UK Patent Application . GB .2 394 382 .. A

(12)
(43) Date of A Publication 21.04.2004
(21) Application No: 0224396.2 (61) INTCL:
HO4L 12/26 // HOAL 29/06
(22) Date of Filing: 19.10.2002
(62) UK CL (Edition W):
H4K KFMA KTKX KTN
(71) Applicant(s):
Hewlett-Packard Company (56) Documents Cited:
{Incorporated in USA - Delaware) GB 2373130 A GB 2362076 A
3000 Hanover Street, Palo Alto,
California 94304, United States of America (58) Field of Search:
UK CL (Edition V) G4A, H4K
(72) Inventor(s): o INT CL” GO6F, H04L, H04Q
Matthew Murray Williamson Other: Online: WPI, EPODOC, JAPIO, INSPEC
Andrew Patrick Norman
(74) Agent and/or Address for Service:
Hewlett-Packard Limited
Intellectual Property Section, Building 3,
Filton Road, Stoke Gifford, BRISTOL,
BS34 8QZ, United Kingdom
(54) Abstract Title: Monitoring the propagation of viruses through an Information Technology network
(57) Requests to send data from a first host within a network
of hosts are monitored against a record of destination
- . - R S i H
hosts who'have be'en sent ('iata'ln accor'danc? '\Nlth a 100 o T i u ‘ T | e
predetermined policy. Destination host identities are P PP
stored in a buffer. The buffer size is monitored to establish l 500

whether requests from the first host are pursuant to viral
activity therein. Virus related traffic is often characterised
by a relatively high frequency of transmission, this is
monitored by Viral Propagation Monitoring Software
(500).

2007

e 450

SOCKET}—+
?

[PORT 80: D/IP ADD

VPMS
Plenow froou Sy U] T
ST 404
1P

J | 502

300

LOGGER
NW CARD
410

Network Card

DRIVER
NW
ARD

\\ |

¥ 340 Fig. 5

330

Printed on Recycled Paper

V ¢8EV6EC 99

2| %

264 0 vmomm/ ommo o
pIED 3HOMION : / \
m | m
H m QuvO | [uossa00ud | 00€
OLy m g
H3IANA :
auvd MN m m
00v_ :
dl P
vov v m -— XNAS X038]
doL dan “ m MWN -—- 1NO AV/d| NIl a/d oN Illuulnl OON
i aav di/a ‘08 L¥0d “
: ¢) :
ogy —+ EﬂoOm
Hla|a|g]d w
zov | Y| L 1] S INAVEOON |
a1l L (Wl s|d NOILYDINddY | _{—00}
]l H | s o =

3/%’

P10
WEB WEB
SOURCE DESTINATION
BROWSER
S PORT : 3167 PORT: 80 BROWSER
L L
H SEQUENCE NUMBER: 50 H
T ACKNOWLEDGEMENT No. T
P c c P
TCP TCP
A A
IP
L P20 L P
N/W CARD N/W CARD
DRIVER DRIVER
T SOURCE DESTINATION T
N/W CARD PORT : 80 PORT: 3617 N/W CARD
I |
SEQUE NCE NUMBER: 51
ACKNOWLEDGEMENT
E NUMBER: 200 E
P30
SOURCE DESTINATION
PORT : 3167 PORT: 80
SEQUE NCE NUMBER:
ACKNOWLEDGEMENT
Fig. 3 NUMBER: 201

10 P100
\
MEDIA L L y
APPLICATION ¢} o
C E
R A ¢ D
A I
? L P110 L A
T
P
| i |T .
UDP M M
E E
P E R
\Y;
N/W CARD E
DRIVER P120 R
N/W CARD |
20
v
v

Fig. 4

s/%

pieD 340MBN

!

G ‘Bi4

oLy —— Y3IAING
auvd MN
205 ~ 439901
di
bOp
dol dan
SNdA

00§

ogy —— TLIH00S

ove omm/ 0ce oLe
Quvo ,
m e HOSSI00NHd L+ 00€
N\
_ XNAS XO3S
“ 1NO aV/d| NI a/d oNz | m 002
m aav di/a ‘08 L80d
[e X

H

Ik+FQ

nwa2F0

whFao

Xxromo

INNYHOOH
NOILYOIddY | i —00}

i | | m
| H | ;
v V] [=2]1=] [a] | 09
_ 3 m a ! “
1 1 ! ;
m “ “ !
_ ! " _
) | ! i
! | H '
m w m m
M m | |
m m “ |
1 ! |
m m | |
4 | " : “
' i ' ;
a ! ! " m
v “ " i ”
m | m :
0 ¢ m g ¢ w Vel ! 1nv43al g9
a7z ! 3 2] Zl9 Ry g ¢ i H
919 ! 143 ! : i ‘
— 39 i a -t “ 2L ' 019 '
m | m m
m " m m
! I'P9LTLGL ZYeLveSh | | ood “
m 2 19ad joueiuy | Jo9d jauenu) m oMU 2 and m
m _ —al m
T N t v ! i .
[%[14]]s BE o] [v | S [[a]]a m o m<© B4
<« 1 > e > _

9
E b1 el el
[

U 99SSaIppy

108 2 O A]
‘X3 Pejuod | @assalppy
JOARS/M :0) Bsiy ‘e

2/’

= CLOCK Dlljgg:‘l]-CEH 704
A t= ZERO
RECORD
702 y
706
/ 708
, L
RECEIVE NEW
REQUEST ADDRESS
] ?
ADD TO
b N V/BUFFER
RECEIVE
REQUEST
/7
/ =
706 > END
NEW
ADDRESS
?
N ADD TO
V/BUFFER
—+— 710
L END
N eoae T Fig. 7
| A t=TY» CLOCK ! ">~ DISPATCH |
----3/ ZERO j-----5 - ! RECORD |
Time /
720 ;
v

4— 712

— 710

CLOCK | 802
TIMEOUT

CLOCK _}
TIMEOUT 803

804

LogNo >0
?

