
(19) United States
US 20090083443A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0083443 A1
Ocko et al. (43) Pub. Date: Mar. 26, 2009

(54) AUTONOMOUS SERVICE BACKUP AND
MGRATION

(75) Inventors: Matt Ocko, Palo Alto, CA (US);
George Tuma, Scotts Valley, CA
(US); Manish Kalia, Sunnyvale,
CA (US); Sandeep Sukhija,
Milpitas, CA (US); John Purrier,
Seattle, WA (US); Rajesh Gupta,
Sunnyvale, CA (US); Saumitra
Das, Santa Clara, CA (US)

Correspondence Address:
TOWNSEND AND TOWNSEND AND CREW,
LLP
TWO EMBARCADERO CENTER, EIGHTH
FLOOR
SAN FRANCISCO, CA 94111-3834 (US)

(73) Assignee: Teneros, Inc., Mountain View, CA
(US)

(21) Appl. No.: 12/058,550

(22) Filed: Mar. 28, 2008

Related U.S. Application Data

(63) Continuation of application No. 1 1/166,043, filed on
Jun. 24, 2005, now Pat. No. 7,363,365.

SERVICE
APPLIANCE

(60) Provisional application No. 60/587,786, filed on Jul.
13, 2004.

Publication Classification

(51) Int. Cl.
G06F 5/16 (2006.01)

(52) U.S. Cl. .. 709/248

(57) ABSTRACT

A service appliance is installed between a production server
running a service applications and service users. Upon being
connected with the production server, the service appliance
contacts the production server and/or service application and
automatically replicates the service data from the service
application. As additional service data is added to or modified
by the service application of the production server, the service
appliance automatically updates its replica of the data. In the
event that a production server is unable to provide its service
to users, the service appliance can transparently intervene to
maintain service availability using the replica of the data.
When an operational production server is connected with the
service appliance, the service appliance can automatically
copy its service data to the service application of the opera
tional production server. The operational production server
can be the same as the original production server or a new
production server.

SERVICE
APPLIANCE

SWITCH

PDA Cellphone

Patent Application Publication Mar. 26, 2009 Sheet 1 of 14 US 2009/0083443 A1

PRODUCTION SERVER

SERVICE
APPLIANCE

SWITCH

Cellphone

Patent Application Publication Mar. 26, 2009 Sheet 2 of 14 US 2009/0083443 A1

EEE
88: s:

s:

PRODUCTION SERVER

SERVICE
APPLIANCE

SWITCH

Cellphone

Patent Application Publication Mar. 26, 2009 Sheet 3 of 14 US 2009/0083443 A1

SERVICE
APPLIANCE

SWITCH

&

PDA Cellphone

FIG. 2

Patent Application Publication Mar. 26, 2009 Sheet 4 of 14 US 2009/0083443 A1

SERVICE
PROCESS

SERVICE
PROCESS

SERVICE
PROCESS

SERVICE
PROCESS

PRODUCTION SERVER

PRODUCTION SERVER SPACE

SERVICE
PROCESS

SERVICE
PROCESS

PRODUCTION
SERVER

SERVICE
PROCESS

SERVICE
APPLIANCE

SERVICE SERVICE
PROCESS PROCESS

SERVICE
PROCESS

SERVICE SERVICE
PROCESS PROCESS

SERVICE APPLIANCE

SERVICE APPLIANCE SPACE

SWITCH

Cellphone

Patent Application Publication Mar. 26, 2009 Sheet 5 of 14 US 2009/0083443 A1

PRODUCTION SERVER

SERVICE
APPLIANCE

SERVICE
APPLIANCE

SWITCH

Cellphone

FIG. 4

Patent Application Publication Mar. 26, 2009 Sheet 6 of 14 US 2009/0083443 A1

SERVICE SERVICE
APPLIANCE APPLIANCE

SWITCH

Cellphone

FIG. 5

Patent Application Publication Mar. 26, 2009 Sheet 7 of 14 US 2009/0083443 A1

NETWORK INTERFACE

PORT

Y , ny Na CD
PORT | I 2 622 || 9 | to HsO | AUXILLARY CPU E H. HQ

3 y 52 PoRT | (?o

PORT

PRIMARY PRIMARY INSTRUCTION RAM
CPU CPU MEMORY

Ex|ERNAL - - -
DATA DATA STORAGE STORAGE

INTERFACE

FIG. 6

Patent Application Publication Mar. 26, 2009 Sheet 8 of 14 US 2009/0083443 A1

INSTALL

l
NITIALIZE

TRANSPARENT WAIT

FAILOVER

PREPARE TO FAILBACK

!
FALBACK

FIG. 7

Patent Application Publication Mar. 26, 2009 Sheet 9 of 14 US 2009/0083443 A1

NOC

Local Adkinsitrator

(SSL) Internet (SSL
Local Internet

Network Interface Syste

Network processor & network transceivers
Production
Server(s)

Network security (firewalling, SSL processing, anti
intrusion, anti-virus, anti-spam, as applicable

Manager
and Cache

Local Administration Web
U Interf Communication
Ser Interface Module

System Reliability Manager

POICW 8 Monitoring Update manager cricio
System - (Patch manager) n Setting

Monitoring Update
Coordinator Coordinator Server Appliance services

(synchronization, high
availability manager)

: Service Directory :
System : Application Serices :

Reliability
Manager Primary CPU(s) Operating Network
Cogo f interface System (e.g. Windows

2003 Enforcement System
Coordinator

Nuity Motherboard
Hardware

FIG. 8

Patent Application Publication Mar. 26, 2009 Sheet 10 of 14 US 2009/0083443 A1

USER INTERFACE

LOCAL/REMOTE ADMINISTRATIVE SERVICE

PATCH
MANAGER HIGH AVAILABILITY MANAGER

SYNCHRONIZATION
POLICY MANAGER ENGINE

sES ACTIVE SERVICE
MONITOR DIRECTORY || APPLICATION

OPERATING SYSTEM

SERVICE APPLIANCE MONITOR

SERVICE APPLIANCE MONITORING MANAGER

FIG. 9

Patent Application Publication Mar. 26, 2009 Sheet 11 of 14 US 2009/0083443 A1

SERVICE TRAFFIC
1005

SERVICE APPLIANCE
1010

a

TRANSACTION
-> CACHE

SERVICE TRAFFIC

POLL UPDATE

1017
PRODUCTION SERVER

1015

SERVICE MISC.
APPS. APPS.

SERVER OS

FIG 10

Patent Application Publication Mar. 26, 2009 Sheet 12 of 14 US 2009/0083443 A1

ADMIN SERVICE
TRAFFIC TRAFFIC

C C
SERVICE DATA
APPS. STORE

ADMIN
TRAFFIC SERVICE APPLIANCE

PRODUCTION SERVER

C D
SERVICE MISC. DATA
APPS. APPS. STORE

SERVER OS

FIG. 11

Patent Application Publication Mar. 26, 2009 Sheet 13 of 14

ADMIN SERVICE
TRAFFIC TRAFFIC

US 2009/0083443 A1

ADMIN

SERVICE
APPS.

TRAFFIC SERVICE APPLIANCE

FAILBACK SYNCH.

PRODUCTION SERVER

C D
SERVICE MISC. DATA
APPS. APPS. STORE

SERVER OS

FIG. 12

Patent Application Publication Mar. 26, 2009 Sheet 14 of 14 US 2009/0083443 A1

PRODUCTION SERVER

SERVICE APPLIANCE

cENTVIRTUALADDREsses

SWITCH

|PRODUCTION
SEYER VIRTUAL

|ADDRESS
- - -

Cellphone ADMINISTRATOR
SYSTEM

US 2009/0083443 A1

AUTONOMOUS SERVICE BACKUP AND
MGRATION

CROSS-REFERENCES TO RELATED
APPLICATIONS

0001. This application claims benefit under 35 USC S
119(e) of U.S. Provisional Patent Application No. 60/587,
786, filed Jul. 13, 2004, which is herein incorporated by
reference in its entirety for all purposes. This application is
related to U.S. patent application Ser. No. 1 1/166.359 filed
Jun. 24, 2005 (Attorney Docket No. 022371-000300US),
application Ser. No. 1 1/165.837, filed Jun. 24, 2005 (Attorney
Docket No. 022371-000400US), and application Ser. No.
1 1/166,334, filed Jun. 24, 2005 (Attorney Docket No.
022371-000500US), the disclosures of which are incorpo
rated by reference herein for all purposes.

