
(12) STANDARD PATENT (11) Application No. AU 2012296330 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Hierarchical controller clusters for interconnecting different logical domains

(51) International Patent Classification(s)
H04L 12/54 (2013.01)

(21) Application No: 2012296330 (22) Date of Filing: 2012.08.17

(87) WIPO No: W013/026050

(30) Priority Data

(31) Number (32) Date (33) Country
61/675,807 2012.07.25 US
61/524,755 2011.08.17 us
61/671,664 2012.07.13 us
61/524,756 2011.08.17 us

(43) Publication Date: 2013.02.21
(44) Accepted Journal Date: 2016.03.17

(71) Applicant(s)
Nicira, Inc.

(72) Inventor(s)
Koponen, Teemu;Casado, Martin;Thakkar, Pankaj;Zhang, Ronghua;Wendlandt, Daniel
J.

(74) Agent / Attorney
FB Rice, Level 14 90 Collins Street, Melbourne, VIC, 3000

(56) Related Art
US 2008/0049646 Al
US 2010/0250784 Al
US 2007/0239987 Al
US 2010/0275199 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2013/026050 A4
21 February 2013 (21.02.2013) W I PO I P CT

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
H04L 12/54 (2013.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

PCT/US2012/05 1506 DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

17 August 2012 (17.08.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,

(26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

(30) Priority Data: ZW.
61/524,756 17 August 2011 (17.08.2011) US
61/524,755 17 August 2011 (17.08.2011) US (84) Designated States (unless otherwise indicated, for every

61/671,664 13 July 2012 (13.07.2012) US kind of regional protection available): ARIPO (BW, GH,
61/675,807 25 July 2012 (25.07.2012) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(71) Applicant (for all designated States except US): NICIRA, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

INC. [US/US]; 3460 W. Bayshore Road, Palo Alto, CA EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
94303 (US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(72) Inventor; and TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

(75) Inventor/Applicant (for US only): KOPONEN, Teemu ML, MR, NE, SN, TD, TG).

[FI/US]; 548 Brannan Street, No. 103, San Francisco, CA Published:
94107 (US). with international search report (Art. 21(3))

(74) Agent: ADELI, Mani; Adeli & Tollen LLP, 11859 _ with amended claims (Art. 1
Wilshire Blvd., Suite 500, Los Angeles, CA 90025 (US).

Date of publication of the amended claims: 16 May 2013

(54) Title: HIERARCHICAL CONTROLLER CLUSTERS FOR INTERCONNECTING DIFFERENT LOGICAL DOMAINS

-00125

Level12Network
- Controller

Figure I

Data Center A Data Center B

105L l 1 Nt rk 110 Level I Network
Controller 5Controler

, 140

Managed SE Managed SE ----- +- Managed SE Managed SE

35
130

Machine I Machine 3 Mac ine5 Machin 7

O Machine 2 Machine 4 Machine 6 Machine8

(57) Abstract: Some embodiments provide a novel network control system for managing a set of switching elements in a network.
The network control system includes a first set of network controllers for managing a first set of switching elements that enable com
munication between a first set of machines. The network control system includes a second set of network controllers for managing a

f4 second set of switching elements that enable communication between a second set of machines. The second set of switching ele
ments is separate from the first set of switching elements and the second set of machines is separate from the first set of machines.
The network control system includes a third set of network controllers for managing the first and second sets of network controllers
in order to enable communication between machines in the first set of machines and machines in the second set of machines.

WO 2013/026050 PCT/US2012/051506

HIERARCHICAL CONTROLLER CLUSTERS FOR
INTERCONNECTING DIFFERENT LOGICAL DOMAINS

BACKGROUND

5 Many current enterprises have large and sophisticated networks comprising switches,

hubs, routers, servers, workstations and other networked devices, which support a variety of

connections, applications and systems. The increased sophistication of computer networking,

including virtual machine migration, dynamic workloads, multi-tenancy, and customer specific

quality of service and security configurations require a better paradigm for network control.

10 Networks have traditionally been managed through low-level configuration of individual

components. Network configurations often depend on the underlying network: for example,

blocking a user's access with an access control list ("ACL") entry requires knowing the user's

current IP address. More complicated tasks require more extensive network knowledge: forcing

guest users' port 80 traffic to traverse an HTTP proxy requires knowing the current network

15 topology and the location of each guest. This process is of increased difficulty where the network

switching elements are shared across multiple users.

In response, there is a growing movement towards a new network control paradigm

called Software-Defined Networking (SDN). In the SDN paradigm, a network controller,

running on one or more servers in a network, controls, maintains, and implements control logic

20 that governs the forwarding behavior of shared network switching elements on a per user basis.

Making network management decisions often requires knowledge of the network state. To

facilitate management decision-making, the network controller creates and maintains a view of

the network state and provides an application programming interface upon which management

applications may access a view of the network state.

25 Some of the primary goals of maintaining large networks (including both datacenters and

enterprise networks) are scalability, mobility, and multi-tenancy. Many approaches taken to

address one of these goals results in hampering at least one of the others. For instance, one can

easily provide network mobility for virtual machines within an L2 domain, but L2 domains

cannot scale to large sizes. Furthermore, retaining tenant isolation greatly complicates mobility.

1

WO 2013/026050 PCT/US2012/051506

As such, improved solutions that can satisfy the scalability, mobility, and multi-tenancy goals are

needed.

2

WO 2013/026050 PCT/US2012/051506

BRIEF SUMMARY

Some embodiments of the invention provide different mechanisms for connecting two or

more networks together in order to achieve communication between machines (e.g., virtual

machines or physical machines) located within the different networks. In some embodiments, the

5 networks connected together are located at different sites (e.g., different data centers), each of

which consists of several end machines. Some embodiments utilize interconnection switching

elements located at the edges of the different networks that are specifically programmed to

enable packets from a source network to be read by a destination network. In some

embodiments, the connection of the networks forms a larger logical network that includes the

10 individual site networks.

In some embodiments, the individual networks logically connected together are

themselves logical networks. Each logical network is managed by a network control system that

enables the specification of a logical datapath set for the logical network. The network control

system configures a set of shared switching elements to implement the specified logical datapath

15 set, thereby virtualizing the switching elements. In order to interconnect multiple logical

networks, some embodiments provide a hierarchical control system that includes a hierarchical

arrangement of network controllers. A set of higher-level network controllers receives a

specification of a higher-level logical datapath set that includes the machines of all of the lower

level logical networks. The higher-level network controllers generate flow entries that are passed

20 down to the lower-level network controllers. These lower-level network controllers configure the

shared switching elements within their respective networks in order to implement the higher

level logical datapath set on top of their own respective lower-level logical datapath sets. In this

case, the higher-level logical datapath set serves to interconnect the lower-level logical datapath

sets, thereby interconnecting the networks.

25 The hierarchical controller arrangement in turn results in hierarchical processing of

packets by the switching elements within the network. As stated, the higher-level network

controllers generate flow tables that implement the highest-level logical datapath set that governs

packet forwarding between end machines of the network, then pass these tables down to the

lower-level network controllers. The lower-level network controllers then incorporate the

30 received higher-level flow entries into their own flow tables that implement the lower-level

logical datapath sets. Each set of lowest-level network controllers generates flow tables for the

3

WO 2013/026050 PCT/US2012/051506

physical managed switching elements within the network of the controller set, and passes these

generated flow tables to the physical switching elements. These flow tables specify lookup

entries that the managed switching elements use to process packets within the logical network.

When a managed switching element receives a packet on a physical port, the managed switching

5 element maps the packet to logical ports of the hierarchical data paths, makes a forwarding

decision to an egress port at the highest level, and maps the identified egress port back down

through the hierarchy of data paths to a physical egress port.

In some embodiments, the networks logically connected together may include

unmanaged segmented networks. In some cases, a network manager will want to provide

10 connections between a first network segmented using a first tagging or tunneling technique (e.g.,

VLAN, Mac-in-Mac, L2 over L3, MPLS, etc.) and a second network segmented using a second

tagging or tunneling technique. Even when the two networks use the same technique (e.g., both

networks using VLANs), the implementation of that technique (e.g., the structure of the tags

used in packet headers) may be different between the two networks such that they are effectively

15 using two different techniques. Some embodiments provide a mechanism for connecting such

differently-segmented networks across a common interconnecting network (e.g., an L3 network)

that can forward traffic between the different networks.

To connect such networks, some embodiments use a single managed interconnection

switching element or cluster thereof at the edge of each of the segmented networks, then manage

20 these interconnection switching elements with a network controller that defines a logical

datapath set between the sites. The network controller generates flow tables that implement the

logical datapath set and passes these flow tables to the set of physical interconnection switching

elements, the forwarding tables of which implement the various levels of logical flow. Rather

than corresponding to individual end machines of the network segments, the ports of the logical

25 switching element instead correspond to the network segments themselves (e.g., a particular

VLAN corresponding to a particular port).

The managed interconnection switching elements are programmed to be able to remove

and add the local context tags (e.g., VLAN tags) of their local site network. Therefore, these

switching elements have the ability to receive a local packet, strip the packet of its local context,

30 and use the logical switching element implementation to add a context for the interconnecting

4

WO 2013/026050 PCT/US2012/051506

network that identifies the interconnection switching element local to the destination site network

for the packet.

The preceding Summary is intended to serve as a brief introduction to some embodiments

of the invention. It is not meant to be an introduction or overview of all inventive subject matter

5 disclosed in this document. The Detailed Description that follows and the Drawings that are

referred to in the Detailed Description will further describe the embodiments described in the

Summary as well as other embodiments. Accordingly, to understand all the embodiments

described by this document, a full review of the Summary, Detailed Description and the

Drawings is needed. Moreover, the claimed subject matters are not to be limited by the

10 illustrative details in the Summary, Detailed Description and the Drawing, but rather are to be

defined by the appended claims, because the claimed subject matters can be embodied in other

specific forms without departing from the spirit of the subject matters.

5

WO 2013/026050 PCT/US2012/051506

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the appended claims. However, for

purpose of explanation, several embodiments of the invention are set forth in the following

figures.

5 Figure 1 illustrates an example of a hierarchically-controlled network.

Figure 2 conceptually illustrates the logical switches generated by the three network

controllers in Figure 1.

Figure 3 illustrates an example of such an interconnected network.

Figure 4 conceptually illustrates the logical switching element generated by the network

10 controller of Figure 3.

Figure 5 conceptually illustrates a network architecture of some embodiments.

Figures 6 illustrates an example of a set of managed switching elements managed by a

network controller.

Figure 7 conceptually illustrates a network control system of some embodiments for

15 managing software switching elements.

Figure 8 illustrates an example of a network control system for managing both physical

switching elements and software switching elements.

Figure 9 illustrates a network control system that includes network controllers that

control non-edge switching elements.

20 Figure 10 illustrates a network that spans two data centers.

Figure 11 illustrates two data centers with separate controller clusters that each manage

the managed switches within their respective data centers.

Figure 12 illustrates a managed network with a multi-level (or "federated")

implementation.

25 Figure 13 illustrates an alternate implementation of a managed network with multiple

levels of controller clusters.

Figure 14 illustrates a data center that includes a first domain managed by a first level

controller cluster and a second domain managed by a different first level controller cluster.

Figure 15 conceptually illustrates a control data pipeline for a hierarchically-arranged set

30 of network controllers at two levels that manage a federated network.

6

WO 2013/026050 PCT/US2012/051506

Figure 16 conceptually illustrates a process performed by a second level network

controller of some embodiments to generate flow entries for an event detected at a logical control

plane.

Figure 17 conceptually illustrates a process of some embodiments that generates physical

5 control plane data from the 1L forwarding plane data received at the 1L controller from the 2L

controller.

Figure 18 conceptually illustrates these input and output tables through the various flow

generation operations of some embodiments.