808~ DELETE
RQ1

I

DELETE
810 —1 IDENTICAL
RQnS

UPDATE
—— DISPATCH
812 RECORD

UPDATE
814— LogNo

| —

806—T END

Fig. 8A

LogNo
uppate 4+ 814

842

Y

VIRUS __| — 844
ALERT

846

RATE LogNo
INCREASE >>

INFECTION
INCREASING
~ ALERT

END <

Fig. 8B

10

15

20

25

30

l 2394382

PROPAGATION OF VIRUSES THROUGH AN INFORMATION
TECHNOLOGY NETWORK

The present invention relates to the propagation of viruses through a network of

interconnected processing entities.

In current network environments virtually any processing entity (or “host”) is at one
time or another connected to one or more other hosts. Thus for example in the case of
an IT environment, a host in the form of a computer (such as a client, a server, a
router, or even a printer for example) is frequently connected to one or more other
computers, whether within an intranet of a commercial organisation, or as part of the
Internet. Alternatively, in the case of a communications technology environment, a
host in the form of a mobile telephone is, merely by virtue of its intrinsic purpose,
going to be connected to one or more other hosts from time to time, and an inevitable
result is that the opportunities for the propagation of viruses are enhanced as a result.
For example in the case of a computer virus known as the “Code Red” virus, once
assimilated within a host the virus operates to generate Internet Protocol (“IP”)
addresses of other potential hosts at random, and then instructs the host to send a copy
of the virus to each of these randomly-generated IP addresses. Although not all of the
potential hosts are genuine (since the IP addresses are randomly generated), sufficient
of the randomly generated addresses are real addresses of further hosts to enable the
virus to self propagate rapidly through the Internet, and as a result to cause a
substantial drop in performance of many commercial enterprise’s computing

infrastructure.

Within the context of this specification a virus is data which is assimilable by a host to
cause a deleterious effect upon the performance of either: the aforesaid host; one or
more other hosts; or a network of which any of the above-mentioned hosts are a part.
Thus for example, a virus may act by becoming assimilated within a first host, and
subsequent to its assimilation may then cause deleterious effects within that first host,
such as corruption and/or deletion of files. In addition the virus may cause self-
propagation to one or more further hosts at which it will then cause similar
corruption/deletion and further self-propagation. Alternatively the virus may merely

be assimilated within the first host and cause no deleterious effects whatsoever, until

10

15

20

25

30

it is propagated to one or more further hosts where it may then cause such deleterious
effects, such as, for example, corruption and/or deletion of files. In yet a further
alternative scenario, a virus may for example become assimilated within a first host,
and then cause itself to be propagated to multiple other hosts within the network. The
virus may have no deleterious effect upon any of the hosts by whom it is assimilated,
however the self-propagation through the network per se may be of a sufficient
magnitude to have a negative effect on the speed of “genuine” network traffic, so that
the performance of the network is nonetheless affected in a deleterious manner. The
three examples given above are intended for illustration of the breadth of the term

virus, and are not intended to be regarded in any way as exclusively definitive.

It has been established that in situations where viruses are likely to cause deleterious
effects upon either one or more hosts, or the network infrastructure as a whole, one of
the most important parameters in attempting to limit and then to reverse such effects
is the speed of propagation of a virus. Human responses to events are typically one or
more orders of magnitude slower than the propagation speeds of viruses, and so
substantial difficulties are frequently apt to arise within a network before any human
network administrator is either aware of the problem, or capable of doing anything to
remedy it. Therefore any reduction in the initial rate of propagation of a virus through
a network is likely to be of benefit to attempts to limit any negative effects, and/or to

remedy them.

One existing and relatively popular approach to tackling the problems of virus
propagation within a network may be thought of as an absolutist approach. Viral
infection is prevented using virus-checking software, attempts to check all incoming
data, for example email attachments. If subsequently a virus is discovered within a
host, that host is typically removed from the network immediately, and disinfected
once the nature of the virus has been established. In accordance with this philosophy
each host may be thought of as contributing to protecting the network against
widespread infection firstly by avoiding incidence of infection, and secondly in the

event of infection, by its sacrificial removal from the network.

The present invention provides an alternative approach to infection and propagation

of viruses in a network of hosts. According to one aspect of the present invention,

10

15

20

25

30

communications established by one or more hosts with other hosts within the network
is monitored to determine whether the or each monitored host is infected, and upon
detection of an infection, data by which communications from the or each monitored
host are established with, and possibly additional data besides, are recorded.
Depending upon the precise nature of the data recorded, it may then be used to

establish inter alia: the nature of the virus, the manner in which it propagates.

Embodiments of the invention will now be described, by way of example, and with

reference to the accompanying drawings, in which:

Fig. 1 is a schematic representation of one form of network architecture;

Fig. 2 is a schematic illustration of the conventional operational architecture of a

computing entity forming a part of, for example, the network of Fig. 1;

Fig. 3 is a schematic illustration of establishment of a connection in accordance with

an application protocol from Fig. 2;

Fig. 4 is a schematic illustration of data transmission in accordance with a further

application protocol from Fig. 2
Fig. 5 is a schematic illustration of an operational architecture according to an
embodiment of the present invention of a computing entity forming a part of a

network;

Fig. 6 is a graphical representation of the operation of an embodiment of method

according to the present invention;

Fig. 7 is a flowchart illustrating the operation of the method of Figs. 6

Figs. 8A and B are flowcharts illustrating further aspects of embodiments of method

according to the present invention.

