wO 20197212714 A1 |0 000 000 0 O 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
07 November 2019 (07.11.2019)

(10) International Publication Number

WO 2019/212714 A1l

WIPO I PCT

1)

@n

22)

@5
(26)
30)

(71)

(72)

International Patent Classification:
GO6F 11720 (2006.01)

International Application Number:
PCT/US2019/026989

International Filing Date:
11 April 2019 (11.04.2019)

Filing Language: English
Publication Language: English
Priority Data:

62/667,174 04 May 2018 (04.05.2018) UsS
16/360,862 21 March 2019 (21.03.2019) UsS
Applicant: MICROSOFT TECHNOLOGY LI-

CENSING, LLC [US/US]; Attn: Patent Group Docketing
(Bldg. 8/1000), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US).

Inventors: SEELA, Pradeep, Microsoft Technology Li-
censing, LLC, Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US). ZHANG, Pei; Microsoft Technology
Licensing, LLC, Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US). LOU, Yongfu; Microsoft Technolo-

(74)

gy Licensing, LLC, Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US). DEVARAJU, Jegan; Microsoft Tech-
nology Licensing, LLC, Attn: Patent Group Docketing
(Bldg. 8/1000), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). VARADARAJAN, Krishnan; Mi-
crosoft Technology Licensing, LLC, Attn: Patent Group
Docketing (Bldg. 8/1000), One Microsoft Way, Redmond,
Washington 98052-6399 (US). TSAI, Yi-Fan; Microsoft
Technology Licensing, LLC, Attn: Patent Group Docket-
ing (Bldg. 8/1000), One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). SAH, Maneesh; Microsoft Tech-
nology Licensing, LLC, Attn: Patent Group Docketing
(Bldg. 8/1000), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). LANGE, Kristopher T.; Microsoft
Technology Licensing, LLC, Attn: Patent Group Docket-
ing (Bldg. 8/1000), One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). MAINALI, Shane K.; Microsoft
Technology Licensing, LLC, Attn: Patent Group Docketing
(Bldg. 8/1000), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US).

Agent: MANNAVA, Ashok K.; (USOC - Mannava &
Kang, P.C)), Microsoft Technology Licensing, LLC, At-
tn: Patent Group Docketing (Bldg. 8/1000), One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(54) Title: DATA REPLICATION IN A DISTRIBUTED STORAGE SYSTEM

100

Application
216

Y

(57) Abstract: Data is replicated between primary and secondary storage
systems using a data pulling process or a log shipping process. If data is to
be replicated through the log shipping process, a transaction and its asso-
ciated data get stored in a transaction log in the secondary storage system.
Subsequently, when the transaction gets executed, actual data gets persist-
ed from the transaction log to a data log in the secondary storage system. If
the data is to be replicated through the data pulling process, the transaction
is stored in the transaction log. However, the associated data for the trans-
action is retrieved from the first primary storage system and stored directly
in the data log in the secondary system.

Cloud Computing Platform (Storage Service)
120

Front End Layer
122

Partition Layer
124

Stream Layer
126

FIG. 1

[Continued on next page]

WO 20197212714 A JIN 00000000 00O 0O O

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to the identity of the inventor (Rule 4.17(i))

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

Published:
— with international search report (Art. 21(3))

10

15

20

WO 2019/212714 PCT/US2019/026989

DATA REPLICATION IN A DISTRIBUTED STORAGE SYSTEM

BACKGROUND

[0001] A distributed storage system can support several different types of
applications, from social networking to managing medical records. The
distributed storage system can be implemented with user files, structured
storage, and message delivery in order to support storage and workflow of the
applications. Specifically, a distributed storage system can be configured to
receive requests to perform transactions that facilitate the storage and workflow

of the applications.

[0002] To provide failover capability, a distributed storage system may
replicate data. For example, a cloud provider implementing the distributed
storage system may allow tenants to replicate databases. A database may be
replicated in the same data center or in a different datacenter which may be in a
different geographical region. The replicated database may be available for
querying or failover. For example, if the primary database fails, or simply needs
to be taken offline, failover can be initiated to the secondary database so the

customer can continue to access their data.

[0003] To replicate data, the secondary database is created. Once
created, the secondary database is populated with the data copied from the
primary database, which is commonly referred to as seeding. After the
secondary database has been created and seeded, updates to the primary

database may be replicated to the secondary database. The replication of the

WO 2019/212714 PCT/US2019/026989

updates can cause performance issues. For example, the replication of the
updates may include committing transactions to the primary database before
they are replicated to the secondary database. Accordingly, there can be a
delay in updating the secondary database and providing the tenant with access

to their data via the second database.

10

15

20

WO 2019/212714 PCT/US2019/026989

BRIEF DESCRIPTION OF DRAWINGS

[0004] Embodiments and examples are described in detail in the
following description with reference to the following figures. The embodiments
are illustrated by examples shown in the accompanying figures in which like

reference numerals indicate similar elements.

[0005] Figure 1 shows an architecture of a distributed storage system,

according to an embodiment;

[0006] Figure 2 shows components of a front end layer and a partition

layer of the distributed storage system, according to an embodiment;

[0007] Figure 3 shows a data flow diagram for a write request, according

to an embodiment;

[0008] Figure 4 shows a flow chart that may be performed by the

distributed storage system, according to an embodiment;

[0009] Figure 5 shows geo replication between storage stamps,

according to an embodiment;

[0010] Figure 6A shows a high level flow diagram for geo replication,

according to an embodiment;

[0011] Figure 6B shows a high level flow diagram for a data pulling

process, according to an embodiment;

[0012] Figure 7 shows a detailed flow diagram for the data pulling

process, according to an embodiment;

WO 2019/212714 PCT/US2019/026989

[0013] Figure 8 shows a flow chart for geo replication, according to an

embodiment; and

[0014] Figure 9 shows an example of a computing environment,

according to an embodiment.

10

15

20

WO 2019/212714 PCT/US2019/026989

DETAILED DESCRIPTION

[0015] For simplicity and illustrative purposes, the principles of the
present disclosure are described by referring mainly to embodiments and
examples thereof. In the following description, numerous specific details are set
forth in order to provide an understanding of the embodiments and examples. It
will be apparent, however, to one of ordinary skill in the art, that the
embodiments and examples may be practiced without limitation to these
specific details. In some instances, well known methods and/or structures have
not been described in detail so as not to unnecessarily obscure the description
of the embodiments and examples. Furthermore, the embodiments and

examples may be used together in various combinations.

[0016] According to an embodiment of the present disclosure, a
distributed storage system may store data in a plurality of nodes. The system
may include a primary data structure that stores data, such as pointers to data
objects stored in the system, and metadata for the data together. The system
may also include a secondary data structure, referred to as a blocks table, that
stores data and meta data for certain data objects that may be striped across
partitions in the system. Certain criteria may be used to determine whether to
stripe certain data objects across partitions in the system. In an example, a size
threshold of a data object may be used to select data objects for striping. In an
example, large data objects, having a size greater than a threshold (e.g., a 1
megabyte (MB) threshold, or a 4 MB threshold, etc.), are striped across multiple
partitions to improve throughput for accessing those data objects, and the

blocks table is used to store information for those data objects. In other

5

10

15

20

WO 2019/212714

examples, multiple heuristics or criteria are used to select data objects for
striping. For example, size, location, type of data storage (e.g., flash versus
disk), etc., may be used to determine whether to stripe a data object and store it
in the blocks table. In certain situations, the objects table can grow to terabytes
and can become a bottleneck for accessing data objects in the system. By
storing certain data objects in the blocks table, the bottleneck may be minimized

and throughput for accessing those objects is greatly increased.