Figure 19 illustrates a set of logical datapath sets for an example federated network of

10 some embodiments.

Figure 20 conceptually illustrates the path of a packet through four managed switches

between its source machine in a first domain and its destination machine in a second domain.

Figure 21 conceptually illustrates in greater detail a process of some embodiments for

processing packets by a first hop managed switching element in a federated network.

15 Figure 22 conceptually illustrates in greater detail a process of some embodiments for

processing packets by an interconnection managed switching element for a packet exiting the

domain of the interconnection managed switching element in a federated network.

Figure 23 conceptually illustrates in greater detail a process of some embodiments for

processing packets by an interconnecting managed switching element for a packet entering the

20 domain of the interconnecting managed switching element in a federated network.

Figure 24 conceptually illustrates a different view of the processing performed by a

source managed switching element.

Figure 25 illustrates a processing pipeline for a specific type of network performing OSI

layer 2 forwarding (e.g., forwarding based on MAC address).

25 Figure 26 illustrates a network with three separate data centers.

Figure 27 illustrates three IL logical datapath sets connected by a 2L logical datapath

set, along with some of the port mappings performed during packet processing by the logical

switching elements as implemented in the managed switching elements of the network shown in

Figure 26.

30 Figure 28 conceptually illustrates a process of some embodiments for setting a flag upon

receiving a packet.

7

WO 2013/026050 PCT/US2012/051506

Figure 29 conceptually illustrates a process of some embodiments for determining

whether to broadcast a packet to all ports of a first level logical datapath set.

Figure 30 conceptually illustrates a network in which various IL domains are not fully

connected.

5 Figure 31 illustrates a network with four data centers with three levels of network

controller clusters.

Figure 32 conceptually illustrates three levels of logical switches implemented for the

network of Figure 31, as well as some of the mappings between the ports of these logical

switches.

10 Figure 33 conceptually illustrates network that allows the first level datapath to be sliced

into multiple second level datapaths.

Figure 34 conceptually illustrates example logical switches for the network in Figure 33.

Figure 35 conceptually illustrates three separate segmented networks.

Figure 36 conceptually illustrates a solution for the networks in Figure 35 that locates an

15 interconnection switching element at the edge of each of the segmented networks, then manages

these interconnection switching elements with a network controller cluster.

Figure 37 conceptually illustrates a logical switching element defined by the network

controller cluster in Figure 36 and implemented by the three interconnection managed switching

elements in Figure 36.

20 Figure 38 conceptually illustrates information stored in a managed switching element for

interconnecting segmented networks.

Figure 39 illustrates a scenario for the networks in Figure 35 in which two different

network controllers generate flow entries for two different logical networks, and push the flows

to the same switching elements.

25 Figure 40 conceptually illustrates logical switching elements defined by the network

controller clusters, respectively, and implemented by the three interconnecting managed

switching elements.

Figure 41 conceptually illustrates information stored in a managed switching element for

interconnecting the segmented networks on the two logical switching elements.

30 Figure 42 conceptually illustrates four segmented networks connected using multiple

logical layers.

8

WO 2013/026050 PCT/US2012/051506

Figure 43 conceptually illustrates the three logical datapath sets defined by the three

network controller clusters of Figure 42.

Figure 44 conceptually illustrates a process of some embodiments performed by the

network controller for an interconnecting network in order to generate new flow entries for an

5 event detected at the logical control plane.

Figure 45 conceptually illustrates input and output tables through the various flow

generation operations of some embodiments.

Figure 46 conceptually illustrates optimization processing in a higher-level network

controller of some embodiments.

10 Figure 47 conceptually illustrates the path of a packet through two managed switching

elements between its source in a first network segment and its destination in a second network

segment.

Figure 48 conceptually illustrates a process of some embodiments for processing packets

by a source network's interconnection switching element.

15 Figure 49 conceptually illustrates an example of some of the forwarding table operations

performed by a source interconnection switching element.

Figure 50 conceptually illustrates in greater detail a process of some embodiments for

processing packets by a destination network's interconnection switching element.

Figure 51 conceptually illustrates an example of some of the forwarding table operations

20 performed by a destination interconnection switch.

Figure 52 conceptually illustrates a more complex network, with four separate IL

domains of three interconnected networks each.

Figure 53 illustrates an example of a packet traveling through a network from a first VM

to a second VM.

25 Figure 54 conceptually illustrates a computer system with which some embodiments of

the invention are implemented.

9

WO 2013/026050 PCT/US2012/051506

DETAILED DESCRIPTION

In the following detailed description of the invention, numerous details, examples, and

embodiments of the invention are set forth and described. However, it will be clear and apparent

to one skilled in the art that the invention is not limited to the embodiments set forth and that the

5 invention may be practiced without some of the specific details and examples discussed.

Some embodiments of the invention provide a network control system that allows several

different logical datapath sets to be specified for several different users through one or more

shared forwarding elements without allowing the different users to control or even view each

other's forwarding logic. The shared forwarding elements in some embodiments can include

10 virtual or physical network switches, software switches (e.g., Open vSwitch), routers, and/or

other switching devices, as well as any other network elements (such as load balancers, etc.) that

establish connections between these switches, routers, and/or other switching devices. Such

forwarding elements (e.g., physical switches or routers) are also referred to below as switching

elements. In contrast to an off the shelf switch, a software forwarding element is a switching

15 element that in some embodiments is formed by storing its switching table(s) and logic in the

memory of a standalone device (e.g., a standalone computer or a device (e.g., a computer) that

also executes a hypervisor and one or more virtual machines on top of that hypervisor.

More specifically, the network control system of some embodiments manages networks

over which machines (e.g. virtual machines) belonging to several different users (i.e., several

20 different users in a private or public hosted environment with multiple hosted computers and

managed forwarding elements that are shared by multiple different related or unrelated tenants)

may exchange data packets for separate logical datapath sets. That is, machines belonging to a

particular user may exchange data with other machines belonging to the same user over a logical

datapath set for that user, while machines belonging to a different user exchange data with each

25 other over a different logical datapath set implemented on the same physical managed network.

In some embodiments, a logical datapath set (also referred to as a logical forwarding element,

logical switching element (e.g., logical switch, logical router), or logical network in some cases)

is a logical construct that provides switching fabric to interconnect several logical ports, to which

a particular user's machines (physical or virtual) may attach.

30 These managed, shared switching elements are referred to below as managed switching

elements or managed forwarding elements as they are managed by the network control system in

10

WO 2013/026050 PCT/US2012/051506

order to implement the logical datapath sets. In some embodiments described below, the control

system manages these switching elements by pushing physical control plane data to them, as

further described below. Switching elements generally receive data (e.g., a data packet) and

perform one or more processing operations on the data, such as dropping a received data packet,

5 passing a packet that is received from one source device to another destination device,

processing the packet and then passing it to a destination device, etc. In some embodiments, the

physical control plane data that is pushed to a switching element is converted by the switching

element (e.g., by a general purpose processor of the switching element) to physical forwarding

plane data that specify how the switching element (e.g., how a specialized switching circuit of

10 the switching element) processes data packets that it receives.

In some embodiments, the network control system includes one or more network

controllers (also called controller instances below) that allow the system to accept logical

datapath sets from users and to configure the switching elements to implement these logical

datapath sets. These controllers allow the system to virtualize control of the shared switching

15 elements and the logical networks that are defined by the connections between these shared

switching elements, in a manner that prevents the different users from viewing or controlling

each other's logical datapath sets and logical networks while sharing the same switching

elements.

In some embodiments, each controller instance is a device (e.g., a general-purpose

20 computer) that executes one or more modules that transform the user input from a logical control

plane to a logical forwarding plane, and then transform the logical forwarding plane data to

physical control plane data. These modules in some embodiments include a control module and a

virtualization module. A control module allows a user to specify and populate logical datapath

sets, while a virtualization module implements the specified logical datapath sets by mapping the

25 logical datapath sets onto the physical switching infrastructure. In some embodiments, the

control and virtualization modules are two separate applications, while in other embodiments

they are part of the same application.

In some embodiments described below, the virtualization module converts logical

forwarding plane data directly to physical control plane data that is pushed to the managed

30 switches. While some embodiments perform this conversion directly from the logical forwarding

plane to the physical control plane (providing data that is customized specifically for each

11

WO 2013/026050 PCT/US2012/051506

managed switching element), other embodiments improve the scalability of the system by

introducing an intermediate universal forwarding state that provides data at the physical control

plane level that is not customized to any particular managed switching element.

In such embodiments, from the logical forwarding plane data for a particular logical

5 datapath set, the virtualization module of some embodiments generates universal physical control

plane (UPCP) data that is generic for any managed switching element that implements the logical

datapath set. In some embodiments, this virtualization module is part of a controller instance that

is a master controller for the particular logical datapath set. This controller is referred to as the

logical controller.

10 In some embodiments, the UPCP data is then converted to customized physical control

plane (CPCP) data for each particular managed switching element by a controller instance that is

a master physical controller instance for the particular managed switching element, or by a

chassis controller for the particular managed switching element, as further described in

concurrently filed U.S. Patent Application **, entitled "Chassis Controller," and having the

15 Attorney Docket No. NCRA.P0081. When the chassis controller generates the CPCP data, the

chassis controller obtains the UPCP data from the virtualization module of the logical controller

through the physical controller.

Irrespective of whether the physical controller or chassis controller generates the CPCP

data, the CPCP data for a particular managed switching element needs to be propagated to the

20 managed switching element. In some embodiments, the CPCP data is propagated through a

network information base (NIB) data structure, which in some embodiments is an object-oriented

data structure. Several examples of using the NIB data structure are described in U.S. Patent

Applications 13/177,529 and 13/177,533, which are incorporated herein by reference. As

described in these applications, the NIB data structure is also used in some embodiments to may

25 serve as a communication medium between different controller instances, and to store data

regarding the logical datapath sets (e.g., logical switching elements) and/or the managed

switching elements that implement these logical datapath sets.

However, other embodiments do not use the NIB data structure to propagate CPCP data

from the physical controllers or chassis controllers to the managed switching elements, to

30 communicate between controller instances, and to store data regarding the logical datapath sets

and/or managed switching elements. For instance, in some embodiments, the physical controllers

12

WO 2013/026050 PCT/US2012/051506

and/or chassis controllers communicate with the managed switching elements through OpenFlow

entries and updates over the configuration protocol. Also, in some embodiments, the controller

instances use one or more direct communication channels (e.g., RPC calls) to exchange data. In

addition, in some embodiments, the controller instances (e.g., the control and virtualization

5 modules of these instance) express the logical and/or physical data in terms of records that are

written into the relational database data structure. In some embodiments, this relational database

data structure is part of the input and output tables of a table mapping engine (called nLog) that

is used to implement one or more modules of the controller instances.

Several embodiments described below provide network control systems that completely

10 separate the logical forwarding space (i.e., the logical control and forwarding planes) from the

physical forwarding space (i.e., the physical control and forwarding planes). These control

systems achieve such separation by using a mapping engine to map the logical forwarding space

data to the physical forwarding space data. By completely decoupling the logical space from the

physical space, the control systems of such embodiments allow the logical view of the logical

15 forwarding elements to remain unchanged while changes are made to the physical forwarding

space (e.g., virtual machines are migrated, physical switches or routers are added, etc.).

In some embodiments, the network control system manages more than a single network.

The network control system of some embodiments provides different mechanisms for connecting

two or more networks together in order to achieve communication between machines (e.g.,

20 virtual machines or physical machines) located within the different networks. In some

embodiments, the networks connected together are located at different sites (e.g., different data

centers), each of which consists of several end machines. Some embodiments utilize

interconnection switching elements located at the edges of the different networks that are

specifically programmed to enable packets from a source network to be read by a destination

25 network. In some embodiments, the connection of the networks forms a larger logical network

that includes the individual site networks.