10

15

20

25

30

Referring now to Fig. 1, one typical form of network includes a plurality of client
computing entities 10, and a server computing entity 20 each of which is connected to
a network backbone, usually referred to as a bus 30. In the present example, each of
the computing entities has a similar architecture enabling dispatch and receipt of data
from other entities connected to the network. Referring now to Fig. 2, each of the
entities includes what may be thought of as three functional parts: one or more
application programmes 100, which in general terms may be thought of as enabling
implementation of a particular task that a user of the entity may wish to perform, such
as browsing the Internet, word processing and so on; hardware 300 (such as a hard
drive 310, memory 320, a processor 330, and a network card 340); and an operating
system 200. The operating system 200 may be thought of, in part, as an interface
between the applications programmes and the hardware, and performs scheduling of
tasks required by applications programmes, allocates memory and storage space
amongst other things. The operating system 200 may, in accordance with this way of
describing the architecture of a computing entity, also include a hierarchy, or stack
400 of programmes which provide the entity in question with the ability to dispatch
and receive data to and from other entities in the network, in accordance with a
number of different sets of formal rules governing the transmission of data across a
network, known as protocols. The network stack 400 may be thought of as being
inserted into the operating system so that the two operate in conjunction with each
other. The stack 400 includes a strata of low level programmes which provide for the
implementation of low level protocols 404, concerned for example with the formation
of bundles of data known as “packets” (which will be discussed in more detail later),
the order in which bytes of data are to be sent and, where appropriate, error detection
and correction. A further, high level strata of protocols usually implemented within
applications programmes (“application protocols™), apply in conjunction with the low
level protocols to provide for the dispatch and receipt of data at the behest of
applications programmes In the present example the application programme uses four
different high level protocols 402; RTSP (real time streaming protocol), FTP (file
transfer protocol), SMTP (simple mail transfer protocol — used for email), and HTTP
(hyper text transfer protocol — used primarily in internet related applications), and the
operating system implements two low level protocols 404: UDP (User Datagram
Protocol for use with RTSP), and TCP (Transfer Control Protocol for use with the

remaining three application protocols), both low level protocols being implemented

10

15

20

25

30

above, and in conjunction with Internet Protocol (IP). Finally, the network stack 400
includes a system programme known as a driver 410 for the network card, which in

essence is low level software that controls the network card.

In the present illustrated examples, the process of establishing a connection in
accordance with HTTP will be considered. Usually a request for such a connection is
made by the web browser application programme, and this in turn is most likely to be
at the behest of a user operating the web browser. Where this is the case, the request
will identify the address or “URL” within the network of the computing entity with

which a connection is sought, initially using alphanumeric characters entered at the

address bar of the browser application programme (for example http://www.hp.com).
Ultimately however these are “resolved” into a numerical “IP address” of the form:
XXX.XXX.XXX.XXX, where X is either an integer or no number at all and each set of three
X’s is an integer no greater than 255. An example of an IP address is 192.168.2.2.
The IP address is subsequently further resolved into what is known as a physical, or
Media Access Control (“MAC”) address of the network card of the destination
computing entity. Resolution of the URL into an IP address, and the IP addressto a
MAC address usually takes place at dedicated computing entities within the network,
in a manner which is well known per se, and will not be described further herein.
This description of the connection process in accordance with HTTP, well known per
se, has described connections legitimately requested by a user, and by means of a
URL. However it should be appreciated that it is possible for example to request a
connection from the web browser application programme using an IP address, rather
than the alphanumeric characters of the URL. This is an aspect of the system
behaviour which has been exploited by viruses, some of which randomly generate TP
addresses in accordance with the rules governing their allowable format, and then

seek connection to those randomly generated addresses.

In the context of the present application it should be appreciated that the term
“connection” is a term of art, and is used to refer to a manner of transmitting
messages in which acknowledgement of receipt of data is required, so that in the
absence of an acknowledgement the connection is deemed either not to have been
established, or to have failed, and the transmitted message deemed not to have

arrived. On application protocol which operates using connections is HTTP, and an

10

15

20

25

30

example of the establishment of a connection in accordance with HTTP will now be
described with reference to Figs. 2 and 3. A connection in accordance with HTTP is
typically established at the behest of a web browser application programme (i.e. a
programme in the applications layer 100 in Fig. 2) within the client entity, which
requests a connection with a server entity, for example. When an application
programme such as a web browser seeks to establish a connection with another
computing entity, it initially requests what is known as a socket 450 from the
operating system. A socket is effectively an allocated memory space in which data
relating to the communication sought by the web browser (in this instance) is stored.
Upon receiving a request for a socket, the operating system duly creates or “opens”
one (which in effect means that memory is allocated), and returns a socket number,
which is the identifier for that particular socket. In Fig. 2 the particular socket is
indicated by reference numeral 450, and the number of the socket is “z”, while the
part of the operating system which allocates the socket is shown as a “layer” above
the network stack, by which it is sought to indicate that, from a methodical
perspective, use of the socket (further uses of which will subsequently be described)
in the case of outgoing data, precedes the passage of data from the application
programme through the network stack. Once a socket has been opened, the web
browser then requests that the socket z is “bound” to the IP address with which a
connection is sought, and a parameter known as the “port” number (which is
essentially a label identifying the application protocol used), by writing these
parameters in the socket (which in due course will additionally contain further data).
The port number for connections via HTTP is usually port 80. Once a socket has
been created and bound the browser then requests that a connection be established,
and this causes the emission of what is known as a data packet P10 to the destination
computing entity. The requesting packet P10 contains: an identification of the
destination port, i.e. an identification of the suitable application protocol for handling
messages transmitted over the requested connection (here, because the connection is
established in accordance with HTTP, port 80); a source port (here 3167) which is an
arbitrary number (but one which is not: (i) already in use at that time, and (ii) not
already allocated as a standard number to define a port identified in accordance with
established standards) whose purpose is to provide, to the client requesting the
connection, an identification of the connection in acknowledgement messages (e.g.,

