SPS stage that is ex-
pected to be consumed as input by a different SPS stage
at which a best-effort recovery policy is to be implement-
ed.
[0038] Two types of processing stages are supported
in the example SPS graph construction web page 400:
stages 455 in which checkpoint-based worker node re-
covery is used (e.g., each worker node saves progress
records at intervals, and in the event of failure of a par-
ticular worker node, a replacement node refers to the
failed node’s progress records to determine which data

records to start processing), and stages 456 in which
best-effort recovery is used (e.g., replacement worker
nodes do not refer to progress records, but simply start
processing new data records as they are received). De-
tails regarding the processing operations to be performed
at each stage may be entered by clicking on the corre-
sponding icon in the graph construction area 403, as in-
dicated by the instructions in message area 402. In ad-
dition to icons for streams, connectors, and processing
stages, the menu area 404 also includes icon type 459
indicating third-party or external stream processing sys-
tems, and icon type 460 indicating nodes of a storage
service that may be implemented at a provider network
whose resources are being used for the processing stag-
es.
[0039] In the example scenario shown in FIG. 4, a client
has constructed a graph 405 comprising three process-
ing stages 412, 415 and 416 within graph design area
403. Processing stage 412, which is configured to use
checkpoint-based recovery, uses a persistent stream
411 as input. Output or results of the processing at stage
412 is sent to two destinations: in the form of a different
persistent stream 413 that forms the input of stage 415,
and in the form of an ephemeral stream 414 that forms
the input of stage 416. Stages 415 and 416 both use
best-effort recovery policies for their worker nodes. The
output of stage 415 is sent in the form of an ephemeral
stream to storage service node 419. The output of stage
415 is sent via a connector 417 to a third-party processing
system 418. A "save graph" button 420 may be used to
save a representation of the processing stage graph,
e.g., in any appropriate format such as JSON (JavaScript
Object Notation), XML (Extensible Markup Language) or
YAML. Arbitrarily complex processing workflows may be
constructed using tools similar to those shown in FIG. 4
in various embodiments. The workflows created using
such tools may subsequently be activated, and such ac-
tivations may result in invocations of SMS APIs - for ex-
ample, to obtain data records for a processing stage such
as stage 412 of FIG. 4, getIterator and/or getNex-
tRecords interfaces may be invoked on stream 411.
[0040] FIG. 5 illustrates examples of programmatic
record submission interfaces and record retrieval inter-
faces that may be implemented at an SMS, according to
at least some embodiments. Data records, such as the
illustrated DRs 110K and 110Q, may be submitted via
various types of programmatic ingestion interfaces 510
to the SMS in the depicted embodiment. A DR 110 may
comprise four types of elements in some embodiments:
a stream identifier such as 501A (for stream "SI") or 501B
(for stream "S2"), an indication of the data or body of the
record, an optional partition key 504 (such as 504A or
504B), and an optional sequencing preference indicator
506 (such as sequencing preference indicators 506A and
506B). The data itself may be provided in-line in some
data records (e.g., inline data 502 of DR 110K), while for
other data records a pointer or address 503 may be pro-
vided, indicating to the SMS a network-accessible loca-

21 22

EP 3 069 274 B1

13

5

10

15

20

25

30

35

40

45

50

55

tion (or an address at a local device that does not require
network transfers). In some embodiments, a given
stream may support both inline and by-reference (ad-
dress-based) data record submissions. In other embod-
iments, a given stream may require data producers to
supply all the data inline or all the data by reference. In
some implementations, a data record submission may
include a partition identifier to be used for the record.
[0041] The incoming data records 110 may be directed
to respective ingestion and/or storage nodes based on
a partitioning policy in the depicted embodiment. Simi-
larly, record retrieval may also be partition-based - e.g.,
one or more retrieval nodes may be designated for re-
sponding to read requests directed to records of a given
partition. For some streams, data producers may be re-
quired to provide an explicit partition key with each data
record write request. For other streams, the SMS may
be able to distribute the data records according to a par-
titioning scheme that relies on metadata or attributes oth-
er than explicitly-supplied partition keys - for example,
identification information pertaining to the submitting da-
ta producer may be used as a partition key, or a portion
or all of the submitting data producer’s IP address may
be used, or a portion of the data being submitted may be
used. In some implementations, for example, a hash
function may be applied to a partition key to obtain an
integer value of a certain size, such as a 128-bit integer.
The total range of positive integers of that size (e.g., from
0 to 2^128-1) may be divided into N contiguous sub-rang-
es, with each sub-range representing a respective parti-
tion. Thus, in such an example, any given partition key
determined or supplied for a data record would be hashed
to a corresponding 128-bit integer, and the contiguous
sub-range of 128-bit integers to which that integer be-
longs may indicate the partition to which the data record
belongs. Further details about partitioning policies and
their use are provided below with respect to FIG. 15.
[0042] The set of nodes responsible for ingesting or
accepting the data records of the particular partition, stor-
ing the data records, and responding to read requests
for the particular partition, are collectively referred to as
ISR (ingestion, storage and retrieval) nodes for the par-
tition in FIG. 5. The notation Sj-Pk is used to indicate the
kth partition of stream Si. In the illustrated embodiment,
ISR nodes 520A are configured for ingesting, storing and
retrieving records of partition S1-P1, ISR nodes 520B are
set up for records of partition S1-P2, ISR nodes 520C
are set up for records of partition S1-P3, ISR nodes 520K
are set up for records of partition S2-P1, and ISR nodes
520L are set up for records of partition S2-P2. In some
embodiments, a give node of an ingestion subsystem, a
storage subsystem, or a retrieval subsystem may be con-
figured to handle data records of more than one partition
(or more than one partition of more than one stream). In
some embodiments, the records of a single partition of
a given stream may be ingested, stored or retrieved by
more than one node. The number of ingestion nodes des-
ignated for a given partition Sj-Pk may in at least some

cases differ from the number of ingestion nodes desig-
nated for a different partition Sj-Pl, and may also differ
from the number of storage nodes designated for Sj-Pk
and/or the number of retrieval nodes designated for Sj-
Pk. With respect to ingestion and/or retrieval, SMS con-
trol nodes may implement APIs (such as getStreamInfo)
in some embodiments to allow clients to determine which
nodes are responsible for which partitions. The mappings
between data records and partitions, and between par-
titions and ISR nodes (or control nodes) configured, may
be modified over time, as described below in the discus-
sion regarding dynamic repartitioning.
[0043] In some embodiments, several different pro-
grammatic interfaces 580 may be implemented for re-
trieving or reading stream data records from a given par-
tition. As shown in FIG. 5, some retrieval interfaces 581
may be implemented for non-sequential accesses, such
as getIterator (to instantiate an iterator or read cursor at
or after a data record with a specified sequence number)
or getRecord (to read a data record with a specified se-
quence number). Other retrieval interfaces 582 may be
implemented for sequential retrieval, such as getNex-
tRecords (an interface requesting that N records be read
from the current position of an iterator, in order of increas-
ing sequence number). In rotating disk-based storage
systems, as mentioned earlier, sequential I/O may in
many cases be much more efficient than random I/O,
because the number of disk head seeks required on av-
erage per I/O may typically be much lower for sequential
I/O than for random I/O. In many embodiments, the data
records of a given partition may be written in sequence
number order, and as a result sequential read requests
based on sequence number ordering (e.g., using get-
NextRecords or a similar interface) may be much more
efficient than random read requests. In at least some
embodiments, therefore, different billing rates may be set
for sequential versus non-sequential retrieval interfaces
- for example, clients may be charged more for non-se-
quential reads.

Ingestion subsystem

[0044] FIG. 6 illustrates example elements of an inges-
tion subsystem 204 of an SMS, according to at least some
embodiments. In the depicted embodiment, ingestion op-
erations are logically divided into front-end and back-end
functions, with the front-end functions involving interac-
tions with data producers 120 (e.g., 120A, 120B or 120C),
and back-end functions involving interactions with an
SMS storage subsystem. Such a front-end/back-end split
may have several advantages, such as enhancing the
security of the storage subsystem and avoiding having
to provide partitioning policy details to data producers.
SMS client libraries 602 may be provided for installation
at various data producers 120, and the data producers
may invoke programmatic interfaces included in the li-
braries 602 to submit data for ingestion. For example, in
one embodiment the data producers 120 may comprise

23 24

EP 3 069 274 B1

14

5

10

15

20

25

30

35

40

45

50

55

logging or monitoring agents instantiated at hundreds or
thousands of physical and/or virtual servers of a provider
network. Such agents may collect various log messages
and/or metrics at their respective servers and periodically
submit the collected messages or metrics to a front-end
load distributor 604 endpoint instantiated by one or more
ingestion control nodes 660 of the SMS. In some embod-
iments, one or more virtual IP addresses (VIPs) may be
established for the load distributors, to which the data
producers may submit the stream data. In one implemen-
tation, a round-robin DNS (Domain Name System) tech-
nique may be used for a VIP to select a particular load
distributor from among several equivalently configured
load distributors to which data is to be sent by data pro-
ducers 120.
[0045] The received data records may be directed to
any of several front-end nodes 606 (e.g., 606A, 606B or
606C) in the depicted embodiment. In at least some em-
bodiments, the load distributor 604 may not be aware of
the partitioning policy 650 in use for the data records,
and the front-end node 606 may therefore be chosen for
a given data record using round-robin load balancing (or
some other general-purpose load balancing algorithm)
rather than partition-based load balancing. The front-end
nodes 606 may be aware of the partitioning policies 650
for various streams, and may interact with the ingestion
control nodes 660 to obtain the identities of the specific
back-end ingestion node 608 (e.g., 608A, 608B or 608C)
that is configured for a given partition’s data records.
Thus, in the depicted embodiment, the front-end nodes
604 may each transmit data records to a plurality of back-
end nodes 606, based on the respective partitions to
which the data records belong. As noted earlier, the par-
tition to which a data record belongs may be determined
based on any combination of various factors, such as a
partition key supplied by the data producer, one or more
other attributes such as the identity or address of the data
producer, or the contents of the data.
[0046] The back-end nodes 606 may each receive data
records belonging to one or more partitions of one or
more streams, and transmit the data records to one or
more nodes of the storage subsystem. The back-end
nodes may be referred to as "PUT servers" in some em-
bodiments in which the data is submitted via HTTP (Hy-
perText Transfer Protocol) "PUT" web service APIs. A
given back-end node may determine the set of storage
subsystem nodes to which its data records are to be
transmitted by submitting a query to a control node 660
(which in turn may submit a corresponding query to a
control node of the storage subsystem in embodiments
in which control functions for the different subsystems
are handled by separate sets of nodes).
[0047] In at least some embodiments, a number of dif-
ferent ingestion acknowledgement policies 652 may be
supported, such as an at-least-once ingestion policy or
a best-effort ingestion policy. In an at-least-once policy,
the data producers 120 may require positive acknowl-
edgements for each data record submitted, and may re-

peatedly submit the same data record (if an acknowl-
edgement of the first submission is not received) until an
acknowledgement is eventually received. In the best-ef-
fort ingestion policy, positive acknowledgements may not
be required for at least some data records submitted (al-
though the ingestion subsystem may still provide occa-
sional acknowledgements, or may respond to explicit re-
quests for acknowledgements from the data producers).
In some embodiments in which the ingestion subsystem
204 is required to provide acknowledgements to the data
producers, the back-end ingestion node 608 responsible
for a given data record may wait until the required number
of replicas of the data records have been successfully
created at the storage subsystem (e.g., in accordance
with a persistence policy established for the stream), be-
fore generating an acknowledgement. In various embod-
iments, a sequence number may be generated by the
ingestion subsystem for each data record received, e.g.,
indicative of the order in which that record was ingested
relative to other records of the same partition or stream,
and such a sequence number may be returned to the
data producer as an acknowledgement, or as part of an
acknowledgement. Further details regarding sequence
numbers are provided below with reference to FIG. 13a
and FIG. 13b. The acknowledgement and/or sequence
number may be transmitted back to the data producer
via a front-end node 606 in some implementations. In at
least one implementation, the at-least-once policy may
be implemented between the front-end and the back-end
nodes of the ingestion subsystem itself - e.g., a given
front-end node 606 may repeatedly submit a data record
to the appropriate back-end node 608 until the back-end
node provides an acknowledgement.
[0048] Ingestion control nodes 660 may be responsible
for, among other functions, instantiating the front-end and
back-end nodes, monitoring the health and workload lev-
els of the nodes, orchestrating failovers as needed, pro-
viding responses to queries regarding which nodes are
responsible for a given partition or to policy-related que-
ries, for ingestion-related configuration operations result-
ing from dynamic repartitioning of streams. The number
of ingestion control nodes designated for a given set of
one or more streams may itself be changed over time in
some embodiments, e.g., one or more master control
nodes may be responsible for reconfiguring the control
node pool as needed. In some embodiments in which
redundancy groups are set up for ingestion front-end or
back-end nodes, as described below in further detail with
respect to FIG. 9 and FIG. 10, the control nodes 660 may
be responsible for keeping track of which nodes are pri-
maries and which are non-primary, for detecting the trig-
gering conditions for failover, and for selecting replace-
ments when failovers are required. It is noted that the
multilayered ingestion subsystem architecture illustrated
in FIG. 6 may not be implemented in some embodiments,
e.g., only a single set of ingestion nodes may be config-
ured in some scenarios.

25 26

EP 3 069 274 B1

15

5

10

15

20

25

30

35

40

45

50

55

Storage subsystem

[0049] FIG. 7 illustrates example elements of a storage
subsystem of an SMS, according to at least some em-
bodiments. As shown, ingestion nodes 608 (e.g., back-
end ingestion nodes in embodiments in which front-end
and back-end ingestion responsibilities are handled by
different sets of nodes) may transmit data records of one
or more partitions of a stream to respective storage nodes
702 configured for those partitions. For example, data
record 110A of partition S1-P1 is sent to storage node
702A, data record 110B of partition S2-P3 is sent to stor-
age nodes 702B and 702C, data record 110C of partition
S3-P7 is sent to storage node 702D, and data record
110D of partition S4-P5 is sent initially to storage node
702E. Storage control nodes 780 may be responsible for
enforcing the persistence policies 750 that are applied
to data records of the different streams, configuring and
reconfiguring storage nodes as needed, monitoring stor-
age node states, managing failovers, responding to stor-
age configuration queries or storage policy queries, and
various other administrative tasks in the depicted em-
bodiment.
[0050] Persistence policies 750 may differ from one
another in various ways in different embodiments. For
example, a persistence policy P1 applied to stream Sj
may differ from a policy P2 applied to stream Sk in (a)
the number of replicas of each data record to be stored,
(b) the type of storage device or system on which the
replicas are to be stored (e.g., whether replicas are to be
stored in volatile memory, non-volatile caches, rotating
disk-based storage, solid-state drives (SSDs), storage
appliances of various kinds, RAID (redundant arrays of
inexpensive disks) of various kinds, in database man-
agement systems, at nodes of a storage service imple-
mented by a provider network, and so forth), (c) the ge-
ographical distribution of the replicas (e.g., whether the
stream data is to be made resilient to large-scale failures
or certain types of disasters by placing replicas in different
data centers), (d) the write acknowledgement protocol
(e.g., if N replicas are to be stored, how many of the N
copies have to be written successfully before an acknowl-
edgement should be provided to the ingestion node),
and/or (e) whether, in cases in which multiple replicas of
data records are to be stored, the replicas should be cre-
ated in parallel or sequentially. In some cases in which
multiple replicas are to be stored, as in the case of data
record 110D, a given storage node may transmit the data
record to another storage node (e.g., storage node 702E
sends data record 110D for further replication to storage
node 702F, and storage node 702F sends it on to storage
node 702G). In other cases in which a multiple-replica
persistence policy is used, as in the case of data record
110B for which two in-memory replicas are to be stored,
the ingestion node may initiate the multiple replications
in parallel. In at least some embodiments, the client’s
chosen persistence policy may not specify the type of
storage location to be used for stream data records; in-

stead, the SMS may select the appropriate types of stor-
age technology and/or locations based on various crite-
ria, such as cost, performance, proximity to data sources,
durability requirements, and so on. In one embodiment,
either the client or the SMS may decide to use different
storage technologies or storage location types for differ-
ent partitions of a given stream, or for different streams.
[0051] In the example shown in FIG. 7, the persistence
policy applied to stream S1 (or at least partition S1-P1
of stream S1) is a single-replica in-memory policy, while
for stream S2 a two-parallel-replica in-memory policy is
applied. Accordingly, an in-memory replica 704A of data
record 110A is created at storage node 702A, while two
in-memory replicas 705A and 705B corresponding to da-
ta record 110B are created in parallel at storage nodes
702B and 702C. For stream S3’s data record 110C, a
single on-disk replica 706A is created. For stream S4, a
sequential three-replica-on-disk policy is applicable, and
as a result respective on-disk replicas 707A, 707B and
707C are created sequentially at storage nodes 702E,
702F and 702G. Various other types of persistence pol-
icies may be applied to data streams in different embod-
iments. Nodes of the retrieval subsystem may obtain the
data records from the appropriate storage nodes in re-
sponse to invocations of various types of retrieval APIs
by data consumers.

Retrieval subsystem and processing stages

[0052] FIG. 8 illustrates example elements of a retriev-
al subsystem of an SMS and examples of interactions of
the retrieval subsystem with an SPS, according to at least
some embodiments. As shown, retrieval subsystem 206
may comprise a plurality of retrieval nodes 802, such as
retrieval node 802A, 802B and 802C, as well as a col-
lection of retrieval control nodes 880. Each of the retrieval
nodes 802 may be configured to respond to stream data
retrieval requests from various clients or data consumers
130, such as worker nodes 840 of an SPS as described
below. A variety of programmatic retrieval interfaces 802
may be implemented by the retrieval nodes in different
embodiments, such as the non-sequential and sequen-
tial retrieval interfaces described earlier. In some embod-
iments, web services APIs such as HTTP GET requests
may be used for data record retrieval, and the retrieval
nodes 802 may accordingly be referred to as GET serv-
ers. A given retrieval node 802 may be configured, e.g.,
by a retrieval control node 880, to obtain data records of
one or more stream partitions in the depicted embodi-
ment from the appropriate set of storage subsystem
nodes 702, such as storage nodes 702A and 702B.
[0053] In the depicted embodiment, a retrieval node
802 may interact with one or more storage nodes 702,
and also respond to retrieval requests received from one
or more SPS worker nodes 840. For example, data
records of partitions S4-P5 (e.g., data record 110K) and
S5-P8 (e.g., data record 110L) are read from storage
node 702A by retrieval node 802A, and provided to work-

27 28

EP 3 069 274 B1

16

5

10

15

20

25

30

35

40

45

50

55

er nodes 840A and 840K respectively. Data records of
partition S6-P7, such as 110M, are read by retrieval node
802B from storage node 702A and provided to worker
node 840K. Data records of partition S4-P7 are read by
retrieval node 802C from storage node 702B and provid-
ed to worker node 840B, and also to other data consum-
ers 130 (e.g., data consumers that directly invoke SMS
retrieval APIs instead of interacting with the SMS via an
SPS).
[0054] In at least some embodiments, some or all of
the retrieval nodes 802 may implement respective cach-
es 804 (such as cache 804A at retrieval node 802A,
cache 804B at retrieval node 802B, and cache 804C at
retrieval node 802C) in which data records of various
partitions may be retained temporarily in anticipation of
future retrieval requests. Retrieval control nodes 880 may
be responsible for implementing a number of retrieval
policies 882, including for example caching policies (e.g.,
how large a cache should be configured for a given par-
tition, how long data records should be cached), storage
node selection policies (e.g., which particular storage
node should be contacted first to obtain a given data
record, in scenarios in which multiple replicas of data
records are stored), and so on. In addition, retrieval con-
trol nodes may be responsible for instantiating and mon-
itoring retrieval nodes 802, responding to queries regard-
ing which retrieval nodes are responsible for which par-
titions, initiating or responding to re-partitioning opera-
tions, and so on.
[0055] In the illustrated example, SPS 290 comprises
two processing stages, 215A and 215B. SPS control
nodes 885 may be responsible for instantiating worker
nodes 804 at the various processing stages 215, such
as worker node 840A to process records of partition S4-
P5, worker node 840B to process records of partition S4-
P7, and worker node 840K to process records of parti-
tions S5-P8 and S6-P7. The SPS control nodes 885 may
implement programmatic interfaces (such as those illus-
trated in FIG. 3 and FIG. 4) enabling SPS clients to design
processing workflows. Various checkpoint policies 850
may be implemented for different processing stages or
workflows, indicating when or if worker nodes are to store
progress records indicating how far along they are in
processing their respective partitions, the types of stor-
age devices to be used for the progress records, and so
on. Failover/recovery policies 852 may indicate the trig-
gering conditions or threshold that are to lead to replacing
a worker node with a different node, and whether best-
effort recovery is to be used or checkpoint-based recov-
ery is to be used for a given processing stage. In at least
some embodiments, the SPS control nodes 885 may in-
teract with various types of SMS control nodes, e.g., to
identify the retrieval nodes from which data records of a
given stream are to be obtained, to establish new ephem-
eral or persistent streams that may be required for a par-
ticular processing workflow, and so on. In at least one
embodiment, clients may interact with the SPS control
nodes to instantiate streams - e.g., instead of utilizing

SMS control interfaces, some clients may wish to invoke
only higher-level SPS interfaces. It is noted that although
separate sets of control nodes are shown in FIG. 6, 7
and 8 for the SMS ingestion, storage, and retrieval sub-
systems, and for the SPS stages, in at least some em-
bodiments a given control node may be used for several
of the subsystems and/or the SPS.

