WO 2006/128112 A2 |00 00 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 November 2006 (30.11.2006)

PO 0O O

(10) International Publication Number

WO 2006/128112 A2

(51) International Patent Classification:

GOGF 17/30 (2006.01)
(21) International Application Number:
PCT/US2006/020767
(22) International Filing Date: 25 May 2006 (25.05.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/684,610 25 May 2005 (25.05.2005) US

(71) Applicant (for all designated States except US): TERRA-
COTTA, INC. [US/US]; Townsend Street, -suite 325, San
Francisco, CA 94103 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HARRIS, Steven,
T. [US/US]; 255 Berry Street-suite 106, San Francisco, CA
94107 (US). LETIZI, Orion, D. [US/US]; 260 King Street
#1011, San Francisco, CA 94107 (US). SUBBIAH, Sara-
vanan [IN/US]; 1396 El Camino Real #204, Millbrae, CA

(74)

(81)

(84)

94030 (US). ECK, Timothy, S. [US/US]; 556 Sylvan Av-
enue, San Mateo, CA 94403 (US).

Agent: VIERRA, Larry, E.; VIERRA MAGEN MAR-
CUS & DENIRO LLP, 575 Market Street, Suite 2500, San
Francisco, CA 94105 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ,VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: CLUSTERING SERVER PROVIDING VIRTUAL MACHINE DATA SHARING

2% S
[L 20 T 7 -
| —

! Server A Server B Server C
! g 131
: Application Application Application ~
| instance "A” instance “B” instance “C”
l 1’]
. 4 123
| Data Sharing |~ Data Sharing |~ Data Sharing 133
1 Agent/Library Agent/Library Agent/Library
| -Lock Manager -Lock Manager -Lock Manager
| -Trans. Mgr. -Trans. Mgr. ~Trans. Mgr.
! ~Obj. Mgr. -Obj. Mgr. -Obj. Mgr.
} -Comm Mgr. -Comm. Mgr. -Comm. Mgr.
: - - 1,12 122 - ~—{32
Virtual Machine Virtual Machine r Virtual Machine{~
: P I g g
| 114} - : 124 34
| Operating Operating Operating
i System System System
I
|

Central Manager

=
Data Sharing Application

-Lock Manager
-Transaction manager 142
-Object manager i~

150

Management
Console

-Persistence Mgr
-Communication Mar.

Operating System

CM Object
Representation
Store

(57) Abstract: Technology for sharing data among
multiple virtual machines in a cluster of virtual machines
is disclosed. Each virtual machine identifies "managed"
objects of an instance of an application running at the
virtual machine. The managed objects are objects for
which state information is to be replicated at the other
virtual machines in the cluster on which other instances
of the application are running. Operations performed
by an instance of one application which affect the
state of managed objects are detected and distributed.
A computer- implemented method for maintaining
consistent object states at different virtual machines
includes receiving managed object state information
from a first virtual machine including a first instance
of an application; creating a representation of each of
the managed objects; and responsive to the received
information, communicating state information to at least a
second virtual machine on which a second instance of the
application is running to replicate the state information
at the second virtual machine.

WO 2006/128112 A2 [N} N0VOH0 A 00 000D

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, For two-letter codes and other abbreviations, refer to the "Guid-
RO, SE, S, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, ance Notes on Codes and Abbreviations" appearing at the begin-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

Published:
— without international search report and to be republished
upon receipt of that report

WO 2006/128112 PCT/US2006/020767

CLUSTERING SERVER PROVIDING VIRTUAL MACHINE DATA
SHARING

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. provisional patent
application no. 60/684,610, filed May 25, 2005, titled “Terracotta
Virtualization Server”, and incorporated herein by reference.

[0002] The application is also related to the following co-pending
applications, each of which is incorporated herein by reference:

[0003] (1) U.S. patent application no. , filed , litled
“Distributed Signaling Between Threads On Different Virtual Machinesin
a Virtual Machine Cluster”, docket no. TERA-01001USO;

[0004] (2) U.S. patent application no. , filed , litled
“Creating Clustered Object State Using Synthetic Transactions at a
Virtual Machine”, docket no. TERA-01002USO0.

[0005] (3) U.S. patent application no. , filed __, titled
“Distributing Distributed Object Identity Cluster-Wide Among Multiple
Virtual Machinesin a Virtual Machine Cluster”, docket no. TERA-
01003USQ;

[0006] (4) U.S. patent application no. , filed , titled
“Distributing Objects By Distributing Underlying ActionsClustered Object
State Using Field Set Operations”, docket no. TERA-01004US0;

[0007] (5) U.S. patent application no. , filed , titled
“SharingClustered Object State Across Virtual Machines Using Logical
CollectionsActions”, docket no. TERA-01005USO;

WO 2006/128112 PCT/US2006/020767

[0008] (6) U.S. patent application no. , filed , titled
“Cluster Lock Management for Distributed Clustered Virtual Machines”,
docket no. TERA-01012US0".

BACKGROUND

[0009] Application developers have traditionally faced a number of
challenges in horizontally scaling applications to multiple servers.
Scaling is particularly useful to World Wide Web application developers
who may, for example, require geographically distributed application
servers to provide users with better performance. In one example,
suppose a user of a web-based application logs on to a web site to
change information in an existing user account. Typically, in a
distributed application, one application server is selected to handle the
transaction based on its geographical location, availability or other
factors. The selected server accesses the account data and makes the
requested changes locally and the updated data must then be shared
with the other servers so that the user's future interactions with any of
the servers will reflect the updates. Additionally, the fact that some

servers may go offline while others come online must be considered.

[0010] This scaling challenge is faced by developers in many
development environments, including developers using the popular Java
development platform. The Java platform's goal in providing a platform
independent environment is generally met by the fact that Java source
code is compiled into an intermediate language called "bytecode," which
can reside on any hardware platform. In order to run the bytecode, it
must be compiled into machine code via a Java Virtual Machine (JVM).
A JVM is a platform-independent execution environment that converts
Java byte code into machine language and executes it. The JVM

provides the developer with the tools necessary for multi-threaded

WO 2006/128112 PCT/US2006/020767

applications, including thread support, synchronization and garbage

collection.

[0011] FIG. 1A illustrates a traditional implementation of a Java
application running on a virtual machine under a given operating system
on a processing system or server. As developers have attempted to
scale Java applications to multiple processing systems, difficulties in
maintaining object and primitive states across the systems become more
numerous.

[0012] Traditionally, application developers themselves have been
required to account for scaling using common forms of inter-server
communication in order to share objects amongst distributed JVMs.
One form of communication is Remote Method Invocation (RMI), which
is a set of protocols that enables Java objects to communicate remotely
with other Java objects. Another form of communication is the Java
Message Service (JMS), which is an Application Program Interface (API)
for accessing enterprise messaging systems. JMS supports both
message queuing and publish-subscribe styles of messaging. Java
Temporary Caching (JCache) is a distributed caching system for server-
side Java applications.

[0013] While each of these techniques allow the developer the
flexibility to add scaling to their application, the conventional techniques
require application code to be modified, resulting in significant added
complexity and development costs. Further, the conventional
techniques limit scalability of the application tier, are often quite slow,
and tend to abuse database infrastructure for transient needs. Finally,
the task of maintaining object identity is a challenge as multiple copies of
the same object can be created at the different application servers.

[0014] An improved technology is needed for maintaining consistent

WO 2006/128112 PCT/US2006/020767

data across virtual machines.

SUMMARY

[0015] The technology herein, roughly described, provides a
technique for sharing data among multiple virtual machines in a cluster
of virtual machines.

[0016] Data sharing functionality is provided to application software
which was designed for use on a single virtual machine. Various
features which are provided include sharing of object state between
virtual machines, flexible locking which is configurable at run-time,
distributed method invocation and distributed signaling. In one
approach, a data sharing agent or library on a virtual machine
instruments the application code to provide the data sharing
functionality. The data sharing agents include a lock manager, a
transaction manager, an object manager, and a communication
manager. A central manager, which may be provided on another server,
interacts with virtual machine servers in a cluster to facilitate sharing so
that object state is maintained consistently on all virtual machines. The
central manager includes an object manager, a lock manager,
transaction manager, communication manager, and a persistence

~ manager.

[0017] In one aspect, the technology provides a clustering server
which provides data sharing among virtual machines in a cluster. A
virtual machine identifies “managed” objects of an instance of an
application running at the virtual machine. The managed objects are
objects for which state information is to be replicated at the other virtual
machines in the cluster on which other instances of the application are

running. Operations performed by an instance of one application which

WO 2006/128112 PCT/US2006/020767

affect the state of managed objects are detected and distributed. These
operations may include for example method calls and field set
operations. The virtual machine then communicates information to the
central manager for use in replicating the state information at the other
virtual machines. For example, a managed object may be identified by
an object graph which includes the managed object as a root object. All
objects which can be reached by reference from the root object also
become part of the object graph and are thereby also managed. In this
case, the state information of the virtual machine can be replicated at the
other virtual machine by updating object graphs at the other virtual
machines so they are replicas of the object graph of the virtual machine
on which object state has changed. In this way, object state is

maintained consistently among all of the virtual machines.

[0018] In one aspect, the invention includes a computer-implemented
method for maintaining consistent object states at different virtual
machines. The methold includes receiving managed object state
information from a first virtual machine including a first instance of an
application; creating a representation of each of the managed objects;
and responsive to the received information, communicating state
information to at least a second virtual machine on which a second
instance of the application is running to replicate the state information at
the second virtual machine.

[0019] This Summary is provided to introduce a selection of concépts
in a simplified form that are further described below in the Detailed
Description. This Summary is not intended to identify key features or
essential features of the claimed subject matter, nor is it intended to be

used as an aid in determining the scope of the claimed subject matter.

WO 2006/128112 PCT/US2006/020767

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1A llustrates a conventional Java application

environment.

[0021] FIG. 1B illustrates a logical depiction of a clustering server
technology discussed herein.

[0022] FIG. 1C illustrates a system in which a central manager

facilitates data sharing among a group or cluster of virtual machines.

[0023] FIG. 2 illustrates various layers of control within a virtual
machine.

[0024] FIG. 3A illustrates a method for identifying and sharing
managed objects among virtual machines.

[0025] FIG. 3B illustrates a method for defining transactions within
the context of the technology

[0026] FIG. 3C illustrates transaction boundaries within a code

segment.

[0027] FIG. 4 illustrates a representation of an object graph of
managed objects.

[0028] FIG. 5 illustrates an example of managed objects, including
classes and fields.

[0029] FIG. 6 illustrates a method for distributing object operations
and data among virtual machines.

[0030] FIG. 7 illustrates the sharing of object data from a first virtual

WO 2006/128112 PCT/US2006/020767

machine, in an initial update, using operation logs of the first virtual
machine, and an operation log of a central manager.

[0031] FIG. 8 illustrates the sharing of object data from a first virtual
machine, in an incremental update, using an operation log of the first

virtual machine.

[0032] FIG. 9 illustrates a method for sharing of logical operations
including field level object data and logical collections among virtual
machines.

[0033] FIG. 10 illustrates a method for sharing object identity among

virtual machines.

[0034] FIG. 11Aillustrates a method for providing clustered locking.
[0035] © FIGS. 11B — 11D illustrate the signaling occurring in FIG 11A.
[0036] FIG. 12A illustrates a method for providing greedy locking.
[0037] FIGS. 12B - 12D illustrate the signaling occurring in FIG 12A.

[0038] FIG. 12E is a state machine description of the method of FIG.
12A.

[0039] FIG. 13 illustrates a method for distributing thread signaling
amongst virtual machines in a cluster.

DETAILED DESCRIPTION

[0040] The technology described herein includes a set of integrated
components that provides a common virtual machine capability for
application programs running on distributed systems each having its own

local virtual machine. The components discussed herein allow transient

WO 2006/128112 PCT/US2006/020767

data — data actually stored in memory in a virtual machine as part of in-
memory object state — to be shared across various virtual machines. In
a unique aspect, object state is shared through a series of shared
operations, either logical or physical operations, which are detected and
distributed as a series of transactions in order to replicate the current
state of objects at any of the virtual machines throughout a cluster.