since it is entirely possible that there may simultaneously be two are more

10

15

20

25

30

connections using the same protocol this may be used to distinguish one such
connection from the other; a flag indicating that the synchronisation status of the
requesting entity is set to “on” (meaning that sequence numbers - which indicate the
order of the packet in a total number of packets sent - between the requesting and
destination computing entity are to be synchronised), and an initial sequence number
50 (this could be any number). Upon receipt of this packet, the destination machine
sends back a packet P20 identifying the source port as 80, the destination port as
3167, a flag indicating that the acknowledgement status is “on”, an acknowledgement
number 51which augments the sequence number by one, and its own synchronisation
flag number 200. When the requesting entity receives this packet it returns a further
packet P30 once again identifying the source and destination ports, and a flag
indicating that its acknowledgement status is on, with an acknowledgement number
201 (i.e. which augments the sequence number by one). Once this exchange is
complete, a connection between the client and server entities is defined as being open,
and both the client and server entities send messages up through their respective
network stacks to the relevant application programmes indicating that a connection is
open between them. In connection with the socket, it should also be noted that the
socket comprises an area 460 allocated to store the actual body of the message which
it is desired to transmit (sometimes known as the outbound message content, or the
outgoing payload), and similarly a further area 470 allocated to store the body of

messages which are received (inbound message content, or incoming payload).

When the outgoing payload is to be transmitted, the TCP layer breaks it up into
packets (i.e. data structures such as those illustrated above in Fig. 3, but further
including at least part of the payload), and the IP layer attaches an IP address header.
When an incoming message arrives, it passes up through the network stack, i.e. from
the network card 340, up through the Internet Protocol software, etc., and is written in
to the relevant socket (as identified, inter alia from the port number), from which the

application programme retrieves the incoming payload.

Data may alternatively be transmitted using the protocols RSTP/UDP/IP (indicating
the hierarchy of protocols in the network stack adopted in conjunction with each other
to transmit the data) which do not require a connection; the dispatching entity sends a

packet to the destination entity, and does not require an acknowledgement of receipt.

10

15

20

25

30

Referring now to Fig. 4, when transmitting data in accordance with RTSP/UDP,
media for example is streamed to a client entity 10 from a media server 20 in a series
of packets P100, P120, P120....., and the client does not acknowledge receipt of any
of them. Streaming in accordance with this protocol typically follows an initial
request to establish a connection between the client and the server by some other
connection based protocol, for the purpose of identifying a destination port on the

client, amongst other things.

Thus far all that has been described is entirely conventional. Referring now to Fig. 5,
in accordance with an embodiment of the present invention, a layer of viral
propagation monitoring software 500, runs within the network stack of one or more
machines within the network. The VPMS acts as a gateway for all outbound data
from the computing entity on which it is running, and operates to monitor the
propagation of viruses within the network by observing what is, in accordance with a
predetermined policy, defined as “unusual” behaviour in contacting other entities
(also known as “hosts”, since they may acts as hosts for viral infection) within the
network. In accordance with one aspect of the present invention, it has been
established that in many networks, normal network traffic (i.e. non-virally related) is
characterised by a relatively low frequency of events in which data is sent to
destination hosts (i.e. hosts which are the intended destination for data) within the
network which have previously not been contacted. In contrast, virally-related traffic
1s often characterised by a relatively high frequency events in which data is
dispatched (or attempts are made to dispatch data) to previously uncontacted
destination hosts. Broadly speaking, the function of the VPMS is to monitor
abnormal and therefore possibly virally-related traffic, as defined in accordance with a

predetermined policy, and to record such abnormal traffic.

In the present example the VPMS operates upon the basis of a series of time intervals
or time windows, which in the present illustrated example are of predetermined and
constant length T, In any given time window T, the VPMS monitors requests to send
data to “new” destination hosts, i.e. destination hosts whose identities differ from
those specified in a record of identities of destination hosts most recently contacted.
The record only holds a predetermined number N of destination host identities, so that

a destination host is classified as new if it is not one of the N most recently contacted

10

15

20

25

30

destination hosts. The number of new hosts allowed per time window, and the value
of N are determined on the basis of the policy, typically defined by a system
administrator, and the policy is preferably formulated to take account of the nature of
non virally-related network traffic. In this way, the VPMS operates to monitor the
speed at which a virus resident on the host may propagate from that host to other hosts

within the network.

Referring to Fig. 6A, over the course of a time window T1, various applications
programmes running on the workstation send requests via the VPMS to send data
(whether by connection or otherwise) to other hosts within the network (“outbound
requests”): the email application programme, which requests dispatch of an email
message (having multiple addressees) to a mail server, Mail (Request A) using SMTP,
the file management application programme requesting dispatch of a file recording a
text document to another user (Request B) via FTP, and the web browser programme
which requests connection, (typically via a Web Proxy server), W/Server in order to
connect to a site using HTTP (Request C). In the present example, outbound requests
to the VPMS from each of these hosts are requests to send data to an identified
destination host, and are ultimately manifested by the dispatch of one or more data
packets in accordance with the relevant application protocol. The term “request” is
intended to be interpreted broadly to encompass any indication (usually from an
application programme, although by no means necessarily) that contact with a
destination host is-sought, and for ease of terminology, the transmission of a request is
to be interpreted as indicating that data is transmitted pursuant to a request to transmit

such data.