[0017] According to an embodiment of the present disclosure, data
replication in the distributed storage system is implemented through a hybrid
combination of log shipping and data pulling. For example, small data objects
are replicated using log shipping, however, larger data objects are replicated by
pulling the data objects from a primary location to a secondary location. For
example, a large block of data, which may have a size greater than a
predetermined threshold, may be striped across multiple partitions as is
discussed above. To stripe the block of data, the block of data may be divided
into smaller subblocks, which may have a predetermined size. These smaller
subblocks are immutable. As a result, the subblocks may be pulled from the
primary location to the secondary replication for data replication, because
ordering of transactions maintained by log shipping may not be needed. This
provides a variety of time savings for replication. For example, the subblocks
may be pulled from a plurality of partition servers in parallel, reducing the
amount of time to collect the data at the secondary location. Also, the data
pulling reduces input/output (IO) transactions, as the log shipping systems

persist logs on the secondary location before replaying them.

6

PCT/US2019/026989

10

15

20

WO 2019/212714 PCT/US2019/026989

[0018] For purposes of a detailed discussion below, embodiments and
examples of the distributed storage system are described with reference to a
storage service supported by a cloud computing platform, and further by way of
example, a cloud computing platform having a front end layer, partition layer,
and stream layer. However, the embodiments and examples described herein
can be performed in different types of operating environments having alternate
configurations of the functional components described herein. As such, the

embodiments and examples may be extended to other implementation contexts.

[0019] The distributed storage system can be implemented as a cloud
computing platform that runs cloud services across different data centers and
geographic regions. The cloud computing platform can implement a fabric
controller component for provisioning and managing resource allocation,
deployment/upgrade, and management of cloud services. Typically, a cloud
computing system acts to store data or run service applications in a distributed
manner. The service-application components (e.g., tenant infrastructure or
tenancy) of the cloud computing system may include nodes (e.g., computing
devices, processing units, or blades in a server rack) that are allocated to run

one or more portions of a tenant's service applications.

[0020] Nodes of the distributed storage system may include virtual
machines or physical machines. The nodes can concurrently run separate
service applications, respectively, in individualized computing environments that
support the resources and/or operating system specific to each service
application. Further, each service application may be divided into functional

portions such that each functional portion is able to run on a separate virtual

7

10

15

20

WO 2019/212714

machine. In cloud computing systems, multiple servers may be used to run
service applications and perform data storage operations in a cluster. In
particular, the servers may perform data operations independently but exposed
as a single device referred to as a cluster. Each server in the cluster may be

referred to as a node.

[0021] A storage service on the cloud computing platform can be a
service supported using the fabric controller component. The storage service
can be responsible for managing the replication and data placement across
disks and load balancing the data and the application traffic with storage
clusters. The storage service can be responsible for managing access to a high
volume of storage. The storage service can implement a storage stamp as a
cluster of N racks of storage nodes and a location service that manages the
storage stamps. Specifically, the location service can allocate location stamps
and manage them across the storage stamps for disaster recovery and load

balancing.

[0022] Figure 1 shows an architecture for a distributed storage system
100 on a cloud computing platform 120, according to an embodiment of the
present disclosure. The system 100 includes a storage service including a
front-end (FE) layer 122, a partition layer 124, and a stream layer 126 (or
distributed file system layer). The FE layer 122 may be configured for receiving
incoming requests from an application 216 or client. Upon receiving a request,
the FE layer 122 can authenticate and authorize the request. The FE layer 122
can route the request to a partition server in the partition layer. A partition

server is also referred to as a table server or TS. A partition map is maintained

8

PCT/US2019/026989

10

15

20

WO 2019/212714 PCT/US2019/026989

that keeps track of partitions and which partition server is serving which
partition. The FE layer 122 may access the partition map to determine the

partition server serving a partition to be accessed.

[0023] The partition layer 124 is responsible for managing and
understanding high level abstractions of user files, structured storages, and
messaging. The partition layer 124 also provides a scalable index, transaction
ordering, and storing consistency for objects. The partition layer 124 can
specifically support storing object data on top of the stream layer 126. In an

example, the partition layer partitions data objects within a storage stamp.

[0024] The partition layer 124 includes the primary data structure,
referred to as the objects table (OT). The OT indexes blocks stored in the
distributed storage system. The OT can grow to be a massive table, such as
several petabytes. The OT is dynamically broken up into range partitions,
referred to herein as partitions, and spread across partition servers of a storage
stamp. A partition may include a contiguous range of rows in the OT from a
given low-key to a high-key. For example, the storage space in the storage
stamp is represented as a key space divided amongst a plurality of partitions.
In an example, each row in the OT has a primary key determined from
properties of the data object in the row, and the keys may be used for indexing
and sorting the rows in the OT and for performing look-ups. Each key may be
defined by one or more properties of the data objects stored in the system 100.
For example, the primary key may include one or more properties of a data
object, such as Account Name, Partition Name and Object Name. In an

example, properties of data objects may be selected to generate keys for each

9

10

15

20

WO 2019/212714 PCT/US2019/026989

row in the OT table. For example, properties may be selected to generate a
partition key and a row key for each row. An account name, a table name and
partition key together may identify the partition within the storage service where
the data object is stored. The row key may uniquely identify each row in a
partition in the OT. As with keys in a relational database table, partition key and
row key values are indexed to create a clustered index that enables fast look-
ups. The OT may be distributed across partition servers serving requests for

the partitions.

[0025] Also, the partition layer 124 includes the blocks table. The blocks
table may also be partitioned and distributed across partition servers. The
blocks table indexes blocks stored in the partition servers. The blocks table
may include one or more keys defined by one or more properties of the data
objects stored in the blocks table. When a binary large object (blob) or another
type of data object is striped across partitions, a blocklink (e.g., a pointer) may
be created for each subblock, and stored in the blocks table along with other
metadata. The blocklink is also stored in the OT for the blob, and may be used
to retrieve the subblock for the blob. The blocks table and the OT are further

discussed below.

[0026] In an embodiment, the blob data is stored in the same logs and
checkpoints as typical row data, but in different structures. In an additional
exemplary embodiment, the blob data is stored in separate logs and
checkpoints from the row data. This allows for compaction/merging of the row
checkpoints without having to recopy blob data, and it allows for a single-write

blob insert/update. As previously mentioned, the blob data is typically large,

10

10

15

20

WO 2019/212714 PCT/US2019/026989

therefore, abstaining from the recopying of blob data provides efficiencies. By
storing the blob data in different logs and checkpoints, the expense of recopying
the data can be minimized because blob data can be large (relative to traditional
row data). Additionally, the separate logs and checkpoints can be stored in the
same file or stream, or in the alternative, the blob data can be stored in a

separate stream from the row data.

[0027] The stream layer 126 stores bits on disk or other types of storage
devices and supports replicating the data across many servers to keep data
durable within a storage stamp. The stream layer 126 supports files called
streams which are ordered lists of large storage chunks called extents. The
stream layer stores and replicates extents. The data stored in the stream layer
is accessible from the partition layer 124. The stream layer 126 may provide a
file system namespace and an Application Programming Interface (API) for the
partition layer 124 to perform writes and reads. Writes can be append-only.
The interface between the stream layer 126 and partition layer 124 allows a
client to open, close, delete, rename, append to, and concatenate streams. A
stream can refer to an ordered list of extent points and an extent is a sequence
of append blocks. An extent can be a seal extent, such that, the extent can no
longer be appended to. An application can read data from extents to access

block contents of the extents.

[0028] The stream layer 126 can include a stream manager and an
extent node. The stream manager is responsible for tracking the stream
namespace, what extents are in each stream and the extent allocation across

extent nodes. The stream manager performs lazy re-replication of extent

11

10

15

20

WO 2019/212714 PCT/US2019/026989

replicas that are lost due to hardware failures or unavailability. Each extent
node maintains the storage for a set of replicas assigned to the corresponding
extent by the stream manager. Each extent node contains a view about the

extents it owns and where the peer replicas are for a given extent.

[0029] The distributed storage system 100 can support several different
types of applications, from social networking to managing medical records. The
distributed storage system 100 can specifically be implemented with user files,
structured storage, and message delivery in order to support storage and
workflow of the applications. The distributed storage system 100 can be
configured to receive transactions that facilitate the storage and workflow of the

applications.