In some embodiments, the individual networks logically connected together are

themselves logical networks. Each logical network is managed by a network control system that

enables the specification of a logical datapath set for the logical network. The network control

30 system configures a set of shared switching elements to implement the specified logical datapath

set, thereby virtualizing the switching elements. In order to interconnect multiple logical

13

WO 2013/026050 PCT/US2012/051506

networks, some embodiments provide a hierarchical control system that includes a hierarchical

arrangement of network controllers. A set of higher-level network controllers receives a

specification of a higher-level logical datapath set that includes the machines of all of the lower

level logical networks. The higher-level network controllers generate flow entries that are passed

5 down to the lower-level network controllers. These lower-level network controllers configure the

shared switching elements within their respective networks in order to implement the higher

level logical datapath set on top of their own respective lower-level logical datapath sets. In this

case, the higher-level logical datapath set serves to interconnect the lower-level logical datapath

sets, thereby interconnecting the networks.

10 The hierarchical controller arrangement in turn results in hierarchical processing of

packets by the switching elements within the network. As stated, the higher-level network

controllers generate flow tables that implement the highest-level logical datapath set that governs

packet forwarding between end machines of the network, then pass these tables down to the

lower-level network controllers. The lower-level network controllers then incorporate the

15 received higher-level flow entries into their own flow tables that implement the lower-level

logical datapath sets. Each set of lowest-level network controllers generates flow tables for the

physical managed switching elements within the network of the controller set, and passes these

generated flow tables to the physical switching elements. These flow tables specify lookup

entries that the managed switching elements use to process packets within the logical network.

20 When a managed switching element receives a packet on a physical port, the managed switching

element maps the packet to logical ports of the hierarchical data paths, makes a forwarding

decision to an egress port at the highest level, and maps the identified egress port back down

through the hierarchy of data paths to a physical egress port.

Figure 1 illustrates an example of such a hierarchically-controlled network 100. This

25 figure illustrates a first data center 105 and a second data center 110. Located at each of the data

centers are four end machines, which could be virtual machines or physical machines, depending

on the setups of the particular data centers. These end machines are connected to managed

switching elements, which in some embodiments are physical switching elements that implement

logical datapath sets (also referred to as logical switching elements) generated by the network

30 controllers. The managed switching elements include software switching elements, dedicated

hardware switching elements, or a combination thereof in different embodiments. As shown, a

14

WO 2013/026050 PCT/US2012/051506

managed switching element 135 at the first data center 105 and a managed switching element

140 at the second data center 110 connect through an external network 130 (e.g., via a tunnel).

These two managed switching elements 135 and 140 function as interconnecting switching

elements for the networks.

5 Additionally, the first data center 105 includes a first level network controller 115 while

the second data center 110 includes a different first level network controller 120. The first level

network controller 115 generates a first level logical switching element that connects the four

machines located within data center 105, while the first level network controller 120 generates a

first level logical switching element that connects the four machines located within the data

10 center 110. These logical switching elements are conceptually illustrated in Figure 2, described

below.

In addition to the network controllers shown within the data centers 105 and 110, the

network 100 includes a second level network controller 125. The network controller 125

generates a second level logical switching element that connects together the logical switching

15 elements generated by the first level network controllers 115 and 120. In this way, a single point

of control can be used to managed the entire network 100, while the networks in each of the

separate data centers 105 and 110 can operate on their own, should their connection to each other

or the second level network controller 125 be disrupted.

As mentioned, Figure 2 conceptually illustrates the logical switching elements generated

20 by the three network controllers in Figure 1, and implemented by the managed switching

elements. A first logical switching element 205 for the first data center 105 has five logical ports,

four of which connect to the machines in the data center. The fifth logical port connects to the

remote machines at the second data center 110 (logically connecting to a port on the logical

switching element 210). The second logical switching element 210 for the second data center

25 110 is similarly arranged, with four ports connecting to machines at the local data center and a

fifth port connecting to the remote machines at the first data center 105 (logically connecting to a

port on the logical switching element 205). The second level logical switching element 225

includes eight ports for logically connecting to the eight machines (through the logical ports at

the first level logical switching elements).

30 When a machine in the first data center 105 sends a packet to a machine in the second

data center 110, these logical switching elements are implemented by the physical switching

15

WO 2013/026050 PCT/US2012/051506

elements of the network in order to transport the packet. The first managed switching element

that receives the packet initially performs ingress context mapping operations to identify the

ingress port on the logical switching element 205 that corresponds to the physical ingress port

from which the packet is received. The switching element then maps this identified first level

5 logical ingress port to a second level logical ingress port of the second level logical switching

element 225. The flow tables in the managed switching element implementing the second level

logical switching element use the packet destination information to make a forwarding decision

to a second level egress port, which is then mapped to a logical egress port in the logical

switching element 210 that corresponds to the destination machine. The generation and operation

10 of these logical switching elements will be described in detail in the sections below.

The above description relates to the situation in which the networks logically connected

together are all managed networks governed by logical controllers that implement logical

switching elements within the managed switching elements of the networks, and use those same

managed switching elements to implement the interconnection between the networks. In some

15 embodiments, the networks logically connected together may include unmanaged segmented

networks. In some cases, a network manager will want to provide connections between a first

network segmented using a first tagging or tunneling technique (e.g., VLAN, Mac-in-Mac, L2

over L3, MPLS, etc.) and a second network segmented using a second tagging or tunneling

technique. Even when the two networks use the same technique (e.g., both networks using

20 VLANs), the implementation of that technique (e.g., the structure of the tags used in packet

headers) may be different between the two networks such that they are effectively using two

different techniques. Some embodiments provide a mechanism for connecting such differently

segmented networks across a common interconnecting network (e.g., an L3 network) that can

forward traffic between the different networks.

25 To connect such networks, some embodiments use a single managed interconnection

switching element (e.g., an extender) or cluster thereof at the edge of each of the segmented

networks, then manage these interconnection switching elements with a network controller that

defines a logical datapath set between the sites. The network controller generates flow tables that

implement the logical datapath set and passes these flow tables to the set of physical

30 interconnection switching elements, the forwarding tables of which implement the various levels

of logical flow. Rather than corresponding to individual end machines of the network segments,

16

WO 2013/026050 PCT/US2012/051506

the ports of the logical switching element instead correspond to the network segments

themselves (e.g., a particular VLAN corresponding to a particular port).

The managed interconnection switching elements are programmed to be able to remove

and add the local context tags (e.g., VLAN tags) of their local site network. Therefore, these

5 switching elements have the ability to receive a local packet, strip the packet of its local context,

and use the logical switching element implementation to add a context for the interconnecting

network that identifies the interconnection switching element local to the destination site network

for the packet.

Figure 3 illustrates an example of such an interconnected network 300. This figure

10 illustrates four segmented site networks 305-320. Located at each of the site networks are several

machines belonging to a network segment (e.g., VLAN, MPLS label, etc.) at that site network. In

each of these networks, machines on one network segment can communicate with other

machines on the same network segment (e.g., machine A and machine B). However, without the

provision of interconnecting services, machines on a segment of site network 305 cannot

15 communicate with machines on a segment of one of the other site networks (e.g., machine A and

machine G cannot communicate).

In this situation, however, interconnection switching elements 325-340 are located at the

edge of each site network 305-320, connecting the site networks to an interconnecting physical

network 345. This interconnecting physical network acts as a common substrate for the four site

20 networks (i.e., all four site networks attach to the network 345). As shown, a network controller

350 connects to each of the four interconnection switching elements 325-340. The network

controller 350 (which may be a controller cluster or a single controller instance) generates flow

tables for implementing a logical switching element that connects the four site networks, then

passes the flow tables to the four interconnection switching elements 225-340.

25 Figure 4 conceptually illustrates this logical switching element 400 generated by the

network controller 350. The logical switching element 400 includes four ports, one for each

network segment connected by the switching element. The segments include a first segment 405

located at the first segmented network 305, a second segment 410 located at the second

segmented network 310, a third segment 415 located at the third segmented network 315, and a

30 fourth segment 420 located at the fourth segmented network 320. Whereas the ports in the

17

WO 2013/026050 PCT/US2012/051506

logical switching element of Figure 2 above correspond to specific machines, here the ports

correspond to network segments (e.g., VLANs).

The above Figure 3 illustrates a managed network between the sites that has a single

network controller at a single level. In addition, some embodiments enable the site networks to

5 be grouped via a hierarchical structure such as that described above for Figure 1. That is, several

site networks are interconnected with a first lower-level network controller, while several

additional site networks are interconnected with a second lower-level network controller. These

two groups of site networks can then be themselves interconnected with a higher-level network

controller that communicates with the lower-level network controller.

10 Figures 2-4 illustrate examples of the interconnection of site networks. Several more

detailed embodiments are described below. First, Section I describes the environment of a

managed network of end machines of some embodiments. Section II then describes the

hierarchical use of network controllers to create a hierarchical logical network. Next, Section III

describes the interconnection of unmanaged network segments through the use of both single

15 level and hierarchical logical interconnection networks. Finally, Section IV describes an

electronic system with which some embodiments of the invention are implemented.

I. ENVIRONMENT

The following section will describe the environment in which some embodiments of the

inventions are implemented. In the present application, switching elements and machines may be

20 referred to as network elements, switches, or other terms. In addition, a network managed by one

or more network controllers may be referred to as a managed network in the present application.

In some embodiments, the managed network includes only managed switching elements (e.g.,

switching elements that are controlled by one or more network controllers) while, in other

embodiments, the managed network includes managed switching elements as well as unmanaged

25 switching elements (e.g., switching elements that are not controlled by a network controller).

Figure 5 conceptually illustrates a network architecture 500 of some embodiments. As

shown, the network architecture 500 includes network controllers 510 and 520, managed

switching elements 530-550, and machines 555-585.

In some embodiments, the managed switching elements 530-550 route (i.e., process

30 and/or forward) network data (e.g., packets) between network elements in the network that are

coupled to the managed switching elements 530-550. For instance, the managed switching

18

WO 2013/026050 PCT/US2012/051506

element 530 routes network data between the machines 555-565 and the managed switching

element 540. Similarly, the managed switching element 540 routes network data between the

machine 570 and the managed switching elements 530 and 550, and the managed switching

element 550 routes network data between the machines 575-585 and the managed switching

5 element 550.

The managed switching elements 530-550 of some embodiments can be configured to

route network data according to defined rules. In some embodiments, the managed switching

elements 530-550 route network data based on routing criteria defined in the rules. Examples of

routing criteria include source media access control (MAC) address, destination MAC address,

10 packet type, source Internet Protocol (IP) address, destination IP address, source port, destination

port, and/or network segment identifier (e.g., virtual local area network (VLAN) identifier,

multi-protocol label switching (MPLS) label, etc.), among other routing criteria.

In some embodiments, the managed switching elements 530-550 can include standalone

physical switching elements, software switching elements that operate within a computer, or any

15 other type of switching element. For example, each of the managed switching elements 530-550

may be implemented as a hardware switching element, a software switching element, a virtual

switching element, a network interface controller (NIC), or any other type of network element

that can route network data. Moreover, the software or virtual switching elements may operate

on a dedicated computer, or on a computer that also performs non-switching operations.

20 The machines 555-585 send and receive network data between each other over the

network (and, in some cases, with other machines outside the network). In some embodiments,

the machines 555-585 are referred to as network hosts that are each assigned a network layer

host address (e.g., IP address). In some cases, the machines 555-585 are referred to as end

systems because the machines 555-585 are located at the edge of the network. In some

25 embodiments, each of the machines 555-585 can be a desktop computer, a laptop computer, a

smartphone, a virtual machine (VM) running on a computing device, a terminal, or any other

type of network host.