[0041] The technology will be described with respect to its application
in conjunction with Java applications and Java Virtual Machines.
However, it should be recognized that the inventive concepts have
broader applicability to other virtual machine and development
environments. Moreover, the managed objects utilized on various virtual
machines need not be shared by the same application. Finally, as
explained herein, respective virtual machines need not operate
concurrently.

[0042] FIG 1B is a block diagram depicting a logical representation of
the technology discussed herein. FIG 1B illustrates three processing
systems each including an application 40, 50, 60 operating on a local
virtual machine 42, 52, 62. The technology discussed herein provides a
clustering server 75 which extends the capabilities of each virtual
machine to all other processing devices in a given cluster. This includes
sharing data amongst each of the virtual machines in a cluster on
objects identified by a cluster administrator via a management interface.
In this manner, the data sharing functionality can be easily added to
application software which was designed for use on a single virtual
machine.

[0043] This allows various features to be provided by the technology,
include sharing of object state between virtual machines, flexible locking

which is configurable at run-time, distributed method invocation and

WO 2006/128112 PCT/US2006/020767

distributed wait-and-notify. Benefits include distribution of data among
the virtual machines without the need to maintain state in a database,
transparent recovery from application instance failures, clustering as an
APIl-free infrastructure service, reduced development, testing, and
maintenance costs, faster application development and scale-out, and
fine-grained operations performance visibility and control. With the data
sharing functionality provided, there is no API for the application
developer to learn, apply, test, and maintain since the data sharing
agents/libraries provide this transparency. Lower system life-cycle costs
are another benefit, since organizations using the system need not
spend time writing code in order to provide clustering capabilities. The
system accomplishes this as an infrastructure software component that
provides clustering as a service based on user-defined configuration
settingé which can be changed at production-time. This allows an
application to adapt its reliability, availability and scalability
characteristics to changing user demands without the need for new
development.

[0044] In many cases, the data sharing functionality enhances
performance. For instance, in one approach, when a shared object is
updated, only the field-level changes are sent to the different virtual
machines, and only those virtual machines with that object currently in
memory are supplied with the update in real time. In another approach,
the logical operations necessary to create a current object state are
shared between virtual machines. These techniques significantly reduce
the amount of data movement, and improve ali-around performance of a
fully clustered application. Moreover, the data sharing functionality
provides this inter-virtual machine communication capability in a scalable
manner that cannot be matched by peer-to-peer products.

[0045] FIG. 1C illustrates an exemplary implementation of the

WO 2006/128112 PCT/US2006/020767

-10-

technology in a clustered system. In this implementation, a central
manager 140 facilitates data shafing among a group or cluster of
application servers 100. A group or cluster, shown generally at 100,
includes a number of servers. This represents one embodiment of how
applications are scaled to allow multiple servers to run respective
instances of an application (111, 121, 131) for load balancing or to
provide increased reliability, availability and scalability. In the present
example, three servers are provided, namely server “A” 110, server “B”
120 and server “C” 130. The servers can be co-located or
geographically distributed, and interconnected by any type of network,
such as a LAN or WAN, or communication link (not illustrated).

[0046] As used herein each server or processing system includes, for
example, one or more processors capable of executing instructions
provided on readable media to perform the methods and tasks described
herein. The processing system may include a volatile memory, a mass
storage device or other non-volatile memory, a portable storage device,
one or more communications or network interfaces and various /O
devices. The above described processing system hardware architecture
is just one suitable example of a processing system suitable for

implemenfing the present technology.

[0047] The servers 110, 120 and 130 each include a separate
instance of an application, for example, application instance ‘A" 111,
application instance “B” 121 and application instance “C” 131. Further,
each server includes a virtual machine on which the application code
executes, namely virtual machine “A” 112, virtual machine “B” 122 and
virtual machine “C” 132. For example, each virtual machine may be a
Java Virtual Machine (JVM) which executes byte code of an application.
In one embodiment, the applications are the same application with
different instances; in another embodiment, the applications call the

WO 2006/128112 PCT/US2006/020767

11-

same instances of the same classes of objects in their respective
application code.

[0048] Each instance of the application runs locally on each
application server and interacts with each virtual machine locally.
Objects used by the application are created and maintained by the
respective virtual machines on each server. In accordance with the
invention, the application code for each of the applications need not
provide for the clustering operations described herein. In essence, the
application is prepared to run on a single virtual machine and extended
to the cluster by the technology discussed herein. In this regard, a
series of managed objects, which include a local instance of application

object on each server, are identified and clustered by the technology.

[0049] A data sharing agent/library 113, 123 and 133 is provided on
each respective server to provide functionality for sharing managed
objects among the servers, as described in greater detail below. Files
stored at the data sharing agent/library are loaded into the associated
virtual machine upon start up to modify the application code when
compiled into bytecode to provide the data sharing functionality. In
particular, the data sharing agents 113, 123 and 133 are responsible for
performing bytecode manipulation to implement clustered object
management in each local virtual machine 112, 122 and 132. Each may
include a lock manager that deals with gaining access to objects under
locks, a transaction manager that creates a transaction log as described
below, and an object manager. A communication manager may also be
provided to enables the virtual machines to communicate with the
central manager. The communication manager may include IP address

and port information of the central manager.

[0050] Each server 110, 120, 130 may also include a conventional

WO 2006/128112 PCT/US2006/020767

12-

operating system and memory*for storage of data, such as data used by
threads of the application instances.

[0051] A central manager 140 is provided to facilitate data sharing
among the virtual machines and, in particular, between the virtual
machines on which the application instances run. The central manager
140 in conjunction with the data sharing agent/library 113, 123 and 133,
acts as a “clustering server’ for the applications 111, 121, 131. In
essence, each application 111, 121, 131 sees one virtual machine, but
with each application instance seeing changes to objects made by other
application instances in the cluster. The central manager 140 includes a
data sharing application 141 running in an operating system on the
manager. The manager may be a separate physical server or may
operate on a server with one of the virtual machines. The central
manager 140 has the ability to communicate with each of the servers
110, 120 and 130 to share object state information.

[0052] The data sharing application 141 works in concert with the
data sharing agent/libraries 113, 123 and 133 to distribute shared
objects amongst the cluster systems 110, 120, 130. The data sharing
application 141 can include a lock manager, transaction manager,
communication manager, and a persistence manager. The persistence
manager is able to persist object state information to a CM object
representation store. The lock manager manages access to distributed
locks between the various virtual machines. The transaction manager
deals with moving data between members of the cluster in coherent
terms. The object manager deals with keeping track of which virtual
machines have what objects and what version of the object. A
communication manager which enables the central manager to

communicate with the virtual machines.

WO 2006/128112 PCT/US2006/020767

-13-

[0053] The object representation store 144 includes a record of the
managed object states in accordance with the methods discussed
herein. Because of the persistence of managed objects by the
representation, each of the servers 110, 120, 130 need not operate
concurrently.

[0054] Advantageously, the central manager 140 and data sharing
agent/libraries are implemented by a set of infrastructure software
(which may be commonly distributed) that can be installed on suitable
processing system hardware.

[0055] Subsequent to the installation of agents 113, 123 and 133,
virtual machines 112, 122 and 132 are essentially clients of the central
manager. As such, virtual machines may be referred to herein as
clients. It should be understood that FIG. 1C illustrates only one
possible implementation of the technology. For example, in FIG. 1C,
the central manager 140 can be provided on a server that is separate
from the servers hosting the applications or database software, or may
be provided on one or more of the virtual machines. Although only one
central manager is used in the present example, multiple managers on
multiple servers can be clustered together to make a highly-available
hub shared by many virtual machines, even across dispersed
geographies. It is also possible to run multiple instances of an
application at multiple virtual machines on one server.

[0056] A management console 150 provides a graphical user
interface which allows an operator to configure and monitor the central
manager 140. Optionally, the operator may define configuration files
which are provided to the data sharing agent/library to specify which
objects should be shared. This configuration data allows various

managed objects to be included as managed objects or excluded as

WO 2006/128112 PCT/US2006/020767

-14-

managed objects on each of the virtual machines in a cluster. In
essence, this provides a form of drop-in/drop-out functionality for the
managed objects. The management console can also be used to
monitor; a) a current count of unique managed object instances for each
client, on a per-class basis; b) a creation rate of managed objects, where
both global and per-client counts are provided; c) a rate at which objects
are flushed from the clients to the central manager, on a per client basis;
d) a rate at which objects are requested from the central manager by a
client, on a per client basis; e) a rate at which objects are written to a
persistent object store by the central manager; f) a rate at which objects
are requested from the persistent object store by the central manager; g)
a view of all currently managed roots and fields; h) a list of locks with
one or more pending lock or upgrade requests; i) a list of application
process threads currently waiting due to contended locks; j) an on-
demand display of locks which are currently part of process deadlocks;
k) elapsed processing time and number of objects collected by the
central manager garbage collection process; and I) a rate at which
transactions are committed to the central manager, whether both global

and per-client counts are provided.

[0057] FIG. 2 illustrates an application running within a virtual
machine 210, and various mechanisms by which the data sharing
agent/libraries interact with an application on a given virtual machine. A
virtual machine 210 generally includes a number of class loaders 224. A
bootstrap class loader 205 is provided by some implementations of
virtual machines. In a Java Virtual Machine, each and every class is
loaded by some instance of a class loader. Whenever a new JVM is
started, the bootstrap class loader is responsible for loading key Java
classes into memory first. The runtime classes are packaged inside of a

runtime jar file. Normally, developers do not have access to details of

WO 2006/128112 PCT/US2006/020767

15-

the bootstrap class loader, since this is a native implementation. For the
same reason, the behavior of the bootstrap class loader will also differ
across JVMs. Other class loaders 224 may also be provided. These
include, for example, the Java extension class loader, and the
application class loader, responsible for loading all of the classes kept in

the path corresponding to the java.class.path system property.

[0058] In one approach, application code at the server (110, 120,
130) is instrumented using files stored by the data sharing agent/libraries
when the application code is loaded into the virtual machine. Where a
bootstrap loader 205 is utilized, a custom “boot.jar” file may be used to
replace the class definitions in the system dependent runtime .jar file.
Where the virtual machine technology 210 does not implement a
bootstrap class loader 205, this technique is not required. Other class
loaders 224 are instrumented to allow the data sharing agent/library
files to introduce the data sharing functionality into the application
classes. Class loaders enable the virtual machine 210 on any respective
server to load classes without knowing anything about the underlying file
system semantics. Similarly, the class loader 224 allows the application
222 to dynamically load classes. The data sharing agent/libraries can
inspect and, if activated, intercept API calls made by the application 222.
The scope of interception can be at a byte code level, in which case field
updates, method calls, synchronization calls, and wait/notify calls, for
instance, are visible and controllable at runtime. When alternative
facilities, for example HotSwap or JVMTI, are provided by the virtual
machine, the data sharing agent/libraries can introduce the data sharing
functionality to application classes through these mechanisms. This
technique allows the data sharing agent/libraries to delay and optimize
the introduced data sharing functionality.

[0059] Note that the application source code remains unchanged,

WO 2006/128112 PCT/US2006/020767

-16-

and in one implementation, no stored byte code is changed such that
were one to decide not to run the clustering server, one can restart the
application without enabling the byte code manipulation. As discussed
more fully below, during this process, object classes specified as shared
are identified and instrumentation added to allow server locking and
logical change tracking.

