SPRUSON & FERGUSON

660076

AUSTRALIA

PATENTS ACT 1990

PATENT REQUEST: STANDARD PATENT

I/We, the Applicant(s)/Nominated Person(s) specified below, request I/We be granted a patent for the invention disclosed in the accompanying standard complete specification.

[70,71] Applicant(s)/Nominated Person(s):

NEC Corporation, incorporated in Japan, of 7-1, Shiba 5-chome, Minato-ku, Tokyo, JAPAN

[54] Invention Title:

Telephone Apparatus Having Automatic Answering Function

Spruson & Ferguson, Patent Attorneys

[72] Inventor(s): Noriko Norimatsu

[74] Address for service in Australia:

• •
• • •
• •

.....

.....

	Level 33 St Marti 31 Market Street Sydney New South	ns lower Wales Australia (Code SF)
[31] Appl'n No(s):	Details of Basic Ap [33] Country:	plication(s): [32] Application Date:
4-104450	JP	23 April 1992

DATED this TWENTY FOURTH day of MARCH 1993

NEC Corporation

By:

036343 240393 S

9. Ertina.

Registered Patent Attorney

INSTR CODE: 55801

IRN: 235900

SPRUSON & FERGUSON

Australia

Patents Act 1990

NOTICE OF ENTITLEMENT

660076

I, Fraser Patison Old, of Spruson & Ferguson, 31 Market Street, Sydney, New South Wales, 2000, Australia, being the patent attorney for the Applicant(s)/Nominated Person(s) in respect of an application entitled:

Telephone Apparatus Having Automatic Answering Function

state the following:-

.....

:···:

:···:

......

The Applicant(s)/Nominated Person(s) has/have entitlement from the actual inventor(s) as follows:-

The Applicant(s)/Nominated Person(s), by virtue of a Contract of Employment between the actual inventor(s) as employee(s) and the Applicant(s)/Nominated Person(s) as employer(s), is a person entitled to have the patent assigned to it if a patent were granted on an application made by the actual inventor(s).

The Applicant(s)/Nominated Person(s) is/are the applicant(s) of the basic application(s) listed on the Patent Request.

The basic application(s) listed on the Patent Request is/are the application(s) first made in a Convention Country in respect of the invention.

DATED this 23rd

day of

1993

F P Old

March

INSTR CODE:

IRN:

18 KRS/665P

AU9335500

(12) PATENT ABRIDGMENT (11) Document No. AU-B-35500/93 (19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 660076

(54)	Title TELEPHONE APPARATUS HAVING AUTOMATIC ANSWERING FUNCTION		
(51) ⁵	International Patent Classification(s) H04M 001/64 H04M 003/50		
(21)	Application No. : 35500/93 (22) Application Date : 24.03.93		
(30)	Priority Data		
(31)	Number (32) Date (33) Country 4-104450 23.04.92 JP JAPAN		
(43)	Publication Date : 28.10.93		
(44)	Publication Date of Accepted Application : 08.06.95		
(71)	Applicant(s) NEC CORPORATION		
(72)	Inventor(s) NORIKO NORIMATSU		
(74)	Attorney or Agent SPRUSON & FERGUSON , GPO Box 3898, SYDNEY NSW 2001		
(56)	Prior Art Documents US 4847889 US 4985913 US 4122306		

(57) Claim

1. A radio telephone apparatus having an automatic answering function comprising:

a radio unit;

a speech memory connected to said radio unit, said speech memory being divided into a plurality of record areas, each area for storing an answer message;

a correspondence table memory for storing a correspondence between said record areas and identification numbers;

an identification number receiving circuit, connected to said radio unit, for receiving an identification number;

a first control circuit connected to said radio unit and said correspondence table memory; and

a second control circuit connected to said speech memory, said identification number receiving circuit and said first control circuit,

said first control circuit comprising:

means for determining whether there is a call in said radio unit;

means for transmitting an identification number reception preparing signal to said second control circuit when there is a call in said radio unit;

means for transmitting an identification number reception requesting signal to said second control circuit when said identification number reception signal is received by said second control circuit; and

(11) AU-B-35500/93 (10) 660076

means for transmitting an output indicating signal to said second control circuit when said second control circuit receives an identification number from said identification number receiving circuit,

said second control circuit comprising:

means for making said speech memory transmit a first message to said radio unit when receiving said identification number reception preparing signal from said first control circuit;

means for receiving an identification number from said identification number receiving circuit when receiving said identification number reception requesting signal from said first control circuit;

means for making said speech memory transmit a second message to said radio unit when receiving said output indicating signal from said first control circuit, said second message being derived from one of said record areas in accordance with the correspondence stored in said correspondence table memory designated by the received identification number.