In some embodiments, each of the network controllers 510 and 520 controls one or more

managed switching elements 530-550 that are located at the edge of a network (e.g., edge

30 switching elements or edge devices). In this example, the managed switching elements 530-550

are edge switching elements. That is, the managed switching elements 530-550 are switching

19

WO 2013/026050 PCT/US2012/051506

elements that are located at or near the edge of the network. In some embodiments, an edge

switching element is the last switching element before one or more end machines (the machines

555-585 in this example) in a network. That is, an edge switching element is the first switching

element that receives network data sent from one or more end machines and is the last switching

5 element that receives network data sent to the one or more end machines. As indicated by dashed

arrows in Figure 5, the network controller 510 controls (i.e., manages) switching elements 530

and 540 and the network controller 520 controls switching element 550. In this application, a

switching element that is controlled by a network controller of some embodiments may be

referred to as a managed switching element.

10 In addition to controlling edge switching elements, the network controllers 510 and 520

of some embodiments also utilize and control non-edge switching elements (e.g., pool nodes and

extenders, which are described in further detail below) that are inserted in the network to

simplify and/or facilitate the operation of the managed edge switching elements. For instance, in

some embodiments, the network controllers 510 and 520 require that the managed switching

15 elements be interconnected in a hierarchical switching architecture that has several edge

switching elements as the leaf nodes in the hierarchical switching architecture and one or more

non-edge switching elements as the non-leaf nodes in this architecture. In some such

embodiments, each edge switching element connects to one or more of the non-leaf switching

elements, and uses such non-leaf switching elements to facilitate the communication of the edge

20 switching element with other edge switching elements. Examples of such communications with

an edge switching elements in some embodiments include (1) routing of a packet with an

unknown destination address (e.g., unknown MAC address) to the non-leaf switching element so

that the non-leaf switching element can route the packet to the appropriate edge switching

element, (2) routing a multicast or broadcast packet to the non-leaf switching element so that the

25 non-leaf switching element can distribute the multicast or broadcast packet to the desired

destinations, and (3) routing packets to destination machines external to the network 500.

Some embodiments employ one level of non-leaf (non-edge) switching elements that

connect to edge switching elements and in some cases to other non-leaf switching elements.

Other embodiments, on the other hand, employ multiple levels of non-leaf switching elements,

30 with each level of non-leaf switching elements after the first level serving as a mechanism to

facilitate communication between lower level non-leaf switching elements and leaf switching

20

WO 2013/026050 PCT/US2012/051506

elements. In some embodiments, the non-leaf switching elements are software switching

elements that are implemented by storing forwarding tables in the memory of a standalone

computer instead of an off the shelf switch. In some embodiments, the standalone computer may

also be executing a hypervisor and one or more virtual machines on top of that hypervisor.

5 Irrespective of the manner by which the leaf and non-leaf switching elements are implemented,

the network controllers 510 and 520 of some embodiments store switching state information

regarding the leaf and non-leaf switching elements.

As mentioned above, the switching elements 530-550 of some embodiments route

network data between network elements in the network. In some embodiments, the network

10 controllers 510 and 520 configure the routing of network data between the network elements in

the network by the managed switching elements 530-550. In this manner, the network controllers

510 and 520 can control the flow (i.e., specify the data path) of network data between network

elements.

For example, the network controller 510 might instruct the managed switching elements

15 530 and 540 to route network data from the machine 555 to the machine 570 (and vice versa) and

to not route (e.g., drop) network data from other machines to the machines 555 and 570. In such

case, the network controller 510 controls the flow of network data through the managed

switching elements 530 and 540 such that network data transmitted to and from the machine 555

is only routed to the machine 570. Thus, the machines 555 and 570 cannot send and receive

20 network data to and from the machines 560, 565, and 575-585.

In some embodiments, the network controllers 510 and 520 store physical network

information and logical network information. The physical network information specifies the

physical components in the managed network and how the physical components are physically

connected one another in the managed network. For example, the physical network information

25 may include the number of machines, managed switching elements, pool nodes, and extenders

(the latter two are described in further detail in the following sections), and how the components

are physically connected to one another in the managed network. The logical network

information may specify the logical connections between a set of physical components in the

managed network (e.g., machines) and a mapping of the logical connections across the physical

30 components of the managed network.

Some embodiments of the network controllers 510 and 520 implement a logical

21

WO 2013/026050 PCT/US2012/051506

switching element across the managed switching elements 530-550 based on the physical

network information and the logical switching element information described above. A logical

switching element can be defined to function any number of different ways that a switching

element might function. The network controllers 510 and 520 implement the defined logical

5 switching element through control of the managed switching elements 530-550. In some

embodiments, the network controllers 510 and 520 implement multiple logical switching

elements across the managed switching elements 530-550. This allows multiple different logical

switching elements to be implemented across the managed switching elements 530-550 without

regard to the network topology of the network.

10 In some embodiments, a logical datapath set (LDPS) defines a logical switching element.

A logical datapath set, in some embodiments, is a set of network data paths through the managed

switching elements 530-550 that implement the logical switching element and the logical

switch's defined functionalities. In these embodiments, the network controllers 510 and 520

translate (e.g., map) the defined logical datapath set into network configuration information for

15 implementing the logical switching element. The network controllers 510 and 520 translate the

defined logical datapath set into a corresponding set of data flows (i.e., data paths) between

network elements in the network, in some embodiments. In these instances, the network

controllers 510 and 520 instruct the managed switching elements 530-550 to route network data

according to the data flows and, thus, implement the functionalities of the defined logical

20 switching element. Within this application, logical datapath set, logical switch, logical switching

element, and logical datapath may be used interchangeably.

Different embodiments of the network controllers 510 and 520 are implemented

differently. For example, some embodiments implement the network controllers 510 and 520 in

software as instances of a software application. In these cases, the network controllers 510 and

25 520 may be executed on different types of computing devices, such as a desktop computer, a

laptop computer, a smartphone, etc. In addition, the software application may be executed on a

virtual machine that runs on a computing device in some embodiments. In some embodiments,

the network controllers 510 and 520 are implemented in hardware (e.g., circuits). In some

embodiments, the network controllers 510 and 520 communicate with each other, in order to

30 distribute information. In fact, in some embodiments, the network controllers that govern a

logical network act as a controller cluster that behaves as a single network controller distributed

22

WO 2013/026050 PCT/US2012/051506

across multiple machines.

As mentioned above by reference to Figure 5, the managed switching elements

controlled by network controllers of some embodiments may be physical switching elements.

Figure 6 illustrates an example of a network control system that includes physical switching

5 elements. This figure conceptually illustrates a network control system 600 of some

embodiments for managing physical switching elements. Specifically, the network control

system 600 manages network data in a data center that includes top of the rack (TOR) switching

elements 630-650 and racks of hosts 660-680. Network controllers 610 and 620 manage the

network by controlling the TOR switching elements 630-650.

10 A TOR switching element, in some embodiments, routes network data between hosts in

the TOR switch's rack and network elements coupled to the TOR switching element. In the

example illustrated in Figure 6, the TOR switching element 630 routes network data between the

rack of hosts 660 and TOR switching elements 640 and 650, the TOR switching element 640

routes network data between the rack of hosts 670 and TOR switching elements 630 and 650,

15 and the TOR switching element 650 routes network data between the rack of hosts 680 and TOR

switching elements 630 and 640.

As shown, each rack of hosts 660-680 includes multiple hosts. The hosts of some

embodiments in the racks of hosts 660-680 are physical computing devices. In some

embodiments, each host is a computing device that is assigned a network layer host address (e.g.,

20 IP address). The hosts of some embodiments send and receive network data to and from each

other over the network.

As mentioned above, the network controller of some embodiments can be implemented

in software as an instance of an application. As illustrated in Figure 6, the network controllers

610 and 620 are instances of a software application. As shown, each of the network controllers

25 610 and 620 includes several software layers: a control application layer, a virtualization

application layer, and a networking operating system layer.

In some embodiments, the control application layer receives input (e.g., from a user) that

specifies a network switching element. The control application layer may receive the input in any

number of different interfaces, such as a graphical user interface (GUI), a command line

30 interfaces, a web-based interface, a touchscreen interface, through an application programming

interface (API) exposed to other network controller instances, etc. In some embodiments, the

23

WO 2013/026050 PCT/US2012/051506

input specifies characteristics and behaviors of the network switching element, such as the

number of switching element ports, access control lists (ACLs), network data forwarding, port

security, or any other network switching element configuration options.

The control application layer of some embodiments defines a logical datapath set based

5 on user input that specifies a network switching element. As noted above, a logical datapath set

is a set of network data paths through managed switching elements that are used to implement

the user-specified network switching element. In other words, the logical datapath set is a logical

representation of the network switching element and the network switch's specified

characteristics and behaviors.

10 Some embodiments of the virtualization application layer translate the defined logical

datapath set into network configuration information for implementing the logical network

switching element across the managed switching elements in the network. For example, the

virtualization application layer of some embodiments translates the defined logical datapath set

into a corresponding set of data flows. In some of these cases, the virtualization application layer

15 may take into account various factors (e.g., logical switching elements that are currently

implemented across the managed switching elements, the current network topology of the

network, etc.), in determining the corresponding set of data flows.

The network operating system layer of some embodiments configures the managed

switching elements' routing of network data. In some embodiments, the network operating

20 system instructs the managed switching elements to route network data according to the set of

data flows determined by the virtualization application layer.

In some embodiments, the network operating system layer maintains several views of the

network based on the current network topology. One view that the network operating system

layer of some embodiments maintains is a logical view. The logical view of the network includes

25 the different logical switching elements that are implemented across the managed switching

elements, in some embodiments. Some embodiments of the network operating system layer

maintain a managed view of the network. Such managed views include the different managed

switching elements in the network (i.e., the switching elements in the network that the network

controllers control). In some embodiments, the network operating system layer also maintains

30 relationship data that relate the logical switching elements implemented across the managed

switching elements to the managed switching elements.

24

WO 2013/026050 PCT/US2012/051506

The network controller of some embodiments is described in greater detail in U.S.

Application No. 13/177,533, filed on 7/6/2011 and entitled "Network Virtualization Apparatus

and Method", which is incorporated herein by reference. As explained in further detail in this

application, the control application of some embodiments performs a table-mapping operation

5 (e.g., using an nLog table mapping engine) to transform tables in a logical control plane to tables

in a logical forwarding plane. The logical control plane, in some embodiments, includes a

collection of constructs that allow the control application and its users to specify one or more

logical datapath sets within the logical control plane. The logical forwarding plane, in some

embodiments, includes one or more data path sets of one or more users. Thus, the control

10 application transforms the collection of constructs (e.g., as specified by a user) into the logical

datapath sets. The virtualization application transforms logical forwarding plane data into

physical control plane data (e.g., also using an nLog table mapping engine) that can be pushed

down to the physical managed switching elements.

While Figure 6 (and other figures in this application) may show a set of managed

15 switching elements managed by a network controller, some embodiments provide several

network controllers (also referred to as a cluster of network controllers or a control cluster) for

managing the set of managed switching elements. In other embodiments, different control

clusters may manage different sets of managed switching elements. Employing a cluster of

network controllers in such embodiments to manage a set of managed switching elements

20 increases the scalability of the managed network and increases the redundancy and reliability of

the managed network. In some embodiments, the network controllers in a control cluster share

(e.g., through the network operating system layer of the network controllers) data related to the

state of the managed network in order to synchronize the network controllers.

Figure 7 conceptually illustrates a network control system 700 of some embodiments for

25 managing software switching elements. As shown, the network control system 700 includes

network controllers 710 and 720, TOR switching elements 730-750, and racks of hosts 760-780.

