
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0165668A1

US 2005O165668A1

Hinkle (43) Pub. Date: Jul. 28, 2005

(54) MULTI-PROCESSING FINANCIAL (52) U.S. Cl. .. 705/37
TRANSACTION PROCESSING SYSTEM

(57) ABSTRACT
(76) Inventor: William H. Hinkle, Denver, CO (US) A financial transaction processing System is disclosed,

wherein Substantial processing efficiencies are provided
Correspondence Address: with, additionally, a Substantial decrease in the Size of the
Merchant & Gould PC. executable code. Each transaction processed by the trans
Attention: George C. Lewis action processing System is described by a transaction data
P.O. Box 2903 descriptor that includes a Series of Subtransaction data
Minneapolis, MN 55402-0903 (US) descriptions of actions that can be performed independently

of one another. Thus, complex transaction processing logic
(21) Appl. No.: 10/928,463 is Substantially removed from the executable code, and

1-1. instead Such transaction data descriptors are processed inter
(22) Filed: Aug. 26, 2004 pretatively. Moreover, the independence of the Subtransac

Related U.S. Application Data tions allows the Subtransactions of a transaction to be
O processed in parallel when performed on a multiprocessor

(63) Continuation of application No. 10/085,596, filed on computer. Additionally, the transaction processing System
Feb. 26, 2002, now Pat. No. 6,904,411, which is a provides account balancing enhancements in that there C
continuation of application No. 09/181,698, filed on control columns in various data tables that are automatically
Oct. 28, 1998, now Pat. No. 6.442 533. s updated during transaction processing So that by comparing

s s s as control column totals, an indication of the integrity of
(60) Provisional application No. 60/063,714, filed on Oct. current financial records is provided. Additionally, the trans

29, 1997. action processing System provides full auditability in that
any changes to financial data can be traced for any effective

Publication Classification period of time into the past So that auditors can periodically
perform a full audit of the financial transaction data retained

(51) Int. Cl. .. G06F 17/60 by the transaction processing System.

BUSINESS
ENTERPRISE
FINANCIALDATA

ARCHY

BUSINESS
ENTERPRISE2
FINANCIALDATA

ARCHIVE

BUSINESS
ENERPRSE

RECENTFINANCIAL
ATAARCHIVE

BUSINESS
ENTERPRISE

RECENTFINANCIA
DACAARCHIVE

RECENTFINANEA

BUSINESS
ENERPRISEN
FINANCIALDATA

ARCHIVE
70

BUSINESS
ENERPRISEN

AAARCHIVE

N 62

(66
RANSACT
ROCESSENG
ONTROLLER

TRANSACTION U |
PREPROCESSOR S SUB SUSTRANS.
ANODECOMPOSER : ACTION

54 : TRANS 1/|TRAS TRANSM SCHELLER

BUSINESSENTERPRISE1 V
RASSACS M -----

BUSINESSENTERPRISE t
FRANSACONS (--- :

BUSINESSENTERPRISEN
RANSACTIONS

58

BUSINESS
ENTERPRISE

FRANCA REFERENCE
ATA

BUSINESS
ENERPRISE

DATA

70

FINANCIALREFERENCE

BUSINESS
ENTERPRISEN

FINANCIAREFERENCE
DATA

Patent Application Publication Jul. 28, 2005 Sheet 1 of 29

BUSINESS
ENTERPRISEN

BUSINESS
ENTERPRISE

BUSINESS
ENTERPRISE2

FINANCIALOAA
ARCHIVE

FINANCIALDATA
ARCHIVE

FINANCIALDATA
ARCHIVE

BUSINESS
ENTERPRISEN

BUSINESS
ENTERPRISE

RECENT FINANCIAL
DAAARCHIVE

BUSINESS
ENTERPRISE2

RECENT FINANCIAL
DATAARCHIVE DATA ARCHIVE

TRANSACTION
PROCESSING
CONTROLLER

TRANSACTION
PREPROCESSOR
ANODECOMPOSER

54

BUSINESSENTERPRISE
TRANSACTIONS

BUSINESSENTERPRISE2 TRANSACTIONS (I
BUSINESSENTERPRISEN

TRANSACTIONS /
58

70

RECENTFINANCIAL

BUSINESS BUSINESS BUSINESS
ENTERPRISE ENTERPRISE 2 ENTERPRISEN

FINANCIAL REFERENCE FINANCIAL REFERENCE FINANCIAL REFERENCE
DATA DATA DATA

US 2005/0165668A1

62

SUBTRANS.
ACTION

SCHEBULER

FIG. 1

Patent Application Publication Jul. 28, 2005 Sheet 2 of 29 US 2005/0165668A1

PROCESSING
CONTROLLER52

SUBTRANSACTION
PROCESSING 64

TRANSACTION
JOURNAL
TABLE 78

TRANSACTION COUNT
70

. SUMMARYTABLE -
REJECT TABLE 74

70A

SUBTRANSACTION ----
SCHEDULER62

PORTFOLIO
ADJUSTER 110

FIG. 2A

Patent Application Publication Jul. 28, 2005 Sheet 3 of 29 US 2005/0165668A1

UNITS, CASH DEBITS/CREDITS FIG. 2B

ACCOUNT MASTERTABLE 84

SYSTEM GENERAL
LEDGERTABLE 88

70A
NY AIRB (PROCESS

MASTER MODEL2)
TABLE 92)

CUSTOMER INCOME STATEMENT
(INCOME/EXPENSE).TABLE 96

CUSTOMER CASH FLOW (RECEIPTS/
DISBURSEMENTS) TABLE 100

LICENSEE PERFORMANCE
MEASUREMENT TABLE 104 As

DETAL RECORDMAINTENANCE

ORIGINAL ADDMODULE BALANCE SHEE
114 TABLE130

REVERSE OF ADDMODULE PENDINGINCOME
- 118 TABLE 134

PENDINGADJUS
ORIGINAL SELL MODULE MENT TABLE 138

122 m

MODULE 126 ill ir TABLE 148

US 2005/0165668A1 Jul. 28, 2005 Sheet 4 of 29 Patent Application Publication

J?), ?È35 JIBWI No. im

75 HINDOW

-S 1 Oes e1)

Patent Application Publication Jul. 28, 2005 Sheet 5 of 29 US 2005/0165668A1

FIG. 4A

OBTAINALICENSEE DESCRIPTION RECORD AND ASSIGNALICENSEEDENTIFICATION FOR UNIQUELY DENTI
FYING THELICENSEE, INSERT THELICENSEEDESCRIPTION RECORD INTO THELICENSEE MASTERTABLE.

OBTAIN DESCRIPTIONS OF AUTHORIZED USERS FORTHELICENSEE AND INSERT THESE
DESCRIPTIONS INTO THE MASTER LICENSEE USERS TABLE.

OBTAIN IDENTIFIERS INDICATING THE ACCOUNT TYPES HELD BY THELICENSEE AND INSERT THIS
INFORMATION INTO THELICENSEEACCOUNT TYPE DEFINITION MASTERTABLE.

OBTAIN IDENTIFIERS INDICATING THE GENERIC ORDEFAULTSUBTYPES OF FINANCIAL INSTRUMENTS HELD
INACCOUNTS OF THELICENSEE (THE SUBTYPES HERE ARE FOR LICENSEE), AND INSERT THIS

INFORMATION INTO THELICENSEEACCOUNTSUBTYPE DEFAULTDEFINITION MASTERTABLEUSING
LICENSEED, ACCOUNT TYPES, AND FINANCIAL INSTRUMENT TYPES.

OBTAIN THE LIST OF THE LICENSEES ACCOUNT TYPES BY WHICH THELICENSEE CLASSIFIESTS ASSETS
AND LIABILITIES AND INSERT THESE INTO THE LICENSEE GENERAL LEDGER DEFINITIONS MASTERTABLE.

OBTAINASCHEMA LISTING THE TYPES OF ENTITIES AND GROUPING THEREOF WHICHARE BOUGHT AND/OR
SOLDIN ACCOUNTS HELD BY THELICENSEE (FOR ACCOUNT INVESTMENTREPORTING TOLICENSEE

CLIENTS), AND INSERT THE INFORMATION THE OVERSIFICATION MASTERTABLE.

OBAINPERFORMANCE GROUPSCHEMA INFORMATION INDICATING THE PERFORMANCE MEASUREMENTSBY
WHICH FINANCIAL INSTRUMENTS IN ACCOUNTS HELD BYLCENSEE ARE TO BECOMPARED FOR DETERMINING

PERFORMANCE, INSERT THIS INFORMATION INTO THELICENSEEPERFORMANCE GROUPMASTER TABLE.

OBTAIN SUMMARY NAMES TO BE USED IN SUMMARIZINGEACH ACCOUNT HELD BY THELICENSEE AND
INSERT THIS INFORMATION INTO THELICENSEE SUMMARY NAME MASTERTABLE.

y
OBTAIN THE LIST (IF ANY) OF DESCRIPTIONS OF LICENSEE SERVICE WHOLESALERS, WHEREIN THE

SERVICE WHOLESALERS PROVIDE

INSERT THIS INFORMATION INTO THE LCENSEE SERVICE WHOLESALERS MASTERTABLE.

Patent Application Publication Jul. 28, 2005 Sheet 6 of 29 US 2005/0165668A1

FIG. 4B

OBTAIN THE LIST (IF ANY) OF DESCRIPTIONS OF LICENSEE SERVICERESELLERS, WHEREIN THE SERVICE
RESELLERS PROVIDE

INSERT THIS INFORMATION INTO THELICENSEE SERVICE RESELLERS MASTERTABLE.

OBTAIN IDENTIFIERS INDICATING OBJECTIVES FOR THE ACCOUNTS HELD BY THE LICENSEE AND INSERT THESE
IDENTIFIERS INTO ANACCOUNT OBJECTIVES MASTERTABLE INDEXED BYLCENSEE.

OBTAIN THE LIST (IF ANY) OF DESCRIPTIONS OF LEGAL CAPACITIES THAT THELICENSEESERVES FOR
ITS ACCOUNTS, AND INSERT THIS INFORMATION INTO THE ACCOUNTLEGAL CAPACITY MASTERTABLE.

OBTAIN IDENTIFIERS INDICATINGLEGAL JURISDICTIONS OF ACCOUNTSHELD BYLCENSEE, AND INSERT
THESE IDENTIFIERS INTO AEGAL JURISDICION MASTERTABLENDEXED BYLCENSEE.

OBTAIN IDENTIFIERSFOR ACCOUNTREPRESENTATIVES FOR ACCOUNTS HELD BY LICENSEE, AND INSERT
THESE DENTIFIERS INTO ANACCOUNTREPRESENTATIVE MASTERTABLE INDEXED BYLCENSEE.

OBTAIN THE LIST OF DESCRIPTIONS OF NAMES (IF ANY)THAT THELICENSEE USESTOINTERNALLY
GROUPINVESTMENTS. INSERT THIS INFORMATION INTO THE ACCOUNTREGISTRATION MASTERTABLE.

y
FOREACH ACCOUNT OF LICENSEE, GENERATE AROW OF THE ACCOUNT MASTERTABLE 84 BY
OBTAINING THE INFORMATIONNECESSARY TO PROCESSTRANSACTIONS ON THE ACCOUNT.

OBTAIN THE LIST OF

INSERT THIS INFORMATION INTO THE ACCOUNT COMMUNICATIONLINKS MASTERTABLE.
y

FOREACH TRANSACTION TYPE DESIRED TO BE PERFORMED BYLICENSEE, OBTAIN (A) AN IDENTIFIER
IDENTIFYING THE TRANSACTION; (B) A DESCRIPTION OF THE TRANSACTION (C) A POSTING CODE, (D) A

VALUE INDICATIVE OF WHETHER THE TRANSACTION REQUIRES A PROCESSING OF A FINANCIAL
INSTRUMENT: (E) A BOOLEAN VALUE INDICATING WHETHER ASETTLEMENT OFA BUY OR SELL WILL BE

PENDING.. INSERT THIS INFORMATION INTO THE TRANSACTION MASTERTABLE FOREACHTRANSACTION
TYPE IDENTIFIED ABOVE, DETERMINEATRANSACTION DECOMPOSITION INTO SUBTRACTIONS AND ENCODE

THE SUBTRACTION ACTIONS TO BE PERFORMED. INSERT THE (TRANSACTION IDENTIFIER,
SUBTRANSACTION ENCODING) PAIR INTO THE TRANSACTION PROCESSING MASTERTABLE.

Patent Application Publication Jul. 28, 2005 Sheet 7 of 29 US 2005/0165668A1

FIG. 4C
OBTAIN THE LIST OF

INSERT THIS INFORMATION INTO THE RECURRING TRANSACTIONS MASTERTABLE.

USING INFORMATION ONEACHENTITY TO BE FINANCIALLY TRACKED, GENERATE AN ENTITY ATTRIBUTE
SCHEMA FOR LICENSEE, INSERT THIS INFORMATION INTO THEENTITY ATTRIBUTEMASTERTABLE 92.

DETERMNETHELICENSEESTRANSACTIONS THAT ARE APPLICABLE TO EACH FINANCIAL ENTITY OF
LICENSEE, AND INSERT THE INFORMATION INTO THE ENTITY TRANSACTION MASTERTABLE.

USING (A) THE ACCOUNT TYPE IDENTIFIERS FROM THELICENSEE GENERAL LEDGER DEFINITIONSMASTER
TABLE AND (B) THE ACCOUNTSUBTYPES (ACNs) FROM THELICENSEEACCOUNTSUBTYPE DEFAULT
DEFINITION MASTERTABLE, OBTAIN THELICENSEESGENERAL LEDGERSCHEMA FOR ASSOCIATING

ACCOUNT TYPES WITH ACCOUNTSUBTYPES (ACNS) FOR BOTH ASSETS AND LIABILITIES OF THELICENSEE.
INSERT THIS INFORMATION INTO THE SYSTEM GENERAL LEDGERTABLE.

y
GENERATE THE TRANSACTIONJOURNAL USING

y
GENERATE THE SYSTEM TRADE SETTLEMENT FROM

y
GENERATE THE SYSTEMSUMMARYTABLE FROM

GENERATE THE SYSTEMREECTTABLE FROM

GENERATE THE SYSTEM TRANSACTION COUNTABLE FROM

Patent Application Publication Jul. 28, 2005 Sheet 8 of 29 US 2005/0165668A1

FIG. 4D

GENERATE THE CUSTOMER INCOMESTATEMENT (INCOME/EXPENSE).TABLE FROM

V
GENERATE THE CUSTOMER CASH FLOW (RECEIPTS/DISBURSEMENTS) TABLE FROM

y
GENERATE THE CUSTOMER BALANCE SHEETTABLE FROM

y
GENERATE THE CUSTOMER CAPITALGANTABLE FROM

y
GENERATE THE CUSTOMER PENDING INCOME TABLE FROM

y
GENERATE THE CUSTOMER CAPITAL ADJUSTMENTSTABLE FROM

y
GENERATE THE PERFORMANCE MEASUREMENTSTABLE FROM

Patent Application Publication Jul. 28, 2005 Sheet 9 of 29 US 2005/0165668A1

PROCESSING MODEL #1

FOR ALL"MASTER"TABLES THE FOLLOWING CONFIGURATION IS PROVIDED.

CURRENT DATABASE ARCHIVE DATABASE
300 304

MASTER (OLD) SUMMARY MASTER (NEW) MASTER ARCHIVE
TABLE TABLE TABLE TABLE

(SYMBOL)
GENERATORS MASTER HISTORY

FIG. 5

Patent Application Publication Jul. 28, 2005 Sheet 10 of 29 US 2005/0165668A1

TRANSACTION CONTROLLER

READ NEXT TRANSACTION INTO WORKINGSTORAGE. FIG. 6

NO EOTES FOR STSUMMARIES.

INCREMENT TOTAL RECORDS READ.

NVOKETHE PROGRAM"PREPROCESSOR AND DECOMPOSER"54.

INCREMENT THENUMBER OF TRANSACTIONS ACCEPTED.

AS/ASAWA/AWA/AWS/WMA
AA/S/ WS4//W7

ORIGINAL REVERSAL

SCHEDULE THE PROCESSING OF
EACHSUBTRANSACTION OF THE
TRANSACTION BY SCHEDULING

ANINVOCATION OF THE

DETERMINE THE TRANSACTION DATA IN THE
TRANSACTION JOURNAL 78 TO BEREVERSED.

AWASWA/AWS4//70/AWAA
PROGRAM A/2M//W/AWAWS/WAM

"PROCESS SUBTRANSACTION" SAWAWSAW/7
WITHEACHSUBTRANSACTION. AWSWAWSM/WS7

GENERATEA YES NO
TRANSACTION
SEQUENCE SCHEDULEANINVOCATION OF THE PROGRAM, SCHEDULE THE
NUMBER. "PROCESS SUBTRANSACTION"FOREACH OF THE SUBRANSACTIONS

SUBTRANSACTIONS TO BE USED IN REVERSING THEREVERSAL OF THE
wimsuit THE FIRST (NEDTRANSACTIONDATASEGMENT TRANSACTION.
NUMBER AND THE AFFECTING A PREVIOUSTRANSACTION.
TRANSACTION ASAAWA7/AWS.
DETALS TO THIS A/WAMSAWA/W7
TRANSACTION NO

JOURNALT8. GENERATE ATRANSACTIONSEQUENCENUMBER. WRITE THIS SEQUENCE
NUMBER AND THE TRANSACTION DETALS TO THE TRANSACTIONJOURNAL 78
AS AREVERSING TRANSACTION ENTRY. LINK THE REVERSINGTRANSACTION
ENTRY IN THE TRANSACTIONJOURNAL 78 WITH THE REVERSEDTRANSACTION

ENTRY IN THE TRANSACTIONJOURNAL

AS/AAWAP/WSA/WWA
YES (S AM/ASS77

NO

Patent Application Publication Jul. 28, 2005 Sheet 11 of 29 US 2005/0165668A1

FIG. 6A
TRANSACTION CONTROLLER ("COMMAND") G. 6

(C) SET ALL PROCESS SWITCHES = 0

SET END OF JOBSWITCH = 0

READ NEXT WAIT 10 UPDATE SUMMARY
TRANSACTION MILLISECONDS TABLE

FO1 SWITCH READ END-TIME
END OF JOB 1 = FROMSYS CLOCK

NO

SETEND OF JOBSWITCH = 1

READ BEG-TIME FROMSYS CLOCK

INSERT INTO SUMMARYTABLE

GD) TRANTYPE YES

SET SWITCHES FORTRADE OFFSEOR
TRADESUPPLEMENTS

INCREMENT TOTAL RECORDS READ

Patent Application Publication Jul. 28, 2005 Sheet 12 of 29 US 2005/0165668A1

GA) FIG. 6B

REVERSAL ORIGINAL OR
REVERSA

ORIGINAL

CALL"EDT" OR PREPROCESSOR
AND DECOMPOSER

CALL"EDIT' OR PREPROCESSOR
AND DECOMPOSER

GENERATE TRXN NUMBER AND LOT

PLURALITY OF LOTS

CALL PROCESSSUBTRANSACTIONS

ANOTHERLOT
SEGMENT

NO

GENERATESEQUENCENUMBER

INSERT INTO TRANSACTION JOURNAL
FOR REVERSINGENTRY

UPDATETRANSACTIONJOURNAL FOR
REVERSED BY ENTRY

FTRXN ='SELOR
TRXN="WOW"

YES

GENERATESEQUENCE
NUMBER

INSERT INTO TRANSACTION
JOURNAL

CORRECTION DATA

YES

DELETE FROMREECT
FILE

CALL PROCESSSUBTRANSACTION

INSERT INTO TRANSACTION COUNTABLE

NO

Patent Application Publication Jul. 28, 2005 Sheet 13 of 29 US 2005/0165668A1

FIG. 6C

TRANSWITCH=1
OR AORS=AR
AORS=' '

COMMIT

ADD OR SUBTRACT

SELL

BUY TRADE OFFSET

SETUPTRADE OFFSET

MULTIPLY WALUES BY
1- -1

ADO TONUMBER
ACCEPTS

SELLTRADE OFFSET

Patent Application Publication Jul. 28, 2005 Sheet 14 of 29 US 2005/0165668A1

PREPROCESSOR AND DECOMPOSER (TRANSACTION)
FIG. 7A

SETWORKINGSTORAGETOZERO

ASA///WAA/VS//WA
AWWASWAPWAA/AA/M/A/7

LOAD ACCOUNTSUBTYPE DEFINITION MASTER
TABLE INTO ATEMPORARYSUBTYPETABLE

AS/AA//7/WA7/7/7A7PAWSAAW"A7/4//7/AAAAW
(AWA/WAMJAZYAWS/AWS4/70WAPASS77

INCOMING
ACCOUNT=PREVIOUS

ACCOUNT

NO YES

ACCESS ACCOUNT MASTER

USING THE LICENSEE FIELD FROM "TRANSACTION" (DENOTED"LICENSEE"HEREINAFTER) AND THE
ACCOUNT NUMBER FIELD(DENOTED "ACCTNBR" HEREINAFTER) FROM"TRANSACTION,"

DETERMINE THE ROW OF THE ACCOUNT MASTERTABLE84FROM WHICH TO RETRIEVE, INTO
WORKINGSTORAGE, VALUES FROM THE FOLLOWING COLUMNS. ACCOUNT TYPE (DENOTED

"ACCT TYPE"), POSTING CODE, INCOME/EXPENSESSWITCH, RECEIPTS/DISBURSEMENTSSWITCH,
PERFORMANCE MEASUREMENT SWITCH, FISCALYEARMONTH, FISCALYEARDAY, INCOMECASH

(IC), PRINCIPAL CASH (PC), AND TOTAL UNITS. ADDITIONALLY, RETRIEVE INTO WORKINGSTORAGE
AN INDEX (POINTER) TO THE ROW OF THE ACCOUNT MASTERTABLE84 ACCESSED HERE (THIS

INDEX BEING DENOTED "AMROWID"HEREINAFTER).

USING THECURRENCY FROM FIELD AND THECURRENCY TO FIELD AND THE TRADE DATE, RETRIEVE
INTO WORKINGSTORAGE, VALUES FROM THE FOLLOWING COLUMNS CONVERSION RATE

GA)

Patent Application Publication Jul. 28, 2005 Sheet 15 of 29 US 2005/0165668A1

FIG. 7B

As AIPAWSac/70Wadda (OFW0777/24s (70F"AEPE/WA/7600
"W/AWSA/W"A7/M//7 JAA/EAWSA/WAWA (F/A/WAMJAZY
APFWS/EAS4670WA0ASSA27

NCOMING
TRANSACTION=PREVIOUS

TRANSACTION

BUY OR SELL

VERIFYSELL OFFSET

ACCESSTRANSACTION MASTER

YES

VERIFY BUY OFFSET

ACCESSTRANSACTION PROCESSOR

USING"LICENSEE" AND THE TRANSACTION CODE FROM"TRANSACTION," AND, USING THE POSTING
CODE IN WORKINGSTORAGE, RETRIEVE, INTO WORKINGSTORAGE, THE TRANSACTION NAME AND

THE ADD-OR-SUBTRACT SWITCH (AORS) FROM THE TRANSACTION MASTERTABLE.

USING"LICENSEE" AND THE TRANSACTION CODE FROM"TRANSACTION," AND, USING THE POSTING CODE
IN WORKINGSTORAGE, RETRIEVE, INTO WORKINGSTORAGE, ALL OF THE SUBTRANSACTION DESCRIPTIONS

RELATED TO TRANSACTION"THAT ARE IN THE TRANSACTION PROCESSING MASTERTABLE.

ASAWA (0. (4)/WA (WZY/7AAS7A7/7/AAAA/W/AWA7A7AY
'7EAWSAEI/OW"OE (2)AFFAO/WWFAWAFWOWI 10AA/S/A27/07/HES
A70W(ZA, ASAA2S7AAAWA/WWAS70AA= 7"Of 277

TESTINCOME CASH POSTING

GET THE INDEX(ES) OF THE ROW(S) IN THE GENERALLEDGERTABLE 88 FOR INCOMECASH
(IC) BYINVOKING THE PROGRAM"GET GL ROW INDEX" WITH THE FOLLOWING INPUT
PARAMETERS. "LICENSEE," "C." RETURN WITH GENERALLEDGERROW INDEXCES).

