wo 2023/039341 A1 |0 00V AR 000 A OA 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
16 March 2023 (16.03.2023)

(10) International Publication Number

WO 2023/039341 Al

WIPO I PCT

(51) International Patent Classification:

(72) Inventor: CROWDER, William; ¢/o0 Level 3 Communi-

GOGF 9/48 (2006.01) GOGF 9/54 (2006.01) cations, LLC, 1025 Eldorado Boulevard, Broomfield, Col-
GOG6F 9/50 (2006.01) orado 80021 (US).
(21) International Application Number: (74) Agent: LEIBOLD, Gregory D., LEWIS ROCA
PCT/US2022/075498 ROTHGERBER CHRISTIE LLP, P.O. Box 29001, Glen-
1 lifornia 91209-9001 .
(22) International Filing Date: dale, California s)
26 August 2022 (26.08.2022) (81) Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE,
KG, KH, KN, KP, KR, KW, KZ, LA, LC,LK, LR, LS, LU,
LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
63/241,592 08 September 2021 (08.09.2021) US
(71) Applicant: LEVEL 3 COMMUNICATIONS, LLC
[US/US];, 1025 Eldorado Blvd., Broomfield, Colorado
80021 (US).

(54) Title: SYSTEMS AND METHODS FOR CONFIGURATION OF SEQUENCE HANDLERS

Convent DELveERY NeTwork [CDN) 100

CopLEcHEgs) 196

A6
COLECTOR

e Ny
i, | 1061

CorlBCTOR

RENDEZZUS 108

ConTRc,
CORE

b4

RENDEZS ;
M BT 7
ADMASTRATION

(57) Abstract: A method for registering a handler in a configured sequence of handlers includes: receiving, by a processor and memory
implementing a sequencer infrastructure, a configuration script defining a sequence including one or more handler identifiers and
corresponding one or more handler arguments; invoking a handler initialization entry point for a handler corresponding to a handler
identifier, the invoking the handler initialization entry point including: selecting, based on the corresponding one or more handler
arguments, a handler type from among two or more of: a configured instance of the handler; a configured alternate handler different
from the handler; an alternate sequence of handlers; an expression; and a no-op handler; and initializing a configured handler based
on the handler type selected and the corresponding one or more handler arguments; and adding the configured handler to a configured
sequence of handlers.

[Continued on next page]

WO 2023/03934 1 A | [I 000000000 R0 00O 0 O 0

TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2023/039341 PCT/US2022/075498

SYSTEMS AND METHODS FOR CONFIGURATION OF SEQUENCE HANDLERS

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No.
63/241,592, filed September 8, 2021, entitled “Systems and Methods for Configuration of

Sequence Handlers,” which is incorporated herein by reference in its entirety.

INCORPORATION BY REFERENCE

[0002] The following U.S. patents and published U.S. patent applications are hereby
fully incorporated herein by reference for all purposes:

[0003] 1. U.S. Pat. No. 7,822,871 titled “Configurable Adaptive Global Traffic Control
and Management,” filed Sep. 30, 2002, issued Oct. 26, 2010;

[0004] 2. U.S. Pat. No. 7,860,964 titled “Policy-Based Content Delivery Network
Selection,” filed Oct. 26, 2007, issued Dec. 28, 2010;

[0005] 3. U.S. Pat. No. 6,185,598 titled “Optimized Network Resource Location,” filed
Feb. 10, 1998, issued Feb. 6, 2001;

[0006] 4. U.S. Pat. No. 6,654,807 titled “Internet Content Delivery Network,” filed Dec.
6, 2001, issued Nov. 25, 2003;

[0007] 5. U.S. Pat. No. 7,949,779 titled “Controlling Subscriber Information Rates In A
Content Delivery Network,” filed Oct. 31, 2007, issued May 24, 2011;

[0008] 6. U.S. Pat. No. 7,945,693 titled “Controlling Subscriber Information Rates In A
Content Delivery Network,” filed Oct. 31, 2007, issued May 17, 2011;

[0009] 7. U.S. Pat. No. 7,054,935 titled “Internet Content Delivery Network,” filed Mar.
13, 2002, issued May 30, 2006;

WO 2023/039341 PCT/US2022/075498

[0010] 8. U.S. Published Patent Application No. 2009-0254661 titled “Handling Long-
Tail Content In A Content Delivery Network (CDN),” filed Mar. 21, 2009;

[0011] 9. U.S. Published Patent Application No. 2010-0332595 titled “Handling Long-
Tail Content In A Content Delivery Network (CDN),” filed Sep. 13, 2010;

[0012] 10. U.S. Pat. No. 8,015,298 titled “Load-Balancing Cluster,” filed Feb. 23, 2009,
issued Sep. 6, 2011;

[0013] 11.U.S. Pat. No. 8,489,750, issued Jul. 16, 2013, published under No. 2010-
0332664 titled “Load-Balancing Cluster,” filed Sep. 13, 2010; and

[0014] 12. U.S. Pat. No. 9,516,136, issued Dec. 6, 2016, titled “Customer-Specific
Request-Response Processing in a Content Delivery Network,” filed on Jun. 12, 2014,
which is a continuation of U.S. Pat. No. 9,456,053, titled “Content Delivery Network,”
issued on Sep. 27, 2016, filed on Dec. 14, 2012.

BACKGROUND

[0015] In computing systems, handlers may be configured, such as compilers for
generating compiled sequences of handlers for processing information. For example,
sequences of handlers may be used in a content delivery network, where the sequences
are configured to process incoming requests for data and to process responses generated
based on those requests. Nonexclusive examples of sequences of handlers are described
in, for example, U.S. Pat. No. 9,516,136, issued Dec. 6, 2016, titled “Customer-Specific
Request-Response Processing in a Content Delivery Network” and U.S. Pat. No.
9,456,053, titled “Content Delivery Network,” issued on Sep. 27, 2016, filed on Dec. 14,

2012. Although a general environment is discussed, it should be understood that the

WO 2023/039341 PCT/US2022/075498

examples described herein should not be limited to the general environment identified

herein.

SUMMARY

[0016] Aspects of embodiments of the present disclosure relate to sequences of
handlers which may be used, for example, to analyze and generate responses to requests
and to process or transform input data.

[0017] According to one embodiment of the present disclosure, a method for
registering a handler in a configured sequence of handlers includes: receiving, by a
processor and memory storing instructions implementing a sequencer infrastructure, a
configuration script defining a sequence including one or more handler identifiers and
corresponding one or more handler arguments; invoking, by the processor, a handler
initialization entry point for a handler corresponding to a handler identifier of the one or
more handler identifiers, the invoking the handler initialization entry point including:
selecting, based on the corresponding one or more handler arguments, a handler type
from among two or more of: a configured instance of the handler; a configured alternate
handler different from the handler; an alternate sequence of handlers; an expression; and
a no-op handler; and initializing a configured handler based on the handler type selected
and the corresponding one or more handler arguments; adding, by the processor, the
configured handler to a configured sequence of handlers; and executing, by a sequencer
of the sequencer infrastructure, the configured sequence of handlers to generate an
output in response to an input.

[0018] The selecting of the handler type may further be based on a plurality of

parameters of an execution environment of the sequencer.

3-

WO 2023/039341 PCT/US2022/075498

[0019] The parameters of the execution environment may include: a version number of
the sequencer infrastructure; a handler registry of handlers available to the sequencer
infrastructure; a plurality version numbers of corresponding ones of the handlers of the
handler registry; descriptions of hardware capabilities of a server including the processor
and memory and configured to execute the sequencer; or a location of the server.

[0020] The invoking of the handler initialization entry point may further include
dynamically registering the handler with the execution environment.

[0021] The handler may be retrieved from a remote source over a network.

[0022] The sequencer executing the configured sequence of handlers may process
requests and generate responses in a content delivery network.

[0023] The sequencer executing the configured sequence of handlers may process
requests and generate responses in a web application server.

[0024] The sequencer may process input data in a stream processing pipeline
corresponding to the configured sequence of handlers.

[0025] The method may further include omitting the configured handler from the
configured sequence of handlers when the handler type is the no-op handler.

[0026] According to one embodiment of the present disclosure, a computing system
includes: a processor; and memory storing instructions that, when executed by the
processor: register a handler in a configured sequence of handlers by: receiving a
configuration script defining a sequence including one or more handler identifiers and
corresponding one or more handler arguments; invoking a handler initialization entry point
for a handler corresponding to a handler identifier of the one or more handler identifiers,
the invoking the handler initialization entry point including: selecting, based on the

corresponding one or more handler arguments, a handler type from among two or more

4-

WO 2023/039341 PCT/US2022/075498

of. a configured instance of the handler; a configured alternate handler different from the
handler; an alternate sequence of handlers; an expression; and a no-op handler; and
initializing a configured handler based on the handler type selected and the corresponding
one or more handler arguments; and adding, by the processor, the configured handler to a
configured sequence of handlers; and implement a sequencer infrastructure configured to
execute the configured sequence of handlers to generate an output in response to an
input.

[0027] The selecting of the handler type may further be based on a plurality of
parameters of an execution environment of the sequencer.

[0028] The parameters of the execution environment may include: a version number of
the sequencer infrastructure; a handler registry of handlers available to the sequencer
infrastructure; a plurality version numbers of corresponding ones of the handlers of the
handler registry; descriptions of hardware capabilities of a server including the processor
and memory and configured to execute the sequencer; or a location of the server.

[0029] The invoking of the handler initialization entry point may further include
dynamically registering the handler with the execution environment.

[0030] The handler may be retrieved from a remote source over a network.

[0031] The sequencer executing the configured sequence of handlers may process
requests and generate responses in a content delivery network.

[0032] The sequencer executing the configured sequence of handlers may process
requests and generate responses in a web application server.

[0033] The sequencer may process input data in a stream processing pipeline

corresponding to the configured sequence of handlers.

WO 2023/039341 PCT/US2022/075498

[0034] The memory may further store instructions that, when executed by the
processor, cause the processor to omit the configured handler from the configured
sequence of handlers when the handler type is the no-op handler.

[0035] This summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This summary is not
intended to identify key features or essential features of the claimed subject matter, nor is

it intended to be used to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] The accompanying drawings, together with the specification, illustrate non-
exclusive, exemplary embodiments of the present disclosure.

[0037] FIG. 1 shows an exemplary content delivery network (CDN);

[0038] FIGS. 2 and 3 depict cache cluster sites in a CDN;

[0039] FIGS. 4 and 5 depict cache clusters in the cache cluster sites of FIGS. 2 and 3;
[0040] FIG. 6 depicts an exemplary cache cluster site;

[0041] FIG. 7 depicts a control core cluster of a CDN;

[0042] FIG. 8 shows a typical interaction between a client and a CDN;

[0043] FIG. 9 shows request-response processing in a CDN;

[0044] FIGS. 10A-10C show various data structures;

[0045] FIG. 11Ais a logical depiction of a sequence object;

[0046] FIGS. 11B-11D show examples of sequences and sequence processing;
[0047] FIG. 12A-12D show examples of sequencers and handlers;

[0048] FIG. 13 is a schematic block diagram depicting sequencer infrastructure

software running on a server according to one embodiment of the present disclosure;

B-

WO 2023/039341 PCT/US2022/075498

[0049] FIG. 14 is a flowchart depicting a method for initializing a sequence of
configured handlers based on an input configuration script according to one embodiment
of the present disclosure;

[0060] FIG. 15 is a flowchart depicting a method for initializing a handler based on
handler arguments according to one embodiment of the present disclosure; and

[00561] FIG. 16 is a flowchart depicting a method for selecting a type of handler and
initializing the selected type of handler based on handler arguments and/or an execution
environment according to one embodiment of the present disclosure.

[00562] FIG. 17 depicts an example operating environment in which aspects of the

present disclosure may be practiced.

DETAILED DESCRIPTION

[0053] In the following detailed description, only certain exemplary embodiments of the
present invention are shown and described, by way of illustration. As those skilled in the
art would recognize, the invention may be embodied in many different forms and should
not be construed as being limited to the embodiments set forth herein.

[0054] In various data processing and event processing systems, incoming events are
processed using a sequence of handlers, where each of the handlers performs a
particular operation on the input data to produce some output data (e.g., transformation of
the input data), where the output of one handler is provided as input to a next handler in
the sequence (or pipeline).

