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Abstract Title: A method of classifying a set of data

A two-stage method of classifying a set of data comprises:
in a training phase: estimating from pre-classified sets of
training data the probability of at least two features
occurring together in each of at least two categories; and
calculating, from the appropriate estimated probability and
a measure of the probability of the features occurring
together in the sets of training data if the features were
independent, an error factor for the two features for each
category. This involves comparing a vector of the estimated
probabilities of the features occurring together in each of
the categories with a vector of the probabilities, if the
features were independent, of the two features occurring
together in each category. In a recognition phase, the error
factor is used to classify the set of data. The error factor is a
measure of the falsehood of the assumption of
independence assumed by the Naive Bayes algorithm.
Using the error factor in the recognition phase can then
correct at least partially for this falsehood, resulting in
improved classification of sets of data, compared to the
classic Naive Bayes algorithm.
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Data Set Classification

This invention relates to a method of, and apparatus for, classifying a set of data.
An error factor is calculated in a training phase, and used to classify data in a

recognition phase.

A well-known algorithm for classifying sets of data is the Naive Bayes algorithm.
Data sets may be textual documents, such as newspaper articles, or documents
containing textual and non-textual information, such as web pages. A computet
system running a program implementing the algorithm analyses categorised
documents in a training phase, and used resulting probability data to categorise
uncategorized documents in a recognition phase. Such systems can be used to
determine whether e-mail messages are unsolicited advertisements as part of a so-
called ‘spam filter’, or to group together or merely label with a category web pages

identified by a web search.

The Naive Bayes Algorithm can be briefly described from its origin in probability
theory. Each of the categories is labelled with an integer c, Given a document D,
the probability P(c|D) of the Document D being belonging to category (or class) c,

is given using Bayes law of probabulity as:

P(c|D) =P(D|c) P(c) / P(D)

P(D |c) is the probability of producing document D from a random set of
documents in category c. P(c) 1s the prior probability of a2 document picked at

random being in category c.

The document is then assumed to be a collection of independent features, usually
wotds, although paits of wotds, phrases, or more complex grammatical structures
can also use be used. If the features are all independent, that is the occurrence of

one feature in a document does not make the occutrence of any other feature any
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more or less likely, then the probability P(D) of the document is the probability of

each of the features multiplied together:

P(D) = P(f_1) * P(f_2) * P(£_3) ...

And similarly:

P(D|c) = P(f_1]c) * P(f_2|c) * P(f_3]c)..

Following which:

P(c|Doc) = P(f_1|c) P(f_2|c) P(f_3]|c)... P(c) /P(D)
Since there definitely is 2 document to study, P(D) = 1.

It is then simple to define a categorizing method as the process of choosing the

category with the highest probability given for the given document:

c(D) = Argmax_c [ P(c) IT (f|c) ] = Argmax_c [log P(c) + 2 log P(f|¢c) ]
each fin D (equation 1)

In the above, Argmax_c means find the value of ¢ such that the quantity in brackets

has the highest value.

It 1s possible to train the document classification system in advance by finding the
Probabilities P(f| c) of each feature 1n each class using a set of training document

D(c,1)..D(c, n_c) in each category c.

If the training set is a representative sample of the real life frequencies of various

documents it is assumed that:

P(c) =N_c /2 N_c
C
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where N_c is the number of Documents in each category

Otherwise, P(c) may be set so that all categories ate, 4 priori, equally probable, which
removes P(c) from equation 1 since only the differences between the different

probabihties make a contribution.

Let N_f_c be the total number of occurrences of the feature f, 1n the training

documents of class c. Then:

N c= X N_fc
f

Here, N_c is seen to be the total number of occurrences of any features in the

training documents for class c. For the class ¢ we have,
P(f|c) ~N_f_c¢ /N_c

i.e. the total probability of the feature f, given that the class is c, is the number of
occurrences of that feature in all the training documents for the class c, divided by

the total number of occurrences of any feature in class c.