[0030] Figure 2 illustrates an example of components of the distributed
storage system 100, including components of the FE layer 122 and the partition
layer 124. Many of the components described herein are functional entities that
may be implemented as discrete or distributed components or in conjunction
with other components, and in any suitable combination and location. Various
functions described herein as being performed by one or more entities may be
carried out by hardware, firmware, and/or software. For instance, functions and
operations performed by the layers and components described herein may be

carried out by a processor executing instructions stored in memory.

[0031] The components of the partition layer 124 may include master 202
(e.q. partition master 202), servers 204, 206, 208, and 210 (e.g. partition
servers 204, 206, 208, and 210), and FE 212 (e.g. partition FE 212). Each may

reside on any type of computing device. The components may communicate
12

10

15

20

WO 2019/212714

with each other over a network, which may include, without limitation, one or
more local area networks (LANs) and/or wide area networks (WANSs). Although
a single master, four servers, and a single FE are shown in figure 2, any
number of masters, servers, and FEs may be employed within the distributed
storage system 100 within the scope of implementations of the present

disclosure.

[0032] Stored data of the distributed storage system 100 is divided
amongst a plurality of partitions. For example, a key space representing stored
data objects is divided amongst the plurality of partitions. The partitions may
include range partitions in the OT, as is mentioned above and as is further
discussed below. Master 202 is configured to assign the partitions to partition
servers 204, 206, 208, and 210, and/or other servers of a cloud computing
system. Master 202 can also be configured to determine when a partition of the
partitions is not hosted by any server due to a failure and reassign the partition
to a different server. Master 202 is further configured to control load balancing
of the partitions on servers 204, 206, 208, 210, and/or other servers of the
distributed storage system 100 not shown. Additionally, master 202 is
configured to monitor resource utilization with respect to any of the partitions
and/or servers 204, 206, 208, and 210, and/or other servers of the distributed
storage system 100 not shown. It is further contemplated that master 202 is
configured to support integrated resource allocation and load balancing in
accordance with embodiments of the present invention, as discussed in more

detail below.

13

PCT/US2019/026989

10

15

20

WO 2019/212714 PCT/US2019/026989

[0033] The servers, such as partition servers 204, 206, 208, and 210, are
utilized to store and provide access to the data objects of the distributed storage
system 100. Master 202 is configured to manage the servers. Furthermore,
front end (FE) 212 is configured to provide applications, such as application
216, access to the distributed storage system 100. Each server, such as
partition servers 204, 206, 208, and 210, can be responsible for providing read
and write access from zero to many partitions assigned to the server. In the
example shown in FIG. 2, server 204 is hosting partitions P1 and P4, server 206
is hosting partitions P2 and P7, server 208 is hosting partition P3, and server

210 is hosting partitions P5 and P6.

[0034] FE 212, which may be part of the front-end layer 122 shown in
figure 1, is linked into an application, such as application 216. FE 212 may be
configured to issue commands to some of the partitions (e.g. partitions P1, P2,
P3, P4, P5, P6, and P7) hosted by partition servers 204, 206, 208, and 210
and/or other servers. Also, in some implementations, FE 212 may
communicate with the application indirectly, for example, through a virtual IP
and software load balancer or other means that directs communication
requests. The FE 212 can utilize a partition map, such as partition map 218, to
determine which of the servers is hosting (mapped to) which of the partitions
and can send commands to those servers. Results of the commands can be
received back from the servers and can be passed to the application 216. The
partition map 218 stores mappings between the partitions and the servers they
are assigned to, and can typically be maintained by a master, such as partition

master 202.

14

10

15

20

WO 2019/212714 PCT/US2019/026989

[0035] Data objects stored in the distributed storage system 100 may
include binary large objects referred to as blobs. The distributed storage
system 100 is functional to provide scalable, available, and durable blob storage
in a structured storage environment. A blob is a collection of binary data stored
as a single entity. As a matter of example, blobs may be images, audio,
records, text, or other multimedia objects. Blobs can also be executable code

or other collections of binary data.

[0036] In an example, the OT is in the partition layer 124 shown in figure
1, and can store data and metadata for blobs. For example, the OT includes
row data for each of the blobs. The row data includes metadata corresponding
to each blob, and the row data includes a pointer to a storage location for the
blob. In an example, a schema for the OT may include account name,
container name, blob name, and other meta data describing blobs. The schema
may also include one or more pointers to the blob that describe the location of
the blob in the stream layer, such as a stream position. The OT may also

include a blocklink for its subblocks if they are striped across partitions.

[0037] In an example, the blocks table is in the partition layer 124, and
can store data and metadata for subblocks of a blob that are striped across a
plurality of partitions. For example, the blocks table includes row data for each
subblock. The row data includes metadata corresponding to each subblock,
and the row data includes a pointer to a storage location for the subblock. In an
example, a schema for the blocks table may include a blocklink, account name,
container name, blob name, block ID and other meta data describing the

subblock. The schema may also include a pointer to the subblock. In an

15

10

15

20

WO 2019/212714 PCT/US2019/026989

example, the blocklink includes a globally unique ID (GUID) for the subblock,
and the blocklink is also stored in the OT for the corresponding blob and is used
as a table key linking the row for the subblock in the blocks table to the row for

the blob in the OT.

[0038] According to an example of the present disclosure, a block may be
striped across multiple partitions instead of being stored on a single partition.
Figure 3 shows an example of a data flow for a write request that may be

striped across multiple partition servers. In this example, the write requestis a
put block request. Although the data flow is shown for a write request, the
system 100 is operable to perform read (e.g., get request) and write requests for

a block which may or may not be striped across multiple partition servers.

[0039] Referring to figure 3, at (1), a FE of the distributed storage system
100, such as FE 212 shown in figure 2, receives a put block request from a
user. The put block request may alternatively come from an application, such
as application 216 shown in figures 1 and 2. The put block request may include
a blob name, shown as BNAME, assuming the block is part of a blob, and a
block identifier (ID), shown as BID1, of the block to be putin the distributed
storage system 100. A block is a data object. In an example, the block is for a
collection of data objects that may be stored or managed as a single entity. The

block may be one of a plurality of blocks of a blob.

[0040] The FE 212 determines whether to stripe the incoming put block
request across multiple partitions instead of storing in a single partition. For
example, a pool of dedicated partitions for striping, shown as partition pool 301,

may be maintained. In an example, the partition pool 301 may not be directly
16

10

15

20

WO 2019/212714

connected to the FE 212. For example, the partition pool 301 is maintained by
the partition layer 124 shown in figure 1, and the FE 212, which may be part of
the front-end layer 122, communicates with the partition layer 124 to store or

retrieve data to or from a partition from the partition pool 301.

[0041] Referring back to figure 3, the FE 212 determines whether the
block for the put block request meets predetermined criteria for striping. For
example, assume that the FE 212 determines the block size of the block in the
put block request meets predetermined criteria, such as being greater than a
predetermined size, and then in response to the determination, the FE 212
decides to stripe the block across a plurality of partitions from the partition pool
301. The FE 212 divides the block into subblocks. A default size may be used
for the subblocks. The subblocks determined by the FE 212 are immutable.
The FE 212 generates a blocklink for each of the subblocks. The blocklink
includes a GUID for each of the subblocks. The GUID for each subblock
uniquely identifies the subblock across the partitions that may store the
subblocks for the striped block. For example, each GUID uniquely identifies a
subblock in the partition pool 301. The GUID may include a prefix that is
random and is used to select a partition from the partition pool 301 to store each
subblock. For example, a goal of the FE 212 may be to evenly distribute the
load of the partition pool 301. Each of the partitions in the partition pool 301
may be pre-assigned a prefix value in a range. To store each subblock, a prefix
value in the range may be randomly generated to select a partition from the
partition pool 301 to store the subblock to evenly distribute the load among the

partitions in the partition pool 301.