Node redundancy groups

[0056] In at least some embodiments, redundant
groups of nodes may be configured for one or more sub-
systems of an SMS. That is, instead of for example con-
figuring one retrieval node for retrieving data records for
a stream partition Sj-Pk, two or more nodes may be es-
tablished for such retrievals, with one node being granted
a "primary" or active role at a given point in time, while
the other node or nodes are designated as "non-primary"
nodes. The current primary node may be responsible for
responding to work requests, e.g., requests received ei-
ther from clients or from nodes of other subsystems. The
non-primary node or nodes may remain dormant until a
failover is triggered, e.g., due to a failure, loss of connec-
tivity to the primary, or other triggering conditions, at
which point a selected non-primary may be notified by a
control node to take over the responsibilities of the pre-
vious primary. The primary role may thus be revoked
from the current incumbent primary node during failover,
and granted to a current non-primary node. In some em-
bodiments, non-primary nodes may themselves take
over as primary when a determination is made that a
failover is to occur, e.g., explicit notifications may not be
required. Such redundant groups of nodes may be set
up for ingestion, storage, retrieval and/or control func-
tions at an SMS in various embodiments, and a similar
approach may also be taken for worker nodes at an SPS
in at least some embodiments. Such groups comprising
at least one primary node and at least one non-primary
node for a given function may be referred to as "redun-
dancy groups" or "replication groups" in some embodi-
ments. It is noted that redundancy groups of storage
nodes may be implemented independently of the number
of physical copies of the data records that are stored -
e.g., the number of replicas to be stored of a data record
may be determined by a persistence policy, while the
number of storage nodes that are configured for the cor-
responding partition may be determined based on redun-
dancy group policies.
[0057] FIG. 9 illustrates examples of redundancy
groups that may be set up for nodes of an SMS or an
SPS, according to at least some embodiments. In the
depicted embodiment, for a given stream partition Sj-Pk,
respective redundancy groups (RGs) 905, 915, 925 and
935 are set up for ingestion nodes, storage nodes, re-
trieval nodes, and control nodes. A common RG 935 for
control nodes is implemented in the illustrated embodi-
ment, although separate RGs for ingestion control nodes,
storage control nodes, or retrieval control nodes may be

29 30

EP 3 069 274 B1

17

5

10

15

20

25

30

35

40

45

50

55

implemented in some embodiments. Each RG comprises
a primary node (e.g., primary ingestion node 910A, pri-
mary storage node 920A, primary retrieval node 930A,
and primary control node 940A) and at least one non-
primary node (e.g., non-primary ingestion node 910B,
non-primary storage node 920B, non-primary retrieval
node 920C, and non-primary retrieval node 920D). The
primary role may be revoked and granted to a current
non-primary in accordance with respective failover poli-
cies 912 (for ingestion nodes), 922 (for storage nodes),
932 (for retrieval nodes) and 942 (for control nodes). The
failover policies may, for example, govern the triggering
conditions that are to lead to a change in primary status,
whether and how the health status of the primaries or
non-primaries is to be monitored, the number of non-
primaries that are to be configured in a given redundancy
group, and so on. In at least some embodiments, a single
RG may be established for multiple partitions - e.g., RG
905 may be responsible for handling ingestion of records
of partition Sj-Pk as well as Sp-Pq. In some implemen-
tations, a node that is designated as primary for one par-
tition may concurrently be designated as a non-primary
for another partition. In one embodiment, multiple nodes
may be designated concurrently as primary nodes within
a given RG - e.g., the ingestion-related workload of a
given partition may be distributed among two primary
nodes, with one node designated as a non-primary in
case of a failure at either primary. The number of nodes
instantiated in a given RG may depend on the availability
or resiliency level desired for the corresponding functions
(e.g., on how many concurrent or overlapping failures
the group is intended to be able to withstand). In some
embodiments, in addition to or instead of being used for
SMS nodes, redundancy groups may be set up for worker
nodes of SPS processing stages. The members of a giv-
en RG may sometimes be distributed geographically,
e.g., across several data centers, as illustrated in FIG.
10. Selected control nodes may be configured to detect
failover-triggering conditions in some embodiments, e.g.,
using heartbeat mechanisms or other health monitoring
techniques, and such control nodes may orchestrate the
failover by selecting the appropriate non-primary node
as the replacement for a failed primary, notifying/activat-
ing the selected replacement node, and so on.
[0058] In some embodiments a provider network may
be organized into a plurality of geographical regions, and
each region may include one or more availability contain-
ers, which may also be termed "availability zones" herein.
An availability container in turn may comprise one or
more distinct locations or data centers, engineered in
such a way (e.g., with independent infrastructure com-
ponents such as power-related equipment, cooling
equipment, physical security components) that the re-
sources in a given availability container are insulated
from failures in other availability containers. A failure in
one availability container may not be expected to result
in a failure in any other availability container; thus, the
availability profile of a resource instance or control server

is intended to be independent of the availability profile of
resource instances or control servers in a different avail-
ability container. Various types of applications may be
protected from failures at a single location by launching
multiple application instances in respective availability
containers, or (in the case of some SMSs and SPSs)
distributing the nodes of a given redundancy group
across multiple availability containers. At the same time,
in some implementations, inexpensive and low latency
network connectivity may be provided between resourc-
es (such as the hosts or compute instances used for SMS
and SPS nodes) that reside within the same geographical
region, and network transmissions between resources
of the same availability container may be even faster.
Some clients may wish to specify the locations at which
their stream management or stream processing resourc-
es are reserved and/or instantiated, e.g., at either the
region level, the availability container level, or a data cent-
er level, to maintain a desired degree of control of exactly
where various components of their applications are run.
Other clients may be less interested in the exact location
where their resources are reserved or instantiated, as
long as the resources meet the client requirements, e.g.,
for performance, high availability, and so on. Control
nodes located in one availability container (or data cent-
er) may be able to remotely configure other SMS or SPS
nodes in other availability containers (or other data cent-
ers) in some embodiments - that is, a particular availa-
bility container or data center may not need to have local
control nodes to manage the SMS/SPS nodes.
[0059] FIG. 10 illustrates a provider network environ-
ment in which the nodes of a given redundancy group
may be distributed among a plurality of data centers, ac-
cording to at least some embodiments. Provider network
1002 comprises three availability containers 1003A,
1003B and 1003C in the depicted embodiment. Each
availability container includes portions or all of one or
more data centers - e.g., availability container 1003A
comprises data centers 1005A and 1005B, availability
container 1003B includes data center 1005C, and avail-
ability container 1003C includes data center 1005D. A
number of different redundancy groups 1012 of SMS
and/or SPS nodes are shown. Some RGs 1012 may be
implemented entirely within a single data center, as in
the case of RG 1012A located within data center 1005A.
Other RGs may use resources of multiple data centers
within a given availability container, such as RG 1012B,
which spans data centers 1005A and 1005B of availabil-
ity container 1003A. Yet other RGs may be implemented
using resources spread across different availability con-
tainers. For example, RG 1012C uses resources located
in data centers 1005B and 1005C of availability contain-
ers 1003A and 1003B respectively, and RG 1012D uti-
lizes resources at data centers 1005B, 1005C and 1005D
in availability containers 1003A, 1003B and 1003C re-
spectively. In one example deployment, if RG 1012 com-
prises one primary and two non-primary nodes, each of
the three nodes may be located in a different availability

31 32

EP 3 069 274 B1

18

5

10

15

20

25

30

35

40

45

50

55

container, thus ensuring that at least one node is highly
likely to remain functional even if large-scale failure
events occur at two different availability containers con-
currently.
[0060] Console services 1078 and 1076, associated
with the SMS and SPS respectively, may provide easy-
to-use web-based interfaces for configuring stream-re-
lated settings in provider network 1002 in the depicted
embodiment. A number of additional services, at least
some of which may be used by the SMS and/or the SPS,
may be implemented in provider network 1002 using re-
sources spread over one or more data centers or across
one or more availability containers. For example, a virtual
computing service 1072 may be implemented, enabling
clients to utilize selected amounts of computing power
packaged as compute instances of various different ca-
pability levels, and such compute instances may be used
to implement SMS and/or SPS nodes. One or more stor-
age services 1070 may be implemented, enabling clients
to store and access data objects with desired data dura-
bility levels, e.g., either via a block-device volume inter-
face or via a web-services interface. The storage objects
may be attachable to, or accessible from, the compute
instances of service 1072, and may be used to implement
various stream persistence policies at SMS storage sub-
systems in some embodiments. In one embodiment, one
or more database services such as a high-performance
key-value database management service 1074 or a re-
lational database service may be implemented at the pro-
vider network 1002, and such a database service may
be used for storing stream data records by SMNS storage
subsystems, and/or for storing metadata of control sub-
systems, ingestion subsystems, storage subsystems, re-
trieval subsystems, or processing stages.

Stream security options

[0061] In at least some embodiments, the users of the
SMS and/or the SPS may be provided a number of se-
curity-related options for data streams, enabling clients
to select the security profiles of resources (e.g., virtual
or physical machines) to be used for the various func-
tional categories such as ingestion, storage, retrieval,
processing and/or control. Such options may include, for
example, choices regarding the types of physical loca-
tions of the resources used for various nodes (e.g.,
whether provider network facilities are to be used, or cli-
ent-owned facilities are to be used, which may have dif-
ferent security characteristics than provider network fa-
cilities), choices regarding encryption of stream data,
and/or network isolation choices in various parts of the
stream-handling infrastructure. Some clients may be
concerned about the possibility of intruders or attackers
obtaining access to valuable proprietary business logic
or algorithms, for example, and may wish to implement
stream processing worker nodes using computing devic-
es within client-owned promises. The types of resources
to be used for implementing a set of SMS and/or SPS

nodes may be referred to herein as the "placement des-
tination types" for those nodes. FIG. 11 illustrates a plu-
rality of placement destination types that may be selected
for nodes of an SMS or an SPS, according to at least
some embodiments.
[0062] Placement destinations may be selected within
provider network 1102 for some types of SMS/SPS func-
tional categories (e.g., ingestion, storage, retrieval, con-
trol or processing), and outside provider network 1102
for other types of SMS/SPS functional categories in the
depicted embodiment. Within provider network 1102,
some resources such as compute instances, storage in-
stances, or database instances may be implemented us-
ing multi-tenant instance hosts 1103. Such multi-tenant
instance hosts, at each of which SMS or SPS nodes for
one or more clients may be instantiated, may form a first
category "A" of placement destination types. To avoid
having to share physical resources with other clients,
some clients may request that their SMS/SPS nodes be
implemented using instance hosts restricted to a single
client. Such single-tenant instance hosts may form place-
ment category type "B". Single-tenant instance hosts
may be preferable from the perspective of some clients
for several reasons. As multi-tenant instance hosts may
include compute instances belonging to other clients,
there may be a higher probability of security attacks from
another client’s instances in multi-tenant instance hosts
than in single-tenant instance hosts. In addition, the
"noisy-neighbor" phenomenon, in which one client’s
compute instance CI1 running on multi-tenant host ex-
periences a surge in workload and starts consuming a
large proportion of the host’s compute cycles or other
resources, thus potentially impacting the performance of
another client’s applications running on a different com-
pute instance CI2, may also be avoided when single-
tenant instance hosts are used.
[0063] Isolated virtual networks (IVNs) 1106, such as
IVN 1106A and 1106B may represent another category
"C" of placement destination types in the depicted em-
bodiment. An IVN 1106 may be created at the request
of a provider network client in some embodiments as the
logical equivalent of a private network, built using provid-
er network resources but with network configuration be-
ing controlled largely by the client. For example, the client
may decide the IP addresses to be used within an IVN
1106, without having to be concerned about the possi-
bility of duplicating IP addresses that may already be in
used outside the IVN. Implementing various types of
SMS and SPS nodes in one or more IVNs may add an
extra level of network security to the management and/or
processing of a client’s stream data in the depicted em-
bodiment. In some cases, a given client may wish to place
one functional category of SMS/SPS nodes in one IVN
1106, and a different functional category in a different
IVN. A given IVN 1106 may comprise either single-tenant
instance hosts, multi-tenant instance hosts, or both types
of instance hosts in various embodiments. In some em-
bodiments, another set of placement destination type

33 34

EP 3 069 274 B1

19

5

10

15

20

25

30

35

40

45

50

55

choices (or security profile choices) using resources of
the provider network, not shown in FIG. 11, may be avail-
able to at least some clients. In embodiments in which
clients can acquire and use compute instances from a
provider network’s virtualized computing service for
stream-related operations, the compute instances may
be used in one of two modes. In one mode, a client may
provide, to an SPS or an SMS, the executable program
or programs to be run at compute instances configured
as SPS worker nodes (or at ingestion, storage or retrieval
nodes), and let the SMS or SPS run the programs and
manage the nodes. This first mode may be referred to
as a "stream service managed" mode of using compute
instances for stream operations. In the other mode, a
client may wish to run the executable programs and man-
age the compute instances, with less support from the
SPS or SMS. This second mode may be referred to as
a "client-managed" mode of using compute instances for
stream operations. These two modes of operation may
thus represent additional choices with respect to client-
selectable placement destination types or security pro-
files. A client may opt for the client-managed mode if, for
example, the executable program is likely to require de-
bugging (including single-stepping) that can best be per-
formed by subject-matter experts from the client’s organ-
ization, while the stream-service-managed mode may be
a reasonable choice for more mature code that is not
likely to require debugging. In some embodiments, dif-
ferent pricing policies may apply to these two modes.
[0064] A number of placement options may be sup-
ported at facilities external to the provider network in the
embodiment shown in FIG. 11. For example, hosts 1160
on which SMS libraries 1171 and/or SPS libraries 1172
are installed may be used for stream management or
processing from within client facilities (e.g., client-owned
data centers or premises) 1110A or 1110B, with the two
types of client facilities differing in their manner of con-
nectivity to the provider network. Client facility 1110A is
linked to provider network 1102 via at least some shared
Internet links 1151 (i.e., the network traffic of other entities
may also flow over some of the links between client facility
1110A and the provider network 1102). In contrast, some
client facilities (such as 1110B) may be linked to the pro-
vider network via special unshared dedicated physical
links 1106 (which may sometimes be referred to as "direct
connect" links). These two different types of client premis-
es comprise placement destination options "D" and "E"
respectively in the terminology used in FIG. 11. In some
embodiments, portions of the SMS and/or SPS may also
be implementable at third-party facilities (e.g., data cent-
ers used but not owned or managed by clients of the
SMS/SPS), and such third-party premises may be des-
ignated as placement destination type "F". In at least
some of the client and/or third-party premises, the SMS
and/or SPS libraries may have to be obtained from the
provider network and installed on the hosts to be used
for the SMS/SPS nodes. In at least one embodiment,
nodes of all the different functional categories may be

implemented externally to the provider network with the
help of the appropriate libraries.
The different placement destination types may differ from
one another in various security-related aspects in differ-
ent embodiments, such as the network isolation features
implemented, intrusion detection functionality supported,
physical security policies implemented, supported en-
cryption levels, and so on. Accordingly, each of the var-
ious destination types may be considered to have a re-
spective security profile, which may differ from the secu-
rity profile of the other placement destinations in one or
more ways. In some embodiments, clients of the SMS
and/or SPS may select respective placement destination
types for different subsystems or node sets programmat-
ically, e.g., by sending a request to one or more control
nodes of the SMS or SPS, as illustrated in FIG.12a and
12b. It is noted that in some embodiments and for certain
types of stream applications, clients may wish to control
placement destination types not just for security reasons,
but also for performance and/or functionality reasons.
For example, the noisy-neighbor phenomenon described
above may be avoided by using dedicated client-premise
resources or single-tenant instance hosts. In some em-
bodiments, clients may have special-purpose or propri-
etary hardware and/or software that they wish to use for
SPS stages or SMS nodes, where the functional capa-
bilities or performance levels achievable using such com-
ponents cannot easily be replicated at a provider net-
work, or are simply not supported at the provider network.
A client may have access at an external data center to a
computer server with supercomputer-level processing
capabilities, for example, which may be able to perform
SPS processing at a much higher rate than would be
possible using provider network resources alone. Ena-
bling a client to select the placement destinations for var-
ious nodes may allow such special-purpose devices or
software to be used.
[0065] FIG. 12a and 12b illustrate examples of security
option requests that may be submitted by SPS clients
and SMS clients, respectively, according to at least some
embodiments. FIG. 12a illustrates an SPS security option
request 1200 in which a client indicates, for one or more
processing stages with identifiers 1210, the placement
destinations types (PDTs) requested for control nodes
of the stage (element 1212), and the PDTs requested for
worker nodes (element 1214). In at least one embodi-
ment, clients may also be able to submit requests to con-
figure encryption settings for their stream data records
or stream processing results, e.g., by requesting that data
records be encrypted using a specified algorithm or pro-
tocol prior to their transmission over various network
links, or that various control or administrative interactions
be encrypted. For example, in FIG. 12a, the encryption
settings for the stage may indicate encryption techniques
to be applied to the results of the stages processing op-
erations, and/or the encryption used for the communica-
tions between the control nodes of the stage and the
worker nodes of the stage.