66007**6**

AUSTRALIA

PATENTS ACT 1990

COMPLETE SPECIFICATION

FOR A STANDARD PATENT

ORIGINAL

Name and Address NEC Corporation of Applicant: :.:: 7-1, Shiba 5-chome Minato-ku ••••• Tokyo JAPAN ····: Actual Inventor(s): Noriko Norimatsu Address for Service: Spruson & Ferguson, Patent Attorneys ••••• Level 33 St Martins Tower, 31 Market Street Sydney, New South Wales, 2000, Australia Telephone Apparatus Having Automatic Answering Function Invention Title:

The following statement is a full description of this invention, including the best method of performing it known to me/us:-

Telephone Apparatus Having Automatic Answering Function

Background of the Invention

Field of the Invention

The present invention relates to a telephone apparatus having an automatic 5 answering function.

Description of the Related Art

In a prior art telephone apparatus, when an automatic answering function is set, the same speech or answer message is read out of a read-only memory (ROM) and is transmitted to a calling party.

In the above-mentioned prior art telephone apparatus, however, since the same answer message is transmitted to all calling parties, this answer message is not specific to any one calling party. In other words, it is impossible by the automatic answering function to transmit confidential messages to specific calling parties.

Summary of the Invention

It is a preferred object of the present invention to provide a telephone apparatus having an automatic answering function which can transmit confidential messages to specific calling parties.

Therefore, the invention discloses a radio telephone apparatus having an automatic answering function comprising:

20 a radio unit;

a speech memory connected to said radio unit, said speech memory being divided into a plurality of record areas, each area for storing an answer message;

a correspondence table memory for storing a correspondence between said record areas and identification numbers;

an identification number receiving circuit, connected to said radio unit, for receiving an identification number;

a first control circuit connected to said radio unit and said correspondence table memory; and

a second control circuit connected to said speech memory, said identification 30 number receiving circuit and said first control circuit,

said first control circuit comprising:

means for determining whether there is a call in said radio unit;

means for transmitting an identification number reception preparing signal to said second control circuit when there is a call in said radio unit;

means for transmitting an identification number reception requesting signal to said second control circuit when said identification number reception signal is received by said second control circuit; and

means for transmitting an output indicating signal to said second control circuit 5 when said second control circuit receives an identification number from said identification number receiving circuit,

said second control circuit comprising:

means for making said speech memory transmit a first message to said radio unit when receiving said identification number reception preparing signal from said first 10 control circuit;

means for receiving an identification number from said identification number receiving circuit when receiving said identification number reception requesting signal from said first control circuit;

means for making said speech memory transmit a second message to said radio unit 15 when receiving said output indicating signal from said first control circuit, said second message being derived from one of said record areas in accordance with the correspondence stored in said correspondence table memory designated by the received identification number.

Brief Description of the Drawings

The present invention will be more clearly understood from the description as set forth below with reference to the accompanying drawings, wherein:

[N:\LIBxx]00721;KEH

Fig. 1 is a block circuit diagram illustrating an embodiment of the telephone apparatus having an automatic answering function according to the present invention;

Fig. 2 is a diagram showing an example of the 5 correspondence table stored in the EEPROM of Fig. 1;

Fig. 3 is a flowchart showing the operation of the master central processing unit (CPU) of Fig. 1;

Fig. 4 is a flowchart showing the operation of the speech processor (CPU) of Fig. 1;

Figs. 5, 6, 8 and 9 are detailed flowcharts of Fig. 4.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In Fig. 1, which illustrates an embodiment of the present invention, reference numeral 1 designates a 15 main control portion, 2 an automatic answering control portion, 3 a radio unit, 4 a main microphone, 5 a handfree adapter microphone associated with an adapter CPU 5a, 6 a keyboard, and 7 a liquid crystal device (LCD).