[0065] For example, in a content delivery network (CDN,) an incoming event may
include an HTTP request for a particular resource or asset (e.g., a web page, a script, an

image, a video, or the like). The incoming HTTP request is supplied to a first handler of a

7-

WO 2023/039341 PCT/US2022/075498

sequence of one or more handlers. Various handlers of the sequence may perform
different operations on the HTTP request on its way “in to” the sequence, such as
decrypting the request, decompressing the request, modifying an encoding of the request,
computing values based on metadata of the request and storing the computed values in
the request, logging information about the request, updating counts for metrics and/or for
billing CDN customers associated with the request, and the like. Handlers may also
perform various operations on data generated in response to a request (“response” data)
as the response moves “out of’ the sequence, such as encrypting the response,
compressing the response, storing metrics regarding the size and/or content of the
response, and the like. Each handler may conform to particular specifications, which may
be set by a designer or programmer as a set of pre-conditions and post-conditions (e.g.,
as specified by a Hoare triple {P}C{Q}, where P specifies a set of pre-conditions on the
input supplied to the handler, C is a command or program transforming the input, and Q is
a set of post-conditions on the output produced by the handler). Accordingly, handlers can
be composed into a sequence or pipeline of handlers, so long as the output of a given
handler of the sequence satisfies the pre-conditions of a next handler in the sequence
(e.g., where the range of outputs of the given handler, as specified by its post-conditions,
is no larger than the domain of valid inputs to the next handler, as specified by its pre-
conditions).

[0056] In this light, so long as the handlers are well-behaved (in that they ensure that
they operate correctly across the full domain of their pre-conditions and only produce
outputs in the range of their post-conditions), individual handlers may be composed to
form a sequence of handlers, generally without regard to implementation details of the

individual handlers. For example, handlers may perform the transformation of the data

8-

WO 2023/039341 PCT/US2022/075498

(e.g., as implemented by the command C of the Hoare triple) using a single threaded
algorithm or a parallel or concurrent algorithm (e.g., multiple copies of the same handler or
sequence of handlers operating in parallel or concurrently), may generate side effects
(e.g., writing to logs or databases such as in the case of recording metrics associated with
the requests or responses), may execute another sequence (e.g., a sub-sequence) of
handlers, may trigger concurrent sub-sequences that have different handlers from one
another, and the like.

[0057] For the sake of illustration, various aspects of embodiments of the present
disclosure will be presented herein in the context of use in a CDN, such as in a sequence
of handlers that processes received requests and generates responses (e.g., to deliver
requested content that is hosted by the CDN). However, embodiments of the present
disclosure are not limited thereto and may be applied in other contexts such as

” o

‘middleware,” “servlet filters,” or “interceptors” in web application frameworks (e.g.,
Django, Flask, Java Servlets, ASP.NET, and the like), actors or kernel functions in stream
processing frameworks or other software frameworks implementing processing
sequences or pipelines of transformations of input data into output data.

[0058] As used herein, unless used otherwise, the following terms or abbreviations
have the following meanings:

[0069] CCS means Customer Configuration Script

[0060] CDN means Content Delivery Network;

[0061] CNAME means Canonical Name;

[0062] DNS means Domain Name System;

[0063] FQDN means Fully Qualified Domain Name;

[0064] FTP means File Transfer Protocol;

9-

WO 2023/039341 PCT/US2022/075498

[0065]
[0066]
[0067]
[0068]
[0069]
[0070]
[0071]
and IPv6,
[0072]
[0073]
[0074]
[0075]
[0076]
[0077]
[0078]
[0079]
[0080]
[0081]

GCO means Global Configuration Object;

HTTP means Hyper Text Transfer Protocol;

HTTPS means HTTP Secure;

IP means Internet Protocol;

IPv4 means Internet Protocol Version 4;

IPv6 means Internet Protocol Version 6;

IP address means an address used in the Internet Protocol, including both IPv4
to identify electronic devices such as servers and the like;
MX means Mail Exchange;

NDC means Network Data Collector;

NS means Name Server;

QoS means quality of service;

TCP means Transmission Control Protocol;

URI means Uniform Resource Identifier;

URL means Uniform Resource Locator; and

VIP address means a virtual IP address.

Context of Content Delivery Network (CDN)

A primary purpose of a content delivery network (CDN) is to distribute resources

to client machines on behalf of one or more content providers, such as via a public

Internet. A CDN can also provide an over-the-top transport mechanism for sending

content in the reverse direction—from the client to the origin server. Both end-users

(clients) and content providers benefit from using a CDN. By using a CDN, a content

provider is able to take pressure off its own servers. Clients benefit by being able to obtain

content with fewer delays.

-10-

WO 2023/039341 PCT/US2022/075498

[0082] FIG. 1 shows an exemplary CDN 100, which includes multiple caches 102-1,
102-2 . . . 102-m (collectively caches 102, individually cache 102-/), rendezvous
mechanisms/systems 104-1 . . . 104-k, (collectively rendezvous mechanism(s)/system(s)
104, made up of one or more rendezvous mechanisms 104-j), collector
mechanism/system 106 (made up of one or more collector mechanisms 106-1 . . . 106-n),
and a control core 108. The CDN 100 also includes various operational and/or
administrative mechanisms 109.

[0083] As shownin FIG. 2, each CDN cache 102 may be a cache cluster site 202
including one or more cache clusters 204. The cache cluster site 202 may include a
routing mechanism 206 acting, inter alia, to provide data to/from the cache clusters 202.
The routing mechanism 206 may perform various functions such as, e.g., load balancing,
or it may pass data to/from the cache cluster(s) 204. Depending on its configuration, the
routing mechanism 206 may pass incoming data to more than one cache cluster 204. FIG.
3 shows an exemplary cache cluster site 202 with p cache clusters (denoted 204-1, 204-2
... 204-p).

[0084] As shown in FIG. 4, a cache cluster 204 includes one or more servers 208. The
cache cluster preferably includes a routing mechanism 210, e.g., a switch, acting, inter
alia, to provide data to/from the servers 208. The servers 208 in any particular cache
cluster 204 may include caching servers 212 and/or streaming servers 214. The routing
mechanism 210 provides data (preferably packet data) to the server(s) 208. The routing
mechanism 210 may be an Ethernet switch.

[0085] The routing mechanism 210 may perform various functions such as, e.g., load
balancing, or it may pass data to/from the server(s) 208. Depending on its configuration,

the routing mechanism 210 may pass incoming data to more than one server 208. FIG. 5

-11-

WO 2023/039341 PCT/US2022/075498

shows an exemplary cache cluster 204" including k servers (denoted 208-1, 208-2 . . .
208-k) and a switch 210'".

[0086] The cache cluster site routing mechanism 206 may be integrated with and/or
co-located with the cache cluster routing mechanism 210.

[0087] FIG. 6 shows an exemplary cache cluster site 202" with a single cache cluster
204" including one or more servers 208". The server(s) 208" may be caching servers 212"
and/or streaming servers 214". As shown in the example in FIG. 6, the cache cluster
routing mechanism 210" and the cache cluster site's routing mechanism 206" are
logically/functionally (and possibly physically) combined into a single mechanism (as
shown by the dotted line in the drawing).

[0088] In some implementations, some of the cache cluster servers 208 that are
connected to a particular switch 210 will share the same virtual IP (VIP) addresses. (Each
cache cluster server 208 will also preferably have a different and unique IP address.) In
these presently preferred implementations, for the purposes of CDN control, the cache
cluster routing mechanism 210 and the cache cluster site's routing mechanism 206 are
logically/functionally (e.g., physically) combined into a single mechanism—a switch. In
these implementations the cache cluster site refers to all of the machines that are
connected to (e.g., plugged in to) the switch. Within that cache cluster site, a cache cluster
includes all machines that share the same set of VIPs.

[0089] U.S. Pat. No. 8,489,750, titled “Load-Balancing Cluster,” filed Sep. 13, 2010,
issued Jul. 16, 2013 and U.S. Pat. No. 8,015,298, titled “Load-Balancing Cluster,” filed
Feb. 23, 2009, issued Sep. 6, 2011, the entire contents of each of which are fully
incorporated herein by reference for all purposes, both describe examples of a cache

server site (which may be a load-balancing cluster) and an exemplary cache cluster 204.

-12-

WO 2023/039341 PCT/US2022/075498

[0090] With reference again to FIG. 1, as explained in greater detail below, the
rendezvous system 104 is used to direct client resource requests. The rendezvous system
104 may be implemented using the DNS and may include one or more DNS name
servers. In some embodiments, the rendezvous mechanisms 104-j include domain name
servers implementing policy-based domain name resolution. An exemplary rendezvous
system 104 is described in U.S. Pat. No. 7,822,871, titled “Configurable Adaptive Global
Traffic Control And Management,” filed Sep. 30, 2002, issued Oct. 26, 2010, and U.S. Pat.
No. 7,860,964 “Policy-Based Content Delivery Network Selection,” filed Oct. 26, 2007,
issued Dec. 28, 2010, the entire contents of each of which are fully incorporated herein for
all purposes.

[0091] The control core mechanism 108 controls operation of the CDN and is
described in greater detail below. Physically, the control core preferably consists of a set
of geographically distributed machines, preferably connected via high-speed
communication links. E.g., five machines located in New York, San Francisco, Chicago,
London, and Frankfurt. Logically, the control core acts like a single, robust data base/web
server combination, containing configuration data. FIG. 7 shows an exemplary control
core mechanism 108 made up of five distinct components or machines (denoted CCA1,
CC2, CC3, CC4, CC5 in the drawing). While shown with five components or machines,
those of skill in the art will realize and understand, upon reading this description, that the
control core could be formed of any number of components or machines comprising the
control core. Odd numbers are preferable because of the use of voting by the components
or machines Larger numbers will make the control core more available but respond
slower. Having only one machine is a degenerate case possibly useful in non-production

situations. The components or machines forming the control core are operated together

-13-

WO 2023/039341 PCT/US2022/075498

as a single high-availability cluster, and are shown as a single entity in most drawings. It
should be understood that any particular interaction with the control core mechanism 108
will likely take place with only one of its component machines. The control core
mechanism 108 is also referred to herein as the control core cluster 108 or the control
core 108.

[0092] Although only one control core 108 is shown in FIG. 1, it should be appreciated
that a CDN may have more than one control core, with different control cores controlling
different aspects or parts of the CDN.

[0093] The control core 108 is addressable by one or more domain names. For the
sake of this description, the domain name control.fp.net will be used for the control core
108. In a preferred implementation the control core cluster consists of five (5) distinct and
geographically distributed control core mechanisms and is operated as a multihomed
location with five (5) IP addresses. Thus, when a client asks a DNS server to resolve the
control core's domain name (e.g., control.fp.net) the DNS server will return one or more of
the five IP addresses associated with that name. That client may then access the control
core at one of those addresses. It should be appreciated that the DNS server(s) will
provide the client with a rendezvous to a “nearby” control core server or servers (i.e., to
“best” or “optimal” control core server(s) for that client), similar to the manner in which
clients rendezvous with CDN servers. In other words, internal components of the CDN
(cache servers, control cores, etc.) may use the same rendezvous mechanisms as are
used by entities outside the CDN to rendezvous with CDN components. In some cases,
the various control core mechanisms may have the same IP address, in which cases
routing tables may direct a client to a “best” or “optimal” control core mechanism. This

may also be achieved using an anycast IP address.

-14-

WO 2023/039341 PCT/US2022/075498

[0094] A CDN may have one or more tiers of caches, organized hierarchically. Tiers of
caches are described in more detail, for example, in U.S. Pat. No. 9,516,136, titled
“Customer-Specific Request-Response Processing in a Content Delivery Network,” filed
on Jun. 12, 2014 and issued Dec. 6, 2016, the entire content of which is fully incorporated
herein for all purposes.

[0095] FIG. 8 shows a typical interaction between a client 110 and a CDN 100. In this
case the CDN 100 serves content (resources) on behalf of the content provider 112. As
described above, the CDN includes multiple locations (e.g., cache sites not shown in the
drawing) from which content may be provided/served to clients. The process of
associating a particular client (or client request) with a particular location in the CDN is
referred to as a rendezvous process. When a particular client (e.g., client 110) wants to
obtain some content (e.g., a particular resource), that client is typically directed to a “best’
(or “optimal’) location (via some rendezvous mechanism 104). As used here, a location
may be, e.g., a server, a server site, a region of servers, a cache cluster, a cache cluster
site, etc. The location may even be another CDN or network or a server outside the CDN
100. With reference to FIGS. 1-7, the “best” or “optimal” location may be, without
limitation, a cache cluster site, a cache cluster, a group, a tier, or some combination
thereof.