[0060] Due to the instrumentation of bytecode at the virtual machine
level, another aspect of “drop-in/drop-out” capability is provided. That is,
the data sharing functionality which is provided by the instrumentation
can be easily activated or deactivated by a system operator at
application runtime. This drop-in/drop-out capability further allows the
data sharing functionality to be provided for existing applications without
modifying the application code to conform to an API, or providing any
such API. The developer can write an application for a single virtual
machine and configure the application to be transparently shared across
multiple virtual machines. All that is required is the installation of the
data sharing agent/libraries and the proper configuration of opt-in
parameters via the management console. The drop-in/drop-out
capability also allows rapid assessment of the degree to which the data
sharing functionality can benefit a given application, what-if analysis of
various opt-in sets, and the ability to switch the data sharing functionality
on and off at runtime. The drop-in/drop-out capability also eliminates the
need to use custom-developed or vendor framework clustering and
memory sharing in new applications since these needs can be handled
with no need for explicit code.

[0061] This data sharing functionality may alternatively be
implemented in the bytecode interpreter natively. That is, while
developers normally do not have access to the bytedcode interpreter,

virtual machine providers who do have access to the bytecode

WO 2006/128112 PCT/US2006/020767

17-

interpreter may build the same functionality provided by instrumentation
of the bytecode at the classloader level directly into the virtual machine
instead.

[0062] FIG. 3A illustrates a general method for identifying and
sharing managed objects among virtual machines. At block 300, an
application begins its execution and at step 302 the application byte
code is instrumented prior to execution of any functions on objects, as
described above. At block 305, the instrumentation identifies objects of
the application for which state information is to be shared. In particular,
these objects are identified as root objects of an object graph (see also
FIG. 4). These objects are identified based on an operator defined
configuration identifying which objects should be managed objects in the

cluster.

[0063] In this step, the byte code instrumentation adds functionality to
each managed class transparently. Exemplary pseudocode
representations of this functionality include a function
lockmanager.getlock(), a transactionmanager.starttransaction() and a
transactionmanager.commitTransaction() and
lockmanager.releaseLock(). As will be explained below, the getlock and
releaseLock functions request, respectively, a lock from the central
manager for the cluster-wide managed object via the lock manager
process, and a lock release on the managed object from the central
manager. The transactionmanager.starttransaction and
transactionmanager.commitTransaction functions are used to generate
transactions which communicate changes to the central manager.
These functions surround the application code, as described below.

[0064] At block 310, an object graph of each of the identified root

objects is navigated to identify the objects that can be reached from the

WO 2006/128112 PCT/US2006/020767

-18-

root object. For example, an object is reachable by the root object if
there is a field assignment of an object reference into one of the root’s
field values at runtime. At block 315, the objects in the object graph are
identified as managed objects, such as by flagging the objects. Thus,
the root object and the objects reachable from the root object become
managed objects. Optionally, the operator can use the management
console to selectively exclude objects which are reachable from a root
object from being managed by declaring a field to be transient.

[0065] In one aspect, the manager allows specification of root
objects to manage all objects accessible by the root. An object is
reachable by the root object if it is part of the object's reference graph,
such as, for example, where there is a field assignment of an object
reference into one of the root’s field values at runtime.

[0066] FIG. 4 illustrates a representation of an object graph of
managed objects. The object graph 400 includes a root object and a
number of objects, shown as circles, which are reachable from the root
object, as indicated by the connecting arrows. An object pointed to by
another object is reachable from that object. A specific illustration is
provided below in connection with FIG. 5.

[0067] An object graph includes a root object and objects that are
reachable from the root object. A root object can be a long-lived object,
such as a cache implemented using native Java collections, a servlet
session, or a hash map, an example of which is provided by the Java
class HashMap. For example, the operator can configure managed
objects using a configuration file in a known format, such as XML, or
alternatively use the management console to identify the managed
objects. Moreover, note that not all objects in an application need be
managed. Only a subset of all objects used by an application need to be

WO 2006/128112 PCT/US2006/020767

-19-

identified as managed. A managed object is a distributed object whose
state is maintained consistently at the different virtual machines in a
cluster of virtual machines. Generally, it is desirable to manage objects
that represent pure state i\nformation, while avoiding replicating objects
that refer to operating system resources. For example, business objects
such as customer records might make good managed objects.

[0068] For example, an XML configuration file at the data sharing
agents/libraries may modify values of a “<root>" element. The operator
specifies the fully qualified field, and a name to associate with the field.
To illustrate, the following configuration sets up two objects for sharing -
‘exampleField1” and “exampleField2”, which are members of the

“ExampleClass1” and “MyClass2” classes, respectively:

<roots>

<root>
<field-name>ExampleClass1.exampleField1</field-name>
<roof-name>exampleRoot1</root-name>

</root>

<root>
<field-name>MyClass2.exampleField2</field-name>
<root-name>exampleRoot2</root-name>

</root>

</roots>

[0069] Alternatively, roots can be given a common “name” even
though they may be two differing fully qualified field names. In this case,
the two or more root fields that share the common name will refer to the
same object instance. Hence, one can, in two different classes, bind

the same root to different variables. In terms of the example, even

WO 2006/128112 PCT/US2006/020767

-20-

though there are two different fields in different classes, even though
they are different fields, if they share a common name, they will be the
same set of objects.

[0070] The object manager in the client can dynamically prune in-
memory versions of a managed object graph so that only portions of the
managed graph need be stored in the client virtual machine's memory at
a time. This allows arbitrarily large shared object graphs to be fit into a
constrained memory footprint in the client virtual machines. Pruned
segments of the object graph can be faulted in from the server
dynamically as needed as code on a virtual machine traverses the
managed graph and follows a reference to an object that has been
pruned. This process happens automatically and transparently to the
user code. As this happens, the permanent representation of the
managed object graph is unaltered in the central manager.

[0071] Returning to FIG. 3A, at block 320, the instrumented
application begins running and, at block 325, the instrumentation detects
operations, such as method calls and field set operations, at a given
virtual machine on which the instrumented application is running, that
affect the states of the managed objects. The process of detection at
step 325 is further detailed with respect to FIGS. 3B and 3C.

[0072] At block 330, information identifying the operations, such as
the method calls and field set operations, and the central manager level
(or global) unique identifier of the object or objects involved, is
communicated from the virtual machine to the central manager and, at
block 335, the central manager uses the information to update a
representation of the managed objects’ states locally and at other virtual
‘machines.

[0073] The central manager may assign global identifiers to the

WO 2006/128112 PCT/US2006/020767

-21-

managed objects so that it can recognize any managed object in the
cluster. Conventionally, only locally specific, non-deterministic identifiers
are assigned to objects by the virtual machines. In accordance with the
technology herein, when a new managed object is created on a local
virtual machine, a global unique identifier is assigned to the object by the
virtual machine on which the object is created. A group of central
manager level unique identifiers is provided by the central manager to
each virtual machine.

[0074] Updates to the fields of a managed object are tracked at a fine
grained level of granularity and pushed to other virtual machines via the
central manager. By joining a root graph, an object is flagged as
managed and its state is kept up-to-date across a cluster of servers.

[0075] FIG. 3B illustrates a method for sharing the tfransaction data
involving object data among virtual machines. At block 345, optionally, a
determination is first made as to whether a given method is
synchronized or a named lock is identified for the method, and at step
350, whether the lock has been acquired. Acquiring a lock is optional
depending on how an operator chooses to configure it. Transactions
can be created under concurrent locks in which case no locks are
acquired. This may be used in the case where potential write-write
conflicts are tolerable. At step 355, the application begins operaﬁon on
the locked code. At block 360, a transaction log starts recording
operations which are performed by the thread which affect the states of
managed objects at a first boundary in the code. At block 365, the
transaction records all operations until block 370, at which point the
transaction is concluded when the thread crosses a second transaction
boundary. At block 375 the transaction is stored until forwarded to the

central manager. At step 380 the lock (if any) is released.

WO 2006/128112 PCT/US2006/020767

-22-

[0076] In one case, transactions can be provided on both method and
Java synchronization boundaries, where a transaction is a set of
changes to managed objects made between defined transaction
boundaries. Transactions are associated with, and protected by, zero or
more locks. Transactions and locks function as a multi-virtual machine
extension of standard Java synchronization and the Java memory
model. Java synchronization provides exclusive thread access to
sections of code on monitor/lock enter, and flushes local changes to
main memory on monitor exit. In a cluster, locks provide a user-defined,
cluster-wide access policy to sections of code, and local changes are
flushed to the central manager at the close of a transaction. In this way,
threads in a cluster of multiple virtual machines can interact in the same
way that they do in a single virtual machine.

[0077] This is illustrated by FIG. 3C where the transaction boundaries
need not be the same as the lock boundaries. For a synchronized
block of code that is synchchronized on managed object A, a first lock is
required and a first transaction boundary (startTransaction(P)) begins
after acquisition of the first lock. Where a nested synchronized block of
code that is synchronized on managed object B (synchronized(B))
exists, the transaction boundary for the first transaction P is completed
and a second transaction started for the nested synchronized block of
code. The transaction boundaries in this context are synthesized by the
instrumentation of the byte code (or within a suitably enabled virtual
machine) to provide transaction boundaries which are granular to the
particular functions enumerated in the application code. Each
transaction is thus defined (in the Java context) in terms of a thread
monitor enter and monitor exit in a code block. For named locks, the
transaction is defined in terms of a method boundary.

[0078] FIG. 5 illustrates an example of managed objects, including

WO 2006/128112 PCT/US2006/020767

-23-

classes and fields. The managed objects include a root object 510
“users” and a number of objects which are reachable from the root
object, including an object 520 named “myCache”, an object 530 named
“User’, and an object 540 named “Address”. The object 530 has the
fields “Name”, “Age” and “Address”. The object 540 named “Address” is
reachable from the “Address” field of the object 530, and includes fields
“Street”, “State” and “Zipcode"’. The objects provided could be used by a
web-based application, for instance, which requires a user to provide his
or her name, age and address. Note that there is nothing special about
the root object 510 or object 520; any object can be identified as a
managed object, (except objects that represent JVM-specific or host

machine specific resources, such as network sockets or file descriptors).

[0079] In this example, a users object references a map called
mycache. Once one establishes a reference that the cache is managed,
then the entire sub-graph of an object is managed. That is if mycache is
managed, as a root, everything it points to is also managed Note that
Java primitives may also be assigned object IDs also. Once a managed
object has a reference to an unmanaged object, it makes everything that

it references become managed.

[0080] FIG. 6 illustrates a method for sharing object information
among virtual machines using operation logs. In a unique aspect of the
technology, object data can be shared logically and physically,
depending on the operation on the object by an application. By sharing
data using operations on any individual local object, each virtual
machine maintains a locally specific representation of object state. To
do this, the steps which were taken by a virtual machine to get its
memory to store object data are detected and logged, and those steps
are then performed at another virtual machine. For example, consider

that each virtual machine typically assigns a locally generated identifier

WO 2006/128112 PCT/US2006/020767

-24.-

for each instantiated object. When information associated with the
object, such as field level data is stored, the object identifier, as a key, is
hashed to determine a location (bucket) in a hash map in which the
information will be stored. However, since each virtual machine uses a
different local identifier for its local instance of the same object, each
virtual machine’s hash map will differ even though each hash map
represents the same object state. Thus, physically copying the hash
map data in one virtual machine’s memory, bit by bit, to the memory of
another virtual machine, would not successfully copy the underlying
object state information. A specific technique for achieving logical
sharing overcomes this problem, as follows.

[0081] As noted above in FIG. 3A, when application operations occur
at step 320 accessing or affecting a managed object, those operations
are detected at step 325 and communicated to the central manager at
step 330. The virtual machine (in this example VM1) is responsible for
updating and maintaining its own local representation of object state at
step 610. VM1 maintains a local representation of the states of the
objects which are instantiated by the application, including managed and

non-managed objects. This is a base function of the virtual machine.

[0082] Step 325 is performed by recording, for example, the method
calls or field set operations that the application code has performed.
Instead of keeping track of the actual object references, the transaction
log keeps track of the actions the application has done. Every time a
central manager need to create the object in a new VM or to make
changes to i, it can replay this log. For each action, such as when a
new object is created or a function (such as a put call) is performed, this
logical action is recorded and the physical steps written into a

transaction. Any new objects and their data is now recorded in the log.