BACKGROUND OF THE INVENTION

0002 Organizations and business enterprises typically
have one or more core service applications that are vital to
their operations. For example, many organizations rely on
e-mail, contact management, calendaring, and electronic col
laboration services provided by one or more service applica
tions. In another example, a database and associated applica
tions can provide the core operations used by the
organization. These core services are critical to the normal
operation of the organization. During periods of service inter
ruption, referred to as service downtime, organizations may
be forced to stop or substantially curtail their activities. Thus,
service downtime can Substantially increase an organiza
tion's costs and reduce its efficiency.
0003. A number of different sources can cause service
downtime. Critical services may be dependent on other criti
cal or non-critical services to function. A failure in another
service can cause the critical service application to fail. For
example, e-mail service applications are often dependent on
directory services, such as Active Directory, one configura
tion of which is called Global Catalog, to function. Addition
ally, service enhancement applications, such as spam mes
sage filters and anti-virus applications, can malfunction and
disable a critical service application.
0004 Another source of service downtime is administra
tive errors. Service administrators might update critical Ser
Vice applications with poorly tested Software updates, or
patches, that cause the critical service application to fail.
Additionally, some service applications require frequent
updates to correct for newly discovered security holes and
critical flaws. Installing the plethora of patches for these
service applications in the wrong order can cause the service
application to fail. Additionally, service administrators may
misconfigure service applications or issue erroneous or mali
cious commands, causing service downtime.
0005. Application data is another source of service down
time. Databases used by critical service applications can fail.
Additionally, service application data can be corrupted, either
accidentally or intentionally by computer viruses and worms.
These can lead to service downtime.

0006 Software and hardware issues can also lead to ser
Vice downtime. Flaws in the critical service application and
its underlying operating system, Such as memory leaks and
other software bugs, can cause the service applications to fail.
Additionally, the hardware Supporting the service application
can fail. For example, processors, power and cooling systems,

Mar. 26, 2009

circuit boards, network interfaces, and storage devices can
malfunction, causing service downtime.
0007 Reducing or eliminating service downtime for an
organization's critical services can be expensive and compli
cated. Because of the large number of sources of service
downtime, there is often no single Solution to minimize ser
Vice downtime. Adding redundancy to service applications,
Such as backup and clustering systems, is expensive and/or
complicated to configure and maintain, and often fails to
prevent Some types of service downtime. For example, if a
defective Software update is installed on one service applica
tion in a clustered system, the defect will be mirrored on all of
the other service applications in the clustered system. As a
result, all of the service applications in the system will fail and
the service will be interrupted. Similarly, administrator errors
will affect all of the service applications in a clustered system
equally, again resulting in service downtime.
0008. It is therefore desirable for a system to reduce ser
vice downtime from a variety of sources. It is further desirable
that the system operate transparently so that the configuration
and operation of the service application is unchanged from its
original condition. It is also desirable that the system detects
the service application failure or imminent failure and to
seamlessly take over the service so that service users cannot
perceive any interruption in service during the period that the
service application is not functioning, referred to as a
“failover period. It is desirable that the system detects when
a failed service application is restored to normal operation, to
update the service application with data handled by the sys
tem during the service application downtime, and to seam
lessly return the control of the service to the service applica
tion so that service users cannot perceive any interruption in
service during this “failback” period. It is desirable that the
system require minimal configuration and installation from
service administrators. It is also desirable that the system be
robust against failure, self-monitoring and self-repairing, and
be capable of automatically updating itself when needed.
0009. Additionally, it is desirable for the system to allow
for services to be migrated to new service applications and/or
hardware without service users perceiving any interruption in
service. It is further desirable that the system be capable of
acting in a stand-alone capacity as the Sole service provider
for an organization or in a back-up capacity as a redundant
service provider for one or more service applications in the
system. It is still further desirable that the system be capable
of providing additional capabilities to the service, thereby
improving the quality of the service data received or emitted
by the service application. It is also desirable that the system
provide administrative safeguards to prevent service admin
istrators from misconfiguring service applications. It is also
desirable that the system allow for efficient throughput of
network traffic and seamless traffic Snooping without com
plicated packet inspection Schemes.

BRIEF SUMMARY OF THE INVENTION

0010. In an embodiment, the invention includes a service
appliance that is adapted to be installed between one or more
production servers running one or more service applications
and at least one service user. The production servers and their
service applications provide one or more services to the Ser
vice users. In the event that a production server is unable to
provide its service to users, the service appliance can trans
parently intervene to maintain service availability.

US 2009/0083443 A1

0011. In an embodiment, the service appliance is capable
of providing the service using a service application that is
differently configured or even a different application than the
service applications of the production server. Additionally,
embodiments of the service appliance include hardware and/
or Software to monitor, repair, maintain, and update the Ser
Vice application and other associated Software applications
and components of service appliance. In an embodiment, the
service appliance is configured to have a locked State that
prevents local running of additional applications other than
those provided for prior to entering the locked State, limiting
local and remote user administration of and operational con
trol of the operating system and service application.
0012. Upon being connected with the computer running
the service application, an embodiment of the service appli
ance contacts the production server and/or service application
and automatically replicates the service application's con
figuration and data, potentially including data from internal or
external databases, if any exists. As additional data is added to
or modified by the service application of the production
server, the service appliance automatically updates its replica
of the data.

0013. In a further embodiment, the service appliance
obtains all network traffic sent to the service application.
While the service application is operating correctly, the ser
Vice appliance can forward incoming network traffic to the
service application, outgoing network traffic to its destina
tion, and can perform that forwarding transparently at various
network layers.
0014. An embodiment of the service appliance monitors
the service application. If the service appliance detects that
the service application has failed or is about to fail, the service
appliance cuts off the service application of the production
server from the service users and takes control of the service.
Using the replica of the data, the service appliance responds
to service users in essentially the same manner as a fully
operational service application and production server. While
providing the service to service users, the service appliance
updates its copy of the data in accordance with service users
needs. An embodiment of the service appliance monitors the
network to detect when a service application provided by the
production server or a replacement production server
becomes available. Once the service appliance has detected
that the service application has resumed functioning, an
embodiment of the service appliance automatically updates
the service application's copy of the data to reflect the current
state of the data. Upon synchronizing the data of the service
application of the production server with the service appli
ance's data, the service appliance reconnects the service
application with the service users and simultaneously returns
control of the service to the service application and its pro
duction server.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 The invention will be described with reference to the
drawings, in which:
0016 FIG. 1A illustrates an example installation of the
service appliance in a protective configuration according to
an embodiment of the invention.

0017 FIG. 1B illustrates an example installation of the
service appliance in disaster recovery configuration accord
ing to an embodiment of the invention.

Mar. 26, 2009

0018 FIG. 2 illustrates an example installation of the ser
Vice appliance in a stand-alone configuration according to an
embodiment of the invention.
0019 FIG. 3 illustrates an example installation of a first
plurality of service appliances in a protective configuration of
a second plurality of production servers according to an
embodiment of the invention.
0020 FIG. 4 illustrates an example installation of two
service appliances in a double protective configuration
according to an embodiment of the invention.
0021 FIG. 5 illustrates an example installation of two
service appliances in a double stand-alone configuration
according to an embodiment of the invention.
0022 FIG. 6 illustrates an example hardware configura
tion of the service appliance according to an embodiment of
the invention.
0023 FIG. 7 illustrates the states of the service appliance
according to an embodiment of the invention.
0024 FIG. 8 illustrates a runtime architecture of the ser
Vice appliance according to an embodiment of the invention.
0025 FIG. 9 illustrates a component architecture of the
service appliance according to an embodiment of the inven
tion.
0026 FIG. 10 illustrates the flow of data to a service appli
cation and the service appliance while the service appliance is
in a transparent wait state according to an embodiment of the
invention.
0027 FIG. 11 illustrates the flow of data to a service appli
cation and the service appliance while the service appliance is
in a failover mode according to an embodiment of the inven
tion.
0028 FIG. 12 illustrates the flow of data to a service appli
cation and the service appliance while the service appliance is
in a failback mode according to an embodiment of the inven
tion.
0029 FIG. 13 illustrates a network configuration enabling
the service appliance to transparently function between the
production server and client systems, according to an
embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

0030 FIG. 1A illustrates an example installation of the
service appliance in a protective configuration according to
an embodiment of the invention. In this embodiment, the
service appliance is installed on an organization's network
inline between a production server hosting a service applica
tion and the various client systems. In this application, client
systems include any systems dependent upon a given service,
including systems operated by users and potentially other
dependent services. The service application provides a ser
Vice to client systems. In this configuration, the service appli
ance relays all network traffic between the production server
and the client systems. The service appliance monitors the
operation of the production server and can take control of the
service provided by the production server, for example in the
event that the production server fails. As discussed in detail
below, the service appliance can operate transparently, so that
neither the production server nor the client systems are
affected by the service appliance during normal operation;
moreover, neither the production servernor the client systems
need to be configured by an administrator to support the
service appliance.
0031. In an embodiment, the service appliance is installed
by connecting it to a power source and to one or more network