35 36

EP 3 069 274 B1

20

5

10

15

20

25

30

35

40

45

50

55

[0066] Similarly, in Fig. 12b, a client’s SMS security
option request 1250 comprises a number of elements
that indicate the client’s security preferences for one or
more streams with specified identifiers 1252. Placement
destination type preferences for ingestion nodes, storage
nodes, and retrieval nodes may be indicated in elements
1254, 1258 and 1262 respectively. PDT preferences for
ingestion control nodes, storage control nodes and re-
trieval control nodes may be indicated by elements 1256,
1260 and 1264 respectively. Encryption preferences for
data records, e.g. whether and/or how encryption is to
be implemented for the data records as they are trans-
mitted from one category of node to another, may be
indicated via element 1266. Using security option re-
quests such as those shown in FIG. 12a and 12b, clients
may be able to choose the locations (e.g., within the pro-
vider network or external to the provider network) and
various other security profile components for different
parts of their stream management and processing envi-
ronment.
[0067] It is noted that the choice of node placement
destinations may be offered for other reasons than se-
curity in at least some embodiments. For example, a cli-
ent may wish to have some types of SMS or SPS nodes
implemented at single-tenant hosts for performance rea-
sons (e.g., to avoid the "noisy-neighbor" problems indi-
cated earlier rather than primarily for security reasons.
Placement choices may be changed in at least some
embodiments during the lifetime of a stream - e.g., a client
may initially allow SMS nodes to be instantiated at multi-
tenant instance hosts, but may wish to move at least
some subset of the nodes to single-tenant instance hosts
later. Different pricing policies may be applied to the dif-
ferent security-related options in at least some embodi-
ments - e.g., it may cost more to implement SMS nodes
of a particular functional category at a IVN than at multi-
tenant instance hosts outside IVNs, or it may cost more
to implement SMS nodes at single-tenant instance hosts
than at multi-tenant instance hosts.

Sequential storage and retrieval of stream records

[0068] For many types of stream applications, data
records may be received at the SMS at very high rates
from a plurality of data producers 120, and data consum-
ers may typically wish to access stored data records in
the order in which the records were generated. Especially
in environments in which rotating magnetic disks are
used as the storage devices for stream data records, as
mentioned earlier, sequential I/O access patterns (for
both reads and writes) may have significant performance
advantages over random I/O access patterns. In several
embodiments, stream-specific or partition-specific se-
quence numbers may be assigned to data records as
they are received by the SMS, and sequential retrieval
operations based on sequence numbers may be sup-
ported. FIG. 13a illustrates example interactions be-
tween a stream data producer and an ingestion subsys-

tem of an SMS, according to at least some embodiments.
The stream data producer may submit a data record 110
to an ingestion subsystem, and in the depicted embodi-
ment, the ingestion subsystem may respond with a se-
quence number 102 that has been chosen for the sub-
mitted record. In at least some embodiments, an inges-
tion node may obtain a portion of the sequence number
from the storage subsystem - e.g., the sequence number
102 may be determined subsequent to the storage of the
received data record in accordance with the applicable
persistence policy in such embodiments, and the storage
subsystem may generate a numerical sequence indica-
tor of its own for the data record and provide that indicator
for inclusion in the larger sequence number assigned to
the data record by the ingestion node..
[0069] Sequence numbers may be implemented in
various embodiments to provide a stable, consistent or-
dering of data records, and to enable repeatable iteration
over records by data consumers. Sequence numbers as-
signed to the data records of a particular partition may
increase monotonically over time, although they need
not be consecutive in at least some implementations. In
various embodiments, sequence numbers may be as-
signed with at least some subset of the following seman-
tics: (a) sequence numbers are unique within a stream,
i.e., no two data records of a given stream may be as-
signed the same sequence number; (b) sequence num-
bers may serve as indexes into the stream’s data records,
and may be used to iterate over data records within a
given stream partition; (c) for any given data producer,
the order in which the data producer successfully sub-
mitted data records is reflected in the sequence numbers
assigned to the data records; and (d) sequence number-
ing for data records with a given partition key value retain
the monotonically increasing semantics across dynamic
repartitioning operations - e.g., the sequence numbers
assigned to data records with a partition key value K1
after a repartitioning may each be larger than any of the
sequence numbers that were assigned to data records
with that partition key value K1 prior to the dynamic repar-
titioning. (Dynamic repartitioning is described in further
detail below with respect to FIG. 16.)
[0070] In some embodiments, a data producer may
wish to influence the selection of the sequence number
102 selected for at least some data records. For example,
a data producer 120 may wish to demarcate boundaries
or separators within the assigned sequence numbers of
a stream, so that it becomes easier for data consumers
of that stream to submit read requests targeted at par-
ticular subsets of the stream. In some implementations,
the data producer 120 may submit an indication of a min-
imum sequence number together with a record, and the
SMS may select a sequence number in accordance with
the requested minimum that also conforms to the se-
quence number semantics discussed above.
[0071] FIG. 13b illustrates example elements of a se-
quence number that may be generated for an ingested
data record at an SMS, according to at least some em-

37 38

EP 3 069 274 B1

21

5

10

15

20

25

30

35

40

45

50

55

bodiments. The sequence number may comprise four
elements in the depicted embodiment: an n1-bit SMS
version number 1302, an n2-bit timestamp or epoch val-
ue 1304, an n3-bit subsequence number 1306, and an
n4-bit partition number 1308. In some implementations,
128 bit sequence numbers may be used, e.g., n1, n2, n3
and n4 may be 4, 44, 64 and 16 bits respectively. The
version number 1302 may be used simply to avoid con-
fusion across SMS software version rollouts, e.g., so that
it is easy to tell which version of the SMS software was
used to generate the sequence number. Version number
1302 may not be expected to change frequently in at
least some implementations. The timestamp value 1304
may be obtained, for example, from a local clock source
or a globally accessible clock source (e.g., a state man-
agement system of a provider network that implements
a getCurrentEpoch or getCurrentTime API) by an inges-
tion subsystem node. In at least some implementations,
an offset from a well-known point in time (e.g., the number
of seconds that have elapsed since 00:00:00 AM UTC
on January 1, 1970, which can be obtained by invoking
various time-related system calls in Unix™-based oper-
ating systems) may be used for the timestamp value
1304. In some embodiments, the subsequence number
1036 may be generated by the storage subsystem and
may indicate the order in which data records of a partic-
ular partition are written to a storage device. Thus, in an
implementation in which numerous data records are re-
ceived within a given second and the timestamp values
1304 only change at approximately one-second inter-
vals, the subsequence numbers 1306 may serve as in-
dicators of the record arrival (or storage) order for data
records that happen to have arrived within the same sec-
ond and therefore are assigned the same timestamp val-
ue. The partition number 1308 may uniquely identify a
partition within a given stream in some embodiments. In
at least some implementations in which the sequence
number timestamps indicate (at least approximately) the
clock times at which the corresponding data records were
ingested, the sequence numbers may be used for an
indexing mechanism for certain types of time-based re-
trieval requests. For example, a client may wish to re-
trieve stream records generated or ingested on a partic-
ular day or during a specified time range, and the se-
quence numbers may be used as keys of an implicit sec-
ondary index to retrieve the appropriate set of data
records. Thus, in at least some embodiments, the use of
sequence numbers that contain timestamps for ordered
storage and retrieval may have an additional benefit of
providing a temporal index into the set of stored data
records.
[0072] Data records of a given partition may typically
be written (e.g., to disk) in sequence number order, often
using large sequential write operations. In some embod-
iments, as indicated earlier, iterator-based programmatic
interfaces may be implemented to allow data consumers
to read data records in sequence number order. FIG. 14
illustrates examples of ordered storage and retrieval of

stream data records at an SMS, according to at least
some embodiments. Six data records 110A - 110F of a
partition Sj-Pk (the kth partition of a stream Sj) are shown
stored in sequence number order. As illustrated, the se-
quence numbers may not be consecutive in at least some
embodiments, e.g., because the manner in which the val-
ues are assigned to the timestamp portions 1304 or the
subsequence numbers 1306 discussed above may not
always result in consecutive values for those elements.
[0073] In the example shown in FIG. 14, a data con-
sumer has requested an iterator to be created, specifying
a starting sequence number "865". In response to the
request, the SMS has initialized Iterator 1, positioned at
the data record with the nearest sequence number that
is higher than or equal to the requested starting sequence
number. In this case, data record 110C with sequence
number 870 has been selected as the iterator’s starting
position, as the next lower sequence (860, assigned to
data record 110B) is smaller than the starting sequence
number in the consumer’s request. The getIterator inter-
face may be considered the logical equivalent of a re-
quest to set a cursor at a requested position within the
partition, and the getNextRecords interface may be used
to then read data records starting from the cursor posi-
tion, e.g., to move the cursor along the stream in se-
quence number order. In the illustrated example, a data
consumer has invoked the getNextRecords interface
with parameter "iterator" set to Iterator1 and "maxNum-
Records" (the maximum number of data records to re-
turn) set to 3. Accordingly, the SMS retrieval subsystem
returns the data records 110C, 110D and 110E in that
order to the data consumer. The iterator Iterator1 may
be moved to a new position, e.g., to data record 110F,
after the getNextRecords call completes, and subse-
quent getNextRecord invocations for the same iterator
may return data records starting with 110F. The seman-
tics of the getIterator call may differ in some embodiments
- e.g., instead of positioning the iterator at the data record
with the nearest sequence number higher than or equal
to the specified sequenced number, the iterator may be
positioned at the nearest data record with highest se-
quence number equal to or lower than the requested se-
quence number in some embodiments. In another em-
bodiment, clients may have to specify an existing se-
quence number in the getIterator call - e.g., an error may
be returned if a record with the requested sequence
number doesn’t exist in the stream.

Partition mappings

[0074] As described earlier, the workload related to in-
gestion, storage, retrieval and processing of the records
of a given stream may be subdivided and distributed
among several nodes in various embodiments in accord-
ance with various partitioning and repartitioning policies.
FIG. 15 illustrates an example of a stream partition map-
ping 1501 and corresponding configuration decisions
that may be made for SMS and SPS nodes, according

39 40

EP 3 069 274 B1

22

5

10

15

20

25

30

35

40

45

50

55

to at least some embodiments. When a particular data
stream is created or initialized, e.g., in response to a cli-
ent’s invocation of a createStream API, a partitioning pol-
icy may be activated for the stream, which may be used
to determine the partition of which any given data record
of the stream is to be considered a member. The partic-
ular nodes of the ingestion subsystem 204, the storage
subsystem 206, the retrieval subsystem 208 and any rel-
evant SPS stages 215 that are to perform operations for
a given data record may be selected on the basis of the
record’s partition. In one embodiment, at least a subset
of the control nodes used for a given data record may be
selected based on the partition as well. In at least some
embodiments, dynamic repartitioning of a data stream
may be supported as part of the partitioning policy, e.g.,
in response to triggering conditions indicated in the policy
or in response to explicit requests.
[0075] In various embodiments, the partition selected
for a given data record may be dependent on a partition-
ing key for the record, whose value may be supplied by
the data producer either directly (e.g., as a parameter of
a write or put request), or indirectly (e.g., the SMS may
use metadata such as the identifier or name of the data
producer client, an IP address of the data producer, or
portions of the actual contents of the data record as a
partition key). One or more mapping functions 1506 may
be applied to the data record partition key or attribute
1502 to determine the data record partition identifier 1510
in the embodiment shown in FIG. 15. In one implemen-
tation, for example, a given partition identifier 1510 may
represent a contiguous range over the space of 128-bit
integer values, such that the union of the ranges for all
the partitions of the stream may cover all possible values
a 128-bit integer can assume. In such an example sce-
nario, one simple mapping function 1506 may generate
a 128-bit hash value from the partition key value(s) or
selected attribute value(s) of the data record, and the
partition identifier may be determined based on the par-
ticular contiguous range within which the hash value hap-
pens to lie. In some implementations, the contiguous
ranges may at least initially be equal in size; in other
implementations, different partitions may correspond to
contiguous ranges that may differ in size from one an-
other. Repartitioning may also result in adjustments to
the range boundaries in one implementation. Other par-
titioning functions 106 may be used in different imple-
mentations.
[0076] If the data stream undergoes dynamic reparti-
tioning (as discussed below in further detail), the partition
to which records with a particular key are mapped may
change. Thus, in at least some embodiments, SMS
and/or SPS control nodes may have to keep track of sev-
eral different mappings that apply to a stream during the
lifetime of the stream. In some embodiments, metadata
such as a timestamp validity range 1511 or a sequence
number validity range may be stored by the control nodes
for each partition mapping. The timestamp validity range
1511 may, for example, indicate that a particular mapping

M1 applies from the stream’s creation time until time T1,
that a different mapping M2 applies from T1 to T2, and
so on. When responding to read requests directed at a
stream, the retrieval nodes may have to first determine
which mapping is to be used (depending for example on
the sequence number indicated in a read request), and
then use that mapping to identify the appropriate storage
nodes.
[0077] The SMS and SPS control nodes may be re-
sponsible for mapping partitions to resources at several
different granularities in at least some embodiments. For
example, as shown in example implementations 1599 of
FIG. 15, in one implementation, each ingestion, storage,
retrieval or processing (worker) node may be implement-
ed as a respective process or a respective thread of ex-
ecution within a server virtual machine such as a Java™
Virtual Machine (JVM) or a compute instance, and each
JVM or compute instance may be instantiated at a par-
ticular physical host. In some embodiments, multiple
JVMs may be launched within a single compute instance,
adding another layer of resource mapping decisions.
Thus, for a given partition, one or more control nodes
may select which particular resources are to be used as
ingestion nodes 1515, storage nodes 1520, retrieval
nodes 1525, or processing stage worker nodes 1530
(e.g., nodes 1530A or 1530B for stages PS1 or PS2 re-
spectively). The control nodes may also determine the
mappings of those nodes to servers (such as ingestion
servers 1535, storage servers 1540, retrieval servers
1545, or processing servers 1550), and the mappings
between servers and hosts (such as ingestion hosts
1555, storage hosts 1560, retrieval hosts 1565 or SPS
hosts 1570A/1570B). In some implementations, a parti-
tion mapping may be considered to comprise identifica-
tion information (e.g., resource identifiers) at each of var-
ious resource granularities (e.g., node, server and host
granularities) illustrated, an indication of the data record
attributes being used as input to the function or functions
1506, as well as the functions 1506 themselves. The con-
trol servers may store representations of the partition
mapping in a metadata store, and in some embodiments
may expose various APIs (such as getPartitionlnfo APIs)
or other programmatic interfaces to provide the mapping
information to data producers, data consumers, or to the
nodes of the SMS subsystems or the SPS.
[0078] The mappings of data records to partitions, and
from the partitions to the resources, may be further com-
plicated in some embodiments by various factors such
as: (a) a given node, server or host may be designated
responsible for multiple partitions in some embodiments,
or (b) failures or other triggers may result in new nodes,
servers or hosts being assigned to a given partition or
set of partitions. In addition, as indicated above and de-
scribed below, partition mappings for a given stream may
be modified dynamically over time while the stream
records continue to be handled by the SMS and/or SPS
nodes. As a result several versions of mapping metadata
may be retained for a given stream at least temporarily

41 42

EP 3 069 274 B1

23

5

10

15

20

25

30

35

40

45

50

55

in some embodiments, each corresponding to a different
period of time.

Dynamic stream repartitioning

[0079] FIG. 16 illustrates an example of dynamic
stream repartitioning, according to at least some embod-
iments. At time T1 of the timeline illustrated in FIG. 16,
a stream S1 is created or initialized. A partition mapping
PM1 is created for the stream S1, and remains in effect
during the time interval T1 through T2. Three data records
received by an SMS between T1 and T2 are shown by
way of example. Data record 110A (DR110A) is submit-
ted with a client-supplied partition key value "Alice",
DR110B is submitted with a client-supplied partition key
value "Bill" and DR110C is submitted with a client-sup-
plied partition key value "Charlie". In the initial mapping
PM1, all three data records 110A, 110B and 110C are
mapped to the same partition with a partition identifier
"PI". For P1 data records, a single node I1 is configured
to handle ingestion, a single node S1 is configured to
handle storage, a single node R1 is configured to handle
retrieval, and a single worker node W1 is configured to
handle SPS processing. The start timestamp for a validity
range of the mapping PM1 is set to T1.
[0080] At time T2, stream S1 is dynamically reparti-
tioned in the example timeline of FIG. 16. Data records
continue to arrive and be handled by the SMS and the
SPS in the depicted embodiment, irrespective of when
the repartitioning occurs; neither the SMS nor the SPS
need to be taken offline. The repartitioning may be initi-
ated as a result of any of a number of factors - e.g., in
response to a detection of an overload condition at an
ingestion, storage, retrieval or processing node, in re-
sponse to a detection of a skew or imbalance between
workload levels at different hosts of the various subsys-
tems, or in response to a request from a data consumer
or a data producer client. In the depicted embodiment, a
new mapping PM2 takes effect at time T2 (or shortly after
T2), as indicated by the validity range start timestamp
setting shown for PM2. In at least some implementations,
a different set of data record attributes may be used for
partitioning data records than were used before the
repartitioning. In some cases, an additional partitioning
attribute may be submitted by the data producer (e.g., at
the request of the SMS), while in other cases the addi-
tional attribute may be generated by an SMS ingestion
node. Such additional attributes may be referred to as
"salted" attributes, and the technique of using additional
attributes for repartitioning may be referred to as "salting".
In one example implementation, an overloaded ingestion
server may indicate to a data producer (e.g., to the SMS
client library code being executed by the data producer)
that, for repartitioning, a randomly selected small integer
value be provided in additional to the previously-used
partition key. The combination of the original partition key
and the salted additional integer may subsequently be
used to distribute the ingestion workload among a differ-

ent set of ingestion nodes. In some embodiments, the
retrieval nodes and/or data consumers may have to be
informed regarding the additional attributes being used
for repartitioning. Such additional attributes may not be
used for repartitioning in at least some implementations.
[0081] In the embodiment shown in FIG. 16, the new
partition mapping results in different partitions being se-
lected for at least some of the data records received after
T2, relative to the partition selected for the same key
before T2. DR110P is submitted after T2 with the partition
key value "Alice", DR110Q is submitted after T2 with the
partition key value "Bill", and DR110R is submitted after
T2 with the partition key value "Charlie". Using the PM2
mapping, DR110P is designated a member of partition
"P4", DR110Q is designated a member of partition "P5",
while DR110R is designated a member of partition "P6"
in the illustrated example scenario. In the depicted em-
bodiment, none of the example data records shown as
being received after T2 are designated as members of
the previously-used partition "PI"; instead, completely
new partitions may be used after the repartitioning. In
some embodiments, at least some previously used par-
titions may continue to be used after repartitioning. For
each of the new partitions P4, P5 and P6, different nodes
may be designated for ingestion, storage, retrieval and/or
processing. For example, nodes 14, S4, R4 and W4 may
be configured for partition P4, nodes 15, S5, R5 and P5
may be configured for partition P5, and nodes 16, S6,
R6 and P6 may be configured for partition P6. In some
embodiments, the same storage node may be used for
a record with a particular partition key or attribute after
repartitioning as was used for such records before repar-
titioning, but a different storage location within that node
(e.g., a different disk, a different disk partition, or a dif-
ferent SSD) may be used after the repartitioning.
[0082] During at least some time period after the dy-
namic repartitioning at T2, retrieval requests may contin-
ue to be retrieved for data records that were processed
by the SMS ingestion and/or storage subsystems prior
to the repartitioning. In at least some cases, the request-
ed data records may have to be retrieved based on the
PM1 mapping which was in effect at the time that the
data records were ingested. Accordingly, as indicated in
FIG. 16, for the purposes of data retrieval, both PM1 and
PM2 may continue to be used for some time after T2. In
at least some implementations, data records may even-
tually be deleted from the stream as they age, and the
older partition mappings may also be discarded eventu-
ally, e.g., when all the corresponding data records have
themselves been deleted. In some embodiments, in-
stead of (or prior to) being deleted, stream records may
be archived (e.g., based on client-selected archival pol-
icies) to a different set of storage locations or devices,
such that the partition mappings used by the SMS may
still be usable to retrieve the records after archival. In
such embodiments, partition mappings such as PM1 and
PM2 may be retained for as long as they are needed to
support retrieval requests directed to the archival stor-