Because in practice the amount of training data is finite, the probability of a feature
occurrence 1s quantised. Accordingly, a rare feature may show P(f|c) = 0, despite
having a finite probability. Such rare features would be given too much weight in
the algorithm if they occur in the data to be recognised but not in the training data,

so it works better in practice to have P(f| c) instead defined as:
P(fjc) ~ (1+N_f_¢) / N_¢ (equation 2)

The algorithm can be summarised thus:
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Training: find the number of occurrences of each feature in the training set for
each category, then compute and store the value P(f| c) for each feature and

category using equation 2.

Recognition of document: Divide the document into features, and using the stored
P(f] ¢)’s from the training phase, find the category of the document using equation

1.

It is considered that the above Naive Bayes algorithm is wholly satisfactory when
the features of documents are independent. However, this is rarely true in practise,
so the algorithm is sub-optional in real-life situations. It is an aim of the invention

to address the deficiencies of the Naive Bayes algorithm.

According to a first aspect of the invention, there is provided a method of
classifying a set of data, the method comprising: in a training phase: estimating from
pre-classified sets of training data the probability of at least two features occurring
together in each of at least two categories; and calculating, from the appropriate
estimated probability and a measure of the probability of the features occurring
together in the sets of training data if the features were independent, an error factor
for the two features for each category; and, in a recognition phase: using the error

factor to classify the set of data.

Using this method, it is possible to draw from training sets of data an error factor
which is a measure of the falsehood of the assumption of independence assumed by
the Naive Bayes algorithm. Using the error factor in the recognition phase can then
correct at least partially for this falsehood, resulting in improved classification of
sets of data, compared to the classic Naive Bayes algorithm, when the assumption

of the independence of features is not true.

Probabilities may be estimated or calculated in any convenient manner. In the
embodiments, the probability of a feature occurring (or features occurring together)
is calculated from a count of the number of sets of data in each category in which

that feature occurred (or those features occutred together) and a count of the
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number of sets of data in that category. However, less processor intensive

techniques may be used instead.

Preferably the calculating step comptises corlnparing a vector of the estimated
probabulities of the at least two features occurring together in each of the categories with a
vector of the probabilities, if the features were independent, of the two features occurring
together 1 each category. This produces a measure of the degree of falsehood of the
assumption of independence which is considered to be 2 good measure and which is
relatively simple to calculate, given modern programming languages, compilers and
data processors. The comparing step may comprise dividing the dot product of the two

vectors by the product of the moduluses of the two vectors.

The using step may include finding the product (or some other similar function) of
a function of the error factor and a measure (which in the embodiments is the
logarithm) of the estimated probability of the two features occutring together. This
is advantageous since it is desired for processing to be quick in the recognition stage
(to allow classification of multiple seta of data quickly) and the calculations provide
a reliable indication of the class to which th'e set of data is best suited and which,

depending on the function of the error factor used, is relatively quick to calculate.

The function of the error factor preferably involves finding a power of a value, the
power including a measure of the error factor. In the embodiment, the function of
the error factor is 2 to the power of minus the etror factor, which is particularly
easy to calculate and which has been found to result in particularly good

classification of sets of data.

The using step may include summing for at least two feature combinations in a set
of data the products (or other similar function) of the function of the error factor
for that feature combination with the measure (which in the embodiments 1s the
loganithm) of the estimated probabulity for that feature combination. This allows a
numerical value to be provided for a set of data which value takes into account
plural combinations of features and which gives a measure of the similarity of the

data with other sets of data in a given category.
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The using step preferably include summing a measure (which may be a logarithm) of
the probability of a set of data falling into the category being tested. This feature
can provide compensation for errors which might occur should there not be equal

numbers of training sets of data in each of the categories.

The using step preferably includes finding the category for which a largest value is
calculated, allowing the best category to be found with a relatively simple

calculation.