The VPMS operates in accordance with a routine illustrated in Fig. 7, whose features
will now be described in more detail in conjunction with Figs. 6A-C, although Fig. 7
should be regarded as a generic illustration of the operation of the VPMS routine,
rather than a specific illustration of individual event depicted in Figs. 6. As explained
above, the VPMS operates with reference to a series of time intervals, or windows,
which in the present example are of constant length. The routine is initiated at step
702 by a clock (typically the clock which defines the time windows) indicating that a
time window has commenced. At step 704 the routine then updates a dispatch record,

which is a record of the identities of a predetermined number N (which in this

10

15

20

25

30

10

example is 3) of destination hosts most recently contacted (in accordance with the
policy — see later) in the previous time window are stored (and which are shown for
each time window in Fig. 6B). At this point the routine is effectively in a waiting
mode until a request to send data is received at step 706. This is a step whose
occurrence is entirely outside the control of the VPMS since it usually is initiated at
the behest of an application programme, as is the case with Requests A, B and C.
Each of these requests passes through the relevant application protocol layer in the
network stack from the respective application programme by which they were
generated, to the VPMS, and this event is labelled in Fig. 7 as step 706. Step 706 may
be thought of as a triggering event, so that when a request passes into the VPMS, the
identity of the requested destination host specified in each the request is matched with
the dispatch record. This matching process therefore determines whether the
requested destination host is a new host, and is represented at step 708. In the present
example, somewhat artificially, but nonetheless serving to illustrate the principles
underlying the present invention, the time interval T1 is the first time interval after
start-up of the computing entity. The VPMS therefore matches the destination host
identities for each of the Requests A-C against identities held in a “default” dispatch
record 610 for the time period T1, which may be (and in the illustrated example, is)
simply a record of the three hosts most frequently contacted during the lifetime of the
host on which the VPMS is running. In the present example the three most frequently
contacted hosts, and therefore the three identities retained in the default dispatch
record are those of the mail server (Request A), the file server (Request B) and the
web proxy server (Request C). Since each of the three outbound requests from the
workstation during the time period T1 identify a host destination matching one of the
three host identities in the default dispatch record, and therefore none of the Requests
is seeking to establish contact with a new destination host, the VPMS therefore takes

no action and simply ends at step 710.

During the course of the second time interval T2, three further outbound requests are
received, identifying host destinations “Intranet Peer 1” (Request D), Request B
(described above) and “Intranet Peer 2 (Request E) are received. As in the previous
time window, as each request triggers an individual VPMS routine for that request,
1.e. a step 706 as it passes through the VPMS, and is followed by the step 708 of

matching the identity of the host destination in the request with the identities present

10

15

20

25

30

11

in the dispatch record 612 for this time window T2 is performed in order to establish
whether the request is new. The dispatch record however is now a genuine record of
the identities of the three hosts contacted most recently during the previous time
window T1 (although coincidentally this is identical to the default dispatch record).
Upon receipt of Request D, the VPMS routine for that request establishes at step 708
that the identity of this host is not in the dispatch record 612, i.e. that it is a new
destination host. It therefore proceeds to step 712, where it adds a copy of the
Request D to a virtual buffer whose contents are shown in Fig. 6C, and then ends at
710. In one preferred embodiment, the entire contents of the socket relating to
Request D are duplicated in the virtual buffer. However in an alternative
embodiment, where for example the payload is large, this is omitted. On receipt of
Request B, the VPMS establishes at a step 708 that B is present in the dispatch record,
and so the VPMS routine ends at step 710. Request E is also a new request within the
time window T2 and so at a step 712 the identity of host E is added to the virtual
buffer.

Because receipt of requests are the trigger for the commencement of the routine
illustrated in Fig. 7, neither the number of occasions in a given time window in which
the VPMS routine is run, nor the timing of their commencement can be known in
advance. Additionally, as illustrated in Fig. 7, it is possible for two (or indeed more,
although only two are illustrated in Fig. 7) routines to be running in temporal overlap,
since one may still be running when another is triggered by a further request.
Similarly, a request may trigger the execution of the routine of Fig. 7 just prior to the
end of a time window (a situation also illustrated in Fig. 7, with steps which occur at
the end of a time window/the beginning of a subsequent time window being shown in
dashed lines), so that the execution of the routine may overlap temporally with a part
of the next time window. The approach taken by this embodiment of the present
invention to this issue of overlap is relatively simple: if at the commencement of time
window Ty+1, the update of the dispatch record for a previous time window T, has
been completed during the simultaneous running of a VPMS routine commenced in
the previous time window Th, but prior to execution the step 712 (adding a request to
the virtual buffer) for that routine, the subsequent update of the virtual buffer in that
step 712 will be treated as if performed for a request received in the current time

window Ty+1. This approach has the benefit of being simple, although it may on

10

15

20

25

30

12

occasions yield minor inaccuracies, with a request being recorded as being outside of
the policy simply because processing of the request received and initially processed
during one time window extended into the next time window, but this is not

significant overall.