Patent Application Publication Jul. 28, 2005 Sheet 16 of 29 US 2005/0165668A1

FIG. 7C

ASA/WE/AS//7AAAWS/A/7/7/A
A////W/AWA7AY WEWS/W7

TEST PRINCIPAL CASHPOSTING

GET THE INDEX(ES) OF THE ROW(S) IN THE GENERAL LEDGERTABLE 88 FOR PRINCIPAL
CASH (PC) BY INVOKING THE PROGRAM"GET GL ROW INDEX" WITH THE FOLLOWING

INPUT PARAMETERS: "LICENSEE," PC." RETURN WITH GENERALLEDGERROW INDEX(ES)

TOTAL CASHENTRY IN ENTITY ATRIBUTE TABLE

ACCESS THE CASHPOINTER OF THE ROW OF THE ACCOUNT DEFAULTSUBTYPE DEFINITION
MASTERTABLE DENTIFIED BY"LICENSEE" AND ACCOUNTSUBTYPE=TU. USE THIS INDEX
(POINTER) TO RETRIEVE THE TOTAL UNITS AND CASH BALANCE FROM THE ENTITY ATTRIBUTE
MASTERTABLE 92INTO WORKINGSTORAGE ADDITIONALLY, GET THE INDEXOF THISROW

(DENOTED"EA CASHROWID"HEREINAFTER) INTO WORKINGSTORAGE.

AS/AAM/SW/24/7
SWA/(W/7/777

ON

ASJAA/WWEAF/W7AS40/70/"A7/4/7(4W
AWWAWA7AWA/WZW/WWAS702A7

Patent Application Publication Jul. 28, 2005 Sheet 17 of 29 US 2005/0165668A1

(D) FIG. 7D
ACCESSENTITY AT TRIBUTE TABLE

USING"LICENSEE." AND THE ENTITY NUMBER (OENOTED"ENT.ID"HEREINAFTER) IN"TRANSACTION,"
RETRIEVE, INTO WORKINGSTORAGE, THE FOLLOWING CORRESPONDING VALUES FROMAROW OF THEENTITY
ATTRIBUTEMASTERTABLE 92. ACN (ASSET); ACN (LIABILITY), DIVERSIFICATION TYPE, GROUP, CLASS
PERFORMANCE MEASURE. TYPE, GROUP, CLASS, INVESTED INCOME, INVESTED PRINCIPAL TOTAL UNITS.
ADDITIONALLY, GET THE INDEXOF THISROW (DENOTED"EA ENT ROW ID"HEREINAFTER) INTO WORKING

STORAGE.

ACCESS THE ENTY TRANSACTION TABLE

USING"LICENSEE"AND"ENT_ID"AND"TRANS CODE," VERIFY THE EXISTENCE OF ACORRESPONDINGROW
INTHE ENTITY TRANSACTION MASTERTABLE OF ATRANSACTION TO BE PERFORMED.

ACCESS THE ENTITY MASTER TABLE

USING"ENT_ID." RETRIEVE, INTO WORKINGSTORAGE, THE FOLLOWING CORRESPONDING VALUES FROMA
ROW OF THEENTITY MASTERTABLE INCOMERATE, INCOME EX-DIVIDEND RATE, INCOME RECORD DATE,

INCOME PAYMENT DATE, CAPITALADJUSTMENTRATE, CAPITAL ADJUSTMENTEX-ADJUSTMENT DATE, CAPITAL
ADJUSTMENTRECORD DATE, CAPITALADJUSTMENT PAYMENT DATE.

TEST OTHER ASSETS

USING"LICENSEE," AND"ACCT TYPE," AND ACN (ASSET) IN WORKINGSTORAGE, ASSIGNTO"GLROWID
(ENT ACN ASSET "THE INDEX (POINTER) OF THE CORRESPONDINGROWIN THE GENERALLEDGERTABLE 88.

TEST OTHER LIABILITIES

USING"LICENSEE," AND"ACCT TYPE." AND ACN (LIABILITY) IN WORKINGSTORAGE, ASSIGNTO "GL ROWID
(ENT ACN LIAB)"THE INDEX (POINTER) OF THE CORRESPONDING ROW IN THE GENERALLEDGER TABLE 88.

TESTOTHER INVESTED INCOME

USING"LICENSEE," AND ACCT TYPE"AND, THE ACCT SUBTYPE (ACN) FOR LIABILITY INVESTED INCOME (II)
INTHE TEMPORARY SUBTYPE TABLE, ASSIGNTO "GL ROWID (II)"THE INDEX (POINTER) OF THE

CORRESPONDING ROWIN THE GENERAL LEDGERTABLE 88.

TEST OTHER INVESTED PRINCIPAL.

USING"LICENSEE," AND"ACCT TYPE" AND, THE ACCT SUBTYPE (ACN) FOR LIABILITY INVESTED PRINCIPAL
(IP) IN THE TEMPORARY SUBTYPE TABLE, ASSIGN TO"GL ROWID (IP"THE INDEX (POINTER) OF THE

CORRESPONDINGROWN THE GENERAL LEDGERTABLE.

Patent Application Publication Jul. 28, 2005 Sheet 18 of 29 US 2005/0165668A1

FIG. 8A

GET GL ROW INDEX
(TRANSACTION, LICENSEE, ACCT SUBTYPE, GL ROW ID)

USING"LICENSEE"IN"TRANSACTION" ASSIGNTO, "NBRENTRIES." THE NUMBER OF ENTRIES
INTHEACCOUNTSUBTYPE COLUMN OF THE ACCOUNT DEFAULTSUBTYPE DEFINITION MASTER

TABLE FOR ROWS HAVING"LICENSEE" AS THE WALUE OF THE CENSEE COLUMN.

As WBA/WAS" = 1.7

USING"LICENSEE," AND"ACCT SUBTYPE."
AND THE DEMAND/OVERDRAFT VALUE OF"D."
RETRIEVE THE CORRESPONDING ACCOUNT
SUBTYPE (ACN) INTO WORKINGSTORAGE
FROM THE TEMPORARY SUBTYPETABLE

DOERROR
PROCESSING

USING"LICENSEE," AND"ACCT SUBTYPE."
AND THE ACCOUNTSUBTYPE(ACN) IN

WORKINGSTORAGE, ASSIGNTO "GL ROWID
(ACCTSUBTYPE.D"THE ROW INDEX

(POINTER) OF THE GENERAL LEDGERTABLE
ROWIDENTIFIED BY THESE THREE KEY

VALUES.

Patent Application Publication Jul. 28, 2005

USING"LICENSEE," AND"ACCT SUBTYPE."
AND THE DEMAND/OVERDRAFTVALUE OF"O"
RETRIEVE THE CORRESPONDING ACCOUNT
SUBTYPE (ACN) INTO WORKINGSTORAGE
FROM THE TEMPORARY SUBTYPETABLE.

USING"LICENSEE." AND"ACCT SUBTYPE."
AND THE ACCOUNTSUBTYPE (ACN) IN

WORKINGSTORAGE, ASSIGNTO"GL ROWID
(ACCTSUBTYPE).0"THE ROW INDEX

(POINTER) OF THE GENERAL LEDGERTABLE
ROWIDENTIFIED BY THESETHREE KEY

WALUES.

Sheet 19 of 29

WORKINGSTORAGE FROM THE TEMPORARY
SUBTYPETABLE.

USING"LICENSEE," AND"ACCT SUBTYPE,"
AND ACN IN WORKINGSTORAGE, ASSIGNTO
"GL ROW ID (SINGLDFLT"THE ROWINDEX

OF THE GENERAL LEDGERTABLE ROW
DENTIFIED BY THESETHREE KEY WALUES.

RETURN

FIG. 8B

US 2005/0165668A1

USING"LICENSEE," AND"ACCT SUBTYPE."
RETRIEVE THE ACCOUNTSUBTYPE (ACN) INTO

Patent Application Publication Jul. 28, 2005 Sheet 20 of 29 US 2005/0165668A1

PROCESS SUBTRANSACTION

SELECT DATAWALUEBY OPERAND1

(A7PAAS
(PMWS7

MULTIPLY WALUE *-1 MULTIPLY WALUE *-1

AS/24/AS
A/W7M/WA
(WAAS/

MULTIPLY WALUE *--1 MULTIPLY WALUE *-

ASAW2-e
7/

ADO VALUE TO AM
EA
GL

AS/AW2=
A?

ADO VALUE TO AM
EA
GL

FIG. 9A

Patent Application Publication Jul. 28, 2005 Sheet 21 of 29 US 2005/0165668A1

AS/AW2 = W

ADO VALUE TO AM
EA
GL

AS/AW2= WPV

ADD VALUE TO AM
EA
GL

AS/AW2 = WAWA70/- 7
of 2 AWA70/= W

ASAW2-e APAWA70/= 7
(W7'AWA70/- W7

NO

PROCESSEC
PROCESS PMC

As drawa = W

PROCESSPMP

FIG. 9B

Patent Application Publication Jul. 28, 2005 Sheet 22 of 29 US 2005/0165668A1

YES

PROCESS CDC

ASAW2 WA2

YES

PROCESS PMM

/SAW2 /W7

YES

PROCESS PCM

KA (AW2 WA
YES

PROCESS PMF

AS/AWA S/

YES

PROCESS PMS

c ASA/AS/= 2
NO

YES

CALL ASSET/
LIABILITY ADJUSTOR

FIG. 9C

Patent Application Publication Jul. 28, 2005 Sheet 23 of 29 US 2005/0165668A1

SUBTRANSACTION SCHEDULER FIG 10A

SE PROCESSOR
SWITCH1 = 1

INITIATE PROCESSOR1

PROCESSOR
SWITCH1 = 0

NUMBER
PROCESSORS=1

ONLY1
PROCESSOR BUSY

WAIT 10
MILLISECONDS

PROCESSORS BUSY

WAIT 10
MILISECONDS

SET PROCESSOR
SWITCH2=1

INITIATE PROCESSOR 2

PROCESSOR
SWITCH2=O

NUMBER
PROCESSORS=2

SET PROCESSOR
SWITCH 3=1

INITIATE PROCESSOR3

PROCESSOR

SET PROCESSOR
SWITCH 41

INTIATE PROCESSOR 4

PROCESSORS=4

ALL 4
PROCESSORS BUSY

WAT 10
MILISECONDS

Patent Application Publication Jul. 28, 2005 Sheet 24 of 29 US 2005/0165668A1

(A) (B) FIG 1 OB (C)

SET PROCESSOR
SWITCH 5=0

INITIATE PROCESSOR 5

SET PROCESSOR
SWITCH 6-0

INITIATE PROCESSOR 6

PROCESSOR
SWITCH 6=0

SE PROCESSOR
SWITCH 7=0
NITATE PROCESSORT

PROCESSOR
SWITCH 7=O

SE PROCESSOR
SWITCH 8= 0

INITIATE PROCESSOR8

PROCESSOR
SWITCH 8=O

NUMBER
PROCESSORS=8

PROCESSORS BUSY

SET PROCESSOR
SWITCH 9-16=0 16 PROCESSORS

INITIATE PROCESSORS
9-16

WAIT 10
MILISECONOS i.

NUMBER
PROCESSORS=16

ETC.

SE PROCESSOR
SWITCH17-32=O :

INITIATE PROCESSORS 32 PROCESSORS
17-32 :

Patent Application Publication Jul. 28, 2005 Sheet 25 of 29 US 2005/0165668A1

FIG 11

PROCESS PRINCIPAL CASH

PRINCIPAL-- (TRANSACTION.CASH)* MULTIPLIER

ADD"PRINCIPAL"TO THE PRINCIPAL CASH (PC) COLUMN OF THE
ACCOUNT MASTERTABLE ROWFOR"AM ROWID."

ADD"PRINCIPAL." TO THE TOTAL UNITS COLUMN OF THE ENTITY
ATTRIBUTEMASTERTABLE ROWFOR "EA CASH ROWID."

ADD"PRINCIPAL"TO THE INVESTED PRINCIPAL COLUMN OF THE
"EA CASHROWID."

IS"GL ROWIDISINGL DFLT"DEFINED?

IS THE ACCOUNTSUBTYPE (ACN) EQUAL TO
PRINCIPAL CASH DEMAND, OR, EQUAL TO

PRINCIPAL CASH OVERDRAFT
ADD"PRINCIPAL." TO THE PRINCIPAL

COLUMN OF THE GENERAL LEDGERTABLE
ROWFOR "GL ROWIDESINGLDFLT)."

PRINCIPAL CASH
DEMAND

PRINCIPAL CASH
OVERDRAF

ADD"PRINCIPAL." TO THE BALANCE ADD"PRINCIPAL"TO THE BALANCE
COLUMN OF THE GENERAL LEDGER COLUMN OF THE GENERAL LEDGER

MASTERTABLE ROW FOR MASTERTABLE ROW FOR
"GL ROWIDIACCTTYPE.D." "GL ROWIDEACCTTYPE).0"

ADD"PRINCIPAL." TO THE BALANCE COLUMN OF THE GENERAL LEDGER
TABLE ROW FOR "LICENSEE"HAVING ANACCOUNT TYPE CORRESPONDING

TO THE "ACCT TYPE" AND HAVING THE ACCOUNTSUBTYPE (ACN) OF
INVESTED PRINCIPAL.

Patent Application Publication Jul. 28, 2005

PROCESS INVESTED INCOME

INV INC --
(TRANSACTION.INVESTED INCOME)*

MULTIPLIER

ADD"INV INC"TO THE INVESTED INCOME
(II) COLUMN OF THE ACCOUNT MASTER

TABLE ROW FOR "AMROWID."

SUBTRACT"INY INC"FROM THE INCOME
CASH (IC) COLUMNOF THE ACCOUNT
MASTERTABLE ROW FOR "AM ROWID."

ADD THE NUMBER OF NTSBOUGHT TO THE
TOTAL UNTS COLUMN OF THE ACCOUNT
MASTERTABLE ROWFOR "AMROWID."

SUBTRACT"INV INC"FROM THE TOTAL
UNITS COLUMNOF THE ENTITY AT TRIBUTE

MASTERTABLE ROW FOR
"EA CASHROWID."

SUBTRACT"INV INC"FROM THE COLUMN
FOR INCOME CASH OF THE ENTY
ATRIBUTEMASTERTABLE ROW FOR

"EA CASH ROWID."

ADD"INV INC"TO THE COLUMNFOR
NVESTED INCOME OF THEATRIBUTE

MASTERTABLE ROW FOR
"EA ENT ROWID."

Sheet 26 0f 29

FIG. 12

ADD THE NUMBER OF UNTS
BOUGHT TO TOTAL UNITS COLUMN
OF THEATTRIBUTEMASTERTABLE
ROWFOR "EA ENT ROWID."

ADD"INV INC"TO THE BALANCE
COLUMN OF THE GENERAL LEDGER

MASTERTABLE ROW FOR
"GL ROWIDENT ACN ASSET)."

ADDINV INCTO THE GENERAL
LEDGERMASTERABLE ROW FOR
"GL ROWIDENT ACN LIAB)."

IS"GL ROWID (SNGLDFLT)"
{O DEFINED2

SUBTRACT"INV INC"FROM
THE BALANCE COUMN OF THE
GENERAL LEDGERMASTER

TABLE ROWFOR"GL ROWID
(ACCTSUBTYPE).D"

SUBTRACT"INY INC"FROM
THE BALANCE COLUMN OF THE
GENERAL LEDGERMASTER

TABLE ROW FOR"GL ROWID
(SNGLDFLT)."

US 2005/0165668A1

Patent Application Publication Jul. 28, 2005

PROCESS INVESTED PRINCIPAL

INY PRNCL --
(TRANSACTION.INVESTED PRINCIPAL)

* MULTIPLER

ADD"INN PRNCPL"TO THE INVESTED
PRINCIPAL (IP) COLUMNOF THE ACCOUNT
MASTERTABLE ROW FOR "AM ROWID."

SUBTRACT"INY PRNCPL"FROM THE
PRINCIPAL CASH (PC) COLUMNOF THE
ACCOUNT MASTERTABLEROWFOR

"AMROWID."

ADD THENUMBER OF UNITSBOUGHT TO THE
TOTAL UNITS COLUMN OF THE ACCOUNT
MASTERTABLE ROW FOR "AMROWID."

SUBTRACT"INY PRNCPL"FROM THE TOTAL
UNITS COLUMNOF THE ENTITY AT TRIBUTE

MASTERTABLE ROW FOR
"EA CASH ROWID."

SUBTRACT"INY PRNCPL"FROM THE
COLUMN FOR PRINCIPAL CASH OF THE
ENTITY ATRIBUTEMASTERTABLE ROW

FOR "EA CASH ROWID."

ADD"INY PRNCPL"TO THE COLUMN
FOR INVESTED PRINCIPAL OF THE

ATTRIBUTEMASTERTABLE ROW FOR
"EAENT ROWID."

Sheet 27 of 29

FIG. 13

ADD THE NUMBER OF UNTS
BOUGHT TO TOTAL UNITS COLUMN
OF THE ATTRIBUTEMASTERTABLE
ROWFOR "EA ENT ROWID."

ADD"INY PRNCPL"TO THE
BALANCE COLUMN OF THE GENERAL
LEDGER MASTERTABLE ROW FOR
"GL ROWIDENT ACN ASSET)."

ADDINY PRNCPL TO THE GENERAL
LEDGER MASTERTABLE ROW FOR
"GLROWID (ENT ACN LIAB)."

IS"GL ROWID (SNGLDFLT)"
{O DEFINED2

SUBTRACT"INY PRNCPL"FROM
THE BALANCE COLUMN OF THE
GENERAL LEDGER MASTERTABLE

ROW FOR "GL ROWID
(ACCTSUBTYPE).D"

SUBTRACT"INY PRNCPL"
FROM THE BALANCE COLUMN
OF THE GENERAL LEDGER
MASTERTABLE ROWFOR

"GLROWIDSNGLDFLT)."

EXIT

US 2005/0165668A1

Patent Application Publication Jul. 28, 2005 Sheet 28 of 29

FIG. 14

DOCUSTOMACCTNG (SUBTRANS)

/S/A/WZZAWSAS
AAA/7A/AWA77

EXPENSE PROCESSING

PERFORMANCE MEASUREMENT

ASIAAZAASZDSA/PSA/AW
AAA/7A/WA77

AS/ASA/W/AWA
S/WAWS"A7M//7 (77.277

YES

UPDATE THE RECEIPTS/
OSBURSEMENTABLE

UPDATE THE
PERFORMANCE

MEASUREMENT TABLE

AAA/7A/WA707

UPDATE THE INCOME/EXPENSE TABLEUSING, E.G., THE
PROCESSING DESCRIBED IN THE PSEUDO-CODEFOR INCOME/

UPDATE THE PERFORMANCE MEASUREMENT TABLE E.G., THE
PROCESSING DESCRIBED IN THE PSEUDO-CODEFOR

ASWAAAWAWAASWA/W/W

AS/AS//W/AW/A
c 'S/AWS"A7M//7 W2

UPDATE THE PERFORMANCE
MEASUREMENT TABLE

US 2005/0165668A1

AS/ASA/W/AW
(ASWS"A7M/

1777. A 7

Patent Application Publication Jul. 28, 2005 Sheet 29 of 29 US 2005/0165668A1

FIG. 15
PROCESS BALANCE SHEET

AS/AAWA/W/AWSM/WA/WA0/ASSA/7
AW/AW/WEWSM/WA7PAA/P/ASA/AA
AWA/AWY 0E/S/HAIPAWSA/W
A/WA0ASSA7AAWFSM/ WS4/WA7?
WASA7//W/AAA/WA/AW2

NO
AS/AAMAAW AS/AAAAMW/W/A
WS4//WAAWS/ A/AWASA/A/A
WAWS/W/WA7PA AWASPWA/7
ASFAAAAWA/ AA/AW
AWW (WAS/AAAWA/W WSM/WA/WA
WSM/WAWA/W/ API/ASSA27
WAWS/WA7?/A
S7A/WAAAA/W/
AW2

NO YE INSERTA NEW ROW RETRIEVE THE
s INTO THE BALANCE ROWFROM THE

RETRIEVE THE ROW IN THE SHEETABLE FOR BALANCE SHEET
BALANCE SHEETTABLE CURRENT TABLE.
CORRESPONDING TO THE TRANSACTION.

CURRENT TRANSACTION. INCREMENT THE UNITS
| Antau W/or 7. COLUMNBY THENUMBER
AMW/7ASW/7 INDICATED BY THE

CURRENT TRANSACTION. NO YES

DECREMENT THE UNTS of Ew
COLUMN OF THE ROWBY BALANCE SHEET
THENUMBER INDICATED TABLE

BY THE CURRENT o

TRANSACTION.

US 2005/0165668A1

MULTI-PROCESSING FINANCIAL TRANSACTION
PROCESSING SYSTEM

FIELD OF THE INVENTION

0001. The present invention relates to a financial trans
action processing System, and in particular, to Such a System
that is capable of decomposing transactions into Subtrans
actions and multi-processing Subtransactions Simulta
neously.

BACKGROUND OF THE INVENTION

0002 Computerized data processing systems for process
ing financial transactions have become increasingly more
complex as further Strides toward automation have occurred.
Such complexity has generated a number of related diffi
culties for the financial data processing industry. In particu
lar, complex financial transaction processing Systems may
have Subtle programming defects or errors that may go
unnoticed for long periods of time before the extent of the
problems thereby generated are fully recognized. For
example, the number of positions allotted for the dating of
transactions has recently been problematic, wherein the
dates for the millennium starting at the year 2000 can be
problematic for many financial transaction processing SyS
temS.

0003. In addition, such complex financial transaction
processing Systems also are typically incapable of being
fully audited. That is, it is common practice in the financial
data processing industry to provide only partial auditability
in that it is generally believed that the amount of data
required to be stored for full auditability is So large as to not
be cost effective.

0004 Further, in many circumstances, the rate of trans
action increase is becoming problematic in that progres
Sively larger computers are required for processing financial
transactions at an acceptable rate. This problem is exacer
bated by the fact that Such transaction processing Systems
are not architected for use on multi-processing machines
having a plurality of processors. Thus, the advantages of
parallel-processing computers cannot be fully utilized by
Such systems.
0005 Accordingly, it would be advantageous to have a
financial transaction processing System that alleviates the
above difficulties, and that additionally, provides flexibility
to adapt to the changing business needs of business enter
prises So that the transactions processed and the respective
reports generated may be modified easily according to
business constraints and demands.

SUMMARY OF THE INVENTION

0006 The present invention is a financial transaction
processing System that achieves Substantial increases in
auditability and processing efficiency. In particular, the
present invention provides auditable trails or history in a
number of different ways. For example, financial data within
transactions is used in the present invention to update
various control fields in different tables or files so that
cross-checks of System financial integrity can be performed
for assuring that, for example, cash fields, total units fields,
and cost fields balance appropriately acroSS System data
tables provided by the present invention. Additionally, the

Jul. 28, 2005

present invention provides a full range of auditable history
files for each System data table having information that is
required during auditing.

0007. The present invention also performs financial
transaction processing using a novel computational para
digm. That is, the financial transaction processing System of
the present invention has an architecture wherein financial
transactions can be decomposed into corresponding collec
tions of independent Subtransactions, Such that for each
input transaction, the corresponding collection of Subtrans
actions are performed by operations that are independent of
one another. Thus, the Subtransactions can be performed in
any order, including in an overlapping fashion, Such as may
occur during multiprocessing of these Subtransactions on a
computer having multiple processors.

0008 Further, note that each of the subtransactions is
described by a relatively short (e.g., less than 8 characters)
text String that can be Straightforwardly interpreted as an
operation (e.g., either plus or minus) together with a Series
of operands, in particular, a first operand having a value to
be used in modifying a data table field (column) specified by
a Second operand. Such high level descriptions of Subtrans
actions provide both compact conceptualization and a reduc
tion in the total Size of the executable code for the present
invention. Accordingly, when one of the Subtransactions is
performed, not only is its corresponding operation per
formed on the operands, but additionally, control fields Such
as those mentioned above are updated appropriately in
various data tables for the present invention to enhance
auditability of the financial data resulting from the transac
tion processing. Further, note that Since the Subtransactions
are independent of one another and their executable code is
relatively Small, there is no need for lengthy and complex
flow of control transaction processing modules. That is, the
size of the code for the present invention may be up to 100
times Smaller than many prior art transaction processing
Systems. Accordingly, this has a Substantial positive impact
on the efficiency of the present invention in that the Swap
ping of program elements in and out of primary computer
memory is Substantially reduced.