According to a second aspect of the invention, there is provided apparatus for
classifying a set of data, the apparatus comprising: an estimator arranged in a
training phase for estimating from pre-classified sets of training data the probability
of at least two features occurring together in each of at least two categories; a
calculator arranged in the training phase for calculating, from the appropriate
estimated probability and a measure of the probability of the features occurring
together 1n the sets of training data if the features were independent, an error factor
for each category; and a classifier arranged, in 2 recognition phase, to use the error

factor to classify the set of data.

Embodiments of the invention will now be described, by way of example only, with

reference to the accompanying drawings, of which:-

Figures 1 and 4 illustrate systems according to one aspect of the invention and
operating according to another aspect of the invention; and

Figures 2 and 3 illustrate operations performed by a training program and a
recognition program, respectively, which together form part of the Figures 1 and 4

systems.

A classification system according to the invention is shown in Figure 1. Referring
to Figure 1, the system 10 comprises a training program module 11, which is
arranged to recewve pre-classified training documents 12, and to provide probability

data and error factor data to a hard disk 13 for storage. A recognition program
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module 14 is arranged to use the data stored on the hard disk 13 in the classification
of documents 15 which ate not pre-classified, and to provide documents 16 labelled
with their class so determined at an output 17. The system may be implemented on
a general purpose computer, ot it may be distributed on networked computers for
example. In most circumstances, the modules 11 and 14 will not be operational

simultaneously.

Taking two features ‘a’ and ‘b’, if the probability is independent, then:
P(a,b) = P(2)P(b), .

Otherwise:

P(a,b) # P(2)P(b)

For example, 1f the two features a and b always occur together and never occur

separately, then:

P(a,b) = Pa) = P(b)

From these equations, it can be seen that if two features always occur together in a
particular category, the importance of the two features is overstated by the Naive
Bayes algorithm. Worse still, the two features a and b may occur together more
often in a category which is different to the categories that each feature occurs in
alone most often. Thus, equation (1) may mis-predict the category of the

document.

In the training data, the probability of the two words occurring together in each

class P_c(a,b) could be estimated thus:

P_c(a,b) = N_a&b_c in document / N_c(N_c-1)
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Where N_a&b_c is the number of times both words 2 and b occur in any of the

documents in Class c.

The probabulity given the assumption of independence is:

P_c(@P_c(b) = N_a_c*N_b_c/N_c*N_c

where N_a_c 1s the number of times ‘a’ word occurs in any of the documents in

category ¢, and N_b_c is the number of times word ‘b’ so occurs.

These values can be treated as vectors in a space with one dimension for each
categoty, and the correlation between the probability in the assumed case of
independence and the actual case where the words are not necessarily independent
can be found. The Error factor caused by the assumption of independence for the
two features using the dot product between the two vectors of probability can be

expressed thus:

P(a,b) . P(2)R(b)
E(@b)= 1 - (equation 3)
|2(a,b)| |R@)R(b) |

or expressed another way:

2. P_c(ab) P_c(a)P_c(b)
E@b)= 1 - - -

sqrt ( X P_c(a b)*2) sqrt (X P_c(a)P_c(b)"2)

C C

Error factors calculated using equation 3 are stored at the end of the training
process, along with each of the probabilities for P(f|c) given by equation 2. The
value of E(a,b) 1s zero if the features are independent in the training data and tends
toward 1 if the two features together are found in a category different to the

categories where each 1s found alone. E(a,2) is defined as zero.



AN
s

10

15

20

25

30

In the recognition stage, the Error factor of the feature ‘a’ alone is estimated as the

maximum value of E(a,b) for all the b that occur in the document:
E(a) = Max (E(a,b) | where b occurs in the document),

Using this error factor, an improved equation 1 can be written thus:

D) = Argmax_c [logP(c) + X g(E(f)) log P(f|c) ] (equation 4)

each f in Doc

Where g(x) is some monotonically decreasing function of x. It is required that g(0)
=1, so that equation 1 is recovered when all the error factors are zero, i.e. when the
assumption of independence is true, the Naive Bayes algorithm is expected to

opetate optimally.