The TOR switching elements 730-750 are similar to the TOR switching elements

630-650. The TOR switching elements 730-750 route network data between network elements in

the network that are coupled to the TOR switching elements 730-750. In this example, the TOR

30 switching element 730 routes network data between the rack of hosts 760 and TOR switching

elements 740 and 750, the TOR switching element 740 routes network data between the rack of

25

WO 2013/026050 PCT/US2012/051506

hosts 770 and TOR switching elements 730 and 750, and the TOR switching element 750 routes

network data between the rack of hosts 780 and TOR switching elements 730 and 740. Since the

TOR switching elements 730-750 are not managed switching elements, the network controllers

710 and 720 do not control these switching elements. Thus, the TOR switching elements

5 730-750 rely on the switching elements' preconfigured functionalities to route network data.

As illustrated in Figure 7, each host in the racks of hosts 760-780 includes a software

switching element (an open virtual switch (OVS) in this example) and several VMs. The VMs

are virtual machines that are each assigned a set of network layer host addresses (e.g., a MAC

address for network layer 2, an IP address for network layer 3, etc.) and can send and receive

10 network data to and from other network elements over the network.

The OVSs of some embodiments route network traffic between network elements

coupled to the OVSs. For example, in this example, each OVS routes network data between VMs

that are running on the host on which the OVS is running, OVSs running on other hosts in the

rack of hosts, and the TOR switching element of the rack.

15 By running a software switching element and several VMs on a host, the number of end

machines or network hosts in the network may increase. Moreover, when a software switching

element and several VMs are run on hosts in the racks of hosts 760-780, the network topology of

the network is changed. In particular, the TOR switching elements 730-750 are no longer edge

switching elements. Instead, the edge switching elements in this example are the software

20 switching elements running on the hosts since these software switching elements are the last

switching elements before end machines (i.e., VMs in this example) in the network. While the

examples of software switching elements are open virtual switches (OVSs) in this example, in

some embodiments different types of software switching elements might be used in order to

implement the logical switching elements.

25 The network controllers 710 and 720 perform similar functions as the network controllers

610 and 620, described above by reference to Figure 6, and also are for managing edge

switching elements. As such, the network controllers 710 and 720 manage the software switches

that are running on the hosts in the rack of hosts 760-780.

The above Figures 6 and 7 illustrate a network control system for managing physical

30 switching elements and a network control system for managing software switching elements,

respectively. However, the network control system of some embodiments can manage both

26

WO 2013/026050 PCT/US2012/051506

physical switching elements and software switching elements. Figure 8 illustrates an example of

such a network control system. In particular, this figure conceptually illustrates a network control

system 800 of some embodiments for managing TOR switching element 830 and software

switching elements running on hosts in the racks of hosts 870 and 880.

5 The network controllers 810 and 820 perform similar functions as the network controllers

610 and 620, which described above by reference to Figure 6, and also are for managing edge

switching elements. In this example, the managed switching element 830 and the software

switching elements running on the hosts in the racks of hosts 870 and 880 are edge switching

elements because they are the last switching elements before end machines in the network. In

10 particular, the network controller 810 manages the TOR switching element 830 and the OVSs

that are running on the hosts in the rack of hosts 870, and the network controller 820 manages

the OVSs that are running on the hosts in the rack of hosts 880.

The above figures illustrate examples of network controllers that control edge switching

elements in a network. However, in some embodiments, the network controllers can control

15 non-edge switching elements as well. Figure 9 illustrates a network control system that includes

such network controllers. In particular, Figure 9 conceptually illustrates a network control

system 900 of some embodiments for managing TOR switching elements 930-970 and OVSs

running on hosts in the racks of hosts 970 and 980.

As shown in Figure 9, the network controllers 910 and 920 manage edge switching

20 elements and non-edge switching elements. Specifically, the network controller 910 manages the

TOR switching elements 930 and 940, and the software switches running on the hosts in the rack

of hosts 970. The network controller 920 manages TOR switching element 950 and the software

switching elements running on the hosts in the rack of hosts 980. In this example, the TOR

switching element 930 and the software switching elements running on the hosts in the racks of

25 hosts 970 and 980 are edge switching elements, and the TOR switching elements 940 and 950

are non-edge switching elements. The network controllers 910 and 920 perform similar functions

as the network controllers 610 and 620, which are described above by reference to Figure 6.

II. HIERARCHICAL NETWORK CONTROLLER STRUCTURE

In some embodiments, several individual logical networks (such as those shown above in

30 Figures 5-9) can be logically connected together to form a larger multi-level logical network. In

order to interconnect multiple logical networks, some embodiments provide a hierarchical

27

WO 2013/026050 PCT/US2012/051506

network control system that includes a hierarchical arrangement of network controllers. A set of

higher-level network controllers receives a specification of a higher-level logical datapath set

that includes the machines of all of the lower-level logical networks to be interconnected. The

higher-level network controllers generate flow entries that are passed down to the lower-level

5 network controllers. These lower-level network controllers modify the flow entries to incorporate

lower-level logical datapath set information, then configure the managed switching elements

within their respective networks in order to implement the higher-level logical datapath set on

top of their own respective lower-level logical datapath sets. In this case, the higher-level logical

datapath set serves to interconnect the lower-level logical datapath sets, thereby interconnecting

10 the networks.

The hierarchical controller arrangement in turn results in hierarchical processing of

packets by the switching elements within the network. As stated, the higher-level network

controllers generate flow tables that implement the highest-level logical datapath set that governs

packet forwarding between end machines of the network, then pass these tables down to the

15 lower-level network controllers. The lower-level network controllers then incorporate the

received higher-level flow entries into their own flow tables that implement the lower-level

logical datapath sets. Each set of lowest-level network controllers generates flow tables for the

managed switching elements within the network of the controller set, and passes these generated

flow tables to the managed switching elements. These flow tables specify lookup entries that the

20 managed switching elements use to process packets within the logical network. When a

switching element receives a packet on a physical port, the switching element maps the packet to

logical ports of the hierarchical data paths, makes a forwarding decision to an egress port at the

highest level, and maps the identified egress port back down through the hierarchy of data paths

to a physical egress port.

25 A. Connecting Multiple Managed Networks

The above description of Figures 5-9 focuses on a single managed network, with one

controller (or cluster of controllers) implementing a logical switching element within the

physical switching elements of the network. In some embodiments, the machines connected by

the logical switching element may be physically located in a single data center or across several

30 data centers. For instance, in Figure 9, the rack of hosts 960 might be in a first location while the

racks of hosts 970 and 980 are located in a second location. In between two (or more locations)

28

WO 2013/026050 PCT/US2012/051506

is an interconnecting network of unmanaged switching elements, routers, etc. (e.g., the Internet, a

different local network, etc.).

1. Single Controller Cluster

Some embodiments use a particular type of managed switching element to connect a

5 managed network at a particular location (e.g., a data center with one or more racks of host

machines) to an external unmanaged network (e.g., in order to connect the machines at the data

center to machines at another data center through the unmanaged network). Figure 10 illustrates

a network 1000 that spans two data centers 1005 and 1010. The first data center 1005 includes

managed switching elements 1015, 1020, and 1025. The managed switching elements 1015 and

10 1020 are edge switching elements, to which end machines (either virtual machines or physical

machines) are connected. For instance, the edge switching element 1015 might be a software

switching element (similar to the OVS switches in the previous section), and the edge switching

element 1020 might be a TOR hardware switching element.

In addition to the edge switching elements 1015 and 1020, the first data center 1005

15 includes an interconnecting managed switching element 1025, which connects to the network

outside the data center 1005. The interconnecting managed switching element 1025, in some

embodiments, is an extender. An extender is a type of managed switching element described in

detail in U.S. Application No. 13/177,535, filed on 7/6/2011 and entitled "Hierarchical Managed

switching element Architecture", which is incorporated herein by reference. In some

20 embodiments, an extender enables communication between a machine within the managed

network and external machines by adding (to incoming packets) and removing (from outgoing

packets) logical context IDs that indicate that a packet belongs to (and is routed on) a particular

logical datapath set.

In Figure 10, the second data center 1010 also includes several managed edge switching

25 elements 1035 and 1040 connected to several machines, as well as an interconnecting managed

switching element 1030. In some embodiments, this interconnecting managed switching element

1030 is also an extender, with the two extenders 1025 and 1030 communicating (through the

external network 1045). In some embodiments, in order for these two managed switching

elements 1025 and 1030 to communicate, a tunnel is defined through the network 1045 between

30 the managed switching elements. In some embodiments, the network through which the tunnel is

defined is a layer 3 (L3) network, such as an Internet Protocol (IP) network. Such a tunnel may

29

WO 2013/026050 PCT/US2012/051506

be defined using Generic Routing Encapsulation (GRE), IP Security (IPSec), Stateless Transport

Tunneling (STT), or other tunneling protocols. These tunnels enable packets to be transported

over the network 1045 between the data centers 1005 and 1010 with no or minimal processing by

the intervening switching/routing elements that make up the network 1045.

5 In addition to extenders, some embodiments utilize pool nodes as interconnecting

managed switching elements (or use pool nodes as internal non-edge managed switching

elements within a managed network). Pool nodes are described in detail in Application No.

13/177,535, which is incorporated by reference above. Pool nodes, in some embodiments, are

connected to and positioned above the edge switching elements in a hierarchical switching

10 network architecture. In some embodiments, each edge switching element is only responsible for

storing forwarding information for a subset of the machines connected by a logical datapath set.

When a managed edge switching element does not have an entry for a destination address, the

edge switching element automatically forwards the packet to a pool node, which stores

information for a larger subset of the logical datapath set (or for all machines on the logical

15 switching element). The pool node then forwards the packet to the appropriate next switching

element in order for the packet to reach its destination.

In the example shown in Figure 10, all of the machines at both data centers 1005 and

1010 are on a single logical switching element that implements a logical datapath set. One of

ordinary skill in the art will recognize that in some embodiments, many different logical

20 switching elements could be implemented at the same time by the managed switching elements

in order to connect many different sets of machines within the data centers. These logical

switching elements could connect machines in both data centers 1005 and 1010, as shown in this

figure, as well as implementing logical datapath sets that connect machines only within one of

the data centers. For instance, VM1 , Mp, and VM3 might be connected via a first logical

25 switching element while VM4, VM2, M 1, and M2 are connected via a second logical switching

element.

In some embodiments, when a packet is sent from a machine (e.g., VM1) at the first data

center 1005 to a machine (e.g., VM3) at the second data center 1010, the interconnecting

managed switching element 1025 encapsulates the packet in a tunneling protocol. This packet is

30 transported through the network 1045 to the interconnecting managed switching element 1030,

which removes the tunneling protocol.

30

WO 2013/026050 PCT/US2012/051506

To implement this logical switching element within the managed physical switching

elements 1015-1040, a controller cluster 1050 connects to the managed switching elements

1015-1040, and generates and passes flow entries (in the form of forwarding tables) to the

switching elements. In this figure, as well as others within this document, traffic data paths (i.e.,

5 for transporting network data packets between end machines) are shown as solid lines, while

control data paths (i.e., for managing the forwarding tables of switching elements) are shown as

dashed lines.

As shown, the controller cluster 1050 connects to each of the switching elements 1015

1035. In this figure, the controller cluster 1050 is illustrated as located outside of either of the

10 data centers (e.g., at a third data center). However, in some embodiments, the cluster might be

located at one of the data centers or distributed across both of the data centers 1005 and 1010.

For instance, the controller cluster 1050 might consist of several controller instances, some of

which are located at the first data center 1005 and some of which are located at the second data

center 1010. These controller instances each manage one or more of the managed switching

15 elements (i.e., transmit flow entries that define forwarding tables to the managed switching

elements). In addition, the controller instances communicate with each other in order to share

information (e.g., about the location of physical elements within the network as well as the

generated logical datapath sets for implementing a logical switching element).