43 44

EP 3 069 274 B1

24

5

10

15

20

25

30

35

40

45

50

55

age. In some archival implementations, different retrieval
approaches may be used that do not require the stream
partition mappings to be retained (e.g., new indexes may
be created for the archived data records). In some em-
bodiments a partition such as P2 that was being used
prior to a repartitioning, but to which writes are no longer
directed after the repartitioning, may at some point after
the repartitioning be "closed" for reads - e.g., the equiv-
alent of an "end of partition reached" error message may
be provided in response to retrieval requests.
[0083] In some implementations, a given data stream
may be divided into numerous (e.g., hundreds or thou-
sands) of partitions. Consider an example case in which
a stream S1 is initially divided into 1000 partitions, P1,
P2, ..., P1000. In the event that an overload condition
corresponding to one partition, say P7, is detected, it may
be worthwhile to change the initial mapping of data
records to P7, but the mapping of the other partitions
need not need to be changed. In one approach, two new
partitions P1001 and P1002 may be created via a repar-
titioning operation. Records received after the repartition-
ing, whose attributes would originally (i.e., on the basis
of the original mapping) have resulted in their member-
ship in P7, may be mapped to either P1001 or P1002
after the repartitioning, thus distributing the workload of
P7 among two partitions. The remaining partitions, e.g.,
P1 - P6 and P8 - P1000, may not need to be modified.
As only a small subset of partitions are affected by such
a repartitioning, in at least some embodiments a com-
bined data structure such as a directed acyclic graph of
partition entries (or a tree of partition entries) may be
generated and stored. Each entry may indicate a parti-
tioning function output range, and a validity time range
(the time period during which the entry’s partitioning in-
formation is to be considered valid). Assume, in the ex-
ample above, that the repartitioning involving P7 was per-
formed at time T2, while the stream S1 (and its initial
mapping) was created at time T1. In such a scenario, the
validity time period for the entry regarding P7 would be
"T1 toT2", the validity time periods for P1001 and P1002
would be "T2 onwards", and the validity time time periods
for the remaining partitions would be "T1 onwards". Using
such a combined data structure may lead to a substantial
reduction in the amount of memory or storage used for
partition mapping metadata in at least some implemen-
tations. In the above example, a split of partition P7 into
two new partitions was discussed. In at least some im-
plementations, partitions may also be merged during
repartitioning - e.g., two adjacent partitions for which rel-
atively few retrieval requests were received, or relatively
few records were submitted, may be merged into a single
partition. For any given point in time, the partition to which
a data record belongs may be determined unambiguous-
ly using the partitioning function and the validity time
range information. Over time, the combined data struc-
ture may evolve as more splits and/or merges are per-
formed, but the total space required for the partitioning
metadata may (depending of course on how often splits

occur, and how many partitions are affected by the splits
on average) not increase dramatically. In contrast, in a
different implementation, each time a repartitioning oc-
curs, the entire set of unchanged metadata for a stream
may be replicated and combined with entries for the par-
titions affected by repartitioning. The storage and mem-
ory requirements for partition mapping metadata may in-
crease at a much faster rate in the latter implementation,
especially if the older mappings may have to be retained
for at least some time after repartitioning as described
above.
[0084] In at least some embodiments in which se-
quence numbers that comprise timestamp values (such
as the timestamp value 1304 shown in FIG. 13b) are
used, a special type of sequence number transition may
be implemented for dynamic repartitioning. Assume by
way of example that a timestamp-based sequence
number scheme, similar to that shown in FIG. 13b, is
being used for a stream S1, in which new timestamp val-
ues are generated every second for inclusion in the se-
quence numbers. In at least some implementations in
which dynamic repartitioning is supported, the sequence
numbers assigned after the dynamic repartitioning may
all use a different set of timestamp values (starting with
a selected initial timestamp value corresponding to the
repartition event) than were used before the dynamic
repartitioning. For example, if the timestamp value in use
at the time the dynamic repartitioning is committed (i.e.,
put into effect) was Tk, any new sequence numbers is-
sued after the commit may be required to use timestamp
values Tk+1 onwards. Since sequence number values
encode the timestamp value in at least some of their high-
er-order bits in the scheme used in FIG. 13b, ensuring
that repartition events correspond to timestamp bound-
aries as described may in turn simplify the bookkeeping
involved in identifying the mappings to be used in re-
sponse to a retrieval request. Thus, in such implemen-
tations, when a retrieval request specifying a particular
sequence number is received, the timestamp value may
be extracted from that sequence number, and it may be
easily determined whether the post-repartitioning map-
ping should be used, or the pre-repartitioning mapping
should be used. If the extracted timestamp value is lower
than the initial timestamp selected for the repartition, the
pre-repartitioning mapping may be used, and if the ex-
tracted timestamp value is equal to or higher than the
initial timestamp value selected for the repartition, the
post-repartitioning mapping may be used.

Methods for stream management and processing

[0085] FIG. 17 is a flow diagram illustrating aspects of
operations that may be performed to support respective
sets of programmatic interfaces for stream record inges-
tion and stream record retrieval, according to at least
some embodiments. As shown in element 1701, a re-
quest to create or initialize a data stream may be re-
ceived, e.g., from an SMS client or a data producer client.

45 46

EP 3 069 274 B1

25

5

10

15

20

25

30

35

40

45

50

55

The initial partition mapping to be used for the stream
may be determined (element 1704), e.g., the function(s)
to be used to identify the partition to which a particular
data record belongs, and the input parameters to be used
for the function(s), may be identified based on a parti-
tioning policy. As mentioned earlier, control components
of the SMS may be responsible for receiving and re-
sponding to stream creation requests in various embod-
iments. The manner in which stream creation and initial-
ization (as well as other control-plane operations) are
implemented may differ from one embodiment to anoth-
er. In one embodiment, for example, a redundancy group
of control servers may be established, and the primary
control server of that redundancy group may respond to
a stream creation request by generating and storing the
appropriate metadata for a new stream (e.g., the initial
partition mapping, the initial sets of nodes of the inges-
tion, storage and retrieval, and so on) in a persistent stor-
age location. Responses to subsequent queries regard-
ing the stream (e.g., a request from a front-end ingestion
node regarding the back-end node responsible for a giv-
en partition) may be generated by the primary control
server using the stored metadata. In another implemen-
tation of the SMS control-plane functionality, stream con-
figuration metadata may be stored in a database that is
directly accessible by at least some nodes of the inges-
tion, storage, or retrieval subsystems. After a stream has
been created and initialized, data-plane operations such
as record submission, storage and retrieval may com-
mence, and may be handled by respective components
of the corresponding subsystems, typically without addi-
tional interactions with the control components.
[0086] In some embodiments, data producers may be
required to submit explicit partition keys with write re-
quests, while in other embodiments, the inputs to be used
for the partitioning functions may be determined based
on metadata associated with the write requests, such as
the identity of the data producers, the IP addresses from
which the data records are received, or from the contents
of the data records themselves. In at least one imple-
mentation, clients may optionally supply partition identi-
fiers in the data record submissions, and additional par-
titioning functions may not be required in such an imple-
mentation.
[0087] A number of different factors may be taken into
account when determining or configuring the initial set of
nodes for ingestion, storage and retrieval functions for
the stream (element 1707). For example, the partition
mapping itself (which may determine how many partitions
the stream is divided into, and the relative expected sizes
of the partitions), information about the expected inges-
tion rates and/or retrieval rates if such information is avail-
able, durability/persistence requirements for the stream
data records, and/or high availability requirements for the
various subsystems (which may result in the setting up
of redundancy groups similar to those illustrated in FIG.
9 and 10) may influence the number and placement of
the nodes of the different subsystems. In addition, in em-

bodiments in which clients may indicate placement des-
tination type preferences for various categories of nodes
(as illustrated in FIG. 11, 12a and 12b), such preferences
may also play a role in determining the resources to be
used for the SMS and/or SPS nodes. In at least some
embodiments, respective pools of nodes capable of per-
forming ingestion, storage and/or retrieval functions may
be set up in advance, and control components may as-
sign selected members of such pools to each new stream
that is created. In other embodiments, at least in some
cases new ingestion, storage or retrieval nodes may have
to be instantiated when a stream is created or initialized.
[0088] At the ingestion nodes in the depicted embod-
iment, records may be received via any of a set of pro-
grammatic interfaces implemented for data record sub-
mission (element 1710), including for example in-line
submission interfaces (in which the data is included in
the submission requests) and by-reference submission
interfaces (in which an address is provided in the sub-
mission requests, from which the data can be retrieved
by the SMS ingestion nodes or the SMS storage nodes,
e.g., using web service requests or other interfaces). Any
of a number of different types of programmatic interfaces
may be provided in different embodiments for each of
the ways of submitting records, e.g., respective applica-
tion programming interfaces (APIs) may be supported
for in-line versus by-reference submission, web pages
or web sites may be established, graphical user interfac-
es may be implemented, or command-line tools may be
developed. In at least some embodiments, the SMS may
assign a sequence number to each ingested record, e.g.,
indicative of the order in which the records are ingested
or stored, and the sequence numbers may be usable for
retrieval requests by data consumers. At the retrieval
subsystem nodes, record retrieval requests may be re-
ceived via any of a set of implemented programmatic
retrieval interfaces, and contents of the requested data
records may be provided in response (element 1713).
For non-sequential access, the interfaces may include,
for example, getIterator (requesting an iterator to be in-
stantiated at a position selected within a partition based
on a sequence number indicated in the getIterator invo-
cation) or getRecordWithSequenceNumber (to obtain a
data record with a specified sequence number). For se-
quential access, interfaces such as getNextRecords (re-
questing a number of records in order, starting from a
current position of an iterator or from a specified se-
quence number) may be implemented. In at least some
embodiments, different retrieval interfaces may have dif-
ferent billing rates associated with them - e.g., the per-
record billing rates for sequential retrieval may be set
lower than the per-record billing rates for non-sequential
retrieval. The different submission interfaces may also
have different billing rates in some embodiments - e.g.,
by-reference submissions may cost more per record than
inline submissions.
[0089] Over time, control nodes or specialized billing
servers may collect usage metrics for the different pro-

47 48

EP 3 069 274 B1

26

5

10

15

20

25

30

35

40

45

50

55

grammatic interfaces implemented at the various sub-
systems of the stream management service (element
1716). The metrics may include, for example, invocation
counts of the different programmatic interfaces, the total
number of records ingested or retrieved (which may differ
from invocation counts for at least some interfaces such
as getNextRecords that can be used to retrieve multiple
records with a single invocation), the total amount of data
ingested or retrieved, and so on. Billing amounts to be
charged to the clients that own the stream, or clients that
produce and/or consume data from the stream, may op-
tionally be generated based at least in part on the usage
metrics and the respective billing rates associated with
the programmatic interfaces (element 1719). In at least
some embodiments, the billing activities may be asyn-
chronous with respect to the stream ingestion/retrieval
operations - e.g., a bill may be generated at the end of a
monthly billing period based on the metrics collected dur-
ing the month.
[0090] FIG. 18a is a flow diagram illustrating aspects
of operations that may be performed to configure stream
processing (SPS) stages, according to at least some em-
bodiments. As shown in element 1801, programmatic in-
terfaces may be implemented enabling clients to config-
ure a number of processing stages for stream data
records. To configure a particular stage, for example, a
client may indicate the processing operation(s) to be per-
formed on partitioned stream data records at the stage,
the distribution policy for the output of the processing
operations, as well as other parameters such as the iden-
tity of the input streams from which the data to be proc-
essed is to be obtained. In some embodiments, process-
ing operations at SPS stages may be required to be idem-
potent. In other embodiments, non-idempotent opera-
tions may also be supported for at least some stages. If
the processing to be performed at a given stage is non-
idempotent, a client may still be able to obtain recovery-
related benefits of idempotency in some embodiments
by configuring worker nodes to periodically flush the out-
put of the operations to some persistent external location,
recording when the flush operations were performed with
respect to the record retrieval sequence, and later con-
figuring replacement worker nodes to replay the flush
operations during recovery. In at least some embodi-
ments, clients may be able to configure directed acyclic
graphs (DAGs) or other graphs of processing stages, with
several different states operating on stream data in par-
allel, and results of some stages being used as input
streams for other stages. In some embodiments, one or
more ephemeral rather than persistent streams may be
created between different stages, e.g., the data records
output from one stage need not necessarily be stored on
persistent storage devices before being fed as input to a
different stage.
[0091] Any of a number of different recovery policies
may be implemented for SPS stages in some embodi-
ments, including for example a checkpoint-based recov-
ery policy or a best-effort recovery policy. In one embod-

iment, a client may use a programmatic interface to select
recovery policies for different SPS stages. At stages for
which a checkpoint-based recovery is used, worker
nodes may be configured to store progress records or
checkpoints at intervals, indicating how far along in a
stream partition they have reached (for example, the se-
quence numbers of the most recently processed records
may be stored as indicators of the progress). The
progress records may be used later during recovery op-
erations after failures, as described below with reference
to FIG. 19. In a best-effort recovery policy, progress
records need not be stored, and replacement worker
nodes configured in response to a failure may simply
process new data records as they are received. Within
a given SPS stage graph or workflow, in some embodi-
ments different recovery policies may be applied to dif-
ferent stages.
[0092] An SPS control server may receive, e.g., via
one of the programmatic interfaces indicated in element
1801, an indication of the idempotent operation Op1 to
be performed at a particular stage PS1 of a stream S1
in accordance with a partitioning policy PPol1, with the
results of the processing to be distributed in accordance
with output distribution descriptor DDescl (element
1804). The number of worker nodes to be configured for
state PS1, and the virtual or physical resources needed
for the nodes, may be determined, e.g., based on various
factors such as the Ppol1, the complexity of the idemp-
otent operations Op1, and the performance capabilities
of the resources to be used for the worker nodes (element
1807).
[0093] The worker nodes may then be instantiated and
configured (element 1810), e.g., as processes or threads
at selected virtual or physical machine resources. In one
simple implementation, for example, one worker node
may initially be assigned for each partition of S1. A given
worker node may be configured to (a) receive data
records from the appropriate subset of S1’s retrieval
nodes, (b) perform Op1 on the received data records, (c)
optionally, e.g., based on the recovery policy for PS1,
store progress records/checkpoints indicating which set
of partition records have been processed, and (d) trans-
mit output to destinations indicated by DDesc1 (e.g., as
inputs to intermediate persistent or ephemeral streams,
or directly to other processing stages or storage sys-
tems). It is noted that at least in some embodiments, the
SPS processing may not necessarily generate any output
that has to be transmitted elsewhere on an ongoing basis.
For example, some SPS applications may simply serve
as temporary repositories of data records, and/or may
implement query interfaces enabling users to view the
data records. Such an application may manage its own
output, e.g., output may be generated in response to re-
ceived queries and not in accordance with a distribution
descriptor. A logging-related SPS application may retain
the last day’s log records collected from a large-scale
distributed system, for example, enabling clients to view
logging data for debugging or analysis purposes. Accord-

49 50

EP 3 069 274 B1

27

5

10

15

20

25

30

35

40

45

50

55

ingly, in some embodiments, output distribution descrip-
tors need not be specified for at least some stages of an
SPS, for at least some streams, or for at least some par-
titions. The worker nodes may then initiate retrieving and
processing data records as per their respective configu-
ration settings (element 1813). The SPS control nodes
may monitor the health status (e.g., using responsive-
ness checks such as a heartbeat protocol) of the worker
nodes, as well as various other metrics such as the re-
source utilization levels at the resources being used for
the worker nodes (element 1816) in at least some em-
bodiments. The information collected from the worker
nodes may be used to determine whether a failover is
required, e.g., if a worker node should be replaced and
a recovery policy implemented as described below.
[0094] In some embodiments, an installable SPS client
library may be provided to those clients that wish to im-
plement SPS worker nodes at client-owned premises,
and/or at client-selected resources of the provider net-
work. The client library may also allow SPS clients to
select the extent to which they wish to use various control-
plane features of an SPS managed service, such as
health monitoring functions, automated workload moni-
toring and balancing, security management, dynamic
repartitioning and the like. FIG. 18b is a flow diagram
illustrating aspects of operations that may be performed
in response to invocations of components of a client li-
brary for configuration of stream processing worker
nodes, according to at least some embodiments. As
shown in element 1851, an SPS client library may be
provided (e.g., via download from a web site of a multi-
tenant SPS managed service configurable to perform the
kinds of operations illustrated in FIG. 18a). The library
may include a number of executable components, and/or
components that can be linked to client applications.
Some library components may enable clients to select,
register with the SPS managed service, or specify de-
sired properties of, various worker nodes at which stream
processing operations of one or more SPS stages are to
be performed. For example, one client may wish to use
their own set of compute instances implemented at a
virtual computing service of a provider network for the
worker nodes, while another client may wish to use com-
puting devices located at the client’s own data center
(such as special purpose devices not supported by the
provider network) for processing stream records. Clients
may bring worker nodes online on an as-needed basis
at their own premises, or using compute instances of the
virtual computing service, as desired. In addition to or
instead of such an on-demand instantiation of worker
nodes, in some embodiments clients may preconfigure
pools of potentially re-usable worker nodes that can be
deployed when needed. In some implementations, a li-
brary component may be executed or invoked to allow a
client to register, with the SPS managed service, a par-
ticular process or thread instantiated by the client as a
worker node of a specified stage, for which subsequent
control-plane operations may be handled by the SPS

managed service. In one embodiment, the client may al-
so be able to select from among different levels of control-
plane responsibilities to be handled by the SPS managed
service for the worker nodes - for example, one client
may wish to use their own custom modules to monitor
worker node health, while another client may wish to uti-
lize the SPS managed service for monitoring worker node
health and taking the appropriate actions if a failure is
detected.
[0095] The SPS managed service may receive an in-
dication that a particular client wishes to use the client
library for configuring worker nodes and/or control plane
operations of a particular SPS stage PS1 (element 1854).
(PS1 itself may be designed using programmatic inter-
faces included in the library, or using programmatic in-
terfaces exposed by the SPS managed service similar
to the web-based interface illustrated in FIG. 4.) The client
may also indicate the streams whose data is to be re-
trieved for use as input by PS1. Optionally, in at least
some embodiments, the client may indicate control-plane
settings for PS1, e.g., whether the client wants to use the
service’s health monitoring capabilities for the nodes, or
is willing to use custom health monitoring tools (element
1857). Depending on the preferences indicated by the
client, one or more nodes of the SMS and/or SPS to be
configured for the client’s use may be determined (ele-
ment 1860). Network connectivity may be established
between the client’s worker nodes to the SMS/SPS
nodes, and/or other configuration operations may be per-
formed to enable the flow of data records and processing
results as desired. Data records may be provided to SP1
worker nodes upon receiving retrieval requests, and de-
sired control-plane operations (if any were requested by
the client) may be performed as needed. It is noted that
at least in some embodiments, a similar approach ena-
bling clients to control the extent to which they wish to
use the control-plane functionality of various subsystems
of an SMS managed service may also or instead be im-
plemented.
[0096] FIG. 19 is a flow diagram illustrating aspects of
operations that may be performed to implement one or
more recovery policies for stream processing, according
to at least some embodiments. As shown in element
1901, an SPS control node may determine that triggering
criteria for replacing a particular worker node have been
met - e.g., the worker node may have become unrespon-
sive or unhealthy, the workload levels of the current node
may have reached a threshold value for failover, the
number of errors detected at the worker node may have
exceeded a threshold, or some other unexpected state
of a worker node may be identified. A replacement worker
node may be identified or instantiated (element 1904).
In some embodiments, a pool of available worker threads
may be set up, from which one may be selected as a
replacement, for example, or a new thread or process
may be launched.
[0097] If a best-effort recovery policy is to be used at
the SPS stage at which the particular worker node was