The main control portion 1 includes a master CPU 11 for receiving a call from the radio unit 3, accessing 20 a nonvolatile memory such as an EEPROM 12, activating the main microphone 4, and activating the adapter microphone 5 via the adapter CPU 5a. Note that the adapter CPU 5a gives a priority to operate the adapter microphone 5. That is, when the adapter microphone 5 is activated by the 25 switch (not shown), the main microphone 4 is not activated. Reference numeral 14 designates a ROM for storing, constants and programs for the master CPU 11. Also, reference numeral 15 designates a slave CPU for accessing the keyboard 6 and the LCD 7, and 16 designates a ROM for 30 storing constants and programs for the slave CPU 15.

The keyboard 6 includes an automatic answering mode key, an ID registration start key, selection keys, an input start key, a record end key, and the like.

The automatic answering control portion 2 includes a speech CPU 21 for accessing a speech memory 22 formed by a random access memory (RAM) via a memory

10

:....

: · · · :

35

dual - tone control unit 23, and receiving a signal from a dial-tone multi-frequency signal (DTMF) receiving unit 24. Also, reference numeral 25 designates a ROM for storing constants and programs for the speech CPU 21.

The outputs of the main microphone 4 and the adapter microphone 5 are supplied to the speech memory 22 as well as the radio unit 3.

According to the present invention, the speech memory 22 is divided into a plurality of record areas (channels) each for storing an answer message, and the EEPROM 12 stores a correspondence table between the channels and ID numbers, as shown in Fig. 2.

speech The operation of the master CPU 11 and the slave CPU 21 will be now explained with reference to Figs. 3 through 9.

In Fig. 3, which shows a main routine of the master CPU 11, at step 301, an ID number preset for a calling party is registered, i.e., written into the EEPROM 12. Also, at step 302, an answer message is input. At step 303, it is determined whether or not the control is in an automatic answering mode. Note that the automatic answering mode is set by pushing an automatic answering key of the keyboard 6. Only if in an automatic answering mode, does the control proceed to step 304 which outputs an answer message. The steps 301, 302, 303 and 304 are 25 repeated. These steps will be explained later in detail. In Fig. 4, which shows a main routine of the speech 1 slave CPU 11, at step 401, an answer message is input. At step 402, it is determined whether or not the control is

in an automatic answering mode. Only if in an automatic answering mode, does the control proceed to step 403 which outputs an answer message. The steps 401, 402 and 403 are repeated. These steps will be explained later in detail.

From Figs. 3 and 4, the input of an answer message is carried out by the association of the master 35 CPU 11 and the slave CPU 21, and also, the output of an answer message is carried out by the association of the

5

10

15

20

30

•...•

:...:

master CPU 11 and the speech CPU 21.

In Fig. 5, which is a detailed flowchart of step 301 of Fig. 3, at step 501, it is determined whether the ID registration start key of the keyboard 6 is pushed. Only if this key is pushed, does the control proceed to step 503. Contrary to this, when this key is not pushed for a predetermined time period, the control proceeds via step 502 to step 509, thus completing this routine.

At step 503, the numbers such as 1, 2, 3, 4, 5 10 and 6 of channels of the speech memory 22 are displayed on the LCD 7, and at step 504, it is determined whether one of the selection keys of the keyboard 6 is pushed. Only if such an selection key is pushed, does the control proceed to step 506. Contrary to this, when no selection 15 key is pushed for a predetermined time period, the control proceeds via step 505 to step 509 thus completing this routine.

At step 506, it is determined whether or not an ID number, which is, for example, formed by 4 arbitrary decimal digits, is input from the keyboard 6. Only if such an ID number is input, does the control proceed to step 508. Contrary to this, when an ID number is not input for a predetermined time period, the control proceeds via step 507 to step 509, thus completing this routine.

At step 508, the input ID number is written into the EEPROM 12 in correspondence with the selected channel number.

Thus, by the routine of Fig. 5, one ID number can be registered for the selected channel of the speech memory 22.

An operation of inputting (recording) an answer message will be explained next with reference to Figs. 6 and 7.

In Fig. 6, which is a detailed flowchart of step 302 of Fig. 3, at step 601, it is determined whether the input start key of the keyboard 6 is pushed. Only if this key is pushed, does the control proceed to step 603.

:···:

•..•••

• . • . •

25

20

5

35

30

-4-

Contrary to this, when this key is not pushed for a predetermined time period, the control proceeds via step 602 to step 612, thus completing this routine.