It is then assumed that the form of g(x) is g(x) = exp(- k x), with unknown k. From
experimentation with various values of k on real problems it has been found that
the best value of k is about 0.7. It is taken into account that if two features always
occur together, they should be counted together as a single feature. Thus, 1n this
case the contribution of each of the features is needed to be one half the usual

factor, thus:

g(1) =05 -> exp(-k)=05,iek=1In2
Then, g(x) = exp(- x In(2)) = 2"-x

Thus the finished categotizer equation is,

¢D) = Argmax_c [log P(c) + 2 2™-E(f) . log P(f|c)] (equation 5)

each f in Doc
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The embodied algorithm can be desctibed as having a training phase in which the
number of occurrences of each feature in the training sets is found for each
category, and the value P(f|c) for each feature and category is computed using
equation 2 and stored. Then, the number of occurrences of pairs of features
occurring anywhere in a document is found and the values E(a,b) for each pair of

features is calculated using equation 3, and the results are stored.

In a recognition phase, the document is divided into features. For each feature, ‘a’,
in the document its error factor E(a), is calculated as the maximum value of E(a,b)
for all the other features ‘b’ in the document. Then, equation 5 is used to find the

category of the document, making use of the stored P(f| c) values.

As explained, the embodied algorithm is divided into two patts. In the training
phase, a set of stored values is built by a first program from a set of documents each
labelled with a particular category. In the recognition phase, another program

determines a category for an unlabelled document using the set of stored values.

A program implementing the training phase of the algorithm is hereafter termed the
traming program. It has input as its a set of labelled (pre-categorised) documents,

and as its output a set of arrays of numbers to be stored on the computer.

Firstly, the pre-categorised training documents are read in, and from this the
number of categories and the number of training documents is determined. For
simplicity, it 1s assumed in this example that the documents are textual, and the
features examined are words of the text. Below is pseudocode for implementing the
training program. In this pseudocode, the size of various tables used is limited by
preset maximum values, 2 maximum number of unique words (Nmaxwords), a
maximum number of categories (Nmaxcat), a maximum Number of documents
(Ndocs), and a maximum length of each document. It is assumed that the
programming language or its libraries contain hash tables or associative atrays, that
is arrays that may be addressed by a string of text, or other complex object, rather
than by 2 number. The below pseudocode uses hash tables as sparse arrays, in order

to allow the program to be executable quickly.
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The training program reads each document in turn, assigning a category number to
each new category found in 2 document. It then reads in turn each word out of the
current document, building totals of the numberlof words in each category and the
number of occurrences of each unique word 1n each category. It uses a temporary
hash table as a sparse atray to total the occurrences of each word in a single
document, and then uses this hash table to total the number of occurrences for each
pair of words in a single document for each category. The total number of word

pairs 1s kept in a hash table keyed by pairs of numbers.

Having finished reading all the training documents, the training program computes
the probability of each word in each category, using the totals found above, and
then computes the error factor given by equation 3. The number of occurrences of
each pair of words 1s computed in each category. Finally, the training program finds

the logarithms of the probabilities, and writes the required data to disk.

The recognition program is simpler. It first reads in the data prepared by the
training program in the training phase. For each new document, the recognition
program reads the words in the document, finding the total number of occurrences
of each unique word in the document. It finds the maximum error factor for each
word in the document given all the other words that occur in the document, and
computes the probabilities for each potential category using equation 5. Finally, the
program finds the category with the largest probability and labels the document

with the name of this category.

The Training Program

Begin Training Program

# The below initialises the variables and arrays.

integer Nmaxcat = 100

integer Nmaxwords = 50000
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integer Nmaxdocs = 10000

integer Ncats = 0

integer Ndocs = 0

integer Nwords =0

array docsincat = array of integers, size Nmaxcat, each value preset to zero

array wordsInCat = a 2 dimensional array of integers, size Nmaxwords by
Nmaxcats, each value preset to zero
array catTotals = array of integer, size Nmaxcat

array catNames = array of Strings, size Nmaxcat

hashtable CatNumbers = hashtable of size Nmaxcat, mapping strings onto integers

hashtable WordsNumbers = hashtable of s1ze Nmaxwords, mapping string onto
integers
array catpairs = array of hashtables, size Nmaxcat, each Hashtable maps a pair of
integers onto a single integer
# Loop for each document in the training set.
while( more Documents) {

String Dcat = read the category of the document from the file

integer ic = 0

# Below a number of the category is set, a new one being defined for each

document.