51 52

EP 3 069 274 B1

28

5

10

15

20

25

30

35

40

45

50

55

active (as determined in element 1907), the replacement
worker node may simply start processing additional data
records as they become available (element 1916), e.g.,
no record of the replaced worker node’s progress need
be examined. If a checkpoint-based recovery policy is to
be used, an indication of the location (e.g., a storage
device address or a URL) at which the replacement work-
er node may access the progress records stored by the
replaced worker node may be provided (element 1910).
The replacement worker node may retrieve the most re-
cent progress record stored by the replaced node, and
use the progress record to determine the set of data
records on which the replacement worker node should
perform the idempotent operations of the stage (element
1913). In such a checkpoint-based recovery policy, de-
pending on the duration between the last progress record
and the time at which the replacement worker node is
instantiated, as well as on the rate at which the replaced
worker node had processed additional records subse-
quent to the progress record being stored, some number
of data records may be processed more than once. If the
operations being performed are idempotent, such repeat
operations may have no negative effects in at least some
embodiments. After the replacement worker node has
performed the repeat recovery operations based on the
earlier-stored progress record, in at least some embod-
iments the replacement worker thread may store its own
progress record indicating that recovery is complete, and
may start normal worker thread operations on newly-re-
ceived data records (element 1916).
[0098] FIG. 20 is a flow diagram illustrating aspects of
operations that may be performed to implement a plural-
ity of security options for data streams, according to at
least some embodiments. As shown in element 2001,
one or more programmatic interfaces may be implement-
ed that enable clients to select from a variety of security
options for data stream management and processing,
including for example placement destination type options
for the nodes of different functional categories (e.g., in-
gestion, storage, retrieval, processing or control nodes).
The placement destination types may differ from one an-
other in various aspects of their security profiles. The
physical location of the resources to be used for the SMS
or SPS nodes may differ from one destination type to
another in some embodiments. For example, resources
such as instance hosts located at provider network data
centers may be used for the nodes, or resources at client-
owned facilities may be used, or third-party resources
may be used. The network isolation levels or other net-
working characteristics may differ from one destination
type to another in at least some embodiments - e.g., some
SMS or SPS nodes may be instantiated within isolated
virtual networks, or at client-owned facilities connected
to the provider network via dedicated isolated physical
links. In one embodiment, clients may indicate that cer-
tain types of SMS or SPS nodes are to be established at
single-tenant instance hosts of a provider network, in-
stead of using multi-tenant instance hosts that may also

be available. In at least some embodiments, various
types of encryption options may also be selectable via
the security-related programmatic interfaces.
[0099] A client’s security profile choices or preferences
regarding nodes of one or more functional categories for
a stream S1 may be received via the security-related
programmatic interfaces. For example, the client may se-
lect one security profile for nodes of functional category
FC1 (e.g., the client may wish to implement SPS worker
nodes at client-owned premises) and a different security
profile for nodes of a different functional category FC2
(e.g., the client may be willing to implement SMS inges-
tion nodes or storage nodes at provider network data
centers) (element 2004). In some cases, a client may
decide to set up nodes of all the different functional cat-
egories with the same security profile. The SMS and/or
the SPS may define default placement destination types
for the various functional categories in some embodi-
ments - e.g., unless a client indicates otherwise, nodes
of all the functional categories may be set up within iso-
lated virtual networks of a provider network.
[0100] The nodes of the different functional categories
may then be configured based on the client’s preferences
for security profiles and/or locations (or based on default
settings for the functional categories for which the client
does not provide preferences) (element 2007). The con-
figuration may involve, for example, selecting the appro-
priate physical hosts or machines, and instantiating the
appropriate compute instances, virtual machines, proc-
esses and/or threads for the nodes of the different func-
tional categories, and establishing the appropriate net-
work connections between the nodes. In some embodi-
ments, executable library components for the different
stream management and processing functions may be
provided for installation at hosts external to the provider
network as part of the configuration.
[0101] According to at least some embodiments, en-
cryption modules may be activated at one or more cate-
gories of the nodes, e.g., in accordance with the client’s
expressed encryption preferences or based on default
encryption settings (element 2010). The nodes of the var-
ious functional categories may then be activated, so that
the stream data is ingested, stored, retrieved and/or proc-
essed as desired by the client (element 2013).
[0102] FIG. 21 is a flow diagram illustrating aspects of
operations that may be performed to implement a parti-
tioning policy for data streams, according to at least some
embodiments. As shown in element 2101, a partitioning
policy may be determined for a data stream. The policy
may comprise, for example, an initial mapping of data
records to partitions based on keys supplied by data pro-
ducers or based on various attributes of the submitted
data records, as well as one or more triggering criteria
for repartitioning the data stream. In some embodiments,
for example, a hash function may be applied to the par-
tition key or keys, yielding a 128-bit integer hash value.
The range of possible 128-bit integers may be divided
into N contiguous sub-ranges, each representing one of

53 54

EP 3 069 274 B1

29

5

10

15

20

25

30

35

40

45

50

55

N partitions of the stream. The number of partitions and/or
the relative sizes of the sub-ranges may vary from one
stream to another in some embodiments. In at least some
embodiments, the client on whose behalf a stream is be-
ing configured may provide input regarding the partition-
ing scheme to be used, e.g., the number of partitions
desired, or desired characteristics of the partitioning func-
tion to be used. In at least one embodiment, clients may
provide the partition identifiers or names for some subset
or all of the submitted data records.
[0103] As the data records of the stream are received,
their respective partitions may be determined based on
the supplied keys and/or other attributes, and the appro-
priate set of ingestion, storage and retrieval nodes may
be selected for the identified partition (element 2104). In
at least some embodiments, respective sequence num-
bers may be generated for the data records, e.g., indic-
ative of the sequence in which the records of a given
partition were received (element 2107). The sequence
numbers may comprise a number of elements in some
implementations, such as timestamp values (e.g., the
number of seconds elapsed since a well-known epoch
such as 00:00:00 UTC January 1 1970), subsequence
values obtained from a storage subsystem, version num-
bers of the SMS software, and/or the partition identifiers.
The sequence numbers may be provided to the data pro-
ducers in some embodiments, e.g., to acknowledge the
successful ingestion of the submitted data records. The
sequence numbers may also be used by data consumers
to retrieve the data records of a stream or a partition in
ingestion order in some embodiments.
[0104] The data records may be stored in sequence
number order in at least some embodiments at the stor-
age nodes to which they are directed based on the par-
titioning policy (element 2110). In embodiments in which
rotating magnetic disks storage devices are used, se-
quential writes may typically be used to save the received
data records to disk, thereby avoiding disk seek laten-
cies. In at least some implementations, non-volatile buff-
ers may be used as write caches prior to storing the
records to disk, e.g., to further decrease the probability
of disk seeks. In response to requests for reads of mul-
tiple data records ordered by sequence number (e.g.,
invocations of getNextRecords or similar interfaces), the
data records may later be read using sequential reads
from the storage devices (element 2113).
[0105] FIG. 22 is a flow diagram illustrating aspects of
operations that may be performed to implement dynamic
repartitioning of data streams, according to at least some
embodiments. As shown in element 2201, a determina-
tion may be made (e.g., at a control component of an
SMS or an SPS) that a stream is to be dynamically repar-
titioned. A number of different triggering conditions may
lead to a decision to repartition a stream, such as a de-
tection of overload at one or more of the ingestion, stor-
age, retrieval, processing or control nodes, or a detection
of an imbalance in the workload levels of different nodes,
or a repartitioning request that may be received from a

client (e.g., a data producer or data consumer). Client
repartitioning requests may include specific details of the
requested repartitioning in some implementations, such
as various parameters of the modified mapping to be
generated (e.g., the number of partitions to be added or
removed, which specific partitions should be combined
or split, and so on). In one implementation, a client repar-
titioning request may indicate a problem state (such as
a load imbalance) that the client wishes to resolve, and
the SMS or SPS may be responsible for translating the
description of the problem state into the appropriate
repartitioning operation. In some cases, instead of re-
questing a repartitioning or describing a problem state,
a client may specify the triggering criteria to be used for
repartitioning. A determination of a change to a data du-
rability requirement of the data stream may trigger repar-
titioning in some embodiments, which may for example
result in the selection of a different set of storage devices
or a different storage technology for the stream records.
A detection of a change to a usage pattern of the data
stream (e.g., the rate at which data records are being
produced or consumed) may also lead to repartitioning
in some cases, and may also lead to the use of a different
storage technique or a different set of storage devices
that is more appropriate for the changed usage pattern.
For example, a decision to repartition may be based on
the determination that, for the rate of reads and writes
expected for a given partition or an entire stream, SSDs
may be a more appropriate storage technology than ro-
tating magnetic disks. Scheduled or impending software
and/or hardware version changes may trigger repartition-
ing in one embodiment. In some cases, pricing or billing
concerns may trigger repartitioning, as when a client in-
dicates a budget constraint that can be met more effec-
tively using a different partitioning approach or a different
approach to storage. Changed performance targets may
also trigger repartitioning in at least some embodiments.
In the embodiment depicted in FIG. 22, an initial times-
tamp value (such as an offset in seconds from 00:00:00
UTC January 1 1970, an epoch value typically available
via a system call in several operating systems) to be used
for sequence numbers assigned after the repartitioning
may be selected (element 2204). In some implementa-
tions, a global state manager implemented at a provider
network may support a getEpochValue API, for example,
enabling various components of the SMS and/or SPS to
obtain consistent timestamp values to be used for se-
quence number generation. In other implementations,
other time sources may be used - e.g., an SMS or SPS
control node may be designated to provide consistently-
ordered timestamp values to other components, or a local
system call invocation may be used. In some embodi-
ments, the timestamp values need not necessarily cor-
respond to the wall clock time at any particular host - e.g.,
a monotonically increasing integer counter value may
simply be used.
[0106] A modified partition mapping, different from the
mapping in use at the time of the repartitioning decision,

55 56

EP 3 069 274 B1

30

5

10

15

20

25

30

35

40

45

50

55

may be generated for the stream (element 2207). The
changed mapping may map data records with a particular
partition key to a different partition than data records with
the same key were mapped to before the repartitioning
in at least some embodiments. Some partitions (typically,
heavily-used partitions) may be split, while other (typical-
ly lightly-used) partitions may be merged, depending on
the triggering conditions for the repartitioning and/or on
observed workload metrics. A different partitioning func-
tion may be used after the repartitioning than before the
repartitioning in some embodiments - e.g., a different
hash function, or a different approach to the subdivision
of hash function results into partitions may be used. In
some implementations, for example, in which the parti-
tions correspond to contiguous ranges of 128-bit inte-
gers, the 128-bit integer space may be divided into a
different set of sub-ranges after the repartitioning. In at
least some embodiments, new sets of ingestion, storage,
retrieval, processing or control nodes may be assigned
to the newly-created partitions. In some implementations
a space-efficient combined data structure may be used
to represent both the initial mapping and the modified
mapping (element 2208). For example, a directed acyclic
graph or tree structure may be stored, in which each entry
contains an indication of a partitioning function output
range (e.g., the range of a partitioning hash function’s
results that correspond to a given partition) and a validity
time range, so that only the records corresponding to
modified partitions need to be altered as a result of a
repartitioning. Entries for partitions that remain unaltered
during a repartitioning may not need to be modified in
the data structure. The new nodes may be configured to
implement the modified partition mapping (element
2210). In at least some embodiments, since retrieval re-
quests for data records stored on the basis of the earlier
mapping may continue to be received for at least some
time, the previous nodes and the previous mapping may
be retained for some time. When a read request speci-
fying a particular sequence number or timestamp is re-
ceived (element 2213), a determination may be made
(e.g., at a control node or at a retrieval node) as to whether
the read request is to be satisfied using the new partition
mapping or the previous partition mapping. The selected
mapping may then be used to identify the appropriate
storage node from which the requested data is to be ob-
tained.
[0107] FIG. 23 is a flow diagram illustrating aspects of
operations that may be performed to implement an at-
least-once record ingestion policy for data stream
records, according to at least some embodiments. As
shown in element 2301, one or more programmatic in-
terfaces may be implemented to enable clients to select
a record ingestion policy for a data stream from among
several ingestion policy options, including for example
(a) an at-least-once policy in accordance with which a
record submitter is to submit a record one or more times
until a positive acknowledgement is received or (b) a
best-effort ingestion policy in accordance with which ac-

knowledgements are not provided for at least some
record submissions. Some data producing clients may
not be as concerned about the potential loss of a small
fraction of their records as others, and may therefore opt
for the best-effort ingestion approach. In some implemen-
tations, even for streams configured for best-effort inges-
tion, the SMS may still provide acknowledgements for
some subset of the data records, or may even attempt
to provide acknowledgements for all the data records,
even though the best-effort policy does not require ac-
knowledgements for every data record.
[0108] A request may be received via one of the pro-
grammatic interfaces, indicating a particular ingestion
policy to be used for a specified stream (element 2304).
Ingestion nodes may be instantiated in accordance with
the partitioning policy in effect for the stream (element
2307). When one or more submissions of the same data
record are received at an ingestion node (element 2310),
different actions may be taken dependent on the inges-
tion policy in effect. If the at-least-once ingestion policy
is in use (as determined in element 2313), an acknowl-
edgement may be sent to the data producer for each of
the one or more submissions, but the data record may
be saved only once at the storage subsystem (2316). (It
is noted that in accordance with the persistence policies
in effect for the stream, N replicas of a given record may
be stored in some cases, but if a given data record is
submitted M times, the replicas may be generated only
for one of the submissions - i.e., the total number of record
replicas stored would still be N, and not NxM.) If a best-
effort ingestion policy were in effect (as also detected in
element 2313), the data record may still be saved once
at a storage device, but no acknowledgement need be
sent to the data producer (element 2319). In at least some
embodiments, client billing amounts may optionally be
determined based at least in part on the ingestion policy
selected (element 2322). As noted earlier, in some em-
bodiments, two versions of an at-least-once ingestion
policy may be supported. In one version, similar to that
illustrated in FIG. 23, the SMS may be responsible for
de-duplicating data records (i.e., ensuring that data is
stored at the SMS storage subsystem in response to only
one of a set of two or more submissions). In a different
version of at-least-once ingestion, duplication of data
records by the SMS may be permitted. The latter ap-
proach may be useful for stream applications in which
there are few or no negative consequences of data record
duplication, and/or for stream applications that perform
their own duplicate elimination.
[0109] FIG. 24 is a flow diagram illustrating aspects of
operations that may be performed to implement a plural-
ity of persistence policies for data streams, according to
at least some embodiments. As shown in element 2401,
one or more programmatic interfaces enabling clients to
select a persistence policy for stream data records from
among a plurality of persistence policies may be imple-
mented. The persistence policies may differ from each
other in any of various respects: e.g., (a) the number of

57 58

EP 3 069 274 B1

31

5

10

15

20

25

30

35

40

45

50

55

replicas to be saved may differ (e.g., N-replica vs. 2-rep-
lica vs. single-replica policies may be supported) (b) stor-
age location/device types to be used may differ (e.g.,
rotating magnetic disk vs. SSD vs. RAM vs. a database
service or a multi-tenant storage service) and/or (c) the
policies may differ in the expected extent of resilience to
large-scale failures (e.g., multi-data-center vs. single-da-
ta-center policies may be supported). A request may be
received indicating a client’s selection of a particular per-
sistence policy for a specified stream (element 2404). In
some embodiments, the persistence policy selected by
a client may result in the use of different storage location
types or device types for respective partitions of a given
stream. In one embodiment, the SMS rather than the
client may select the storage location type or device
types, either at the stream level or at the partition level.
Clients may indicate data durability goals and/or perform-
ance goals (such as desired read or write throughput or
latency) in some embodiments when selecting the per-
sistence policy in some embodiments, and these goals
may be used by the SMS to select the appropriate storage
devices types or locations. For example, if low latencies
are desired, SSDs may be used instead of rotating mag-
netic disks to store the data records of one or more par-
titions or streams.
[0110] A set of ingestion nodes may be determined or
configured to receive the data records of the selected
stream from data producers, and a set of storage nodes
may be configured to implement the selected persistence
policy (element 2407). When a data record is received
at an ingestion node (element 2410), one or more copies
of the data record may be stored, based on the selected
persistence policy, at selected storage devices by the
storage nodes responsible for the partition to which the
data record belongs (element 2413). In at least some
implementations, billing amounts may optionally (and/or
asynchronously) be determined based on the specific
persistence policies selected by the client (element
2416).

Decentralized workload management for stream
processing

[0111] In some embodiments, a substantial portion or
all of the control-plane functionality of an SPS may be
implemented in a decentralized manner, e.g., by the
worker nodes within a given SPS stage coordinating var-
ious control operations (such as partition assignment to
the worker nodes, responses to dynamic repartitioning,
health monitoring and/or load balancing) via a shared
data structure such as a database table. A given worker
node W1 may inspect entries within the shared data
structure to determine, for example, which partitions of
the stage’s input streams (if any) are currently not being
processed. If such a partition P1 is found, W1 may update
an entry in the shared data structure to indicate that W1
will perform the stage’s processing operations on P1’s
records. Other worker nodes may learn that W1 is as-

signed to process P1 records, and may therefore assign
different partitions to themselves. Worker nodes may pe-
riodically or occasionally submit queries to the SMS con-
trol plane to determine the current partition maps in effect
for the input stream, and update the shared data structure
to indicate map changes (e.g., as a result of repartition-
ing) as necessary. Load balancing and other operations
may also be coordinated via the shared data structure in
various embodiments, as described below. In some such
decentralized implementations, dedicated control nodes
may not be required for the SPS, thereby reducing the
overhead required to implement SPS workflows. Such
decentralized SPS control plane implementations may
be especially popular with budget-conscious customers
that utilize SPS client libraries to implement various as-
pects of stream processing, e.g., at compute instances
within the provider network that are assigned to the cus-
tomers, or at locations outside the provider network. De-
centralized SPS control-plane techniques may also be
used in embodiments in which client libraries are not
used, e.g., when all the resources used for the SMS and
SPS are configured within a provider network. An SPS
at which the worker nodes implement some or all of the
SPS control plane functions for at least some processing
stages may be referred to herein as a "decentralized-
control SPS".
[0112] FIG. 25 illustrates an example of a stream
processing system in which worker nodes of a processing
stage coordinate their workloads using a database table,
according to at least some embodiments. Within a de-
centralized-control SPS 2590, two stages 215A and
215B are defined, each with a respective set of worker
nodes. Stage 215A comprises worker nodes 2540A and
2540B, while stage 415B comprises worker nodes 2540K
and 2540L. For each stage 215A and 215B, a corre-
sponding partition assignment (PA) table 2550 is created
at a database service 2520, such as PA table 2550A for
stage 215A and PA table 2550B for stage 215B. The PA
table 2550 for a given stage may be created during stage
initialization in some embodiments, e.g., in response to
an invocation of a client library component or function.
Each PA table 2550 may be populated with an initial set
of entries or rows representing unassigned partitions of
the input streams of the stage (i.e., partitions to which no
worker node is currently assigned). Example columns or
attributes of the PA table entries are shown in FIG. 26
and described below. The worker nodes 2540 (e.g., proc-
esses or threads launched at compute instances or other
servers) that are launched for the stage may be granted
read/write access to the stage’s PA table. Reads and
writes directed to the PA tables from the worker nodes
are represented in FIG. 25 by arrows 2564A, 2564B,
2564K and 2564L for worker nodes 2540A, 2540B,
2540K and 2540L respectively.
[0113] A given worker node 2540 may be configured
to select, by examining the entries in the PA table, a par-
ticular partition on which to perform the processing op-
erations of the stage. In one implementation, the worker