At the end of the time window T2, the virtual buffer contains two new requests. At
this juncture (i.e. at end of time period T2), the policy which the VPMS is designed to
monitor comes into play. In the present example, the policy provides that a single
new host may be contacted per time interval. This element of the policy is monitored
by a first buffer management routine, which is illustrated schematically in flowchart
form in Fig. 8A, and begins at step 802 with the advent of a clock timeout, that is to
say that the clock (not shown) which defines the time intervals T, has completed
another time period, following which, at step 803 the routine counts the number of
requests in the virtual buffer to update the variable known as LogNo, this being the
number of requests in the virtual buffer at any moment. At step 804 the routine
determines whether there are any requests in the virtual buffer, and it does this by
examining the value of LogNo, to determine whether it’s greater than 0. If there are
no requests in the virtual buffer the routine ends at step 806. In the present illustrated
example however it can be seen that over the course of the time interval T2 two
requests, D and E have accumulated in the virtual buffer, and so the routine proceeds
to step 808, at which the first request RQ1 (i.e. the one which has been in the buffer
for the longest time) is deleted from the buffer. At step 810, the routine then searches
the buffer for other requests specifying the same destination host and deletes any such
requests, since they are effectively regarded as one request identity. This is followed
at step 812 by updating the dispatch record so that it accurately reflects the identity of
the three hosts most recently contacted in accordance with policy. It should be noted
that the dispatch record does not therefore necessarily reflect the identities of hosts
which have most recently actually been contacted, if requests to these hosts are
outside of the policy. For example in this case the destination host of Request E,
which although contacted, was not contacted in accordance with the policy of one
new destination host per time interval. This updating of the dispatch record can be
seen reflected in Fig. 6B, where the dispatch record contains the identities of Requests
D, C, B. The final step in the first buffer management routine is the updating of the
value of the variable LogNo denoting the size of the virtual buffer, which in this

10

15

20

25

30

13

example, following the transmission of the Request D, is one (i.e. the single Request
E). Thus, in the same way that the dispatch record is a record of all requests which
have been transmitted in accordance with policy, the virtual buffer is effectively a

record of all requests which have been transmitted outside that policy.

The role of the virtual buffer is to enable a determination to be made with regard to
whether the host upon which the VPMS is running is virally infected. One way in
which this can be manifested is the size of the virtual buffer. A state of viral infection
may therefore be defined in terms of the size of the buffer, and the stage of any such
viral infection by the rate of change of the buffer size. This follows from the
generally different behaviour of virally-related and non virally-related network traffic,
in that non virally-related or “legitimate’ network traffic usually involves contacting
only a relatively small number of new destination hosts, whereas, because viruses
tend to propagate by transmission to as many disparate destination hosts as possible,
an instance of a large number of requests to contact a new destination host will
typically be indicative of viral infection. The virtual buffer may be thought of as a
queue of virtual new requests waiting for opportunities to be virtually transmitted in
accordance with policy (since their “counterpart” real requests are simply transmitted
without hindrance). The size of the virtual buffer is therefore one indication of
whether there is viral infection, since a large buffer size is indicative of a large
number of requests to contact a new host within a short space of time. An alternative
indication of viral infection may be the existence of an increasing buffer size.
Conversely, generally speaking a buffer size which is steadily declining from a
relatively high value may be indicative of a temporary increase in legitimate traffic
levels. It can be seen therefore that buffer size may be used to interpret the existence
of viral infection with varying levels of complexity, the interpretation typically being

something which is defined in the policy.

A second buffer management routine, illustrated in Fig. 8B monitors the virtual
buffer, and is triggered by performance of step 814 from the routine of Fig. 8A, i.e. an
update in the value of the variable LogNo, following which, at decision step 842, the
routine determines whether the size of the buffer is greater than a quantity V,, which
the policy has determined represents viral infection, whereupon at step 844 it

generates a virus alert. This may simply be a visual alert to a user of the workstation

10

15

20

25

30

14

10, or 2 message to the network administrator, or both, or even a tri gger for automated
action to shut the network down, as desired. At step 846, the routine determines
whether the variable V, is increasing above a given rate, and if it is, issues a further
warning indicating the onset of viral infection at step 848, following which the routine

ends.

A situation in which the second buffer management routine generates a viral infection
warning can be seen in Figs. 6A-C. As mentioned previously, during time interval
T3, a single Request A (which it will be recalled from the time interval T1 is to
contact the mail server), and two Requests C are received. Because the dispatch
record 614 for this time interval does not contain Request A, it adds the identity of
host A to the virtual buffer, but not the identify of host C. At the end of the time
interval T3 the virtual buffer therefore contains Request E (stored in the virtual buffer
since time interval T2) and Request A. Since only one new request is transmitted per
time window in accordance with policy, and since Request E has been in the virtual
buffer since time interval T2, whereas Request A has just been added, Request E is
deleted from the virtual buffer (a process with may be thought of as “virtual
transmission”), so that at the start of time interval T4 the virtual buffer contains only
Request A. This indicates that at this point in time, since startup of the entity on
which the VPMS is running, only one more request has been transmitted than the
policy allows. The first Request for connection in time interval T4 is Request B,
which illustrates that over the course of three time intervals, during which only
normal network traffic has been transmitted, connection has only been requested to
five different destination hosts. However, Request B is nonetheless defined as new
because it’s not in the dispatch record 616 for time interval T4, and so the identity of
host B is stored in the virtual buffer (this action being illustrated at the same point in
the timeline in Fig. 6C). After receipt of request B, two groups of five virtually
simultaneous requests are received: F-J, and K-O, and since these are also new, their
identities are also added to the virtual buffer. Referring specifically to Fig. 6C during
time interval T4, it can readily be seen that the virtual buffer has increased from a size
of one, to 12, and in accordance with the policy, this is defined as viral infection,
since in the present example a buffer size of greater than five generates this alert.
Moreover, size the rate of change is positive and rapid (from 1 to 12 in a single time

interval), this is indicative of the onset of infection. Thus the likelihood is that a

10

15

20

25

30

15

substantial number of the requests transmitted during the course of time interval T4

have been virally related.