If (already defined catNumbers[Dcat]) {

1c = catNumbers[Dcat]

# get the number from the hash table, since we already have since a category of
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# this name.

} else {
ic = Ncats
catNumbers{Dcat] = Ncats
catNames[Ncats] = Dcat

Ncats = Ncats+1

# Give each new categoty a new number, and stote the name and number to be

# looked at later.

}

docsincat[ic] = docsincat[ic]+1

# The above counts the number of documents in each category.

hashtable wordoccs = hashtable of words of size of Nmaxwords, mapping integets

to integers
# The above hashtable is created empty for each document, and holds the count

# of how many times each different word occurs in the document, this is used to

# speed up counting the occurrences for each pair of wotrds.
integer =0
# Below each word in the document is read and counted.
while( more words in the document) {
String word = read next word from the document

integer iw = 0

# Below, a number 1s found for each of the words, 2 new number being assigned if

# the word has not been seen before.
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if (already defined wordsNumbers[word]) {
iw = wordsNumbers[Word]

# If a number has already been assigned for this word, it is used.

} else {
iw = Nwords
wordNumbers[word] = Nwords

Nwords = Nwords+1

# For a word not previously seen, a2 new number 1s assigned and stored in the

# hashtable to be found next time it occurs.

}

wordsInCat[iw][ic] = wordsInCat[iw][ic]+1

# Above is counted the total number of occurrences of each wotd, in each

# category.
catTotals[ic]=catTotals[ic]+1

# Above is counted the number of words in the training documents for each

# category.
wotdoccs[iw] = wordoccs[iw]+1

# The above code counts the total number of occurrences of each word, in all the

# documents

# Below is counted how many documents in each category contain both words.



10

15

25

30

- 15 -

for(integer iw = each key of hashtable wordoccs){
# ie. the number of each unique word contained in the document
for(integer jw = each key of hashtable wordoccs, and jw<iw) {

# jw and another unique word iw

# Since P(a,b)=P(b,a), it is needed only to store pairs with jw<iw

catpairs[ic][iw,jw] = catpairs[ic][iw,jw]+1
}
}

} # End for each document

# Below is found the probabulities P(f|c) from equation 2, which ate stored in an

# array.

atray ProbWordsInCat = a 2 dimensional array of floating point values, size Nwords
by
Ncats
for( cat =0 to Ncats-1){

for( word=0 to Nwords-1) {

probWordsInCat[nw][cat] = (1 + wordsInCat[nw][cat]) /catTotals[cat]

}

}

# Below is found the error factors E(a,b) from equation 3, which are stored in an

# array.

array ErrorFactors = a 2 dimensional triangular array of floating point values size

Nwotds by Nwords
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# Since E(a,b)=E(b,a), space can be saved by keeping it in a triangular array, i.e.

# ErrorFactor[iw][jw] need only be stored when jw<iw.

for(integer iw = 0 to Nwords-1){
for(integer jw= 0 to iw-1){
float sumdotprod = 0
float sumpair2 = 0

float sumprob2 = 0

# Since there are only three summations to perform over the categories, they are

# done together in one loop.
for(tnteger c= 0 to Ncats-1){
float paitprob = catspairs[ic][iw,iw]/ (catTotals[ic] * (catTotals[ic]-1))
float temp = probWordsInCat[iw][cat] * probWordsInCat[jw][cat]
float dotprod = pairprob * temp
sumdotprod = sumdotprod + dotprod
#  the last line of code sums the numerator in equation 3.
sumpair2 = sumpair2 + pairprob*pairprob
# the above sums the square of the modulus (length) of P(a,b) in equation 3.