US 2009/0083443 A1

connections with each of the production server and the orga
nization's network, respectively. In an embodiment, the Ser
Vice appliance is initialized by a service administrator using a
web-based interface. The web-based interface may belocated
at a static IP address assigned to the service appliance,
wherein the static IP address can be embedded in the service
appliance at ship time or entered during initialization. In
another embodiment, the IP address of the service appliance
is assigned by a DHCP host on the network that provides an
indication of the assigned IP address to the service appliance
in response to a DHCP request from the service appliance.
The service appliance can be pre-configured with a fixed
MAC address or a MAC address from a prespecified range of
MAC addresses or some other set of MAC addresses known
to be used for instances of service appliances. In Such
embodiments, the service appliance might obtain its IP
address via a network Sniffer application, running for
example within a web-browser of the service administrator,
which locates the service appliance on the network using the
MAC address(es) and provides an HTTP interface for a
matching MAC address known to be associated with a service
appliance. In those embodiments, the service appliance does
not require an IP address to be assigned by physically inter
acting with the service appliance. In yet another embodiment,
the service appliance is assigned the same network address as
the production server.
0032. In an embodiment, the service appliance is initial
ized with a minimal amount of information, including the
network location of the production server and authentication
information used to access the service application hosted by
the production server. Using this information, the service
appliance can access the service application and obtain any
additional initialization information needed.

0033 FIG. 1B illustrates an example installation of the
service appliance in disaster recovery configuration accord
ing to an embodiment of the invention. In this embodiment,
the service appliance is intended to serve as a disaster recov
ery aide in the event of the catastrophic failure or destruction
of the production server. The functionality of the service
appliance in this embodiment is Substantially similar to that
of other embodiments, including the ability to take control of
the service normally provided by the service application run
ning on the production server and the ability to transparently
provide service to client and other dependent systems of the
service. However, in a disaster scenario, the production server
is permanently disabled or destroyed, and so considerations
of relaying network traffic intended for the production server
are rendered moot. Therefore, in this embodiment, the service
appliance may be connected in parallel with the production
server, provided that the service appliance can communicate
over the network with the production server. This embodi
ment may also not require as Sophisticated or costly a network
interface. In a further embodiment, a service appliance oper
ating in a disaster recovery configuration may either act as a
router and/or network switch itself or utilize an attached
network Switch and/or router to facilitate communications
with the production server.
0034 FIG. 2 illustrates an example installation of the ser
Vice appliance in a stand-alone configuration according to an
embodiment of the invention. This configuration of the ser
Vice appliance provides the service to the organization,
thereby eliminating the need for a production server. In an
embodiment, the service appliance in a stand-alone configu
ration is essentially identical to the service appliance in a

Mar. 26, 2009

protective configuration, with the exception that in the stand
alone configuration, the service appliance is permanently in
the failover state, discussed in detail below.
0035 FIG. 3 illustrates an example installation of a first
plurality of service appliances in a protective configuration of
a second plurality of production servers according to an
embodiment of the invention. In this example, a first plurality
of service appliances are connected between the client sys
tems and an arbitrary number of production servers. Each of
the production servers hosts one or more service application
processes. In the example of FIG.3, at least a portion of the set
of service appliances can protect any arbitrary portion of the
set of service application processes. In addition, the alloca
tion of service application processes to service appliances is
independent of the allocation of service application processes
to production servers. For example, a single service appliance
can protect a plurality of service application process operated
by one or more production servers.
0036. In a further embodiment, the service application
processes of the service appliances, as well as additional
processes attendant thereto, may be executed in one or more
virtual machines running on one or more CPUs of the service
appliances. In these embodiments, a virtual machine com
prises at least one service application and additional attendant
processes discussed in detail below. The virtual machine
operates as a “virtual server appliance that can be activated,
deactivated, and optionally stored for later reactivation,
0037 FIG. 4 illustrates an example installation of two
service appliances in a double protective configuration
according to an embodiment of the invention. In this example,
the service appliances are connected in series, such that the
failure of either service appliance is automatically compen
sated for by the remaining service appliance. In an embodi
ment of this configuration, the first service appliance in the
series perceives the second service appliance in the series as
a production server, and protects the second appliance in the
identical manner as the second service appliance monitors
and protects the actual production server. There is no practical
limit to the extent of this protective chaining.
0038 FIG. 5 illustrates an example installation of two
service appliances in a double stand-alone configuration
according to an embodiment of the invention. In this embodi
ment, each service appliance is capable of providing the Ser
Vice to client systems. Additionally, each service appliance
can compensate for its counterpart in the event that the coun
terpart cannot provide the service to client systems. In this
embodiment, the service appliances can provide the same or
different services during normal operation. There is no prac
tical limit to the number of redundant service appliances in
this configuration, and in Some embodiments the storage,
processing capability, and network processing capability
each service appliance may be physically partitioned and
multiply redundant as well. This redundancy capability is not
limited to the aforementioned embodiment, and may be
effected in other embodiments as well.

0039 FIG. 6 illustrates an example hardware configura
tion of the service appliance according to an embodiment of
the invention. In this embodiment, a network interface card
includes a plurality of Ethernet ports, allowing for redundant
network connections to both the production server and the
network to which client systems are connected. The Ethernet
ports are connected with a network processor, which can be
any device adapted to examine and coordinate network com
munications traffic), that is used to analyze and route network

US 2009/0083443 A1

packets. In an embodiment, the network processor provides
the functionality of a layer 2 network switch. The network
processor is connected with an auxiliary CPU. The auxiliary
CPU supervises the operation of the network processor and
provides routing and analysis functions of any combination of
networking layers 3 through 7. In an embodiment, the net
work processor and the auxiliary CPU are an integrated unit
in which the network processor, without a distinct auxiliary
CPU, routes and analyzes at any combination of networking
layers 2 through 7. As discussed in detail below, an embodi
ment of the auxiliary CPU also performs part or all of the
self-monitoring and self-repair functions of the service appli
ance. An embodiment of the network interface further
includes an Ethernet cutoff mechanism so that when the ser
Vice appliance is powered off or otherwise not functioning,
the ports are electronically or optically connected together to
allow network traffic to flow between the production server
and the rest of the organization's network. In additional
embodiments, the server appliance can use other networking
protocols besides Ethernet and/or TCP. In another embodi
ment, software running on the primary CPU(s) of the service
appliance, or on the CPU(s) of another motherboard effec
tively serving the role of network interface, or in a virtual
machine executing on any configuration of Such CPU(s),
provides the functionality of both the network processor and
auxiliary CPU.
0040. The network interface card is connected with a data
bus of the service appliance. Also connected with the data bus
area main CPU, RAM and distributed or isolated non-volatile
memory. In an embodiment, the service appliance includes
one or more storage devices, such as hard disk drives, for
storing an operating System, application programs, and/or
service data. The storage device can be a RAID array of disks
for improved reliability. In an alternate embodiment, an exter
nal storage device interface, such as a SCSI interface, a Fibre
Channel interface, or an iSCSI interface running on the same
Ethernet ports of the network interface or different Ethernet
ports, enables the service appliance to use external storage
devices for some or all of its data storage needs. Additional
component, such as cooling systems and power Supplies, are
omitted for clarity. Moreover, the system of FIG.3 is intended
for illustration and otherhardware configurations and/or soft
ware configurations known to one of ordinary skill in the art
may be used to implement the service appliance, including
dual or multiple processors in place of the main CPU and/or
the use of virtual machine software to emulate the function
ality of one or more of the above hardware components.
0041. The service appliance shown in FIG. 6 can have a
variety of physical configurations. For example, all of the
components of the service appliance can be integrated into a
single housing adapted to fit within standard computing
equipment racks. In another example, the network interface
card and the remaining portion of the service appliance hard
ware can be configured as two or more separate units, such as
blade computer units Communication between the network
interface card and the remaining portion of the service appli
ance can utilize any type of internal or external data bus
Standard, including message passing protocols operating on
top of a switched Ethernet or similar link layer protocol
backplane.
0042 FIG. 7 illustrates the states of the service appliance
according to an embodiment of the invention. As an example,
the states of the service appliance are discussed with refer
ence to an example service appliance intended to replicate an

Mar. 26, 2009

electronic mail, contact manager, calendaring, and collabo
ration service application, such as Microsoft Exchange. How
ever, the service appliance can implement other service appli
cations, including databases, web servers, directory services,
and business applications such as CRM (customer relation
ship management), ERP (enterprise resource planning), SFA
(sales force automation), financial applications, and the like.
0043. In summary, an embodiment of the service appli
ance described with reference to an example of a specific
service application has five states following installation:

0044) 1. Initialization. Following the installation of
the service appliance, the service appliance is config
ured and automatically replicates e-mail, calendaring
and relevant configuration information from the produc
tion server onto itself.