[0096] Those of skill in the art will realize and understand, upon reading this
description, that the notion of a “best” or “optimal” location is dependent on multiple
factors, including, without limitation, some or all of the following: network load, load on the
CDN servers and other components, location of the client computer, etc. The notion of a

“best” or “optimal’ location may vary by time of day, type of content, content provider

-15-

WO 2023/039341 PCT/US2022/075498

policies, CDN policies, etc. The invention is not to be limited in any way by the manner in
which a “best” or “optimal” location in the CDN is determined.

[0097] In some implementations, the rendezvous system 104 uses, and is integrated
into, the DNS system as described in U.S. Pat. No. 7,822,871, filed Sep. 30, 2002, issued
Oct. 26, 2010, and U.S. Pat. No. 7,860,964, filed Oct. 26, 2007, issued Dec. 28, 2010, the
entire contents of each of which are fully incorporated herein for all purposes. The client
110's DNS system 114 interacts with the CDN's rendezvous mechanism 104 in order to
associate a particular client request for a resource with a particular location, preferably in
the CDN 100, from which that requested resource will be served to the client. The “best”
or “optimal’ location may be provided by the rendezvous mechanism 104 as one or more
IP addresses or a CNAME (domain name) corresponding to one or more locations in the
CDN or to a different CDN or network.

[0098] With reference to FIG. 8, an exemplary use of the CDN 100 (in which the client
110 wants to obtain a particular resource) is as follows:

[0099] The client computer 110 interacts with the rendezvous mechanism 104 in order
to determine the “best” location from which to obtain the particular resource (at S7). When
the rendezvous mechanism 104 is integrated into the DNS system, the client's DNS
system 114 interacts with the CDN's rendezvous mechanism 104 to direct the client to a
location, such as in the CDN 100, from which the client can obtain (or try to obtain) the
resource. When the rendezvous mechanism 104 is integrated into the DNS system, this
request (at S7) may be part of a request to resolve a domain name associated with the
particular resource, and the rendezvous mechanism may provide the client with one or

more |IP addresses or CNAME of one or more locations in the CDN (at S2). If the

-16-

WO 2023/039341 PCT/US2022/075498

rendezvous mechanism provides more than one IP address (corresponding to more than
one “best’ location), the client may select which of those addresses to use.

[00100] Having obtained a “best” location from which to obtain the particular resource,
the client computer 110 then requests the particular resource from the location in the CDN
100 (at S3a). The CDN 100 may already have a copy of that particular resource at that
location, in which case it provides (serves) the resource to the client computer 110 (at
S3b). If the CDN did not already have a copy of that particular resource at that location,
then it tries to obtain a copy at that location (either from another location in the CDN or
from the content provider 112 (at S4a, S4b)). Having obtained the resource (either from
another location in the CDN or from the content provider 112), the CDN 100 provides
(serves) the resource to the client computer 110 (at S3b). It should be appreciated that in
some cases the response could be generated within the CDN 100 as opposed to being
fetched. This may occur, e.g., in the case of a conversion from an existing resource (such
as a compression/transcoding) or completely generated by a script/process (either
previously pulled from the content providers origin server, or provided from the control
core as part of the property configuration).

[00101] The CDN may also provide information (e.g., logs and performance data) to
content providers regarding resources delivered on their behalf. Thus, as shown in FIG. 8,
the CDN 100 may provide information to the content provider 112 (at S5).

[00102] To simplify the above explanation, FIG. 8 shows only one client computer 110,
one content provider 110 and one CDN 100. Those of skill in the art will realize and
understand, upon reading this description, that a typical CDN may provide content on
behalf of multiple content providers to multiple client computers. Those of skill in the art

will also realize and understand, upon reading this description, that the system may

-17-

WO 2023/039341 PCT/US2022/075498

include multiple CDNs, and that the rendezvous mechanism 104 may cause client
requests to be directed to different ones of the CDNs. An exemplary rendezvous
mechanism 104 is described, e.g., in U.S. Pat. Nos. 7,822,871 and 7,860,964, the entire
contents of each of which are fully incorporated herein by reference for all purposes.
[00103] As used herein, the terms “resource” and “content” refer, without any limitations,
to any and all kinds of resources and/or content that may be provided to client computers
via CDNs. Resources and/or content may be any static or dynamic data item comprising
an arbitrary sequence of bits, regardless of how those bits are stored or transmitted, and
regardless of what those bits represent. A resource provided by a CDN may comprise
data representing some or all of another resource, including some or all of: a file, a portion
of afile, a digital message, a portion of a digital message, a digital image, a portion of a
digital image, a video signal, a portion of a video signal, an audio signal, a portion of an
audio signal, a software product, a portion of a software product, a page in memory, a
web page; a movie, and a portion of a movie. This list is given by way of example, and is
not intended to be in any way limiting.

[00104] FIG. 8 shows the client 110 as separate from the CDN 100. As will be explained
in more detail below, the various components of the CDN may themselves act as clients
with respect to the CDN in order to obtain CDN related resources. Therefore, the client
may be a CDN element or component, e.g., a cache. Similarly, FIG. 8 shows the content
provider 112 as separate from the CDN 100. As will be explained in more detail below, the
various components of the CDN could themselves act as content providers with respect to
the CDN in order to provide CDN related resources to other CDN components. Thus, as

will be explained further below with reference to FIG. 1, when a collector mechanism 106

-18-

WO 2023/039341 PCT/US2022/075498

obtains information from a cache 102, that collector mechanism 106 is acting as a client,
while the cache 102 is a content provider.

[001056] The CDN has been described thus far in terms of its separate and distinct
components. It should be understood, however, that within the CDN each object (e.g., all
data that is to be moved between CDN components) is treated as a web object or
resource, with, e.g. the control core acting as the “origin tier” for such objects. That is,
each CDN object has a URL (or whatever address is used by the CDN), and each CDN
object can be requested, filled, invalidated, refreshed, etc. Each cache has the knowledge
(information) it needs to obtain and provide CDN objects. This approach allows all data
transfers within the CDN to use the CDN itself. The CDN can thus use its own
mechanisms to deal with CDN control and/or management-related information (e.g.,
control core data). Thus, e.g., any CDN component can obtain CDN data using the CDN.
[00106] Request-Response Processing

[00107] In operation, the various CDN components (e.g., caches) receive requests for
resources, processes those requests, and provide responses (which may include, e.g.,
the requested resources, error messages, or directions to find the resources elsewhere).
[00108] FIG. 9 shows the request-response operation of an exemplary CDN component
902. Although component 902 is denoted “Server” in the drawing, it should be appreciated
that component 902 may be a cache server or any other component of the CDN that
performs request-response processing. As shown in the drawing, client 903 makes a
request for a resource of server 902, and receives a response to that request. In
processing that request, as explained below, the server 902 may obtain information from
one or more other data sources 910. Some of these data sources 910 may be other CDN

components (e.g., caches 912 or control core(s) 916). The data sources 910 may also

-19-

WO 2023/039341 PCT/US2022/075498

include origin server(s) 914 that may or may not be part of the CDN. It should be
appreciated that the client 903 may be another CDN component (e.g., a cache) or it may
be a client entity that is external to the CDN.

[00109] The server 902 preferably supports HTTP/1.0, and HTTP/1.1, HTTP/2, HTTP/3
(QUIC), and HTTPS requests, although it is not limited to those protocols or to any
particular version of any protocol. HTTP/1.1, for example, was defined in Network Working
Group, Request for Comments (RFC): 2616, June 1999, “Hypertext Transfer Protocol—
HTTP/1.1,” and has been updated by a series of additional RFCs, including at least RFCs
7230, 8615, 9110, and 9112, among others, the entire contents of which are fully
incorporated herein by reference for all purposes. HTTPS is described in Network
Working Group, Request for Comments: 2818, May 2000, “HTTP Over TLS,” and has
been updated by a series of additional RFCs, including at least RFCs 5785, 7230, 9110,
among others, the entire contents of each of which are fully incorporated herein by
reference for all purposes. Unless specifically stated otherwise, “HTTP” is used in this
description to refer to any version or form of HTTP request, including HTTP and HTTPS
requests. Those of skill in the art will realize and understand, upon reading this
description, that HTTPS may be used in situations where additional security may be
desired or required. It should also be appreciated that when an HTTP request is referred
to herein, some other protocols, including possibly proprietary protocols, may be used
while still leveraging the CDN and using URLs to name the objects.

[00110] The server 902 includes a request/response mechanism 904 (e.g., implemented
by software in combination with hardware on the server 902). The request/response
mechanism 904 listens for requests on multiple configured addresses/ports, including port

906.

-20-

WO 2023/039341 PCT/US2022/075498

[00111] When a request is made, the request/response mechanism 904 tries to identify
a customer associated with that request. As used here, a “customer” is an entity that is
authorized to have its content served by the server 902. The customer may be an external
entity such as, e.g., a subscriber to the CDN, or the customer may be another CDN
component. In order to determine whether or not the request is associated with a
customer of the CDN (or the CDN itself), the server 902 needs at least some information
about the CDN's customers. This information may be stored as global data 908 in a
database 907 on the server 902. The global data 908 should include sufficient data to
allow the server 902 to either reject the request (in the case of a request for a resource
that is not associated with a customer), or to serve the requested resource to the client
903, or to direct the client to another source from which the requested resource can be
served. If the server 902 does not have the required global data 908 at the time of the
client request, it may obtain the needed global data 908 from a data source 910,
preferably from a control core 916 or from another cache. In effect, for internal CDN data,
the control core is considered an origin server or co-server.

[00112] As explained below, the request/response mechanism 904 may perform
customer-specific processing as part of the request/response processing. In order to
perform customer-specific processing, the request/response mechanism needs certain
customer-specific data 909. If current customer-specific data 909 are not available in the
request/response mechanism's database 907, the server 902 may obtain the needed
customer-specific data from a data source 911, preferably from a control core 916
(although customer-specific data may also be obtained from another cache 912 in the
CDN).

[00113] Sequencers and handlers

21-

WO 2023/039341 PCT/US2022/075498

[00114] In some embodiments, processing performed by request/response mechanism
904 uses various kinds of objects, including a Notes Object, a Session Object (sxn), and a
Transaction Object (txn). With reference to FIG. 10A, a Notes Object 1004 is a
generalized string key/value table. FIGS. 10B-10C show a Session Object (sxn 1006) and
a Transaction Object (txn 1008), respectively. A session object 1006 contains information
about a particular client session, e.g., a client connection or an internally launched (or
spawned) session. A Session Object 1006 may contain allocation context information for a
session. A Transaction Object (txn 1008) is usually associated with a session and
contains information about an individual request. During a session, multiple transactions
may be performed, and information about each transaction is carried in a transaction
object. E.g., a transaction object carries the request to be satisfied, room for the response,
information about where the response body is coming from (e.g., response channel id),
etc.

[00115] A sequencer (or “task”) uses a sequence object made up of an ordered list of
one or more handlers and handler argument(s). FIG. 11A shows an exemplary sequence
object 1101 including handler(s) 1102 and handler argument(s) 1104. The handler(s)
1102 include the ordered lists of handlers 1102-1, 1102-2 . . . 1102-n. It should be
appreciated that not all handlers require arguments, and that some handlers may obtain
some or all of their arguments from other locations. It should also be appreciated that a
sequence object may have only a single handler and/or no arguments.

[00116] When running, a sequencer invokes its handlers (essentially, processing
modules) in order. In some embodiments, sequencers are bidirectional, so that the
sequencer's handlers are called (invoked) in order on the way “in” (e.g., when processing

a request) and in reverse order on the way “out” (e.g., when generating a response).