At step 604 the numbers such as 1, 2, 3, 4, 5 and 6 of channels of the speech memory 22 are displayed on the LCD 7, and at step 604, it is determined whether one of the selection keys of the keyboard 6 is pushed. Only if such an selection key is pushed, does the control proceed to step 606. Contrary to this, when no selection key is 10 pushed for a predetermined time period, the control proceeds via step 605 to step 612 thus completing this routine.

At step 606, the master CPU 11 generates an area designating signal for designating one of the record 15 areas of the speech memory 22 in accordance with the selected channel number, and transmits it to the speech CPU 21. Also, at step 607, the master CPU 11 controls the path of a signal from a microphone to the speech memory 22. In this case, the master CPU 11 activates the main 20 microphone 4 or the adapter microphone 5 in accordance with the selection switch (not shown). Further, at step 608, the CPU 11 generates a record start signal and transmits it to the speech CPU 21.

.....

:··:

•

.....

35

At step 609, it is determined whether the record 25 end key of the keyboard 6 is pushed. Also, at step 610, it is determined whether or not a predetermined time period has passed. As a result, when the record end key is pushed or the predetermined time period has passed, the control proceeds to step 611 which generates a record end 30 signal and transmits it to the speech CPU 21.

Thus, the routine of Fig. 6 is completed by step 612.

In Fig. 7, which is a detailed flowchart of step 401 of Fig. 4, at step 701, it is determined whether or not an area designating signal from the master CPU 11 is received. Only if this area designating signal is received by the speech CPU 21, does the control proceed to step 703. Contrary to this, when this area designating signal has not been received by the speech CPU 21 for a predetermined time period, the control proceeds via step 702 to step 709, thus completing this routine.

At step 703, the speech CPU 21 makes the memory control unit 23 designate a record area of the speech memory 22 in accordance with the received area designating signal. At step 704, it is determined whether or not a record start signal from the master CPU 11 is received.

10 Only if this record start signal is received by the speech CPU 21, does the control proceed to step 705. Contrary to this, when this record start signal has not been received by the speech CPU 21 for a predetermined time period, the control proceeds via step 705 to step 709, thus 15 completing this routine.

At step 706, the speech CPU 21 makes the memory control unit 23 start a write (record) operation of the speech memory 22 for the main microphone 4 or the adapter microphone 5.

At step 707, the speech CPU 21 awaits a record end signal from the master CPU 11. When the speech CPU 21 at step 70g receives the record end signal, the speech CPU 21 makes the memory control unit 23 complete the write (record) operation of the speech memory 22 for the main microphone 4 or the adapter microphone 5.

Then, the routine of Fig. 7 is completed by step 709.

According to the routines of Figs. 6 and 7, a plurality of answer messages can be stored in the record 30 areas of the speech memory 22.

An operation of outputting (regenerating) an answer message will be explained next with reference to Fig. 8 and 9.

In Fig. 8, which is a detailed flowchart of step 35 304 of Fig. 3, at step 801, it is determined whether or not a call from the radio unit 3 is received. Only if such a call is received by the master CPU 11, does the

...

5

•••

•....

20

25

control proceed to step 803. Contrary to this, when, this

a call

-7-

area_designating=signal has not been received by the master CPU 11 for a predetermined time period, the control proceeds via step 802 to step 810, thus completing this routine.

At step 803, the master CPU 11 generates an ID reception preparing signal for a calling party and transmits it to the speech CPU 21, and at step 804, the master CPU 11 awaits an acknowledgement of receipt from the speech CPU 21.

After the master CPU 11 receives the abovementioned acknowledgement of receipt from the speech CPU 21, the control proceeds to step 805 which generates an ID reception requesting signal for the calling party and transmits it to the speech CPU 21. Then, at step 806, the master CPU 11 awaits a four-digit ID number from the speech CPU 21 for a predetermined time period. Only if such an ID number is received by the master CPU 11, does the control proceed to step 808. Contrary to this, when such an ID number has not been received by the master CPU 11 for the predetermined time period, the control proceeds via step 802 to step 810, thus completing this routine.