2. Separate Controller Clusters

20 The solution for interconnecting data centers illustrated in Figure 10 (using a single

logical switching element to connect all of the machines) requires that the connection between

the data centers be completely reliable. Even if the controller cluster includes instances at both

data centers, these controller instances require the ability to communicate with each other in

order to propagate any changes to the physical structure of the network as well as any changes to

25 the forwarding rules. In some cases, a user enters input to define forwarding rules into a

controller instance at one of the locations, and this information must be propagated to the

controller instances at the other location. However, if connectivity to one of the data centers is

lost, then this could potentially cause failures even for traffic internal to one of the data centers,

as the network controllers would be unable to provide updates to the switching elements as the

30 network changes (e.g., as VMs are migrated to different locations).

31

WO 2013/026050 PCT/US2012/051506

In addition, the users of the various machines at the data centers might not be the actual

owners of the machines. For example, in many situations, the data center is owned and operated

by a hosting service, and numerous different customers share the use of the machines provided

by the hosting services. In order to enable a customer to provision its network (e.g., to set

5 forwarding rules), the provider may expose a logical datapath set for the customer. The customer

may have its own set of machines (e.g., at its own premises) and/or machines at other hosting

services, with each such site having a separate logical datapath set for the customer to operate.

Similarly, a network carrier between the hosting services and the customer might expose its

connectivity as a logical datapath abstraction as well. By doing so, the network carrier provides a

10 well-defined API for its customers to determine how their packets should be handled, without the

network carrier's personnel playing any role in these operations.

Furthermore, even within a single data center, a customer might need to separate their

machines into separate logical switching elements. For instance, the customer might want

separate logical switching elements for different departments, or might simply be operating so

15 many machines that it becomes infeasible or impossible to do so with a single logical switching

element. This limit may come about based on constraints of the controller or due to constraints of

the logical datapath service model.

Accordingly, some embodiments define multiple separate logical switching elements

implemented by separate logical datapath sets, then interconnect these separate logical datapath

20 sets. This subsection 2 describes a decentralized solution in which the interconnection of the

separate logical datapath sets is established manually. Subsection 3 describes a more centralized

solution that uses multiple levels of controller clusters to implement multiple levels of logical

datapath sets.

Figure 11 illustrates two data centers 1100 and 1150 with separate controller clusters that

25 each manage the managed switching elements within their respective data centers. Within the

first data center 1100, a controller cluster 1105 manages a hypervisor 1110, a pool node 1115,

and an extender 1120. Similarly, within the data center 1150, a controller cluster 1155 manages a

hypervisor 1160, a pool node 1165, and an extender 1170. In the setup described above (with a

single controller cluster for controlling the network), some embodiments would require packets

30 being sent from a VM in data center 1100 to a VM in data center 1150 to travel through the

hypervisor 1110, the pool node 1115, and the extender 1120. The first VM sends a packet to the

32

WO 2013/026050 PCT/US2012/051506

hypervisor 1110 (the edge switching element that connects to this VM), which would not

recognize the destination (in the other data center 1150) in its forwarding tables. Thus, the

hypervisor 1110 forwards the packet by default to the pool node 1115, which recognizes the

destination address as belonging to a machine located in the other data center and therefore

5 forwards the packet to the extender 1120, in order for the extender 1120 to send the packet

through a tunnel to the extender 1170 at the second data center 1150.

As shown in Figure 11, some embodiments modify this setup in order to separate the

logical datapath set into separate logical datapath sets for each data center while still allowing the

machines at one data center to transmit packets to the machines at the other data center (and vice

10 versa). In such embodiments, each data center has a separate controller cluster to manage the

switching elements at the data center. The controller cluster 1105, for example, manages the

hypervisor 1110, pool node 1115, and extender 1120, while the controller cluster 1155 manages

the hypervisor 1160, pool node 1165, and extender 1170. Within the first data center 1100, there

could be numerous hypervisors and pool nodes connecting numerous end machines on a single

15 logical datapath set (or several different sets of machines on different users' logical datapath

sets).

In order for the machines at the first data center to communicate with machines at a

second data center, some embodiments program the controller clusters with a second level

logical datapath set that includes machines from both data centers. For example, if a first logical

20 datapath set includes VMA and VMB in a first data center, and a second logical datapath set

includes VMc and VMD in a second data center, then a third logical datapath set will include all

four of VMA, VMB, VMc, and VMD in some embodiments. This third logical datapath set is sent

to the controller clusters at each of the data centers, and defines a logical switching element that

connects all of the machines from the first and second logical datapath sets.

25 A tunnel is still created between the extenders at the two sites, although the extenders can

function much like pool nodes would within a site, by enabling the transmission of packets from

a machine in one area of the logical network to a machine in another area. In addition, as shown

in bold in Figure 11, some embodiments enable a direct connection from the hypervisor 1110 to

the extender 1120, bypassing the pool node 1115. The hypervisor 1110 (edge switching element)

30 recognizes that a packet is destined for a machine in the other data center, and automatically

forwards the packet to the extender 1120 rather than the pool node 1115. A tunnel between the

33

WO 2013/026050 PCT/US2012/051506

extenders 1120 and 1170 still enables the communication between the two sites, and the details

of packet processing and encapsulation will be described in sections below. Furthermore, the

hypervisor 1110 will still forward packets destined for other machines within the data center

1100 (that do not have entries within the forwarding tables of the edge switching element

5 hypervisor 1110) to the pool node 1115.

3. Multiple Levels of Controller Clusters

While Figure 11 illustrates an architecture with separate controller clusters at different

data centers, some embodiments additionally involve a second-level controller cluster that

generates flow entries to connect the separate data centers. Specifically, some embodiments

10 define separate logical switching elements implemented by separate logical datapath sets at each

data center, and interconnect these separate logical datapath sets with a single (or more than one)

second-level logical datapath set that spans multiple data centers. In some cases, the packet

processing behavior of the setup shown in Figure 11 is the same or similar to the packet

processing behavior of the multi-level implementation described in the subsections below.

15 Figure 12 illustrates a managed network 1200 with such a multi-level (or "federated")

implementation. As shown, the managed network 1200 also includes a first data center 1205 and

a second data center 1210, with an unmanaged network 1260 (in this case, an L3 network)

connecting the two data centers. As shown, the first data center includes a first level controller

cluster 1215, an interconnecting managed switching element 1220, edge switching elements

20 1225 and 1230, and several end machines (both virtual and physical machines). While many of

the managed networks in the following sections include both virtual and physical machines, one

of ordinary skill in the art will recognize that in some embodiments all of the machines at a data

center may be virtual machines, or may all be physical machines. The second data center 1210

also includes a first level controller cluster 1235, an interconnecting managed switching element

25 1240, edge switching elements 1245 and 1250, and several end machines.

The interconnecting managed switching elements 1220 and 1240 may be different types

of switching elements in different embodiments (e.g., pool nodes, extenders). For instance, they

might both be pool nodes, both be extenders, or a combination of the two types of switching

elements. These interconnecting managed switching elements create a tunnel through the L3

30 network in order to send packets between the two networks when necessary. The packet

34

WO 2013/026050 PCT/US2012/051506

processing performed by these switching elements in order to handle this interconnection

between the data centers will be described below.

In addition to the first level controller clusters 1215 and 1235, the first data center 1205

also includes a second level controller cluster 1255. As discussed above, each network controller

5 instance (or, each logical controller instance in the case that the cluster is separated into logical

and physical controllers) in the first level controller cluster includes a control application and a

virtualization application. The first level controller cluster generates forwarding table entries

(also referred to as "flow entries", "data flows", or "flows") to populate the physical control

plane of the managed switching elements.

10 In some embodiments, the second level controller cluster has the same structure as the

first level controller clusters, with a control application and virtualization application that

implement a logical switching element by generating flow entries. As with the first level

controller clusters, the second level controller cluster may be a single network controller instance

or may consist of multiple controller instances that communicate with each other in order to

15 update their knowledge of the network and to disseminate information regarding the generated

flow entries.

However, rather than connecting directly to the managed switching elements, the second

level controller cluster pushes its flow entries to one or more first level controller clusters in

order for those first level controller clusters to implement these second-level flows within the

20 first-level flow entries that they send to the managed switching elements. Thus, the first level

controller cluster 1215 need not include any of the machines at the data center 1210 on its logical

switching element, as the interconnections between machines at the data center 1205 and

machines at the data center 1210 will be implemented by the second level logical switching

element. As will be described in further detail in Section B below, in some embodiments the

25 virtualization application of the second-level controller cluster converts flow entries from the

second level logical forwarding plane directly to the first level logical forwarding plane. Because

all of the forwarding data (e.g., port bindings, etc.) is received at the second level controller

cluster, there is no control plane with regard to the forwarding decisions. As such, the control

application at the first level controllers is not involved in generating flow entries for packet

30 forwarding. However, in some embodiments, the first level logical control plane may be used to

enter security or other policies (e.g., for conversion into ACL tables).

35

WO 2013/026050 PCT/US2012/051506

In the example of Figure 12, the second level controller cluster 1255 is located at one of

the data centers (specifically, data center 1205). As shown, the second level controller cluster

1255 connects to the first level controller cluster 1215 at data center 1205 in order to send the

flow information for the second level logical datapath sets to the first level controller cluster

5 1215. In addition, the second level controller cluster 1255 connects to the first level controller

cluster 1235, through the unmanaged network 1260. In some embodiments, the second level

controller cluster actually passes the control data through the tunnel between the two

interconnecting managed switching elements 1220 and 1240 that connects the two data centers.

However, the dashed line is shown separately here in order to indicate the flow of control data

10 (as compared to network traffic).

There is no requirement that the second level controller must be located at one of the data

centers, however. Figure 13 illustrates an alternate implementation of a managed network 1300

with multiple levels of controller clusters. In this case, the second level controller cluster 1305 is

located outside of both of the data centers 1205 and 1210. This location might be a tenant's

15 location (i.e., the owner of the machines interconnected by the logical switching elements), or at

a third data center. Some embodiments attempt to locate the second level controller at the most

well-connected of the possible locations. For instance, if connecting three data centers, then the

second level controller might be located at the data center with the best connection (e.g., the

most redundant and/or fastest connection) to the other two.

20 While the ability of the second level controller to connect to the different data centers (or

domains) is important, part of the goal of the federated approach is to ensure that the separate

domains can operate independently if a domain is cut off, either from the other domains or from

the second level controllers. If, for example, the connection between the first data center 1205

and the second data center 1210 were to go down, each of the first level controller clusters could

25 still maintain and update the logical datapath sets for their respective sites, maintaining

connectivity within the sites. Similarly, if the second level controller cluster 1305 were cut off,

the two first level controller clusters would continue managing their respective data center

logical datapath sets.

As such, the second level controller of some embodiments does not need to be aware of

30 the actual physical network topology within a data center. While the second level controller

needs to account for which end machines are located in which domain, the controller need not

36

WO 2013/026050 PCT/US2012/051506

know where the different machines are located within a domain. Thus, physical changes such as

VM migration within a data center need not be pushed up to the second level controller, as it will

not affect the second level logical switching element. This information will still be gathered by

the first level controller, as it may require updating the first level flow entries sent to the different

5 managed switching elements. For instance, if a particular VM moves from a first hypervisor to a

second hypervisor, then the first level network controller for the logical network containing the

particular VM will need to generate new flow entries for various switching elements (e.g.,

updating pool nodes, the first and second hypervisors, etc.).

When an end machine is moved from one domain to a different domain connected by the

10 second level logical switching element, then the second level controller cluster may be involved

in some embodiments. In this regard, different embodiments may distribute the functionality

differently between the first and second level controllers. In a more centralized approach, the

second level controller receives updates any time a machine moves between domains, then

generates and pushes forwarding table entries. In a more decentralized approach, the second

15 level controller pushes an entry indicating that the first level controllers should use a distributed

learning algorithm to handle the move of the end machine from one domain to the other. Such a

distributed learning algorithm might be implemented using a standard flooding-based approach,

or by relying on a lookup service-based model that does not require any flooding.