0009. In another aspect of the present invention, the
financial transactions of a plurality of busineSS enterprises
can be processed in an interleaved manner. In particular,
Since the present invention is Substantially data driven,
including the descriptions of the transactions and their
related Subtransactions, the present invention can be easily
modified to incorporate both different or updated versions of
transactions and associated data tables for an existing busi
ness enterprise (e.g., also denoted “licensee” hereinafter).
Additionally, the transactions and related data tables for an
entirely new or different business enterprise (licensee) may
be straightforwardly incorporated into the present invention
So that its transactions can be interleaved with the transac
tions of other business enterprises. Thus, transaction pro
cessing may be performed by the present invention for
business enterprises having different transactions, different
account record Structures and differently organized general
ledgerS Substantially without modifying the program ele
ments of the transaction processing System.

US 2005/0165668A1

0.010 For example, the present invention can be used to
Simultaneously process transactions for:

0011 (1) a single software application such as an
investment management or telecommunications bill
ing System,

0012 (2) multiple disparate software applications
Such as investment management, and telecommuni
cations billing, paying agencies, etc., all with dis
parate definitions.

0013. Accordingly, the present invention may be viewed
as a Software engine, or a user-definable transaction pro
cessing tool that can be adapted to a variety of industry
Specific Software application needs without changing the
actual program code. That is, by Surrounding the present
invention with application Specific Software for inputting
transaction data to the multi-processing financial transaction
processor of the present invention and retrieving data from
the multi-processing financial transaction processor of the
present invention, a particular business enterprise can have
Substantially all of its financial records in condition for
auditing on a daily or weekly basis.
0.014. The present invention may be further characterized
along the following dimensions: flexibility, auditability,
multiprocessing, efficiency and size, these dimensions being
discussed, in turn, hereinbelow.
0.015 Flexibility is achieved by permitting a business
enterprise to define:

0016 (1) a series of “reference” tables (also denoted
“master tables') that describe the appropriate man
agement decision-making, accounting structure, and
regulatory information for the Specific application;

0017 (2) a series of audit controls and system
procedures that provide for complete control of all
processing and prevent the overwriting of any origi
nal data;

0018 (3) a series of institutional and customer
reporting files, known as the “driven” tables, and

0019 (4) the specific processing content of each
individual transaction to be processed via a Series of
table definitions, known as the “driving” tables.

0020 Thus, transactions may be customized according to
the busineSS needs of a busineSS enterprise.
0021 Auditability is achieved by:

0022 (1) providing separate control columns for p g Sep
cash, units and cost basis (if any) in detail records
generated and Stored for each financial transaction;

0023 (2) repeating these three control columns, or
variations thereof, in at least three different tables so
that Subsequent Summations of each of the four
tables will result in Similar balances and thus prove
that no critical data has been lost in the course of
processing, as one familiar with auditing and finan
cial transactions Systems will understand;

0024 (3) adding appropriate data columns:
0025 (a) to each reference table or master row for
maintaining a history of the effects of add, change
and delete commands in a current database as well
as an archive database;

Jul. 28, 2005

0026 (b) to each original file record (i.e. table
row) that represents an add to a current database as
well as the periodic archive and purge to a per
manent database;

0027 (c) to tables for retaining transaction pro
cessing data representing error identification, error
negation and error correction.

0028. Thus, auditability of transaction records is achieved
by four sets of files for a specific period. These are: (a) a
Snapshot of all the reference files at the end of the period; (b)
Snapshots of a history file for each master table, wherein the
corresponding history file (table) contains all changes to the
master table during the Specific period; (c) a Snapshot of all
financial transactions for the Specific period, and (d) a
Snapshot of all of the “driven” tables at the end of the period.
0029 Multiprocessing is achieved by:

0030 (1) decomposing the processing of the present
invention into a Series of Separate and independent
Subprocesses that may be simultaneously performed
on any number of Simultaneous processors, and

0031 (2) decomposing input transactions into a
Series of Subtransactions that are processed by inde
pendent processes, which may be executed in any
particular order, with complete auditability.

0032 For example, multiprocessing can be achieved by
allocating the next prescribed Subtransaction process to the
next available processor.
0033) Efficiency is achieved by:

0034 (1) Defining and utilizing only four standard
processing models that perform all prescribed func
tionality and auditability of the present invention.
The models are:

0035 (a) Processing Model 1 provides an archi
tecture for maintaining historical transaction data
So that financial changes can be traced through
time;

0036) (b) Processing Model 2 provides an archi
tecture for automatically maintaining data col
umns. Such as Units, Debits and Credits for cross
checking table Sums to assure that the financial
records for a business enterprise balance;

0037 (c) Processing Model 3 provides an archi
tecture for automatically maintaining financial
records relating to financial instruments Such as
Stocks, bonds, real estate, etc.; and

0038 (d) Processing Model 4 provides an archi
tecture for producing a common processing for
mat for maintaining customer and institutional
data tables.

0039 (2) Defining only four primary program mod
ules for controlling functionality of the present
invention, these modules being:
0040 (a) a transaction processing controller mod
ule for receiving transactions to be processed, and
controlling the processing thereof;

0041 (b) a preprocessor and decomposer module
for determining the validity of a received transac

US 2005/0165668A1

tion, assuring that all data tables and rows thereof
are available for processing the transaction, and
retrieving the appropriate Subtransactions data
descriptions to be processed;

0042 (c) a subtransaction scheduling module for
Scheduling instantiations of the Subtransaction
processing module on each of one or more pro
ceSSors, and

0043 (d) a subtransaction processing module for
performing each Subtransaction retrieved by the
preprocessor and decomposer module.

0044 (3) Utilizing a number of software switches to
control which tables within collection of “driven”
tables are to be updated when a specific type of
transaction is to be processed.

004.5 Thus, by providing a small number of processing
models, decomposing input transactions, and Supplying only
the necessary Subtransaction descriptions, the reliability of
the transaction processing System of the present invention is
Substantially increased.
0046) The software for the present invention is small in
Size (both Source code and object code) due to the following:

0047 (1) defining business enterprise financial data
processing methods, accounting structures, and regul
latory definitions as data rather than program code,

0048 (2) reducing the processing content to a series
of individual transactions, and

0049 (3) reducing all financial transactions to a
collection of Subtransactions wherein each Subtrans
action includes an operator and two or more oper
ands in an 8-character String.

0050 Thus, the financial processing by the present inven
tion may be performed on Several transactions at a time, one
transaction at a time, or different processors within a mul
tiprocessor context. Or, the Subtransactions for a specific
transaction may be spread over Several Simultaneous pro
ceSSors. This means that the busineSS enterprise is afforded
a large number of options in tailoring the present invention.
0051 Hence, by defining the accounting structure and
processing functionality as data rather than actual program
code, the size of the total code required to process a specific
industry application may be Substantially reduced compared
to prior art transaction processing Systems. For example, the
executable code for the present invention may be less than
one megabyte (1MB). Thus, since the Secondary cache
attached to each processor in multiprocessing personal com
puter Servers can be one megabyte, Substantially the entire
executable for the present invention can be provided to each
processor. Thus, the positive impact on total System effi
ciency is believed to be Substantial in that Secondary cache
is typically about four times faster than normal cache, So
productivity gains of about three-hundred percent would not
be unreasonable. In other words, the executable code for the
present invention can reside in the Secondary cache of each
processor, thereby allowing the off-loading of any process
ing function to any processor with relative ease. Addition
ally, given that a typical RAM memory for a personal
computing devices is 16 megabytes, it is believed that Such
a device will have the capability to process the back office

Jul. 28, 2005

financial transactions of a major money center financial
institution or communications billing System.
0052 Additional features and benefits of the invention
will become evident from the detailed description and the
accompanying drawings contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS

0053 FIG. 1 is a high level block diagram illustrating the
present invention conceptually.
0054 FIGS. 2A and 2B is another block diagram of the
present invention illustrates: (a) the high level transaction
processing modules, and (b) the data tables (represented by
the Symbols with arcuate vertical sides) provided and main
tained by the present invention. Furthermore, the present
figure shows the data flows as Solid arrows and control flows
as dashed arrows. Moreover, this figure also indicates the
data tables effected by process models No. 2 and No. 3 of the
present invention.
0055 FIG. 3 is another high level block diagram of the
present invention during activation of the preprocessor and
decomposer 54 wherein the solid arrows are illustrative of
the data flows that occur during the activation of the pre
processor and decomposer 54. Moreover, the tables within
boxes represent tables having a proceSS model No. 1 repre
Sentation, and the tables having account balancing control
fields include the identifier, “CNTLS.”
0056 FIGS. 4-A through 4-E illustrate the steps of a
flowchart for initializing the database tables of the present
invention for a new business enterprise licensee that is to
have its financial transactions Subsequently processed by the
present invention.
0057 FIG. 5 is a block diagram illustrating process
model No. 1 of the present invention.
0.058 FIG. 6 is a high level flowchart of the steps of an
embodiment of the transaction processing controller 52 of
FIG. 2A.

0059 FIGS. 7-A through 7-D show the high level steps
performed by an embodiment of the preprocessor and
decomposer 54 of FIG. 2A.
0060 FIGS. 8-A and 8-B show the steps of a flowchart
for obtaining indexes or pointers to particular rows of a
general ledger table wherein the rows are used in processing
a transaction.

0061 FIGS. 9-A and 9-B show the steps for a flowchart
of an embodiment of the Subtransaction processing module
64 (FIG. 2A).
0062 FIG. 10 is an embodiment of a flowchart of the
Steps performed for processing income cash transactions by
the present invention.
0063 FIG. 11 is an embodiment of a flowchart of the
Steps performed for processing principal cash transactions
by the present invention.
0064 FIG. 12 is an embodiment of a flowchart of the
Steps performed for processing invested income transactions
by the present invention.
0065 FIG. 13 is an embodiment of a flowchart of the
Steps performed for processing invested principal transac
tions by the present invention.

US 2005/0165668A1

0.066 FIG. 14 is an embodiment of a flowchart of the
Steps for performing custom accounting Such as income
expenses, and cash flow for a busineSS enterprise.
0067 FIG. 15 is an embodiment of a flowchart of the
Steps for maintaining a busineSS enterprise's balance sheet
related to buys and Sells of financial entities or instruments.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

0068 FIG. 1 shows a high level conceptual block dia
gram of a transaction processing System 50 according to the
present invention. In particular, the present invention is
conceptualized in the present figure as including five func
tional components, these being:

0069 (a) transaction processing controller 52 for: (i)
receiving transactions 58 from business enterprises, (ii)
controlling the processing of Such transactions, including the
Scheduling of Subtransactions to be performed, and (iii)
Writing of transaction details to, for example, a transaction
journal file or table;
0070 (b) a transaction preprocessor and decomposer 54
for initially receiving a transaction 58 from any one of a
plurality of business enterprises as shown, wherein the
preprocessor and decomposer 54 decomposes transactions
into Subtransactions,

0071 (c) a subtransaction processing module 64 for
performing the instructions for each Subtransaction deter
mined by the transaction preprocessor and decomposer 54.
In particular, the Subtransaction processing module 64 uti
lizes a collection of Subtransaction programmatic data
descriptions 66 that can be independently Scheduled and
performed for processing each transaction 58 provided to the
transaction processing System 50,
0072 (d) a subtransaction scheduler 62 for scheduling the
execution of each Subtransaction output by the preprocessor
and decomposer 54;

0073 (e) a collection of databases 70 containing financial
information for each of the one or more business enterprises.
Note that the term “database' in the present context includes
both the data therein as well as database management
functional elements and data Structure definitions.

0.074 Another illustration of the present invention is
provided in FIG. 2. This figure is a block diagram providing
both the processing components of FIG. 1, and additionally,
greater detail is provided of the tables or files within the
databases 70. However, to simplify the discussion herein
after, the database terminology used will be that of a
relational database. Accordingly, files may also be equiva
lently referred to as tables, records may also equivalently be
referred to as rows, and record fields may also be equiva
lently referred to as columns. Thus, all the data Storage
symbols having the collective label of 70 are provided
within the like numbered databases of FIG. 1. It is worth
noting, however, that in one embodiment of the present
invention, the data tables for distinct busineSS enterprises
may be provided in the same collection of tables Such as
those represented in FIG. 2. That is, it is an aspect of the
present invention that the accounting and transaction pro
cessing of the present invention can use the same plurality
of financial data tables for busineSS enterprises having

Jul. 28, 2005

Substantially different financial transactions and accounting
categories. Thus, although FIG. 1 illustrates the databases
70 as being distinct for each business enterprise, many of
these databases (if not most) may be combined into a single
database having a plurality of data tables Such as those
labeled collectively “70” in FIG. 2, these tables being
discussed in detail hereinafter.

0075) Referring still to FIG. 2, a high level view of the
processing performed when processing a transaction 58 is
provided. In particular, the transaction processing controller
54 receives an input transaction 58 and invokes the prepro
ceSSor and decomposer 54. The preprocessor and decom
poser 54 subsequently performs, for each transaction 58, the
following functions:

0076 (a) determines, using input from the business
enterprise databases 70, whether all necessary data
for performing the transaction is available and oth
erwise rejects the transaction without performing
any portion thereof. In particular, the transaction
preprocessor and decomposer 54 determines that all
data tables to be accessed are available;

0.077 (b) retrieves the data needed to perform the
transaction;

0078 (c) checks to determine that the transaction
operation(s) requested is available, and that the
transaction is legitimate to be performed on the data
for the input transaction 58;

0079 (d) retrieves the subtransaction data descrip
tors for decomposing the input transaction 58 into
Subtransactions.

0080 Accordingly, the preprocessor and decomposer 54
retrieves into the working storage 72 (shown in FIG. 3) of
a host computer (not shown), upon which the transaction
processing System 50 is operating, Substantially all data and
table rows that are necessary to process the transaction 58.
Additionally, note that as one skilled in the art will under
Stand, if Some portion of the required data to process the
transaction is unavailable, then the preprocessor and decom
poser 54 terminates processing and Subsequently writes
appropriate error messages and/or details of the transaction
into the reject table 74 (FIG. 2).
0081 Assuming that the preprocessor and decomposer
54 Successfully performs the gathering of information for
the decomposing of the transaction into Subtransactions
appropriately, then control is returned to the transaction
processing controller 52, wherein this controller then writes
the details of the transaction to the transaction journal 78
along with identification data uniquely identifying the trans
action (e.g., a transaction sequence number and/or time and
date Stamp). Following this, the transaction processing con
troller 52 invokes the Subtransaction scheduler 62 for Sched
uling the performance of each Subtransaction by an invoca
tion of the Subtransaction processing module 64. Note that
it is an important aspect of the present invention that Since
the Subtransactions can be processed independently of one
another for a given transaction, instantiations of the Sub
transaction processing module 64 can be executed in Sub
Stantially any desired order. In particular, Such instantiations
of the Subtransaction processing module 64 can be per
formed concurrently, thus providing a Substantial increase in

US 2005/0165668A1

transaction processing efficiency when Such concurrency is
provided on a computer having a plurality of processors.

0082) Given that a subtransaction is performed success
fully by the Subtransaction processing module 64, various
accounting tables within the transaction processing System
50 are updated. In general, each Subtransaction conceptually
indicates a Single operation of either plus or minus that is to
be performed with two operands also indicated in the
Subtransaction. That is, the first operand indicates the data to
be added or subtracted from a particular field or column of
a table row identified by the second operand. Additionally,
each Subtransaction updates other tables within the transac
tion processing System 50 automatically in order to provide
consistency among the data tables So that: (a) Substantially
on-line account balancing capabilities can be performed, and
(b) full auditability of the records of the business enterprise
providing the transaction can be facilitated by retaining
history records of table updates, as will be discussed with
reference to “master table transaction cluster processing
described hereinbelow. Accordingly, each Subtransaction
processed by an instantiation of the Subtransaction process
ing module 64 may update a plurality of the data tables
contained in the collectively labeled database 70. Note that
for one skilled in the art of transaction data processing and
accounting, the names provided to the tables are indicative
of their information content and structure. However, for
clarity, Substantially all of the tables for the present inven
tion will be discussed in detail and/or illustrated hereinbe
low.

0.083. The subtransaction processing module 64 pro
ceSSes Subtransactions derived from three general categories
of transactions that may be input to the present invention.
That is, there may be input transactions for each of the
following types of financial transactions (1.1) through (1.3)
hereinbelow.

0084 (1.1) Transactions related to exchanges of funds
Such as cash debits and credits for accounts of a particular
business enterprise are provided. At a high level, the tables
related to this functionality include the account master table
84 (FIG. 2), the general ledger table 88, and the entity
attribute master table 92.

0085 (1.2) Transactions related to additional or custom
ized accounting for clients having accounts in the account
master table 84 are provided. For example, in addition to
providing the functionality of the transactions described in
(1.1) immediately above, a customer income Statement
(income/expense) table 96 may be provided with client
account and transaction information related to income and
expenses for tax purposes. Additionally, a customer cash
flow (receipts/disbursements) table 100 is also provided for
recording any account transaction information related to
receipts and disbursements in client accounts. Further, a
customer performance measurement table 104 is also pro
Vided for retaining client account performance information
related to the performance of client portfolios in comparison
to investment indexes such as the Dow Jones Industrial
Average, the S&P 500, etc. Note that these tables will be
discussed and/or illustrated hereinbelow.

0.086 (1.3) When transactions are additionally related to
financial instruments other than cash, debits and credits,
Such as portfolio management wherein there is buying and
Selling of equities, income derived from equities, and trade

Jul. 28, 2005

settlements related thereto. Further, note that these addi
tional capabilities also provide the same degree of flexibility,
adaptability and Simplicity as provided in relation to the
transaction processing capabilities discussed in (1.1) and
(1.2) immediately above. That is, financial equity transac
tions of various types and for various busineSS enterprises
may be easily modified and/or added or removed from the
transaction processing System 50 of the present invention,
Since these transactions are also described by transaction
data descriptors consisting of a collection of Subtransactions
that are capable of being performed in Substantially any
order that is determined by the subtransaction scheduler 62.
0087. Accordingly, in providing the functionality for the
transactions related to portfolio management, the preproces
Sor and decomposer 54, upon being invoked by the trans
action processing controller 52, also retrieves into working
Storage (as shown in FIG. 2) the necessary data for pro
cessing Such portfolio maintenance transactions, this data
including a Subtransaction decomposition for the transac
tion. Subsequently, as discussed hereinabove, the Subtrans
action Scheduler 62 invokes an instance of the Subtransac
tion processing module 64. However, in addition to updating
any appropriate rows of the tables 84, 88, 92, 96, 100 and
104, the Subtransaction processing module 64 invokes a
portfolio adjuster module 110 for capturing and/or updating
detailed data of portfolio transactions that are not otherwise
effectively captured for proper accounting and auditing. In
particular, for a given Subtransaction, the portfolio adjuster
110 invokes one of the following modules (2.1) through
(2.4) hereinbelow.
0088 (2.1) Original add module 114 for processing a
Subtransaction related to the addition of further financial
instruments to a portfolio Such as occurs when Securities are
bought and must be added to a given account.

0089 (2.2) A reverse of add module 118 for reversing an
addition of financial enterprises to a particular account
portfolio. Note that this module is typically activated when
financial enterprises are inadvertently added to an incorrect
portfolio account.

0090 (2.3) An original sell module 122 for processing
Subtransactions related to Selling financial enterprises within
a given account portfolio.

0091 (2.4) A reversal of original sell module 126 for
reversing the affects of an inadvertent Sell of financial
enterprises within an account portfolio.

0092. These four modules 114- 26 update the tables
labeled collectively as 70B. In particular, the processing
performed herein and the tables updated herein are described
below.

Major Programs and Functionality

0093 Major Programs

0094. The Ngine transaction processing system contains
four major programs. These are:

0.095 (1) Transaction Processing controller 52
0096 (2) Transaction Preprocessor and Decomposer
54

US 2005/0165668A1

0097 (3) Subtransaction Processing module 64
0.098 (4) Subtransaction Scheduler 62

0099 Program Functionality
0100. The purpose of the Transaction Processing control
ler 52

0101 (a) test for incoming transactions and once
detected

0102 (b) execute the Transaction Preprocessor and
Decomposer 54 and then

0103 (c) execute the Subtransaction Processing
module 64 for each transaction.

ABOVE

TRANSACTION PROCESSING CONTROLLERS2
TRANSACTION PREPROCESSOR AND
DECOMPOSER 54
SUBTRANSACTION PROCESSING MODULE 64
SUBTRANSACTION SCHEDULER 62
PORTFOLIO ADJUSTER 110
ORIGINAL ADD MODULE 114
REVERSER OF ADD MODULE 118
ORIGINAL SELL MODULE 122
REVERSE OF ORIGINAL SELL MODULE 126

0104. The purpose of the Transaction Preprocessor and
Decomposer 54 is to verify

0105 (a) that all information in the transaction is
accurate

0106 (b) that all files and controls are available to
properly process the transaction

0107 (c) that the specific subtransaction processing
instructions are loaded into working Storage.

0108. The purpose of the Subtransaction Processing
module 64 is to

0109 (a) execute all of the subtransactions that have
been previously defined for a transaction

0110 (b) create auditability for every transaction.
0111. The purpose of the Subtransaction Scheduler 62 is
tO

0112 (a) allocate a specific task to a specific pro
CCSSO

0113) (b) return processing to the Transaction Pro
cessing controller 52.

0114. The present invention may be described as “Table
Driven Transaction Processing”. That is, the present inven
tion permits the processing of Virtually any type of user
definable transaction by defining the processing for Such
transactions as data descriptors that are interpreted in real
time and dynamically as needed for processing correspond
ing transactions. Accordingly, the transaction data descrip
tors are denoted as “driving data” and are defined by the
transaction processing master table and the transaction mas
ter table. That is, the transaction master table provides a first
initial collection of data for identifying each transaction and
the transaction processing table provides the remainder of

Jul. 28, 2005

the data including the Subtransaction decompositions.
Accordingly, each transaction processed updates an appro
priate set of user-definable tables (known as the “driven”
data) for completing the processing of the transaction. Since
both the “driving” and the “driven” information is expressed
as data rather that actual code, the entire functionality of the
System can be changed in a Straightforward manner.

0.115. In the description hereinbelow, the functional com
ponents of the present invention are also identified by other
naming conventions from the description above. Accord
ingly, the following table shows the pairing of the functional
component identifications above with those also used below:

BELOW

N GINE COMMAND PROCESSOR
N GINEEDIT PROCESSOR

N GINE POSTING TO AM, EA AND GL
N GINE SCHEDULER
AORS
ORIGINATE ADD PROCESSING
REVERSE ADD PROCESSING
ORIGINATE SELL ROUTINE
REVERSER SUBTRACT PROCESS

Ngine System Design Rules
0116 A. The Magic Number in Software Design is 1.
That is,

0117)
0118 program data once,

Store data once,

0119) process data once.
0120) B. Design a total system with the fewest number of
processing models. For example,

0121 One model for processing all adds (inserts),
changes (updates), and deletes (deletes) for all Mas
ter (or Reference) Files (or tables).

0122) Namely,
0123. Begin Time
0.124 Number of Transactions
0.125 Number of Acceptances
0126) Number of Rejects
0127 End Time.

0128. These variables represent the only true means of
measuring actual productivity.
0129. F. For reasons of auditability, never overwrite any
original information. Move all original information from
data entry (cradle) to data warehouse (grave) without any
changes.
0.130 G. For reasons of reliability and profitability, sys
tem designs should focus on a "large number of Small
programs' rather than a “Small number of large programs”.
The result is not only ease of maintenance but also the ability
to spread the Small programs acroSS a number of Simulta
neous processors.

US 2005/0165668A1

0131 H. For reasons of manageability, all system designs
should embrace one integrated enterprise-wide Standard
naming convention for all files (tables), records (rows), and
fields (columns).
0132 I. For reasons of portability, use the fewest number
of language commands to code the System. Avoid vendor
and/or language extensions.
0.133 J. For reasons of flexibility, never hard code what
can be table-driven.

Ngine Design Concepts
0134 A. Only 4 Processing Models for Financial Ser
vices and Telecommunications Applications

0135) 1. Schema
0136 2. Units, Debit/Credit
0137 3. Assets/Liabilities
0138)

0139 B. Table-Driven Transaction Processing for maxi
mum flexibility

0140) 1. Number of Transactions
0141 2. Name of Each Transaction and Unique
Details

4. File Maintenance Routine

0142. 3. Processing Algorithms (at least 1, up to 20
depending upon complexity)

0.143 4. Each algorithm has 3 components
0144) a. Plus (P) or Minus (M)
0145 b. Operand 1
0146)

0147 C. 100% Auditability For Every Transaction by
creating

c. Operand 2

0.148 1. a Detail Record containing all relevant data
and

0149 2. hash totals of three relevant fields in at least
3 other tables.