sumprob2 = sumprob2 + temp * temp

# the above sums the square of the modulus (length) of P(a)*P(b) in equation 3.

}

ErrorFactot[iw][jw] = 1 - sumdotprod / (sqrt(sumpair2)* sqrt(sumprob2) )

# This completes equation 3 and stores the number 1n an array.
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# The logarithm of the probabilities, needed for use in equation 5, are found

# below.

# Identical results are found whatever the base of the logarithm, but

# Natural log, base e (2.71....), is used here.

array logProbWordsInCat = a 2 dimensional array of floating point values, size
Nwords by Ncats
for( cat =0 to Ncats-1){
for( word=0 to Nwords-1){
logProbWordsInCat[nw][cat] = In( probWordsInCat[nw][cat] # i.e. take Natural

Log of each value

}
}

writetodisk( nCats,nWords, catNames, wordNumbers, logProbWordsInCat,

ErrorFactor)

End TrainingProgram

The main calculation steps made by the training program are shown in Figure 2.
Referring to Figure 2, after beginning at step 20, the probability of the feature a
appearing in class c is calculated at step 21. The probability of feature b appearing
in class c is calculated at step 22, following which the probability of both features a
and b occurting is calculated at step 23. The numerator of equation 3 is calculated
at step 24, and the two parts of the denominator are calculated at steps 24 and 25
respectively. The error factor is then calculated at step 27. This process 1s
calculated for each pair of features. The probability of a document being
categorised in class c 1s the calculated at step 28. This step involves simply dividing

the number of documents classified into category c by the total number of training
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documents. The results of steps 21, 22, 23, 26 and 27 are stored for later use by the

recognition program.

The Recognition Program

# the below initialises integers and arrays.

integer nCats

integer nWords

array catNames = array of Strings to be read

hashtable wordNumbers = an Hashtable mapping Strings to numbers to be read
array probWordsInCat = a 2 dimension atray of floating point values

array ErrorFactor = a 2 dimensional triangular array of floating point values

# All the data stored after the training phase is read into memory.

readfromdisk( nCats, nWords, catNames, wordNumbers, logprobWordsInCat,
ErrorFactor)

float log2 = In 2 # Natural log of 2

# Each document is categorised, one at a time, 1n the loop below.

while(more Documents) {

# A hashtable is bult that stores the count of the occurrences of each different

# word in a document.

hashtable wordOcc = a hashtable size nWords, mapping integers to integer (i.e. a

sparse array)

# Below the document is read one word at a time, counting the occurrences of

# each of the different words 1n the document.
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while(document has more words){
String word = next word in the Document

if ({defined wordNumbers[word]){ skip to next word }

# Any word seen in the training documents has been assigned a number in the

# training phase, which number is retrieved below.

integer wn = wordNumbers|[word]

wordOcc[wn] = wordOCc[wn]+1

}

# In the recognition stage, an estimate of the Error factor of the feature ‘2’

# alone is found as the maximum value of E(a,b) for all the b that occur in the

# document. This maximum 1s found below, E(a) = Max (E(a,b)) where b occurs

# in the document.

array maxError = an atray of floating point values of length nWords

# Each unique word in the document is looped over.

for( integer iw = each key of the hashtable wordOcc){

float max = 0
# Below is an inner loop over another (different) unique word tn the document.
for (integer jw = each key of hashtable wordOcc){
if (iw == jw){ skip to next key }

float E=0

# Below, the fact that E(a,b)=E(b,a) is used to get the value from the stored

# triangle array.

if (iw<jw){ E = ErrorFactor[jw][iw] } else { E = ErrorFactor[iw][jw] }
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if (E>max){ max = E }
}

maxError{iw] = max

}

# Below are calculated the probabilities for the document being in each of the
categories.

# Ths is the inner part of equations 5. If necessary, the categoriser can be biased

#  toa particular document type, by giving probCats[cat] (the probability of the

# document being in a particular category) a suitable predetermined value.

array probCats = an array of floating point values of size nCats, values preset to
zero

for(integer iw = each key of the hashtable wordOcc){

# The error factor for the word is used to degrade the importance of problematic

# wotds, as in equation 5,

float etemp = exp( - log2 *maxErroz[iw] )

for(integer cat=0 to nCats-1){

# The contributions to the probabilities of the different categories are summed

# below.

probCats[cat] = probCats[cat] + wordOccfiw]* etemp*

logprobWordsInCat[iw][cat]

}
}

# If necessary, the probabilities could be normalised so that they add up to 1, or
# a ‘don’t know’ option included if one category 1s determined not to be
# parucularly favoured over the others.