0.045 2. Transparent wait The service appliance pas
sively stays in Sync with the production server and is
ready to take over servicing of e-mail and calendaring
requests in case the production server fails.

0046 3. Failover The service appliance detects the
production server failure and takes over the servicing of
e-mail and calendaring requests from systems and users
connected to the production server.

0047. 4. Prepare to fail back The service appliance
determines that the production server, possibly but for
missing service data, is capable of providing the service;
the service appliance auto-replicates the e-mail and cal
endar data back to the production server so that the
production server can get e-mails received and handled
by service appliance while the production server was
down

0.048 5. Failback The service appliance has com
pleted replication of e-mail and calendaring data to the
production server. The service appliance now hands over
the “authority” to service e-mail and calendaring
requests back to the production server. The service
appliance returns to the Transparent wait state (state 2).

0049. The operation of these states will now be described
in greater detail. The initialization process can start immedi
ately after the physical process of installation. In the example
of a service appliance for electronic mail, contact manager,
calendaring, and collaboration Software, as long as the cus
tomer does not take too long (i.e., more than a few minutes),
even clients, connected to a service application at the time of
Such connection process, should not lock up. The worst-case
install outcome of the service appliance will be that end-users
would have to re-try their last client operation.
0050. Once installed, the service appliance can be initial
ized by the service administrator as discussed above. In an
embodiment, the service appliance can offer a web-based
configuration page with few elements, such as text boxes to
input the highest-level service application administrator
name and password, the unique Active Directory (henceforth
referred to as AD) or NT domain identity of the production
server hosting the service application (such as Exchange
2000/2003 or Exchange 5.5, respectively), and the fixed IP
address, and Sub-network (as applicable) of the production
server. In other embodiments or installation cases, such as
those using DHCP, the service application administrator will
not have to enter some of the information listed above.

0051. Once the administrator enters the aforesaid param
eters, an embodiment of the service appliance will assume the

US 2009/0083443 A1

administrative authority using the configured administrator
name and password and will follow at least the following
steps:

0.052 Step 1—Replicate the service application con
figuration information relating to connectivity protocols
and routing. Connectivity protocols include application
programming interfaces and/or associated communica
tion format standards typically used to facilitate com
munications between client systems and/or production
servers with service applications.

0053 Step 2 Replicate the directory information that
supports the mail-enabled users served by the service
application on the production server (for example, AD
related information for Exchange 00/03 and DS infor
mation for Exchange 5.5). In an embodiment, this infor
mation is replicated using a connectivity protocol to
retrieve service data from the production server.

0054 Step 3—Replicate the existing service data of the
service application hosted by the production server, Such
as the e-mail and calendaring information in the mail
store of the production server for every mail-enabled
user served by the production server. Similarly to step 2,
connectivity protocols can be used to replicate this ser
Vice data on the service appliance. In an additional
embodiment, the service appliance performs additional
validation of the service data, for example by checking
for corruption, cleansing, transformation, and virus
checking. In further embodiments, the service appliance
can screen service data to ensure compliance with poli
cies set by the network operator, such as corporate pri
vacy, security, and data reporting policies, which can be
developed to meet a corporation's specific needs or to
comply with laws such as HIPAA and Sarbanes-Oxley.

0055 Step 4 Replicate the information of the produc
tion server's service application necessary for service
functioning. Similarly to step 2, an embodiment of the
service appliance uses connectivity protocols to repli
cate this service data.

0056. In a further embodiment, the service appliance may
additionally support the selection of a portion of the set of
service users to be served by service appliance in case of
production server failure. In that case, an additional step 2.5
above will display the list of service users, such as mail
enabled users (obtained in step 2), and will allow the customer
to select the users to be served from the list. Another embodi
ment enables the service appliance to allow protection for a
selected number of dayS/megabytes of mail per user. In a
further embodiment, policy will automatically dictate these
actions.
0057. In an embodiment, to provide transparency during

this phase, the service appliance will use the unused network
bandwidth to perform the necessary replications; alterna
tively, the service administrator will have the choice to opt for
the fastest possible initialization where the service appliance
appears to the production server as another busy service
application client.
0058. During Step 1, the service appliance will issue a
series of connectivity protocol requests, such as RPC calls or
the like to the production server. These connectivity protocol
requests return with information about the configuration and
state of the production server.
0059. In an alternate embodiment, the service appliance
may elect to ignore service application configuration infor
mation that is highly situational.

Mar. 26, 2009

0060. In an embodiment of Step 2, the service appliance
will issue a series of AD-related connectivity protocol
requests to two AD entities, modalities of which include the
local Domain Controller (DC) and the nearest Global Catalog
(GC), to read user and service-related information.
0061 During Step 3, the service appliance would make
Microsoft Exchange mail database connectivity protocol
requests and/or use other methods (e.g., MAPI) to replicate
onto itself the complete data of every user mailbox on the
production server. The replication will be repeated for all the
applicable mailboxes.
0062 Since the production server will be operational
while the replication will be in-progress, a “stutter-step'
series of replications will probably be needed to achieve exact
replication. The initial replication will replicate service data
at least up to the time that the initial replication occurs. A
second replication is used to copy service data added or
modified during the initial replication. Each Succeeding rep
lication will address a smaller and smaller set of possible
changes to the mailboxes, over a smaller and Smaller latency
window, until the mailbox is deterministically in sync. For
example, during an initial three-minute replication of a 2 GB
mailbox, a user might receive 10 MB of new e-mails and alter
the metadata of or, alternatively, delete fifty messages. To
replicate those changes is generally a matter of seconds, and
to cover any changes possible in those few seconds in yet
another replication is a matter of fractions of a second, and so
forth.
0063. During the transparent wait state, the service appli
ance will perform three tasks:

0.064 Task 1—Pass traffic through to the production
server without performance degradation

0065 Task 2 Maintain synchronization of the service
data of the service appliance with the service data of the
service application hosted by the production server.

0.066 Task 3—Keep the service appliance up using its
value added software (includes self-maintenance, self
applied best-practice heuristics and patch application
processes)

0067. It should be noted that even though Task 3 is
described here, it is built into the overall lifecycle of the
service appliance operation that includes the five states of the
service appliance described in the beginning of this docu
ment.

0068 For Task 1, the service appliance will pass through
all network traffic, (including potentially lethal transactions)
to the production server. An exception to this is administrator
traffic that is screened and optionally blocked or altered by the
administrative safeguards feature discussed below.
0069. To facilitate Task 2, an embodiment uses a “snoop
ing method that clones Ethernet frames using the spanning
port-like functionality present in a number of gigabit Ethernet
networking chips, including controllers and Switches. An
alternative software-only approach will be a Zero-buffer-copy
at the lowest possible level of the network stack on the service
appliance (via a filter driver). In still another embodiment, an
RPC API is used to periodically access the service data stored
by the service application and to retrieve service data modi
fied or added since the previous synchronization access. Any
one or more of these methods may be combined.
0070 Since the service appliance will forward all network

traffic to the production server, there will be no issue with the
production server receiving and processing messages and
requests that manipulate those messages. On the service

US 2009/0083443 A1

appliance, the copy of the network packets that constitute
those requests and message data will proceed “up the stack
in normal fashion to the various service application pro
cesses. As the service application processes engage with the
assembled requests and messages, specific implementations
in Task 2 will be able to process them, as needed, using event
handlers. These event handlers are traps applied to all of the
relevant Exchange 03 processes on the service appliance.
Since Exchange 03 itself uses such traps for its own internal
event handling, they are relatively high performance. The end
result is that the service appliance will have a copy of every
message received and processed by the production server,
whether it arrives via ESMTP POP3, IMAP, MAPI, MTA, or
Outlook Web Access (OWA), over TCP or HTTP.
0071. It should be noted that in an embodiment the perfor
mance of the traffic Snooping described above is not a signifi
cant issue. Because the service appliance will not be actively
serving any clients during this state (Transparent wait), it will
have the luxury of buffering and queuing its captured frames
for processing.
0072 Task 2 ensures that the data stored in the service
appliance remains in lock-step with that of the production
server. In other words, when the service appliance assumes
authority for the production server's service, end-users
should not see missing or incorrectly represented messages
out of the service appliance's data. This task will be per
formed using a combination of two or more different
approaches.
0073. In a first embodiment, an "over the wire” synchro
nization is achieved using the traffic Snooping done in Task 1.
As part of the Snooping, the service appliance will copy
in-flight administrative transactions on the wire as well as the
message transaction traffic (commands which apply to mes
sages as well as the message data itself). The service appli
ance will do this to maintain the in-process transaction cache
that will primarily be used to “play' to the service appliance
in the event that the production server dies without complet
ing transactions in flight. Each incomplete transaction queued
in the cache will be flushed when the service appliance sees
the transaction completion signal pass through it from the
production server. Additionally, the service appliance gets
Sufficient state information about messages from Snooping
that it may also be able to make better determinations of
which messages on the production server need to be repli
cated (or can be skipped). This approach is applicable to a
large class of service applications, such as relational data
bases.