WO 2006/128112 PCT/US2006/020767

-25.-

[0083] These transactions are stored in one format in the memory in
the virtual machine, then transmitted to the central manager (in, for
example, a serialized format) in the message in the communications
layer and deserialized at the central manager.

[0084] At step 330, VM1 updates the central manager. The updating
may occur from time to time at various points in the execution of the
application code. For example, the updating may occur after the
application updates one or more managed objects under a lock, as
discussed above. As noted briefly above, the instrumentation added to
the application code may include a
transactionmanager.committransaction() which takes the log built up in
the transaction through this whole process, and communicates it to the
central manager. The shipping may occur immediately or in a grouped
set of transactions, such as in a batch job.

'[0085] To perform the update, VM1 communicates a log, VMLog, to
the central manager. VM1 may delete the log and start a new log when
the central manager confirms receipt of the log. Any type of network
communication technique may be used. As mentioned, the data sharing
agent/library at each virtual machine may include functionality for
communicating with the central manager.

[0086] At block 630, the central manager processes the transactions
stored in the VMLog to update a local representation of the states of the
managed objects. Essentially, the operations such as method calls, with
asspciated field values, which were performed at VM1, are stored in a

data structure on the central manager.

[0087] A description of each object is provided on the central
manager. This description includes meta data defining the object’s
class, its fields and the field values. For a physical object, for example a

WO 2006/128112 PCT/US2006/020767

-26-

class “myclass” with four fields, the server description includes the
server class and [Ds for each field. For example, a physical object
includes the name of the class, the name of the class loader, fieldname,
field value pairs for literal fields, field name and referenced object ID
pairs for reference fields, object version, and possibly other information.
For logically managed objects, one needs to know what to do with
changes which may have occurred. A description of a logically
managed object in includes, for example, where the logically managed
object is a map, the contents of which may be a set of keys, collection of
| values, or set of key-value mappings. The order of a map is defined as
the order in which the iterators on the map's collection views return their
elements. For this example of a logically managed object, a
representation of the map is kept on the central manager. The
representation relates the object ID or literal keys to the corresponding
object ID or literal values. In addition, a logical action (such as a put) is
assigned a function ID which is interpreted by the central manager
allowing the central manger to create the appropriate mapping of keys to
values. In the case of other logically-managed classes, such as a list,
examples of logical actions are add and remove; for a map, actions
includes puts and gets; any number of logically managed actions may be
stored in this manner. The central manager's representation is not
another instance of each managed object, but merely a representation of
that object.

[0088] Each logical action performed on a logically managed object is
identified and the data associated with the logical action provided to the
central manager to update its representation. These logical actions are
passed to any other virtual machine in the cluster that currently has said
logically-managed object in its memory so they may be replayed against
its local instance of said managed object.

WO 2006/128112 PCT/US2006/020767

-27-

[0089] At block 635, the central manager updates the other virtual
machines in the cluster so that the state of the managed objects at VM1
is replicated at the other virtual machines. As noted above, depending
on whether the update is of a physically managed object or a logically
managed object, the transabtion may have a slightly different format. In
addition, there are two different scenarios for an update depending on
whether or not the update to the other virtual machines is an initial
update (decision block 640).

[0090] An initial update occurs when the central manager first
updates a virtual machine, in which case it is necessary to convey the
current state of the managed objects to the virtual machine. This may
occur after application startup or after a new virtual machine joins the
cluster. In one approach, the central manager can store each of the logs
received from VM1 (or any of a number of VMs) and provide them to the
other virtual machines to be played. However, this approach is
inefficient as many operations may change the same managed objects
repeatedly. Since only the most current state of a managed object is
relevant, and not the previous states it traversed to reach the current
state, it is more efficient for the central manager to generate a log of
operations (central manager log) from its representation of object state
(block 645). This approach is more efficient since only the operations
which are necessary to reach the current object state are generated. At
block 650, the central manager communicates the central manager log
to the other virtual machines and, at block 655, the virtual machines play
the central manager log to update their local representations of object
state. The operations in the central manager log, such as method calls
and field set operations with associated values, are performed at the
other virtual machines so that the state of the managed objects at the
central manager, and at VM1, is replicated at the other virtual machines.

WO 2006/128112 PCT/US2006/020767

-28-

An object graph at the other virtual machines is thereby updated so that
it is a replica of the object graph at the central manager and at VM1.

[0091] If an initial update of a virtual machine has already been
performed, then the subsequent updates can be incremental updates.
In this case, the central manager conveys the virtual machine log from
VM1 to the other virtual machines (block 660), and the other virtual
machines play the virtual machine log to update their local
representations of object state (block 665). Again, the object graphs at
the other virtual machines are thereby updated so that they are a replica
of the object graph at the central manager and at VM1. The updating of
the other virtual machines by the central manager may occur from time
to time. For example, the central manager may update the other virtual
machines when it receives an update from VM1.

[0092] Note that the process shown in FIG. 6 is performed at each of
the virtual machines in a given cluster, independént of the processes on
other servers. Thus, the central manager receives logs from the
different virtual machines and communicates the virtual machine logs, or
logs generated by the central manager, to the appropriate virtual
machines to maintain a consistent representation of the states of the

- managed objects across all of the virtual machines. Furthermore, by
maintaining current state information locally, the central manager can
update new virtual machines which are added to a cluster, and virtual
machines which come back online after being taken offline, such as for
maintenance.

[0093] Initial and incremental updates are illustrated further, as
follows, in FIG. 7 and FIG. 8, respectively.

[0094] FIG. 7 illustrates the sharing of object data from a first virtual
machine, in an initial update, using operation logs of the first virtual

WO 2006/128112 PCT/US2006/020767

-290-

machine, and an operation log of a central manager. Here, a virtual
machine “A” 710 sends a number of virtual machine logs to the central
manager 740 over time, as indicated by paths 712. When an initial
update of one or more of the other virtual machines is needed, the
central manager generates its own log of operations, central manager
log, and sends it to the other virtual machines, such as virtual machine
“B” 720 and virtual machine “C” 730 via paths 722 and 732, respectively.
Thus, one central manager log can represent the changes to object state
which result from multiple virtual machine logs.

[0095] FIG. 8 illustrates the sharing of object data from a first virtual
machine, in an incremental update, using an operation log of the first
virtual machine. Here, a virtual machine log sent from virtual machine
“A” 810 to the central manager 840 via path 812 is relayed to the other
virtual machines, namely virtual machine 820 and virtual machine 830,
via paths 822 and 832, respectively. That is, the central manager
provides a communication to virtual machine 820 and virtual machine
830 which includes the information from the virtual machine log provided
by virtual machine 810. In an alternative, peer-to-peer embodiment of
the technology, the virtual machine log from virtual machine 810 could
be sent directly by virtual machine 810 to the other virtual machines 820

and 830 rather than being relayed by the central manager.

[0096] FIG. 9 illustrates a method for sharing of field level object data
and logical operations among virtual machines. As noted above, field
level sharing of object data as well as sharing logical operations are
unique aspects of the technology.

[0097] By sharing object data at a field level of granularity, it is
possible to share changes to object state at a fine grained level. That is,

changes to specific fields of managed objects can be shared among

WO 2006/128112 PCT/US2006/020767

-30-

virtual machines without sending unnecessary information regarding
fields of managed objects which have not changed, or fields of
unmanaged objects. This approach minimizes the amount of
information which needs to be communicated between the central
manager and fhe virtual machines. For example, referring to the
“Address” object 540 in Fig. 5, assume the “Street” field is updated to a
value of “123 Main Street”. In this case, it would only be necessary to
provide updated values, in order for the central manager and the other
virtual machines to update their representations of object state. There is
no need to share the other fields of “Address”, such as “State” and
“Zipcode”, which did not change. Nor is there a need to share the states
of objects from which object 540 can be reached, such as objects 510,
520 and 513, which also did not change. An example process for
sharing of field level data among virtual machines follows.

[0098] When an operation on a managed object occurs in the
application (as in step 320 previously described), transactions are
created at step 902 in accordance with the foregoing description of steps
1315, 1320 and 1325. The information transmitted will depend on
. whether the object is a physically managed object or a logically
managed object (step 904). If the object is a physically managed object,
at block 915, field level changes to the managed objects are provided in
the transaction. That is, the changes are detected at a field level of
granularity. This may include, e.g., detecting field level data affected by
an application function. At block 920, a central manager uses the field
level data to update its local representation of object state. The
information provided at step 915 may include for a physical object, the
name of the class, the name of the class loader, fieldname and field
value pairs for literal fields, field name and referenced object ID pairs for
reference fields, object version, and possibly other information, as

WO 2006/128112 PCT/US2006/020767

-31-

discussed above.

[0099] At block 925, to perform an update of any other VM, the
central manager communicates the field level data to the other virtual
machines in the cluster and, at block 930, the other virtual machines use
field level data to update respective local instances of the managed
objects.

[00100] Similarly, if the transactions affect logically managed objects,
the transactions include logical operations at step 935. At block 940, a
central manager uses the method calls and other logical operations to
update its local representation of object state. At block 945, to perform
an update of any other VM, the central manager communicates the
logical operations to the other virtual machines in the cluster and, at
block 950, the other virtual machines replay those logical operations
against their respective instances of the managed objects to update the

state of those managed objects.

[00101] FIG. 10 illustrates a method for sharing object data among
virtual machines while maintaining object identity. In-a unique aspect of
the technology, where conventionally objects would be distributed by
maintaining additional copies of objects in, for example, a clustered Map,
the sharing technology maintains the unique identity of managed objects

by eliminating the need to copy manage objects themselves.

[00102] As noted above, when application operations occur at step
320 accessing or affecting a managed object, those operations are
detected at step 325. Each virtual machine (in this example VM1) is
responsible for updating and maintaining its own local representation of
object state at step 610. VM1 maintains a local representation of the
states of the objects which are instantiated by the application, including

managed and non-managed objects. The VM updates any change to a

WO 2006/128112 PCT/US2006/020767

-32-

local instance of a managed object at step 1015.

[00103] Step 325 is performed by recording, for example, the method
calls or field set operations that the application code has performed.
Instead of keeping track of the actual object references, the transaction
log keeps track of the actions the application has done. For each
action, at block 1025, data identifying the operations of a changed object
is included with the transaction. That is, for each transaction, an object
ID is generated at the client and, as noted above, is provided as part of
the field data for a physically managed object, as well as the operations
data for a logically managed object. Object references are thus
maintained in the local representation at the central manger and at any
other VM using the CM log to update its local representation of the
object. At block 1030, the central manager is updated. To berform the
update, VM1 communicates data identifying the object and the logical
operations to the central manager. At block 1035, the central manager
updates its local representation of managed objects using the object ID
and transaction ID data. At block 1040, the central manager
communicates data identifying the operations to the other virtual
machines and, at block 1045, the other virtual machines update existing
instances of the changed objects without creating new instances of the
objects. With this approach, object identity is maintained across the
virtual machines.

[00104] The central manager also provides various cluster wide
locking functionality. In one embodiment, both named manual locks
(named locks) and automatic locks (auto locks) are provided. Clustered
locks can span an arbitrary number of VMs. For automatic locking, the
CM globally locks any point where the application code uses, for
example, the Java “synchronized” keyword, to provide distributed

locking for applications where “synchronized” is already in use or where

WO 2006/128112 PCT/US2006/020767

-33-

the application is multi-thread safe. Named locks can be used with help
from developers for applications that were never designed to be
distributed and multi-threaded. Named locks specify which blocks of
code in any application should be locked globally.

[00105] Both auto locks and named locks are available in two different
modes, clustered locks and greedy locks. With clustered locks, the
virtual machine obtains a lock explicitly from the central manager each
time a lock is needed.

[00106] Figures 11A — 11D illustrate clustered locking.

[00107] At block 320 the application in the course of performing
operations will request a lock on a managed object A virtual machine
may request a lock when it encounters a block of code which uses the
Java key word “synchronized”, as mentioned previously. Alternatively,
the operator may use the management console to designate a block of
code of an application which does not use the keyword “synchronized”

as a method which invokes a request for the lock.