0150 D. The 3 relevant fields for calculating all hash
totals are:

0151 1. Cash
0152 2. Units
0153. 3. Cost Basis

0154 E. Basic Relational Database Management System
Processing Concepts

0155 1. Commit/Rollback
0156 2. Row Level Locking
O157 3. Indexing, ROWID
0158
0159)

0160 F. Some Financial Services Accounting Systems
are not permitted to commingle funds. That is, Separate
accounting for both income and principal must be provided.
Therefore, each account master must have a designated

4. Stored Procedures

5. Shared Memory

Jul. 28, 2005

"income posting code” to define the proper processing. Such
a code might be: (I) Income Only, (P) Principal Only, (B)
Both Income and Principal.

Ngine's Basic Tables
0161 Licensee Profile (The Licensee “Reference” or
“Master” Tables)

0162 LM The License Master table contains the nec
essary information to process any type of licensee using
either Single or multiprocessing computers.

0163 LUThe Licensee User Master identifies different
users for the disparate Systems that may be processed
Simultaneously.

0.164 LTThe Licensee Account Type table contains
the necessary information to proceSS any type of
account be it for a pension trust account, a communi
cations account, or a corporate Subsidiary.

0165 LD The Licensee Default Definition table the
default definitions for cash, units, and cost basis con
trols for total System control.

0166 LL The Licensee General Ledger Definition is a
list of all of the acceptable entries for the General
Ledger. That is, it provides a framework for processing
any type of accounting controls for any set of account
types.

0167 LS The Licensee Diversification Scheme con
tains a three level classification Scheme for reporting an
decision-making purposes for any Set of assets and
liabilities.

0168 LP The Performance Measurement Group Mas
ter contains a three level classification Scheme for
measuring the performance of different investment
groupS.

0169 LN The Licensee Summary Name Master con
tains a list of the entries on any type of Income
Statement and Cash Flow Statement.

0170 LW The Licensee Wholesaler Master contains
name, address, Sales Volumes, etc. wholesalers of com
munications Services.

0171 LR The Licensee Reseller Master contains
name, address, Sales Volumes, etc. for resellers of
communications Services.

0172 Account Profile (The Customer “Reference”
Tables)

0173 AO The Account Objectives Table contains the
different types of account objectives, Such as income,
growth, capital preservation, etc.

0.174 AL The Account Jurisdiction contains the dif
ferent types of legal relationships, Such as broker,
agent, trustee, advisor, etc.

0.175. AJ The Account Jurisdiction contains the differ
ent types of legal jurisdiction, Such as federal law, State
law, foreign law, etc.

0176 AR The Account Representatives Table houses
the different representatives, their names and commu
nication addresses.

US 2005/0165668A1

0177. ANThe Account Registration Names is a list of
legal names used in Security Settlement.

0178 AM The Account Master table provides all of the
necessary information to process any type of account
by linking the Account Objective, Account Jurisdiction,
Legal Capacity, Profit Center, Account Representative,
and Registration tables plus other relevant data for
reporting content and reporting cycles.

0179 AC The Account Communications Links links
the Account Number for Financial Services to the
account numbers for communications Services So that
all information can be contained in one reporting
Scheme.

Transaction Profile (The “Driving Tables)
0180 TM The Transaction Master table provides all of
the information to process any type of transaction,
excepting the Specific processing algorithms.

0181 TP The Transaction Processing table provides all
of the Specific processing algorithms for any type of
transaction master. The Transaction Master and Trans
action Processing tables provide all of the necessary
information to process any type of transaction.

0182 TR The Transactions-Recurring Table (TR)
contains the necessary information for automatically
processing any type of transaction on a recurring basis.

Entity Profile (The Entity “Reference” Tables)
0183 EM The Entity Master table provides all of the
necessary information to proceSS any type of financial
entity.

0.184 EA The Entity Attribute table joins all relevant
diversification (known as type, group, and class), gen
eral ledger (known as accounting control numbers), and
performance group (known as type, group, and class)
data into one table for only one access Seek.

0185. ET The Entity Transaction table links specific
transactions to specific entities, Such as BG (Buy Gov
ernment) for a US Treasury Note, BF (Buy Tax-Free)
for a tax-free bond, BE (Buy Equity) for common
Stocks, etc. Note: It is the correct assignment of Such
transactions to Such entities that permits the proper
accumulation of data for income tax purposes.

Licensee Status

0186 SG The System General Ledger contains all of
the information to process any type of institutional
accounting control.

0187 SJ The System Transaction Journal Table con
tains all of the transactions and all of the details for
each transaction for a specific accounting period.

0188 STThe System Trade Settlement Table contains
all of the automatically generated offset transactions for
Buys and Sells

0189 SS The System Summary Table contains a
record for each execution of the System with the Begin
Time, End Time, Number of Total Records Read,
Number of Accepts, Number of Rejects, etc.

Jul. 28, 2005

0190. SR The System Reject Table contains a list of all
transactions rejected for whatever reason.

0191 SC The System Transaction Count Table con
tains the number of each type of transaction processed
on any given transaction.

Customer Status (The “Driven” Tables)
0.192 CS The Customer Income Statement contains all
revenues, expenses, and profits or losses for all cus
tomer accountS.

0193 CF The Customer Cash Flow Statement contains
all receipts and disbursements for all customer
acCOuntS.

0194 CB The Customer Balance Sheet table contains
all assets and liabilities for all customer accounts.

0.195 CG The Customer Capital Gains table contains
all of the realized capital gain details for all customer
acCOuntS.

0196. CI The Pending Income table contains all of the 9.
pending income, Such as interest or dividends, for all
acCOuntS.

0.197 CAThe Pending Capital Adjustments table con
tains all of the pending capital adjustments, Such as
Stock Splits, Stock dividends, mergers, acquisitions,
etc., for all accounts.

0198 CP The Performance Measurement contains all
of the periodic performance records for all customer
acCOuntS.

The Control Tables (The “System Balance” Tables)
0199 Since every transaction is recorded in a detail
record plus hashed to three other control tables, the control
values of cash, units, and cost basis are added to like values
in the following control tables:
0200. Account Master, System General Ledger, and
Entity

0201 Attribute tables.
0202 For other reports such as the Income Statement and
the Cash Flow Statements, the Performance Measurement
table is used as a control table instead of the General Ledger.
0203 The present invention includes four computational
processing models (process models 1 through 4) for pro
cessing financial transactions and assuring full auditability
and traceability.
0204) The purpose of Process Model 1 (FIG. 5) is to
create a single methodology for capturing, maintaining, and
archiving the non-financial transaction data including a
master table (reference table, or schema) data for 100%
auditability within a single software system. This model
provides:

0205) A current database 300 (FIG. 5)(for additions,
negations and corrections) and an archive database
304(Read Only)
0206 Eight tables (i.e. tables 312,316, 320, 324, 328,
332,336 and 340, of FIG. 5)

US 2005/0165668A1

0207. Number of Modifications
0208 12 Control Fields per master table
0209. A sequence number generator
0210 A process flow methodology for add, change, and
delete of data table rows.

0211 The operation of Process Model 1 is as follows:
0212 1) Normal Updating to current database 300

Write to Write to Move Master Add to Change
Master Master Reject Accept to History

Add

IF Identifier Found X
IF Identifier Not Found X X
Change

IF Identifier Not Found X
IF Identifier Found X X X
Delete

IF Identifier Not Found X
IF Identifier Found X X

0213 2) Periodic updating to the archive database 304
at the end of a pre-determined time period. That is,

0214 (a) archive Snapshots of the archive master
312 in the current database 300 to the master in
archive database 304;

0215 (b) archive the archive history 332 in the
current database 300 to the master history 340 in the
archive database 304;

0216 (c) purge the history table 332 in the current
database 304.

0217. The purpose of Process Model 2 (FIGS. 2A, 2B) is
to create a Single methodology for: capturing, maintaining,
and archiving the financial transaction data including: units,
and debit/credits for one or more disparate financial appli
cations with 100% auditability, wherein the processing is
performed by: (a) computing configurations containing any
number of Simultaneous processors, (b) decomposing each
input financial transaction into Separate and independent
Subcomponents, (c) allocating the Subcomponents across
any number of multiple processors.

0218. The methodology of process model 2 utilizes a
data-driven transaction processing Strategy, wherein the
manner in which a transaction is processed is determined by
retrieving appropriate control data for processing a given
input transaction. Thus, the present model provides the
ability: (a) to process like Systems (Such as financial Services
Systems) with different transaction definitions and account
ing requirements (such as commercial banking, broker/
dealers, mutual funds, insurance Systems) and different
debits and credits and/or (b) unlike Systems (such as tele
communications Systems) with disparate definitions (Such as
landline, wireless, Satellite, cable Systems) within the
present invention at the same time.

Jul. 28, 2005

0219. The purpose of Process Model 3 (FIGS. 2A, 2B) is
to create a Single methodology for: capturing, maintaining,
and archiving the financial transaction data including: units,
debits/credits, financial instruments for one or more dispar
ate financial applications with 100% auditability within a
Single Software System on computing configurations con
taining any number of Simultaneous processors, decompos
ing each disparate financial transaction into Separate and
independent Subcomponents, allocating the Subcomponents

Delete
Master

acroSS any number of Simultaneous processors, and proceSS
ing the data with 100% auditability. The methodology of
Model 3 provides:

0220 “Detail Record Maintenance', that is, the abil
ity to process transactions for Similar business enter
prises (such as portfolio management Systems) relat
ing to various financial instruments (Such as
disparate assets and liabilities) and/or transactions
for dissimilar business enterprises (Such as portfolio
management Systems, paying agencies, Stock trans
fer Systems) with disparate languages (such as
English, Spanish, French, or German) and disparate
definitions (such as management philosophy,
accounting, and operating nomenclature) and unlike
financial instruments (Such as assets and liabilities)
within the same Software at the same time.

0221) The ability to decompose, allocate, process,
and audit each financial instrument transactions with
100% auditability.

0222 The current databases 300 (for additions,
negations and corrections) and the archive databases
304(read only);

0223 Sixteen data tables (some of which are shown
in FIGS. 2A-2B) plus a sequence generator;

0224 12 control fields appended to the master tables
for tracing master table changes,

0225. One transaction three hash totals (mostly
using AM, EA, and PM tables);

0226) 4 currency fields;
0227 Sequence number generation;
0228 Reversing/reversed by detail;
0229 Processing flow for additions, negations, and
corrections.

US 2005/0165668A1

0230. The purpose of Process Model 4 is to create a
Single methodology for performing file maintenance includ
ing: creating a record (row) containing the initial data in a
file (table) or modifying the initial data within an existing
record (row) within a file (table) or deleting a current record

BEGIN

Jul. 28, 2005
10

(row) from a file (table) in any Software application on
computing configurations using Simultaneous processors.
Where the term, “Details”, hereinbelow represents the iden
tity of the Specific financial transaction, the methodology of
the proceSS model 4 is provided by programs Such as the
following:

IFTrxn is “ADD’ then
f : Test for Duplicate Add */
SELECT One or More Values from the Desired File (Table) into Working Storage
IF Error then

f* Add New Record */
INSERT INTO Reject Report
IF Error then

Message “INSERT Reject ADD, Details
Goto Write Reject Table

ENDIF
ELSIF

/* Increment Existing Record */
Increment One or More Data Values

UPDATE SET, Details
IF Error then

Message “UPDATE Error ADD, Details
Goto Write Reject Table

ENDIF
ENDIF

ELSIFTrxn is “SUBTRACT then
Test for Valid Record */

SELECT One or More Value(s) from Existing Record
IF Error then

Message “SELECT Error SUBTRACT, Details
Goto Write Reject Table

ENDIF

f : Test for Valid Amounts */

IF One or More Amounts > One or More Values from Existing Record then

f :

INSERT INTO Reject Report
IF Error then

Message “INSERT Reject SUBTRACT, Details
Goto Write Reject Table

ENDIF

Delete Existing Record */
ELSIF One or More Amounts = One or More Values from Existing Record
AND Special Deletion Criteria = TRUE then

DELETE Record
IF Error then

Message “DELETE Error, Details
Goto Write Reject Table

ENDIF
ELSE

/* Decrement Existing Record */
Decrement One or More Values

UPDATE SET, Details
IF Error then

Message “UPDATE Error SUBTRACT, Details
Goto Write Reject Table

ENDIF
ENDIF

ELSE

f* Invalid ADD or SUBTRACT Code */
INSERT INTO Reject Report
IF Error then

Message “INSERT Reject AORS, Details
Goto Write Reject Table

ENDIF
ENDIF

US 2005/0165668A1

-continued

Goto EO
<<Write Reject Reports->
ADD to Reject Table
IF Error then

Message “INSERT Reject Table Error, Details
STOP

ENDIF
&EOss

Null
END

0231. Accordingly, the methodology of process model 4
defines:

0232 (a) A current database (for additions, nega
tions and corrections) and archive database (Read
Only)

0233) (b) ADD or SUBTRACT;
0234 (c) Initial tests for values;
0235 (d) Special deletion criteria;

0236 (e) Tests for action;
0237). INSERT or UPDATE;
0238) DELETE or UPDATE;
0239). INSERT INTO Reject Tables;

0240 Processing Model 1:
0241 Processing model 1 is a method for processing
changes to files (or tables) denoted as master or reference
tables (files) wherein these tables retain fundamental infor
mation that is not derivable from other tables. In particular,
processing model 1 processes changes to master tables in an
automated manner without losing historical financial infor
mation. Accordingly, 100% auditability of all data changes
is able to be achieved.

0242. The method of achieving this goal uses an archi
tecture denoted as “Master Transaction Cluster Processing”
(MTCP). MTCP is based on the premise of creating a logical
flow of all original information from data capture (data
entry) to permanent data repository (data warehouse) by
replacing single master files (or tables) with a cluster of files
(or tables). Therefore, MTCP addresses the complete life
cycle of all information relevant to organizational decision
making. MTCP is targeted for use in the automatic genera
tion of program code for multiple large-scale real-time
transaction processing applications (Such as Securities trad
ing, telecommunications billing, and work management) on
multi-processing computers (using 4, 8, 16, 32 processors),
where control is not only an increasing complex issue but an
absolute necessity for future competition.
0243 The circumstances leading to the invention of
Master Transaction Cluster Processing are:

0244) a) Prior art financial transaction software
architecture lacks the ability to identify transactions
by table, transaction date, transaction number, and
the perSon authorizing the transaction.

0245 b) Prior art financial transaction systems typi
cally use only one table to contain all Master Infor

11
Jul. 28, 2005

mation (i.e., non-derivable information) and the data
in this table is overwritten, thereby losing historical
information. Cases in point would be a record of all
of the past mailing addresses or processing instruc
tions for a Specific customer.

0246 c) Without 100% retention of an organiza
tion's Vital information, management has no idea of
the accuracy of the information being used for deci
Sion-making purposes.

0247 d) The Year 2000 problem, know as Y2K, is
proving that past Software applications designs have
reached technological limits and current mainte
nance costs are inordinately expensive.

0248 e) Competitive pressures are mounting for
higher quality Software with lower Software devel
opment and maintenance costs. Totally new archi
tectures for applications Software is in great demand.

0249 f) The ComputerWorld article, “Information:
America's Favorite Investment,” by Paul Strassman,
ComputerWorld Magazine, Aug. 5, 1996, states that
over 1100 companies are spending more on automa
tion annually than the networths of their respective
companies.

0250 g) The Standish Report as described in Devel
opment Patterns, InfoWorld Magazine, Feb. 3, 1997,
p. 56, States that the Success rate of BusineSS Process
Reengineering has increased from 16% in 1994 to
only 27% in 1996.

0251) Note, in the book “Oracle Design”, Ensor &
Stevenson, O'Reilly Press, it is a recommended practice to
compromise data retention rather than achieve 100% audit
ability. Today's hardware costs Suggest otherwise.
0252) The advantages of the present invention over the
approaches discussed above are:

0253) to provide 100% auditability which offers
busineSS management the capability to exercise its
fiduciary responsibility to its stockholders and Board
of Directors,

0254 to capture, maintain, and ensure the integrity
of all Vital information for business enterprise deci
Sion-making purposes, and

0255 to preserve such information consistent with
business enterprise-defined data retention cycles.
Additionally, the present invention allows accoun
tants to certify in busineSS enterprise annual reports
that all Vital corporate data is being properly pre
Served.

US 2005/0165668A1

0256 A detailed description of Master Transaction Clus
ter Processing corresponding to model 1 (the first compu
tational model of the present invention) is as follows.
0257 MTCP Overview
0258 Master Transaction Clustering, or MTCP, performs
the following tasks:

0259 a) assigns a unique identifier based on (i)
master table identification, (ii) transaction date, (iii)
transaction number, and (iv) authorized user, to each
transaction that causes a change in the State of a
particular record of a master table. That is, if one or
more data elements in the record change, then the
previous record is written to history, and a new status
is assigned to an identifier field used for tracking
Such changes;

0260 b) creates a logical flow of data as it is
originally entered from its inception (data entry) to
its repository (data warehouse). The unique archi
tecture of MTCP replaces the Master File (or Table)
within prior art systems with a cluster of Master Files
(or Tables), known as a “Master Transaction Clus
ter'. This cluster is Suitable for multiprocessing (or
the use of Simultaneous processors within a Single
computer to complete a common job). Hence, MTCP
addresses 100% auditability via maintaining the total
life cycle of information. Aged information may be
deleted from the appropriate tables consistent with
user-defined data retention policies,

0261 c) offers a standard for processing all Master
Tables within a total application;

0262 d) provides a test bed for separately testing
each Master Table Cluster under development and all
Master Table Clusters in concert;

0263 e) permits management to report that it is
Successfully capturing, maintaining, and preserving
all critical information for decision-making pur
pOSes.

0264. MTCP Scope
0265 Master Transaction Cluster Processing utilizes the
following (FIG. 5):

0266) a) two databases (i.e., the current data base
300 and the archive data base 304),

0267 b) sequencing generator 308 having: (i) two
external sequence generators; (ii) two internal
COunterS,

0268 c) eight tables (denoted master table 312,
input table 316, Summary table 320, reject table 324,
accept table 328, history table 332, master archive
table 336 and master history table 340), and

0269 d) twelve additional fields for every row in the
master table 312.

0270 MTCP Independence
0271 Master Transaction Cluster Processing of Model 1
is independent of any:

0272 a) application-Such as accounts receivable,
customer billing, etc.

Jul. 28, 2005

0273 b) industry-such as financial services, tele
communication, or work management,

0274 c) hardware manufacturer-such as Compaq,
Digital, HP, IBM, NCR, Unisys,

0275 d) operating system-such as MS-DOS,
UNIX, OpenVMS, MVS, etc.

0276 e) network-Such as Novell, Ethernet, etc.
0277 f) relational database management system
such as Oracle, Sybase, Microsoft SQL Server, Infor
mix, etc., and

0278 g) computer language-Such as SQL,
COBOL, FORTRAN, PL/1, Java, etc.

0279 MTCP Architecture
0280 The Master Transaction Cluster Processing
(MTCP) architecture can be used for any application in any
industry using any computer language. Within the typical
Structured processing Scheme of input and process, the
Master Transaction Cluster Processing focuses solely on the
process function. Thus, the method permits users to define
input Screens and defined output reports.
0281 MTCP Databases
0282 Unlike prior art software system which contain
only one table for each Set of primary records, Master
Transaction Cluster Processing uses eight related tables, or
a cluster of tables, to track all information on a cradle to
grave basis. The cradle being its point in inception (or data
entry), and the grave being its permanent repository (or data
warehouse). Consequently, the “Master Transaction Cluster”
spans two different databases: one denoted the Current
database 300 containing all relevant data for the current
processing period and a Second denoted the Archive data
base 304 containing all relevant data for all previous pro
cessing periods. The Current database 300 represents the
area of high inquiry, and the Archive database 304 represents
the area of low inquiry. Consequently, the Current database
300 is normally placed on high-speed internal disk drive and
the Archive database 304 is normally placed on less expen
sive lower-speed CD-ROMs. Note that trailing information
in the Archive database 304 may be destroyed consistent
with defined data retention policies, Statute of limitations,
etc.

0283 MTCP Tables
0284. The six tables in the Current database 300 are the

0285 a.) Master Table 312(M) that will contain all
records to be maintained.

0286 b.) Input Table 316 (I) that will contain all
records prior to updating.

0287 c.) Reject Table 324 (R) that will contain all
records rejected during processing.

0288 d.) Accept Table 328 (A) that will contain all
records accepted during processing.

0289 e.) History Table 332 (H) that contain a com
plete Snapshot of all records prior to updating.

0290 f.) Summary Table 320 (S) that contains the
results of a Specific processing operation.

US 2005/0165668A1

0291 and the two tables in the Archive database 304 are
the:

0292 g) Master Archive Table 336 that contains
Snapshots of the master table 312 at the end of each
processing period.

0293 h.) Master History Table 340 that contains a
history of the master table 312 changes during a
current processing period.

0294) Note that the Master Table (M), Input Table (I),
Reject Table (R), the Accept Table (A), the History Table (H)
in the same "Master Transaction Cluster' share the same
number and order of data elements consisting of alphabetic,
numeric, and date items. Alternatively, the Summary Table
(S) contains the start time, end time, number of accepts, and
number of rejects for each time a series of master table 312
modifications are provided.
0295). MTCP Generator and Counters
0296) The Generators 308 include two different external
counters and two internal counters used in effecting 100%
auditability. The two external counters are the Accept
Sequence Number Generator and the Reject Sequence Num
ber Generator. The two internal counters are the Total
Records Read Counter and the Number of Modifications
Counter. All are used only in the Current database 300, as the
Archive database 304 is read-only in nature.
0297 Regarding the external counters, the Accept
Sequence Number Generator included in the Current data
base 300 automatically generates sequential numbers for the
processing period (daily, weekly, monthly, etc.) starting with
the number 1, and increments by 1, So that every transaction
processed against the preceding (old) master table 312 will
receive a Specific transaction number, and accordingly, each
transaction processed will be uniquely identifiable based on
master table identity, transaction date, transaction number,
and authorized user. Note that the transaction date is read off
the internal system clock. The Reject Sequence Number
Generator counts the number of rejects for the Specific
processing period. Its function is similar to the Accept
Sequence Number Generator. Both the Accept Sequence
Number Counter and the Reject Sequence Number Counter
are “processing period’ Specific. That is, both are cleared to
Zero at, e.g., midnight on the end of the processing period So
that each processing period may be separately identified and
audited.

0298 Regarding the internal counters, the Total Records
Read Counter counts the number of transactions read during
a specific processing performance. Since the Total Records
Read Counter is “job execution” dependent, this counter is
cleared to Zero at the outset of every processing program
execution. The Number of Modifications Counter counts the
number of times a Specific record has been changed. AS this
counter is “record dependent, this counter is never cleared
to zero, This specific counter should identify the number of
individual records that may be retrieved, viewed, and
0299 To achieve 100% auditability of a complete sys
tem, every master file (or table in relational database man
agement Systems has a Master Transaction Cluster. There
fore, a total System containing 15 tables would require 15x8
or 120 tables to achieve full 100% auditability. Since each
table will require at least 4 SQL scripts to (1) Create Table,

Jul. 28, 2005

(2) Select data from the table, (3) Delete data from the table,
and (4) Drop the Table in the event of redefinition, the
number of SQL scripts is 15x8x4, or 960 SQL Scripts. Then,
each Master Transaction Cluster will require at least a
Processing Program plus a Review, Reset, and Retest, or at
least four more programs for each cluster, or 4x15, or 60,
more SQL Scripts. All of the SQL scripts would be stored in
one SQL Script Library on the computer for future reference
and ease of maintenance.

0300 MTCP Multi-processing

0301 The multi-processing of the Master Transaction
Cluster occurs in the following manner:

0302) For additions (or Insertions in SQL) of data

0303) The Insertions to the Master Table 312 and

0304 Insertions to the Accept Table 328 may be
processed simultaneously.

0305 For changes (or Updates in SQL) of data

0306 The Update of the Master Table 312 and the
Insert to the Accept Table 328 may be processed
Simultaneously after the original record from the
Master Table 312 has been copied to the History
Table 332.