-22-

WO 2023/039341 PCT/US2022/075498

Handlers can modify the sequence, thereby providing additional flexibility. FIG. 11B shows
the execution of the sequence of handlers 1102 from sequence object 1101 (of FIG. 11D).
As shown in FIG. 11B, the sequencer invokes the handlers in the order “Handler #1,”
‘Handler #2,” . . . “Handler #n” into the sequence and then in the reverse order out of the
sequence. So “Handler #1” makes a request of “Handler #2”, and so on, until “Handler
#n”, and then results are passed back, eventually from “Handler #2” to “Handler #1”.
[00117] Handlers may be synchronous or blocking. In examples, handlers may cause
the processing of a request to stall while resources needed to service it, e.g., data from
network or disk, are obtained. However, in the architecture of some examples, handlers
do not perform traditional "blocking" operations because the thread in which they are
running is used to service multiple simultaneous requests using an event loop
mechanism. Handlers may inspect and modify the sequence to which they belong, and
handlers may launch their own sequencers. There are two forms of this process: one is
where a handler launches a “subsequence”. That subsequence runs in the same
sequencer as the handler and the sequence the handler is in is suspended until the
subsequence is complete. Another example is where a handler launches a complete
sequencer. In that case, the sequencer is a separate, independent task. A powerful
aspect of that model is that a handler could launch such a sequence on the way into the
sequence, allow processing to continue, and then pick up the result (waiting if necessary)
on the way out of the sequence. FIG. 11C shows an example of a first sequence
(“Sequence 17) in which a handler (Handler #2, 1102-2) launches (or spawns) another
sequence (“Sequence 27, consisting of Handler #2,1 1102-2.1 . . . Handler #2,k 1102-2 k).
If Sequence 2 runs in the same sequence as the handler #2, then handler #3 (of

sequence 1) will not begin until sequence 2 is complete (i.e., until handler #2,k is done). If,

-23-

WO 2023/039341 PCT/US2022/075498

on the other hand, sequence 2 is launched as an independent and separate task,
sequence 1 can continue with handler #3, etc. without waiting for sequence 2 to complete.
[00118] FIG. 11D shows an example of a first sequence (“Sequence 1”) in which a
handler (#2) launches two other sequences (Sequence #2,1, and Sequence #2,2). The
Sequence #2,2 launches a subsequence #2,2.1.

[00119] In some embodiments, a handler's behavior may be classified into three broad
groups (or types):

[00120] One-shot: The handler is removed from sequence when done.

[00121] Intelligent: The handler may manipulate sequence.

[00122] Persistent: The handler is called on the way “in” and “out”.

[00123] These labels are used as descriptive shorthand for basic types of handler
behavior, and it should be appreciated that this type is not used by the sequencer, and
nothing needs to enforce a handler's “type,” and a handler may act differently depending
on circumstances (e.g., a handler may have behavior different from the three broad types
listed above).

” 13

[00124] Handlers may be named (e.g.: “ssI”, “http-conn”, “http-session”, “strip-query”,
“proxy-auth”, etc.) to correspond to the functions that they are to perform.

[00125] A sequence object may be stored in compiled form for re-use, so there is no
need to constantly look up handler names.

[00126] The following is an example of a sequence specification for an HTTP listener:

listener = {
address = “*:807,

sequence = “http-conn, http-session”

-24-

WO 2023/039341 PCT/US2022/075498

[00127] In this example, the handlers are “http-conn” and “http-session”, and the
parameters are “address="*0:80". This listener task provides a bare TCP or cleartext
connection. The first handler (“http-conn”) is a one-shot handler which creates an HTTP
connection from a cleartext connection. The second handler (“http-session”) is an
intelligent handler that takes the HTTP connection (as already created by the “http-conn”
handler), creates a session object and handles the entire session. It should be
appreciated that the listener is providing the communication channel to the client, and the
same basic listener code could be used with different handlers to implement protocols
other than HTTP (e.g., FTP).

[00128] As another example, the following sequence specifies a general SSL listener:

listener = {
address = “*:443”,

sequence = “ssl, http-conn, http-session”

}

[00129] In this example, the handlers are “ssI”, “http-conn” and “http-session”, and the
parameters are “address="0:443". This sequence is similar to the HTTP listener (above),
except that the SSL handler first creates an SSL channel on the bare (encrypted)
connection, suitable for the http-conn handler. Although the SSL handler is a “one-shot”
handler, it needs to block since it must perform the SSL negotiation. That is, the “sslI”

handler must complete before the next handler can begin. The SSL handler is responsible

-25-

WO 2023/039341 PCT/US2022/075498

for instantiating an SSL channel. It should be appreciated that although the ssl channel is
persistent, the handler that sets it up does not need to be persistent. The “ssI” handler
instantiates an SSL channel on top of the cleartext channel . Once that is done, the SSL
channel (which does the decryption and encryption) persists until the connection is
finished, even though the “ssl” handler itself is gone from the sequence. So the “ssl”
handler is not performing the SSL operations itself, it is just enabling them by instantiating
the necessary channel.
[00130] FIGS. 12A-12D show examples of sequencers and handlers.
[00131] As shown above, a sequence may be used to interpret a request from a client
and to generate a response to be returned to the client. (The same basic sequencing
mechanism can be used to implement a programmable filter, although the handlers may
be performing a different task than described above.) FIG. 12A shows a bidirectional
sequence that is part of a request/response mechanism 904. In this example, the
sequence uses “direct delivery” requests, e.g., sendfile(), because it does not need to see
or process the underlying data. It should be appreciated that sendfile() is not the request,
but rather one way a direct delivery request may be implemented by the channel involved.
The delivery sequence shown in FIG. 12A includes two handlers:

- delivery-monitor (account bytes, monitors performance); and

- chan-submit (submits request to a channel, waits for response). The channel may

be, e.g., an object channel, downstream channel, etc.

[00132] If the process requires other computations, the sequencer may be set up with
additional handlers to perform those computations. In the example of FIG. 12B, the

sequence further computes an MD5 hash of the data, and the sequencer is set up with an

-26-

WO 2023/039341 PCT/US2022/075498

MDS5 handler in the path. The MD5 handler can snoop the data as it passes (e.g., view the
underlying bytes of payload) to compute the MD5 hash.

[00133] An example of a self-modifying sequence is shown in FIG. 12C. The MD5
handler sees the request on the way “in” to the sequence and inserts a new handler
(“direct-to-buffered”) handler to the “left” of the MD5 handler so that it runs before the MD5
handler. The “direct-to-buffered” handler translates direct delivery to buffered read/write,
which may improve the performance of the MD5 computation.

[00134] A sequence can be modified to change direction of the order of operations. For
example, in a case where direct delivery requests can be too large for a single buffered
read/write, the “direct-to-buffered” handler can change the sequence direction to perform
multiple operations on one side of the sequence (e.g., as shown in FIG. 12D). Handlers to
the left of the “direct-to-buffered” handler still see what they expect to see (e.g., a single
buffered read/write), while handlers to the right of the “direct-to-buffered” handler perform
multiple operations.

[00135] Scripts and Customer-Specific Control

[00136] As noted, the request/response mechanism 904 (FIG. 9) may perform
customer-specific processing as part of the request/response processing. The
request/response mechanism needs certain customer-specific data 909 in order to
perform the customer-specific processing.

[00137] The request/response mechanism 904 may allow customer-specific handlers
(or sequences) to be included at various locations (or hooks) during request/response
processing. These customer-specific handlers may perform operations on the request
and/or response paths. The customer-specific scripts that are to be used to process a

customer's requests are referred to as Customer Configuration Scripts (CCSs), and are

27-

WO 2023/039341 PCT/US2022/075498

associated with the customers, e.g., via customer ids. The system may also have a
default mode in which it will perform request/response processing without any customer-
specific handlers. That is, in some embodiments, customer-specific handlers are optional.
In some embodiments, the default request/response processing is also specified using a
default script in a format that is substantially the same as the format of a CCS.

[00138] It should be appreciated that scripts are not the same as sequences. A script is
used to specify the sequences to be used to handle requests for a particular customer.
The script may perform whatever operations it needs (including making its own HTTP
requests, etc.) to determine what the sequences should be. For example, a script may
also use a different sequence depending on the local environment. However, once the
script has done that job, the resulting sequences (which may be referred to as the
compiled form of the customer-specific sequence) are used (without rerunning the script)
until something happens (e.g., the script is invalidated and reloaded) which indicates
different sequences are now needed. Note, however, that a given handler may be
implemented as a request/response script in the same language as the configuration
script, but performing a different job.

[00139] Customers may provide handlers, parameters for existing handlers, or routines
to be invoked by handlers at certain stages of the processing.

[00140] It should be appreciated that because, as noted, the client 903 may itself be
another component of the CDN (e.g., a cache or a control core, etc.), the CDN itself may
have CCSs associated therewith. That is, from the point of view of request/response
processing, the CDN may be considered to be a customer of itself.

[00141] With reference again to FIG. 9, the server 902 will use the CCS for the

customer associated with the request from the client 903. The CCS is stored in the

-28-

WO 2023/039341 PCT/US2022/075498

database 907, in the customer-specific data 909. If the server does not have that
customer's CCS stored locally at the time it is processing the client's request, the server
902 will attempt to obtain the CCS from another data source 910, typically from a control
core 916. If a CCS is found, any customer-specific handlers (or sequences) specified in
the CCS will be included in the appropriate locations (hooks) during request/response
processing. In summary, the CCS generally is run once. It sets up the customer-specific
sequences, which are then cached in their compiled form. If those sequences are present
and valid, they are used without re-running the CCS.

[00142] Deploying sequences of handlers

[00143] Sequences of handlers may be authored by a system designer or software
developer for deployment on hardware. As noted above, these sequences may be
specified in a customer configuration script (CCS) for specifying customer-specific
sequences of handlers and/or specified by a general configuration script to specify
general sequences that are applied to requests that are not associated with particular
customer-specific sequences. These configuration scripts define particular sequences of
handlers to be executed in response to various events, and these scripts may, optionally,
include handler arguments (e.g., strings), where the behavior of a given handler may be
configured or modified based on the values of its corresponding handler arguments, as
specified in the script. Different incoming requests may be processed by different
configured sequences in accordance with information contained in the request (e.g.,
whether a domain name in a requested URI is associated with a particular customer or
other metadata associated with the request).

[00144] As noted above, a request/response mechanism 904 may be implemented by

software in combination with hardware on a server 902. In more detail, the hardware of

-29-

WO 2023/039341 PCT/US2022/075498

the server generally includes a processor and memory storing program instructions that,
when executed by the processor, cause the processor to perform various processing
steps on data stored in the memory to implement the request/response mechanism 904.
The context in which the request/response mechanism 904 runs (including, but not limited
to, the software infrastructure implementing the request/response mechanism 904, the
software libraries available to the software infrastructure, the capabilities of the hardware
of the server 902 executing the software, and the location of the server 902 and/or the
location of the request/response mechanism 904 within the CDN 100, such as its tier
within a hierarchy of caches or its geographic location within the CDN 100) may be
referred to as an execution environment.

[00145] When setting up a sequence in a request/response mechanism 904 on a
server, sequencer infrastructure software (see, e.g., FIG. 13, described in more detalil
below) running in the execution environment provided by the server executes the
configuration script, initializes the handlers specified by the configuration script based on
the handler arguments (if any) in the configuration script, and generates an executable
compiled sequence of initialized or configured handlers (e.g., a sequence object 1101)
that is executed or run by the request/response mechanism 904 in response to incoming
events or inputs. In general, a configuration script is executed only once by any given
execution environment to initialize or compile a corresponding sequence of handlers,
where the compiled sequence of handlers may be represented as a sequence object, and
the compiled sequence of handlers is then executed numerous times (e.g., tens of
thousands of times every second) to perform the specified pipeline of processing tasks on

the incoming input and to generate outputs based on those inputs (e.g., in the case of a

-30-

WO 2023/039341 PCT/US2022/075498

CDN, to respond to requests for particular content by generating responses containing the
content, as well as updating logs or other statistical information).

[00146] Handlers may be configured to perform processing tasks on their inputs in order
to implement the functionality specified by their application programming interfaces (APIs),
e.g., as formally described by their preconditions and postconditions. Given that handlers
may be executed tens of thousands of times every second, to improve performance, the
process of generating an executable sequence of handlers from the configuration script
may include generating an executable instance of the handlers that are included in the
executable sequence, where the executable, configured instance of a given handler is
configured based on the supplied handler arguments. For example, this compilation or
initialization process may involve converting a human readable specification of the
sequence of handlers and arguments in the configuration script into executable object
code (e.g., compiled bytecode or machine code) that may be optimized for runtime
efficiency. Furthermore, during execution, the compiled executable instances of handlers
may allocate memory (e.g., in heap memory) or may make use of other storage that may
be external to their threads and/or processes, such as storing data in databases (e.g.,
SQLite or PostgreSQL) and/or key-value stores (e.g., Memcached or Redis). Accordingly,
in some circumstances, handlers are associated with various functions or entry points that
manage the lifecycle of a handler, including initialization or creation of a handler (e.g.,
argument-create), cloning of an existing handler and/or its compiled arguments (e.g.,
argument-clone), a main entry point for providing the handler with an input to generate an
output based on its API, a cleanup entry point that is called when all processing is done
(e.g., to cleanup or remove data cached in various external data stores, especially in the

case of non-standard exits such as when raising exceptions or errors), and a destroy entry

-31-

WO 2023/039341 PCT/US2022/075498

point (e.g., argument-destroy) that is used to release memory allocated by the handler
(e.g., data structures allocated in the heap portion of memory rather than stack portions of
memory of a server).