The ability of the separate domains to function in isolation, however, does not mean that

20 connectivity between the second level controllers and first level controllers is unimportant. As

such, some embodiments interconnect the second level controllers to each site independently

with enough redundant paths to provide a desired level of reliability. Some embodiments rely on

gossiping to guarantee a reliable system of updates from the second level controller to the

different first level controllers at different sites. To implement this gossiping, some embodiments

25 utilize a distributed protocol specialized for the delivery of flow entries.

Irrespective of the approach used to disseminate updates to the flow entries, in some

embodiments the second level flow entries may not make it to switching elements at the different

first level domains at exactly the same time (e.g., because of different travel times from the

second level controller to the different first level controllers, or different processing times at the

30 different first level controllers). Thus, some embodiments instruct the first level controllers to

include versioning information in the packet processing pipeline, so that the managed switching

37

WO 2013/026050 PCT/US2012/051506

elements add this versioning information to each packet received from an end machine. Thus, a

single packet will use the same network state version across multiple domains. In this manner,

the second level controller can push the state in stages. Only after preparing a new network state

version far enough, the system enables the use of the new version at the network edge, and only

5 after updating all of the edges to the new version will the earlier version be removed.

In addition to connecting machines on different first level logical switching elements at

different data centers (or other locations), some embodiments use a federated approach within a

single data center. Figure 14 illustrates such a data center 1400 that includes a first domain

managed by a first level controller cluster 1405 and a second domain managed by a different first

10 level controller cluster 1410. In order to interconnect these two domains, the data center also

includes a second level controller cluster 1415 that implements a logical switching element over

both of the domains, and pushes down the second level flows to the two first level controller

clusters 1405 and 1410. In this case, the interconnecting managed switching elements on the

edges of the domains are more likely to be pool nodes, as there is no external unmanaged

15 network through which to connect (although, as is the case in all of the figures, there may be

unmanaged switching elements that are not shown in between the managed switching elements).

Some embodiments use this federated approach within a single data center for different

reasons. For instance, the size of a single first level logical datapath set may be constrained, by

either the underlying controller implementation or by the constraints of the logical datapath

20 service model. While the second level logical switching element may have the same number of

logical ports as would a first level logical switching element connecting all the machines on a

logical datapath set, the flow entries for the second level logical datapath set will be simpler

because they only need to handle traffic going from one of the first level domains to the other

first level domain.

25 B. Generation of Flow Entries

As mentioned above, in the federated system, flow entries are generated initially by the

second level controller, then pushed down to the appropriate first level controller(s), which

generate flow entries to push down to the managed switching elements. Within this and later

sections, "IL" may be used to refer to the first level logical datapath sets and network

30 controllers. Similarly, "2L" may be used to refer to the second level logical datapath sets and

38

WO 2013/026050 PCT/US2012/051506

network controllers. These terms are intended to be different from "Li" and "L2" that often refer

to the Open Systems Interconnect ("OSI") physical and data link layers.

Section I above described the use of a network controller (or controller cluster) in a single

level logical network to generate a logical datapath set and create flows that are pushed down to

5 the managed switching elements. The network controller of some embodiments includes a

control application for converting logical control plane data to logical forwarding plane data, and

a virtualization application for converting logical forwarding plane data to physical control plane

data. In some embodiments, each of these sets of data (logical control plane, logical forwarding

plane, physical control plane) are stored in the network controller as nLog tables, and the control

10 and virtualization applications perform nLog table mapping operations to convert from one data

plane to the next using an nLog rules engine. In some embodiments, in fact, the control

application and virtualization application use the same rules engine to perform their table

mappings. The physical control plane data is then pushed to the managed switching elements.

For a network with multiple levels of controller clusters, in some embodiments the

15 controller clusters at each level of the hierarchy perform additional conversions of the flows

(e.g., using nLog table mapping engines). Figure 15 conceptually illustrates a control data

pipeline 1500 for a hierarchically-arranged set of network controllers at two levels that manage a

federated network. Specifically, Figure 15 conceptually illustrates a 2L network controller 1505

and two separate IL network controllers 1510 and 1515 for two different IL domains.

20 As shown, the 2L network controller 1505 includes a control application 1520 and a

virtualization application 1525. The control application 1520 converts 2L logical control plane

data into 2L logical forwarding plane data. In some embodiments, the control application 1520

exposes constructs with which the control application itself or users of the application (i.e., the

owners of the logical datapath sets) define the logical datapath set within the logical control

25 plane. The logical control plane data of some embodiments includes logical access control list

("ACL") data that may be specified by the user (e.g., to define security policy). In addition, the

2L logical control plane data may include logical forwarding records generated by the control

application in response to changes in the network detected by the managed switching elements

and pushed up through the IL network controllers. At least some of the 2L logical control data of

30 some embodiments may be specified without consideration for a current arrangement of

39

WO 2013/026050 PCT/US2012/051506

managed switching elements and how the logical datapath set will actually be converted into data

for the different switching elements.

The control application 1520 receives this 2L logical control plane data as input, and

applies its table mapping rules to generate 2L logical forwarding plane data as output. The 2L

5 logical forwarding plane data includes lookup entries that define the logical datapath set based on

the 2L logical control plane data. In some embodiments, for example, the control plane might

define that a particular MAC address is located at a particular logical port. This 2L control plane

data, however, does not provide an actual lookup entry. The 2L logical forwarding plane data

generated by the control application defines that if a packet destination matches the particular

10 MAC address, then the packet should be forwarded to the particular logical port. This 2L control

plane data, however, does not provide any context for the packet. This essentially turns a piece of

data into a lookup entry.

The control application 1520 pushes the 2L logical forwarding plane data to the

virtualization application 1525. As shown, the virtualization application 1525 takes the 2L

15 logical forwarding plane data as input, and outputs 1L logical forwarding plane data. In some

embodiments, the IL logical forwarding plane data adds a match of the 2L datapath to the

lookups. For instance, in the example above, the IL logical forwarding plane lookup determines

that if a packet has matched the particular 2L datapath (e.g., via ingress port matching) and

matches the particular destination MAC address, then the packet should be forwarded to the

20 particular logical port.

The virtualization application pushes the logical forwarding plane data to the two IL

network controllers 1510 and 1515. These 1 L network controllers, in some embodiments, receive

the logical forwarding plane data customized to their particular logical domain. That is, in some

embodiments, certain entries are only pushed to the network controllers that need the entry

25 (though this would not be the case for the attachment of a new VM for a port, which would be

sent to all IL domains). At each of the IL controllers, a virtualization application takes the

logical forwarding plane data for the domain and converts the logical forwarding plane data into

physical control plane data for the managed switching elements in the domain. In the above

described example for a newly attached machine, the physical control plane lookup determines

30 that if a packet has matched the particular 1L datapath and has matched the particular 2L

datapath and matches the particular destination MAC address, then the packet should be

40

WO 2013/026050 PCT/US2012/051506

forwarded to the particular logical port. In this case, two separate physical control plane lookups

are generated by the two different 1 L network controllers. For the first network controller 1510,

the lookup requires a match to the particular IL datapath defined by that network controller for

its 1L domain. Similarly, a different lookup is generated for the network controller 1515 that

5 requires a match to its particular 1 L datapath.

As with the control and virtualization applications at the 2L controller 1505, the

virtualization application of the IL controller of some embodiments uses an nLog table mapping

engine to perform this conversion. The physical control plane data of some embodiments is data

readable by the managed switching elements, which the managed switching elements convert

10 into physical forwarding plane lookups. In some embodiments, the IL network controllers

include push the physical control plane data to the appropriate managed switching elements

within the network.

In this figure, no logical control plane is illustrated for the IL network controllers.

Because the actual forwarding decisions are made at the 2L level, no IL logical control plane

15 data is required or used in some embodiments. However, in some embodiments administrators of

the IL domain can use the IL network controller to configure logical control plane data for their

particular domain. For instance, additional security policy may be set at the 1L logical control

plane in some embodiments.

The above description shows a simple case in which a single 2L logical datapath set

20 connects two IL logical datapath sets. As will be described in subsequent sections, in some

embodiments additional IL datapaths may be connected by a 2L datapath, and additional levels

of logical datapath sets may be used to provide additional discretization of the network. For a

three-level network, the control data pipeline would include only a 3L logical control plane, with

the lookups converted to 3L, 2L, and IL logical forwarding plane data. More generally, for any

25 number of levels, in some embodiments there is only one logical control plane, at the topmost

level, with lookups converted to logical forwarding plane data at each subsequent level of

network controller.

This example illustrates the IL network controller converting data directly from the

logical forwarding plane to the physical control plane, which includes data customized to the

30 different managed switching elements. However, for some embodiments, this represents a

simplification. In such embodiments, the IL network controller virtualization application

41

WO 2013/026050 PCT/US2012/051506

converts the logical data path set from the 1L logical forwarding plane to universal physical

control plane (UPCP) data that is generic for any managed switching element that implements

the logical datapath set within the IL domain. In some embodiments, this virtualization

application is part of a controller instance that is a master controller for the particular logical

5 datapath set within the IL domain (also referred to as the logical controller).

In some embodiments, the UPCP data is then converted to customized physical control

plane (CPCP) data for each particular managed switching element by a controller instance that is

a master physical controller instance for the particular managed switching element, or by a

chassis controller for the particular managed switching element. When the chassis controller

10 generates the CPCP data, the chassis controller obtains the UPCP data from the virtualization

module of the logical controller through the physical controller.

Irrespective of whether the physical controller or chassis controller generate the CPCP

data, the CPCP data for a particular managed switching element needs to be propagated to the

managed switching element. In some embodiments, the CPCP data is propagated through a

15 network information base (NIB) data structure, which in some embodiments is an object-oriented

data structure. Several examples of using the NIB data structure are described in U.S. Patent

Applications 13/177,529 and 13/177,533, which are incorporated by reference above. As

described in these applications, the NIB data structure is also used in some embodiments to may

serve as a communication medium between different controller instances, and to store data

20 regarding the logical datapath sets (e.g., logical switching elements) and/or the managed

switching elements that implement these logical datapath sets.

However, other embodiments do not use the NIB data structure to propagate CPCP data

from the physical controllers or chassis controllers to the managed switching elements, to

communicate between controller instances, and to store data regarding the logical datapath sets

25 and/or managed switching elements. For instance, in some embodiments, the physical controllers

and/or chassis controllers communicate with the managed switching elements through OpenFlow

entries and updates over the configuration protocol. Also, in some embodiments, the controller

instances use one or more direct communication channels (e.g., RPC calls) to exchange data. In

addition, in some embodiments, the controller instances (e.g., the control and virtualization

30 modules of these instance) express the logical and/or physical data in terms of records that are

written into the relational database data structure. In some embodiments, this relational database

42

WO 2013/026050 PCT/US2012/051506

data structure are part of the input and output tables of a table mapping engine (called nLog) that

is used to implement one or more modules of the controller instances.

For a two-level network (e.g., that shown in Figure 15), Figure 16 conceptually

illustrates a process 1600 performed by the second level network controller of some

5 embodiments to generate flow entries for an event detected at the logical control plane. As

shown, the process 1600 begins by receiving (at 1605) an update to the 2L logical control plane.

Such an update may be a user entering a particular ACL policy (e.g., enabling port security or

machine isolation for a particular port, requiring a particular QoS for a particular machine at a

particular port, etc.). In addition, updates may be received at the control plane after being pushed

10 upwards from the managed switching elements. When a new machine is attached to a particular

managed switching element, this network information is pushed up to the IL network controller

that manages the particular switching element, then from the IL controller to the 2L controller.

In some embodiments, the user will have configured the logical ports (of the first and second

logical switching elements) to which the newly detected machine should be bound.

15 The process then determines (at 1610) whether the update to the 2L logical control plane

requires the creation of new flow entries. For instance, if the update simply indicates that the

network has not changed, then no new entries will be required, and the process ends. On the

other hand, if the update specifies new ACL rules, or indicates the attachment of a new VM, then

the 2L network controller will begin generating new flow entries.