[00108] In one embodiment, both named manual locks and automatic
locks, are implemented. Administrators can use automatic locks, which
globally lock any point where the application code uses, for example,
the Java “synchronized” keyword, to provide distributed locking for
applications where “synchronized” is already in use or where the
application is multi-thread safe. Named locks can be used with help from
developers for applications that were never designed to be distributed
and multi-threaded. With named locks, users can specify which blocks of

code in an application should be locked globally.

[00109] At block 1115, VM1 sends a request for a lock to the central
manager. At block 1120, the central manager accesses its records to

WO 2006/128112 PCT/US2006/020767

-34-

determine if the lock on the object is currently available. For example,
the central manager may maintain a record listing object identifiers and
associated lock status, indicating whether there is a lock on an object
and, if there is a lock, which thread in which virtual machine has the lock,
and the type of lock, e.g., read, write or concurrent. A read lock allows
all instances of the application on the different virtual machines to have
concurrent read access but not write access to managed objects within
the scope of the given lock. A write lock allows one thread on one virtual
machine to have read and write access to managed objects within the
scope of the given lock, but prevents any other thread in any other
virtual machine from acquiring the given lock. A concurrent lock allows
multiple threads on multiple virtual machines to make changes to
managed objects at the same time. This lock maintains a stable view
within the transaction that the lock protects but allows write-write
conflicts between threads in the same or other virtual machines.
Concurrent locks should be used when performance is more important
then the possibility of write-write conflicts. In the case of a write-write
conflict, the last writer wins.

[00110] At decision block 1125, if the lock is not available, the central
manager waits until the lock becomes available. When the lock is
available, the central manager grants the lock to the requesting virtual
machine, at block 1135, and updates its records accordingly. If
applicable, at block 1140, the central manager blocks any other thread in
the same or other virtual machines from taking control of the lock. At
block 1145, the virtual machine may perform any operation under the
lock locally without CM interaction.

[00111] After using the lock, the virtual machine informs the central
manager that it is releasing it, at block 1150. At block 1155, the central
manager updates its records accordingly, and grants the lock to the next

WO 2006/128112 PCT/US2006/020767

-35-

thread in contention for that lock in any connected virtual machine, if
any. That is, the lock is granted to any other thread in any virtual
machine that is blocked in contention for the lock.

[00112] In another alternative, the lock is a “greedy” lock, in which
case the virtual machine holds the lock so that threads local to that
virtual machine may acquire and release the lock repeatedly (at step
1145) without communicating with the central manager until the central
manager commands it to release the lock. With a greedy lock, VM1
holds the lock not only for the duration of one synchronized block, but
until the lock is recalled by the central manager, such as if another

virtual machine requests the lock from the central manager.

[00113] FIGS. 12A — 12D illustrate the operation of a greedy lock.
Recall with a clustered lock that VM1 releases the lock after a specified
duration of work, one and only one block of code protected by that lock.
With a greedy lock, VM1 may continue to process as many blocks of
code protected by that lock as it needs, in a local lock context, until the
lock is recalled by the central manager, such as if another virtual
machine requests the lock from the central manager.

[00114] Figure 12A is equivalent to Figure 11A up to step 1135.
Figure 12A may be read in conjunction with illustrations in FIGS 12B —
12D. Once a greedy lock is granted to VM1, at step 1240, VM1 holds
the lock and may access and release the lock locally without CM
interaction. At step 1245, the CM receives a request for the lock from
another VM. At step 1250, the central manager will request that VM1
release the lock and when VM1 releases the lock at step 1255, the CM
updates its records accordingly at step 1260 and grants the lock to the

requesting VM.

[00115] Figure 12E shows a greedy lock state machine. This diagram

WO 2006/128112 PCT/US2006/020767

-36-

uses two VMs as a simplification. The state may be initialized at the
Lock Requested state in VM1. The sole exit transition is to the lock state
maintained in the central manager. Two transitions can exit this state,
No Others In Contention, meaning no other virtual machines are in
contention for the lock, or Others in Contention, meaning other virtual
machines are in contention for the lock. If the No Others In Contention
state is true, the VM will transition to the Lock Entered state, transition
to the Lock Complete state, and back to the Lock Requested state. From
here the transitions and states remain the same for VM1, in a loop, until
such point where another VM requests the lock and the Others In
Contention transition is followed out of the Lock Requested state to the
Blocked state on the central manager. At this point the Central Manager
blocks the VM1 from moving to another Lock Entered state and instead
hands the Greedy Lock to the VM2. VM1, which then can enter its own
series of Lock Requested — check Lock — Lock Entered — Lock Complete

state fransitions until another VM requests the greedy lock.

[00116] The following pseudo-code provides a further illustration of the
concepts described herein. Assume the following pseudo-code
represents application code which has been instrumented in accordance
with the discussion of step 305. In this example, a new thread is adding
a new object and the agent will tfraverse the graph of the person object
and make all the objects it refers to managed and give them all object
IDs. A record of these new objects is placed into the transaction log
which will be forwarded to the central manager. Note that each VM
gets a batch of central manager level object IDs ahead of time so that it
can assign them to the objects. For example, each VM may get any
number of new object IDs that it can assign locally at will. If it runs out of
object IDs, it can request additional IDs from the central manager. Also
note that the VM's internal object ID does not affect the central manager

WO 2006/128112 PCT/US2006/020767

-37-

or the central manager level Object ID. The code below may be
operated on by a thread on any virtual machine.

Class Cache {
/* Define the object “cache” */

Map myCache=new HashMap()
I*Define the object “myCache” as a empty HashMap*/

public void put(String name, User user) {
/* Call the “put” method */

synchronized(myCache) {

I* Request lock on myCache at virtual machine */

lockManager.getLock(myCache)

I* Request lock on myCache from
central manager (this code is added by
instrumentation) */

transactionManager.startTransaction()
[* Start a transaction at the virtual
machine (this code is added by

instrumentation) */

myCache.put(name, user)
/* Call the put method for “myCache” */.

transactionManager.commitTransaction ()

WO 2006/128112 PCT/US2006/020767

-38-

[* Commits the transaction log to the
central manager (this code is added

by instrumentation)*/

lockManager.releaseLock(myCache)

/* Release the lock on myCache at
virtual machine (this code is added by
instrumentation) */

[00117] First, assume that at VM1 there are two threads active both
asking for a lock on the object "myCache". In this example, the object
myCache has been identified as a managed object. A first thread will
be granted the lock by virtual machine VM1. Next, the data sharing
agent indicates to the central manager that there is a thread on VM1 that
has requested a lock on myCache. The agent requests a lock from the
server. If no other virtual machine has the lock, the central manager will
grant the lock to the VM.

[00118] At this point, the application code at VM1 is able to move on.
In the virtual machine, the agent starts a transaction for this thread. The
agent will now keep track of logical actions and field changes to
managed objects performed by thread one. This occurs whenever a

thread obtains a lock on a managed object.

[00119] Once this first thread has received a lock and started its
transaction, now it is able to execute the operations in the protected
block of code as originally defined by the application code. Suppose,

for example, a second VM with another thread trying to execute the

WO 2006/128112 PCT/US2006/020767

-30-

same block of code protected by the same lock on a different virtual
machine. There are now two threads locally that are synchronized by
VM1, and a third thread on VM2 trying to access the same object. The
native lock manager of VM2 will allow this lock, but when the function
“getLock” is performed on VM2, the central manager will not grant VM2
the lock because it is already held by thread one in VM1.

[00120] Threads two and three are blocked trying to get a lock.
Thread two is on the same VM as thread one, so it is blocked trying to
get the VM1 object monitor from the native lock manager of VM1.
Thread three has been given the local monitor on VM2 but is blocked
trying to get the clustered lock from the central manager.

[00121] The application code can then perform the put operation (in
this example) on the object once the lock is granted. Once this is
completed, the transactionmanager.committransaction() takes the log
built up in the transaction and ships it to the central manager. Next,
since thread one is finished with the lock, the
lockManager.releaseLock(myCache) releases the clustered lock.
Thread one exits the protected block of code and has now completed its
work.

[00122] Once thread one in VM1 has released the local lock, the
native lock manager in VM1 allows thread two to obtain the local lock. If
the central manager grants thread two the clustered lock, thread two
executes the same block of code against another user object. While that
is happening, thread three at VM2 is still blocked in contention for the
clustered lock from the server, even though it has been granted the local
lock by the native lock manager in VM2. Thread three remains blocked
until thread two completes its execution of the protected block of code

and releases the lock. At such time, the central manager awards the

WO 2006/128112 PCT/US2006/020767

-40-

clustered lock to thread three in VM2. Because thread three is in a
separate VM than threads one and two, the transactions created by
threads one and two must be applied, in order, at VM2 to bring the
changed managed objects up to date before thread three is allowed to
execute the protected block of code. Once the transactions created by
VM1 under the scope of the clustered lock have been applied in VM2,
thread three is allowed to execute the protected block of code. When
thread three has completed the protected block of code, the transaction
it created is committed and the clustered lock is released by thread
three. The clustered lock returns to its uncontended state.

[00123] FIG. 13 illustrates a method for signaling between threads in
separate virtual machines by extending thread signaling mechanisms
built into the virtual machine to have a clustered meaning. In a unique
aspect of the technology, thread signaling, such as object.wait() and
object.notify() and thread.join() methods in the Java Virtual Machine, is
extended to apply to all threads in all virtual machines in the cluster. As
mentioned previously, synchronization of multiple threads on a single
virtual machine is conventionally achieved using locks that allow only
one of the threads in that virtual machine to execute a protected block of
code at a time. As mentioned previously, this conventional locking is
extended to have a clustered meaning. In addition, a technique is
required for signaling waiting threads which may be distributed across

different virtual machines.

[00124] For example, if a thread currently holds the lock on an object,
it may call “object.wait()” which causes the calling thread to release that
object’s lock and pause execution. Another thread may then acquire the
lock on that object. It may then call the Java method “object.notify()”
which will notify a single thread waiting on that object. It may also call

the Java method “object.notifyAll()” which will notify all threads waiting

WO 2006/128112 PCT/US2006/020767

-41-

on that object. Waiting threads that are notified in this way resume
execution and go back into active contention for that object’s lock.
While this is satisfactory in a single-virtual machine environment, a
technique is needed for signaling threads on different virtual machines to
coordinate the pausing and resuming of thread execution. A technique
is needed for extending existing thread signaling mechanisms such as

b 13

Java’s “object.wait()” and “object.notify()” methods to apply to all threads
in all vitual machines in the cluster as they do to threads in the same
virtual machine. See, for example,
http://java.sun.com/docs/books/jls/third_edition/html/memory.html#17.8

An example of such a technique follows.

[00125] In a unique aspect of the technology, the native thread
signaling utilities of a virtual machine are extended to the cluster. These
can include, in a Java context, synchronization (grabbing the lock in the
first place), wait and notify, the Thread.join() method, and the like. In
other virtual machine contexts, other thread signaling technologies may
be extended.

[00126] In FIG. 13, this feature of the technology is described with
respect to the object.wait() and object.notify() utilities, but the technology
is not limited to these signaling utilities. At block 1300, instrumented
application byte code running in a thread at a first virtual machine
implements a synchronized call on managed object. After performing
one or more operations defined in the application code, an object.wait()
call is encountered in the code at step 1305. The thread will now
release the lock it has on that object, pause execution and await
notification at step 1320. Another thread may then acquire that object’s
lock. This thread may be on the same virtual machine as that of steps
1300 or, in accordance with the technology, a different virtual machine.
At step 1315, the second thread calls object.notify() and, assuming that

WO 2006/128112 PCT/US2006/020767

42.

the thread is executing on a different virtual machine, the notify signal is
passed to the central manager at step 1318. At step 1325, the central
manager distributes the notify signal to a waiting threads or all waiting
threads.