At step 808, it is determined whether or not the ID number received by the speech CPU 21 is located in the EEPROM 12. As a result, if such an ID number is located 25 in the EEPROM 12, the control proceeds to step 809. Otherwise, the control proceeds directly to step 810. At step, Ett, the master CPU 11 generates an output indicating signal for designating one of the record areas of the speech memory 22 in accordance with the received ID 30 number and transmits it to the speech CPU 21.

Then, the routine of Fig. 8 is completed by step 810.

In Fig. 9, which is a detailed flowchart of step 403 of Fig. 4, at step 901, it is determined whether or not an ID reception preparing signal from the master CPU 11 (see: step 803 of Fig. 8) is received. Only if this ID

5

10

15

20

35

:....

reception preparing signal is received by the speech CPU 21, does the control proceed to step 903. Contrary to this, when this ID reception preparing signal has not been received by the speech CPU 21 for a predetermined time period, the control proceeds via step 902 to step 912, thus completing this routine.

At step 903, the speech CPU 21 makes the memory control unit 23 designate a predetermined record area of the speech memory 22 to generate a message such as

"Please key in a four-digit ID."

Then, at step 904, the speech CPU 21 generates an acknowledgement of receipt of the reception preparing signal from the master CPU 11 and transmits it to the master CPU 11 (see step 804 of Fig. 8).

At step 905, the speech CPU 21 awaits an ID reception requesting signal from the master CPU 11. When the speech CPU 21 receives such an ID reception requesting signal from the master CPU 11, the control proceeds to step 906.

At step 906, it is determined whether or not an ID designating signal from the master CPU 11 is received. Only if such an ID number is received by the speech CPU 21, does the control proceed to step 908. Contrary to this, when such an ID number has not been received by the speech CPU 21 for a predetermined time period, the control proceeds via step 902 to step 912, thus completing this routine.

At step 908, the speech CPU 21 transmits the received ID number to the master CPU 11 (see step 806 of Fig. 8).

At step 909, it is determined whether or not an output indicating signal from the master CPU 11 is received. Only if this output indicating signal is received by the speech CPU 21, does the control proceed to step 910. Contrary to this, when such an output indicating signal has not been received by the speech CPU 21 for a predetermined time period, the control proceeds

····:

····

5

10

15

20

25

30

•..•••

.....

35

via step 910 to step 912, thus completing this routine.

At step 911, the speech CPU 21 makes the memory control unit 23 designate one of the record areas of the speech memory 22, thus outputting an answer message in response to the received ID number.

Thus, the routine of Fig. 9 is completed by step 912.

According to the routines of Figs. 8 and 9, when an ID number from a calling party is registered in the EEPROM 12, an answer message is selected from a plurality of answer messages stored in the speech memory 22 in

accordance with the 1. number, and is then output.

As explained hereinbefore, according to the present invention, confidential answer messages can be 15 output to specific calling parties.

••••• •••••

 5

10

The claims defining the invention are as follows:-

1. A radio telephone apparatus having an matic answering function comprising:

a radio unit;

⁵ a speech memory connected to said radio unit, said speech memory being divided into a plurality of record areas, each area for storing an answer message;

a correspondence table memory for storing a correspondence between said record areas and identification numbers;

an identification number receiving circuit, connected to said radio unit, for receiving 10 an identification number;

a first control circuit connected to said radio unit and said correspondence table memory; and

a second control circuit connected to said speech memory, said identification number receiving circuit and said first control circuit,

said first control circuit comprising:

means for determining whether there is a call in said radio unit;

means for transmitting an identification number reception preparing signal to said second control circuit when there is a call in said radio unit;

means for transmitting an identification number reception requesting signal to said 20 second control circuit when said identification number reception signal is received by said second control circuit; and

means for transmitting an output indicating signal to said second control circuit when said second control circuit receives an identification number from said identification number receiving circuit,

said second control circuit comprising:

means for making said speech memory transmit a first message to said radio unit when receiving said identification number reception preparing signal from said first control circuit;

means for receiving an identification number from said identification number 30 receiving circuit when receiving said identification number reception requesting signal from said first control circuit;

means for making said speech memory transmit a second message to said radio unit when receiving said output indicating signal from said first control circuit, said second message being derived from one of said record areas in accordance with the 35 correspondence stored in said correspondence table memory designated by the received identification number.

[N:\LIBxx]00721:KEH

2. An apparatus as claimed in claim 1, wherein said first control circuit further comprises means for registering an identification number in said correspondence table memory.