17

PCT/US2019/026989

10

15

20

WO 2019/212714 PCT/US2019/026989

[0042] At (2), the FE 212 sends putblock requests for the subblocks to
the partition servers serving the applicable partitions from the partition pool 301
after determining to stripe the block. For example, the FE 212 sends a
sequence of put subblock requests to the partition servers serving requests for
partitions that are selected from the partition pool 301 according to the GUID
prefixes selected for the subblocks. The request for each subblock may identify
the GUID generated for the subblock, the block ID, the block name, and may
specify other information. For each subblock request, a row in the blocks table
may store the information for the request. For example, a portion of the first row
of the blocks table is shown, and may include G1, which is the GUID for the first
subblock, BID1, which is the block ID for the block containing the subblock, and
a subblock map which specifies the partition server to host the subblock. A row
may be created in the blocks table for each subblock. At (3), the FE 212
receives a status of each of the put subblock requests from the corresponding
partition servers, which indicates the information has been written to the
corresponding partition servers associated with the partitions from the partition

pool 301 that were selected to store the subblocks.

[0043] At (4), the FE 212 sends a PutBlockLink request to the applicable
partition server after getting confirmation the subblocks have been written. For
example, the PutBlockLink request is sent to the partition server serving the
partition associated with the blob, which was initially identified by its blob name
in the putblock request at (1). For example, the FE 212 sends a PutBlockLink
command to the applicable partition server storing the OT associated with the

block ID. The PutBlockLink command may include the block name, blocklink,

18

10

15

20

WO 2019/212714 PCT/US2019/026989

blockID and other applicable inputs, and this information is stored in a row of the
objects table of the partition server. Accordingly, the blocklink, e.g., G1, stored

in the OT is a key to the blocks table to identify the location of the subblocks.

[0044] At (5), the FE 212 receives from the partition server serving the
OT, an indication that the row has been written for the subblock to the OT. A
row may be written to the OT in the partition server for each blocklink. At (6), a
status is sent to the user/application 216 that the put block request is

completed.

[0045] Figure 4 illustrates a flow chart 400, according to an embodiment.
At 401, a new table is created, such as the blocks table, to serve as an index
hosting different subblocks of a blob (or other data object) across multiple
partitions. The OT may already exist. The blocks table can host subblocks of
blobs from multiple accounts of a tenant of the cloud distributed storage system.
At 402, the blocks table is divided into “X” partitions. In examples, “X” is
percentage of a total partition count. Each partition is associated with a prefix of
a GUID. A pool of the partitions may be created and the partitions are served

by a plurality of partition servers.

[0046] At 403, a write request is received, e.g., put block request. The
write request may be for a blob. At 404, a determination is made as to whether
a data object to be written satisfies predetermined criteria. For example, a
determination is made as to whether the block to be written has a size greater
than a predetermined threshold. Other criteria may be used for the
determination and may be dynamic. If no (e.g., size is less than or equal to

threshold), then the block is not striped, and the block’s metadata is stored in
19

10

15

20

WO 2019/212714 PCT/US2019/026989

the OT at 405. For example, the block and its metadata are written to a partition
serving the OT. At 406, if yes (e.g., size is greater than the threshold), the block
is divided into subblocks, and the subblocks are striped across partitions and
written to the blocks tables associated with the partitions. The subblocks, their
blocklinks including GUIDs, and other metadata are stored in the blocks tables
of the partitions. At 407, the blocklinks are stored in the OT associated with the
original block, such as a blob, which is divided into the subblocks. Then, if a
read request for the block is received, the FE 212 may retrieve the subblocks
from the blocks tables based on the blocklinks in the OT. In an example, to
retrieve a striped block, a block identifier of the block is determined. Then, an
entry in the OT associated with the block identifier of the block is identified. The
pointer, including GUIDs, which identifies entries in the blocks table for the
subblocks of the block is determined from the entry. A lookup is executed in the
blocks table according to the pointer to identify the partitions storing the

subblocks for retrieving the subblocks.

[0047] The block tables may be transparent to the user or application 216
making the request that is received at 403. By dividing the block into subblocks
and storing them in different partition servers, the subblocks may be written or
read in parallel, and may improve throughput of the requests. Also, bottlenecks
caused by only using the OT to read and write blocks, such as blobs, are

avoided.

[0048] The distributed storage system 100 may replicate a tenant’s data
to make available a redundant copy of the data to the tenant for disaster

recovery or for other purposes. Figure 5 shows a high-level block diagram of

20

10

15

20

WO 2019/212714

replication that may be performed in the distributed storage system 100. The
data replication may be from a primary location 501a to a secondary location
501b. The locations 501a-b may be different geographic locations. In an
example, the locations may be data centers provided in different geographic
locations. The different geographic locations may be different regions, so that if
a catastrophe, such as a natural disaster, happens in one data center, it should

not affect the other data center.

[0049] In an example, the data replication may be performed between
partition layer 124a in a storage stamp in the primary location 501a and partition
layer 124b in a storage stamp in the secondary location 501b. Other layers,
such as a front-end layers (e.g., including front end 212a and 212b) and stream
layers, in the storage stamps may also be involved in the replication. A location
service of the distributed storage system 100 may keep track of the primary and
secondary locations 501a-b for a tenant’s account, and the storage stamps in
the locations that are assigned to the account. For example, when provisioning
the account, the location service chooses a stamp in each location and registers
the AccountName with both stamps such that the US South stamp P (e.g.,
primary, P) takes live traffic and the US North stamp S (e.g., secondary, S)
takes inter-stamp replication (also called geo-replication) traffic from stamp P for

the account.

[0050] When a write comes into stamp P for the account, the change is
replicated within that stamp using intra-stamp replication at the stream layer
then success is returned to the client. After the update has been committed in

stamp P, the partition layer 124a in stamp P asynchronously geo-replicates the

21

PCT/US2019/026989

10

15

20

WO 2019/212714 PCT/US2019/026989

change to the secondary stamp S using inter-stamp replication. When the
change arrives at stamp S, the transaction is applied in the partition layer 124b
and this update fully replicates using intra-stamp replication within stamp S.
Since the inter-stamp replication is done asynchronously, recent updates that

have not been inter-stamp replicated can be lost in the event of disaster.

[0051] Inter-stamp replication is used for both account geo-replication
and migration across stamps. For disaster recovery, an abrupt failover may
need to be immediately performed, and recent changes may be lost. For
migration a clean failover may be performed so there is no data loss. In both
failover scenarios, the location service makes the secondary stamp S for the
account the new primary and switches the primary location for the account to

the secondary stamp S.

[0052] According to an embodiment, inter-stamp replication, such as
replication between storage stamps P and S in primary and secondary locations
501a-b, is performed using log shipping and data pulling. Log shipping may be
used for replicating small data objects, such as data objects having a size less
than or equal to a predetermined threshold. The threshold may be the same
that is used for purposes of determining whether to stripe a data block, such as
described above. In an example, log shipping may be used for data that is not
striped. The striping is described above with respect to figures 3-4. For larger
data objects, such as a blob that is striped and has its subblocks written to the
blocks table, the subblocks may be replicated using a data pulling process as is

further discussed below.

22

10

15

20

WO 2019/212714 PCT/US2019/026989

[0053] Figures 6A-6B show flow diagrams for geo replication, which may
include asynchronous inter-stamp replication for stamps located in different
geographic regions. In particular, figure 6A shows steps for log shipping, and
figure 6B shows steps for the data pulling process. One or more of the
components performing the geo replication may include machine readable
instructions stored on a storage medium and executed by a processor to
perform the operations of the component. Components, such as logs, tables,

log streams, etc., may be stored on a storage medium.

[0054] Referring to figure 6A, at the primary location 501a, a client (e.g.,
a user or application) may communicate data to a stamp at the primary location
501a. The stamp may be associated with an account of the client. The stamp
may be comprised of a plurality of partitions, such as multiple partition servers.
A partition server may store memory tables and logs. For example, a partition
may be comprised of an update log, a block log, a page log, and/or a geo
message log. In an example, a log is located within a stream layer of a
distributed computing environment such that the log is a discrete data stream

that is append only.