[00127] Once the notification is sent, step 1320 is true and the first
thread will then request access to a lock at step 1330. Any other
threads which were waiting on the notification will likewise resume
execution and request access to the lock at step 1335. At step 1340,
the central manager will perform lock management in accordance with
the foregoing discussions.

[00128] Note that while example implementations are discussed in
which virtual machines run on servers, which is a suitable approach for
storing large amounts of data for a web-based application for instance,
any type of computing device may be used, including personal
computers, minicomputers, mainframes, handheld computing devices,
mobile computing devices, and so forth. Typically, these computing
devices will include one or more processors in communication with one
or more processor readable storage devices, communication interfaces,
peripheral devices, and so forth. Examples of storage devices include
RAM, ROM, hard disk drives, floppy disk drives, CD ROMS, DVDs, flash
memory, and so forth. Examples of peripherals include printers,
monitors, keyboards, pointing devices, and so forth. Examples of
communication interfaces include network cards, modems, wireless
transmitters/receivers, and so forth. In some embodiments, all or part of
the functionality is implemented in software, including firmware and/or
micro code, that is stored on one or more processor readable storage
devices and is used to program one or more processors to achieve the
functionality described herein.

WO 2006/128112 PCT/US2006/020767

43-

[00129] The foregoing detailed description of the technology herein
has been presented for purposes of illustration and description. It is not
intended to be exhaustive or to limit the technology to the precise form
disclosed. Many modifications and variations are possible in light of the
above teaching. The described embodiments were chosen in order to
best explain the principles of the technology and its practical application
to thereby enable others skilled in the art to best utilize the technology in
various embodiments and with various modifications as are suited to the

particular use contemplated.

[00130] Although the subject matter has been described in language
specific to structural features and/or methodological acts, it is to be
understood that the subject matter defined in the appended claims is not
necessarily limited to the specific features or acts described above.
Rather, the specific features and acts described above are disclosed as

example forms of implementing the claims.

WO 2006/128112 PCT/US2006/020767

-44-
CLAIMS
We claim:
1. A computer-implemented method for maintaining

consistent data at different virtual machines, comprising:

configuring one or more managed objects;

identifying .operations which may affect the one or more managed
objects in a first instance of an application on a first virtual machine;

detecting application operations performed on the one or more
managed objects by the first instance of the application which affect
state information of the managed objects; and

communicating the application operations to a central manager
for use in replicating the managed object state information at a second
virtual machine.

2. The computer-implemented method of claim 1, wherein:

the step of configuring comprises defining a root object in an
object graph at the first virtual machine, the object graph including at
least one root object and objects which can be reached from the at least
one root object.

3. The computer-implemented method of claim 2, wherein:
the state information is replicated by updating a local instance of

the managed object at the second virtual machine with said operations.

4, The computer-implemented method of claim 1, wherein the
events comprise method calls.

WO 2006/128112 PCT/US2006/020767

-45-

5. The computer-implemented method of claim 1, wherein the
events comprise field set operations.

6. The computer-implemented method of claim 1, wherein the
step of identifying includes:

instrumenting byte code of the first instance of the application to
perform the steps of identifying and detecting.

7. The computer implemented method of claim 1, wherein the
step of identifying includes providing the virtual machine with a facility to
incorporate the configuration and output operations affecting the state of
a managed object.

8. A computer-implemented method for maintaining
consistent data at different virtual machines, comprising:

receiving application operations describing events affecting a
local instance of a managed object state from a first virtual machine;

creating a representation of each of the managed objects using
the application operations, the representation describing the object state;
and

communicating update operations describing the object state
information to at least a second virtual machine to replicate the
managed object state in a local instance of the managed object on the
second virtual machine.

9. The computer-implemented method of claim 8, wherein:

the managed objects are identified by an object graph at the first
virtual machine which includes at least one root object and objects
reachable from the at least one root object.

WO 2006/128112 PCT/US2006/020767

-46-

10. The computer-implemented method of claim 9, wherein:

the application operations comprise field set operations.

11. The computer-implemented method of claim 8, wherein:

the application operations comprise method calls.

12. The computer-implemented method of claim 8, wherein:
the managed objects are identified and detected by instrumented

byte code of the first instance of the application.

13. The computer implemented method of claim 8, wherein the
managed objects are identified by the virtual machine having a facility to
incorporate the configuration and output operations affecting the state of
a managed object.

14. The computer-implemented method of claim 8, further
including the steps of: -

receiving application operations describing a local instance of a
managed object state from the second virtual machine;

updating the representation the managed object; and

communicating update operations to at least the first virtual

machine.

15. A computer-implemented method for maintaining
consistent data at different virtual machines, comprising:
on a first virtual machine,
identifying operations which may affect state in one or
more managed objects in a first instance of an application on a
first virtual machine;

WO 2006/128112 PCT/US2006/020767

47-

detecting application operations performed on the one or
more managed objects by the first instance of the application
which affect the state information; and

communicating the application operations to a central
manager for use in replicating the managed object state
information at a second virtual machine, and
on the central manager,

creating a representation of each of the managed objects
using the application operations, the representation describing the
object state; and

communicating update operations describing the object
state information to at least a second virtual machine to replicate
the managed object state in a local instance of the managed
object on the second virtual machine.

16. The computer-implemented method of claim 15, wherein:
the step of identifying includes defining a root object in an object
graph at the first virtual machine which includes at least one root object

and objects reachable from the at least one root object.

17. The computer-implemented method of claim 16, wherein:
the state information is replicated by updating local objects at the
second virtual machine using the application operations.

18. The computer-implemented method of claim 15, wherein

the events comprise method calls.

19. The computer-implemented method of claim 15, wherein

the events comprise field set operations.

WO 2006/128112 PCT/US2006/020767

-48-

20. The computer-implemented method of claim 15, wherein
the step of identifying comprises:

instrumenting byte code of the first instance of the application to
perform the steps of identifying and detecting.

21. The computer implemented method of claim 15, wherein
the step of identifying includes providing the virtual machine with a
facility to incorporate the configuration and output operations affecting
the state of a managed object.

22. A method for distributing thread signaling amongst virtual
machines in a cluster, comprising:

receiving a signal from a first virtual machine indicating a method
call on a method in a first thread which is dependent on an action of a
second thread:;

monitoring at least the second thread for completion of the action;

providing a signal to the first thread on the first virtual machine
indicating the action of the second thread; and

wherein the second thread is operation on a second virtual
machine.

23. The method of claim 22, wherein action is a method call.

24. The method of claim 22, wherein the method call is a
synchronized method.

25. The method of claim 23, wherein the method call is a wait
method.

WO 2006/128112 PCT/US2006/020767

-49-

26. The method of claim 23, wherein the method is a notify

method.
27. The method of claim 22, wherein the action is a join.

28. A computer-implemented method for providing signaling
between threads on different virtual machines, comprising:

receiving a notification that a first thread on a first virtual machine
signaling an action on a method in the thread; and

informing one or more additional virtual machines, on which one
or more respective instances of the application are running and having

one or more respective threads of the signal by the first thread.

29. The method of claim 28, wherein the notification is for
completion of the action.

30. The method of claim 23, wherein action is a synchronized
method.

31. The method of claim 23, wherein the action is a notify
method.

32. A computer-implemented method for distributing signaling
between threads on different virtual machines, comprising:

notifying a central manager that a first thread running at a first
virtual machine is dependent on a second thread,;

receiving a notification from the central manager indicating that
the second thread has performed an action; »

responsive to the notification, the first thread continuing operation;

wherein the second thread is operating on a second virtual machine.

WO 2006/128112 PCT/US2006/020767

-B0-

33. The computer implemented method of claim 32,wherein

the step of notifying includes entering a wait state.
34. The method of claim 32, wherein notification is a notify.

35. The method of claim 32, wherein the notification is a notify
all.

36. The method of claim 32, wherein the notification is a join.

37. A computer-implemented method for providing signaling
between threads on different virtual machines, comprising:

receiving a signal from a first virtual machine on which a first
thread is running;

determining whether the signal should be distributed to other
threads in a cluster of virtual machines; and ,

responsive to the determining step, providing the signal {o at least
a second virtual machine.

38. The computer-implemented method of claim 37, wherein
the signal is a notify.

39. The computer-implemented method of claim 37, wherein
the signal is a notify all.

40. The computer-implemented method of claim 37, wherein
the step of determining includes identifying one or more managed
objects affected by the thread.

WO 2006/128112 PCT/US2006/020767

-51-

41. A computer-implemented method for maintaining
consistent data at different virtual machines, comprising:

monitoring events affecting the state of a managed object at a
first virtual machine;

creating a transaction representing at least one event affecting
the state of the managed object, the transaction being defined by a start
transaction boundary and a stop transaction boundary;

outputting the transaction to at least a second virtual machine
having an instance of the managed object.

42. The computer-implemented method of claim 41, wherein
the start transaction boundary includes a monitor enter.

43. The computer-implemented method of claim 41, wherein

the stop transaction boundary includes a monitor exit.

44. The computer-implemented method of claim 41, wherein
the first transaction boundary occurs when a thread crosses a first block
of application code, and is concluded when the thread crosses a second
block of application code.

45. The computer-implemented method of claim 41, wherein:
the transaction represents a set of logical or field set changes to
local instances of managed objects between the transaction boundaries.

46. A computer-implemented method for maintaining
consistent local objects at different virtual machines, comprising:
receiving at least one transaction from a first virtual machine, the

transaction representing at least one event affecting the state of the

WO 2006/128112 PCT/US2006/020767

-52-

managed object, the transaction being defined by a start transaction
boundary and a stop transaction boundary;
outputting the transaction to at least a second virtual machine

having an instance of the managed object.

47. The computer-implemented method of claim 46, wherein
the start transaction boundary includes on a monitor enter.

48. The computer-implemented method of claim 47, wherein
the stop transaction boundary includes on a monitor exit.

49. The computer-implemented method of claim 46, wherein
the first transaction boundary occurs when a thread crosses a first block
of application code, and is concluded when the thread crosses a second

block of application code.

50. The computer-implemented method of claim 46, wherein:
the transaction represents a set of logical or field set changes to

local instances of managed objects between the transaction boundaries.

51. A computer-implemented method for maintaining
consistent data at different virtual machines, comprising:

receiving at a first virtual machine on which a first instance of an
application is running, at least one transaction representing at least one
event affecting the state of a managed object, the transaction being
defined by a start transaction boundary and a stop transaction boundary;

updating a local representation of application objects in a local
thread memory at said second virtual machine.

WO 2006/128112 PCT/US2006/020767

-53-

52. The computer-implemented method of claim 51, wherein
the start transaction boundary includes on a monitor enter.

53. The computer-implemented method of claim 52, wherein
the stop transaction boundary includes on a monitor exit.

54. The computer-implemented method of claim 52, wherein
the first transaction boundary occurs when a thread crosses a first block
of application code, and is concluded when the thread crosses a second
block of application code.

55. The computer-implemented method of claim 54, wherein:
the transaction represents a set of logical or field set changes to
local instances of managed objects between the transaction boundaries.

56. The computer implemented method of claim 54, wherein
the application code is instrumented at byte code level to define the first

and second transaction boundaries.

57. The computer implemented method of claim 54, wherein
the application code is interpreted by the virtual machine to define the
first and second transaction boundaries. ‘

58. A computer-implemented method for maintaining object
identity at different virtual machines, each virtual machine having a local
instance of a managed object in memory comprising:

detecting operations performed by a first virtual machine on any
local instance of a managed object;

creating a transaction including the operation and an object
identifier referencing the managed object; and

WO 2006/128112 PCT/US2006/020767

-54-

forwarding the transaction to all other virtual machines.

59. The computer-implemented method of claim 58, wherein
the transaction references operations on the managed object in relation
to the object identifier.

60. The computer-implemented method of claim 58, wherein
the transaction references at least a second object identifier of a second
managed object, and the information comprises a series of operations to
be performed on the local instance of each managed object at other
virtual machines.

61. The computer-implemented method of claim 58, wherein:

a second virtual machine uses the object identifier to reference a
local instance of the managed object to update the local instance of
each changed managed object.