3. An apparatus as claimed in claim 1, wherein said first control circuit further 5 comprises:

means for transmitting an area designating signal for designating one of said record areas to said second control circuit;

means for transmitting a record start signal to said second control circuit; and

means for transmitting a record end signal to said second control circuit,

said second control circuit further comprising:

means for designating one of said record areas of said speech memory when receiving said area designating signal from said first control circuit;

means for writing a message into a designated record area of said speech memory when receiving said record start signal from said first control circuit; and

means for completing a write operation of the message upon the designated record area when receiving said record end signal from said first control circuit.

4 An apparatus as claimed in claim 1, wherein said correspondence table memory comprises a nonvolatile memory.

5. An apparatus as claimed in claim 1, wherein said identification number 20 receiving circuit comprises a DTMF receiving unit.

Dated 29 March, 1995 NEC Corporation Patent Attorneys for the Applicant/Nominated Person SPRUSON & FERGUSON

USTRALL V

10

15

[N:\LIBxx]00721:KEH

Telephone Apparatus Having Automatic Answering Function

ABSTRACT OF THE DISCLOSURE

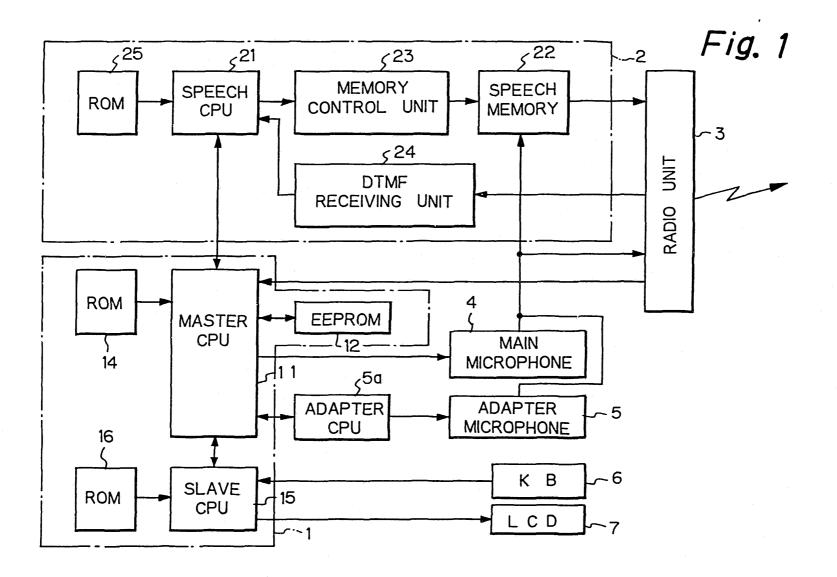

In an automatic answering telephone apparatus, a correspondence table between a plurality of record areas of a speech memory (22) and a plurality of identification numbers is provided. When an identification number is 5 received from a calling party, an answer message is output from one record area corresponding to the received identification number of the calling party.

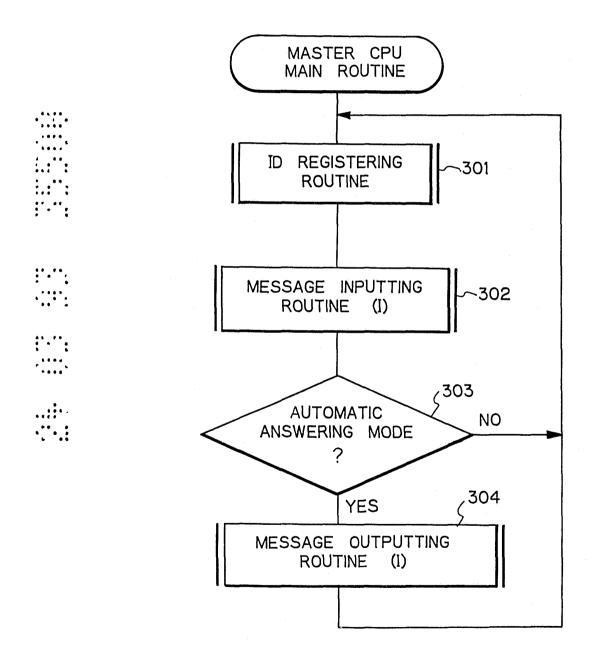
Figure 1.