0074. In an alternate embodiment, the Snooped message
traffic could be “played on the service appliance to mimic
the same actions undertaken by the production server with
that traffic. This "playing solves many synchronization
issues in a non-intrusive fashion. For example, determining
what should happen when a user on Outlook (e.g., via MAPI
RPC interaction with Exchange) or Outlook Web Access
deletes a message, or when a Eudora user gets unread mes
sages waiting for them out of the mailstore via POP3. Since
the production server sees every single packet it would nor
mally see, the ultimate behavior of the production server with
regard to altering message state in response to user or to other
external stimuli is no different than it would be if the service
appliance were not there in the first place. The service appli
ance, through Snooping, will be capable to receive the net
identical stimuli. Again, with event handlers, the service
appliance can take whatever action deemed appropriate. But

Mar. 26, 2009

if it chooses to simply pass on the stimuli through its appro
priate Exchange processes, then when a message is read,
deleted, edited, or moved to a folder, the state of the message
on the service appliance and the production server will be
identical.

0075. In a further embodiment, the service appliance can
augment the production server in a load balancing configu
ration. In this embodiment, the service appliance selectively
serves up read requests (for example, 60%+of the production
server's actual load). The production server can then be
reached to “touch' the service application meta-data (e.g.,
message meta-data) for the service application data item (e.g.,
message) that the service appliance handled to reflect its new
state. This post-fix of the data store on the production server
is in fact much less CPU, disk, and network intensive than if
the production server actually handled the read, so there
should still be a large net gain in performance.
0076 A second embodiment for synchronization does not
require examination and processing of service application
data (e.g., message traffic) bound through the service appli
ance for the production server and is an extension of the
initialization code, using connectivity protocol requests. Such
as MAPI, to replicate service application data (e.g., mes
sages) on a granular basis (e.g., mailbox by mailbox) periodi
cally.
0077. In a further embodiment, maintaining synchroniza
tion with the routing and mail processing configuration of the
production server is not a network or processing intensive
task. Because this information is a) not likely to change
frequently and b) is not sizeable, an hourly replication process
(which will not involve that much information transfer) may
be sufficient. Also in regard to task 2, maintaining sync for the
service appliance with the DC and the GC is neither a frequent
nor intensive process. Because many users and entities are
unlikely to be added or deleted on a daily basis, let alone
hourly, even in a large organization, re-invoking the original
DC and GC sync code some small number of times a day is
typically sufficient.
0078 Under an embodiment of synchronization, the ser
vice appliance “sweeps” the production server every so often.
The Sweeping will help keep the service appliance in Sync
with the production server in the event that autonomous pro
cesses on the production server (Such as, security, backup or
Exchange-resident auto-archive process) move service appli
cation data (e.g., messages) off the production server, perhaps
via a storage area network, or perform some other operation
which would not be visible to the service appliance Snooping
on the wire. The statistical likelihood of a production server
failing right after it has archived or deleted a bunch of mes
sages, without the service appliance having had a chance to
synchronize (resulting in the service appliance then cheer
fully and unknowingly presenting those messages to users), is
very small.
0079. In a further embodiment, given that the service
appliance is constantly replicating to itself, at an object level
or granularity (e.g., mail object, database record, other atom
of data), it is in fact performing a service similar to that of a
backup service. However, as the service appliance does not
blindly copy bits or blocks, but instead obtains the service
application data object as a whole, the service appliance is
capable of inspecting service data, (e.g., for signs of database
corruption) and improving the quality of service data (e.g.,
virus cleansing or database transformation operations).

US 2009/0083443 A1

0080 Additionally, an embodiment of the service appli
ance intrinsically has the capability to transfer all the objects
under its jurisdiction—both those originally copied during
installation and initialization from the production server, and
those modified or instantiated during transparent wait and/or
failover and/or failback States—as a consequence of its syn
chronization technology (as described herein). Therefore, it is
in fact capable of doing both incremental and wholesale res
toration of the service data under its jurisdiction to either the
original production server or any replacement thereof. Con
sider the failback case, as described herein. Wholesale resto
ration is simply the case of failback from the service appli
ance to a production server which has no, or a severely
diminished, service application database.
0081. In yet another embodiment, the service appliance
facilitates migration of a service from an existing production
server to a new production server potentially running new
service application(s) as follows. First, the service appliance
is connected with the existing production server in a manner
permitting the service appliance's synchronization to operate,
thereby replicating the existing service application data and
any eventuating changes thereto. Once the service appliance
is synchronized with the service application on the existing
production server, the service appliance is disconnected from
the existing production server and connected to the new pro
duction server. During this period of disconnection, the Ser
Vice appliance continues to handle any on-going service
duties requested by the client systems. After being connected
with the new production server, the service appliance is
instructed to failback to the new production server. Using its
failback synchronization mode, the service appliance restores
all of the service application data to the new production
SeVe.

0082 An embodiment of task 3 of the transparent wait
state includes several features. First, the service appliance
will protect itself from the Vulnerability to error of a standard
Windows server, including indeterminate downtime from
patch applications, using a “system reliability manager. The
system reliability manager monitors the performance of the
service appliance and can terminate and restart any processes
or applications that have failed, including rebooting the oper
ating system if necessary. The system reliability manager
includes a number of heuristic-based “watchdog” processes
running on the service appliance will ensure that the service
appliance itself stays up.
0083. For example, if the protection server's or customer's
network-based anti-virus protection fails, it is possible that
one of the Outlook clients served by the service appliance
would be infected by a virus or worm. The service appliance
will monitor its own SMTP queues to detect the kind of
intense mail-traffic from a single client typical of virus or
worm infections. Such monitoring will also prevent the Ser
Vice appliance from being compromised (no matter how
Small the chance might be) and used as an outbound spam
emitter.

0084. In another embodiment, the service appliance runs
anti-virus, anti-spam, or other security or value-added func
tionality applications or services. The service appliance's
system monitoring layer and system reliability manager
enables such additional applications to be provided by the
service appliance in a stable and robust fashion not typically
possible outside of the context of the service appliance.
0085. The service appliance will also monitor a number of

its own performance and functionality metrics, compare them

Mar. 26, 2009

to its best practices heuristics list, and make adjustments if
necessary. For example, if the service appliance notices that
certain storage performance limits on the service appliance
are being exceeded, it will alter its storage methodology.
I0086. In an additional embodiment, the service appliance
is a closed system. Because of this the service appliance can
be preconfigured with a list of valid processes. By monitoring
the active processes and comparing them to the list of valid
processes, the service appliance can readily identify and ter
minate an unauthorized process, Such as one introduced by a
virus or worm. In a further embodiment, the service appliance
keeps an exact byte count and checksum of every piece of
code on disk, updated if and when patched. Any change in
size or checksum will indicate a Trojan horse attempt, and the
offending file can be purged and reloaded from a Volume only
accessible to the service appliance Supervisory kernel.
I0087. In an embodiment, some or all of the system reli
ability manager is executed on the auxiliary CPU associated
with the network interface card discussed above. In another
embodiment, the system reliability manager is run on a sepa
rate CPU independent of the network interface card discussed
above. In another embodiment, the system reliability man
ager is run underneath or parallel to a virtual machine appli
cation or supervisory kernel, either on the primary CPU(s) or
another processor.
I0088. The second aspect of the third task of the transparent
wait state ensures that the operating system and service appli
cation processes inside the service appliance are properly
patched. As discussed in detail below, the service appliance
includes a specially-configured version of the service appli
cation that is capable of providing the service to service users
in the event the production server fails. To avoid the problems
associated with incorrect or defective software patches, an
embodiment of the service appliance receives an optimal
patch configuration from a central network operations center.
The network operations center tests software patches exten
sively on its own set of service appliances to determine
whether software patches are to be included in the optimal
patch configuration. Because the service appliance is a closed
system, the configuration of each service appliance is essen
tially identical. Therefore, patches that operate correctly dur
ing testing at the network operations centerare also ensured to
work correctly on service appliance deployed by customer
organizations.
I0089. In an embodiment, the network operations center
can communicate approved software patches over an SSL
connection to the service appliance in need of the patch. The
SSL connection for the service appliance will be created by
the service appliance polling over an outbound SSL connec
tion to the set of network operations center servers hosting the
patches. For the SSL transactions, the service appliance will
use multiple layers of certificates that have been indepen
dently certified for security.
0090. In another embodiment, a dual CPU service appli
ance runs one copy of its processes on one CPU, while evalu
ating the patched "stack on the other CPU. If any errors
(including production server failure) are detected during
patching or significant performance degradation immediately
after patching, it will restore the operating image from an
untainted copy it will maintain. The service appliance will
likely keep the restoration image on a Volume not accessible
to the primary file system (e.g., NTFS), but only to the super
visory kernel. This approach will be one more defense against
bugs or corruption, as well as against attacks by viruses oper