# Below is calculated the argmax part of equation 5, i.e. the category
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# with the maximum probability 1s found, and the document 1s labelled accordingly.

integer catNumber = -1
float max = -infinity # some Versr large negative number
for(int i=0 to nCats-1){
if (probCat[i]>max){
max = probCatf{i]
catNumber = 1
}
}

# The name of the numbered category for the array of names generated in the

# training phase is read, and the document labelled accordingly

String catName = catNames[catNumbet]
label the document with the String catName

} # Next document
End RecognitionProgram

The main calculation steps carried out by the recognition program are shown in
Figure 3. Referring to Figure 3, the values of the probability of a document being
classified to category c and the error factors are read from memory at steps 30 and
31 respectively. At step 32, the error factor for a feature ‘a’ alone is estimated as
the maximum value of E(a,b) where the other feature b is found in the document.
As step 33, a variable L is set to zero. At step 34A, the next feature is read in, and
for this feature a calculation of 2 to the power of minus the error factor is made at
step 34B. At step 34C the logarithm of the probability of the feature f occurring in
class c 1s calculated. The results of steps 34B and 34C are multiplied together and
added to L at step 34D. Step 35 causes the steps 34A to 34D to be repeated for
each feature in the document. The part of equation (5) in square brackets is then
calculated at step 36. If all classes have not been checked, this is determined at step

37, and a new class 1s then set at step 38, following which the method is repeated
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for the new class. Otherwise, the class having the largest value of M is determined

at step 39 to be the class to which the set of data is best classified.

The pseudocode given above for the programs relates to a simple example. Modern
programming languages having data structures allowing arrays that automatically
grow could be used to advantage. The invention is not limited to programs having

structure like that of the above pseudocode programs.

It will be appreciated that the training program is fairly slow to run, but that the

recognition program is able to process the documents much more quickly.

Although the example given calculates error factors for pairs of features, and uses
these error factors in classifying documents, the invention is not so limited. For
example, the training program may be arranged to calculate error factors for three
features occurring together 1in documents belonging to a category, and/or to

calculate error factors for word strings of any length.

A textual ‘feature’ may be a word, a string of more than one word, or it may be a
member of predefined group. Such a group may embrace extensions of a word-
stem, such as classif+ would embrace ‘classify’, ‘classification’, ‘classified’ etc. or
variations of a verb, such as ‘1s’, ‘am’, ‘are’, ‘was’ and ‘were’, all being related to the

verb ‘to be’.

Common features which are not expected to be relevant to classification may be
ignored. In a textual document, such features may be linking or article words such

as "the", "a", "if", etc.

Also, the invention is applicable to features other than textual features, and the
skilled person will understand how to apply the invention to features in sets of data

other than text documents.

Preferably, the categorisation system described above is included as one component

of a multicomponent system, as illustrated in Figure 4. Referring to Figure 4, a
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classification system 40 is shown comprising first, second and third document
classification sub-systems 41 to 43. One of the systems 41 to 43 is the system of
Figure 1, and the other sub-systems are alternative and different document
classification systems. Each subsystem 41 to 43 is connected to receive training
documents 44 which ate pre-classified, and to receive unclassified documents 45.
Each sub-system 41 to 43 1s arranged to classify the documents 45, and to provide a
suggested class to a decision module 46. A decision as to which of the suggested
classes is used is then made according to a voting or democratic decision-making
process running in the decision module 46. Documents 47 labelled with

classifications so decided are then provided as an output of the system 40.
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Claims

1. A method of classifying a set of data, the method comprising:
in a training phase:

estimating from pre-classified sets of training data the probability of at least
two features occurring together 1n each of at least two categories; and

calculating, from the appropriate estimated probability and 2 measure of the
probability of the features occurring together in the sets of training data if the
features were independent, an etror factor for each category; and

1n a recognition phase: using the error factor to classify the set of data.