0307 For deletes (or Deletes in SQL) of data

0308 The Deletion from the Master Table 312 and
the Insertion to the Accept Table 328 may be pro
cessed simultaneously after the current record in the
Master Table 312 has been updated for the transac
tion identifier and then copied to the History Table
332.

0309 MTCP Creation

0310. Before processing any Master Transaction Cluster,
the necessary databases and files (or tables) must be created.
For each busineSS enterprise utilizing the present invention,
these databases and files are created only once in the
following manner:

(Begin Program)
Create Current database
Create Archive database
in the 'Current database

Create Master Table
Create Input Table
Create Reject Table
Create Accept Table
Create Second Accept Table (on separate
disk unit, if desired)
Create History Table
Create Summary Table

Create Sequence Number for Accepts
Create Sequence Number for Rejects
in the Archive database

Create Master Archive
Create History Archive

(End of Program)

US 2005/0165668A1

0311 MTCP Processing
0312 Processing of the “Master Transaction Cluster”
then occurs in the following manner.

0313 Step 1: All required information for processing a
transaction is first captured on an Input Form.

0314 Step 2: Once this information is edited by, e.g.,
an operator, an Enter Key can be pressed by an operator
to write this information to the Input Table 316 for
particular master transaction clusters.

0315) Step 3: For each input table 316, a polling
program notes that the Input Table is not empty and has
a transaction action to be processed whereupon the
action is processed by a process (denoted “process 1'.'
in FIG. M1).

14
Jul. 28, 2005

0316 Step 4: The transaction processing program
determines the type of file maintenance to perform;
basically,

0317 (1) add a record (entitled Insert a Row in
SQL),

0318 (2) change a record (entitled Update a Row in
SQL), and

0319 (3) delete a record (entitled Delete a Row in
SQL),

0320 which in turn determines the multi-processing
potential as described above in the MTCP Multi-processing.
0321) The normal daily processing flow to achieve 100%
auditability in either real-time or batch mode is as follows:

(Begin Program)
Read System Clock to Store Begin Time
(Read Next Transaction)
If Last Transaction

Read System Clock to Store End Time
Write End Time, Begin Time, Number of Accepts, Number of Rejects,

and Total Records Read to Summary Table
Goto End of Program

Increment Total Records Read by 1
(Add a New Record)
If transaction is Add" then

If record exists then
Process Addition Error
Goto Write Reject Table

::

* Select System Clock Date into Insert - Transaction Date
* Increment Sequence Number into Insert - Transaction Number
* Select User Name into Insert - Transaction User
* Select Zero into Update - Transaction Number
* Select Zero into Delete - Transaction Number

:::

Insert to Master Table
Goto Write Accept Table
(Change an Existing Record)

If transaction is 'Change" then
If record does not exist then

Process Change Error
Goto Write Reject Table

:::

* (Master Snapshot) :
* Move Master Table Record to History Table :
:::

* Select System Clock Date into Update - Transaction Date
* Increment Sequence Number into Update - Transaction Number
* Select User Name into Update - Transaction User
* Select Zero into Delete - Transaction Number
* Increment Master Table Number of Modifications by 1 :
:::

Update Master Table with New Data
Goto Write Accept Table

(Delete an Existing Record)
If transaction is Delete" then

If record does not exist then
Process Drop Error
Goto Write Reject Table

:::

* Select System Clock Date into Delete - Transaction Date
* Increment Sequence Number into Delete - Transaction Number *
* Select User Name into Delete - Transaction User :

:::

* Update Master Table Record for Tran Date/Tran Num/User :
:::

* (Master Snapshot) :
* Move Master Table Record to History Table :

:::

US 2005/0165668A1

-continued

Delete Master Table Record From Master Table
(Write MULTI-PROCESSED Accept Table)

::

* Move Current into Archive - Status
* Move "System Date" into Archive - Date

::

Increment Accept Counter
Insert to Accept Table
Insert Second Accept Table (on a separate disk drive, if desired)
Goto Loop to Next Transaction

(Write Reject Table)
Increment Reject Counter
Insert to Reject Table

(Loop to Next Transaction)
Goto Read Next Transaction

(End of Program)
End

0322 Step 5: At the end of the “proofing period’, such
as daily or weekly, when proof tallies are matched to
computer tallies, the Accept Table can be deleted as
follows:

0323) (Begin Program)
0324 Delete All Records from the Accept Table
0325 (End Program)

0326 Step 6: Backup all databases and tables before
any information is purged as follows:
0327 (Begin Program)
0328 Write All Tables in the “Current” database to
backup

0329. Write All Tables in the “Archive” database to
backup

0330 (End of Program)
0331 Step 7: At the end of a user-defined period, an
archive and purge process occurs that

(Begin Program)
::

* Move Archive" to Archive Status
* Move "System Date" to Archive Date
::

Move All Records in the Master Table to Master
Archive.
Move All Records in the History Table to the
History Archive.
(End Program)

0332 Step 8: In the event that current records are
wrongfully moved to the History Archive,
0333)
0334 (Begin Program)

0335 Move Specific Records from the Master
Archive to the Master Table

0336 Move Specific Records from the History
Archive to the History Table

0337 (End Program)

they may be retrieved by

Jul. 28, 2005

0338. This program should be executed only after
Records have been moved from the Current database 300 to
the Archive database 304. It should never be run after new
transactions have been processed to the Current database
300.

0339) MTCP Backup/Recovery
0340) If necessary, a recovery program can be utilized at
any time in the event of hardware failure. Upon complete
recovery, Step 7 and Step 8 will have to be re-executed to
insure the correct status before the next day's processing is
begun. The Accept Table can then be used to as a Substitute
Input Table to return the System to its previous processing
point. Once this table is exhausted, data from the Input Table
would Supply the remaining data for the processing job.
0341 MTCP Management
0342. Once test data are defined and processed, a busi
neSS enterprise may

0343 (a) Review lists of the contents of all Master
Tables 312 for determining correctness.

0344 (b) Reset the contents of all Master Tables for
performing the next test.

0345 (c) Retest.
0346 MTCP Auditability
0347 Once auditability is achieved, the business enter
prise may query:

0348 (a) When a Master Table Cluster was created.
0349 (b) When each record was added (or inserted)
to the Master Table 312,

0350 (c) How many authorized changes (or
updates) have been made to a record of the Master
Table 312.

0351 (d) Prove the integrity of the master transac
tion cluster by producing a Sequential list of all
record changes, and if the record was deleted, where
the record is Stored.

0352. Accordingly, 100% auditability of every change,
every day, for every application is possible.

US 2005/0165668A1

0353) Multiprocessing Defined
0354) Unlike serial processing which processes all jobs in
Sequential fashion, multiprocessing processes. Some of the
Same jobs simultaneously, or in parallel. While multipro
cessing is not new, major computer manufacturerS Such as
Compaq, Digital, Hewlett-Packard, IBM, NCR, Unisys, etc.
have announced offerings of low-cost multiprocessing
machines based on 2, 4, 8, and Sixteen processors. These
machines will rapidly increase the demand for multiproceSS
ing software, which is known as “multithreaded” software.
Multithreaded Software permits the Simultaneous execution
of more than one jobs or job Sequences.
0355 Multiprocessing takes two forms, Symmetrical
Multiprocessing (SMP) and Massively Parallel Processing
(MPP), the difference being that symmetrical multiprocess
ing machines collectively have only one bus between the
processors and the peripheral Storage. For example, a Sym
metrical multiprocessing machine may have eight proces
Sors, one bus, and Sixteen disk drives. In contrast, massive
parallel processing machines has one bus for each processor.
For example, a massively parallel machine may have eight
processor, eight busses, and Sixteen disk drives. Therefore,
Symmetrical multiprocessing machines are best Suited for
applications with a high processing content and a low
input/out content. In contrast, massively parallel processing
machines are best Suited for applications that can be paral
lelized and have a high input/output requirement, as is the
case with many commercial Systems.
0356. In either event, multiprocessing machines are best
utilized when carefully tuned to avoid bottlenecks. This is
likely to mean that all of the layers constituting a computing
environment are multiprocessing-enabled. That is, the hard
ware, operating System, relational database management
System, and the Specific application are capable of multi
processing. Some multiprocessing mainframes have been
available for Several years as well as Some versions of the

Jul. 28, 2005

UNIX operating System. Only a few multiprocessing rela
tional databases exist and even fewer multiprocessing appli
cations. It is believed by Some that the Success of multipro
cessing is Solely dependent upon the "knowledge of the
application' rather than "knowledge of the underlying
tools, the tools being the hardware, operating System, and
relational database System.
0357 Accordingly, it is believed that the limiting factors
for the Success of multiprocessing for financial Systems
depends on:

0358 (1) the lack of financial transaction applica
tion knowledge,

0359 (2) a lack of understanding of how multipro
cessing can be used to effect 100% auditability, and

0360. The value of MTCP is that it addresses the last
form of multiprocessing which is believed to be the most
critical to delivering rapid response times for real-time
financial transaction processing Systems. That is, by dividing
a transaction into Subtransactions that can be spread acroSS
Several multiprocessors, processing throughput may be
faster. Plus, the large number of Small programs make
maintenance much easier and leSS expensive.
0361. A first embodiment of the transaction processing
controller 52 is provided in the flowchart of FIG. 6. Note
that for Simplicity, error handling and related validity check
ing Steps have been omitted. However, the performance of
Such steps is within the Scope of the present invention, as one
skilled in the art will appreciate. A Second pseudo-code
embodiment of the transaction processing controller 52
follows.

Pseudo-Code for the Command Processor

(Transaction Processing Controller 52)
0362

BEGIN
/* The following switches are global. They control both the activity of the system. */
/* The Processor Switches monitors the availability of an eight processor computer. */
/* The Process Switches monitors all of the jobs that are to be executed. */
f* These switches initialize the system, and then change throughout processing */
f* as the subcomponents of the system and the processors finish. */
/* The Processor Switches are turned ON as jobs are sent to specific processors. */
/* The Processor Switches are turned OFF after the jobs are completed. */
Set Processor 1 Switch = 0
Set Processor 2 Switch = 0
Set Processor 3 Switch = 0
Set Processor 4 Switch = 0
Set Processor 5 Switch = 0
Set Processor 6 Switch = 0
Set Processor 7 Switch = 0
Set Processor 8 Switch = 0
Read Begin Time from Systems Clock into Working Storage
Set Total Records Read = 0
Set Number Accepts = 0
Set Number Rejects = 0
/* The Command Programs reads the transaction input from the operator, then */
f edits the transaction for validity and loads the transaction processing algorithms */
f* from the Transaction Processing table (or cache file) to a temporary table. It then */
/* walks down all of algorithms in the temporary table to process the total transaction */
/* with 100% auditability. Each algorithm may be passed to a separate processor.
f* Read operator instructions for starting and ending item in input stream */
/* For the purposes of restart in the event of mid-stream job failure */
f* For the purpose of omissions in processing. */

US 2005/0165668A1
17

-continued

f: Operator may enter Begin End for all items
f: Operator may enter Begin End for a beginning list
f: Operator may enter Begin End for an intermediate list
f: Operator may enter Begin End for an ending list
Read Beginning Item in Input Stream from Master Control Terminal

in Input Stream from Master Control Terminal
Set Beginning Item to Next Transaction

to End of List
Read System Clock for Begin Time
Add Record with Begin Time

Read Ending Item

Set Ending Item

IF Error then
Message “No System Table Record for Begin Time', Details

ENDIF
<<Read Next Transaction>>
f* The Process Swi
f* The Process Swi
Set Process 1 Swi
Set Process 2 Swi
Set Process 3 Swi
Set Process 4 Swi
Set Process 5 Swi
Set Process 6 Swi
Set Process 7 Swi
Set Process 8 Swi
Set Process 9 Swi
Set Process 10 Swi
Set Process 11 Swi
Set Process 12 Swi
Set Process 13 Swi
Set Process 14 Swi
Set Process 15 Swi
Set Process 16 Swi
Set Process 17 Swi
Set Process 18 Swi
Set Process 19 Swi
Set Process 20 Swi
Set Process 21 Swi
Set Process 22 Swi
Set Process 23 Swi
Set Process 24 Swi
Read Next Transac
IF EOF then

Read End Tim
INSERT End

:

io

:

n into Working Storage

rom Systems Clock into Working Storage
ime, Begin Time

Total Records Read, Number Accepts, Number Rejects
into Summary Table

IF Error-then
Message “INSERT ST Table”, Details
STOP

ENDIF
Goto EO

ENDIF
IF Next Transaction = End of List

Goto EO
ENDIF
Increment Total Records Read
<<Test Transaction Types>
IF Transaction Type = then
/* Set Switches for Trade Offset and Settle Offset Processing */

Set Process 1 Switch = 0
Set Process 2 Switch =
Set Process 3 Switch = 1
Set Process 4 Switch =
Set Process 5 Switch =
Set Process 6 Switch = 0
Set Process 7 Switch =
Set Process 8 Switch = 1
Set Process 9 Switch =
Set Process 10 Switch =
Set Process 11 Switch = 0
Set Process 12 Switch =
Set Process 13 Switch = 1
Set Process 14 Switch =
Set Process 15 Switch =
Sct Process 16 Switch =
Set Process 17 Switch = 0

hes are turned ON as each transaction subcomponent is completed.
hes are turned OFF after the total transaction is completed.

O

Jul. 28, 2005

US 2005/0165668A1 Jul. 28, 2005
18

-continued

Set Process 18 Switch = 0
Set Process 19 Switch = 1
Set Process 20 Switch = 1
Set Process 21 Switch = 1
Set Process 22 Switch = 1
Set Process 23 Switch = 1
Set Process 24 Switch = 0

ENDIF
&Test OORR->

:::

CALL N gine EDIT
:::

IF Edit Error
Message “Edit Error, Details
Goto Write Reject Table

ENDIF
IF Tran-Type = Sell
OR Tran-Type = Withdraw then

INSERT into Transaction Journal Table
IF Error

Message “Insert TJ Error, Details
Goto Write Reject Table

ENDIF
IF Correction Data then

DELETE from Reject Table
IF Error

Message “Delete Reject Error, Details
Goto Write Reject Table

ENDIF
ENDIF

ENDIF
:::::::::::::::::::::::::::

CALLTT i.e., execute the algorithms in the temporary table
:::::::::::::::::::::::::::

IF Temporary Table Error then
Message “Temporary Table Error, Details
Goto Write Reject Table

ENDIF
Generate Sequence Number

ELSIF OORR = R
:::

CALL N gine EDIT
:::

IF Edit Error
Message “Edit Error, Details
Goto Write Reject Table

ENDIF
Assign Transaction Number = 000000
Assign LOT Number = 1
<<Read Next Reversals
Read Transaction Journal Table for reversal number
IF “No Transaction Exists where LOT = 1 then

Message “No Transaction Exists, Details
Goto Write Reject Table

ENDIF
IF “No Transaction Exists and LOTs 1 then

Goto Transaction Wrap-up
ENDIF
IF Previously Reversed

Message “Previously Reversed”, Details
Goto Write Reject Table

ENDIF

INSERT Reversing Transaction' to Transaction Journal Table
IF Error

Message “INSERT TJ Reversing Error", Details
Goto Write Reject Table

ENDIF
UPDATE “Reversed Transaction
IF Error

Message “UPDATE TJ Reversed Error", Details
Goto Write Reject Table

ENDIF
Increment the LOT Number
:::::::::::::::::::::::::::

US 2005/0165668A1 Jul. 28, 2005
19

-continued

CALLTT i.e., execute the algorithms in the temporary table
:::::::::::::::::::::::::::

IF Temporary Table Error then
Message “Temporary Table Error, Details
Goto Write Reject Table

ENDIF
Goto Read Next Reversal
Generate Sequence Number
UPDATE “Reversed” Transaction, ALL ROWS with Reversing Data
IF Error then

Message “UPDATE TL Table Reversed”, Details
Goto Write Reject Report

ENDIF
UPDATE “Reversing Transaction, ALL ROWS with Reversed Data
IF Error then

Message “UPDATE TL Table Reversing, Details
Goto Write Reject Report

ENDIF
ELSE

INSERT into Reject Table “No Originate or Reverse Code"
IF Error then

Message “Insert Reject Table', Details
Goto Write Reject Table

ENDIF
ENDIF
<<Transaction Wrap-up>>
INSERT INTO Transaction Count Table
Select Original-Count and Reversal Count from TC Table into Working Storage
IF Error then

INSERT INTO TC Table, Details
IF Error then

Goto Write Reject Table
ENDIF

ELSE
IF AORS = 'O' then

Increment Original-Count
ELSIF AORS = R

Increment Reversal-Count
ELSE

Message “Invalid AORS Code, Details
STOP

ENDIF
ENDIF
<<Test Trade Settlements
IF Transaction Switch = 2

Goto Loop Next Transaction
ENDIF
IF Transaction Switch = 1
OR AORS = “ then

Goto Loop Next Transaction
ENDIF
f* COMMIT Work to Database */
COMMIT Original Transaction. Before Offset Transaction
IF AORS = A then

Insert Licensee Trade Offset Buy in Transaction Identifier
ELSIF AORS - “S

Insert Licensee Trade Offset Sell in Transaction Identifier
ELSE

Message “Invalid AORS, Details
ENDIF
/* Swap Account Numbers for Automatic Transaction */
Move Account Number to Working Storage Account Number
Move Buyer/Seller Number to Account Number
Move Working Storage Account Number to Account Number
Multiply the Net Amount by -1
Multiply the Amount Units by -1
Add Number of Settlement Days from Entity Master to Trade Date to determine Settlement Date
Add to Total Number of Accepts
UPDATE Row in System Table for Number of Accepts
IF Error then

Message “Update Error for Accepts, Details
Goto Write Reject Record

ENDIF

Go to Test Transaction Type
<<Loop Next Transaction>>
f* COMMIT Work to Database */
COMMIT Original Transaction or Offset Transaction, if any

US 2005/0165668A1

-continued

Goto Read Next Transaction
<<Write Reject Records>
Add to Total Number of Rejects
UPDATE Row in System Table for Number of Rejects
IF Error then

Message “Update Error for Rejects', Details
ENDIF
INSERT Into Reject Table, Details
IF Error

Message “Insert Command Reject Table', Details
STOP

ENDIF
Move Incoming Licensee Identifier to Stored Licensee Identifier
Move Incoming Account Identifier to Stored Account Identifier
Move Incoming Transaction Identifier to Stored Transaction Identifier
Move Incoming Entity Identifier to Stored Entity Identifier
Goto Read Next Transaction
&&EOss
Read System Clock for End Time
Add Record with End Time
IF Error then

Message “No System Table Record for End Time', Details
ENDIF

END

0363 A first embodiment of the transaction preprocessor
and decomposer 54 is provided in the flowcharts of FIGS.
7-A through 7-D and FIGS. 8-A and 8-B. Note that for
Simplicity, error handling and related validity check Steps
have been omitted. However, the performance of Such steps
is within the Scope of the present invention, as one skilled in
the art will appreciate.

BEGIN
Housekeeping

Jul. 28, 2005

0364. A second pseudo-code embodiment of the transac
tion preprocessor and decomposer 54 follows.

Pseudo-Code for the Edit Processor for all
Incoming Transactions

(Transaction Preprocessor and Decomposer 54)
0365)

Set Working Storage Alphas to Blanks
Set Working Storage Numbers to Zeroes

IF Incoming Licensee Identifier = Stored Licensee Identifier then
Using Licensee Identifier from Input String, retrieve

Licensee Name
Trade Settlement Switch
Trade Offset Buy
Trade Offset Sell
from Licensee Master into Working Storage

IF Error then
Message “No Licensee Master, Detail
Goto EO

ENDIF
ENDIF
f: 8 +/
IF the Default Definition Table has not been loaded to memory then

LOAD all records from the Default Definition Table consisting of
Licensee
DD Class
DD Identification
DD Sub-Class
DD Accounting Control Number
DD Name

from the Default Definition Table
into the Temporary Table (TA)

IF Error then
Message “NOTA Table”, Details
Goto EO

ENDIF
ENDIF
f: 8 + 8/

US 2005/0165668A1 Jul. 28, 2005
21

-continued

IF the Incoming Account Identifier = Stored Account Identifier
Goto Access Transaction Master (TM)

ELSE
f*** This is the first table containing control totals for cash, units, and cost basis ***/
<<Access Account Master->

From the Account Master Table (TM)
using the Licensee Identifier from the Input String
and the Account Identifier from the Input String, retrieve

Account Type
Income Posting Code
Income/Expense Switch
Receipt/Disbursement Switch
Performance Measurement Switch
Fiscal Year - Month
Fiscal Year - Day
Fiscal Year - Number Periods
Income Cash Balance
Principal Cash Balance
Invested Income
Invested Principal
Total Units - Assets
Liabilities
Total Units - Liabilities
and the Row Identification of the Account Master Record

from the Account Master Table (AM) into Working Storage
IF Error then

Report “Invalid Account Identifier, Details
Goto Write Reject Report

ENDIF
ENDIF
<<Access Transaction Master->
IF the Incoming Transaction Identifier = Stored Transaction Identifier

Goto Test Cash Entry in Entity Attribute Table
ELSE

Using the Licensee Identifier from the Input String
and the Transaction Identifier from the Input String

Transaction Name
Add or Subtract Switch
Settlement Switch
and the Row Identification

from the Transaction Master Table (TM) into Working Storage
IF Error then

Message “Invalid Transaction Identifier, Details
Goto Write Reject Report

ENDIF
IFAORS = A then

Using the Licensee Identifier from the Input String
and the Trade Offset Buy from Working Storage, verify
the existence of a Trade Offset Buy in the TM Table

IF Error then
Message “No Trade Offset Buy, Details
Goto Write Reject Table

ENDIF
ELSEAORS = S then

Using the License Identifier from the Input String
and the Trade Offset Sell from Working Storage, verify
the existence of a Trade Offset Sell in the TM Table.