[00147] The same configuration scripts may be deployed in multiple execution
environments. For example, continuing the example of sequences running in a CDN, the
same sequence of handlers may be deployed on different physical hardware or different
virtual machines in different geographic areas to provide the same, or functionally
equivalent, processing from the “best” or “optimal” server (e.g., the server that is
geographically closest to the client making a request).

[00148] Different execution environments may offer different processing capabilities. For
example, different execution environments may have different hardware functionality (e.g.,
having central processing units with different instruction sets and capable of different
specialized functionality such as single-instruction-multiple-data or vector processing,
specialized functions, and/or specialized processors such as graphics processing units
and artificial intelligence accelerator units), software library availability (e.g., due to
differences in available other software such as available versions of handlers, differences
in versions of host environments such as the sequencer infrastructure software,
differences in version of the underlying operating system and/or other software), and the
like. Using configuration scripts to specify sequences of handlers in the form of their
desired functionality, rather than in the form of particular implementations, allows different
servers to generate compiled sequences (or sequence objects) that provide the same or
similar functionality (or specified fallback functionality when the execution environment
does not provide sufficient capabilities) in a manner that is efficient in their corresponding

execution environments, despite differences in those execution environments.

-32-

WO 2023/039341 PCT/US2022/075498

[00149] In addition, the complexity of the processing tasks performed by various
handlers may vary greatly. In some circumstances, handlers perform relatively simple
processing tasks that do not perform side effects or allocate memory in the heap, but the
generality of the API of a handler may require a significant amount of unnecessary
functionality to be implemented (e.g., handler lifecycle management code) in order to
match the execution model expected by the sequencer infrastructure.

[00150] Accordingly, aspects of embodiments of the present disclosure relate to
systems and methods for configuring sequences of handlers, where the handlers
specified in the configuration script may be compiled (or interpreted or executed)
differently by the sequencer infrastructure, and/or may operate differently, based on the
handler arguments provided to the handlers and/or based on the execution environment
of the configured or complied sequences (e.g., based on the execution environment of the
sequence object). In some embodiments, the processing steps performed by a handler
may be implemented using an expression that is evaluated by the sequencer
infrastructure instead of being implemented using the main entry point of a handler,
thereby avoiding the need to implement unnecessary functionality, such as handler
lifecycle management functionality (e.g., argument-destroy, argument-clone, and cleanup)
and, in some cases, avoiding other overhead associated with executing a main entry point
of a handler.

[001561] FIG. 13 is a schematic block diagram depicting sequencer infrastructure 1302
running on a server according to one embodiment of the present disclosure. The
sequencer infrastructure 1302 may be operated as a component of the request/response
mechanism 904 running on a server in a CDN. However, embodiments of the present

disclosure are not limited thereto and may be applied to the configuration of other

-33-

WO 2023/039341 PCT/US2022/075498

” o

processing pipelines such as “middleware,” “servlet filters,” or “interceptors” in web
application frameworks (e.g., Django, Flask, Java Servlets, ASP.NET, and the like), actors
or kernel functions in stream processing frameworks or other software frameworks
implementing processing sequences or pipelines of processing steps, where each
processing step in the sequence performs a transformation of input data into output data
and the output of an operation may be supplied as input to one or more other operations
in the sequence or supplied as (part of) the output of the overall sequence. These
processing steps may include, for example, the various examples described above (e.g.,
direct-to-buffered read/write, MD5 hashing, and logging) as well as other possible
processing steps such as returning a connection channel from an input file descriptor and
transforming content from one content encoding to another content encoding.

[001562] As shown in FIG. 13, the sequencer infrastructure 1302 includes a sequence
compiler 1306 comprising a configuration script 1304 to generate a configured sequence
or sequence object 1308 based on that configuration script. As mentioned above, the
configuration script 1304 may specify a sequence of handlers (through corresponding
handler identifiers such as names of handlers) or processing steps to be performed by a
configured sequence (e.g., a configured sequence object), and the configuration script
1304 may further specify, for each of the handlers, zero or more handler arguments for
configuring their corresponding handler (e.g., each handler may be configured with zero or
more handler arguments that influence the behavior of the configured handler (e.g.,
initialized handler or compiled handler) that is included in the compiled sequence). In
some embodiments, in a case where a handler is configured with zero handler arguments,

the handler may be referred to as being configured by a null argument. As such, in some

-34-

WO 2023/039341 PCT/US2022/075498

embodiments, a handler is configured using one or more handler arguments or a null
argument.

[00163] FIG. 14 is a flowchart depicting a method for initializing a sequence based on
an input configuration script according to one embodiment of the present disclosure. In
some embodiments, the operations described in FIG. 14 are performed by the sequence
compiler 1306 executed by the sequencer infrastructure software 1302. In more detail, in
operation 1402, the sequencer infrastructure software 1302 receives a configuration script
1304 as input. As described above, the configuration script may be a customer
configuration script that is used to configure a sequence object that processes inputs
(e.g., requests) associated with a particular customer or may be a general or generic
configuration script that defines a sequence for use on all requests not associated with a
particular customer. In some embodiments, the sequence infrastructure software 1302
executes the sequence compiler 1306 by interpreting or otherwise executing the
configuration script 1304 (e.g., the configuration script 1304 specifies operations to be
performed in generating a sequence object, as described in more detail below). In other
embodiments, the sequence compiler 1306 is implemented as a runtime within the
sequencer infrastructure software 1302 where the runtime takes a text-based
representation of a sequence (e.g., an embodiment of the configuration script 1304) to
generate the sequence object.

[00154] In operation 1404, the sequence compiler 1306 initializes the one or more
handlers of the sequence specified in the configuration script to generate one or more
configured handlers of the sequence. In more detail, the configuration script 1304 may
include one or more handler identifiers (e.g., strings) that identify particular uninitialized or

unconfigured handlers. The uninitialized or unconfigured handlers, in turn, may be stored

-35-

WO 2023/039341 PCT/US2022/075498

in a handler registry 1310 of the sequencer infrastructure. In some embodiments, the
handlers available to the sequence compiler 1306 is limited to the collection of handlers
stored in the handler registry 1310, which may be distributed together with the sequencer
infrastructure 1302. That is, any particular version of the sequencer infrastructure 1302
may be bundled and distributed with a corresponding collection of particular handlers in
the handler registry 1310, where the collection of handlers in the handler registry 1310 is
updated together with the sequencer infrastructure (e.g., the handlers may be statically
linked with the object code of the sequencer infrastructure 1302).

[00155] In some embodiments of the present disclosure, additional handlers or
replacement collections of handlers may be independently deployed into the sequencer
infrastructure 1302 (e.g., new and/or upgrades to existing handlers may be dynamically
linked to the sequencer infrastructure 1302 and/or may be deployed in the form of source
code or byte code that may be dynamically compiled, interpreted, and/or executed by the
sequence compiler 1306 and/or other components of the sequencer infrastructure 1302,
where the newly deployed handlers may be added to the handler registry 1310). For
example, new handlers or updates to handlers may be retrieved from a remote source
over a network (e.g., downloaded over the internet from another server or remote registry
or repository of handlers).

[00156] In some embodiments, each of the handlers may be initialized by invoking an
argument-create entry point (as described above) of the associated handler with the
corresponding handler arguments (if any) that are specified in the configuration script
1304. For example, in an object-oriented programming model, the uninitialized or
unconfigured handlers may be stored as code representing a class of objects

implementing a more general handler API or handler interface (e.g., any particular

-36-

WO 2023/039341 PCT/US2022/075498

uninitialized or unconfigured handlers may be a subclass of a more general handler
class). As another example, the handlers may be stored in the handler registry 1310 as
executable constructor functions that return an initialized or compiled handler in response
to being invoked by the sequence compiler 1306. In some embodiments, an argument-
create entry point (or other handler initialization entry point) inspects its arguments and
may determine that it does not recognize some of those arguments or otherwise
determine that it may be out of date. In such circumstances, in some embodiments, the
argument-create entry point and/or the sequencer infrastructure checks a remote source
(e.g., a central authority) to determine if a newer version of the handler is available that
can recognize those arguments. If so, then the sequencer infrastructure 1302 retrieves a
new version of the handler (e.g., from the remote source over a network) and configures
the retrieved new version of the handler for use in the compiled sequence (e.g., the
sequence object).

[00157] In operation 1406, the sequence compiler generates or constructs a compiled
sequence or compiled sequence object based on the configured handlers that were
initialized in operation 1404. For example, in some embodiments, the sequence compiler
adds the configured handlers to a sequence object. This complied sequence or compiled
sequence object 1308 may then be used by a sequencer 1312 (e.g., to implement the
request/response mechanism 904) to handle the processing of inputs to the sequence,
such as processing requests 1314 and generating responses 1316 (e.g., in a manner
similar to that described above with respect to FIGS. 11A-11D and FIGS. 12A-12D.
[00168] FIG. 15 is a flowchart depicting a method for initializing a handler based on
handler arguments according to one embodiment of the present disclosure. In some

embodiments, the sequence compiler 1306 performs the operations described with

-37-

WO 2023/039341 PCT/US2022/075498

respect to FIG. 15, or equivalents thereof, for each handler of the sequence to be
initialized in operation 1404 of FIG. 14. In operation 1502, the sequence compiler 1306
parses the handler arguments associated with or corresponding to the handler being
initialized. The parsing may include, for example, converting string representations of
handler arguments into corresponding values (e.g., converting strings to integers or
converting data representing multiple fields into a record or product-type data structure).
In operation 1504, the sequence compiler 1306 selects a handler identified by the handler
identifier that was specified by the configuration script. For example, a handler identifier
for an MD5 handler may be the string “MD5_Handler” and a handler identifier for a direct-
to-buffered handler may be the string “Direct-to-Buffered_Handler.” The handler registry
1310 may store a mapping from handler identifiers to uninitialized handlers (e.g., as a
lookup table). In operation 1506, the sequence compiler invokes a handler initialization
entry point (e.g., argument-create entry point) of the uninitialized handler with the handler
arguments (if any) parsed in operation 1502, which returns a configured handler. The
executable, configured handler may then be inserted into the compiled sequence or
sequence object 1308 in operation 1406.

[00159] In some embodiments, the handler initialization entry point of an uninitialized
handler may return different types of configured handlers based on the context, such as
based on the handler arguments and/or based on parameters of an execution
environment of the sequencer 1312. For example, in some embodiments, the handler
initialization entry point returns an expression (in an expression language, such as a
domain-specific language for representing processing tasks) instead of a full handler,
where the expression may be evaluated by an expression interpreter or expression

runtime of the sequencer 1312 and implements functionality consistent with the pre-

-38-

WO 2023/039341 PCT/US2022/075498

conditions and post-conditions of the handler. In some embodiments, when invoked, the
handler initialization entry point selects between different potential representations of a
configured handler, each of which implements functionality consistent with the pre-
conditions and post-conditions of the handler, where those different potential
representations include two or more of: a configured instance of the handler, a configured
alternate handler different from the original handler, a sequence of handlers, or an
expression (e.g., written in an expression language). For the sake of clarity, as used
herein, a “*handler” may refer to an object that implements functionality consistent with pre-
conditions and post-conditions specified in a sequence, a “full handler” refers to an
implementation of a handler that includes implementations of the handler lifecycle
management entry points as described above (e.g., argument-destroy, cleanup, etc.)
whereas an “expression handler” implements the functionality of a handler using an
expression, without implementations of the full lifecycle management entry points.
[00160] In some embodiments, implementing the functionality of a handler using an
expression provides efficiency improvements over a full handler, but may also have
reduced flexibility, in accordance with the capabilities and limitations of the expression
language. For example, the expression to be evaluated may take various input arguments
satisfying the preconditions of the handler (e.g., corresponding to an incoming request
when processing requests on the way “in to” the sequence) and evaluate to values that
satisfy the postconditions of the handler (e.g., corresponding to the processed requests
output by the handler on the way “out of” the sequence).