[0055] A log stream may be relied upon to re-establish data of a storage
stamp following a failure of a portion of a storage stamp (e.g., a storage node).
For example, data may be committed to a storage stamp at a particular
partition, but following the failure of the partition, the state of the partition is
recreated, at least in part, by replaying one or more logs associated with that
partition. Data may not be “committed” to a particular storage stamp until it is

replayed into (e.g., written into) one or more logs of the storage stamp. A

23

10

15

20

WO 2019/212714 PCT/US2019/026989

distinction exists between data that is merely stored or written to a stamp and
data that is committed to the stamp. For example, data may be written to a log
of a storage stamp, but that data is not accessible to a client until the data is
committed to the storage stamp. Committal of the data from a log, in an
exemplary embodiment, may occur by the playing (or replaying) of the data from
the log in order, which may not be strictly sequential, but instead merely in
order. Data may be received in a non-sequential manner at the secondary
location 501b. However, it may be desired to commit the data in a sequential
manner. The non-sequentially received data may be stored in a log, such as
data log 623, until a portion of the data can be committed to the storage stamp

in a sequential manner.

[0056] Referring to figure 6A, a client (e.g., a user or application) may
communicate data to a stamp at the primary location 501a , and the data may
be committed to a partition at the stamp, and data for the transaction is written
to log 609. Also, a transaction that was executed to store the data in the stamp

is written to log 609 or another log.

[0057] After the data is committed at the primary location 501a,
geosender 610 obtains replication information from the log 609, at 631, and
transmits the replication information, at 632, to a georeceiver 620 at the
secondary location 501b. The replication information may include the
transaction executed at the primary location 501a and may include the data
committed at the primary location 501a, such as for the log shipping process as
is discussed in more detail below. For example, the geosender 610

communicates a geo message to georeceiver 620 including the replication

24

10

15

20

WO 2019/212714 PCT/US2019/026989

information. The replication information in the geo message may include a
collection of transactions which have been batched to form a geo message for a
particular geo location, stamp, and/or partition. A geo message may include a
message ID that uniquely identifies that geo message (e.g., epoch # and
sequence #). Further yet, a geo message may be annotated to include a
commit ID from the primary storage system. There can be many log entries
making up a transaction, with a final commit log entry for the transaction.
Information may indicate what the original transaction was, e.g., Put Block, Put
Block List, etc., which is used to determine how to correctly replay the
transaction at the destination, and include additional information to re-execute
the transaction at the destination (e.g., Last Modified Time, for Put Block List the
final block list indicating if the blocks came from the committed or uncommitted

list, etc.).

[0058] The replication information is written to the transaction log 621
from the georeceiver 620 at 633. In an example, a geo message is written
almost immediately, upon receipt by the georeceiver 620 at a secondary data
stamp at the secondary location 501b, in a transaction log 621. This near
immediate writing of the geo message may allow for the secondary data store at
the secondary location 501b to provide an acknowledgement back to the
supplying primary data store at the primary location 501a that the data has been
written durably (but may not have yet been committed) at the secondary data
store. In this example, the primary location 501a does not have to wait for
acknowledgement of the re-execution of some of the geo-transactions (e.qg.

portions of the geo message) at the secondary location 501b. Consequently,

25

10

15

20

WO 2019/212714 PCT/US2019/026989

the geo message is written to the transaction log 621, and then replayed at a

later time.

[0059] The transaction log 621, also referred to as a geomessage log
(GML), at the secondary location 501b stores the replication information,
including transactions, logs, data, etc. For example, for log shipping, the
georeceiver 620 writes block data for each of the transactions and the
transactions to the transaction log 621. This is illustrated by the below example
of putblock transactions received from the client, which are executed on a
primary stamp at the primary location 501a. The transactions are transmitted in
a geo message to the secondary location 501b by the geosender 610, and
received at the georeceiver 620, whereby the georeceiver 620 then writes the
following to the transaction log 621:

PutSubBlock(Gx,0,...) 2 Write to .GML
PutSubBlock(Gx,1,...) 2 Write to .GML
PutSubBlock(Gx,2,...) 2 Write to .GML
PutSubBlockList(Gx,..) 2 Write PutSubBlockList to .GML.

[0060] For log shipping, the transaction and the block data are written to
the transaction log 621 at 633, and the block data is subsequently written to
data log 623. For example, the geo replayer 622 retrieves the block data from
the transaction log 621 and stores the block data in the data log 623, such as
when the transaction is dispatched as is further discussed below. In an
example, transactions are received and the order of execution of the

transactions is maintained in the transaction log 621. Then, the transactions are

26

10

15

20

WO 2019/212714 PCT/US2019/026989

replayed according to their order. Then, the geo replayer 622 can execute the
transaction from the transaction log 621 along with persisting the block data in
the data log 623 (i.e., committing the data to the data log 623) according to the
stored order of execution. For example, at 635 the geo replayer 622 obtains a
transaction and the associated block data from the transaction log 621, and
persists the data for the transaction in the data log 623 at 636 when the
transaction is executed. The georeplayer 622 executes the transaction or
multiple transactions, whereby the executed transactions are shown as
dispatched transactions 624, and the dispatched transactions 624 should bring
data objects stored at the secondary location 501b to a same state of the data
objects stored at the primary location 501a. For example, when a transaction is
replayed from the transaction log 621, it is replayed into a corresponding
Update/Block/Page logs, and the data is committed at a secondary stamp at the

secondary location 501b.

[0061] As was discussed above, log shipping is a replication technique
for maintaining a copy of data. A transaction log may include a file that contains
a record of the changes that were made to data at the primary location. All
changes are recorded in the transaction log files before the changes are written
to the database at the primary location. If a database shuts down unexpectedly,
unfinished transactions can be restored by replaying the transaction log files
into the database. Log shipping writes the log first to the transaction log 621
and then replays the transactions in the logs. For example, logs are received
and the order of the transactions in the logs are maintained in the transaction

log 621. Then, the transactions are replayed according to their order.

27

10

15

20

WO 2019/212714 PCT/US2019/026989

[0062] In contrast to log shipping, for the data pulling process, the steps
of writing the block data to the transaction log 621 and then writing data to the
data log 623 are bypassed, because the block data is pulled from the stamp at
the primary location 501a and is written to a blocks table, such as blocks table
630Db, at the secondary location 501b without first writing the data to the
transaction log 621. This is illustrated in figure 6B. For example, as
represented by the dashed line, for the block links persisted/stored in the log
609 and blocks table 630a at the primary location 501a, the data is pulled from
the blocks table 630a and stored in the blocks table 630b at the secondary
location 501b. Thus, the extra steps of writing data from the transaction log 621
to the appropriate locations in the secondary location 501b are eliminated. The
transactions, which are written to the transaction log at 633, are executed at 635
using the data previously stored in the blocks table 630b through the data

pulling process.

[0063] Figure 7 shows a data flow for the data pulling process for geo
replication. The data pulling process may be applied to subblocks stored in a
blocks table at the primary location 501a, whereby storing subblocks in the
blocks table is described above with respect to figures 3 and 4, and the data is
pulled to a blocks table at the secondary location 501b. Generally, a pull
process instead of a push process is used to write data from a blocks table at
the primary location 501a to a blocks table at the secondary location 501b for
geo replication, such as shown in figure 6B. In the pull process, before writing
metadata, such as the blocklink (i.e., pointer referencing subblock in blocks

table), to the transaction log 621, the actual data is pulled from partition servers

28

10

15

20

WO 2019/212714

on the primary location 501a and written to partition servers on the secondary

location 501b.

[0064] Referring to figure 7, at (10), at the primary location 501a, new
PutBlockLink transaction records get packed and sent as part of a geo
message, which is shown as PUTGEOMESSAGE (MSG1). The new
PutBlockLink transaction records that are packed into the geo message may
include the “N” PUTSUBBLOCK transactions discussed with respect to step 2 of

figure 3.

[0065] In figure 7, at (11), at the secondary location 501b, FE 212b
receives the geo message PUTGEOMESSAGE (MSG1), and sends a put geo
message command, shown as PUTGEOMSG (MSG1), to put the geo message
in an OT at the secondary location 501b. For example, PUTGEOMSG (MSG1)
is sent to a partition server 502, at the secondary location 501b, which serves
the applicable partition of the OT, shown as objects table 503. The transaction
records in MSG1 are written to the transaction log 621, e.g., GML. The data for
the transactions in MSGH1 is pulled from the primary location 501a as is further

discussed below.