US 2009/0083443 A1

ating even at the system level of the primary kernel (e.g., NT).
In another embodiment, the patched processes run on the
primary CPU(s) of the service appliance while being evalu
ated and controlled, as described above, by the system reli
ability manager running on the auxiliary CPU.
0091. The third aspect of the third task of the transparent
wait state enables the service appliance to process “over the
wire administrative traffic (copied during Task 1) to prevent
erroneous or debilitating administrative instructions from
reaching the service application on the production server. The
stateful inspections of administrator interactions with the ser
Vice application on the production server are referred to as
administration safeguards. In an embodiment of administra
tive safeguards, the service appliance examines the Snooped
administrative instructions both in vacuum, and in context of
a transaction log of all prior Such instructions, both compared
against its heuristic map of best practices for maintaining a
fault-tolerant service application server. For example, the
service appliance will examine the network traffic passing
through and understand the administrative requests destined
for the production server to ensure it does not mimic Some
thing disastrous upon the production server (e.g., replicating
mass user deletions). On the other hand, a user may do some
thing entirely legitimate with the production server that the
service appliance will take into account. For example, they
may delete a single user who is leaving the organization, or
they may shut off OWA services in response to a security
threat.
0092. In an embodiment, the failover state includes two
steps:

0093 Step 1 The service appliance detects a failure
condition on the production server and prepares to take
over the servicing of e-mail and calendaring requests
from the production server

0094 Step 2. The service appliance proxies for the
production server and serves e-mail and calendaring
requests masquerading as the production server to the
end users

0095 Step 1 of the first task of the failover state includes:
0096 Task 1—Identify failure modalities of the pro
duction server without either jumping the gun (i.e., false
positives) or letting key events go by (i.e., false nega
tives)

0097 Task 2 React appropriately to the failure and
prepare the service appliance to take over from the pro
duction server

0098. In an embodiment, task 1 detects failure modalities
on the production server through at least one of three
approaches. The first approach will be to allow the human
administrator of the production server to click a button on the
service appliance administration UI signaling that the pro
duction server is down and the service appliance should take
OVer.

0099. The second approach will be for the service appli
ance to use existing health detection mechanisms possibly
further enriched using the service appliance's value-add
detection code. In particular, existing health detection mecha
nisms will be required to 1) probe the state of the service
application, such as an Exchange 5.5 production server, and,
2) handle improperly configured service applications or non
existent health detection mechanisms. An embodiment of this
approach uses a WMI service running on the production
server for the most sophisticated failure detection. Typically,
there is a vast arsenal of Statistics about service applications

Mar. 26, 2009

such as Windows Server (including Active Directory), and
even in minimal customer configurations, service application
process behavior and health can be extracted at a fairly fre
quent time interval without major performance impact on the
production server and its service application; and, b) similar
detection codes are implemented and in use by most existing
service application clustering and other solutions.
0100 From the above data, the service appliance will be
able to tell fairly quickly and deterministically if a number of
failure conditions are occurring on the production server.
Some examples of Such failure conditions on the production
server include 1) service application data errors; 2) the stor
age below a critical threshold; 3) major processes are stopped
or non-responsive for a significant period of time; and 4)
Network connections to the production server break and a
number of retries to reestablish connection fails. Such failure
conditions could be considered deterministic and binary in
nature—if one or more of them are true, then any external
observer would agree that the production server is failing or
has already failed in its function.
0101 The moderate complexity of the detection task
arises from the permutations of failure possible on a produc
tion server, as well as shades of gray in determining what
constitutes a failure. To handling the permutation cases, an
embodiment of the service appliance includes a failure heu
ristics module that emulates, for example using a Bayesian
analysis based on a set of predefined policies, the decision
process that a set intersection of customers would be likely to
make.

0102. In a further embodiment, service administrators can
select a set of heuristics from a library of heuristics includes
with the service appliance to be used to determine the pro
duction server failure. Service administrators can also select
Boolean combinations and weightings of failure conditions,
or alternatively, a set of slider bars ranging from 'aggressive'
to “lax', the setting of which determines how the service
appliance would behave in detecting and responding to fail
ure on the production server. In this embodiment, the value of
the slider bar is a natural input to the kind of weighting
algorithms the service appliance can use in its failure heuris
tics modeling.
0103) In conjunction with the service administrator having
control over the set of failure heuristics, an embodiment of the
service appliance includes a mechanism to: 1) warn the
administrator up front about the consequences of their
actions; 2) send the administrator an e-mail with a record of
the settings they changed, along with any warnings they
engendered; 3) keep a non-volatile record of all such trans
actions to record changes to the set of heuristics for the
purposes of reviewing administrator actions.
0104. The third approach to the production server failure
detection interfaces with service application monitoring
modules/applications, such as those provided from Vendors
such as NetIQ, HP (OpenView), IBM (Tivoli), and CA
(UniCenter). All of these systems augment or even provide
their own instrumentation of a given production server, and
some of them offer some level of intelligence in reporting (to
their determination) the production server failure.
0105. The second task of step 1 of the failover mode pre
pares the service appliance to take over the service of e-mail
and calendaring requests from the production server, after the
service appliance has determined the production server fail
ure. Since the service appliance is already in-line with the
network traffic (part of State 2 Transparent wait), the only

US 2009/0083443 A1

additional work that service appliance needs to do are 1) stop
forwarding only e-mail and calendaring traffic to the produc
tion server; 2) allow the natural responses of the service
appliance's service application process to go out to the net
work; and, 3) pass through administrative traffic to/from the
production server (e.g., Telnet, Windows terminal server traf
fic, administrative probes and, SNMP) so that the remote
administrator(s) can bring the production server back up. In
other embodiments, such as ones intended to assist with
disaster recovery, this step is simplified because the produc
tion server is assumed to be destroyed or otherwise effectively
destroyed. Therefore, in these embodiments, not all of these
tasks are necessary.
0106. In step 2 of the failover state, the service appliance
will service the e-mail and calendaring requests on behalf of
the production server. The service appliance will already have
(as a result of Initialization and Transparent wait states tasks)
a complete copy of every item of service application data
(e.g., all message items including notes, calendar items, etc.)
that a user would need to see from the production server. The
service appliance will also have all the free/busy data neces
sary to conduct calendaring transactions. It will also already
be running all the service application processes (e.g. OWA)
necessary for the service appliance to communicate with the
same entities with which the production server was previ
ously communicating. It should be noted that messages com
mitted during this period by the service appliance to the
mailstore will not be mapped or bound to the production
server, since the production server is down. The back-syn
chronization of service application data (e.g., messages
received by the service appliance while the production server
is down) from the service appliance to the production server
will be discussed below.

0107. In an embodiment, one of the first things that the
service appliance will do in Step 2, is to “play” the incomplete
transactions from its transaction cache up through the service
application process 'stack on the service appliance. This
activity essentially will complete these transactions from the
user's perspective, since the service appliance will now be
their mail server. The service appliance will continue to
update its internal representations of external data sources,
such as the GC and DC during this state. However, the service
appliance is a sealed, locked-down entity. It is not subject to
administrative instructions or interrogation from the outside
world, nor is it likely to be “entangled to other service
application servers in the same organization. If the service
appliance is running what turns out to be the DC or GC for the
routing group or Sub-group of the production server, the Ser
vice appliance AD will not be replicating to other ADs. When
the production server (possibly including the DC or GC pro
cess) comes back up, it will be the responsibility of the pro
duction server to deal with updating information relevant to
all of its relationships (e.g., other ADS, other Exchange serv
ers, etc.).
0108. In an embodiment, the preparing to failback state
includes the steps:

0109 Step 1—Detect that the production server is once
again functional

0110 Step 2 Back-synchronize, from the service
appliance to the production server, the service applica
tion data (e.g., messages) received by the service appli
ance on behalf of the production server during the pro
duction server's down-time