[00161] As one example, an expression language may support data types such as
Booleans, strings, floating point numbers, signed integers, unsigned integers, and records

(e.g., a combination of values as a product-type, where each value in the record may be

-30-

WO 2023/039341 PCT/US2022/075498

stored in a particular “field” of the record and associated with a field name, and records
may be stored within fields, thereby resulting in hierarchical tree-like data structures) and
may provide functionality such as string manipulation (e.g. string concatenation),
arithmetic (e.g., addition, subtraction, multiplication, division, modulus, left and right shifts,
bitwise AND, OR, and complement, Boolean operators, a conditional operator (e.g., if <e>
then <a1> else <a2>), grouping via parentheses, and comparisons against lists of values
(e.g., testing for membership of a value within a list of values). An expression language
may also allow the setting of particular fields of an argument (e.g., where the expression
takes an input record and returns an output record with one or more fields set to specified
or computed values). For example, in some embodiments, the expression language is
used to set values in the objects associated with a request or a response, such as the
Notes Object 1004, a Session Object 1006, and a Transaction Object 1008.

[00162] Accordingly, expression handlers according to some embodiments may be
implemented as an expression using an expression language to perform various
processing steps on a request on its way “in to” a sequence or on a response on its way
“out of” a sequence (or other types of data passing through a data processing pipeline). In
particular, in some embodiments, the sequencer 1312 uses an expression runtime
environment or expression evaluator to evaluate any expressions in the sequence object
given the current input to the expression (e.g., given a current incoming request or
outgoing response) to compute a value that is consistent with the postconditions of the
handler.

[00163] As such, a software developer implementing the functionality of a handler using
an expression according to some embodiments of the present disclosure does not need to

implement a lifecycle management functionality of a full handler (e.g., argument-destroy,

-40-

WO 2023/039341 PCT/US2022/075498

argument-clone, and cleanup), because this functionality is not needed when invoking an
expression using an expression runtime. In such cases, the sequencer may also avoid
overhead associated with managing the lifecycle of a handler as well as, in some cases,
avoid overhead associated with executing a main entry point of a handler (e.g., a function
call overhead).

[00164] While implementing the functionality of a handler using an expression generally
saves software development time and reduces the overhead in executing sequences, full
handlers may still be used in circumstances involving more complex processing. For
example, a more elaborate or featureful programming language may be better suited for
performing complex processing steps. In addition, in some embodiments, the expression
language may be constrained such that the expression runtime does not produce side
effects that mutate or modify data other than the request or response being processed by
the handler, and a full handler may be necessary to implement operations that affect other
data (e.g., mutations or modifications to other data outside of the request or response
returned by the handler, such as updating logs, modifying values in databases, and the
like).

[00165] In some embodiments, the sequence compiler 1306 retrieves an uninitialized
handler from a handler registry 1310 based on a handler identifier, where the collection of
uninitialized handlers in the handler registry 1310 is distributed with the sequencer
infrastructure 1302 and is fixed during the lifetime of the sequencer infrastructure 1302.
For example, in these embodiments, the collection of handlers in the handler registry 1310
is upgraded or updated only when the sequencer infrastructure 1302 is updated. In such
circumstances, it is possible to ensure that the collection of uninitialized handlers

distributed with a sequencer infrastructure 1302 are all compatible with the sequencer

41-

WO 2023/039341 PCT/US2022/075498

infrastructure (e.qg., it would be possible to ensure that handlers do not include calls to
invoke library functions that are not available in the particular version of the sequencer
infrastructure 1302 that the handlers are deployed with).

[00166] Nevertheless, due to the wide range of possible execution environments, it is
possible that handlers may attempt to use functionality that is not available in their
particular execution environments. This may occur, in examples, when the handlers are
distributed separately from the infrastructure in which the handler is running (e.g., when
they are dynamic handlers). As a nonexclusive example, a handler that is intended as an
expression handler but is deployed in an environment where either the sequencer does
not know how to run expressions or where there is a problem with the expression
implementation, the handler may become a full handler and implement the expression
itself (possibly less efficiently). In addition, in some circumstances, it may be necessary to
deploy new versions of handlers with older versions of sequencer infrastructure software,
such as to deploy bug fixes to handlers but where the sequencer infrastructure may need
to stay on an older version because it is running on an older server (e.g., a legacy or older
version of an operating system or on legacy hardware). Furthermore, in some
embodiments, the handler registry 1310 may be dynamically updated during normal
operation with new handlers or new versions of handlers, independent of the deployment
of a new version of the sequencer infrastructure 1302 (e.g., the sequence compiler 1306
and/or the sequencer 1312), such as the case where new handlers may be dynamically
linked or deployed as source code to be interpreted (e.g., expressions written in the
expression language).

[00167] Accordingly, some aspects of embodiments of the present disclosure relate to

uninitialized handlers that dynamically return different types of configured handlers when

42-

WO 2023/039341 PCT/US2022/075498

the sequence compiler 1306 invokes the handler initialization entry point, where the type
of configured handler is determined by the handler (e.g., by logic in the argument-create
entry point) based on the handler arguments and/or parameters of the execution
environment.

[00168] FIG. 16 is a flowchart depicting a method for selecting a type of handler and
initializing the selected type of handler based on handler arguments and/or parameters of
an execution environment according to one embodiment of the present disclosure. The
parameters of an execution environment of the sequencer 1312 may include the
sequencer infrastructure 1302 (e.g., the version of the sequencer infrastructure), the
expression language runtime in the sequencer infrastructure 1302, the software libraries
available to the sequencer infrastructure 1302 (e.g., dynamically linkable libraries installed
on the server), the handlers available in the handler registry 1310 and the version
numbers thereof, the capabilities of the hardware of the server 902 executing the
sequencer 1312 (e.g., advanced processor instructions, co-processors such as GPUs and
ASICs, specialized memory modules such as high bandwidth memory, and the like), and
the location of the server 902 and/or the location of the request/response mechanism 904
within the CDN 100, such as its tier within a hierarchy of caches or its geographic location
within the CDN 100.

[00169] In operation 1602, a handler result type is determined based on the handler
arguments in accordance with the invocation of the handler initialization entry point and/or
parameters of the execution environment. In examples, the determination of a handler
result type may be based on information the sequence compiler 1306 receives when it
runs the handler's argument-create or other initialization entry point. In more detail, and in

examples, the handler initialization entry point (e.g., “argument-create” function) takes, as

43-

WO 2023/039341 PCT/US2022/075498

input, the handler arguments and includes logic for determining what type of handler to
return, based on those handler arguments and/or parameters describing the execution
environment of the sequencer infrastructure 1302. In the embodiment shown in FIG. 16,
the handler initialization entry point includes logic for selecting between four different
types of configured handlers and, based on the selection, the sequence compiler 1306
initializes an instance of a configured handler based on the type of handler selected in
operation 1602. In particular, in operation 1604, the sequence compiler 1306 initializes a
full handler (with its associated lifecycle management entry points and “main” entry point);
in operation 1606, the sequence compiler 1306 initializes an expression implementing the
functionality of the handler; in operation 1608, the sequence compiler 1306 initializes an
alternate or alternative handler; in operation 1610, the sequence compiler 1306 initializes
an alternative sequence of handlers; and in operation 1612, the sequence compiler 1306
initializes a no-op handler (e.g., a handler that performs no operation on its input and
outputs the same value that it received as input, which may also be referred to as an
identity function).

[00170] In these embodiments, the determination of which type of handler to return
depends on characteristics of the processing step or task being performed by the handler,
as specified by the handler arguments supplied in the configuration script and/or based on
parameters of the execution environment. For example, in some embodiments, the
sequence compiler 1306 invoking the handler initialization entry point may determine that
the processing step of the handler, as configured based on the handler arguments, may
be performed using an expression, and therefore the handler initialization entry point
returns an initialized instance of an expression (in accordance with the handler

arguments) as the configured handler in accordance with operation 1606 of FIG. 16.

-44-

WO 2023/039341 PCT/US2022/075498

[00171] As another example, the sequence compiler 1306 may determine that the
processing step to be performed by the handler, as configured based on the handler
arguments, is more efficiently performed using a configured instance of the handler itself,
and therefore initializes and generates a configured instance of the handler in accordance
with operation 1604 of FIG. 16. The sequence compiler 1306 may also make this
selection in cases where the sequence compiler 1306 determines, based on parameters
the execution environment, that the expression runtime (or another aspect of the
sequencer infrastructure 1302) lacks the necessary functionality for implementing the
handler using an expression. For example, the sequencer infrastructure may lack an
expression runtime entirely or the expression may use language features that are not
supported by the expression runtime that is running in the version of the sequencer 1312
that will execute the sequence object 1308.

[00172] Similarly, in some embodiments, the sequence compiler 1306 may determine
that the particular specified handler may not be available in the handler registry 1310, may
be incompatible with the sequencer 1312, or may otherwise be inappropriate for use
based on the specified handler arguments and/or parameters of the execution
environment. In such a case, the sequence compiler 1306 may initialize an alternate
handler (e.g., a fallback handler) in accordance with operation 1608 of FIG. 16 or an
alternate sequence of handlers (e.g., a fallback subsequence of handlers) in accordance
with operation 1610 of FIG. 16.

[00173] The fallback alternate handler or fallback subsequence of handlers may
implement a no-op handler in circumstances where the processing step is optional or may

have similar, but reduced, functionality, may have different performance characteristics

45-

WO 2023/039341 PCT/US2022/075498

(e.g., performs the same transformation of the request or response, but at higher
computational cost).

[00174] For example, a new version of a sequencer infrastructure 1302 may provide a
new handler that performs multiple operations together, whereas previous versions of the
sequencer architecture 1302 provided separate handlers for each of those operations,
and where the new single handler performs the operations more efficiently (e.g., more
quickly) than the multiple separate handlers. In this case, the sequence infrastructure
uses the more efficient combined handler when it is available in the execution
environment (e.g., in the handler registry 1310), and falls back to the equivalent, but
slower, technique using multiple handlers when running in an execution environment that
does not have access to the new handler.

[00175] In some embodiments, the sequence compiler 1306 invoking the handler
initialization entry point may cause the sequence compiler 1306 to be instructed, based on
the handler arguments, that no processing by the handler is necessary in the configured
sequence. Accordingly, in some embodiments, when the handler is unnecessary, the
compiled sequence omits the unnecessary handler, where the input (e.g., request or
response) that would have been provided to the handler, if it were present, is provided
directly to the next handler in the sequence (e.g., as if the handler that was determined to
be unnecessary was never a part of the sequence). In other embodiments, the handler
initialization entry point returns an initialized no-op handler in accordance with operation
1612 of FIG. 16 that performs the identity function on its input (e.g., that outputs the same
request or response that it received as input) or where the no-op handler is disregarded
by the sequencer infrastructure 1302 when executing the sequence object. In some

embodiments, when generating or constructing the complied sequence in operation 1406,

46-

WO 2023/039341 PCT/US2022/075498

the sequence compiler omits all no-op handlers, such that requests and responses are
provided directly to the next handler in the sequence.

[00176] As noted above, in some embodiments of the present disclosure the handlers
operate in two directions and process inputs (e.g., requests) in a first direction on the way
“in to” the sequence as well as outputs (e.g., responses) in a second direction coming “out
of” the sequence, as shown in FIGS. 12A-12D. In some such embodiments with handlers
processing data in multiple directions, the process of configuring a handler as described
above may result in different types of handlers being configured for each of the different
directions (e.g. the “in to” and “out of” paths). For example, during the initialization of a
handler in operation 1506, the handler initialization entry point may use an expression
handler for the “in to” path and perform no operation (e.g., a no-op handler or skipped
over entirely) on the “out of” path when initializing one handler of a sequence. As another
example, the handler initialization entry point may use an alternate handler for the “in to”
path and an expression handler on the “out of” path when initializing another handler of
the sequence.

[00177] While FIG. 16 and the associated description illustrate embodiments in which
the handler may be initialized as any of: a full handler; an expression; an alternate
handler; or an alternate sequence of handlers, embodiments of the present disclosure are
not limited thereto and the handler initialization entry point may determine between any
two of the above example types of handlers. In addition, the types of possible handlers is
not limited to the above four examples, but may also include other types of handlers (e.g.,
handlers that are consistent with the API specified by the handler, such as the
preconditions and postconditions associated with the processing step implemented by the

handler).