59 60

EP 3 069 274 B1

32

5

10

15

20

25

30

35

40

45

50

55

node 2540A may scan the entries in the PA table 2550A
until it finds an entry of an unassigned partition Pk, and
may attempt to assign the partition Pk to itself by updating
the entry, e.g., by inserting the worker node’s identifier
into one of the columns of the entry. Such an insertion
may be considered analogous to locking the partition by
the worker node. Depending on the type of database
service being used, different approaches to managing
potentially concurrent writes to PA table entries (e.g., by
two or more worker nodes that happen to identify an un-
assigned partition at close to the same time) may be
used.
[0114] In one embodiment, a non-relational multi-ten-
ant database service of a provider network may be used,
which supports strong consistency and conditional write
operations without necessarily supporting relational da-
tabase transaction semantics. A conditional write oper-
ation may be used in such a case for the updates by the
worker nodes. Consider an example in which a column
"worker-node-ID" is used to indicate the identifier of the
particular worker node assigned to a partition in the PA
table, and that the column’s value is set to "null" if no
worker node is assigned to the partition. In such a sce-
nario, a worker node with identifier WID1 may request
the logical equivalent of the following: "if, in the entry for
partition Pk, worker-node-ID is null, then set worker-
node-ID for that entry to WID1". If such a conditional write
request succeeds, the worker node with identifier WID1
may assume that partition Pk is assigned to it. The worker
node may then start retrieving data records of partition
Pk, e.g., using record retrieval interfaces of SMS retrieval
subsystem 206, as indicated by arrows 2554 (e.g., ar-
rows 2554A, 2554B, 2554K and 2554L for worker nodes
2540A, 2540B, 2540K and 2540L respectively), and per-
forming the processing operations on the retrieved
records. If the conditional write fails, the worker node may
resume a search for a different unassigned partition. In
other embodiments, database services (such as relation-
al databases) that support transactions may be used,
and the transaction functionality may be used to imple-
ment the equivalent of the conditional write operations -
e.g., to ensure that only one of a plurality of concurrent
(or near-concurrent) attempts to assign a partition to a
worker node succeeds, and that the worker nodes in-
volved in such concurrent attempts are reliably informed
of their success or failure. Synchronization techniques
that rely neither on conditional writes nor on transaction
support may be used in some embodiments. In some
implementations a database service may not be used;
instead, a locking service may be used by the worker
nodes to acquire exclusive access for updates to the en-
tries in persistent data structures analogous to the PA
tables.
[0115] Other worker nodes 2540 may examine the en-
tries in the PA table, determine which partitions are un-
assigned, and may eventually succeed in assigning one
or more partitions to themselves. In this way, the process-
ing workload for the partitions of the stage’s input stream

or streams may eventually be distributed among them-
selves by the stage’s worker nodes.
[0116] The initial partition mapping of any given stream
may change over time, e.g., as a result of the dynamic
repartitioning operations described earlier. Accordingly,
in the embodiment depicted in FIG. 25, one or more of
the worker nodes 2540 may occasionally (or in response
to triggering conditions as described below) submit re-
quests to the SMS control subsystem 210 of their stage’s
input stream(s) to obtain the current partition metadata.
In some implementations, such requests may comprise
invocations of SMS control plane APIs, such as the in-
vocations of a getStreamInfo API indicated by arrows
2544A, 2544B, 2544K, and 2544L. The SMS control sub-
system may, for example, respond with an up-to-date list
of partitions of the stream, and/or other details such as
the validity time periods of the partitions. If the partition
information provided by the SMS control subsystem 210
does not match the entries in the PA table, the PA table
may be modified by the worker node, e.g., by inserting
or deleting entries for one or more partitions. Such re-
quests 2554 to the SMS control subsystem may typically
be much less frequent than the record retrieval requests
2554 (and/or the database read or write operations 2564)
in at least some embodiments, as indicated by the label
"infrequent" of arrow 2554A. For example, once it is as-
signed a partition, a worker node may typically keep re-
trieving and processing that partition’s data records until
the partition data is fully consumed (e.g. if the owner of
the stream closes the stream, or if the partition is closed
as a result of dynamic repartitioning), or until some other
low-probability circumstance is encountered (e.g., if a dif-
ferent worker node requests a transfer of the partition
due to detected load imbalance, as discussed below).
Thus, the overhead associated with invoking the get-
Streamlnfo or similar APIs may typically be quite small
in various embodiments, even if a substantial amount of
information is provided in response to any given invoca-
tion (as might be the case if hundreds or thousands of
partitions are defined for a stage’s input stream).
[0117] Some of the key workload-management oper-
ations of a decentralized-control SPS environment may
thus be summarized as follows in the embodiment de-
picted in FIG. 25: (a) selecting, based at least in part on
accessing a database table by a first worker node of a
stream processing stage, a particular partition of an input
data stream of the stream processing stage on which to
implement a set of processing operations defined for that
stage; (b) writing, into a particular entry stored in the table,
an indicator of an assignment of the particular partition
to the first worker node; (c) retrieving, by the first worker
node, records of the particular partition using program-
matic record retrieval interfaces implemented at a multi-
tenant stream management service; (d) implementing,
by the first worker node, the set of processing operations
on the records of the particular partition; (e) determining,
by a second worker node, based at least in part on the
particular entry in the particular database table, that the

61 62

EP 3 069 274 B1

33

5

10

15

20

25

30

35

40

45

50

55

first worker node is assigned to perform the set of
processing operations on the particular partition; and (f)
selecting, by the second worker node a different partition
on which to perform the set of processing operations. If
and when a worker node determines that no more records
remain in a partition assigned to it, the worker node may
request metadata on the input stream from the SMS con-
trol subsystem, and may update the PA table if the meta-
data indicates a discrepancy.
[0118] FIG. 26 illustrates example entries that may be
stored in a partition assignment table 2550 used for work-
load coordination, according to at least some embodi-
ments. As shown, table 2550 may comprise four col-
umns: partition identifier column 2614, assigned worker
node identifier column 2618, a worker node health indi-
cator column 2620, and a workload level indicator column
2622. Other column sets may be implemented in other
implementations - for example, a column that indicates
a partition creation time or a partitioning function output
value range may be used in some embodiments, or the
workload level indicator column may not be used.
[0119] It is noted that the partition list 2650 maintained
by the SMS control subsystem (e.g., as part of the par-
tition entry tree, graph or other combined data structure
described earlier) may, at least at some points in time,
include more partitions than are included in the PA table
2550 in some embodiments. In the depicted example,
the partition list 2650 includes partitions P1, P2, P3, P4
and P5, of which P1 and P4 are shown in a closed state
as a result of repartitioning, while P2, P3 and P5 are
shown as active (i.e., partitions whose data records are
currently being retrieved and processed). The PA table
2650 includes entries for the active partitions in the de-
picted embodiment, and does not include entries for the
closed partitions (which may have been deleted by work-
er nodes when they obtained responses to getStreamInfo
invocations after the repartitioning took place, for exam-
ple). At least in some implementations, not all the cur-
rently open partitions of the stream may necessarily have
respective entries in the PA table at a given point in time;
instead, for example, only a subset of those partitions
that are currently assigned or being processed may be
represented.
[0120] In the example scenario illustrated in FIG. 26,
partitions P1 and P2 are assigned to worker nodes with
identifiers W7 and W3 respectively, while P5 is currently
unassigned. The health indicator column 2620 may store
different types of values in different implementations. In
some implementations, the worker nodes may be re-
sponsible for periodically (e.g., once every N seconds,
or according to a schedule based on some set of heuris-
tics) updating the contents of the health indicator columns
in the PA entries of their assigned partitions to indicate
that the worker nodes are active and able to continue
their retrieval and processing operations. In FIG. 26, an
indication of the most recent time that the worker node
for that entry updated the health indicator column ("last-
modified-time") may be stored - e.g., worker W7 is shown

as having modified the entry at 02:24:54 and 53 seconds
on December 1 2013. Other worker nodes may use the
last-modified time value to determine whether the as-
signed worker node is healthy or not in some embodi-
ments - e.g., if X seconds or minutes have elapsed, as
defined in a failover policy for the stage, the assigned
worker node may be assumed to be unhealthy or inac-
cessible and the partition may be reassigned. In other
implementations, a counter may be used as a health in-
dicator (e.g., if the counter value has not changed in Y
seconds, the assigned worker node may be deemed a
candidate for failover), or a "last-read-time" value indi-
cating when the assigned worker node last read the entry
may be used.
[0121] In at least some embodiments, a workload level
indicator value 2622 may be stored in the entry, e.g., by
the assigned worker node, such as the number of records
processed during some recent time interval (e.g., in the
five minutes prior to the last-modified-time), recent per-
formance-related metrics of the worker node such as
CPU utilization, memory utilization, storage utilization
and the like. Such workload level indicator values may
be used in some embodiments by the worker nodes to
determine whether load imbalances exist, as described
below with respect to FIG. 29, and to take actions in re-
sponse to detected imbalances. For example, a worker
node Wk may determine that its workload level is above
the average workload level, and may un-assign one of
its partitions, or may request a dynamic repartitioning;
alternatively, the worker node Wk may determine that its
workload is too low relative to that of other worker nodes
or partitions, and may assign additional partitions to itself.
Thus, using the columns of the PA table indicated in FIG.
26, worker nodes may perform some of the same types
of control-plane functions in the depicted embodiment
that may typically be performed by dedicated SPS control
nodes in centralized-control SPS implementations
[0122] FIG. 27 illustrates aspects of operations that
may be performed by worker nodes of a stream process-
ing stage to select partitions on which to perform process-
ing operations, according to at least some embodiments.
As shown in element 2701, a PA table PAT1 may be
initialized at a database service for a decentralized-con-
trol SPS processing stage SP1. The table may be creat-
ed, for example, when an SPS client library component
is invoked, e.g., from a host at a client facility or from a
compute instance at a provider network data center. The
client library may be used for various purposes: for ex-
ample, to provide an executable component such as a
JAR (Java™ archive) file for the particular processing
operations to be implemented at the SPS stage, to indi-
cate a label (such as a program name, a process name
or a compute instance name) that can be used to identify
the worker nodes, to indicate the stream to be used as
the input for the stage, to indicate the output destinations
(if any) of the stage, and so on. PAT1 may initially be
populated in some embodiments with entries or rows for
at least a subset of the partitions {P1, P2, ...} defined for

63 64

EP 3 069 274 B1

34

5

10

15

20

25

30

35

40

45

50

55

the input stream(s) of the stage. In some implementa-
tions, the table may be left empty initially, and one or
more of the worker nodes may populate the table with
rows for unassigned partitions, e.g., as a result of obtain-
ing partition metadata from an SMS control subsystem.
A initial set of worker nodes {W1, W2, ...} may be started
up, e.g., at various compute instances within a provider
network or at client-owned computing devices (element
2704). The worker nodes may be granted read and write
access to PAT1 in the depicted embodiment.
[0123] As the worker nodes come online, they may
each access PAT1 to try to find partitions that are unas-
signed. For example, worker node W1 may examine
PAT1 and find that partition P1 is unassigned (element
2707). W1 may then update P1’s entry in PAT1, e.g.,
using a conditional write request or a transactional up-
date request depending on the type of database service
being used, to indicate that P1 is assigned to W1 (element
2710). Having updated the table, W1 may initiate retrieval
of data records of P1 using SMS retrieval subsystem in-
terfaces (element 2713), and may perform the process-
ing operations of the stage PS1 on the retrieved records.
[0124] Meanwhile, at some point in time, a different
worker node W2 may access PAT1 in its own attempt to
find unassigned partitions (element 2716). W2 may de-
termine, based on W1’s earlier update, that P1 is already
assigned, but that a different partition P2 is not assigned.
In some embodiments, a determination by W2 that the
current assignee worker node of P2 is unhealthy or in-
active (e.g., based on the health indicator column in P2’s
entry) may also lead W2 to select P2. Thus, in at least
some embodiments, either an unassigned state, or a de-
termination of an unhealthy state of a current worker node
may be used to select a given partition for reassignment
(or initial assignment). W2 may then attempt to update
PAT1 to assign P2 to itself (element 2719). If the update
succeeds, W2 may start retrieving P2 records using SMS
retrieval interfaces (element 2722) and performing the
appropriate processing operations defined for the stage.
[0125] As mentioned earlier, the worker nodes in a de-
centralized-control SPS may (typically infrequently) ob-
tain partition mapping information from the SMS, and use
such information to update the PA table if necessary.
FIG. 28 illustrates aspects of operations that may be per-
formed by worker nodes of a stream processing stage to
update a partition assignment table based on information
obtained from a stream management service control sub-
system, according to at least some embodiments. As
shown in element 2801, during worker node initialization
or in response to various triggering conditions such as
the closing of one of the partitions assigned to it, a worker
node W1 may submit a request to the SMS control sub-
system to obtain the latest or current partition list, or the
active partition list. In some implementations, a get-
StreamInfo or similar API may be invoked for this pur-
pose. Other triggering conditions may be used in some
embodiments: e.g., the worker nodes may each be con-
figured to obtain fresh partition lists after random

amounts of time, or in response to unexpected drops or
increases in workload levels. The partition list returned
by the SMS may be compared with the entries in the PA
table for the partition (element 2807). If a discrepancy is
found (e.g., if there is some partition in the freshly-ob-
tained partition list that is not in the PA table, or if there
is an entry in the PA table that is not in the SMS’s list),
the worker node may insert or delete entries in the PA
table to resolve the discrepancy in the depicted embod-
iment (element 2810). (Additional coordination may be
required if an entry that is targeted for deletion currently
has an assigned worker node in some implementations
- e.g., the assigned worker node may be notified, either
directly or via the PA table itself.)
[0126] After the discrepancy is rectified, or if no dis-
crepancy was detected, the worker node W1 may select
a set of partitions on which it should perform the stage’s
processing operations (element 2813), and may update
the PA table accordingly. In some cases, depending on
the triggering condition that led to the partition list being
retrieved, W1 may already have one or more partitions
assigned to it, and may not need to make changes to its
assignments or update the PA table. W1 may then pro-
ceed to retrieve the data records of its assigned partition
or partitions, and process the records, without having to
interact with the SMS control subsystem or changing the
number of entries in the PA table (element 2816). Even-
tually, when a triggering condition is detected (e.g., when
the equivalent of an "end of partition reached" response
is received to a retrieval request, indicating that the a
partition is closed), W1 may again send a request to the
SMS control subsystem for fresh partition information,
and the operations of elements 2801 onwards may be
repeated.
[0127] FIG. 29 illustrates aspects of load balancing op-
erations that may be performed by worker nodes of a
stream processing stage, according to at least some em-
bodiments. As shown in element 2901, a worker node
W1 may determine that a load balancing analysis is to
be performed on its stage upon a detection of any of a
variety of triggering conditions, such as a detection of a
high resource utilization level, or based on a configurable
schedule. W1 may examine the entries in the PA table
(element 2904) to determine various workload metrics
for the stage. Such metrics may include the average
number of partitions assigned to worker nodes, the av-
erage workload level of the worker nodes or of different
partitions (in embodiments in which workload level indi-
cators are saved in the table), a range or distribution of
the per-worker-node workload, and so on.
[0128] W1 may then compare its own workload (based
for example on the number of partitions assigned to W1,
and/or the per-partition workload level indicators) to
some or all of the metrics. In general, any of three types
of conclusions may be drawn: that W1 is overloaded, that
W1 is under-loaded, or that W1’s workload is neither too
high nor too low. Workload levels that are "too high" or
"too low" may be defined by policies selected by the cli-

65 66

EP 3 069 274 B1

35

5

10

15

20

25

30

35

40

45

50

55

ents on whose behalf the stage is configured in some
embodiments, or using some default set of heuristics in
other embodiments. If W1 determines that its workload
is too low (element 2907), e.g., below some minimum-
load threshold T1, a busier or more highly-loaded worker
node Wk may be identified (element 2910). W1 may then
initiate a process of transferring one or more partitions
Pm from Wk to itself (element 2913), e.g., by attempting
to modify the Pm entry in the PA table, requesting such
a modification (which may result in a notification being
generated for Wk), or by requesting Wk directly.
[0129] If W1 determines that its workload is too high
(element 2916), e.g., above a maximum-threshold T2, it
may identify one or more of its assigned partitions Pn to
relinquish (i.e., to release for assignment by other worker
nodes) (element 2919). W1 may then modify the appro-
priate entries in the PA table, e.g., by removing its iden-
tifier from the assignee column of the entry for Pn (ele-
ment 2922). If W1’s workload was neither too high nor
too low, or after W1 has taken the kinds of actions de-
scribed above to increase or decrease its workload, W1
may resume processing records of the partitions to which
it is assigned (element 2925). Operations corresponding
to elements 2901 onwards may be repeated when and
if conditions triggering another load balancing analysis
are met. It is noted that in the operations illustrated in
FIG. 29, W1 is shown as initiating workload changes only
when it detects an imbalance with respect to its own work-
load. In other embodiments, W1 may initiate rebalancing
actions if it detects imbalances among other worker
nodes than itself - e.g., if it determines that W2 has a
much lower workload level than W3. In some implemen-
tations, W1 may request or initiate dynamic repartitioning
(e.g., by invoking a repartitionStream SMS API such as
that shown in FIG. 3, or its equivalent) if and when it
detects workload imbalances. In some embodiments, the
kinds of operations illustrated in FIG. 29 may be per-
formed by a newly-configured worker node - e.g., when
new nodes are added to a stage after the stage has al-
ready been in operation for some time, the new nodes
may indirectly notify the existing nodes of their presence
by requesting reassignment of partitions from heavily
loaded existing nodes. In some embodiments, decentral-
ized control techniques similar to those described above
for SPS worker nodes may also or instead be used at
one or more SMS subsystems, e.g., the nodes of the
ingestion, storage or retrieval subsystems may coordi-
nate their workloads using shared data structures similar
to the PA tables.
[0130] It is noted that in various embodiments, opera-
tions other than those illustrated in the flow diagrams of
FIG. 17 - FIG. 24 and FIG. 27 - 29 may be used to im-
plement the stream management service and/or the
stream processing functionality described above. Some
of the operations shown may not be implemented in some
embodiments or may be implemented in a different order,
or in parallel rather than sequentially. It is also noted that,
with respect to each of the SMS and SPS functions for

which programmatic interfaces are supported in various
embodiments, any combination of one or more tech-
niques may be used for implementing the interfaces, in-
cluding the use of web pages, web sites, web-services
APIs, other APIs, command-line tools, graphical user in-
terfaces, mobile applications (apps), tablet apps, and the
like.