IF Error then
Message “No Trade Offset Sell, Details
Goto Write Reject Table

ENDIF
ELSE

Message “Invalid AORS Code, Details
Goto Write Reject Report

ENDIF
<<Access Transaction Processing Table (TP)>>
Using the Licensee Identifier from the Input String
and the Transaction Identifier from the Input String, retrieve

ALL of the Transaction Processing algorithms
from the Transaction Processing Table (TP)
into a Temporary Table (TT) in Working Storage

IF Error then
Message “No Transaction Processing Algorithms, Details
Goto Write Reject Report

ENDIF
f*** This is the second control table containing cash, units, cost basis, liabilities, etc. ***/

US 2005/0165668A1 Jul. 28, 2005
22

-continued

<<Test Income Cash Posting Controls>>
IF the Working Storage Income Posting Code = I
OR the Working Storage Income Posting Code = B then

Count the number of IC entries in the TA table
<<Test Income Cash
IF count = 1 then
Using Licensee Identifier from the Input String
and the Class = IC
and the Sub-Class = retrieve

Accounting Control Number from TA into Working Storage
IF Error then

Message “Invalid Income Cash ACN, Details
Goto Write Reject Record

ENDIF
Using the Licensee Identifier from the Input String
and the Accounting Control Number in Working Storage, retrieve
Accounting Control Number

and the Row Identification from General Ledger Table (SG)
IF Error then

Message “Invalid Income Cash on SG, Details
Goto Write Reject Report

ENDIF
ELSIF count = 2 then

Using the Licensee Identifier from the Input String
and the Class = IC
and the Sub-class = D, retrieve

Accounting Control Number from TA into Working Storage
IF Error then

Message “Invalid Income Cash Demand ACN in TA, Details
Goto Write Reject Report

ENDIF
Using the Licensee Identifier from the Input String
and the Accounting Control Number in Working Storage, retrieve

Accounting Control Number
and the Row Identification from the General Ledger

IF Error then
Message “Invalid Income Cash Demand in GL, Details
Goto Write Reject Report

ENDIF
Using the Licensee Identifier from the Input String
and the Class = IC
and the Sub-class = O, retrieve
Accounting Control Number from TA table into Working Storage
IF Error then

Message “Invalid Income Cash Overdraft ACN in TA,
Details

Goto Write Reject Report
ENDIF
Using the Licensee Identifier from the Input String
and the Accounting Control Number in Working Storage, retrieve

Accounting Control Number
and the Row Identification from the General Ledger

IF Error then
Message “Invalid Income Cash Overdraft in GL, Details
Goto Write Reject Report

ENDIF
ELSE

Message “Invalid Income Cash Count on DD, Details
Goto Write Reject Record

ENDIF
<<Test Principal Cash Posting Controls>>
ELSIF the Working Storage Income Posting Code = P

Count the number of PC entries in the TA table
<<Test Principal Cashes
IF count = 1 then

Using the Licensee Identifier from the Input String
and the Class = PC
and the Sub-Class = retrieve

Accounting Control Number from TA into Working Storage
IF Error then

Message “Invalid Principal Cash ACN, Details
Goto Write Reject Record

ENDIF
Using the Licensee Identifier from the Input String
and the Accounting Control Number in Working Storage, retrieve
Accounting Control Number

and the Row Identification from General Ledger Table (SG)

US 2005/0165668A1

-continued

IF Error then
Message “Invalid Principal Cash on SG, Details
Goto Write Reject Report

ENDIF
ELSIF count = 2 then

Using the Licensee Identifier from the Input String
and the Class = PC
and the Sub-class = D, retrieve

23

Accounting Control Number from TA into Working Storage
IF Error then

Message “Invalid Principal Cash Demand ACN in TA,
Details

Goto Write Reject Report
ENDIF
Using the Licensee Identifier from the Input String
and the Accounting Control Number in Working Storage, retrieve

Accounting Control Number
and the Row Identification from the General Ledger

IF Error then
Message “Invalid Principal Cash Demand in GL, Details
Goto Write Reject Report

ENDIF
Using the Licensee Identifier from the Input String
and the Class = PC
and the Sub-class = 'O', retrieve
Accounting Control Number from TA table into Working Storage
IF Error then

Message “Invalid Principal Cash Overdraft ACN in TA’.
Details

Goto Write Reject Report
ENDIF
Using the Licensee Identifier from the Input String
and the Accounting Control Number in Working Storage, retrieve

Accounting Control Number
and the Row Identification from the General Ledger

IF Error then
Message “Invalid Principal Cash Overdraft in GL, Details
Goto Write Reject Report

ENDIF
ELSE

Message “Invalid Principal Cash Count on DD, Details
Goto Write Reject Record

ENDIF
ELSE

Message “Invalid Posting Code, Details
Goto Write Reject Report

ENDIF
ENDIF
<<Test Cash Entry in Entity Attribute Table>>
Using the Licensee Identifier from the Input String
and the Account Control Number from the TU Record in Working Storage, retrieve

The Total Units - Assets
and the Row Identifier from the Entity Attribute Table (EA)

IF Error then
Message “Invalid Total Units, Details
Goto Write Reject Table
ENDIF
<<Test Asset f Liability Processing>>
IF Working Storage Add or Subtract Switch (AORS: is OFF then

Goto EO
ENDIF

IF Incoming Entity Identifier = Stored Entity Identifier then
Goto EO

ENDIF

f*** This is the third table containing control table for cash, units, cost basis, liabilities, etc. * * */
<<Access Entity Attribute Table (EA):->

Using the Licensee Identifier from the Input String
and the Entity Identifier from the Input String, retrieve

Accounting Control Number (Asset)
Accounting Control Number (Liability)
Diversification Type
Diversification Group
Diversification Class
Invested Income Balance
Invested Principal Balance

Jul. 28, 2005

US 2005/0165668A1
24

-continued

Total Units - Assets
Total Units - Liabilities
and the Row Identification of the Entity Attribute Record

from the Entity Attribute Table (EA) into Working Storage
IF Error then

Message “Invalid Entity Identifier in EA, Details
Goto Write Reject Table

ENDIF

<<Access the Entity Transaction Table (ET)>>
Using the Licensee Identifier from the Input String
and the Entity Identifier from the Input String, verify

the existence of an acceptable transaction
in the Entity Transaction Table (ET) for the Entity Identifier.

IF Error then
Message “Invalid Transaction for this Entity, Details
Goto Write Reject Table

ENDIF
<<Access the Entity Master Table (EM)>>
Using the Entity Identifier from the Input String, retrieve

Income Rate
Income Ex-Date
Income Record Date
Income Payment Date
Cap-Adi Rate
Cap-Adi Ex-Date
Cap-Adi Record Date
Cap-Adi Payment Date
Settlement Days
Current Price

from the Entity Master Table (EM) into Working Storage
IF Error then

Message “No Entity Master, Details
Goto Write Reject Report

ENDIF
<<Test Other Assets->

Using the Licensee Identifier from the Input String
and the Account Type from Working Storage
and the Accounting Control Number - Asset from Working Storage, retrieve

the Accounting Control Number - Asset
and Row Identifier from the General Ledger (SG)

IF Error then
Message “Invalid ACN - Asset, Details
Goto Write Reject Report

ENDIF
<<Test Other Liabilities.>>

Using the Licensee Identifier from the Input String
and the Account Type from Working Storage
and the Accounting Control Number - Liability from Working Storage, retrieve

the Accounting Control Number - Liability
and Row Identifier from the General Ledger (SG)

IF Error then
Message “Invalid ACN - Liabilities, Details
Goto Write Reject Report

ENDIF
<<Test Invested Incomes>

Using the Licensee Identifier from the Input String
and the Account Type Code from Working Storage
and the Invested Income Identifier from Working Storage, retrieve

the Invested Income Balance
and the Row Identifier from the General Ledger Table (SG)

IF Error then
Message “Invalid Invested Income
Goto Write Reject Table

ENDIF

<<Test Invested Principales
Using the Licensee Identifier from the Input String
and the Account Type Code from Working Storage
and the Invested Principal Identifier from Working Storage, retrieve

the Invested Principal Balance
and the Row Identifier from the General Ledger Table (SG)

IF Error then
Message “Invalid Invested Principal
Goto Write Reject Table

ENDIF
Goto EO

Jul. 28, 2005

US 2005/0165668A1 Jul. 28, 2005
25

-continued

<<Write Reject Table>>
Add to Reject Table
IF Error then

Message “Invalid Insert to Reject Table', Details
STOP

ENDIF
&&EOss

Null
END

Pseudo-Code for the SCHEDULER

(Subtransaction Scheduler 62)
0366)

BEGIN
<<Read Next Process.>>
Read Next Transaction in Temporary Table (TT)

IF EOJ then
<<Test All Switches - AORL>>
IF All 18 Process Switches = 0

Goto EO
ENDIF
Wait 10 milliseconds
Goto Test All Switches - AORL

ENDIF
<<Test Processor Availability>>
IF Processor 1 Switch = 0 then

Set Processor 1 Switch = 1
Initiate Process on Processor 1 G end, Set Processor 1 Switch = 0
Goto Next Process Loop

ENDIF

IF License Master (LM) Number of Processors = 1 then
<<Test 1 Processors>
IF Processor 1 Switch = 1 then

Wait 10 Miliseconds
Goto Test 1 Processor

ENDIF
Goto Test Processor Availability

ENDIF
IF Processor 2 Switch = 0 then

Set Processor 2 Switch = 1
Initiate Process on Processor 2 G end, Set Processor 2 Switch = 0
Goto Next Process Loop

ENDIF

IF License Master (LM) Number of Processors = 2 then
<<Test 2 Processors Busy>>
IF Processor 1 Switch = 1
AND Processor 2 Switch = 1 then

Wait 10 milliseconds
Goto Test 2 Processors Busy

ENDIF

Goto Test Processor Availability
ENDIF
IF Processor 3 Switch = 0 then

Set Processor 3 Switch = 1
Initiate Process on Processor 3 G end, Set Processor 3 Switch = 0
Goto Next Process Loop

ENDIF
IF Processor 4 Switch = 0 then

Set Processor 4 Switch = 1
Initiate Process on Processor 4 G end, Set Processor 4 Switch = 0
Goto Next Process Loop

ENDIF

IF License Master (LM) Number of Processors = 4 then
<<Test 4 Processors Busy>>
IF Processor 1 Switch = 1
AND Processor 2 Switch = 1

US 2005/0165668A1

AND
AND

-continued

Processor 3 Switch = 1

Wait 10 milliseconds
Goto Test 4 Processors Busy

ENDIF
Go

ENDIF
IF Processor

Se
Ini
Go

ENDIF
IF Processor

Set
Ini
Go

ENDIF
IF Processor

Set
Ini
Go

ENDIF
IF Processor

Set
Ini

o Test Processor Availability

5 Switch = 0 then
Processor 5 Switch = 1
iate Process on Processor 5
o Next Process Loop

6 Switch = 0 then
Processor 6 Switch = 1
iate Process on Processor 6
o Next Process Loop

7 Switch = 0 then
Processor 7 Switch = 1
iate Process on Processor 7
o Next Process Loop

8 Switch = 0 then
Processor 8 Switch = 1
iate Process on Processor 8

Go
ENDIF

o Next Process Loop

Processor 4 Switch = 1 then

26

G end, Set Processor 5 Switch = 0

G end, Set Processor 6 Switch = 0

G end, Set Processor Switch 7 = 0

G end, Set Processor 8 Switch = 0

IF Licensee Master (LM) Number of Processors = 8 then
<<Test 8 Processors Busy>>
IF Processor 1 Switch = 1
AND Processor 2 Switch = 1
AND Processor 3 Switch = 1
AND Processor 4 Switch = 1
AND Processor 5 Switch = 1
AND Processor 6 Switch = 1
AND Processor 7 Switch = 1
AND Processor 8 Switch = 1 then

Wait 10 milliseconds
Goto Test 8 Processors Busy

ENDIF
Goto Test Processor Availability

ENDIF
<<Next Process Loops>

Goto Read Next Process

(GLC)

-continued

Process GL

<<Investment Balances

&EOss
Null

END

Process the Controls Process Routine in the
Temporary Table (TT)

0367)

BEGIN
IF OORR = “O'” then

Set Factor = + 1
ELSIF OORR = R then

Set Factor = - 1
ENDIF
<<Total Units
IF Operand 2 = TU then

(AMU) Process AM Units
(EAU) Process EA Units
(PMU) Process PM Units

<<Cash Balances
ELSIF Operand 2 = IC
OR Operand 2 = PC then

ELSIF Operand 2 = II
OR

(AMC) Process AM

(EAC) Process

Income Cash Demand
Income Cash Overdraft
Principal Cash Demand
Principal Cash Overdraft
EA Income Cash
Principal Cash

Operand 2 = IP then
(AMI) Process AM

(EAI) Process EA
(GLI) Process GL

Jul. 28, 2005

Assets - Income Cash
Demand
Assets - Income Cash
Overdraft
Assets - Principal
Cash Demand
Assets - Principal
Cash Overdraft
Liab - Income NetWorth

Liab - Principal Net Worth

Invested Income
Invested Principal
Cost

Assets - Actg
Control Number
Liab - Income NetWorth

Liab - Principal Net Worth

US 2005/0165668A1 Jul. 28, 2005
27

-continued -continued

<<Other Customized Investment Reporting>> <<Reverse ADD->
ELSIF Operand 2 = I and Report Request = Y ELSIF OORR = R and
OR Operand 2 = E and Report Request = Y then AORS = A then

(IEE) Process IE IF Process 5 Switch = 0 then
(PME) Process PM Set Process 5 Switch = 1

Initiate Process BS
ELSIF Process 6 Switch = 0 then

Set Process 6 Switch =

<<Receipts/Disbursements>>
ELSIF Operand 2 = R and Report Request = Y
OR Operand 2 = D and Report Request = Y then Initiate Process PI/PA

(IEC) Process RD ELSIF Process 7 Switch = 0 then
(PMC) Process PM Set Process 7 Switch = 1

<<Performance Measurements Initiate Process TS
ELSIF Operand 2 = PM and Report Request = Y then ELSIF Process 8 Switch = 0 then

(PMP) Process PM Set Process 8 Switch = 1
<<Contributions/Distributions Initiate Process PM
ELSIF Operand 2 = CN and Report Request = Y ELSE
OR Operand 2 = DN and Report Request = Y then Set Process 5 Switch = 0

(CDC) Process PM Set Process 6 Switch = 0
<<Management Fees>> Set Process 7 Switch = 0
ELSIF Operand 2 = MF and Report Request = F then Set Process 8 Switch = 0

(PMM) Process PM ENDIF
<<Originate SUB>>
ELSIF OORR = ‘O’ and

AORS = S then
IF Process 9 Switch = 0 then

Set Process 9 Switch = 1
Initiate Process BS

<<Commissions>>
ELSIF Operand 2 = CM then

(PCM) Process PM
<<Federal Taxes
ELSIF Operand 2 = FT then

(PMF) Process PM ELSIF Process 10 Switch = 0 then
<<State Taxes>> Set Process 10 Switch = 1
ELSIF Operand 2 = 'ST then Initiate Process PI/PA
(PMS) Process PM ELSIF Process 11 Switch = 0 then
ELSE Set Process 11 Switch =

Message “Invalid Operand 2' Initiate Process TS
STOP ELSIF Process 12 Switch = 0 then

ENDIF Set Process 12 Switch =
END Initiate Process CG

ELSIF Process 13 Switch = 0 then
Set Process 13 Switch =
Initiate Process PM

ELSE
Process the Detail Records Maintenance Routine Set Process 9 Switch = 0

(AORS) Set Process 10 Switch = 0
Set Process 11 Switch = 0
Set Process 12 Switch = 0

0368 Note: Leave all switches=1 until the last routine Set Process 13 Switch = 0
is completed. This forces the processing to loop ENDIF
through each Succeeding routine until completed. Then ESFOR is and
turn set all Swtiches=0 So that the Scheduler will revert AORS = S then
back to the Command Program to read another trans- IF Process 14 Switch = 0 then

Set Process 14 Switch =
actIOn. Initiate Process BS

ELSIF Process 15 Switch = 0 then
Set Process 15 Switch = 1
Initiate Process PI/PA

<<Originate ADD>> ELSIF Process 16 Switch = 0 then
IF OORR = ‘O’ and Set Process 16 Switch =

AORS = A then Initiate Process TS
IF Process 1 Switch = 0 then ELSIF Process 17 Switch = 0 then

Set Process 1 Switch = Set Process 17 Switch =
Initiate Process BS Initiate Process CG

ELSIF Process 2 Switch = 0 then ELSIF Process 18 Switch = 0 then
Set Process 2 Switch = Set Process 18 Switch =
Initiate Process PI/PA Initiate Process PM

ELSIF Process 3 Switch = 0 then ELSE
Set Process 3 Switch = 1 Set Process 14 Switch = 0
Initiate Process TS Set Process 15 Switch = 0

ELSIF Process 4 Switch = 0 then Set Process 16 Switch = 0
Set Process 4 Switch = 1 Set Process 17 Switch = 0
Initiate Process PM Set Process 18 Switch = 0

ELSE ENDIF
Set Process 1 Switch = 0 ENDIF
Set Process 2 Switch = 0
Set Process 3 Switch = 0
Set Process 4 Switch = 0

ENDIF 0369 A first embodiment of the processing for the Sub
transaction processing module 64 is provided in the flow

US 2005/0165668A1 Jul. 28, 2005
28

charts of FIGS. 9-A through 9-B, FIGS. 10, 11, 12, 13 and 0370 A second pseudo-code embodiment of the transac
14. Note that for simplicity, error handling and related tion processing controller 52 follows.
validity checking Steps have been omitted. However, the Pseudo-Code for Processing for the Subtransaction
performance of Such Steps is within the Scope of the present Processing Module 64
invention, as one skilled in the art will appreciate. 0371)

BEGIN
DO WHILE List of Subtransactions in the TT Table is Valid

Select Next Row of Operator. Operand 1, and
Operand 2 from TT into Working Storage
f: To choose the specific input field (or column) */
IF Operand 1 = N*

Set Value = Net Amount rom Input String
ELSIF Operand 1 = “I

SetValue = Interest rom Input String
ELSIF Operand 1 = P

Set Value = Principal rom Input String
ELSIF Operand 1 = H

Set Value = Amount Units rom Input String
ELSIF Operand 1 = “U”

Set Value = Amount Units rom Input String
ELSIF Operand 1 = C

Set Value = Cost Basis rom Input String
ELSIF Operand 1 = W

Set Value = Amount Units Curr Price rom Input String
ELSIF Operand 1 = F

Set Value = Federal Taxes from Input String
ELSIF Operand 1 = 'S

Set Value = State Taxes rom Input String
ELSIF Operand 1 = L.

Set Value = Local Taxes rom Input String
ELSIF Operand 1 = M

Set Value = Management Fees rom Input String
ELSE

Message “Invalid Operand 1’, Details
ENDIF
f: To Adiust for Plus or Minus */
IF Operator = P then

Set Multiplier = +1
ELSIF Operator = “M” then

Set Multiplier = -1
ENDIF
f: To Adjust for Originate or Reversal */
IF OORR = 'O' then

Set Multiplier = Multiplier * +1
ELSIF OORR = R

Set Multiplier = Multiplier * -1
ENDIF

/* Test for Total Unit Changes */
IF Operand 2 = TU then

Add Value to AM - Total Units
Add Value to EA - Total Units

/* Test for Income Cash Changes */
IF Operand 2 = IC then

f*Add to First Controls - Account Master */
Add Value to AM - Income Cash
Add Value to AM - Units
/* Add to Second Controls - Entity Attribute */
Add Value to EA - Invested Income
Add Value to EA - Units
/* Add to Third Controls - General Ledger */
IF Number of Entries = 1 then

Add Value to GL - Income Cash
ELSIF Number of Entries = 2 then

IF Value & O then
IF ICD >= 0 then

Add Value to GL - Income Cash Demand
ELSE ICD & O

Add (Value - ICO) to GL - Income Cash Demand
Set Zero to GL - Income Cash Overdraft

ENDIF
ELSIF Value <= 0 then

US 2005/0165668A1

-continued

IF ICD & Othen
Add Value

ELSE ICD >= 0 then

29

to GL - Income Cash Overdraft

Add (Value - ICD) to GL - Income Cash Overdraft
to GL - Income Cash Demand Set Zero

ENDIF
ELSE

Message “Invalid Value', Details
ENDIF
Add Value to Uninvested Income

ELSE

Message “Invalid Number Entries, Details
ENDIF

/* Test for Principal Cash Changes
ELSIF Operand 2 = PC then

f*Add to First Controls - Account Master
Add Value to AM - Principal Cash
Add Value to AM - Units
/* Add to Second Controls - Entity Attribute */
Add Value to EA - Invested Principal
Add Value to EA - Units
/* Add to Third Controls - General Ledger
IF Number of Entries = 1 then

Add Value to GL - Principal Cash
ELSIF Number of Entries = 2 then

IF Value & O then
IF PCD >= 0 then

Add Value
ELSE PCD & O

Add Value
Set Zero

ENDIF
ELSIF Value <= 0 then

IF PCD & O then
Add Value

ELSE PCD >= 0 then
Add (Value - PCD)

to GL - Principal Cash Demand

to GL - Principal Cash Demand
to GL - Principal Cash Overdraft

to GL - Principal Cash Overdraft

to GL - Principal Cash Overdraft
to GL - Principal Cash Demand Set Zero

ENDIF
ELSE

Message “Invalid Value', Details
ENDIF

ELSE
Message “Invalid Number Entries, Details

ENDIF
Add Value to Uninvested Principal

/* Test for Invested Income Changes
ELSIF

f:
ELSIF

Operand 2 = II then
f*Add to First Controls - Account Master
Add Value to AM - Invested Income
/* Add to Second Controls - Entity Attribute
Add Value to EA - Invested Income
/* Add to Third Controls - General Ledger
f: Update Assets
Add Value to ACN- Assets
f: Update Liabilities
IF ACN-Liab = then

Add Value to Invested Income
ELSE

Add Value to ACN Liabilities
ENDIF
Test for Invested Principal Changes
Operand 2 = IP then
f*Add to First Controls - Account Master
Add Value to AM - Principal Cash
/* Add to Second Controls - Entity Attribute
Add Value to EA - Invested Principal
/* Add to Third Controls - General Ledger
f: Update Assets
Add Value to ACN - Assets
f: Update Liabilities
IF ACN Liab = then

Add Value to Invested Principal
ELSE

Add Value to ACN Liabilities
ENDIF

Jul. 28, 2005

US 2005/0165668A1 Jul. 28, 2005

-continued

/* Test for Other Customized Reporting Changes */
ELSIF Operand 2 = I and Report Request = Y
OR Operand 2 = E and Report Request = Y then

(IEE) Process IE
(PME) Process PM

ELSIF Operand 2 = R and Report Request = Y
OR Operand 2 = D and Report Request = Y then

(IEC) Process RD
(PMC) Process PM

f Test for other Performance Measurement Data */
ELSIF Operand 2 = PM and Report Request = Y then

(PMP) Process PM
ELSIF Operand 2 = CN
OR Operand 2 = DN then

(CDC) Process PM
ELSIF Operand 2 = MF then

(PMM) Process PM
ELSIF Operand 2 = CM then

(PCM) Process PM
ELSIF Operand 2 = FT then

(PMF) Process PM
ELSIF Operand 2 = 'ST then

(PMS) Process PM
ELSE

Message “Invalid Operand 2, Details
ENDIF

f Test for Detail Record Maintenance of Financial Instruments */
IF AORS = then

:::::::::::::::::::::::::::::::::

CALLPORTFOLIO ADJUSTER 110
:::::::::::::::::::::::::::::::::

ENDIF

ENDDO
END

Pseudo-Code for Performance Measurement (PM)

Processing related to the Licensee Performance
Measurement Table 104

0372)

BEGIN
IF Trxn = 'A' and Type = 'O' OR Trxn = 'S' and Type = R (which
means ADD)

SELECT Data into Working Storage from PM Record
IF Error then

INSERT INTO PM Record, Details
IF Error then

Message “INSERT PM Error", Details
Goto Write Reject Report

ENDIF
ELSE

Increment Units by amount to be increased
UPDATE Data to Table f Row
IF Error

Message “UPDATE PM Error 1, Details
Goto Write Report Error

ENDIF
ENDIF

ELSIFTrxn = 'A' and Type = R OR Trxn = 'S' and Type = 'O' (which
means SUBTRACT)

SELECT Data into Working Storage from PM Record

US 2005/0165668A1
31

-continued

IF Error then
Message “ SELECT PM Error 2, Details
Goto Write Report Error

ENDIF
IF Units = ALL
and All Other Balances in the Row are Zero then

DELETE from Table f Row
IF Error

Message “DELETE PM Error", Details
Goto Write Report Error

ENDIF
ELSE

Decrement Units by Amount to be reduced
UPDATE PISET Details
IF Error then

Message “UPDATE PM Error 2, Details
Goto Write Report Writer

ENDIF
ENDIF

ELSE
Null

ENDIF
Goto EO

<<Write Reject Reports->
INSERT into Reject Table, Details

IF Error
STOP

ENDIF
&EOss
Null

END

Pseudo-Code for Income/Expense Processing (IE)

Processing Related to the Customer Income
Statement (Income/Expense) Table 96

0373)

BEGIN
IF Trxn = Debit and Type = 'O'
OR Trxn = Credit and Type = 'O' then

SELECT Data into Working Storage from IE Record
IF Error then

INSERT INTO IE Table, Details
IF Error then

Message “INSERTIE Error 1,
Details
Goto Write Report Error

(which means ADD)

ENDIF
ELSE

Increment Units by amount to be increased
UPDATE Data to Table f Row
IF Error then

Message “UPDATE IE Error 1,
Details
Goto Write Report Error

ENDIF
ENDIF

ELSIFTrxn = Debit and Type = R' (which
means SUBTRACT)

OR Trxn = Credit and Type = R then
SELECT Data into Working Storage from IE Record
IF Error then

Message “SELECTIE Error 2, Details
Goto Write Report Error END

ENDIF

Jul. 28, 2005

-continued

IF Units = ALL then

DELETE from Table f Row
IF Error then

Message “DELETE IE Error",
Details

Goto Write Report Error
ENDIF

ELSE

Decrement Units by Amount to be reduced
UPDATE IE SET Details
IF Error then

Message “UPDATE IE Error 2,
Details

Goto Write Report Writer
ENDIF

ENDIF

ELSE
Null

ENDIF
Goto EO

<<Write Reject Reports->
INSERT into Reject Table, Details

&&EOss

Null

IF Error then
STOP

ENDIF

US 2005/0165668A1

0374)

BEGIN

END

32

Pseudo-Code for AORS Processing

(Portfolio Adjuster 110 Processing)

/* The End AORS Switch is a global switch that signals the end of all AORS
processing */
/* otherwise known as the Detail Record (or Row) Maintenance Processing. */
/* The switch is originally set = 0. Each called routine ends by setting the
switch = 1. *f
Set End AORL, Switch = 0
DO WHILE End AORS Switch = 0

IFTXn = “ADD then
IF Type = 'O' then

ENDDO

::::::::::::::::::::::::::::::::::::

CALL Original Add Module 114 (Originate Add)
::::::::::::::::::::::::::::::::::::

IF Error

Message “No OADD Routine'
Goto Write Reject Report

ENDIF
ELSIFType = R then

ELSE

ENDIF

::::::::::::::::::::::::::::::::::::

CALL Reverse Add Module 118 (Reverse Add)
::::::::::::::::::::::::::::::::::::

IF Error

Message “NORADD Routine”
Goto Write Reject Routine

ENDIF

Message “Invalid OOR R Code for ADD, Details
Goto Write Reject Report

ELSIFTrxn - SUBTRACT then
IF Type = 'O' then

ELSE

ENDIF

ELSIFType = R then

ELSE

ENDIF

::::::::::::::::::::::::::::::::::::

CALL Original Sell Module 122 (Originate Subtract)
::::::::::::::::::::::::::::::::::::

IF Error then
Message “No OSUB Routine', Details
Goto Write Reject Report

ENDIF

::::::::::::::::::::::::::::::::::::

CALL Reverse Sell Module 126 (Reverse Subtract)
::::::::::::::::::::::::::::::::::::

IF Error then

Message “No RSUB Routine, Details
Goto Write Reject Report

ENDIF

Message “Invalid O OR R for SUBTRACT, Details
Goto Write Reject Report

Message “Invalid Transaction, Details
Goto Write Reject Report

Goto EO
<<Write Reject Reports->
INSERT into Reject Table

IF Error then

ENDIF
STOP

Set End AORL, Switch =1
&&EOss
Null

Jul. 28, 2005

US 2005/0165668A1

0375 A first embodiment of the processing for the bal
ance sheet table 130 is provided in the flowchart of Fig.
BAL-SHT. Note that for simplicity, error handling and
related validity checking StepShave been omitted. However,
the performance of Such Steps is within the Scope of the
present invention, as one skilled in the art will appreciate.