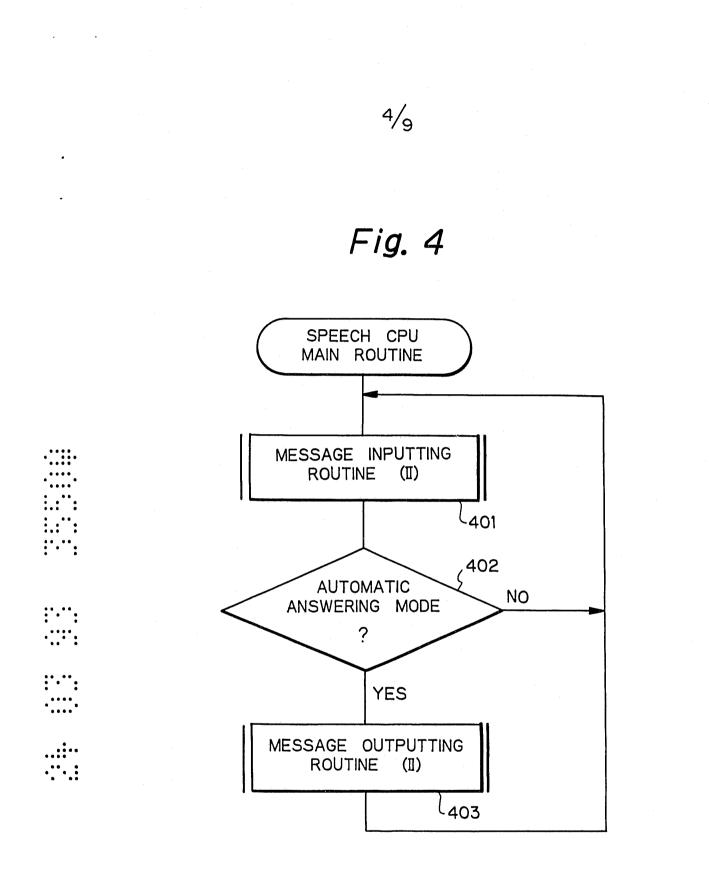
.....

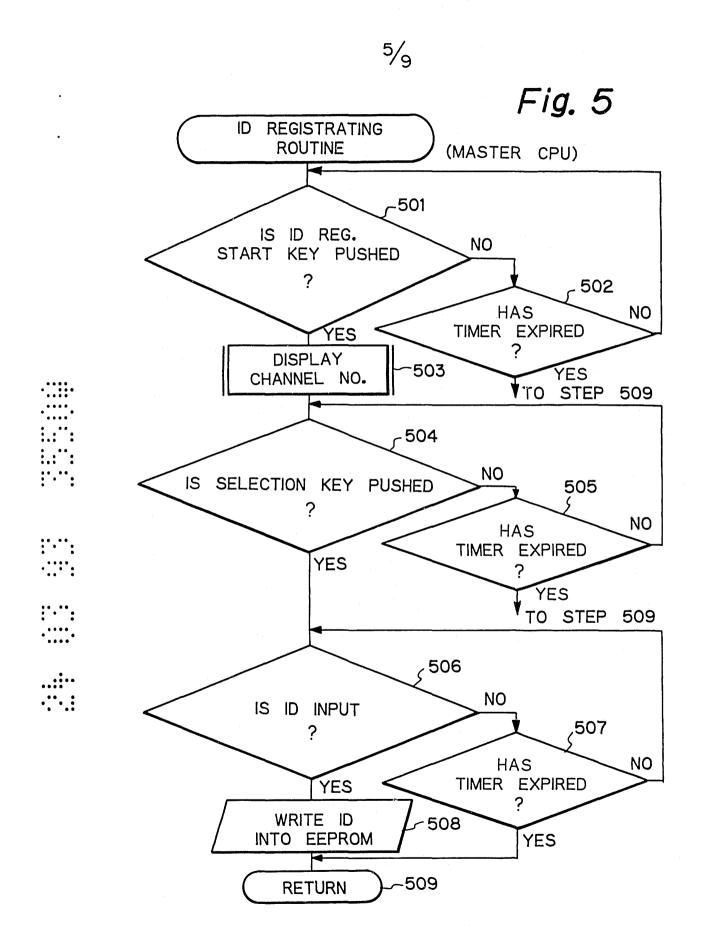
.....