Use cases

[0131] The techniques described above, of establish-
ing scalable partitioning-based, dynamically configura-
ble managed multi-tenant services for collection, stor-
age, retrieval and staged processing of stream data
records may be useful in a number of scenarios. For ex-
ample, large provider networks may comprise thousands
of instance hosts implementing service instances of a
number of different multi-tenant or single-tenant services
for tens of thousands of clients simultaneously. Monitor-
ing and/or billing agents installed on the various instanc-
es and hosts may rapidly generate thousands of metric
records, which may need to be stored and analyzed to
produce accurate billing records, to determine effective
provisioning plans for the data centers of the provider
network, to detect network attacks, and the like. The mon-
itoring records may form an input stream to an SMS for
scalable ingestion and storage, and SPS techniques de-
scribed may be implemented for the analysis of the col-
lected metrics. Similarly, applications to collect and an-
alyze large numbers of log records from numerous log
sources (e.g., application logs from the nodes of a dis-
tributed application, or system logs from the hosts or com-
pute instances at a data center) may also be able to utilize
SMS and SPS functionality. In at least some environ-
ments, the SPS processing operations may comprise a
real-time ETL (Extract-Transform-Load) processing op-
eration (i.e., an operation that transforms received data
records in real time for loading into a destination, instead
of doing the transformation offline), or a transformation
of data records for insertion into a data warehouse. Using
an SMS/SPS combination for loading data into a data
warehouse in real time may avoid the delays that are
typically required to clean and curate data from one or
more data sources, before the data can be inserted into
a warehouse for analysis.
[0132] A number of different "big data" applications
may also be built using the SMS and SPS techniques.
For example, the analysis of trends in various forms of
social media interactions may be performed efficiently
using streams. Data collected from mobile phones or tab-
let computers, such as location information of the users,
may be managed as stream records. Audio or video in-
formation, collected for example from a fleet of monitoring
cameras may represent another category of streaming
data set that could be collected and processed in a scal-
able manner, potentially helping prevent attacks of vari-
ous kinds. Scientific applications that require analysis of
ever-growing data sets, collected for example from

67 68

EP 3 069 274 B1

36

5

10

15

20

25

30

35

40

45

50

55

weather satellites, ocean-based sensors, forest-based
sensors, astronomical telescopes, may also benefit from
the stream management and processing capabilities de-
scribed herein. The flexible policy-based configuration
options and pricing options may help different types of
users customize the streaming functionality to suit their
specific budgets and data durability/availability require-
ments.

Illustrative computer system

[0133] In at least some embodiments, a server that im-
plements a portion or all of one or more of the technolo-
gies described herein, including the techniques to imple-
ment the components of the SMS subsystems (e.g., the
ingestion, storage, retrieval and control subsystems), as
well as the SPS worker and control nodes, may include
a general-purpose computer system that includes or is
configured to access one or more computer-accessible
media. FIG. 30 illustrates such a general-purpose com-
puting device 9000. In the illustrated embodiment, com-
puting device 9000 includes one or more processors
9010 coupled to a system memory 9020 via an input/out-
put (I/O) interface 9030. Computing device 9000 further
includes a network interface 9040 coupled to I/O interface
9030.
[0134] In various embodiments, computing device
9000 may be a uniprocessor system including one proc-
essor 9010, or a multiprocessor system including several
processors 9010 (e.g., two, four, eight, or another suita-
ble number). Processors 9010 may be any suitable proc-
essors capable of executing instructions. For example,
in various embodiments, processors 9010 may be gen-
eral-purpose or embedded processors implementing any
of a variety of instruction set architectures (ISAs), such
as the x86, PowerPC, SPARC, or MIPS ISAs, or any
other suitable ISA. In multiprocessor systems, each of
processors 9010 may commonly, but not necessarily, im-
plement the same ISA. In some implementations, graph-
ics processing units (GPUs) may be used instead of, or
in addition to, conventional processors.
[0135] System memory 9020 may be configured to
store instructions and data accessible by processor(s)
9010. In various embodiments, system memory 9020
may be implemented using any suitable memory tech-
nology, such as static random access memory (SRAM),
synchronous dynamic RAM (SDRAM), nonvola-
tile/Flash-type memory, or any other type of memory. In
the illustrated embodiment, program instructions and da-
ta implementing one or more desired functions, such as
those methods, techniques, and data described above,
are shown stored within system memory 9020 as code
9025 and data 9026.
[0136] In one embodiment, I/O interface 9030 may be
configured to coordinate I/O traffic between processor
9010, system memory 9020, and any peripheral devices
in the device, including network interface 9040 or other
peripheral interfaces such as various types of persistent

and/or volatile storage devices used to store physical rep-
licas of data object partitions. In some embodiments, I/O
interface 9030 may perform any necessary protocol, tim-
ing or other data transformations to convert data signals
from one component (e.g., system memory 9020) into a
format suitable for use by another component (e.g., proc-
essor 9010). In some embodiments, I/O interface 9030
may include support for devices attached through various
types of peripheral buses, such as a variant of the Pe-
ripheral Component Interconnect (PCI) bus standard or
the Universal Serial Bus (USB) standard, for example.
In some embodiments, the function of I/O interface 9030
may be split into two or more separate components, such
as a north bridge and a south bridge, for example. Also,
in some embodiments some or all of the functionality of
I/O interface 9030, such as an interface to system mem-
ory 9020, may be incorporated directly into processor
9010.
[0137] Network interface 9040 may be configured to
allow data to be exchanged between computing device
9000 and other devices 9060 attached to a network or
networks 9050, such as other computer systems or de-
vices as illustrated in FIG. 1 through FIG. 29, for example.
In various embodiments, network interface 9040 may
support communication via any suitable wired or wireless
general data networks, such as types of Ethernet net-
work, for example. Additionally, network interface 9040
may support communication via telecommunications/te-
lephony networks such as analog voice networks or dig-
ital fiber communications networks, via storage area net-
works such as Fibre Channel SANs, or via any other suit-
able type of network and/or protocol.
[0138] In some embodiments, system memory 9020
may be one embodiment of a computer-accessible me-
dium configured to store program instructions and data
as described above for FIG. 1 through FIG. 29 for imple-
menting embodiments of the corresponding methods
and apparatus. However, in other embodiments, pro-
gram instructions and/or data may be received, sent or
stored upon different types of computer-accessible me-
dia. Generally speaking, a computer-accessible medium
may include non-transitory storage media or memory me-
dia such as magnetic or optical media, e.g., disk or
DVD/CD coupled to computing device 9000 via I/O inter-
face 9030. A non-transitory computer-accessible storage
medium may also include any volatile or non-volatile me-
dia such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM,
SRAM, etc.), ROM, etc., that may be included in some
embodiments of computing device 9000 as system mem-
ory 9020 or another type of memory. Further, a computer-
accessible medium may include transmission media or
signals such as electrical, electromagnetic, or digital sig-
nals, conveyed via a communication medium such as a
network and/or a wireless link, such as may be imple-
mented via network interface 9040. Portions or all of mul-
tiple computing devices such as that illustrated in FIG.
30 may be used to implement the described functionality
in various embodiments; for example, software compo-

69 70

EP 3 069 274 B1

37

5

10

15

20

25

30

35

40

45

50

55

nents running on a variety of different devices and servers
may collaborate to provide the functionality. In some em-
bodiments, portions of the described functionality may
be implemented using storage devices, network devices,
or special-purpose computer systems, in addition to or
instead of being implemented using general-purpose
computer systems. The term "computing device", as
used herein, refers to at least all these types of devices,
and is not limited to these types of devices.

Conclusion

[0139] Various embodiments may further include re-
ceiving, sending or storing instructions and/or data im-
plemented in accordance with the foregoing description
upon a computer-accessible medium. Generally speak-
ing, a computer-accessible medium may include storage
media or memory media such as magnetic or optical me-
dia, e.g., disk or DVD/CD-ROM, volatile or non-volatile
media such as RAM (e.g. SDRAM, DDR, RDRAM,
SRAM, etc.), ROM, etc., as well as transmission media
or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as
network and/or a wireless link.
[0140] The various methods as illustrated in the Fig-
ures and described herein represent exemplary embod-
iments of methods. The methods may be implemented
in software, hardware, or a combination thereof. The or-
der of method may be changed, and various elements
may be added, reordered, combined, omitted, modified,
etc.
[0141] Various modifications and changes may be
made as would be obvious to a person skilled in the art
having the benefit of this disclosure. It is intended to em-
brace all such modifications and changes and, accord-
ingly, the above description to be regarded in an illustra-
tive rather than a restrictive sense.

Claims

1. A method, comprising:
performing, by one or more computing devices:

determining, for a particular data stream com-
prising a plurality of data records generated by
one or more data producers, a set of nodes to
be used to instantiate one or more subsystems
for the particular data stream, including a record
retrieval subsystem, wherein each of the sub-
systems comprises one or more nodes dynam-
ically configurable by one or more control com-
ponents to perform stream management oper-
ations based on one or more policies including
a stream partitioning policy used for partitioning
the particular data stream that comprises the se-
quence of the plurality of data records into a plu-
rality of partitions;

providing data records in response to record re-
trieval requests received via one or more pro-
grammatic record retrieval interfaces, wherein
the one or more programmatic record retrieval
interfaces include a first retrieval interface ena-
bling a non-sequential access pattern and a sec-
ond retrieval interface enabling a sequential ac-
cess pattern, and wherein a billing rate associ-
ated with a use of the first retrieval interface dif-
fers from a billing rate associated with a use of
the second retrieval interface; and
generating a client billing amount associated
with the particular data stream based on respec-
tive usage count metrics of the plurality of record
retrieval interfaces.

2. The method as recited in claim 1, further comprising
performing, by the one or more computing devices:
assigning, in accordance with the partitioning policy,
a particular data record of the particular data stream
to a first partition of the particular data stream, based
on a key associated with the particular data record,
wherein the key is indicated by a write request cor-
responding to the particular data record.

3. The method as recited in claim 1, further comprising
performing, by the one or more computing devices:
selecting, based on a partition to which a particular
data record is assigned, one or more of (a) a partic-
ular node of a record ingestion subsystem respon-
sible for accepting the particular data record, (b) a
particular node of a record storage subsystem re-
sponsible for storing at least one copy of the partic-
ular data record, and (c) a particular node of a re-
trieval subsystem responsible for obtaining the par-
ticular data record from the record storage subsys-
tem in response to a read request.

4. The method as recited in claim 1, further comprising
performing, by the one or more computing devices:
receiving data records submitted via one or more
programmatic record submission interfaces, where-
in the one or more programmatic record submission
interfaces include a first submission interface sup-
porting in-line submission of data records and a sec-
ond submission interface enabling submission of da-
ta records by reference to one of: (a) an object ad-
dress at a storage service implemented by a provider
network (b) a universal record locator (c) a database
record.

5. The method as recited in claim 1, further comprising
performing, by the one or more computing devices:
removing, from a particular node of a data storage
subsystem, a particular data record based on one
of: (a) a data de-duplication window configured for
the particular data stream, (b) a data archival policy
associated with the particular data stream, (c) a data

71 72

EP 3 069 274 B1

38

5

10

15

20

25

30

35

40

45

50

55

retention policy indicated by a client, (d) a client re-
quest to remove the particular data record, or (e) an
indication that the particular data record has been
processed by one or more data consumers.

6. The method as recited in claim 1, wherein at least
one subsystem of: (a) a record ingestion subsystem,
(b)a record storage subsystem, or (c) a record re-
trieval subsystem configured for the particular data
stream comprises a plurality of nodes configured by
the one or more control components as members of
a redundancy group, wherein the redundancy group
comprises: (a) one or more primary nodes assigned
to perform operations on a set of data records of the
stream and (b) one or more non-primary nodes con-
figured to assume a primary role in response to one
or more triggering events.

7. The method as recited in claim 6, wherein a particular
primary node of the one or more primary nodes is
instantiated at a particular data center, and wherein
a particular non-primary node of the one or more
non-primary nodes is instantiated at a different data
center.

8. The method as recited in claim 6, further comprising
performing, by the one or more computing devices:

detecting a triggering event of the one or more
triggering events; and
notifying a particular non-primary node of the
one or more non-primary nodes to assume the
primary role.

9. The method as recited in claim 1, wherein the one
or more control components comprise a plurality of
control nodes configured as a redundancy group,
comprising a primary control node configured to re-
spond to requests for control-plane operations on
one or more data streams including the particular
data stream, and at least one non-primary control
node configured to assume a primary role in re-
sponse to one or more triggering events.

10. The method as recited in claim 1, further comprising
performing, by the one or more computing devices:

storing, at a network-accessible database of a
provider network, metadata of the particular da-
ta stream including a partition map generated in
accordance with the stream partitioning policy;
and
accessing, from a record retrieval subsystem,
the metadata to respond to a particular record
retrieval request.

11. The method as recited in claim 1, further comprising
performing, by the one or more computing devices:

generating, corresponding to a particular data
record of the data stream, a particular sequence
number indicative of an order in which the par-
ticular data record was received at a record in-
gestion subsystem relative to other data records
of the partition to which the particular data record
belongs;
storing, by a record storage subsystem, a plu-
rality of data records including the particular data
record in an order based on respective times-
tamps generated for the data records; and
in response to receiving a read request invoking
the first retrieval interface with the particular se-
quence number as a parameter, retrieving the
particular data record from the record storage
subsystem.

12. A system including one or more processors and one
or more memories, the one or more memories in-
cluding program instructions that when executed on
one or more processors implement a control node
of a multi-tenant stream management service,
wherein the control node is configured to:

receive a request to initialize a particular data
stream to be comprised of a plurality of data
records generated by one or more data produc-
ers;
determine, based on a partitioning policy asso-
ciated with the particular data stream, one or
more parameters to be used to configure one or
more subsystems for the particular data stream,
including a record retrieval subsystem, wherein
the one or more parameters comprise an initial
number of nodes to be instantiated in the record
retrieval subsystem;
identify one or more resources to be used for a
particular node of the record retrieval subsys-
tem, wherein the particular node is to be config-
ured to implement a plurality of programmatic
record retrieval interfaces, including a first re-
trieval interface enabling a non-sequential ac-
cess pattern and a second retrieval interface en-
abling a sequential access pattern; wherein a
billing rate associated with use of the first re-
trieval interface is different from a billing rate as-
sociated with use of the second retrieval inter-
face;
configure the particular node of the record re-
trieval subsystem using the one or more re-
sources; and
generate a client billing amount associated with
the particular data stream based upon respec-
tive usage count metrics of the plurality of record
retrieval interfaces.

13. The system as recited in claim 12, wherein the one
or more subsystems include a record ingestion sub-

73 74

EP 3 069 274 B1

39

5

10

15

20

25

30

35

40

45

50

55

system comprising one or more nodes configurable
to receive data records of the particular data stream,
and a record storage subsystem configurable to
store data records of the stream at a selected set of
storage locations.

14. The system as recited in claim 13, wherein at least
one subsystem of the record ingestion subsystem,
the record storage subsystem, and the record re-
trieval subsystem comprises a plurality of nodes con-
figured as members of a redundancy group, wherein
the redundancy group comprises: (a) one or more
primary nodes assigned to perform operations on a
set of data records of the stream and (b) one or more
non-primary nodes configured to assume a primary
role in response to one or more triggering events.

15. The system as recited in claim 13, at least one node
of one of: the record ingestion subsystem, the record
storage subsystem or the record retrieval subsystem
comprises a component of a compute instance of a
virtualized computing service implemented at a pro-
vider network.

Patentansprüche

1. Verfahren, umfassend:
Durchführen von Folgendem durch eine oder meh-
rere Datenverarbeitungsvorrichtungen:

für einen bestimmten Datenstrom, der eine Viel-
zahl von durch einen oder mehrere Datenpro-
duzenten erzeugten Datensätzen umfasst, Be-
stimmen einer Menge von Knoten zur Verwen-
dung zum Instanziieren eines oder mehrerer
Subsysteme für den bestimmten Datenstrom,
einschließlich eines Datensatz-Abrufsubsys-
tems, wobei jedes der Subsysteme einen oder
mehrere Knoten umfasst, die dynamisch durch
eine oder mehrere Steuerkomponenten konfi-
gurierbar sind, um Stromverwaltungsoperatio-
nen auf der Basis einer oder mehrerer Richtlini-
en auszuführen, die eine Strompartitionierungs-
richtlinie umfassen, die zum Partitionieren des
bestimmten Datenstroms, der die Sequenz der
Vielzahl von Datensätzen umfasst, in eine Viel-
zahl von Partitionen verwendet wird;
Bereitstellen von Datensätzen als Reaktion auf
Datensatz-Abrufanforderungen, die über eine
oder mehrere programmatische Datensatz-Ab-
rufschnittstellen empfangen werden, wobei die
eine oder mehreren programmatischen Daten-
satz-Abrufschnittstellen eine erste Abrufschnitt-
stelle, die ein nichtsequentielles Zugriffsmuster
ermöglicht, und eine zweite Abrufschnittstelle,
die ein sequentielles Zugriffsmuster ermöglicht,
umfassen und wobei eine Gebührenrate, die ei-

ner Verwendung der ersten Abrufschnittstelle
zugeordnet ist, von einer Gebührenrate, die ei-
ner Verwendung der zweiten Abrufschnittstelle
zugeordnet ist, verschieden ist; und
Erzeugen eines Kunden-Gebührenbetrags, der
dem bestimmten Datenstrom zugeordnet ist, auf
der Basis jeweiliger Benutzungszählungsmetri-
ken der Vielzahl von Datensatz-Abrufschnitt-
stellen.

2. Verfahren nach Anspruch 1, das ferner Durchführen
von Folgendem durch die eine oder mehreren Da-
tenverarbeitungsvorrichtungen umfasst:
Vergeben eines bestimmten Datensatzes des be-
stimmten Datenstroms an eine erste Partition des
bestimmten Datenstroms gemäß der Partitionie-
rungsrichtlinie, auf der Basis eines dem bestimmten
Datensatz zugeordneten Schlüssels, wobei der
Schlüssel durch eine dem bestimmten Datensatz
entsprechende Schreibanforderung angegeben
wird.

3. Verfahren nach Anspruch 1, das ferner Durchführen
von Folgendem durch die eine oder mehreren Da-
tenverarbeitungsvorrichtungen umfasst:
Auswählen, auf der Basis einer Partition, an die ein
bestimmter Datensatz vergeben ist, eines oder meh-
rerer von (a) einem bestimmten Knoten eines Da-
tensatz-Aufnahmesubsystems, das für das Anneh-
men des bestimmten Datensatzes verantwortlich ist,
(b) eines bestimmten Knotens eines Aufzeichnungs-
Speicherungssubsystems, das für das Speichern
mindestens einer Kopie des bestimmten Datensat-
zes verantwortlich ist, und (c) eines bestimmten Kno-
tens eines Abruf-Subsystems, das für das Erhalten
des bestimmten Datensatzes von dem Datensatz-
Speicherungssubsystem als Reaktion auf eine Le-
seanforderung verantwortlich ist.

4. Verfahren nach Anspruch 1, das ferner Durchführen
von Folgendem durch die eine oder mehreren Da-
tenverarbeitungsvorrichtungen umfasst:
Empfangen von Datensätzen, die über eine oder
mehrere programmatische Datensatz-Einrei-
chungsschnittstellen eingereicht werden, wobei die
eine oder mehreren programmatischen Datensatz-
Einreichungsschnittstellen eine erste Einreichungs-
schnittstelle, die Inline-Einreichung von Datensät-
zen unterstützt, und eine zweite Einreichungs-
schnittstelle, die Einreichung von Datensätzen durch
Bezugnahme auf (a) eine Objektadresse bei einem
durch ein Anbieternetzwerk implementierten Spei-
cherungsdienst, (b) einen universellen Datensatzlo-
kalisierer oder (c) einen Datenbank-Datensatz er-
möglicht, umfassen.

5. Verfahren nach Anspruch 1, das ferner Durchführen
von Folgendem durch die eine oder mehreren Da-

75 76

EP 3 069 274 B1

40

5

10

15

20

25

30

35

40

45

50

55

tenverarbeitungsvorrichtungen umfasst:
Entfernen eines bestimmten Datensatzes aus einem
bestimmten Knoten eines Datenspeicherungs-Sub-
systems auf der Basis (a) eines für den bestimmten
Datenstrom konfigurierten Daten-Entduplikations-
fensters, (b) einer dem bestimmten Datenstrom zu-
geordneten Datenarchivierungsrichtlinie, (c) einer
durch einen Kunden angegebenen Datenretentions-
richtlinie, (d) einer Kundenanforderung, den be-
stimmten Datensatz zu entfernen, oder (e) einer An-
gabe, dass der bestimmte Datensatz durch einen
oder mehrere Datenkonsumenten verarbeitet wur-
de.