2. A method as claimed in claim 1, in which the calculating step comprises comparing
a vector of the estimated probabilities of the at least two features occurring together in each
of the categoties with a vector of the probabilities, if the features were independent, of the

two features occurring together in each category.

3. A method as claimed 1n claim 2, in which the compating step comprises dividing

the dot product of the two vectors by the product of the moduli of the two vectors.

4. A method as claimed in any preceding claim, in which the using step includes
finding the product, or like function, of a function of the error factor and a measure

of the estimated probability of the two features occurring together.

5. A method as claimed in claim 4, in which the function of the error factor
includes the step of finding a power of a value, the power including a measure of

the error factor.

6. A method as claimed in claim 4 or claim 5, in which the using step includes
summing in respect of at least two feature combinations in a set of data the
products, or like function, of the function of the error factor for that feature
combination with the measure of the estimated probability for that feature

combination.
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7. A method as claimed in any preceding claim, in which the using step includes
summing a measure of the probability of a set of data falling into the category being

tested.

8. A method as claimed in any preceding claim in which the using step includes

finding the category for which a largest value is calculated.

9. An optical, electrical, electromagnetic or magnetic signal representing
machine instructions for controlling computer apparatus to perform a method

according to any of the preceding claims.

10. A signal according to claim 9, comprising a temporally varying optical,

electrical or electromagnetic signal.

11. A signal according to claim 9, comprising a spatial magnetic field
distribution.
12. A signal according to claim 9, comprising a spatial optical characteristic
distribution.

13.  Apparatus for classifying a set of data, the apparatus comprising:

an estimator arranged in a training phase for estimating from pre-classified
sets of training data the probability of at least two' features occurring together in
each of at least two categories;

a calculator arranged in the training phase for calculating, from the
appropriate estimated probability and a measure of the probability of the features
occurring together in the sets of training data if the features were independent, an
error factor for each category; and

a classifier arranged, in a recognition phase, to use the error factor to classify

the set of data.

14, Apparatus as claimed in claim 13, in which the calculator includes a comparator for

comparnng vector of the estimated probabilities of the at least two features occurring
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together in each of the categories with a vector of the probabilities, if the features were

independent, of the two features occurring together in each category.

15.  Apparatus as claimed in claim 14, in which the comparator comprises means for
dividing the dot product of the two vectors by the product of the moduli of the two

vectors.

16.  Apparatus as claimed in any of claims 13 tol15, in which the classifier is
arranged to find the product, or like function, of a function of the error factor and a
measure of the estimated probability of the two features occurring togethet, and to

use the result to classify the set of data.

17 Apparatus as claimed in claim 16, in which the function of the etror factor

involves a power of a value, the power including 2 measure of the error factor.

18.  Apparatus as claimed in claim 16 or claim 17, in which the classifier is
arranged to sum in respect of at least two feature combinations in a set of data the
products, or like function, of the function of the error factor for that feature
combination with the measure of the estimated probability for that feature

combination, and to use the results to classify the set of data.

19. Apparatus as claimed in any of claims 14 to 18, in which the classifier is
arranged to sum a measure of the probability of a set of data falling into the

category being tested, and to use the result to classify the set of data.

20. Apparatus as claimed in any of claims 14 to 19, in which the classifier is
arranged to find the category for which a largest value is calculated, thereby to

classify the set of data.

21. A method of classifying sets of data substantially as described with reference

to the accompanying drawings.
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22.  Apparatus for classifying sets of data substantially as shown in and/or as
described with reference to Figure 1, or as modified by Figure 4, of the

accompanying drawings.
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