[0066] To pull the data for the transaction records, such as the “N”
PUTSUBBLOCK transactions, at (12), the partition server 502 sends a
command to the FE 212b to get the subblocks for the “N” PUTSUBBLOCK
transactions identified in the PUTGEOMESSAGE (MSG1). The command is
shown as FETCHBLOCKDATA (G1, BID1, BNAME). The FETCHBLOCKDATA
may identify the GUIDs and other information for the subblocks to be pulled

from the primary location 501a. At (13), the FE 212b transmits a request (e.g.,
29

PCT/US2019/026989

10

15

20

WO 2019/212714 PCT/US2019/026989

GETBLOCKDATA (G1, BNAME)) to FE 212a at the primary location 501a for
pulling the actual data that was persisted at the primary location 501a under the
“N” PUTSUBBLOCK transactions, which are identified in the
PUTGEOMESSAGE (MSG1). The request identifies the subblocks in the

blocks table, for example, using the GUIDs and the block name.

[0067] At (14)-(16), the FE 212a gets the subblocks from the blocks table
630a. For example, as shown at (14) and (15), a GETBLOCKDATA command
identifying the subblock is sent to the blocks table 630a, and the requested
subblock is received from the blocks table 630a. At (16), the FE 212a sends the
requested subblock to the FE 212b. This may be performed for all the

subblocks for the “N” PUTSUBBLOCK transactions.

[0068] At (17)-(18), the FE 212b receives the subblocks, and follows a
similar workflow to the one performed on the primary location side, such as by
sending N PutSubBlocks to the blocks table partitions serving the subblocks.
Upon receiving a completion notification, the partition server serving the
applicable blocks table partition writes the data for the N PutSubBlocks to the

data log 623.

[0069] At (19), the partition server 502 sends a response to the FE 212b
that the write for the original PutGeoMessageCommand from step 10 is
completed, and, at (20), the FE 212b sends a status to the partition server at the
primary location 501a that the original PutGeoMessageCommand from step 10
is completed. Now the transaction log 621 has the transactions and the actual
data for the transactions is stored in the data log 623, and the georeplayer 622

in figure 6B can execute the transactions. In an example, the data log 623 may
30

10

15

20

WO 2019/212714 PCT/US2019/026989

include the blocks table 630b. In this case, step 18 may be bypassed because
the data for the transactions is already stored in its appropriate location at (17),
and the georeplayer 622 execute the transactions whose associated block data

is already persisted in the blocks table 630b.

[0070] There are technical advantages to the data pulling process as
opposed to the log shipping process for geo replication. For log shipping, on
the geo receiver/replayer side, there is a redundant write for the actual block
data For example, for log shipping, data is first written to the GML at the
secondary location side, and then during replay, the data is read and written to
a blob log. For the data pulling process, the initial data write to the GML of the
OT that is performed for log shipping is avoided as the actual data is written
only once in the blocks table log stream. Also, the data read from the GML
during replay is avoided as replay of block links involve only metadata. In
addition, the geo sender/receiver throughput is increased, because pull
requests can be simultaneously issued to different FEs. Also, faster geo
replayer throughput is achieved as there is no actual data write that happens

during the replay phase from the GML.

[0071] Figure 8 illustrates a method for geo replication. At 801, data,
such as data for a blob, is striped and stored in the blocks table on the primary
location side, such as described with respect to figures 3 and 4. At 802, a
message is received at the FE on the secondary location side to put a
transaction in the GML. The FE determines whether the message is for a
transaction that includes data stored in the blocks table. For example, the

message includes a GUID of the data in the blocks table if it is stored in the

31

10

15

20

WO 2019/212714

blocks table. If the data is in the blocks table, at 803, the data pulling process is
performed. For example, at 804, the FE on the secondary location side sends a
message to the FE of the primary location side to retrieve the data from the
blocks table on the primary location side. The message, for example, includes
the GUID of the data in the blocks table and other metadata for the data. At
805, the FE on the secondary location side receives the requested data from
the FE on the primary location side, and at 806, the data for the transactions is
written to the data log. Also, the transactions are written to the transaction log.
The georeplayer can then execute the transactions in the transaction log using
the data in the data log, such as shown in figure 6B. Ifitis determined at 802
that the data is not in the blocks table, then the transaction and data for the
transaction are written to the transaction log according to a log shipping process

at 807, such as shown in figure 6A.

[0072] Figure 9 shows an example of a suitable computing and
networking environment on which the examples and embodiments described
above may be implemented. The computing system environment is only one
example of a suitable computing environment and is not intended to suggest
any limitation as to the scope of use or functionality of the examples and
embodiments described above. The examples and embodiments described
above is operational with numerous other general purpose or special purpose
computing system environments or configurations. Examples of well-known
computing systems, environments, and/or configurations that may be suitable
for use with the examples and embodiments described above include, but are

not limited to: personal computers, server computers, hand-held or laptop

32

PCT/US2019/026989

10

15

20

WO 2019/212714 PCT/US2019/026989

devices, tablet devices, multiprocessor systems, microprocessor-based
systems, set top boxes, programmable consumer electronics, network PCs,
minicomputers, mainframe computers, distributed computing environments that

include any of the above systems or devices, and the like.

[0073] The examples and embodiments described above may be
described in the general context of computer-executable instructions, such as
program modules, being executed by a computer. Generally, program modules
include routines, programs, objects, components, data structures, and so forth,
which perform particular tasks or implement particular abstract data types. The
examples and embodiments described above may also be practiced in
distributed computing environments where tasks are performed by remote
processing devices that are linked through a communications network. In a
distributed computing environment, program modules may be located in local

and/or remote computer storage media including memory storage devices.

[0074] Figure 9 shows an example of a system for implementing various
aspects of the example and embodiments described herein and may include a
computing device in the form of a computer 900. Components may include, but
are not limited to, various hardware components, such as processing unit 901,
data storage 902, such as a system memory, and system bus 903 that couples
various system components including the data storage 902 to the processing
unit 901. The system bus 903 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. By way of example, and not

limitation, such architectures include Industry Standard Architecture (ISA) bus,

33

10

15

20

WO 2019/212714 PCT/US2019/026989

Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and Peripheral Component

Interconnect (PCI) bus also known as Mezzanine bus.

[0075] The computer 900 typically includes a variety of non-transitory
computer-readable media 904. Computer-readable media 904 may be any
available media that can be accessed by the computer 900 and includes both
volatile and nonvolatile media, and removable and non-removable media, but
excludes propagated signals. By way of example, and not limitation, computer-
readable media 904 may comprise computer storage media and communication
media. Computer storage media includes volatile and nonvolatile, removable
and non-removable media implemented in any method or technology for
storage of information such as computer-readable instructions, data structures,
program modules or other data. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the desired
information and which can be accessed by the computer 900. Communication
media typically embodies computer-readable instructions, data structures,
program modules or other data in a modulated data signal such as a carrier
wave or other transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that has one or more
of its characteristics set or changed in such a manner as to encode information

in the signal. By way of example, and not limitation, communication media

34

10

15

20

WO 2019/212714 PCT/US2019/026989

includes wired media such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared and other wireless media.
Combinations of the any of the above may also be included within the scope of
computer-readable media. Computer-readable media may be embodied as a
computer program product, such as software stored on computer storage

media.

[0076] The data storage or system memory 902 includes computer
storage media in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) and random access memory (RAM). A basic input/output
system (BIOS), containing the basic routines that help to transfer information
between elements within computer 900, such as during start-up, is typically
stored in ROM. RAM typically contains data and/or program modules that are
immediately accessible to and/or presently being operated on by processing
unit 901. By way of example, and not limitation, data storage 902 holds an
operating system, application programs, and other program modules and

program data.