62. The computer-implemented method of claim 58, wherein
the step of forwarding includes forwarding the transaction to a central
manager, the central manager maintaining a meta-data central
representation of the object, and the central manager updating the
central representation of the object using the object identifier and the
operations.

63. The computer-implemented method of claim 62, wherein
the transaction includes an operation identifier, and the operation
identifier is used by the central manager to update the central

representation of the managed object.

WO 2006/128112 PCT/US2006/020767

-55-

64. A computer-implemented method for maintaining local
instance object identity at a plurality of virtual machines, comprising:

receiving, from a first virtual machine, a transaction identifying
operations which are performed by the application on local instances of
a managed object at said first virtual machine and an object identifier
referencing the managed object;

maintaining a central representation of the object, using the object
identifier and the operations. .

65. The computer-implemented method of claim 64 further
including the step of forwarding the transaction to all other virtual

machines in a cluster having a local instance of the managed object.

66. The computer-implemented method of claim 64, wherein
the central manager updates the central representation of the object
upon receiving the transaction.

67. The computer-implemented method of claim 65, wherein
the transaction results from detecting operations performed by a first

virtual machine on any local instance of a managed object.

68. The computer-implemented method of claim 67, wherein
the transaction references operations on the managed object in relation
to the object identifier.

69. The computer-implemented methqd of claim 68, wherein
the transaction references at least a second object identifier of a second
managed object, and the information comprises a series of operations to
be performed on the local instance of each managed object at other

virtual machines.

WO 2006/128112 PCT/US2006/020767

-56-

70. The computer-implemented method of claim 65, wherein
the transaction includes an operation identifier, and the operation
identifier is used by the central manager to update the central

representation of the managed object.

71. A computer-implemented method for maintaining local
object identity at a first virtual machines, comprising:

receiving a transaction identifying operations performed by a
second virtual machine on a local instance of a managed object at the
first virtual machine, the transaction including the operation and an
object identifier referencing the managed object;

updating a local instance of the managed object at the first virtual
machine using the object identifier to identify the local instance.

72. The computer-implemented method of claim 71, further
including the steps of:

detecting operations performed by a first virtual machine on any
local instance of the managed object;

creating a transaction including the operation and an object
identifier referencing the managed object; and

forwarding the transaction to the second virtual machine.

73. The computer-implemented method of claim 71, wherein
the transaction is received from a central manger, the central manager
maintaining a meta-data central representation of the object, and the
central manager updating the central representation of the object using
the object identifier and the operations.

WO 2006/128112 PCT/US2006/020767

-57-

74. The computer-implemented method of claim 73, wherein
the transaction includes an operation identifier, and the operation
identifier is used by the central manager to update the central
representation of the managed object.

75. The computer-implemented method of claim 71, wherein
the transaction results from detecting operations performed by the

second virtual machine on any local instance of a managed object.

76. A computer-implemented method for maintaining
consistent data at different virtual machines, comprising:

defining one or more managed objects on a instance of a virtual
machine in a cluster of virtual machines, each having an instance of an
application;

detecting an object field change in a managed object at a first
virtual machine;

distributing said field change to at least a second virtual machine
in the cluster having a local instance of the managed object.

77. The computer-implemented method of claim 76, further
including:

creating a central representation of managed objects at a central
manager, and

replicating or object field data change at said central
representation.

78. The computer implemented method of claim 77, wherein
the step of distributing includes forwarding information from the central
manager to replicate the field change in a local instance of the managed
object on at least the second virtual machine.

WO 2006/128112 PCT/US2006/020767

-58-

79. The computer-implemented method of claim 76, further
comprising:

receiving information regarding detected changes to managed
objects by one or more virtual machines in the cluster.

80. The computer implemented method of claim 76, wherein
the step of defining includes identifying a root managed object, and the
step of detecting includes detecting new managed objects which are
children of said root object.

81. A computer-implemented method for maintaining
consistent data at clustered virtual machines, comprising:

maintaining a central representation of one or more managed
objects instantiated ate one or more of the clustered virtual machines;

receiving information including at least a field data change in a
managed object from a first virtual machine; and

sharing the information with at least a second virtual machine to
replicate the changes to the local instance of the one or more managed
objects at the second virtual machine.

82. The computer-implemented method of claim 81, wherein:
the received information includes an operation on the field level
data affected by an invoked method.

83. The computer-implemented method of claim 81, further
including:
replicating said field data change in said central representation.

WO 2006/128112 PCT/US2006/020767

-59-

84. The computer-impiemented method of claim 81, wherein
the step of sharing comprises:
sending a transaction identifying the field data change to said at

least second virtual machine.

85. The computer implemented method of claim 84, further
including the steps of defining a set of managed objects, including
identifying a root managed object, and the step of receiving includes
receiving information identifying newly created managed objects which
are children of said root object.

86. A computer-implemented method for maintaining
consistent data at clustered virtual machines, each virtual machine
having an instance of an application, comprising:

receiving at a first virtual machine information comprising at least
a field change to a local instance of a managed object, the information
resulting from a change to a local instance of the managed object at a
second virtual machine; and

replicating the changes in the local instance of the managed
objects at the first virtual machine.

87. The computer implemented method of claim 86, wherein

the step of receiving includes receiving from a central manager.

88. The computer-implemented method of claim 87, wherein:
the central manager includes a central representation of the
managed objects and uses the information to replicate the changes at

the field level of granularity at the central representation of the objects.

89. The computer-implemented method of claim 86, wherein:

WO 2006/128112 PCT/US2006/020767

-60-

the information identifies an operation on the field data affected.

90. The computer-implemented method of claim 86, wherein:
only changes to objects which are identified as managed objects
at the second virtual machine are detected.

91. The computer-implemented method of claim 86, further
comprising:

instrumenting byte code of the first instance of the application to
perform the receiving and using.

92. The computer implemented method of claim 86, wherein
the step of receiving includes receiving information identifying newly
created managed objects which are children of a root object.

93. The computer implemented method of claim 89, wherein
the central representation is a meta-data representation of each

managed object in the cluster.

94. A computer-implemented method for maintaining
consistent data at different virtual machines, comprising:
creating a transaction including a logical operation affecting a state of a
local instance of a managed object at a first virtual machine; and
communicating the transaction to at least a second virtual machine

having an instance of the managed object.

95. The computer implemented method of claim 94, wherein

the step of communicating is performed by a central manager.

WO 2006/128112 PCT/US2006/020767

B61-

96. The computer-implemented method of claim 94, wherein
the transaction comprises at least one action performed by an

application in the first virtual machine on a managed object.

97. The computer-implemented method of claim 96, wherein a

log including a series of transactions is communicated.

98. The computer-implemented method of claim 97, wherein
the log is applied to a central representation of the managed objects
maintained on a central manager.

99. The computer-implemented method of claim 95, wherein:
the central manager creates a central representation of the states of all
managed objects and communicates the state to the second virtual
machine.

100. The computer-implemented method of claim 99, wherein:
the central manager creates a log of actions to create a local
instance of the managed object on the second virtual machine when no

managed objects exist on the second virtual machine.

101. The computer-implemented method of claim 99, wherein
the second virtual machine replays the operation on a local instance of

the managed objects at said second virtual machine.

102. The computer-implemented method of claim 95, wherein:
the first virtual machine and the central manager each maintain a
respective local representation of the managed objects according to

respective locally generated object identifiers.

WO 2006/128112 PCT/US2006/020767

-62-

103. The computer-implemented method of claim 94, wherein:
the first virtual machine, central manager and second virtual machine
each maintain a respective local representation of the states of the
managed objects according to respective locally generated object
identifiers.

104. The computer-implemented method of claim 94, wherein:

the step of creating is performed at the first virtual machine;

the method includes transmitting the transaction to a central
manager; and

the step of communicating is performed by the central manager.

105. The computer-implemented method of claim 94, wherein a
plurality of virtual machines are provided and wherein the step of
communicating includes providing ones of said objects in the logical
representation to a subset of said virtual machines.

106. A computer-implemented method for maintaining
consistent data at different virtual machines, comprising:
receiving information including a logical action on at least one managed
object by a first instance of an application running at a first virtual
machine; and

communicating the logical action to at least a second virtual machines.

107. The computer-implemented method of claim 106, wherein
the step of receiving includes receiving information from a first virtual
machine on which a first instance of an application is running, and
applying the information to a central representation of the managed
object.

WO 2006/128112 PCT/US2006/020767

-63-

108. The computer-implemented method of claim 107, wherein

the information comprises a series of logical actions.

109. The computer-implemented method of claim 107, wherein:
the information received comprises a series of transactions comprising
logical actions which are performed while the first instance of the

application accesses at least one of the managed objects.

110. The computer-implemented method of claim 107, wherein:
the logical action provided to at least said second virtual machine
includes a set of logical actions to update a local instance of the

managed objects at the second virtual machine.

111. The computer-implemented method of claim 107, further
including the step of updating the central representation of the states of
the managed objects as additional information identifying additional

logical actions is received from a first virtual machine.

112. The computer-implemented method of claim 111, further
comprising:
using the central representation of the states of the managed objects to
generate a log of transactions; and
wherein the step of communicating includes providing the log of logical
actions to the second virtual machine.

113. A computer-implemented method for maintaining
consistent data at different virtual machines, comprising:
receiving one or more logical actions affecting the state in one or more
managed objects in a first virtual machine; and

WO 2006/128112 PCT/US2006/020767

-B4-

applying the logical actions to update a local instance of managed
objects at the first virtual machine .

114. The computer-implemented method of claim 113, wherein:
the logical actions include operations identified by the first virtual
machine of the states of the managed objects.

115. The computer-implemented method of claim 113, wherein

the logical actions and provided by a central manager.

116. The computer-implemented method of claim 115, wherein
the central manager maintains a central representation of the states of

the managed objects.

117. A computer-implemented method for controlling access to
objects by different virtual machines in a cluster, comprising:

detecting when a first instance of an application running at a first
virtual machine requests a lock affecting managed object,

~ responsive to the detecting, communicating a request to a central

manager for the lock, the central manager determining whether the lock
is available; and

receiving an indication from the, central manager that the lock is

granted when the central manager determines that the lock is available.

118. The computer-implemented method of claim 117, wherein
the method further includes the step of:
informing the central manager that the first instance of the

application is releasing the lock.

WO 2006/128112 PCT/US2006/020767

-65-

119. The computer-implemented method of claim 117, further
comprising:

associating an identifier with the managed object which is unique
across at least the first virtual machine and any other virtual machine in
the cluster and wherein the request includes the identifier.

120. The computer-implemented method of claim 119, wherein:
the central manager uses the identifier in the determining of

whether the lock is available.

121. The computer-implemented method of claim 117, wherein:
the detecting, communicating and receiving steps are performed

at the first virtual machine.

122. The computer-implemented method of claim 117, wherein
the method further includes:

receiving the indication from the central manager when no other
instance of the application running at another virtual machine which is
managed by the central manager currently has a lock on the managed
object.

123. The computer-implemented method of claim 117, wherein:
the first instance of the application requests the lock when it

enters a synchronization block of code.

124. The computer-implemented method of claim 117, wherein:
the first instance of the application releases the lock when it exits
a synchronized block of code and communicates the lock release to the

central manager.

WO 2006/128112 PCT/US2006/020767

-66-

125. The computer-implemented method of claim 117, wherein:

the lock comprises a write lock which allows the first instance of
the application to have write access to the managed object but prevents
any other instance of the application running at any other virtual machine
that is managed by the central manager from having write access to the
managed object.

126. The computer-implemented method of claim 117, wherein:
the lock comprises a concurrent lock which allows multiple virtual

machines to make changes to managed objects at the same time.

127. A computer-implemented method for controlling access to
objects by different virtual machines, comprising:

communicating a request for a lock affecting a managed object at
a first instance of an application running at a first virtual machine;

receiving a message from a central manager indicating that the
lock is granted, when the central manager determines that the lock is
available; and

repeatedly holding and releasing the lock until a command is
received from the central manager to release the lock.