0376 A second pseudo-code embodiment of the process
ing for the balance sheet table 130 follows.

0377 Balance Sheet Processing (BS)

BEGIN

IF AORL = A and OORR = 'O' (which means ADD)
AND AORL = S and

OORR = R then
SELECT Data into Working Storage from BS Record
IF Error then

INSERT INTO BS Table, Details
IF Error then

Message “INSERT BS Error,
Details
Goto Write Reject Table

ENDIF
ELSE

Increment Units by amount to be increased
UPDATE Data to Table f Row
IF Error

Message “UPDATE BS Error 1,
Details
Goto Write Report Error

ENDIF
ENDIF

ELSIF AORL = A and OORR = R (which means
SUBTRACT)

OR AORL = S and OORR = 'O' then
SELECT Data into Working Storage from BS Record
IF Error then

Message “SELECT BS Error 2, Details
Goto Write Report Error

ENDIF
IF Units = ALL then

DELETE from Table f Row
IF Error

Message “DELETE BS Error",
Details
Goto Write Report Error

ENDIF
ELSE

Decrement Units by Amount to be reduced
UPDATE E SET Details
IF Error then

Message “UPDATE BS Error 2,
Details
Goto Write Report Writer

ENDIF
ENDIF

ELSE
Null

ENDIF
Goto EO
<<Write Reject Reports->
INSERT into Reject Table, Details

IF Error
STOP

ENDIF
&EOss
Null

END

33
Jul. 28, 2005

Pseudo-Code For Processing The Capital Gains
Table 140

0378)

BEGIN
IF AORL = 'S' and Type = 'O' (which means ADD)

SELECT Data into Working Storage from CG Record
IF Error then

INSERT INTO CG Table, Details
IF Error then

Message “INSERT CG Table",
Details
Goto Write Report Error

ENDIF
ELSE

Increment Units by amount to be increased
UPDATE Data to Table f Row
IF Error

Message “UPDATE CG Error 1,
Details
Goto Write Report Error

ENDIF
ENDIF

ELSIF AORL = S and Type = R (which means
SUBTRACT)

SELECT Data into Working Storage from CG Record
IF Error then

Message “SELECT CG Error 2, Details
Goto Write Report Error

ENDIF
IF Units = ALL then

DELETE from Table f Row
IF Error

Message “DELETE CO Error",
Details
Goto Write Report Error

ENDIF
ELSE

Decrement Units by Amount to be reduced.
UPDATE IE SET Details
IF Error then

Message “UPDATE CG Error 2,
Details
Goto Write Report Writer

ENDIF
ENDIF

ELSE
Null

ENDIF
Goto EO
<<Write Reject Reports->
INSERT into Reject Table, Details

IF Error
STOP

ENDIF
&&EOss
Null

END

0379) Note: do not turn switch OFF or back to 0 as
these Swithces indicate which processes remain.

Pseudo-Code for Original Add Module 114
Processing

0380

BEGIN
IF Process 1 Switch = 0 then

Set Process 1 Switch = 1
::::::::::::::::::::::::

CALL BS
::::::::::::::::::::::::

US 2005/0165668A1

-continued

ELSIF Process 2 Switch = 0 then
Set Process 2 Switch = 1
::::::::::::::::::::::::

CALLP
::::::::::::::::::::::::

ELSIF Process 3 Switch = 0 then
Set Process 3 Switch = 1
::::::::::::::::::::::::

CALL PA
::::::::::::::::::::::::

ELSIF Process 4 Switch = 0 then
Set Process 4 Switch = 1
::::::::::::::::::::::::

CALL TS
::::::::::::::::::::::::

ELSIF Process 5 Switch = 0 then
Set Process 5 Switch = 1
::::::::::::::::::::::::

CALL PM
::::::::::::::::::::::::

Set End AORS Switch = 1 Notes End of AORS
Processing

ELSE
NULL

ENDIF
:::

CALL Subtransaction Scheduler 62
:::

END

Pseudo-Code for Reverse of Add Module 118
Processing

0381) Note: Do not turn switch OFF or back to 0 as these
Switches indicate which processes remain.

BEGIN
IF Process 6 Switch = 0 then

Set Process 6 Switch = 1
::::::::::::::::::::::::

CALL BS
::::::::::::::::::::::::

Process 7 Switch = 0 then
Set Process 7 Switch = 1
::::::::::::::::::::::::::::::

CALLP
::::::::::::::::::::::::::::::

Process 8 Switch = 0 then
Set Process 8 Switch = 1
::::::::::::::::::::::::

CALL PA
::::::::::::::::::::::::

Process 9 Switch = 0 then
Set Process 9 Switch = 1
::::::::::::::::::::::::

CALL TS
::::::::::::::::::::::::

Process 10 Switch = 0 then
Set Process 10 Switch = 1
:::::::::::::::::::::::::::

CALL PM
:::::::::::::::::::::::::::

Set End AORS Switch = 1

ELSIF

ELSIF

ELSIF

ELSIF

ELSE
NULL

ENDIF
:::

CALL Subtransaction Scheduler 62
:::

END

Notes End of AORS Processing

34
Jul. 28, 2005

PSEUDO-CODE FOR ORIGINAL SELL

0382)

BEGIN

MODULE 122 PROCESSING

IF Sell-Method = LOT then
Select LOT Amount into Working Storage from BS record
IF Amount Sold > Lot Amount in Working Storage then

ENDIF
IF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

ELSE

ENDIF

Message “Lot Amount > Amount Available'
Goto Write Reject Report

Process 11 Switch = 0 then
Set Process 11 Switch = 0

:::

CALL BS
:::

Process 12 Switch = 0 then
Set Process 12 Switch = 0

::::::::::::::::::::::::::::::

CALLP
::::::::::::::::::::::::::::::

Process 13 Switch = 0 then
Set Process 13 Switch = 0

::::::::::::::::::::::::::::::

CALL PA
::::::::::::::::::::::::::::::

Process 14 Switch = 0 then
Set Process 14 Switch = 0
::::::::::::::::::::::::::::::

CALL CG
::::::::::::::::::::::::::::::

Process 15 Switch = 0 then
Set Process 15 Switch = 1

::::::::::::::::::::::::::::::

CALL TS
::::::::::::::::::::::::::::::

Process 16 Switch = 0 then
Set Process 16 Switch = 0

::::::::::::::::::::::::::::::

CALL PM
::::::::::::::::::::::::::::::

Process 17 Switch = 0 then
Set Process 17 Switch = 0

::::::::::::::::::::::::::::::

CALLTL
::::::::::::::::::::::::::::::

Set End AORS Switch = 1
AORS Processing

Notes End of

NULL

:::

CALL SUBTRACTION SCHEDULER 62
:::

ELSE
Select all LOTS into Temporary Working Storage Table
Licn/Acct/Asset/Purch/Amt/Cost/Unit-Cost/ROWID)
Set Total Amount Sold = Data Entry Amount Sold
IF Total Amount Sold > Total Amount Available then

ENDIF

Message “Total Amount Sold > Total Amount Available',
Details
Goto Write Reject Report

Avg-Factor = 1
IF Sell-Method = “AVG then

ENDIF

Avg-Factor = (Total Amount Sold / Total
Amount Available)

<<Sell Multiple Lot Routiness
DOWhile Total Amount Sold = 0

IF Total Amount Sold > 0 then
IF Sell-Method = FIFor then

Select LOT Amount Available into WS Lot Amount

Where Purch = MIN (Purch)
ENDIF

US 2005/0165668A1

IF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

ELSE

ENDIF

-continued

ELSIF
IF Sell-Method = “LIF

Select LOT Amount Available into WS Lot Amount
Where Purch = MAX(Purch)

ENDIF
ELSIF

IF Sell-Method = LCF
Select LOT Amount Available into WS Lot Amount
Where Unit-Cost = MIN(Unit-Cost)

ENDIF
ELSIF

IF Sell-Method = “HCF
Select LOT Amount Available into WS Lot Amount
Where Unit-Cost = MAX(Unit-Cost)

ENDIF
ELSE

<<for Sell-Method = AVG or “ALLss
IF Amount Sold * Avg Factor < WS Lot Amount then
UPDATE Temporary Table Lot Amount
for Amount Sold

ELSE
DELETE Total Row Temporary Table

ENDIF
::::::::::::::::::::::::::::::

Process 11 Switch = 0 then
Set Process 11 Switch = 0
:::

CALL BS
:::

Process 12 Switch = 0 then
Set Process 12 Switch = 0
::::::::::::::::::::::::::::::

CALLP
::::::::::::::::::::::::::::::

Process 13 Switch = 0 then
Set Process 13 Switch = 0
::::::::::::::::::::::::::::::

CALL PA
::::::::::::::::::::::::::::::

Process 14 Switch = 0 then
Set Process 14 Switch = 0
::::::::::::::::::::::::::::::

CALL CG
::::::::::::::::::::::::::::::

Process 15 Switch = 0 then
Set Process 15 Switch = 1
::::::::::::::::::::::::::::::

CALL TS
::::::::::::::::::::::::::::::

Process 16 Switch = 0 then
Set Process 16 Switch = 0
::::::::::::::::::::::::::::::

CALL PM
::::::::::::::::::::::::::::::

Process 17 Switch = 0 then
Set Process 17 Switch = 0
::::::::::::::::::::::::::::::

CALLTL
::::::::::::::::::::::::::::::

Set End AORS Switch = 1
AORS Processing

Notes End of

NULL

Decrement Total Amount Sold by Cap Gain Lot Amount
Increment the e LOT Number
:::

CALL SUBTRANSACTION SCHEDULE 62
:::

ENDIF
ENDDO

ENDIF
&&EOss
NULL

END

35

0383)

BEGIN

Jul. 28, 2005

Originate Sell Routine

IF Sell-Method = LOT then
Select LOT Amount into Working Storage from BS record.
IF Amount Sold > Lot Amount in Working Storage then

Message "Lot Amount > Amount Available"
Goto Write Reject Report

ELSE
:::

CALL BS Routine
:::

ENDIF
::::::::::::::::::::::::::::::

CALL PPA
::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::

CALL CG
::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::

CALL TS
::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::

CALL PM
::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::

CALL CG
::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::

CALLTL
::::::::::::::::::::::::::::::

ELSE
Select All LOTS into Temporary Working Storage Table
Licn/Acct/Asset/Purch/Amt/Cost/Unit-Cost/ROWID)
Set Total Amount Sold = Data Entry Amount Sold
IF Total Amount Sold > Total Amount Available then

Message “Total Amount Sold > Total Amount
Available, Details
Goto Write Reject Report

ENDIF
Avg-Factor = 1
IF Sell-Method = AVG then

Avg-Factor = (Total Amount Sold /
Total Amount Available)

ENDIF
DOWhile Total Amount Sold = 0

IF Total Amount Sold > 0 then
IF Sell-Method = FIFor then

Select LOT Amount Available into WS Lot Amount

Where Purch = MIN (Purch)
ENDIF

ELSIF
IF Sell-Method = “LIF

Select LOT Amount Available into WS Lot Amount

Where Purch = MAX (Purch)
ENDIF

ELSIF
IF Sell-Method = LCF

Select LOT Amount Available into WS Lot Amount

Where Unit-Cost = MIN(Unit-Cost)
ENDIF

ELSIF
IF Sell-Method = “HCF

Select LOT Amount Available into WS Lot Amount

Where Unit-Cost = MAX (Unit-Cost)
ENDIF

ELSE
<<for Sell-Method = AVG or “ALLss

IF Amount Sold * Avg Factor < WS Lot Amount then
UPDATE Temporary Table Lot Amount for
Amount Sold

US 2005/0165668A1

-continued

ELSE
DELETE Total Row Temporary Table

ENDIF
::::::::::::::::::::::::::::::

CALL BS with the amount of LOT sold
::::::::::::::::::::::::::::::

ENDIF
::::::::::::::::::::::::::::::

CALL PPA
::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::

CALL TS
::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::

CALL PM
::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::

CALL CG with the amount of LOT sold
::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::

CALLTL
::::::::::::::::::::::::::::::

Decrement Total Amount Sold by Cap Gain Lot Amount
Increment the LOT Number

ENDIF
ENDDO

ENDIF
Goto EO
<<Write Reject Reports->

INSERT into Reject Table
IF Error then

STOP
ENDIF

&EOss
END

0384)

BEGIN
IF

ELSIF

ELSIF

ELSIF

ELSIF

Pseudo-Code for Reverse of

Original Sell Module 126 Processing

Process 18 Switch = 0 then
Set Process 18 Switch = 1
::::::::::::::::::::::::

CALL BS with the amount of LOT sold
::::::::::::::::::::::::

Process 19 Switch = 0 then
Set Processor 19 Switch = 1
::::::::::::::::::::::::

CALLP
::::::::::::::::::::::::

Process 20 Switch = 0 then
Set Process 20 Switch = 1
::::::::::::::::::::::::

CALL PA
::::::::::::::::::::::::

Process 21 Switch = 0 then
Set Process 21 Switch = 1
::::::::::::::::::::::::

CALL TS
::::::::::::::::::::::::

Process 22 Switch = 0 then
Set Process 22 Switch = 1
:::::::::::::::::::::::::::

CALL PM
:::::::::::::::::::::::::::

36
Jul. 28, 2005

-continued

ELSIF Process 23 Switch = 0 then
Set Process 23 Switch = 1
::::::::::::::::::::::::

CALL CG with the amount of LOT sold
::::::::::::::::::::::::

ELSIF Process 24 Switch = 0 then
Set Process 24 Switch = 1
::::::::::::::::::::::::

CALLTL
::::::::::::::::::::::::

Set End AORL, Switch = 1
Processing
ELSE

NULL
ENDIF
:::

CALL Subtransaction Scheduler 62
:::

END

Pseudo-Code for Processing Model #4

For All INSERTS, UPDATES, and DELETES to
all Tables

0385)

BEGIN
IFTrxn is ADD then
SELECT Data in Working Storage
IF Error then
INSERT INTO Table, Details
IF Error then
Message “INSERT Error", Details
Goto Write Reject Report

ENDIF
ELSE

Increment the Details
UPDATE Set Table, Details
IF Error then
Message “UPDATE Error ADD, Details
Goto Write Reject Report

ENDIF
ENDIF

ELSIFTrxn is SUBTRACT then
SELECT Data into Working Storage

IF Error then
Message “SELECT Error Subtract, Details
Goto Write Reject Report

ENDIF
If One or More Amounts One or More Values from
Existing Record then
ADD to Reject Report
IF Error then
Message “INSERT Reject SUBTRACT, Details
Goto Write Reject Report

ENDIF
IF Details = ALL then
DELETE From Table, Details
IF Error then
Message “DELETE Error", Details
Goto Write Reject Report

ENDIF
ELSE
Decrement the Details
UPDATE SET, Details
IF Error then
Message “UPDATE Error SUBTRACT, Details
Goto Write Reject Report

Notes End of AORS

US 2005/0165668A1 Jul. 28, 2005
37

-continued -continued

ENDIF Message “INSERT RD Error", Details
ENDIF Goto Write Report Error

ENDIF ENDIF
Goto EO ELSE
<<Write Reject Reports-> Increment Units by amount to be increased
INSERT INTO Reject Table, Details UPDATE Data to Table? Row
IF Error then IF Error then
Message “INSERT Reject Table Error", Details Message “UPDATE RD Error 1, Details
STOP Goto Write Report Error

ENDIF ENDIF
&EOss ENDIF
NULL ELSIFTrxn = Receipt and Type = R (which means SUBTRACT)

END OR Trxn = Disbursement and Type = R
SELECT Data into Working Storage from RD Record
IF Error then
Message “ SELECT RD Error 2, Details

Pseudo-Code for Processing Goto Write Report Error
ENDIF
IF Units = ALL then

the Trade Settlement Table 142 DELETE from Table? Row

0386) IF Error
Message “DELETE RD Error", Details
Goto Write Report Error

ENDIF
BEGIN ELSE

IF Trxn = A and Type = 'O' OR Trxn = 'S' and Decrement Units by Amount to be reduced
Type = 'O' (which means ADD) UPDATE IE SET Details
INSERT into TS table, Details IF Error then
IF Error then Message “UPDATE RD Error 2, Details
Message “INSERT TS Error 1, Details Goto Write Report Writer
Goto Write Report Error ENDIF

END ENDIF
ELSIFTrxn = A and Type = R OR Trxn = 'S' and Type = R' ELSE
(which means SUBTRACT) Null
SELECT Data into Working Storage from TS Record ENDIF
IF Error then Goto EO
Message “SELECT TS Error 2, Details <<Write Reject Reports->
Goto Write Report Error INSERT into Reject Table, Details

ENDIF IF Error then
DELETE from Table? Row STOP
IF Error ENDIF
Message “DELETETS Error", Details &&EOss
Goto Write Report Error Null

ENDIF END
ELSE

Null
ENDIF
Goto EO
<<Write Reject Reports-> Pseudo-Code for Processing
INSERT into Reject Table, Details
"E. the Pending Adjustment Table 138
ENDIF

&&EOss 0388
Null

END

BEGIN

IF Trxn = A and Type = 'O' OR Trxn = 'S' and Type = R
Pseudo-Code for Processing the Customer Cash (which means ADD)

Flow AND Trade Date <Income Ex-Date then
SELECT Data into Working Storage from PA Record
IF Error then

(Receipts/Disbursements) Table 100 INSERT INTO PA Table, Details
IF Error then

0387) Message “INSERT PA Error", Details
Goto Write Report Error

ENDIF
ELSE

BEGIN Increment Units by amount to be increased
IF Trxn = Receipt and Type = 'O' (which means ADD) UPDATE Data to Table? Row
OR Trxn = Disbursement and Type = 'O' then IF Error
SELECT Data into Working Storage from RD Record Message “UPDATE PA Error 1, Details
IF Error then Goto Write Report Error
INSERT INTO RD Table, Details ENDIF
IF Error then ENDIF

US 2005/0165668A1

-continued

ELSIFTrxn = A and Type = R OR Trxn = 'S' and Type = 'O'
(which means SUBTRACT)
AND Trade Date & Income Ex-date + 1 then
SELECT Data into Working Storage from PA Record
IF Error then
Message “ SELECT PA Error 2, Details
Goto Write Report Error

ENDIF
IF Units = ALL then
DELETE from Table? Row
IF Error

Message “DELETE PA Error", Details
Goto Write Report Error

ENDIF
ELSE

Decrement Units by Amount to be reduced
UPDATE PASET Details
IF Error then

Message “UPDATE PA Error 2, Details
Goto Write Report Writer

ENDIF
ENDIF

ELSE
Null

ENDIF
Goto PA-EO
<<Write Reject Reports->
INSERT into Reject Table, Details

IF Error
STOP

ENDIF
&&PA-EOss
Null

END

Pseudo-Code for Processing

the Pending Income Table 134

0389)

BEGIN
IFTrxn = 'A' and Type = 'O' OR Trxn = 'S' and Type = R'
(which means ADD)
AND Trade Date < Income Ex-Date then
SELECT Data into Working Storage from PI Record
IF Error then
INSERT INTO PI Table, Details

Institutional Profile

LM
LU
LT
LD
LL
LS
LP
LN
LW
LR

Jul. 28, 2005
38

-continued

IF Error then
Message “INSERT PI Error", Details
Goto Write Reject Report

ENDIF
ELSE

Increment Units by amount to be increased
UPDATE Data to Table? Row
IF Error

Message “UPDATE PI Error 1, Details
Goto Write Report Error

ENDIF
ENDIF

ELSIFTrxn = A and Type = R OR Trxn = 'S' and Type = 'O'
(which means SUBTRACT)
AND Trade Date & Income Ex-date + 1 then
SELECT Data into Working Storage from PI Record
IF Error then
Message “ SELECT PI Error 2, Details
Goto Write Report Error

ENDIF
IF Units = ALL then
DELETE from Table? Row
IF Error
Message “DELETE PI Error, Details
Goto Write Report Error

ENDIF
ELSE

Decrement Units by Amount to be reduced
UPDATE PISET Details
IF Error then
Message “UPDATE PI Error 2, Details
Goto Write Report Writer

ENDIF
ENDIF

ELSE
Null

ENDIF
Goto P-EO
<<Write Reject Reports->
INSERT into Reject Table, Details

IF Error
STOP

ENDIF
&&P-EOss
Null

END

Ngine File (or Table) Structure and Likely Order
of Creation

corresponding with FIGS. 4-A through 4-E

0390)

Data Source

User-Definable
User-Definable
User-Definable
User-Definable
User-Definable
User-Definable
User-Definable
User-Definable
User-Definable
User-Definable

Licensee Master
Licensee Users

Licensee Account Type
Licensee Default Definitions

Licensee General Ledger Definitions
Licensee Diversification Scheme

Licensee Performance Group
Licensee Summary Names
Licensee Service Wholesalers
Licensee Service Resellers

US 2005/0165668A1

Customer Profile

AO
AL
AJ
AR
AN

AC
Transaction Profile

TM* :

TR
Entity Profile

EM

ET
Licensee Status

Customer Status

CS
CF
CB*
CG
C
CA
CP:

Notes:

-continued

Account Objective
Account Legal Capacity
Account Jurisdiction
Account Representatives
Account Registration Names
Account Master
Account Communication Links

Transaction Master
Transaction Processor
Transactions - Recurring

Entity Master
Entity Attribute
Entity Transaction

System General Ledger
System Transaction Journal
System Trade Settlement
System Summary Table
System Reject Table
System Transaction Count

Customer Income Statement (Income/Expense)
Customer Cash Flow (Receipts/Disbursements)
Customer Balance Sheet

Customer Capital Gain
Customer Pending Income
Customer Pending Capital Adjustments
Customer Performance Measurement

39

Data Source

User-Defina
User-Defina
User-Defina
User-Defina
User-Defina
User-Defina
User-Defina

User-Definable “Driving File
User-Definable “Driving File
User-Definable “Driving File

Public Market Data
User-Definable
User-Definable

User-Definable

Sytem Defined “Driven” File
System Defined “Driven” File
System Defined
System Defined
System Defined

System Defined “Driven” File
System Defined “Driven” File
System Defined “Driven” File
System Defined “Driven” File
System Defined “Driven” File
System Defined “Driven” File
System Defined “Driven” File

*denotes Primary Control Tables
**denotes “Driving Tables”

SAMPLE DATA FOR LICENSE GENERAL

LEDGER DEFINITION TABLE (LL)

0391)

Asset
or Liab

Licensee
Identifier

LICN1
LICN1
LICN1
LICN1
LICN1
LICN1
LICN1
LICN1
LICN1
LICN1
LICN1
LICN
LICN
LICN2
LICN2
LICN2
LICN2

Licensee Asset
Identifier or Liab

LCN2 A.
LCN2 A.