[0077] Data storage 902 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By way of example
only, data storage 902 may be a hard disk drive that reads from or writes to
non-removable, nonvolatile magnetic media, a magnetic disk drive that reads
from or writes to a removable, nonvolatile magnetic disk, and an optical disk
drive that reads from or writes to a removable, nonvolatile optical disk such as a
CD ROM or other optical media. Other removable/non-removable,

volatile/nonvolatile computer storage media that can be used in the exemplary

35

10

15

20

WO 2019/212714 PCT/US2019/026989

operating environment include, but are not limited to, magnetic tape cassettes,
flash memory cards, digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The drives and their associated computer storage
media, described above and illustrated in FIG. 9, provide storage of computer-
readable instructions, data structures, program modules and other data for the

computer 900.

[0078] A user may enter commands and information through a user
interface 909 or other input devices such as a tablet, electronic digitizer, a
microphone, keyboard, and/or pointing device, commonly referred to as mouse,
trackball or touch pad. Other input devices may include a joystick, game pad,
satellite dish, scanner, or the like. Additionally, voice inputs, gesture inputs
using hands or fingers, or other natural user interface (NUIl) may also be used
with the appropriate input devices, such as a microphone, camera, tablet, touch
pad, glove, or other sensor. These and other input devices are often connected
to the processing unit 901 through a user interface 909 that is coupled to the
system bus 903, but may be connected by other interface and bus structures,
such as a parallel port, game port or a universal serial bus (USB). A monitor 906
or other type of display device is also connected to the system bus 903 via an
interface, such as a video interface. The monitor 906 may also be integrated
with a touch-screen panel or the like. Note that the monitor and/or touch screen
panel can be physically coupled to a housing in which the computing device 900
is incorporated, such as in a tablet-type personal computer. In addition,

computers such as the computing device 900 may also include other peripheral

36

10

15

20

WO 2019/212714

output devices such as speakers and printer, which may be connected through

an output peripheral interface or the like.

[0079] The computer 900 may operate in a networked or cloud-
computing environment using logical connections to one or more remote
devices, such as a remote computer. The remote computer may be a personal
computer, a server, a router, a network PC, a peer device or other common
network node, and typically includes many or all of the elements described
above relative to the computer 900. The logical connections depicted in FIG. 9
include one or more local area networks (LAN) and one or more wide area
networks (WAN), but may also include other networks. Such networking
environments are commonplace in offices, enterprise-wide computer networks,

intranets and the Internet.

[0080] When used in a networked or cloud-computing environment, the
computer 900 may be connected to a public or private network through a
network interface 907. In some embodiments, a modem or other means for
establishing communications over the network. The modem, which may be
internal or external, may be connected to the system bus 903 via the network
interface 907 or other appropriate mechanism. A wireless networking
component such as comprising an interface and antenna may be coupled
through a suitable device such as an access point or peer computer to a
network. In a networked environment, program modules depicted relative to the
computer 900, or portions thereof, may be stored in the remote memory storage

device. It may be appreciated that the network connections shown are

37

PCT/US2019/026989

WO 2019/212714 PCT/US2019/026989

exemplary and other means of establishing a communications link between the

computers may be used.

[0081] The computer 900 may be a server or another type of computer.
The computer 900 may include a platform for hosting one or more components

of the partition layer or the FE layer.

[0082] Embodiments and examples are described above, and those
skilled in the art will be able to make various modifications to the described
embodiments and examples without departing from the scope of the

embodiments and examples.

38

10

15

20

WO 2019/212714 PCT/US2019/026989

What is claimed is:

1. A computing device in a distributed storage system operable to
perform data replication from a primary storage system to a secondary storage

system, the computing device comprising:

at least one memory containing machine-readable instructions;

and

at least one processor to execute the machine-readable

instructions to:

determine whether a block to be replicated from the primary
storage system to the secondary storage system is to be replicated via a data

pulling process or a log shipping process;

in response to determining the block is to be replicated through
the log shipping process, store a transaction and data for the block in a
transaction log, and subsequently execute the transaction from the transaction
log to cause the data to be written from the transaction log to a data log in the

secondary storage system; and

in response to determining the block is to be replicated through
the data pulling process, store the transaction in the transaction log, retrieve the
data for the block from the primary storage system, and store the data in the

data log.

39

10

15

20

WO 2019/212714 PCT/US2019/026989

2. The computing device of claim 1, wherein for the data pulling
process, the data is stored in the data log without previously storing the data in

the transaction log.

3. The computing device of claim 1, wherein the transaction is
performed on the primary storage system, and the at least one processor is to
receive a message from a computer in the primary storage system to replicate

the transaction on the secondary storage system.

4, The computing device of claim 1, wherein to determine whether to
replicate via a data pulling process or a log shipping process, the at least one

processor is to:

determine whether the data for the block is stored in a blocks
table in the primary storage system, wherein the data is stored in the blocks
table in response to the block being striped across a plurality of partitions in the

primary storage system.

5. The computing device of claim 4, wherein the block is striped
across the plurality of partitions in the primary storage system if a size of the

block is greater than a predetermined threshold.

40

WO 2019/212714 PCT/US2019/026989

6. The computing device of claim 4, wherein to stripe the block

across the plurality of partitions, the primary storage system is to:
receive a write request for a block at the primary storage system;
determine whether the block satisfies predetermined criteria;

5 in response to the block satisfying the predetermined criteria,
striping the block across a plurality of partitions in a pool of

partitions,

wherein striping the block across the plurality of partitions
comprises storing subblocks and metadata for the subblocks, including globally
10 unique identifiers, in a partitioned blocks tables associated with the plurality of

partitions; and

storing a link to entries for the blocks table in an objects

table associated with the block.

15 7. The computing device of claim 6, wherein a portion of each of the
globally unique identifiers is randomly selected for load distribution across the

plurality of partitions.

8. The computing device of claim 6, wherein in response to the block
20 not satisfying predetermined criteria, storing the block and its metadata in an

objects table.

41

10

15

20

WO 2019/212714 PCT/US2019/026989

9. The computing device of claim 8, wherein for the log shipping
process the data is retrieved from the objects table in the primary storage

system.

10. A computer-implemented method for replicating data from a first

storage system to a second storage system, the method comprising:

determining whether a block to be replicated from the first storage
system to the second storage system is to be replicated via a data pulling

process or a log shipping process;

in response to determining the block is to be replicated through
the log shipping process, storing a transaction and data for the block in a

transaction log; and

in response to determining the block is to be replicated through
the data pulling process, storing the transaction in the transaction log, retrieving
the data for the block from the first storage system, and storing the data in a

data log.

11. The method of claim 10, wherein for the data pulling process, the
data is stored in the data log without previously storing the data in the

transaction log.

42

WO 2019/212714 PCT/US2019/026989

12. The method of claim 10, wherein the transaction is performed on
the first storage system, and the method comprises receiving a message from a
computer in the first storage system to replicate the transaction on the second

storage system.

13. The method of claim 10, wherein determining whether to replicate

via a data pulling process or a log shipping process comprises:

determining whether the data for the block is stored in a blocks
table in the first storage system, wherein the data is stored in the blocks table in
10 response to the block being striped across a plurality of partitions in the first

storage system.

14. The method of claim 13, wherein to stripe the block across the

plurality of storage partitions, comprises:
15 receiving a write request for a block at the first storage system;
determining whether the block satisfies predetermined criteria;

in response to the block satisfying the predetermined criteria,
striping the block across a plurality of partitions in a pool of

partitions,

20 wherein striping the block across the plurality of partitions

comprises storing subblocks and metadata for the subblocks, including a

43

WO 2019/212714 PCT/US2019/026989

globally unique identifiers, in a partitioned blocks tables associated with the

plurality of partitions; and

storing a link to entries for the blocks table in an objects

table associated with the block.

15. The method of claim 14, wherein a portion of each of the globally
unique identifiers is randomly selected for load distribution across the plurality of

partitions.