6. Verfahren nach Anspruch 1, wobei mindestens ein
Subsystem von (a) einem Datensatz-Aufnahmesub-
system, (b) einem Datensatz-Speicherungssubsys-
tem oder (c) einem Datensatz-Abrufsubsystem, das
für den bestimmten Datenstrom konfiguriert ist, eine
Vielzahl von Knoten umfasst, die durch die eine oder
mehreren Steuerkomponenten als Mitglieder einer
Redundanzgruppe konfiguriert sind, wobei die Red-
undanzgruppe (a) einen oder mehrere primäre Kno-
ten, die dafür vergeben sind, Operationen an einer
Menge von Datensätzen des Stroms auszuführen,
und (b) einen oder mehrere nichtprimäre Knoten, die
dafür ausgelegt sind, als Reaktion auf ein oder meh-
rere Triggerereignisse eine primäre Rolle anzuneh-
men, umfasst.

7. Verfahren nach Anspruch 6, wobei ein bestimmter
primärer Knoten des einen oder der mehreren pri-
mären Knoten in einer bestimmten Datenzentrale in-
stanziiert ist und wobei ein bestimmter nichtprimärer
Knoten des einen oder der mehreren nichtprimären
Knoten in einer anderen Datenzentrale instanziiert
ist.

8. Verfahren nach Anspruch 6, das ferner Durchführen
von Folgendem durch die eine oder mehreren Da-
tenverarbeitungsvorrichtungen umfasst:

Detektieren eines Triggerereignisses des einen
oder der mehreren Triggerereignisse; und
Benachrichtigen eines bestimmten nichtprimä-
ren Knotens des einen oder der mehreren nicht-
primären Knoten, die primäre Rolle anzuneh-
men.

9. Verfahren nach Anspruch 1, wobei die eine oder
mehreren Steuerkomponenten eine Vielzahl von
Steuerknoten umfassen, die als eine Redundanz-
gruppe konfiguriert sind, die einen primären Steuer-
knoten, der dafür ausgelegt ist, auf Anforderungen
von Steuerebenenoperationen an einem oder meh-
reren Datenströmen, einschließlich des bestimmten
Datenstroms, zu reagieren, und mindestens einen
nichtprimären Steuerknoten, der dafür ausgelegt ist,

als Reaktion auf eine oder mehrere Triggerereignis-
se eine primäre Rolle anzunehmen, umfasst.

10. Verfahren nach Anspruch 1, das ferner Durchführen
von Folgendem durch die eine oder mehreren Da-
tenverarbeitungsvorrichtungen umfasst:

Speichern von Metadaten des bestimmten Da-
tenstroms, einschließlich einer gemäß der
Strompartitionierungsrichtlinie erzeugten Parti-
tionierungskarte, in einer netzwerkzugängli-
chen Datenbank eines Anbieternetzwerks; und
Zugreifen auf die Metadaten von einem Auf-
zeichnungs-Abrufsubsystem aus, um auf eine
bestimmte Datensatz-Abrufanforderung zu rea-
gieren.

11. Verfahren nach Anspruch 1, das ferner Durchführen
von Folgendem durch die eine oder mehreren Da-
tenverarbeitungsvorrichtungen umfasst:

Erzeugen einer bestimmten Sequenznummer
entsprechend einem bestimmten Datensatz des
Datenstroms, die eine Reihenfolge angibt, in der
der bestimmte Datensatz in einem Aufzeich-
nungs-Aufnahmesubsystem relativ zu anderen
Datensätzen der Partition, zu der der bestimmte
Datensatz gehört, empfangen wurde;
Speichern einer Vielzahl von Datensätzen, ein-
schließlich des bestimmten Datensatzes, durch
ein Datensatz-Speicherungssubsystem in einer
Reihenfolge auf der Basis von jeweiligen für die
Datensätze erzeugten Zeitstempeln; und
als Reaktion darauf, dass eine Leseanforderung
empfangen wird, die die erste Abrufschnittstelle
mit der bestimmten Sequenznummer als Para-
meter aufruft, Abrufen des bestimmten Daten-
satzes aus dem Aufzeichnungs-Speicherungs-
subsystem.

12. System, das einen oder mehrere Prozessoren und
einen oder mehrere Speicher umfasst, wobei der ei-
ne oder die mehreren Speicher Programmanwei-
sungen umfassen, die, wenn sie auf einem oder
mehreren Prozessoren ausgeführt werden, einen
Steuerknoten eines Mehrpächter-Stromverwal-
tungsdienstes implementieren, wobei der Steuer-
knoten ausgelegt ist zum
Empfangen einer Anforderung, einen bestimmten
Datenstrom zu initialisieren, der aus einer Vielzahl
von Datensätzen zusammengesetzt ist, die durch ei-
nen oder mehrere Datenproduzenten erzeugt wer-
den;
Bestimmen eines oder mehrerer Parameter, die zum
Konfigurieren eines oder mehrerer Subsysteme für
den bestimmten Datenstrom zu verwenden sind,
einschließlich eines Datensatz-Abrufsubsystems,
auf der Basis einer dem bestimmten Datenstrom zu-

77 78

EP 3 069 274 B1

41

5

10

15

20

25

30

35

40

45

50

55

geordneten Partitionierungsrichtlinie, wobei der eine
oder die mehreren Parameter eine anfängliche An-
zahl von in dem Datensatz-Abrufsubsystem zu in-
stanziierenden Knoten umfassen;
Identifizieren einer oder mehrerer für einen bestimm-
ten Knoten des Datensatz-Abrufsubsystems zu ver-
wendenden Ressourcen, wobei der bestimmte Kno-
ten dafür ausgelegt ist, eine Vielzahl von program-
matischen Datensatz-Abrufschnittstellen zu imple-
mentieren, einschließlich einer ersten Abrufschnitt-
stelle, die ein nichtsequentielles Zugriffsmuster er-
möglicht, und einer zweiten Abrufschnittstelle, die
ein sequentielles Zugriffsmuster ermöglicht; wobei
eine Gebührenrate, die einer Verwendung der ers-
ten Abrufschnittstelle zugeordnet ist, von einer Ge-
bührenrate, die einer Verwendung der zweiten Ab-
rufschnittstelle zugeordnet ist, verschieden ist;
Konfigurieren des bestimmten Knotens des Daten-
satz-Abrufsubsystems unter Verwendung der einen
oder mehreren Ressourcen; und
Erzeugen eines Kunden-Gebührenbetrags, der dem
bestimmten Datenstrom zugeordnet ist, auf der Ba-
sis jeweiliger Benutzungszählungsmetriken der Viel-
zahl von Datensatz-Abrufschnittstellen.

13. System nach Anspruch 12, wobei das eine oder die
mehreren Subsysteme ein Datensatz-Aufnahme-
subsystem, das einen oder mehrere Knoten um-
fasst, die dafür konfigurierbar sind, Datensätze des
bestimmten Datenstroms zu empfangen, und ein
Datensatz-Speicherungssubsystem, das dafür kon-
figurierbar ist, Datensätze des Datenstroms an einer
ausgewählten Menge von Speicherstellen zu spei-
chern, umfassen.

14. System nach Anspruch 13, wobei mindestens ein
Subsystem des Datensatz-Aufnahmesubsystems,
des Datensatz-Speicherungssubsystems und des
Datensatz-Abrufsubsystems eine Vielzahl von Kno-
ten umfasst, die als Mitglieder einer Redundanz-
gruppe konfiguriert sind, wobei die Redundanzgrup-
pe (a) einen oder mehrere primäre Knoten, die dafür
vergeben sind, Operationen an einer Menge von Da-
tensätzen des Stroms auszuführen, und (b) einen
oder mehrere nichtprimäre Knoten, die dafür ausge-
legt sind, als Reaktion auf ein oder mehrere Trigge-
rereignisse eine primäre Rolle anzunehmen, um-
fasst.

15. System nach Anspruch 13, wobei mindestens ein
Knoten des Datensatz-Aufnahmesubsystems, des
Datensatz-Speicherungssubsystems oder des Da-
tensatz-Abrufsubsystems eine Komponente einer
Recheninstanz eines in einem Anbieternetzwerk im-
plementierten virtualisierten Datenverarbeitungs-
dienstes umfasst.

Revendications

1. Procédé, comprenant :
faire faire, à un ou plusieurs dispositifs de calcul :

la détermination, pour un flux de données par-
ticulier comprenant une pluralité de blocs de
données générés par un ou plusieurs produc-
teurs de données, d’un ensemble de noeuds à
utiliser pour instancier un ou plusieurs sous-sys-
tèmes pour le flux de données particulier, com-
prenant un sous-système de récupération de
bloc, dans lequel chacun des sous-systèmes
comprend un ou plusieurs noeuds pouvant être
configurés dynamiquement par un ou plusieurs
éléments de commande pour effectuer des opé-
rations de gestion du flux sur la base d’une ou
de plusieurs stratégies comprenant une straté-
gie de partitionnement de flux utilisée pour par-
titionner le flux de données particulier qui com-
prend la séquence de transformation de la plu-
ralité de blocs de données en une pluralité de
partitions ;
la mise à disposition de blocs de données en
réponse aux demandes de récupération de bloc
reçues via une ou plusieurs interfaces de récu-
pération de bloc programmatiques, dans lequel
la ou les interfaces de récupération de bloc pro-
grammatiques comprend une première interfa-
ce de récupération activant un modèle d’accès
non séquentiel et une seconde interface de ré-
cupération activant un modèle d’accès séquen-
tiel, et dans lequel un taux facturable associé à
une utilisation de la première interface de récu-
pération diffère d’un taux facturable associé à
une utilisation de la seconde interface de
récupération ; et
la génération d’une somme facturée au client
associée au flux de données particulier sur la
base des métriques de décompte d’utilisation
respectives de la pluralité d’interfaces de récu-
pération de bloc.

2. Procédé selon la revendication 1, comprenant en
outre faire faire, au ou aux dispositifs de calcul :
l’attribution, conformément à la stratégie de partition-
nement, d’un bloc de données particulier du flux de
données particulier à une première partition du flux
de données particulier, sur la base d’une clé asso-
ciée au bloc de données particulier, dans lequel la
clé est indiquée par une demande d’écriture corres-
pondant au bloc de données particulier.

3. Procédé selon la revendication 1, comprenant en
outre faire faire, au ou aux dispositifs de calcul :
la sélection, sur la base d’une partition à laquelle un
bloc de données particulier est attribué, d’un ou de
plusieurs éléments parmi (a) un noeud particulier

79 80

EP 3 069 274 B1

42

5

10

15

20

25

30

35

40

45

50

55

d’un sous-système de réception de bloc responsable
de l’acceptation du bloc de données particulier, (b)
un noeud particulier d’un sous-système de mémori-
sation de bloc responsable de la mémorisation d’au
moins une copie du bloc de données particulier et
(c) un noeud particulier d’un sous-système de récu-
pération responsable de l’obtention du bloc de don-
nées particulier à partir du sous-système de mémo-
risation de bloc en réponse à une demande lue.

4. Procédé selon la revendication 1, comprenant en
outre faire faire, au ou aux dispositifs de calcul :
la réception des blocs de données soumis via une
ou plusieurs interfaces de soumission de bloc pro-
grammatiques, la ou les interfaces de soumission
de bloc programmatiques comprenant une première
interface de soumission supportant la soumission en
ligne de blocs de données et une seconde interface
de soumission permettant la soumission de blocs de
données en référence à un élément parmi : (a) une
adresse d’objet au niveau d’un service de stockage
implémenté par un réseau de fournisseur, (b) un po-
sitionneur de bloc universel (c), un bloc de base de
données.

5. Procédé selon la revendication 1, comprenant en
outre faire faire, au ou aux dispositifs de calcul :
le retrait, d’un noeud particulier d’un sous-système
de stockage de données, d’un bloc de données par-
ticulier basé sur un élément parmi : (a) une fenêtre
de déduplication de données configurée pour le flux
de données particulier, (b) une stratégie d’archivage
de données associée au flux de données particulier,
(c) une stratégie d’enregistrement de données indi-
quée par un client, (d) une demande de client de
retirer le bloc de données particulier ou (e) une indi-
cation que le bloc de données particulier a été traité
par un ou plusieurs consommateurs de données.

6. Procédé selon la revendication 1, dans lequel au
moins un sous-système parmi : (a) un sous-système
de réception de bloc, (b) un sous-système de mé-
morisation de bloc ou (c) un sous-système de récu-
pération de bloc configuré pour le flux de données
particulier comprend une pluralité de noeuds confi-
gurés par le ou les éléments de commande comme
les éléments d’un groupe de redondance, dans le-
quel le groupe de redondance comprend : (a) un ou
plusieurs noeuds principaux attribués à la réalisation
d’opérations sur un ensemble de blocs de données
du flux et (b) un ou plusieurs noeuds non principaux
configurés pour effectuer un rôle principal en répon-
se à un ou plusieurs événements déclenchants.

7. Procédé selon la revendication 6, dans lequel un
noeud principal particulier du ou des noeuds princi-
paux est instancié au niveau d’un centre de données
particulier et dans lequel un noeud non principal par-

ticulier du ou des noeuds non principaux est instan-
cié au niveau d’un centre de données différent.

8. Procédé selon la revendication 6, comprenant en
outre faire faire au ou aux dispositifs de calcul :

la détection d’un événement déclenchant du ou
des événements déclenchants ; et
la notification d’un noeud non principal particu-
lier du ou des noeuds principaux pour effectuer
le rôle principal.

9. Procédé selon la revendication 1, dans lequel le ou
les éléments de commande comprennent une plu-
ralité de noeuds de commande configurés comme
un groupe de redondance, comprenant un noeud de
commande principal configuré pour répondre aux
demandes pour les opérations de plan de comman-
de sur un ou plusieurs flux de données comprenant
le flux de données particulier et au moins un noeud
de commande non principal configuré pour effectuer
un rôle principal en réponse à un ou plusieurs évé-
nements déclenchants.

10. Procédé selon la revendication 1, comprenant en
outre faire faire au ou aux dispositifs de calcul :

la mise en mémoire, au niveau d’une base de
données accessible au réseau, d’un réseau de
fournisseur, les métadonnées du flux de don-
nées particulier comprenant une carte de parti-
tionnement générée conformément à la straté-
gie de partitionnement de flux ; et
l’accès, à partir d’un sous-système de récupé-
ration de bloc, aux métadonnées pour répondre
à une demande de récupération de bloc parti-
culier.

11. Procédé selon la revendication 1, comprenant en
outre faire faire au ou aux dispositifs de calcul :

la génération, correspondant à un bloc de don-
nées particulier des flux de données, d’un nu-
méro de séquence particulier indiquant un ordre
dans lequel le bloc de données particulier a été
reçu au niveau d’un sous-système de réception
de bloc par rapport aux autres blocs de données
de la partition à laquelle le bloc de données par-
ticulier appartient ;
la mise en mémoire, par un sous-système de
mémorisation de bloc, d’une pluralité de blocs
de données comprenant le bloc de données par-
ticulier dans un ordre basé sur les horodatages
respectifs générés pour les blocs de données ;
et
en réponse à la réception d’une demande lue
invoquant la première interface de récupération
avec le numéro de séquence particulier comme

81 82

EP 3 069 274 B1

43

5

10

15

20

25

30

35

40

45

50

55

paramètre, la récupération du bloc de données
particulier à partir du sous-système de mémori-
sation de bloc.

12. Système comprenant un ou plusieurs processeurs
et une ou plusieurs mémoires, la ou les mémoires
comprenant des instructions de programme qui,
lorsqu’elles sont exécutées sur un ou plusieurs pro-
cesseurs, implémentent un noeud de commande
d’un service de gestion du flux multilocatif, dans le-
quel le noeud de commande est configuré pour :

recevoir une demande pour initialiser un flux de
données particulier composé d’une pluralité de
blocs de données générés par un ou plusieurs
producteurs de données ;
déterminer, sur la base d’une stratégie de posi-
tionnement associée au flux de données parti-
culier, un ou plusieurs paramètres à utiliser pour
configurer un ou plusieurs sous-systèmes pour
le flux de données particulier, comprenant un
sous-système de récupération de bloc, dans le-
quel le ou les paramètres comprennent un nom-
bre initial de noeuds à instancier dans le sous-
système de récupération de bloc ;
identifier une ou plusieurs ressources à utiliser
pour un noeud particulier du sous-système de
récupération de bloc, dans lequel le noeud par-
ticulier doit être configuré pour implémenter une
pluralité d’interfaces de récupération de bloc
programmatiques, comprenant une première in-
terface de récupération activant un modèle d’ac-
cès non séquentiel et une seconde interface de
récupération activant un modèle d’accès
séquentiel ; dans lequel un taux facturable as-
socié à l’utilisation de la première interface de
récupération est différent d’un taux facturable
associé à utilisation de la seconde interface de
récupération ;
configurer le noeud particulier du sous-système
de récupération de bloc à l’aide de la ou des
ressources ; et
générer une somme facturée au client associée
au flux de données particulier sur la base de
métriques de compte d’usage respectives de la
pluralité d’interfaces de récupération de bloc.

13. Système selon la revendication 12, dans lequel le
ou les sous-systèmes comprennent un sous-systè-
me de réception de bloc comprenant un ou plusieurs
noeuds pouvant être configurés pour recevoir les
blocs de données du flux de données particuliers et
un sous-système de mémorisation de bloc pouvant
être configuré pour stocker les blocs de données du
flux au niveau d’un ensemble sélectionné d’empla-
cements de stockage.

14. Système selon la revendication 13, dans lequel au

moins un sous-système parmi le sous-système de
réception de bloc, le sous-système de mémorisation
de bloc, et le sous-système de récupération de bloc
comprend une pluralité de noeuds configurés com-
me les éléments d’un groupe de redondance, dans
lequel le groupe de redondance comprend : (a) un
ou plusieurs noeuds principaux attribués à la réali-
sation d’opérations sur un ensemble de blocs de
données du flux et (b) un ou plusieurs noeuds non
principaux configurés pour effectuer un rôle principal
en réponse à un ou plusieurs événements déclen-
chants.

15. Système selon la revendication 13, au moins un
noeud d’un sous-système parmi : le sous-système
de réception de bloc, le sous-système de mémori-
sation de bloc ou le sous-système de récupération
de bloc comprend un élément d’une instance de cal-
cul d’un service de calcul virtualisé implémenté au
niveau d’un réseau de fournisseur.

83 84

EP 3 069 274 B1

44

EP 3 069 274 B1

45

EP 3 069 274 B1

46

EP 3 069 274 B1

47

EP 3 069 274 B1

48

EP 3 069 274 B1

49

EP 3 069 274 B1

50

EP 3 069 274 B1

51

EP 3 069 274 B1

52

EP 3 069 274 B1

53

EP 3 069 274 B1

54

EP 3 069 274 B1

55

EP 3 069 274 B1

56

EP 3 069 274 B1

57

EP 3 069 274 B1

58

EP 3 069 274 B1

59

EP 3 069 274 B1

60

EP 3 069 274 B1

61

EP 3 069 274 B1

62

EP 3 069 274 B1

63

EP 3 069 274 B1

64

EP 3 069 274 B1

65

EP 3 069 274 B1

66

EP 3 069 274 B1

67

EP 3 069 274 B1

68

EP 3 069 274 B1

69

EP 3 069 274 B1

70

EP 3 069 274 B1

71

EP 3 069 274 B1

72

EP 3 069 274 B1

73

EP 3 069 274 B1

74

EP 3 069 274 B1

75

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 2011161291 A [0004]

	bibliography
	description
	claims
	drawings
	cited references