47-

WO 2023/039341 PCT/US2022/075498

[00178] Accordingly, the compiled sequence or sequence object 1308 may include
handlers that are configured as described above, e.g., where any given configured
handler of the compiled sequence may be implemented as a full handler, an expression,
an alternate handler, an alternate subsequence of handlers, or no operation at all (e.g.,
omitting the handler from the compiled sequence or including a configured no-op handler
in the sequence). The sequencer 1312 performs processing tasks on inputs (e.g.,
requests 1314) and may generate outputs (e.g., responses 1316) by supplying the inputs
to a sequence object 1308 corresponding to that request, such as a customer-specific
sequence object or a general sequence object. When executing a compiled sequence or
sequence object that includes both expression handlers and full handlers (or
subsequences of handlers), the sequencer 1312 may detect whether the current handler
to be executed in the configured sequence is an expression handler. If so, then the
sequencer 1312 evaluates the expression with the given input (e.g., a request that was
provided as input into the handler) to generate an output. If the current handler is not an
expression handler, then standard techniques for invoking a handler in accordance with its
APl may be used instead (e.g., invoking the main entry point of the configured handler). In
various embodiments, the expression may be represented as a string (e.g., uncompiled
code) and interpreted by the expression runtime or may be represented as compiled
native code or compiled bytecode, where the compilation of the expression may be
performed before deployment to the server, during the handler initialization, or just-in-time
(JIT) by the expression runtime during or after the first time the expression handler is
executed.

[00179] As such, aspects of embodiments of the present disclosure provide additional

flexibility in the implementations of handlers in processing pipelines, including adaptability

48-

WO 2023/039341 PCT/US2022/075498

based on capabilities of execution environments of the handlers and reduced code (e.g.,
boilerplate) for handling operations that may be expressed more compactly and executed
more efficiently using an expression language.

[00180] FIG. 17 and the associated description provides a discussion of a variety of
operating environments in which examples of the invention may be practiced. However,
the devices and systems illustrated and discussed with respect to FIG. 17 are for
purposes of example and illustration and are not limiting of a vast number of computing
device configurations that may be utilized for practicing aspects of the invention,
described herein.

[00181] Computing device 1700 is an example computing environment with which
examples of the present disclosure may be practiced. The computing device components
described below may be suitable for a server operating the sequencer compiler 1306
described above. In a basic configuration, the computing device 1700 may include at least
one processing unit 1702 and a system memory 1704. The processing unit(s) (e.g.,
processor(s)) may also be referred to as a processing system. Depending on the
configuration and type of computing device, the system memory 1704 may comprise, but
is not limited to, volatile storage (e.g., random access memory), non-volatile storage (e.g.,
read-only memory), flash memory, or any combination of such memories. The system
memory 1704 may include an operating system 1705 and one or more program modules
1706 suitable for running software applications 1750 such as a sequencer compiler 1306.
[00182] The operating system 1705, for example, may be suitable for controlling the
operation of the computing device 1700. Furthermore, aspects of the invention may be
practiced in conjunction with a graphics library, other operating systems, or any other

application program and is not limited to any particular application or system. This basic

-49-

WO 2023/039341 PCT/US2022/075498

configuration is illustrated in FIG. 17 by those components within a dashed line 1708. The
computing device 1700 may have additional features or functionality. For example, the
computing device 1700 may also include additional data storage devices (removable
and/or non-removable) such as, for example, magnetic disks, optical disks, or tape. Such
additional storage is illustrated in FIG. 17 by a removable storage device 1709 and a non-
removable storage device 1710.

[00183] As stated above, a number of program modules and data files may be stored in
the system memory 1704. While executing on the processing unit 1702, the program
modules 1706 may perform processes including, but not limited to, one or more of the
operations of the methods discussed herein. Other program modules that may be used in
accordance with examples of the present invention.

[00184] Furthermore, examples of the disclosure may be practiced in an electrical circuit
comprising discrete electronic elements, packaged or integrated electronic chips
containing logic gates, a circuit utilizing a microprocessor, or on a single chip containing
electronic elements or microprocessors. For example, examples of the invention may be
practiced via a system-on-a-chip (SOC) where each or many of the components illustrated
in FIG. 17 may be integrated onto a single integrated circuit. Such an SOC device may
include one or more processing units, graphics units, communications units, system
virtualization units and various application functionality all of which are integrated (or
“burned”) onto the chip substrate as a single integrated circuit. When operating via an
SOC, the functionality, described herein, with respect to generating suggested queries,
may be operated via application-specific logic integrated with other components of the
computing device 1700 on the single integrated circuit (chip). Examples of the present

disclosure may also be practiced using other technologies capable of performing logical

-50-

WO 2023/039341 PCT/US2022/075498

operations such as, for example, AND, OR, and NOT, including but not limited to
mechanical, optical, fluidic, and quantum technologies.

[00185] The computing device 1700 may also have one or more input device(s) 1712
such as a keyboard, a mouse, a pen, a sound input device, a touch input device, etc. The
output device(s) 1714 such as a display, speakers, a printer, etc. may also be included.
The aforementioned devices are examples and others may be used. The computing
device 1700 may include one or more communication connections 1716 allowing
communications with other computing devices 1718. Examples of suitable communication
connections 1716 include, but are not limited to, RF transmitter, receiver, and/or
transceiver circuitry; universal serial bus (USB), parallel, and/or serial ports.

[00186] The term computer readable media as used herein may include computer
storage media. Computer storage media may include volatile and nonvolatile, removable
and non-removable media implemented in any method or technology for storage of
information, such as computer readable instructions, data structures, or program modules.
The system memory 1704, the removable storage device 1709, and the non-removable
storage device 1710 are all computer storage media examples (i.e., memory storage.)
Computer storage media may include RAM, ROM, electrically erasable programmable
read-only memory (EEPROM), flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or any other article of
manufacture which can be used to store information and which can be accessed by the
computing device 1700. Any such computer storage media may be part of the computing
device 1700. Computer storage media may be tangible and non-transitory and does not

include a carrier wave or other propagated data signal.

-51-

WO 2023/039341 PCT/US2022/075498

[00187] Communication media may be embodied by computer readable instructions,
data structures, program modules, or other data in a modulated data signal, such as a
carrier wave or other transport mechanism, and includes any information delivery media.
The term “modulated data signal” may describe a signal that has one or more
characteristics set or changed in such a manner as to encode information in the signal. By
way of example, and not limitation, communication media may include wired media such
as a wired network or direct-wired connection, and wireless media such as acoustic, radio
frequency (RF), infrared, and other wireless media.

[00188] Aspects of the present invention, for example, are described above with
reference to block diagrams and/or operational illustrations of methods, systems, and
computer program products according to aspects of the invention. The functions/acts
noted in the blocks may occur out of the order as shown in any flowchart. For example,
two blocks shown in succession may in fact be executed substantially concurrently or the
blocks may sometimes be executed in the reverse order, depending upon the
functionality/acts involved. Further, as used herein and in the claims, the phrase “at least
one of element A, element B, or element C” is intended to convey any of: element A,
element B, element C, elements A and B, elements A and C, elements B and C, and
elements A, B, and C.

[00189] The description and illustration of one or more examples provided in this
application are not intended to limit or restrict the scope of the invention as claimed in any
way. The aspects, examples, and details provided in this application are considered
sufficient to convey possession and enable others to make and use the best mode of
claimed invention. The claimed invention should not be construed as being limited to any

aspect, example, or detail provided in this application. Regardless of whether shown and

-52-

WO 2023/039341 PCT/US2022/075498

described in combination or separately, the various features (both structural and
methodological) are intended to be selectively included or omitted to produce an example
with a particular set of features. Having been provided with the description and illustration
of the present application, one skilled in the art may envision variations, modifications, and
alternate examples falling within the spirit of the broader aspects of the general inventive
concept embodied in this application that do not depart from the broader scope of the

claimed invention.

-53-

WO 2023/039341 PCT/US2022/075498

WHAT IS CLAIMED IS:
1. A method for registering a handler in a configured sequence of handlers, the
method comprising:
receiving, by a processor and memory storing instructions implementing a
sequencer infrastructure, a configuration script defining a sequence comprising one or
more handler identifiers and corresponding one or more handler arguments;
invoking, by the processor, a handler initialization entry point for a handler
corresponding to a handler identifier of the one or more handler identifiers, the invoking
the handler initialization entry point comprising:
selecting, based on the corresponding one or more handler arguments, a
handler type from among two or more of:
a configured instance of the handler;
a configured alternate handler different from the handler;
an alternate sequence of handlers;
an expression; and
a no-op handler; and
initializing a configured handler based on the handler type selected and the
corresponding one or more handler arguments;
adding, by the processor, the configured handler to a configured sequence of
handlers; and
executing, by a sequencer of the sequencer infrastructure, the configured

sequence of handlers to generate an output in response to an input.

-54-

WO 2023/039341 PCT/US2022/075498

2. The method of claim 1, wherein the selecting the handler type is further

based on a plurality of parameters of an execution environment of the sequencer.

3. The method of claim 2, wherein the parameters of the execution
environment comprise:

a version number of the sequencer infrastructure;

a handler registry of handlers available to the sequencer infrastructure;

a plurality version numbers of corresponding ones of the handlers of the handler
registry;

descriptions of hardware capabilities of a server comprising the processor and
memory and configured to execute the sequencer; or

a location of the server.

4. The method of claim 2, wherein the invoking the handler initialization entry
point further comprises dynamically registering the handler with the execution

environment.

5. The method of claim 4, wherein the handler is retrieved from a remote

source over a network.

6. The method of claim 1, wherein the sequencer executing the configured

sequence of handlers processes requests and generates responses in a content delivery

network.

-55.

WO 2023/039341 PCT/US2022/075498

7. The method of claim 1, wherein the sequencer executing the configured
sequence of handlers processes requests and generates responses in a web application

server.

8. The method of claim 1, wherein the sequencer processes input data in a

stream processing pipeline corresponding to the configured sequence of handlers.

9. The method of claim 1, further comprising omitting the configured handler

from the configured sequence of handlers when the handler type is the no-op handler.

10. A computing system comprising:
at least one processor; and
memory storing instructions that, when executed by the at least one processor,
cause the system to:
register a handler in a configured sequence of handlers by:
receiving a configuration script defining a sequence comprising one
or more handler identifiers and corresponding one or more handler
arguments;
invoking a handler initialization entry point for a handler
corresponding to a handler identifier of the one or more handler identifiers,
the invoking the handler initialization entry point comprising:
selecting, based on the corresponding one or more handler
arguments, a handler type from among two or more of:

a configured instance of the handler;

-56-

WO 2023/039341 PCT/US2022/075498

a configured alternate handler different from the
handler:;
an alternate sequence of handlers;
an expression; and
a no-op handler; and
initializing a configured handler based on the handler type
selected and the corresponding one or more handler arguments; and
adding, by the processor, the configured handler to a configured
sequence of handlers; and
implement a sequencer infrastructure configured to execute the configured

sequence of handlers to generate an output in response to an input.

11. The computing system of claim 10, wherein the selecting the handler type is

further based on a plurality of parameters of an execution environment of the sequencer.

12. The computing system of claim 11, wherein the parameters of the execution
environment comprise:

a version number of the sequencer infrastructure;

a handler registry of handlers available to the sequencer infrastructure;

a plurality version numbers of corresponding ones of the handlers of the handler
registry;

descriptions of hardware capabilities of a server comprising the processor and
memory and configured to execute the sequencer; or

a location of the server.

-57-

WO 2023/039341 PCT/US2022/075498

13. The computing system of claim 11, wherein the invoking the handler
initialization entry point further comprises dynamically registering the handler with the

execution environment.

14. The computing system of claim 13, wherein the handler is retrieved from a

remote source over a network.

15. The computing system of claim 10, wherein the sequencer executing the
configured sequence of handlers processes requests and generates responses in a

content delivery network.

16. The computing system of claim 10, wherein the sequencer executing the
configured sequence of handlers processes requests and generates responses in a web

application server.

17. The computing system of claim 10, wherein the sequencer processes input
data in a stream processing pipeline corresponding to the configured sequence of

handlers.

18. The computing system of claim 10, wherein the memory further stores
instructions that, when executed by the at least one processor, cause the system to omit
the configured handler from the configured sequence of handlers when the handler type is

the no-op handler.

-58-

WO 2023/039341 PCT/US2022/075498

19. A method, for registering a handler in a configured sequence of handlers,
the method comprising:
receiving, by a processor and memory storing instructions implementing a
sequencer infrastructure, a configuration script defining a sequence comprising one or
more handler identifiers and corresponding one or more handler arguments;
invoking, by the processor, a handler initialization entry point for a handler
corresponding to a handler identifier of the one or more handler identifiers, the invoking
the handler initialization entry point comprising:
selecting, based on the corresponding one or more handler arguments and
a plurality of parameters of an execution environment of a sequencer, a handler
type from among two or more of:
a configured instance of the handler;
a configured alternate handler different from the handler;
an alternate sequence of handlers;
an expression; and
a no-op handler; and
initializing a configured handler based on the handler type selected and the
corresponding one or more handler arguments;
adding, by the processor, the configured handler to a configured sequence of
handlers; and
executing, by the sequencer of the sequencer infrastructure, the configured

sequence of handlers to generate an output in response to an input.