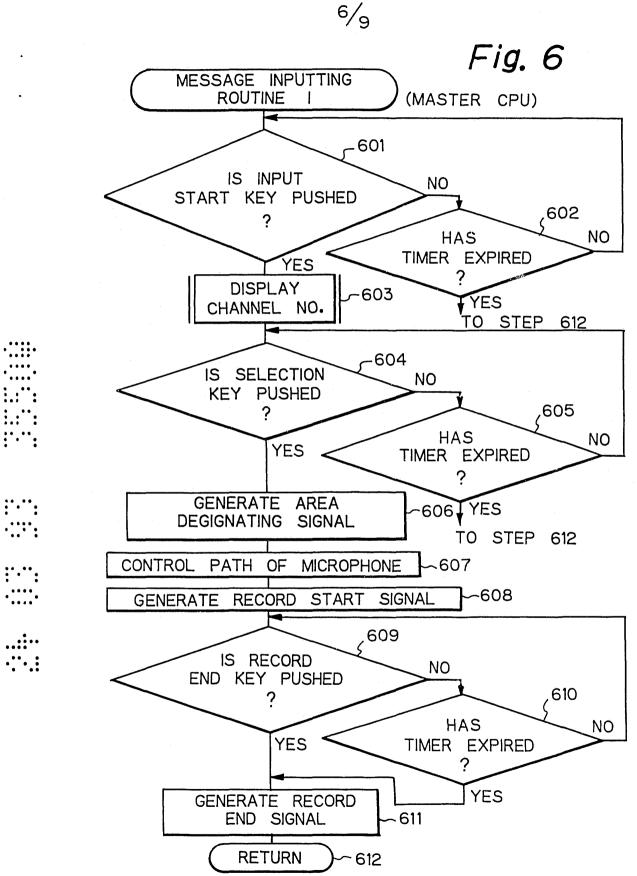
32200/d3

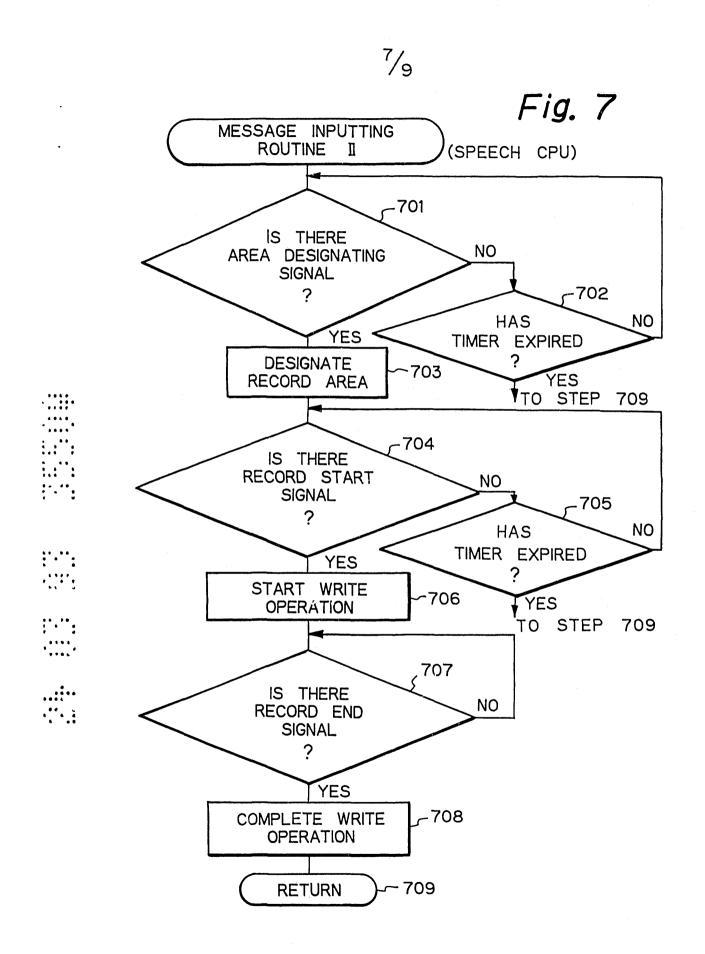
5


Fig. 2


......


•••••


.....


Fig. 3