Mar. 26, 2009

0111. In an embodiment, step 1 can be performed using
two approaches. First, the service appliance could require the
administrator of the production server click a button on the
configuration/administration screen of the service appliance
to indicate to the service appliance that the production server
is live (to that administrator's satisfaction). The second
approach would be for the service appliance to in essence run
the failure heuristics module in reverse. If all the deterministic
failure conditions are false, the production server could be
considered to be up again. The information to reach this
conclusion would come from the service appliance intermit
tently probing the production server while the service appli
ance is in the failover State.
0112. In Step 2, the service appliance would back-syn
chronize from itself to the production serverall of the service
application data (e.g., message data) that the service appli
ance received on behalf of the failed production server. Some
combination of techniques for replication from the Transpar
ent wait state, can be applied in reverse (from service appli
ance to production server, instead of vice versa).
0113. The service appliance would be back-synchronizing
two classes of information in embodiments that relate to
service applications concerning electronic mail, calendaring,
and collaboration: 1) the State of any message that was
touched by an end-user served by the production server dur
ing the service appliance's down-time (e.g., read, deleted,
forwarded, replied to, edited, changed in priority, etc.); and,
2) messages received and processed by the service appliance
on behalf of the production server during the service appli
ance's downtime.
0114. Alternatively, a reductionist approach to back-syn
chronization takes any message received by the service appli
ance during the production server's down-time, stuffs it into
an ESMTP-format file, and write that file into the appropriate
queue directory of the production server. The production
server, as it came back to life, would then pick up the file and
process the message all the way through into the mailstore,
with the same net effect (from a user perspective) as if the
production server had been up all along.
0.115. In yet another embodiment, the service appliance
would use some combination of the initialization and trans
parent wait synchronization approached discussed previ
ously; however applied in reverse to synchronize the produc
tion server with the service appliance.
0116. As the back-synchronization step progresses, the
service appliance would still be servicing e-mail and calen
daring requests. And, as long as the service appliance contin
ues to handle requests, the state of its mailstore would poten
tially be changing (e.g. users deleting, forwarding, or
otherwise operating on old or new mail), and the production
server theoretically would never be in true synchronization
with the service appliance. The service appliance would
likely use a staggered approach to break the tie, as described
below.
0117. In an embodiment, once the production server is
fully back-synchronized from the service appliance, the fail
back state of the service appliance returns to the Transparent
wait state, as described above. In another embodiment, the
failback State can be applied on a granular level, for example
on a per user or per account basis, with the service appliance
returning control of the service to the production server for
specific users as the associated service data becomes Synchro
nized on the service appliance and the production server,
while the service appliance continues to control the service

US 2009/0083443 A1

for users with unsynchronized data. In another embodiment,
the service appliance simply reverses the “stutter step'
approach for synchronization of Service data for the service
application hosted by the production server with the service
data maintained by the service appliance during the failover
and failback states, and at the end of such process, the service
appliance returns control of the service to the service appli
cation of the production server for some or all of the client
systems.
0118 FIG. 8 illustrates a runtime architecture of the ser
Vice appliance according to an embodiment of the invention.
In this embodiment, the service appliance is configured to
provide an electronic mail service. The runtime architecture
includes modules for implementing the states described
above. In this implementation, the runtime module includes
an operating system and a service application to be used to
provide the service to service users in the event the production
server fails.
0119 FIG. 9 illustrates a component architecture of the
service appliance according to an embodiment of the inven
tion. In this example, the Software components of the service
appliance include an operating system, a production server
health monitor, and a service application and Supporting
modules (for example, Microsoft Exchange and a directory
service).
0120. The service application receives service data from
the synchronization engine, which is used to synchronize data
from the production server.
0121 The policy manager assists in enforcing proper
operational policy, including security and operational con
figuration, on the service appliance and in Some embodiments
can extend this role to the production server.
0122) The production server health monitor monitors the
health of the production server to determine if the service
appliance should take control of the service.
0123 The high availability manager assists in Supervising
and coordinating availability across service appliances and/or
constituent components thereof, any or all of which may be in
a distributed configuration.
0.124. The patch manager supervises the retrieval, instal
lation, Verification, and if necessary, the removal of software
updates for the service appliance.
0125. A local/remote administrative service and user
interface enables service administrators to control the service
appliance.
0126 The service appliance component architecture
includes a service appliance monitor, which monitors the
Software processes and hardware of the service appliance,
and a service appliance monitoring manager, which responds
to monitoring information to maintain the service appliance's
performance, for example by terminating and restarting com
ponents and Software processes on the service appliance,
restoring storage partitions, and changing hardware operation
on the service appliance.
0127. In an embodiment, the component architecture of
the service appliance includes a Supervisory kernel, for
example an embedded Linux kernel executing on an auxiliary
CPU. The supervisory kernel interfaces with the reliability
modules to monitor and control the operation of the service
appliance, and can kill and restart any of the Software pro
cesses, including for example the Microsoft Windows oper
ating system, if an error occurs.
0128 FIG.10 illustrates the flow of data to a service appli
cation and the service appliance while the service appliance is

Mar. 26, 2009

in a transparent wait state according to an embodiment of the
invention. The flow of data in the transparent wait state is
described in detail above. In summary of a first embodiment,
service traffic 1005 received by service appliance 1010 is
forwarded to the production server 1015. Using a synchroni
zation API or other type of interface 1017, the service appli
ance 1010 polls the production server 1015 to retrieve
updated service data from the production server's 1015 data
store 1020. The updated service data is stored in service
appliance's 1010 data store 1025.
I0129. In another embodiment, a copy of the service traffic
1005 is stored in transaction cache 1030. The contents of the
transaction cache 1030 are presented to a service application
executing on the service appliance 1010, which updates the
contents of data store 1025 accordingly. Assuming the out
puts of the service applications on the service appliance 1010
and production server 1015 are deterministic, the contents of
the data Stores 1020 and 1025 will be the same.
0.130 FIGS. 11 and 12 illustrate the flow of data to a
service application and the service appliance while the Ser
Vice appliance is in failover mode and failback modes accord
ing to embodiments of the invention. The flow of data in these
modes is described in detail above. In summary, service traffic
1105 is intercepted by the service appliance 1110 in both
modes. The service traffic is processed by one or more service
applications 1115 running on the service appliance. Service
applications 1115 update data store 1120 with service data.
Administrative traffic 1125 directed to the production server
1130 is selectively passed through the service appliance 1110
to the production server 1130. This enables administrators to
control the production server to attempt to restore its func
tionality while the service appliance 1110 provides uninter
rupted service to client systems.
I0131 Upon determining that the production server 1130 is
operational, the service appliance 1110 enters failback mode,
shown in FIG. 12. In this mode, the service appliance 1110
provides updated service data 1205 from its data store 1120 to
the production server 1130.
I0132 FIG. 13 illustrates a network configuration enabling
the service appliance to transparently function between the
production server and client systems according to an embodi
ment of the invention. In this embodiment, a feature of the
networking protocol, such as virtual LANs enabled by 802.1q.
is used to create a first virtual network that redirects IP
addresses normally associated with client systems to the Ser
Vice appliance. As a result, all of the production server's
communication with client systems is automatically redi
rected to the service appliance. Similarly, a second virtual
network redirects IP addresses normally associated with the
production server to the service appliance. As a result, all of
the client systems communications with the production
server is automatically redirected to the service appliance.
The service appliance can then redirect the network traffic to
its intended destination by Swapping packets network iden
tities. This can be done automatically with layer 2 switch
hardware, eliminating the need for more complicated Stateful
packet inspection systems in many cases, although this tech
nique can be combined effectively with packet processing at
layer 3 and higher, both stateful and stateless.
I0133. In a further embodiment, the service appliance
includes additional features to ensure accurate replication and
maintenance of service data. Even though an embodiment of
the service appliance is replicating at the object level, instead
of the bit level, there is the possibility that it is replicating

US 2009/0083443 A1

corrupt objects. For example, a RAID controller failure (per
haps of the write-back cache) could corrupt the meta-data or
even the contents of a given message object in the store of the
production server's service application.
0134. An embodiment of the service appliance addresses

this problem. The first is that there are some simple heuristics
to detect corrupted objects. Bad or nonsensical meta-data (a
creation or modification date with negative numbers, text data
in a numerical field, etc) can be detected to Some degree. For
objects that the service appliance has already replicated, the
service appliance can hash the non-volatile meta-data and
comparing it to a hash of the meta-data of the in-bound
objects to indicate if something is amiss. Also, tests can detect
overwrites of the content of objects that do not have the
modification flag set. For example, if the service appliance
hashes the contents of an object, and then get a hash-match
failure, and the meta-data indicates that the inbound object
has not been edited, then that object would be suspicious.
0135 Whether an object is corrupt can never be program
matically determined in an absolute sense for all classes of
service applications. However, in an embodiment, a rating
could be applied based on whatever panel of tests to which
that object is subjected. For example, on a scale of 1-100, with
100 being uncorrupted, an object that failed all of the tests
might merit a “10. An object that passed all tests might rate
a 90 or higher. The service appliance would keep a history of
these ratings, and do a rolling look-back across them. Numer
ous low ratings across an hour, day, week, or similar interval
would indicate a high probability of corruption on the pro
duction server. By acting on this evaluation, the service appli
ance can express its Suspicions to a human administrator; and,
depending on a slider bar setting, it could elect to terminate
replication between the service appliance and the production
SeVe.