-59-

WO 2023/039341 PCT/US2022/075498

20 The method of claim 19, wherein the invoking the handler initialization entry
point further comprises dynamically registering the handler with the execution

environment.

60-

PCT/US2022/075498

WO 2023/039341

1/19

WOV LSO

§ LRAVEEENEY AR

§ R L)

pSSESEERERIE uq.i;;;;\\\vf
< 3

-
",

¥.

SOCAT IO

1S 011

P

”,

[Ale
o

|

B

Piih SOOAZZONIY

",

21

»\\\\\wo»»\\\\\\

LB

BOLOATIOD
P

.5 Dy

L X,

o

W

.

(NGO HHOMLIN AMIAIEIC] LNILNGD

*B1

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498

WO 2023/039341

2/19

(e R 2174
ALY rer
THDYD)

HELSOD HARITED
N FHOVY

P

iz

ONLLOIp

“ TH7 108 Y3480 FHIYY

c

2071 30wy

WHLBHID
BV

P07 (Spd3iBI 340YD

HSHHIERN
ML

Z0C 345 ¥BLENID FHIYD

Z "bij

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498

WO 2023/039341

3/19

TEOE

4

L2233

e

Hi

AN

FOZ u3isn1s mmmdnv;

|

FiE
{Syadry 9%

BHAYINLE

il
IR YEIAYES
SIS

1574 mm,mmu?awmw ’

-,

i
AN
CHG LI

FOC BRI801T IHIVYD

P "B

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498

4/19

P ENFEE NN P L NN SEEAS P EN NS DN BDINRFE NP IS BNS & T2k,

B HALSNT SOV)W SHHT S YALROD IHOYD

aX WM\
R TR E
N RYAY
{ordaamas
DM
174 mww‘mm@mm

£

(SRl hnd \ek)\¢¢x)\.(¢h).\<.¢p> (Mx\\(?)\\eb)\.t.:ep)(,ct)s..\em B L

»

WO 2023/039341

pawm ;
ST i
L \.www w
M TBISE e OMIAIDY w
M\ WSINVHOSIY OWLNOY :

i
g
B

SUBSTITUTE SHEET (RULE 26)

WO 2023/039341 PCT/US2022/075498

5/19

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498

WO 2023/039341

6/19

PR

W e e e X e,
-

B N e e R

GHOAT

|

k4
v
5
5
I
.

e

........................... R

“

B

A B R AR AT A A VA A A A R A i

R B T Y e TS o

\.\wm‘\%m‘

OV SRR AUBATTIC) INELNOD

m,&m i :ﬂwﬁ&
AWy

N RN NN

SUBSTITUTE SHEET (RULE 26)

WO 2023/039341 PCT/US2022/075498

7/19

;e S
QO : O & 1 BRIy
I : iy 3 o &

908

%4
7
HEBE

2

402
7

4
i

B

R
404

EN
Ry

s
Y

D& A

G007 DATABASE
g

5

. .-FEEPON

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498

. 201 B3

WYV, A

(KL AAB0 MOLSYY) BOOL

8/19

WM A

* s
x ® * *
% * * *

SUBSTITUTE SHEET (RULE 26)

5 vy LTEIR SR YO0
{Mwsd e Nosean OO0 * Y

WO 2023/039341

a0l "bid vol "bii

PCT/US2022/075498

WO 2023/039341

9/19

Vil "bid

i ” | o4
b AL T DI

NZOTT 2011

4
W

1201t

(shuzionvH Z6TT

LOAPEC TOMINOT BoNINGAS TOLL

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498

WO 2023/039341

10/19

gt

IO

N-ZG11

oo} Y VG oo il

ol A S e

-

AR

FUMANTEE BH) 40 L0,

i NN 1 T

£
ER s

gLl "bid

NN

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498

11/19

\\,m AONAOOEL

4 A

W ZH# IRTSZE TR L'Z#
Eepe N STUNY] | —
G o e SN g
SEEOTT e RN
wﬁf X f
“H . e } BONIN0IG

o] ST e

GUNHAS B

WO 2023/039341

TS B

oLl "bid

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498

WO 2023/039341

12/19

ZTH AHENSE

e

GIATEIAR HAl

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498
13/19

WO 2023/039341

LTS HLBEN 283/

Gl

&
&
S—

TORETDAE L S0 AT -

‘3“

VEB My M MO AR

SUBSTITUTE SHEET (RULE 26)

il GO

:}
BN
29

G5 B 0L HE,

2

3

PCT/US2022/075498

WO 2023/039341

14/19

a&ﬁ\“m w&ﬁ wmw&% ”

¥
A

R U AR
A

G * oy

AL ST

SRRCHI A o

riarn

P .?

ot Y

L2548

3 L A TaTG

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498

WO 2023/039341

15/19

10380
AONIN0IAG
20¢t

ISNOLSTY
giel

&

AMLSIOFY ¥IIANVH |

OLel

HIULWOD FONINDIS

g0t]

;.......
m:
W

INDAY
Lel

=t

ol

SUNLOMYLSYHANT Y30ONIN0ES

S ———

coel

1diH09g
NOIUYHNDIENOD
yoel

€1 b4

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498

WO 2023/039341

16/19

153rg0 FONINGIS GIHNOIENOD H

901
SUITANVH OFUNDLNOD

S0 FONIND3S FIVHENED

SUTTIANYH QIUNDIANOD A

IONINDIS
40 SYFTANYH JZITVILIN

ADNINDIS ¥ ONINIFIA LS
NOLLYHNSIENGD) BAIE03Y

Ledld 08 NOUVHNDENOD a

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498

WO 2023/039341

17/19

SANINNDY
QasuYd HLIM HET0NYH NO LNIOd
AdLLiNG NOLLYZITVLLING H3ONYH IMOAN]

4

y0S1L
H3IHILNEQ
HITONYH NO d35VE ¥ITONVYH L03738

%

2051
SLNIWNDYY YITONVH 38V

SINIWNODAY HITANYH OGNV H3141INZO H3T0ONYH ,ﬁ

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/075498

e HTONYH OE364NDIHNC D -
4

18/19

Ziol X 9081
SLMNIVNDYY
HAINYH HATOMYH MO 035YY SLINSVNOHY 3 H0RNYH
0N SHIINYH 40 FONIND3S MO G358 NOIBS3HdXE
ALV LIN FEPNMELNY VDAL A0 AINYLGN SFTVILLIN
8091 / 0ol
SAMINN MY HETHIMNYH v ‘ SIMBWNEEY
NGO OF8YE HATGOMYH HHIOMYH NO
FAVMYALTY 40 | / 043848 YA0NYH 40
SONYLSN! 22 TYILING . . , | SONVISN FZ0T9ILIN

WO 2023/039341

Z081
LHZWNOUIAND
MOILNDAKE HOMANY SLNSHNNDHY Ha3HONYH
NO (13SYE JdAL UINSEY WU3T0NYH ININGZ130

SINIWNDWY Y31ONYH 038HYA ~ @ —\ m— “
i]

SUBSTITUTE SHEET (RULE 26)

WO 2023/039341 PCT/US2022/075498
19/19
COMPUTING DEVICE
7T U R WD S S M om Amownoamoam oo oamomomwoaw e oam o mm amomoaw i
SYSTEM MEMORY REMOVABLE
STORAGE
1709

OPERATING SYSTEM

1705

PROGRAM MODULES

NON-REMOVABLE
STORAGE

1710

SUBSTITUTE SHEET (RULE 26)

; ;
§ §
f §
{ §
§ §
! §
§ §
§ g
§ §
f §
! §
! §
§ i
g i
i §
§ §
; APPLICATIONS ;
: : INPUT DEVICE(S)
g §
; : 1712
g SEQUENCER s
g COMPILER !
§ §
3 1306 PROCESSING UNIT : OUTPUT DEVICE(S)
§
; ; 1714
i §
§ §
: 1750 ' | COMMUNICATION
§ 1706 ; CONNECTIONS
g g 1716
§ 1704 1702| | e
¢ §
§ §
| 1708
1700
OTHER
COMPUTING
FIG. 17 DRVICES
1718

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2022/075498

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F9/48 GO6F9/50

ADD.

GO6F9/54

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 2019/081867 Al (LIPSTONE LAURENCE R
[US] ET AL) 14 March 20192 (2019-03-14)
[1244] -

[0117],
[1360]

paragraphs [0115],
[1255], [1268],

X US 2008/256342 Al (HILL DAVID P [US] ET
AL) 16 October 2008 (2008-10-16)
[0015] -

paragraphs [0005], [0006],
[0028], [0032] - [0036]

X US 2005/183092 Al (CHRISTENSEN ERIK B [US]
ET AL) 18 August 2005 (2005-08-18)
[0020],
[0033] — [0043],
[0138]

paragraphs [0005] - [0007],
[0021], [0026],

- [0047], [0129], [0137]1,

1-20

[0045]

I:‘ Further documents are listed in the continuation of Box C.

‘;_I See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority elaim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

9 November 2022

Date of mailing of the international search report

17/11/2022

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Buzgan, C

Form PCTASA/210 {second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2022/075498
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2019081867 Al 14-03-2019 Ca 2894873 Al 19-06-2014
EP 2932401 Al 21-10-2015
HK 1215817 a1l 07-10-2016
us 2014172944 Al 19-06-2014
uUs 2014172951 A1l 19-06-2014
us 2014172952 Al 19-06-2014
Us 2014172956 Al 19-06-2014
uUs 2014172970 Al 19-06-2014
Us 2014173023 Al 19-06-2014
uUs 2014173029 Al 19-06-2014
Us 2014173030 Al 19-06-2014
Us 2014173038 Al 19-06-2014
Us 2014173039 Al 19-06-2014
uUs 2014173040 A1l 19-06-2014
uUs 2014173041 A1l 19-06-2014
uUs 2014173042 A1l 19-06-2014
uUs 2014173043 Al 19-06-2014
uUs 2014173044 Al 19-06-2014
uUs 2014173045 Al 19-06-2014
uUs 2014173046 Al 19-06-2014
Us 2014173047 Al 19-06-2014
uUs 2014173048 Al 19-06-2014
Us 2014173052 Al 19-06-2014
Us 2014173053 Al 19-06-2014
us 2014173054 Al 19-06-2014
Us 2014173061 Al 19-06-2014
us 2014173062 Al 19-06-2014
Us 2014173064 Al 19-06-2014
Us 2014173066 Al 19-06-2014
Us 2014173067 Al 19-06-2014
uUs 2014173077 Al 19-06-2014
uUs 2014173079 Al 19-06-2014
Us 2014173087 Al 19-06-2014
Us 2014173088 Al 19-06-2014
Us 2014173091 A1l 19-06-2014
Us 2014173097 Al 19-06-2014
uUs 2014173115 A1l 19-06-2014
uUs 2014173131 A1l 19-06-2014
uUs 2014173132 Al 19-06-2014
uUs 2014173135 Al 19-06-2014
uUs 2014222946 Al 07-08-2014
uUs 2014222977 Al 07-08-2014
uUs 2014222984 Al 07-08-2014
Us 2014223002 A1l 07-08-2014
Us 2014223003 Al 07-08-2014
Us 2014223015 A1 07-08-2014
Us 2014223016 Al 07-08-2014
us 2014223017 Al 07-08-2014
Us 2014223018 Al 07-08-2014
us 2014337461 Al 13-11-2014
uUs 2014344413 Al 20-11-2014
us 2015163097 Al 11-06-2015
uUs 2015180724 Al 25-06-2015
Us 2015180725 Al 25-06-2015
Us 2015180971 Al 25-06-2015
Us 2015207695 Al 23-07-2015
Us 2019081867 Al 14-03-2019
Us 2019109772 Al 11-04-2019

Form PCTASA/210 (patent family annex) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2022/075498
Patent document Publication Patent family Publication
cited in search report date member(s) date

WO 2014093717 A1l 19-06-2014
US 2008256342 Al 16-10-2008 Us 2008256342 Al 16-10-2008
WO 2008127822 Al 23-10-2008
US 2005183092 Al 18-08-2005 Us 2005183092 Al 18-08-2005
Us 2009187920 Al 23-07-2009

Form PCTASA/210 (patent family annex) (April 2005)

page 2 of 2

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - wo-search-report
	Page 83 - wo-search-report
	Page 84 - wo-search-report