44

WO 2019/212714

1/10

Application
216

PCT/US2019/026989

Cloud Computing Platform (Storage Service)
120

Front End Layer
122

Partition Layer
124

Stream Layer
126

FIG. 1

PCT/US2019/026989

WO 2019/212714

2/10

9

d

\/

ISEA-E
NOILILYVYd

~~-0l¢

r

¢ 9ld

ed .d ¢d vd ld
EENNENS dINGSS EENNENS
NOLLILava 802 | NolLiLavd [N90C | o1 1ava [702 NOILLYOITddY
0 //m_\N
: —»| aN3 LNO¥H
H //N_\N
YILSYI o awn
NOILIL¥Vd NOILLLLMVd
\-z0z g1z

00l

PCT/US2019/026989

WO 2019/212714

3/10

|

|
I
I
"<-(¢9 ‘eqIg)< I
-@ozaig<-(19 '1aig) _
A _
I
I
I
I
|
Yul| SNLVv1S (©) _
: aweuq 19> |
%90[q |0od |
319v1 S103rgo uoniued |
JoAIDS uoljiued “
I
y _
I
2 I
(1aiIg’'19'3INVYNG) A4 _ (©)

MNITYO018LNd 34 _ 3405

© s ™ _ SNLVLS
I
I
I

o 1 | 9Lz
(aWYNg ‘1aIg ‘1) W ddy/
— ¥00799NSLNd N, LD (1aig 'FINYNE)
300[g gns < (7)) —

319v.1L SM0074

SIaAl9g uolled

WO 2019/212714

4/10

create new table (e.g., blocks table)
401

l

divide table into partitions
402

|

receive write request
403

data object
to be written satisfies
predetermined criteria?
404

NO

PCT/US2019/026989

400

store in OT
405

divide blocks into subblocks and stripe across
partitions; store blocklinks in blocks table in

partitions
406

l

store blocklinks in OT
407

FIG. 4

PCT/US2019/026989

WO 2019/212714

5/10

g dweyg sbeiols

uoneodidey
dwejg-enu|
Jake] weans

A
A

siohe
uonijed

avrcl

{

aclce
pud jucld

qtos
uolles07 Alepuodas

“_Cmc‘_m@mcm_\/_ 1UNO22Y

G old

uoneoldey
dwe)g-Je|

4 duwels sbeloig

uoneodl|dey
dwejg-enu|
Jake] weans

¢

siohe
uonived eygzl

4

eclc
pu3 juoi4

SNd

90IAI8S
UoIBo0T

/18U SMOPUIM 9102 801AISS 8 WEBNIUNOIDY//:Sd1y

dIN eT0s
uonesoq Alewlid

1Uunod2oke J0J

‘sqo|g sseo0y

dnxoo7 SNQ

senanp pue se|qe|

PCT/US2019/026989

WO 2019/212714

6/10

€c9

607 eleq

(uonoesuel; Joy
ejep jsisied) 9€9

¥c9

suoloesuel |
payojedsig

V9 Ol4

qT0S uo1ed0
Alepuodas

(eyep pue suonoesuel) — NSO “68)
129 Bo7 uonoesuel |

(ejep pue uonoesuel)

uolnoesuel)
a)noaxs

eT0g uoneso
Alewid

609
6o

1€9

ulejqo) Ge9 €e9
ce9 0¢Z9 <
Jake|day 099 JBAIBD8Y 095

(zeg

019
Jepusg 089

PCT/US2019/026989

WO 2019/212714

7110

qT0S uoned0]
Alepuodas

g9 Old

(suonoesuedy - NS “69)

L 29 Bo7 uonoesuel |

¥C9
suolnoesuel |

payojedsiq

geo

ce9
Jake|day 099

eT0S UoNed’oT

Alewid
609
6o
’ I~
ceo | 1€9
0Z9 < 0L9
JaAIeOaY 099 ~Nm® Japusg 099
! i
_ Bunind
* mu_.mﬁ_ *
qo0c9 - L ____} BOE9
algel s3oo|g algel s3oo|g

PCT/US2019/026989

WO 2019/212714

8/10

20s
JaAlag uoniued

)

qtos
uollesoq Alepuodas

®L)

aclce
EE

£c9 (IND OL NILLIMM
6o eyleq FOVYSSIN 03D) SNLVYLS
1c9 0%
Bo7 a|geL ,
uonpoesuel| spalqo -)
(Losw)
* JOVYSSINOIDLNA
(cL .
(ANVYNE'LaIg'LD) YLVAXO0T1aHOL 34
(81
JoAJag uolliued
aigy 19
a0€9
378vL SM0018
2%}

(ANVYNE ‘1LAIg°LD) ¥00188NSLNd N

|—| (02) —P]

SNLVYLlS gl

Lls: o

3OVSSINO3DLNd

R/E

/

eT0S
uones’o] Atewlud

JaAlag uoniued

'
_

_

_

_ “(eog<-(o'Lalg)
_ N

_

_

“iaig

3INVNE

(Losw)

37gv1 s103rgo

JaAleg uoniued

/

Y

lag) 19

{51) P
EWvNE'Laig ‘1o)
avOTAYd Y1Va

e0e9

318v.L SM00748

<t

L)

ANYNE'LO)
Y1vaMoo14139

EWvNE'Laig ‘1o)

avoIAvd V1vd

\m_\/

eV

_

(FNVYNE'1D) VLVYAX0019139

eclc
EE|

WO 2019/212714 PCT/US2019/026989

9/10

stripe data and store in blocks table
801

receive message to put transaction in

GML
802

800

perform log
data for shipping
. process to write
transaction in
data and

blocks table?

803 transaction to

transaction log
807

send message to primary FE to retrieve data
from blocks table
804

l

receive requested data at secondary
location FE
805

l

write transaction to transaction log and
data to data log
806

FIG. 8

PCT/US2019/026989

WO 2019/212714

10/10

606

My

€06 * ™

6 Ol4

106

\i\

Bt 3k
Wil

AVAALN
HHOMLAN

c06

\.,

L

S

—~

906

P
T N0 ONISEA0Ed e 106
AL IS

06 | I

006

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2019/026989

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/20
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, INSPEC, COMPENDEX, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 20127084260 Al (CHERKAUER KEVIN J [US]
ET AL) 5 April 2012 (2012-04-05)

abstract

paragraphs [0001] - [0004],
[0018], [0028] - [0057]
figures 1A, 2-4, 6

1-15

[0013] -

US 2018/046551 Al (BOURBONNAIS SERGE [US]
ET AL) 15 February 2018 (2018-02-15)
abstract
paragraphs [0002],
[0018] - [0046],

- [0096]

claims 1, 9
figures 1, 2, 4, 5

1-15

[0005] - [0007],

[0052] - [0063], [0082]

See patent family annex.

Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international

- "X" document of particular relevance; the claimed invention cannot be
filing date

considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

1 July 2019

Date of mailing of the international search report

10/07/2019

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Johansson, U1f

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2019/026989

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2011/066592 Al (NEWPORT WILLIAM T [US]
ET AL) 17 March 2011 (2011-03-17)
abstract

paragraphs [0004] - [0008], [0015],
[0025] - [0032]

figures 1, 3, 4

EP 1 400 899 A2 (QUANTUM CORP [US])

24 March 2004 (2004-03-24)

paragraphs [0003] - [0006], [0009] -
[0014], [0017] - [0047]

figures 3A, 3B, 3C, 4B, 4C, 5C, 6A, 6B

1-15

1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2019/026989
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2012084260 Al 05-04-2012 US 2012084260 Al 05-04-2012
US 2018101558 Al 12-04-2018
US 2018046551 Al 15-02-2018 US 2018046551 Al 15-02-2018
US 2018113766 Al 26-04-2018
US 2011066592 Al 17-03-2011 JP 5496839 B2 21-05-2014
JP 2011060292 A 24-03-2011
KR 20110029071 A 22-03-2011
US 2011066592 Al 17-03-2011
US 2013041869 Al 14-02-2013
EP 1400899 A2 24-03-2004 EP 1400899 A2 24-03-2004
JP 2004118837 A 15-04-2004
US 2004059869 Al 25-03-2004
US 2006206665 Al 14-09-2006

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - wo-search-report
	Page 58 - wo-search-report
	Page 59 - wo-search-report