In the event that a viral warning is generated, various further actions may then be
taken, the majority of which are directed toward finding out more about the nature of
any possible virus. Specifically the type of information sought may typically include:
the destinations to which a virus has been propagated, where applicable the
application programme or programmes which it uses to propagate itself, and the
action and behaviour of the virus. The nature of the information which may obtained
directly from the virtual buffer, or which may be deduced therefrom depends to an
extent upon the nature of the data stored in the virtual buffer, and the operating system
of the host concerned. For example in the case of one preferred embodiment in which
the virtual buffer simply copies the socket, including payload, the destination host will
be recorded in the buffer, and possibly, in the case where the virus copies itself to the
socket as the outgoing payload, also the virus. Additionally, where the operating
system records an identifier in the socket denoting the application programme
requesting the socket, and an ability to map this process identifier to the requesting
application programme after the socket has been closed (remembering that the virtual
buffer contains a copy of the socket, while the actual socket is transient since it is
used to implement the request to send data and is then deleted), then the application
programme responsible for requesting data transmission can be identified. The use of
the data in a socket is only one way in which to collect data relating to possible viral
infection, and when using sockets, depending upon the extent of the data collected,
the of copying of the sockets is likely to vary. For example, if, as referenced above,
the fullest data (including e.g. copies of the payload) is to be retained, further copies
of the sockets in the virtual buffer (stored for example in a manner which tags them to
the copy of the socket in the virtual buffer) are preferably made over time as the
contents of the socket changes over time. However, because two functional elements
within the host may cause a change in the data in a socket (e.g. the writing of
outgoing data to a socket by an application programme, and removal from the socket
of outgoing data by the network stack), maintaining a complete record may

nevertheless still be difficult simply from observing the contents of sockets.

10

15

20

25

30

16

In an alternative embodiment, the network stack additionally includes a layer 502,
known as a packet logger, known per se. According to one embodiment, when a viral
warning is generated as a result of the virtual buffer size (the virtual buffer this
embodiment still being made of a single copy of a socket), the logger 502 is switched
on, and makes copies of outgoing packets. These may be all outgoing packets, or
packets identified by one or more particular destination IP address, the identity of
which may for example be established from the copies of the sockets in the virtual
buffer. By logging packets complete information may be stored relatively easily,
since, for example even in the case of large payloads, the individual packets carrying
various parts of the payload may easily be aggregated using the SEQ and ACK
numbers. Further, if desired, the use of the logger enables incoming packets from
designated IP addresses to be logged, which may provide valuable information in
circumstances for example where a virus has a “hand-shake” action with another host
(i.e. sends back a packet to its originating host from a destination host) as part of its

propagation process (as is the case, for example with the Nimda worm).

The relatively early provision of warning of viral infection is potentially extremely
beneficial, since in the case of many viruses the rate at which they can establish
infection accelerates over time. For example, in the case of the code red virus, it has
been established that over the course of the first 16 hours, 10,000 hosts were infected,
but that in the subsequent 8 hours the virus infected a further 340,000 hosts. The
early collection of data on viral infection can thus enable action to be taken, either
within the hosts within which infection has been detected, and/or within other hosts,

which can substantially reduce the extent of subsequent infection.

In the scenario illustrated in connection with Fig. 6, a single outbound request
(Request A) to the VPMS, specifying a single destination host, namely the mail
server, actually contains a plurality of email messages to different specified
addressees. This outbound request may therefore be thought of as a carrier request for
a plurality of sub-requests, here having the form of putative email messages intended
for dispatch from the mail server to a list of addressees specified within the outbound
carrier request (similarly, the mail server may be thought of as acting as a proxy
destination host for the ultimate addressees specified in the outbound carrier request).

In this situation, allowing transmission of the data packet constituting the message to

10

15

20

25

30

17

the mail server will in fact effectively allow the workstation to contact multiple other
hosts within the network (i.e. the specified addressees) all of which may be new, even
though, in accordance with the routine described in connection with Fig. 7, the
outbound carrier request will only count as a single request which may not even be
recognised as new if, as may be likely, the mail server is identified in the current
dispatch record. In such a situation therefore, if the VPMS operates simply to record
in the virtual buffer those new destination hosts to be contacted per time window on
the basis only of those destination hosts which are ostensibly identified in the
outbound request, the desired monitoring of viral propagation may be circumvented or
reduced, because a single outbound request specifying the mail server does not
necessarily represent only a single email subsequently propagating through the

network after processing and forwarding by the mail server.

In a modification of the embodiment thus far described therefore, the VPMS includes
within its routine a step of identifying the application programme by which an
outbound request has been generated. Because certain applications programmes are
more likely than others to use outbound carrier requests which invoke the use of a
proxy (for example the above-mentioned instance of email, or the case of a web
browser programme) it is possible in advance to specify criteria, based on the
provenance of an outbound request, identifying those outbound requests likely to be
carrier requests. If the packet is generated by one such specified application
programme, then the VPMS invokes the use of the application protocol concerned to
reveal the identities of the destination hosts specified in the sub-requests; here the
eventual addressees for whom the email message is intended. Once the identities of
the genuine or ultimate addressees have been obtained, there are several options for
processing the request. In accordance with one alternative the identities of the
destination hosts specified in the sub-request can be regulated in accordance with the
same policy which applies to all other requests, and they can be matched against the
host identities within the dispatch record in the manner previously described in the

embodiment of Figs.

Since in the case for example of email, the use of outbound carrier requests to a host
acting as a proxy for the ultimate addressees of the email messages is the norm, it is,

in a modification, possible for different versions of VPMS to run simultaneously,

10

15

20

25

18

effectively operating in parallel with each other: one which applies to hosts specified
in the outbound request (including carrier requests), and another which applies to
hosts specified in any sub-requests identified by the email application programme. In
such a situation, each VPMS will operate independently, using its own dispatch
record, and implementing a policy for outbound requests tailored to the traffic it is set
up to control, for example in the manner previously described and illustrated in
connection with Figs. 6 and 7. The two policies may be the same (e.g. adispatch
record of 3 identities, a time window of constant duration Ty, and one new host per

outbound request/sub-request), or different as desired.