Accounting Accounting
Control Number Name

AO5 Municipal Bonds LCN2 A.
AOf Corporate Bonds LCN2 A.
A10 Common Stocks LCN2 A.
A12 Mutual Funds LCN2 A.
A13 International Currencies
A15 Oil Partnerships
A2O Real Estate Partnerships
A30 Foreign Equities LCN2 A.
A35 Objects of Art LCN3 A.
A40 Jewelry LCN3 A.
A45 Homes LCN3 A.
A50 Automobiles LCN3 A.
A90 Derivatives LCN3 A.
W10 MSAFRSA - North LCN1 L
W2O MSAFRSA - East LCN1 L
W30 MSAFRSA - South LCN1 L
W40 MSAFRSA - West LCN1 L

-continued

Accounting
Control Number

L10
L20

LSOO
S10
S2O
S30

S1OOO
C10
C2O
C30
C4O
C50
LOS
L10
L15
L20

Jul. 28, 2005

Accounting
Name

Alabama
Alaska

Wyoming
Major Market 1
Major Market 2
Major Market 3

Major Market N
Cash
Other Current Assets
Fixed Assets
Depreciation
Intangible Assets
Uninvested Income
Invested Income
Uninvested Principal
Invested Principal

US 2005/0165668A1 Jul. 28, 2005
40

-continued -continued

Licensee Asset Accounting Accounting Asset Accounting
Identifier or Liab Control Number Name Licensee or Account Control Accounting

LICN1 L L3O Personal Notes Master Liab Type Number Name

LICN1 L L40 Mortgages LICN1 A 400 A30 Foreign Equities

N SC. Liabiliti LICN1 A SOO OOO Settlement Accounts - Sell
LICN1 L L65 its, abilities LICN1 A SOO AO1 Income Cash Demand
LICN1 L L70 Long-Term Liabilities LCN1 A. SOO AO2 Income Cash Overdraft
LICN1 L L75 Net Worth LCN1 A. SOO AO3 Principal Cash Demand

LCN1 A. 500 AO4 Principal Cash Overdraft
LCN1 A. SOO AOS Corporate Bonds
LCN1 A. SOO AO7 Municipal Bonds

SAMPLE DATA FOR SYSTEM GENERAL H.N. A A. STER s
11 Partnerships

LEDGER TABLE LCN1 A. SOO A2O Real Estate Partnerships
0392) LCN1 A. SOO A30 Foreign Equities

(AND/OR)
LCN2 A. 1OOO OOO Communication Assets
LCN2 A. 1OOO WOO Wireless Communications
LCN2 A. 1OOO W10 MSAFRSA - North

Asset Accounting LICN2 A 1OOO W2O MSAFRSA - East
Licensee or Account Control Accounting LCN2 A. 1OOO W3O MSASA - South
Master Liab Type Number Name LICN2 A 1OOO W40 MSAFRSA - West
LICN A. OOO OOO Financial Services Assets LCN2 A. 2OOO LOO Landline Communications
LICN1 A 100 OOO Pension Trust LICN2 A 2OOO L10 Alabama
LICN1 A 100 AO1 Income Cash Demand LICN2 A 2OOO L2O Alaska
LICN A. 100 AO2 Income Cash Overdraft
LICN A. 100 AO3 Principal Cash Demand
LICN A. 100 AO4 Principal Cash Overdraft
LICN A. 100 AOf Corporate Bonds LCN2 A. 2OOO LSOO Wyoming
LICN A. 100 A10 Common Stocks LCN2 A. 3OOO SOO Satellite Broadcast
LICN A. 100 A15 Oil Partnerships LCN2 A. 3OOO S10 Maior Market 1
LICN A. 100 A2O Real Estate Partnerships LCN2 A. 3OOO S2O NE Market 2
LICN A. 100 A30 Foreign Equities LICN2 A 3OOO S30 Major Market 3
LICN A. 2OO OOO Investment Advisory
LICN A. 200 AO1 Income Cash Demand
LICN A. 200 AO2 Income Cash Overdraft
LICN A. 200 AO3 Principal Cash Demand
LICN1 A 200 AO4 Principal Cash Overdraft LICN2 A 3OOO S.fOR) Major Market 4
LICN A. 2OO AOS Municipal Bonds LCN3 A. OOOO OOO C te Asset
LICN A. 2OO AOf Municipal Bonds orporate Assets.
LICN A. 2OO A10 Common Stocks LCN3 A. 9OOO OOO Domestic Subsidiary
LICN1 A 2OO A12 Mutual Funds LCN3 A 9OOO C10 Cash
LICN A. 2OO A13 International Currencies LCN3 A. 9OOO C2O Other Current Assets
LICN A. 200 A15 Oil Partnerships LCN3 A 9OOO C3O Fixed Assets
LICN A. 2OO A2O Real Estate Partnerships LCN3 A 9OOO C4O Depreciation
LICN A. 100 A30 Foreign Equities LCN3 A. 9000 C50 Intangible Assets
LICN A. 100 A90 Financial Derivatives LCN3 A. 9OOO OOO Foreign Subsidiary
LICN A. 3OO OOO Estates LCN3 A. 9OOO C10 Cash
LICN A. 300 AO1 Income Cash Demand LCN3 A 9OOO C2O Other Current Assets
LICN A. 300 AO2 Income Cash Overdraft LCN3 A. 9OOO C3O Fixed Assets
LICN A. 3OO AO3 Principal Cash Demand LCN3 A. 9OOO C4O Depreciation
LICN A. 300 AO4 Principal Cash Overdraft LCN3 A. 9000 C50 Intangible Assets
LICN1 A 3OO AOS Municipal Bonds LCN3 L OOO OOO Financial Services Liabilities
LICN A. 3OO AOf Corporate Bonds LICN L 1OO OOO Pension Trust
LICN A. 3OO A10 Common Stocks

LICN L 1OO L15 Uninvested Principal
LICN1 A 3OO A12 Mutual Funds LCN1 L 1OO L2O Invested Principal
LICN A. 3OO A15 Oil Partnerships p
LICN A. 3OO A2O Real Estate Partnerships LICN L 2OO OOO Investment Advisory
LICN A. 3OO A30 Foreign Equities LICN L 2OO LOS Uninvested Income
LICN A. 3OO A35 Objects of Art LICN L 2OO L10 Invested Income
LICN A. 3OO A40 Jewelry LICN L 2OO L15 Uninvested Principal
LICN A. 3OO A40 Homes LICN L 2OO L2O Invested Principal
LICN A. 3OO ASO Automobiles LICN L 3OO OOO Estates
LICN A. 400 OOO Settlement Accounts - Buy LICN L 3OO LOS Uninvested Income
LICN A. 400 AO1 Income Cash Demand LICN L 3OO L10 Invested Income
LICN A. 400 AO2 Income Cash Overdraft LICN L 3OO L15 Uninvested Principal

EN A IS AS ENSAC LICN1 L 300 L20 Invested Principal
LICN A. 400 AO5 CA. Bonds LICN L 3OO L3O Personal Notes
LICN A. 400 AOf Municipal Bonds LICN L 3OO L40 Mortgages
LICN A. 400 A10 Common Stocks LICN L 400 OOO Settlement - Buy
LICN A. 400 A15 Oil Partnerships LICN L 4OO L15 Uninvested Principal
LICN A. 400 A2O Real Estate Partnerships LICN L 400 L2O Invested Principal

US 2005/0165668A1

-continued

Asset Accounting
Licensee or Account Control Accounting
Master Liab Type Number Name

LICN1 L SOO OOO Settlement - Buy
LICN1 L SOO L15 Uninvested Principal
LICN1 L SOO L2O Invested Principal

(AND/OR)
LICN2 L 1OOO OOO Communications
LICN2 L 1OOO OOO Wireless
LICN2 L 1OOO L90 Income
LICN2 L 2OOO OOO Landline
LICN2 L 2OOO L90 Income
LICN2 L 3OOO OOO Satellite Broadcast
LICN2 L 3OOO L90 Income

(AND/OR)
LCN3 L 9000 OOO Domestic Subsidiary
LCN3 L 90OO L60 Short-Term Liabilities
LCN3 L 90OO L65 Deferred Taxes
LCN3 L 90OO LAO Long-Term Liabilities
LCN3 L 9000 L75 Net Worth
LCN3 L 9000 OOO Foreign Subsidiary
LCN3 L 90OO L60 Short-Term Liabilities
LCN3 L 90OO L65 Deferred Taxes
LCN3 L 90OO LAO Long-Term Liabilities
LCN3 L 9000 L75 Net Worth

A Standardized Method for Naming the Programs
(or SQL Scripts) and Data Elements of Real-time

Multiprocessed Automated Applications

0393. The specific invention is a standardized file naming
convention to be used in the automatic generation of pro
gram code for multiple large-scale transaction processing
applications (Such as Securities trading, telecommunications
billing, and work management) on multi-processing com
puters (using 4, 8, 16, 32 processors) with 100% auditability
of user-defined controls. The Standardized file naming con
vention is totally independent of any Specific

0394 a.) application Such as accounts receivable, cus
tomer billing, etc.,

0395 b.) industry such as financial services, telecommu
nications, or work management,

0396 c.) hardware manufacturer such as Compaq, Digi
tal, HP, IBM, NCR, Unisys,

0397) d.) operating system such as MS-DOS, UNIX,
OpenVMS, MVS, etc.,

0398 e.) relational database management system such as
Oracle, Sybase, MS-SQL Server,

0399 f.) computer language such as SQL, COBOL,
Fortran, PL/1, etc.

0400. The standard naming convention contains the few
est number of characters in any naming conventions,
namely, eleven characters used by MS-DOS. The naming
convention of MS-DOS uses eight characters as a file name
and three characters as a file extension wherein the user may
define a file name using the alphabet and Selected other
characters. While this flexibility is suitable for home use are
a Small number of files and users, it is not acceptable for
large-scale enterprise-wide applications with large number

Jul. 28, 2005

of files and large number of Supporting technicians. Hence,
the need for enterprise-wide Standards.
04.01 The standard file naming convent in contains six
elements that permit the technician to readily identify the
functionality of the specific Script (or program) without
looking at its contents. Using ANSI Standard structured
Query Language as an example language, the Six elements

C.

0402 a.) a 2-character mnemonic for the SQL com
mands Such as:

Mnemonic ANSI Standard SQL Commands

CT Create Table
SF Select From Table
DF Delete From
DT Drop Table
II Insert Into
SI Select Into
CS Create Sequence
DS Drop Sequence
C Create Index
DI Drop Index
RV Review
RT Retest
RS Reset, etc.

0403) b.) a 2-character mnemonic for the application
name Such as

Mnemonic User Defined Application Name Examples

ST Securities Trading
TC Telecommunications Billing
WM Work Management, etc.

0404 c.) a 2-character mnemonic for the table (or file
name) Such as

Mnemonic User-Defined Table Name Examples

AM Account Master Name/Address/Etc.
SM Securities Master
DC Detail Calls
XB External Billing, etc.

0405 d.) a 1-character mnemonic for the table cluster
role Such as

Mnemonic Standard Table Roles

M Master
I Input
A. Accepts
R Rejects
H History
S Summary
1. Master History
2 Accepts History
O Output

US 2005/0165668A1

0406 e.) a 1-character mnemonic for the table cluster
type Such as

Mnemonic Standard Table Types

M Master
J Journal
T Temporary
1-9 Index Numbers

0407 f.) a 3-character extension is then added to the
file name depending upon

0408 the type of operating system being used such as
MS-DOS, UNIX, OpenVMS, etc. and
04.09 whether or not the file is a source file for program
mer use or a compiled file (or Stored procedure) for machine
Sc.

0410. Hence, script name examples are:
0411 CTXBMDMMSQL-Create Table for the Exter
nal Billing System, Master Definition Table Cluster, Master
Table, and Master Role for SQL use.
0412 DTXBDCOJSQL-Drop Table for the External
Billing System, Detail Call Cluster, Output Table, and
Journal Role for SQL use.

0413 Circumstances Leading to the Invention
0414. The circumstances leading to the invention of a
Standard SQL Script naming convention are:
0415 a.) one programmer will rarely adhere to the same
naming conventions over time and unless an acceptable
Standard is defined each Succeeding programmer added to
the job will only complicate the issue by bringing their own
Standards. Hence, Software maintenance becomes a matter
of knowing which programmer wrote which program at
what time.

0416 b.) without a naming Standard any programmer has
no idea of what functions the programming is performing
without opening the program and examining the program
code. This process produces create inefficient maintenance
by existing programmerS and inefficient training for new
programmerS.

0417 c.) Competitive pressures are mounting for the
efficient of Software maintenance.

0418 Advantage of the Invention
0419 Because no duplicate script names are permitted
the name of each SQL Script should
0420 a.) convey to the user the precise use of each SQL
Script and

0421 b.) permit the storage of all SQL scripts in a one
SQL Script Library, or directory.

0422 A Standard naming convention also permits the
user to determine what Scripts may be automatically
executed in Sequence by use of a SQL command Script,
which is a Single SQL Script containing a list of SQL Scripts
to be executed in Sequence. Hence, any Single SQL Scripts

42
Jul. 28, 2005

contained in the SQL Library can be reused in many
different SQL command scripts.

0423 Although any standard naming convention repre
Sents a unique entity Separate and apart from the other
technologies described immediately above, this particular
naming convention is unique in that it embraces all of the
logical information necessary to readily identify the role of
the Script in the total System.

0424 Detailed Description of Invention:

0425 std name is a standard naming convention that
constructs names for programs (or SQL Scripts), System
tables, table clusters, and data elements. The Seven basic
elements are:

1.) org name Organization
2.) com name SQL Command
3.) app name Application
4.) tab name Table
5.) rol name Table Role
6.) typ name Table Type
7.) col name Column (or Field)

0426 std name defines both “external” names used by
the operating System and “internal' names used by the
Specific program.

1.) clu name Cluster Name 4
2.) sys name System Table Name 6
3.) ext name Extension Name 3
4.) sql name SQL Script Name 11

(8 name plus 3
extension)

0427 where the SQL Script Names are used by the
operating Systems.

0428 The “internal' resulting names are:

1.) tab iden
2.) col name
3.) dat name

Table Iden Name
Column (or Field) Name
Data Element Name

4
4
8 or more, in
increments of 4

0429 where the Data Element Names are used by the
programs (or SQL Scripts).

0430) External Names used by the operating system in
identifying programs (or SQL Scripts) are created by
employing the following naming components:

SQL Command Mnemonic
Application Name Mnemonic

Table Name Mnemonic
Table Role Name Mnemonic

Table Type Name Mnemonic
Extension Mnemonic

COm name

app name
tab name

rol name
tab name

ext name

US 2005/0165668A1

-continued

Examples: 1 2 3 4 5 6 7 8 9 10 11
C T X B M D M M S O L
S F X B M D M M S O L
clu name

tab iden
sys name ext name

sql name

0431 Internal Names used by the program (or SQL
Script) in processing the data elements are created by
employing the following naming components:

5 6 7 8
tab name Table Name Mnemonic

rol name Role Name Mnemonic
typ name Type Name Mnemonic

col name Column name
Examples: M D M M LNAM ... for last name

M D M M FNAM ... for first name
M D M M MNAM ... for middle name
M D M M ADR1 ... address - 1st line
M D M M ADR2 ... address - 2cd line
M D M M CITY ... city
M D M M STAT ... State
MD M M ZIPC ... zip code
dat name

0432 Data Tracing

0433. By addressing both the external names for the
operating System and the internal names for a specific
program, the naming convention is global in nature. In the
event that one data element derives its Source of input from
another table rather than its own specific input Screen, then
the data name is extended by placing the table identifier of
the table Supplying the data between the first four and Second
four characters of the intended data name. Should the data
be derived from another table that also derived its data from
another table, then eight characters are placed between the
first four characters and the last four characters of the
intended data name. In the fashion, the data name points
backwards through all of the preceding tables to the original
Source of data and its input form. This proceSS is called “data
tracing', and it provides benefits to programmers in the
testing and debugging Stages of Software development by
identifying the original Source of data. Thus, “data tracing
provides the programmer with thorough documentation of
the data flow throughout an entire System.

0434 Standard naming conventions do not apply to cer
tain language extensions Such as the Script footings that, for
example, Specify the size of the table to be created in a
“Create Table” script.

0435 The foregoing discussion of the invention has been
presented for purposes of illustration and description. Fur
ther, comments and description is not intended to limit the
invention to the form disclosed herein. Consequently, varia
tion and modification commensurate with the above teach
ings, and within the skill and knowledge of the relevant art,
are within the scope of the present invention. The embodi
ment described herein above is further intended to explain
the best mode presently known of practicing the invention

43
Jul. 28, 2005

and to enable others skilled in the art to utilize the invention
as Such, or in other embodiments, and with the various
modifications required by their particular application or uses
of the invention. It is intended that the appended claims be
construed to include alternative embodiments to the extent
permitted by the prior art.

1-26. (canceled)
27. A method for processing a financial transaction on a

computing System using a plurality of processors compris
ing:

retrieving, in response to a request to perform a financial
transaction having a transaction identifier and input
values, a unique Subset of user-defined algorithms from
a set of user-defined algorithms, wherein the unique
Subset is associated with the transaction identifier via a
user-defined transaction processing table, each user
defined algorithm, when executed by a processor on the
input values, creates or changes a data record Such that
the unique Subset of user-defined algorithms associated
with the transaction identifier, when executed using the
input values, creates or changes data records Stored in
a database as necessary to process the financial trans
action;

executing each of the user-defined algorithms of the
unique Subset on the input values,

wherein the unique Subset of algorithms are executed
concurrently on different processors and the financial
transaction is considered processed when all algorithms
in the unique Subset of user-defined algorithms have
been executed on the input values.

28. The method of claim 27, wherein each request further
includes a licensee identifier and the Set of user-defined
algorithms is further associated with the licensee identifier.

29. The method of claim 27, wherein executing each of
the user-defined algorithms of the unique Subset on the input
values comprises:

executing a user-defined algorithm that creates a data
record in a transaction journal file;

executing a user-defined algorithm that changes a data
record in a general ledger master table;

executing a user-defined algorithm that changes a data
record in an account master table; and

executing a user-defined algorithm that changes a data
record in an entity attribute master table.

30. The method of claim 27 further comprising:
generating a transaction Sequence number for the

retrieved request to perform a financial transaction.
31. The method of claim 29, wherein executing each of

the user-defined algorithms of the unique Subset on the input
values comprises:

executing a user-defined algorithm that creates, changes
or deletes a data record in a cash flow table;

executing a user-defined algorithm creates, changes or
deletes a data record in an income Statement table;

executing a user-defined algorithm that creates, changes
or deletes a data record in a capital gains table;

executing a user-defined algorithm that creates, changes
or deletes a data record in a balance sheet table; and

US 2005/0165668A1

executing a user-defined algorithm that creates, changes
or deletes a data record in a performance measurement
table.

32. The method of claim 27, further comprising:
if the transaction identify is not associated with a unique

Subset of user-defined algorithms from the Set of user
defined algorithms, writing the request to perform the
financial transaction to a System reject table.

33. The method of claim 27 further comprising:
if one of the algorithms fails to execute,

reversing all algorithms of the unique Subset that did
execute; and

Writing the request to perform the financial transaction
to a System reject table.

34. The method of claim 27 wherein each of the unique
Subset of algorithms is executed concurrently on a different
one of the plurality of processors.

35. The method of claim 27 wherein at least one of the
unique Subset of algorithms is executed on a first processor
concurrently with the execution of at least one algorithm of
a different unique Subset of algorithms on a different pro
CCSSO.

36. The method of claim 27 wherein at least one of the
unique Subset of algorithms is executed on a first processor
concurrently with the execution of at least two algorithms of
different unique Subsets of algorithms on different proces
SOS.

37. A method for processing financial transactions on a
multiprocessing machine having a plurality of processors,
each financial transaction having financial transaction data,
the method comprising:

maintaining a Set of user-defined algorithms, each user
defined algorithm being independently and Simulta
neously processable by any one of the plurality of
processors in the multiprocessing machine and each
user-defined algorithm when processed on financial
data adds, changes or deletes only one financial data
record based on the financial data;

receiving a first financial transaction having a first user
defined financial transaction type and first financial
data;

identifying, for the first financial transaction, a first unique
Subset of user-defined algorithms from a Set of user
defined algorithms based on the first user-defined finan
cial transaction type;

processing each user-defined algorithm in the first unique
Subset of user-defined algorithms on the first financial
data;

receiving a Second financial transaction having a Second
user-defined financial transaction type and Second
financial data;

identifying, for the Second financial transaction, a Second
unique Subset of user-defined algorithms from the Set of
user-defined algorithms based on the Second user
defined financial transaction type;

processing each user-defined algorithm in the Second
unique Subset of user-defined algorithms on the Second
financial data; and

44
Jul. 28, 2005

wherein all the user-defined algorithms in the first unique
Subset of user-defined algorithms on the first financial
data and at least one of the Second unique Subset of
user-defined algorithms are concurrently processed.

38. The method of claim 37, wherein each user-defined
algorithm changes only one financial data record in only one
user-defined financial report and includes an operator, a first
operand that identifies input data from the financial trans
action data, and a Second operand that identifies the only one
data record.

39. The method of claim 37 further comprising:
maintaining a user-defined transaction processing table

that associates each user-defined transaction type with
a unique Subset of the Set of user-defined algorithms
including associating the first unique Subset of user
defined algorithms with the first user-defined financial
transaction type and the Second unique Subset of user
defined algorithms with the Second user-defined finan
cial transaction type.

40. The method of claim 37, wherein processing each
unique Subset of the Set of user-defined algorithms associ
ated with a user-defined transaction type comprises:

executing a user-defined algorithm on a first processor
that creates a data record in a transaction journal file;

concurrently executing a user-defined algorithm on a
Second processor that changes a data record in a general
ledger master table;

concurrently executing a user-defined algorithm on a third
processor that changes a data record in an account
master table; and

concurrently executing a user-defined algorithm on a
fourth processor that changes a data record in an entity
attribute master table.

41. The method of claim 37 further comprising:
wherein the at least one of the Second unique Subset of

user-defined algorithms is completed prior to comple
tion of processing all the user-defined algorithms in the
first unique Subset of user-defined algorithms.

42. The method of claim 37 further comprising:
receiving the Second financial transaction after receiving

the first financial transaction; and
completing processing of all of the user-defined algo

rithms in the Second unique Subset of user-defined
algorithms prior to completing the processing of all of
the user-defined algorithms in the first unique Subset of
user-defined algorithms.

43. A financial transaction multiprocessing System for an
enterprise, each financial transaction having a financial
transaction type and financial transaction data, comprising:

a multiprocessing computer having a plurality of proces
SOrS,

a financial record database Storing financial data records,
a database manager for creating, changing and deleting

financial data records,
a queue for receiving financial transactions for process

ing, wherein each financial transaction when processed
results in adding, changing or deleting to at least one
financial data record and wherein each financial trans

US 2005/0165668A1

action is associated with one of a plurality of user
defined financial transaction types and includes finan
cial transaction data;

an algorithm database Storing a set of user-defined algo
rithms, each user-defined algorithm capable of being
processed concurrently and independently with any
other user-defined algorithm and each user-defined
algorithm when processed by any one of the plurality of
processors causing the database manager to add,
change or delete a financial data record; and

a transaction processing table that associates each user
defined transaction type with a unique Subset of the Set
of user-defined algorithms. Such that processing a first
financial transaction having a first financial transaction
type and first financial transaction data is achieved by
processing a first unique Subset of user-defined algo
rithms associated with the first financial transaction
type on the first financial transaction data.

44. The financial transaction multiprocessing System of
claim 43 further comprising:

45
Jul. 28, 2005

a set of control tables,
a set of user-defined control algorithms, each user-defined

control algorithm when processed causing the database
manager to add, change or delete one or more data
records in one or more control tables, and

wherein the transaction processing table further associates
one or more user-defined control algorithms with each
user-defined financial transaction type.

45. The system of claim 43 further comprising:
a processor queue for user-defined algorithms, the pro

ceSSor queue distributing queued user-defined algo
rithms to processors as the processors become avail
able.

46. The system of claim 43, wherein each user-defined
algorithm includes only one operator and only a first oper
and and a Second operand, the first operand identifying input
data from the financial transaction data of the financial
transaction to be processed, and the Second operand identi
fying the only one data record.

k k k k k