128. The computer-implemented method of claim 127, wherein:
the communicating and receiving are performed at the first virtual

machine.

129. The computer-implemented method of claim 127, wherein:
the step of communicating occurs when first instance of the

application accesses a synchronized method.

WO 2006/128112 PCT/US2006/020767

-B7-

130. The computer-implemented method of claim 127, wherein
the
step of communicating occurs when the application accesses a

named lock.

131. The computer-implemented method of claim 127, wherein:

the central manager provides the command to the first instance of
the application when another instance of the application at another
virtual machine is waiting to obtain the lock.

132. The computer-implemented method of claim 127, wherein:
the first instance of the application releases the lock, responsive
to the command, when it exits a synchronization method.

133. A computer-implemented method for controlling locks in a
virtual machine cluster, comprising:

receiving from a first instance of an application running at a first
virtual machine, a request for a lock affecting a managed object;

responsive to the request, determining whether any other
instance of the application running at any other virtual machine currently
has the lock; and

informing the first virtual machine of whether the lock is granted
based on said determining step.

134. The computer-implemented method of claim 133, further
including the step of communicating a message to the first virtual

machine indicating that the lock is granted.

135. The computer-implemented method of claim 133, wherein:

WO 2006/128112 PCT/US2006/020767

-68-

the step of informing comprises informing the first virtual machine
the lock is not granted if any virtual machine in the cluster currently has

a lock until said virtual machine releases the lock.

138. The computer-implemented method of claim 135, further
includes:

arbitrating requests for the lock by all instances of the application
so that the lock is granted to only one instance of the application at a
time.

137. The computer-implemented method of claim 133, further
including the step of receiving a request from a second virtual machine
requesting a lock previously granted to a virtual machine and denying
the request.

138. The computer-implemented method of claim 137, further
comprising:
receiving a notification from the first virtual machine holding a lock

indicating that the first instance of the application is releasing the lock.

139. The computer-implemented method of claim 138, further
including the step of notifying the second virtual machine that the lock is

granted to said virtual machine.

140. The computer-implemented method of claim 133, wherein
the method further includes receiving a request from a second virtual
machine for a lock held by a first virtual machine, and commanding the
first virtual machine to release the lock, the first virtual machine holding

the lock until it receives the command.

WO 2006/128112 PCT/US2006/020767

-69-

141. The computer-implemented method of claim 140, wherein:
the central manager provides the command to release the lock
when another instance of the application at another virtual machine is

waiting to obtain the lock.

WO 2006/128112 PCT/US2006/020767

1/15

Fig. 1A

rior art
(p) .
fﬁ [ﬂ‘
Application
— < %2
Virtual Machine
> ﬁ_/ 34
Operating System
N J
Fig. 1B
40 - 50 60
(7 =~ (7 N (7)
Application Application Application
. / N .) L7
Clustering Server
. N2 a2 [(N 62
Virtual Machine 7~ Virtual Machine 4 Virtual Machine -
> < | - — |54 |- < ot
Operating System | - Operating System Operating System
L)L)L) |

WO 2006/128112

2/15

Server B
121
|/
Application
instance “B”
123
Data Sharing |-~
Agent/Library
-L.ock Manager
-Trans. Mgr.
-Obj. Mgr.
-Comm. Magr.
22
Virtual Machine”
“g?
- 124
Operating 2
- System

PCT/US2006/020767
130
Server C
131
. - J
Application
instance “C”
Data Sharing 1—1':’3 3
Agent/Library
-Lock Manager
-Trans. Mgr.
-Obj. Mgr.
-Comm. Magr.
132
Virtual Machine ¢
HC”
134
Operating -
System

100
- 110
| —
|
| Server A 111
| >
I Application
I instance “A”
' 113
| Data Sharing [~
| Agent/Library
| -Lock Manager
| -Trans. Mgr.
I -Obj. Mgr.
: -Comm Mgr.
| 112
| Virtual Machine[”
I uAu
: 114
I Operating
| - System
|
|

Central Manager

141

~

Data Sharing Application
-Lock Manager
-Transaction manager |{44o
-Object manager ~
-Persistence Mgr
-Communication Mgr.

Operating Systém

= 144

CM Object
Representation
Store

150
H

Management
Console

WO 2006/128112

3/15

Fig. 2

Virtual Machine, 210

Application

222

BC Instrumentation

N g

Bootstrap Loader

205

PCT/US2006/020767

WO 2006/128112 PCT/US2006/020767

4/15

Fig. 3A

300

Begin Application

l

Instrument application byte code at l
each VM

l 305
Identify objects for which state

information is to be shared as root
objects

l 310
H

Navigate object graph to identify
objects that can be reached from the
root object

l 315
rJ

Identify objects in object graph as
managed objects

l 320
rJ
Application Functions
I 325

Detect operations, such as method
calls and field set operations, that
affect the states of the managed

objects

¢ 330

H

Communicate information identifying
the operations from VM to Central
Manager (CM)

l 335

o

CM uses information to update object
state locally and at other VMs

___/

PCT/US2006/020767

WO 2006/128112

5/15

(V)00 Toses]a1
{

(g)yo0TosBOR1

(O)uonoesuer [JruIuIod
suonerodo pauyop-1osn
(O)uonoesuei]leis

uonoesuel;
puooss

(g)y001108

} (@)pozmuomous

(d)uonoesues [IUIwIOn
suoneiodo pauljep-Iosn

(dHuonoesuer]rels

uonoesuel}
jsiy

(V)00T108

} (V) paziuomouis

suonoesue) JUSISJIIP [enba Q) ‘d 191
'$199[qo poSeuewr JusIIp [enbs g ‘v 19]

¢ "B

0gsg — ﬁ

papJemlio) [IUN UOHOBSUEI} 10}

sle~ 4

Adepunoq uonoesuel;
puooes e sasso1o uonesidde jo
_peauy) usym Boj uogoesues} apnjouo)

0.8~ ﬂ

sj09(qo pabeuew Jo sajels
Jo8ye ysiym pealyy Aq pswiopad
suoljessdo spiooal Boj uonoesues |

Goe 4

Arepunoq
uoloesuel))sly e sassolo uoneoljdde
Jo pealy) usym Boj uonoesuel) Uelg

09¢ - A
A uolnjesadQ uoneoyddy
Gge ~ »
\;%95_84. 3o ol_ ~
0S¢ T

-
-

e
-

WO 2006/128112

6/15

Fig. 4

Root object
410

Object graph of /4
managed objects
400

Fig. 5

Root
Object, :

510 520 2
= c Class: User

Object: N Fields: Name
myCache Age
Address —

Class:users [—»

PCT/US2006/020767

540
H

Class: Address

Fields: Street
State
Zipcode

WO 2006/128112 PCT/US2006/020767

VMs

!

VMs play CM log to create local
representations of object state

6

H

(CM communicates CM log to other)
6

H

7/15
Fig. 6
H320 H61 0
Application Operations VM1 maintains Ipcal instances of
object
l 325
H
Detect operations affecting managed
objects; store until update
I 330
VM1 communicates VM log to CM;
starts new log
335
N B30 T T T T T T T TTTTTTTTTTT T
| < '
| | CM updates CM's representation of |
: object state :
l 635 |
, v c !
} (Update other VMs) !
' |
! 640 ‘ S :
| -
! Inftial update? CM communlca\t/eNT VM log to otherj:
: no S |
| yes 645 l 665 |
! \ 4 ' [
i [CM generates log of operations (CM VMs plays VM log to update local
! | log) from its representation of object instances of object
: state :
[
|
!
|
[
|
[
|
[
|
|
!
1
!
|

WO 2006/128112 PCT/US2006/020767
8/15
Fig. 7
710 720 730
e et -
Virtual Machine A Virtual Machine B Virtual Machine C
VM logs
Central Manager
Fig. 8
810 820 830
et fad ~
Virtual Machine A Virtual Machine B Virtual Machine C
A
VM log P VM log VM log
812 822 832
840

/
(Central Manager)

WO 2006/128112

PCT/US2006/020767
9/15
Fig. 9
320
r-J
Application Operation
v 902

Transaction log created (Steps 360, /|

365, 370)

Physically
or logically managed
object

904

Physical

4
Transaction(s) include field level
changes to objects

l , 920
‘/

[CM uses field level data to update local

representation of object state

l 925
‘J

CM communicates field level data to
other VMs

l 930
H

Other VMs use field level data to
update local representations of object
state

915

gical

% Y

Transaction(s) include logical
operations on objects

940 l
H

CM uses logical operations to update
local representation of object state

945 l
Pt

CM communicates logical operations
to other VMs

950 l
H

Other VMs use logical operations to
update local representations of object
state

WO 2006/128112 PCT/US2006/020767

10/15

Fig. 10

Sharing Object ID

320
r.J
Application Operations 9) 0
l 325 VM1 creates one local instance of each
[l managed object
Detect operations affecting managed l 101
objects; store until update [t
For any change to a managed object;

VM updates existing instances

L 1H025

Store data identifying operations
which change objects

] i

Update central manager (CM)

1035
H

M uses data identifying operations to
update its representation of managed

object state

l 1040
CM communicates data identifying
operations to other VMs

Other VMs update existing instances of{g45
changed objects without creating new ~
instances of objects

WO 2006/128112 PCT/US2006/020767

11/15

Fig. 11A

320

Run application

1110

1115

VM1 sends request for lock to CM;

v _1120
CM accesses records to determine if
lock is currently available
|

T 1125
Lock available? =

yes

no

1135

CM grants lock to requesting VM;
updates records accordingly

! _1140

CM Blocks Access by other VMs
1145
| P

VM holds lock and may access and
release locally without CM interaction

|

After using the lock, VM informs CM
that it is releasing lock

l 1155

CM updates records accordingly;
grants lock to next waiting VM, if any

1150

WO 2006/128112 PCT/US2006/020767

12/15
Virtual Machine 1 Virtual Machine 2 Fig_ 11B
1115~ Central Manager
Virtual Machine 1 Virtual Machine 2 Flg . 1 1 C

&
&
~1150 o
Central Manager '
O1 N

Fig. 11D

Virtual Machine 1 Virtual Machine 2

1155
Central Manager

WO 2006/128112

no

13/15

Run application

v

Virtual Machine (VM1) sets local lock
on request

v

VM1 sends request for lock to CM;

v

CM accesses records to determine if
lock is currently available

Cock available? ——&

CM grants lock to requesting VM;
updates records accordingly

v

VM holds lock and may access and
release locally without CM interaction

v

CM Receives request from other VM

PCT/US2006/020767

320

1110

1115

1120

1125

1135

1240

,1245

v 1250

CM requests VM1 release lock

! - 1255

VM1 Releases lock

v

CM updates records accordingly; /|

grants lock requesting VM

11260

Fig. 12A

WO 2006/128112 PCT/US2006/020767

14/15
Virtual Machine A Virtual Machine B Flg 1 ZB
/1 135 ‘
1115
Central Manager J
Virtual Machine A Virtual Machine B Fig 12C
1250 1255 1245
Central Manager .
Virtual Machine A vinual Machine B | Fig. 12D
1260
(Central Manager!
Others in Contention Others in Contention

Fig. 12E

VM2

No others in contention

Application

Application

Central Manager

WO 2006/128112 PCT/US2006/020767

15/15

Instrumented application bytecode at a
. 1300 first virtual machine implements
Flg . 1 3 synchronized method
_1310 l
Second thread begins operation 1305
N object.wait () - Wait function call on
L managed object
1315

Second thread (on second virtual
machine Or same virtual machine)
calls notify function

¢ 1318
Send Notify to CM /

|
|

1325 \GM Distributes notify signal to notifi

threads or “all” -

e§

Notification

Received?
1320
YES
' _ 1335 l __ 1330
Any other Virtual machines request ‘ o _ i
lock First virtual machine requests lock

v __ 1340

CM performs lock management in
accordance with foregoing discussions

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