0136. In a further embodiment, the service appliance
maintains a cache containing the last few replications of an
object, perhaps restricting entries in the cache to those objects
that were at a high confidence level. In the event of detected
corruption, the service appliance could offer to the adminis
trator a roll-back of the corrupted objects to some prior point
in time.
0.137 Additionally, there is the problem of insuring that
objects safely committed to the service appliance service
application database remain uncorrupted inside that database
(e.g. the Jet DB used by EXchange), as opposed to ensuring
that objects being replicated are not corrupted (per the above).
For example, the overwhelming majority of failures of ser
Vice application databases (e.g., the proprietary b-tree data
base that Microsoft uses for the Exchange mail object store)
are in fact caused by administrator error (e.g., poor use of
database optimization tools) and storage planning or driver
errors. Since the service appliance is by definition immune to
the former and crafted to be almost entirely immune to the
latter, the large majority of service application corruption
eventualities are not relevant for the service appliance.
0.138. Additionally, because the service appliance can
maintain a hash of meta-data, body data, and total data for all
individual objects which the service appliance replicates or
otherwise commits to its store (as discussed above), an
embodiment of the service appliance checks these hashes
against on-the-fly hashes for a random sample of objects
retrieved from the service appliance's store during the normal
course of operations. A certain number of comparison failures
would indicate corruption in the service appliance's own

Mar. 26, 2009

store, and the service appliance could take action, including
alerting the administrator and running a full diagnostic. The
service appliance would be able to determine to some reason
able degree the extent of corruption and either i) purge and
resynchronize the corrupt objects only or ii) purge the entire
service application database (e.g. Microsoft Exchange's Jet
DB) and resynchronize the entire set of service data.
0.139. In still a further embodiment, the service appliance
includes a “hidden object store, for example constrained to
objects updated within thirty days or some other period, in a
version of the service application database file (e.g. the
Exchange EDB) not accessible to the service appliance's
primary file system itself (e.g. NTFS) and only accessible to
the service appliance's Supervisory kernel. In essence, the
service appliance would be maintaining an abbreviated mir
ror of the primary service application, created with separate
write transactions (so corruption would not propagate). In a
further embodiment, the service appliance could even cross
check objects from the hidden Store against the primary store
to be extra-safe.
0140. Further embodiments can be envisioned to one of
ordinary skill in the art after reading the attached documents.
For example, although the above description of the invention
focused on an example implementation of an electronic mail,
calendaring, and collaboration service application, the inven
tion is applicable for the implementation of any type of Ser
Vice application. In particular, electronic mail, calendaring,
and collaboration service applications often include a data
base for storage and retrieval of Such service applications
data. As such, an electronic mail, calendaring, and collabo
ration service application can be seen as a specific type of
database application. Database applications are applications
built around the use of a database, including merely providing
database functionality in absence of other application fea
tures. One of ordinary skill in the art can easily appreciate that
the invention can be used to implement any type of database
application, with the example of an electronic mail, calendar
ing, and collaboration service application being merely a
specific case of a more general principal. Moreover, the term
database is used here in the sense of any electronic repository
of data which provides some mechanism for the entry and
retrieval of data, including but not limited to relational data
bases, object databases, file systems, and other data storage
mechanisms.
0.141. In other embodiments, combinations or sub-combi
nations of the above disclosed invention can be advanta
geously made. The block diagrams of the architecture and
flow charts are grouped for ease of understanding. However it
should be understood that combinations of blocks, additions
of new blocks, re-arrangement of blocks, and the like are
contemplated in alternative embodiments of the present
invention.
0142. The specification and drawings are, accordingly, to
be regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

What is claimed is:
1. A method of ensuring service availability, the method

comprising:
connecting a service appliance to a network including a

first production server providing a first service and a
client system accessing the service. Such that network

US 2009/0083443 A1

traffic between the first production server and the client
system is received by the service appliance;

synchronizing a second service provided by the service
appliance with the first service;

monitoring the first service; and
in response to a determination that the production server is

unavailable, Substituting the second service in place of
the first service and monitoring the network for a third
service;

in response to a determination that the third service is
available and capable of handling access by the client
system, synchronizing the third service with the second
service; and

in response to the completion of synchronization of the
third service with the second service, substituting the
third service in place of the second service, such that the
third service is responsive to client system communica
tions directed to the first service;

wherein synchronizing the second service with the first
service comprises:
determining a configuration of the first service;
configuring the second service to be compatible with the

configuration; and
replicating service data of the first service;

wherein the replicating service data only replicates a
subset of the service data on the production server.

2. A method of ensuring service availability, the method
comprising:

connecting a service appliance to a network including a
first production server providing a first service and a
client system accessing the service, such that network
traffic between the first production server and the client
system is received by the service appliance;

synchronizing a second service provided by the service
appliance with the first service;

monitoring the first service; and
in response to a determination that the production server is

unavailable, Substituting the second service in place of
the first service and monitoring the network for a third
service;

in response to a determination that the third service is
available and capable of handling access by the client
system, synchronizing the third service with the second
service; and

in response to the completion of synchronization of the
third service with the second service, substituting the
third service in place of the second service, such that the
third service is responsive to client system communica
tions directed to the first service;

wherein the determination that the production server is
unavailable is signaled to the service appliance.

3. The method of claim 2 wherein the signal that the pro
duction server is unavailable is made by an administrator
using the service appliance user interface.

4. The method of claim 2 wherein the signal that the pro
duction server is unavailable is made by the service appliance
using a health detection mechanism.

5. The method of claim 4 wherein the health detection
mechanism communicates the consequences of any changes
to the configuration of health detection mechanism to a
human administrator.

6. The method of claim 4 wherein a record of each change
to the configuration of the health detection mechanism is
stored.

Mar. 26, 2009

7. The method of claim 2 wherein the signal that the pro
duction server is unavailable is made by a monitoring service.

8. The method of claim 7 wherein the monitoring service is
provided by a monitoring server on the network.

9. A method of ensuring service availability, the method
comprising:

connecting a service appliance to a network including a
first production server providing a first service and a
client system accessing the service. Such that network
traffic between the first production server and the client
system is received by the service appliance;

synchronizing a second service provided by the service
appliance with the first service:

monitoring the first service; and
in response to a determination that the production server is

unavailable, Substituting the second service in place of
the first service and monitoring the network for a third
service;

in response to a determination that the third service is
available and capable of handling access by the client
system, synchronizing the third service with the second
service; and

in response to the completion of synchronization of the
third service with the second service, substituting the
third service in place of the second service, such that the
third service is responsive to client system communica
tions directed to the first service;

wherein the determination that the third service is available
and capable of handling access by the client system is
signaled to the service appliance.

10. The method of claim 9 wherein the signal that the third
service is available and capable of handling access by the
client system is made by an administrator using the service
appliance user interface.

11. The method of claim 9 wherein the signal that the third
service is available and capable of handling access by the
client system is made by the service appliance using a health
detection mechanism.

12. The method of claim 11 wherein the health detection
mechanism communicates the consequences of any changes
to the configuration of health detection mechanism to a
human administrator.

13. The method of claim 11 wherein a record of each
change to the configuration of the health detection mecha
nism is stored.

14. The method of claim 9 wherein the signal that the third
service is available and capable of handling access by the
client system is made by a monitoring service.

15. The method of claim 14 wherein the monitoring service
is provided by a monitoring server on the network.

16. A method of ensuring service availability, the method
comprising:

connecting a service appliance to a network including a
first production server providing a first service and a
client system accessing the service. Such that network
traffic between the first production server and the client
system is received by the service appliance;

synchronizing a second service provided by the service
appliance with the first service:

monitoring the first service;
monitoring the network traffic sent to the first production

server from the client system; and

US 2009/0083443 A1 Mar. 26, 2009
13

in response to a determination that the production server is third service in place of the second service, such that the
unavailable, Substituting the second service in place of third service is responsive to client system communica
the first service and monitoring the network for a third tions directed to the first service; and
service; in response to a determination that the second service is

in response to a determination that the third service is capable of responding to a client service request without
available and capable of handling access by the client assistance from the first production service, selectively
system, synchronizing the third service with the second Substituting the second service in place of the first Ser
service; vice on a request-by-request basis.

in response to the completion of synchronization of the
third service with the second service, substituting the ck