The choice of the length of the time window, the number of identities retained in a
dispatch record, and the number of new hosts to be allowed per time window are all
dependent upon the likely “normal” performance of the network within which the
VPMS is operating, and more particularly, the nature of the network traffic the VPMS
is intended to control. Therefore, while a policy such as that illustrated in connection
with Figs. 6 and 7 may be effective in monitoring the propagation of viruses through
the network to a rate of infection of one new host per time interval, it may also be
susceptible to false warnings caused by non virally-related, or “legitimate” network
traffic whose characteristic behaviour differs substantially from the policy the VPMS
is implementing. To ameliorate this difficulty, it is possible to provide a version of
VMPS for each application programme from which network traffic emanates, with
each VMPS implementing a policy tailored specifically to minimise the level of
impediment to legitimate network traffic. Alternatively, in accordance with a further
preferred embodiment of the present invention, an individual VPMS is provided in
respect of each application protocol which the hosting entity supports, and requests
are routed to appropriate VPMS on the basis of the port identified in outgoing

requests from application software.

10

15

20

25

30

19

CLAIMS

1. A method of monitoring propagation of viruses within a network of hosts
comprising the steps of:

establishing a record which is at least indicative of identities of hosts within
the network to whom data has been sent by a first host (“destination hosts™);

during a first time interval, comparing (a) identities of destination hosts
identified in requests to send data from the first host and (b) identities of destination
hosts identified in the record;

transmitting all requests to send data;

storing in a buffer data relating to requests which identify a destination host

not in the record.

2. A method according to claim 1 wherein the record is established by
monitoring identities of destination hosts to whom requests have been transmitted

during a second time interval, which precedes the first time interval.

3. A method according to claim 2, wherein the record contains a predetermined
maximum number of destination host identities, the maximum number being defined

in accordance with a policy.

4. A method according to claim 3, wherein the policy additionally defines a
maximum number of destination host identities not in the record, to whom requests

may be legitimately transmitted in accordance with policy.

5. A method according to claim 4 further comprising the step, at the end of any
given time interval, of deleting from the buffer data relating to requests transmitted

during the given time interval in accordance with policy.

6. A method according to claim 5 further comprising the step, at the end of the
given time interval, of updating the record to reflect identities of hosts identified in
requests which are transmitted in accordance with policy during the given time

interval.

10

15

20

25

30

20

7. A method according to claim 6 further comprising the step of updating the
record to reflect the identity of the predetermined maximum number of destination

host identities to whom data has most recently been sent in accordance with policy.

8. A method according to any one of the preceding claims, wherein the data
stored in the buffer is a copy of a socket created to send data in accordance with a

request.

9. A method according to claim 8 wherein the socket enables identification of at

least one application programme at whose behest the socket is created.

10. A method of operating a first host within a network of a plurality of hosts
comprising the steps of:

over the course of a first time interval, monitoring creation of sockets within
the first host to identify destination hosts identified therein;

comparing identities of destination hosts monitored during the first time
interval with destination host identities in a record; and

storing, in a buffer, data from all sockets which identify destination hosts not

in the record.

11. A method according to claim 10 wherein the socket data stored in the buffer at

least enables identification of the destination host identified therein.

12. A method according to claim 10 wherein the record identifies a maximum
number of destination hosts, the maximum number being determined in accordance

with a policy.

13. A method according to claim 12 wherein the record is established by

monitoring creation of sockets during a time interval preceding the first time interval.

14. A method according to claim 12 wherein the policy additionally specifies a
maximum number of sockets identifying a destination host not in the record to be

legitimately created in any given time interval.

10

15

20

25

21

15. A method according to claim 14 wherein at the end of a time interval, socket
data containing identities of destination hosts in respect of whom sockets have

legitimately been created is deleted from the buffer.

16. A method according to claim 10 further comprising the step, in the event that
the number of socket data items stored in the buffer exceeds a predetermined value, of

storing outgoing packets from the first host.

17. A method according to claim 16 wherein packets having a designated

destination IP address are stored.

18. A method according to claim 17 further comprising the step of establishing the
predetermined IP address from the socket data stored in the buffer.

19. A method according to claim 10 further comprising the step, in the event that
the number of socket data items stored in the buffer exceeds a predetermined value, of

storing incoming packets to the first host.

20. A method according to claim 19 wherein packets having a designated source

IP address are stored.

2]. A method according to claim 20, further comprising the step of establishing
the predetermined IP address from the socket data stored in the buffer.

S o The, % -

< C

+ Patent - 'd \g

> ‘ ¥

g Ofhice = Y, &

4)/ > INVESTOR IN PEOPLE

GB (0224396.2
1to 21

Examiner:
Date of search:

Application No:
Claims searched:

Daniel Voisey
12 March 2003

Patents Act 1977 : Search Report under Section 17

Documents considered to be relevant:

Category | Relevant | Identity of document and passage or figure of particular relevance

to claims
X 1 GB 2362076 A (3COM) see particularly page 2 lines 11 to 29,
page 4 lines 14 to 30, page 5 line 29 to page 6
line 17 and figure 2.
A GB 2373130 A (MESSAGELABS) see particularly page 1 line 28

to page 2 line 30.

Categories:

X Document indicating lack of novelty or inventive step

Y Document indicating lack of inventive step if combined
with one or more other documents of same category.

& Member of the same patent family

Document indicating technological background and/or state of the art.

Document published on or after the declared priority date but before the
filing date of this invention

Patent document published on or after, but with prionty date earher

than, the filing date of this application

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCV:
H4K, G4A

Worldwide search of patent documents classified in the following areas of the IPC”:
HO4L, H04Q, GO6F

The following online and other databases have been used in the preparation of this search report:

WPI, EPODOC, JAPIO, INSPEC

An Executive Agency of the Department of Trade and Industry