20 Next, the process 1600 translates (at 1615) the 2L logical control plane update into an

update to the lookups in the 2L logical forwarding plane. As mentioned above, in some

embodiments this translation involves turning a piece of data into a lookup entry. Throughout the

process 1600 and the process 1700 (shown in Figure 17, described below), several examples will

be used to illustrate the translation of logical control plane data into physical control plane data.

25 The first example is that given in simple terms above: the attachment of a new machine, having a

MAC address A, to a particular logical port X of the 2L logical datapath set. In this case, the

logical control plane data states "MAC A is at logical Port X". The control application translates

this event into an update to the 2L LDPS lookup table that reads "If destination matches MAC A,

forward to Port X".

30 The second example described here illustrates the generation of ACL table entries. While

the conversions related to the hierarchical network are feature agnostic (e.g., the addition of

43

WO 2013/026050 PCT/US2012/051506

match conditions), examples will be given for the specific example of port security. Thus, at the

logical control plane, the user specifies that a particular port should be secured (e.g., Port X)

that is, that network data entering and exiting the logical switching element through the

particular port have only certain addresses that the switching element has restricted the port to

5 use. For this example, the user has secured Port X, restricted to MAC address A and IP address

B. Other examples of ACL rules that a user could specify include counters (i.e., counting the

number of packets coming from a particular source address or to a destination address), machine

isolation (i.e., only sending broadcast/multicast packets received from a particular machine to a

particular set of machines), QoS enablement (i.e., requiring a particular quality of service for

10 packets sent from or to a particular port), etc.

For the port security, the control plane data simply specifies that Port X should be secure,

with MAC A and IP B as the allowed addresses. The logical forwarding plane converts this into

an ingress ACL entry and an egress ACL entry. At this point, the entries are similar to those that

would be used in a single level logical network. For the ingress ACL, the entry specifies that a

15 packet entering the logical switching element from Port X is allowed if the packet has "A" as the

source MAC address and "B" as the source IP address, and dropped if the MAC address or IP

address are different. Furthermore, Address Resolution Protocol ("ARP") responses must

correspond to the correct address (i.e., the MAC address must be "A" and the IP address must be

"B" in the source response, or the packet will be dropped). Logically, the lookup instruction

20 might state "If received from Ingress Port X - Allow, or Drop If ARP MAC not A or IP not B,

or Drop If MAC not A or IP not B". This effectively prevents the machine at Port X from using

other MAC or IP addresses than those assigned to it. Similarly the egress ACL lookup prevents

packets not sent to the correct address from exiting the switching element at Port X, with an

instruction of "If sent to Egress Port X - Drop If dest. IP not B". This prevents other IP

25 addresses from being used at Port X; by the nature of the logical forwarding, packets sent to

MAC addresses other than A will not be directed to Port X in the first place.

After translating the logical control plane update into a 2L logical forwarding plane

lookup(s), the process then translates (at 1620) the 2L logical forwarding plane data into IL

logical forwarding plane lookup entries. As with the 2L logical control plane to 2L forwarding

30 plane translation, in some embodiments the conversion from 2L logical forwarding plane to IL

logical forwarding plane is performed as an nLog table mapping operation (e.g., using the same

44

WO 2013/026050 PCT/US2012/051506

table mapping engine as for the 2L logical control plane to 2L logical forwarding operation). For

both the ACL lookups and the attachment of a new machine, the virtualization application adds a

match of the 2L LDPS to the entry. Thus, the first entry now states "If match 2L LDPS and

destination matches MAC A, forward to Port X". The ingress ACL entry at the IL logical

5 forwarding plane reads "If match 2L LDPS and If received from Ingress Port X - Allow, or

Drop If ARP MAC not A or IP not B, or Drop If MAC not A or IP not B". Similarly, the egress

ACL entry reads "If match 2L LDPS and If sent to Egress Port X - Drop If dest. IP not B".

In addition to translating the 2L logical forwarding lookups to IL logical forwarding

lookups, the process 1600 also generates (at 1625) additional IL logical forwarding plane entries

10 in order to realize the 2L lookups within the IL logical forwarding plane. In some embodiments,

the virtualization application rules engine creates additional flow entries to handle the operations

around the forwarding lookups. These include ingress and egress port integration lookups to

handle the ingress context mapping and egress context mapping described below, as well as

additional entries to handle the tunnels between different IL domains (i.e., for packets not

15 originating in the destination domain).

In some embodiments, these lookup entries are generated as soon as a new machine is

added at a particular port and the IL and 2L logical ports are bound to the same machine. Thus,

when ACL entries are generated for a particular port, these additional IL logical forwarding

entries are not affected. Continuing to refer to the example of a machine with MAC address A

20 and IP address B at Port X, the virtualization application of some embodiments generates four

types of entries: ingress port integration, egress port integration, tunnel sending, and tunnel

receiving. The ingress port integration entry matches the IL port ("Port K") to which the

machine is bound to the 2L Port X to which the machine is also bound. Thus, this entry states "If

received from IL ingress Port K - Mark 2L ingress as Port X". In order to generate such an

25 entry, the virtualization application uses input tables that correspond the port bindings between

the two levels (based on user-provided information).

The egress port integration entry matches a forwarding decision at the 2L level to a IL

port. Specifically, for the continuing example, the egress port integration entry states "If sent to

Port X - Run through egress pipeline then send to Port K". Thus, a packet forwarded to Port X

30 at the 2L level will be first sent to the egress pipeline (at which point the egress ACL rules are

applied to the packet), then sent to the IL Port K. As with the ingress port integration, input

45

WO 2013/026050 PCT/US2012/051506

tables specifying port bindings are used by the virtualization application to generate such egress

port integration entries. In some embodiments, both the ingress and egress port integration

lookups are written specifically for the IL domain that actually contains Port K. Only packets

originating from Port K will need to be mapped to Port X, and packets destined for Port X will

5 only need to be mapped to Port K once received at the IL domain.

In addition to the ingress and egress port integration lookups, some embodiments also

generate lookups to handle the receipt and transmission of packets sent through different IL

LDPS than the IL LDPS containing Port X. The ingress 2L port and the egress 2L port might be

in different 1L LDPS, and therefore the packet will have to travel along the tunnels between

10 these IL domains. Thus, two lookups (at the sending side of the tunnel and the receiving side of

the tunnel) are generated for the IL logical forwarding plane. For any IL LDPS that does not

contain Port X and that connects directly to the IL LDPS that does contain Port X, the

virtualization application generates a tunnel encapsulation lookup entry that states "If sent to Port

X 4 Encapsulate with X's context ID and output to IL Port that connects to destination IL

15 LDPS". For the receiving side of the tunnel (i.e., the IL LDPS that contains Port X), the

virtualization application generates a tunnel decapsulation lookup entry that states "If tunneled

- Decapsulate to identify 2L port, then Resubmit". The resubmission results in the execution of

the egress port integration described above.

In some embodiments, the IL datapaths are not a full mesh. That is, there may not be a

20 direct connection between each pair of IL domains within the 2L domain. In some such

embodiments, additional lookup entries are generated for sending packets to the appropriate

tunnels from IL domains that do not directly connect to the domain containing Port K. For each

such IL domain, the virtualization application generates a lookup stating that "If sent to Port X

- Encapsulate with X's context ID and output to IL Port that connects to appropriate next IL

25 LDPS". Correspondingly, for any IL domain that does not contain Port K but that can receive a

packet destined for MAC B over such a tunnel, the virtualization application generates a lookup

stating that "If tunneled - Decapsulate to identify 2L port, then Resubmit". The resubmission

will then result in the eventual execution of the next tunnel to the next 1 L datapath.

To generate the tunneling lookups, the rules engine of the virtualization application uses

30 an input table that defines the interconnections between the different IL logical datapath sets.

Such an input table defines the ports of the IL LDPS that connect to other IL LDPS. In addition,

46

WO 2013/026050 PCT/US2012/051506

some embodiments use tables generated at the 2L control plane that define pathways through the

1L datapaths for packets that originate in a 1L domain that does not directly connect to the

destination IL domain (i.e., whether packets should be forwarded through a first domain or a

second domain, that both directly connect to the destination IL domain). In different

5 embodiments, these pathways may be defined by a user or by an optimization algorithm that

combines network data with user-entered traffic policies (e.g., QoS guarantees, traffic

classification, etc.).

With all of the IL logical forwarding plane entries generated for the update, the process

1600 identifies (at 1630) the IL controllers to receive the generated lookups. As described for

10 some of the different lookup entries above, not all controllers will receive every lookup, as some

lookups may not be needed for the managed switching elements in some IL domains. For

example, the tunnel sending lookups will not need to be sent to the IL domain containing the

destination port, and the tunnel receiving lookup will not need to be sent to the IL domains that

will never receive packets sent to the destination port. Depending on the complexity of the

15 network and the defined pathways through the domains, in some cases all domains might be

potential recipients. The egress and ingress port integration lookups, as well as certain egress

pipeline entries (e.g., the egress ACL for port security) will only be sent to the IL controller at

the IL domain containing the port being mapped. On the other hand, the forwarding entries and

the ingress pipeline entries of some embodiments are sent to all of the IL domains, as any of

20 these domains might have a machine sending a packet to the machine at Port X.

Finally, the process 1600 pushes (at 1635) the generated flow entries to the identified IL

controllers, then ends. In some embodiments, the 2L controller propagates the generated flow

entries to the IL controller through an object-oriented (NIB) data structure, while other

embodiments use direct communication channels (e.g., RPC calls) to exchange the flow entries.

25 Figure 17 conceptually illustrates a process 1700 of some embodiments that generates

the physical control plane data from the IL forwarding plane data received at the IL controller

from the 2L controller. In some embodiments, a virtualization application at the IL controller

performs the process 1700. As shown, the process begins by receiving (at 1705) IL logical

forwarding plane lookup entries from the 2L controller. In some embodiments, the virtualization

30 application receives these lookup entries, published by the 2L controller, by using its subscriber

tables. In some embodiments, the subscriber tables specify locations of 2L controllers from

47

WO 2013/026050 PCT/US2012/051506

which the virtualization application should retrieve flow entries. As described above, the only

logical control plane for these flows exists at the 2L logical level. In some embodiments,

however, local policies for traffic contained within a particular IL domain may be set at the

control plane of the 1L logical controller.

5 Next, the process translates (at 1710) the IL logical forwarding plane lookups into

physical control plane lookups. As with the translation operations performed by process 1600, in

some embodiments the conversion from IL logical forwarding plane to physical control plane is

performed as an nLog table mapping operation. The rules engine used by the IL controller is the

same rules engine (with different input tables) as that used by the 2L controller in some

10 embodiments. For both the ACL lookups and the forwarding entry for the new machine attached

to the network, the virtualization application adds a match of the IL LDPS to the entry. Thus, the

entry for forwarding packets to Port X now states "If match IL LDPS and If match 2L LDPS and

If destination matches MAC A 4 forward to Port X". The ingress ACL entry at the physical

control plane reads "If match IL LDPS and If match 2L LDPS and If received from Ingress Port

15 X 4 Allow, or Drop If ARP MAC not A or IP not B, or Drop If MAC not A or IP not B".

Similarly, the egress ACL entry reads "If match IL LDPS and If match 2L LDPS and If sent to

Egress Port X 4 Drop If dest. IP not B". This egress ACL entry, in some embodiments, is only

generated by the IL network controller at the domain containing Port X, as the other IL network

controllers do not receive the entry at their logical forwarding planes.

20 In addition to translating the IL logical forwarding plane lookups to physical control

plane lookups, the process 1700 also generates (at 1715) additional physical control plane lookup

entries to realize the IL logical forwarding plane over the physical network. In some

embodiments, the 1L virtualization application rules engine creates additional flow entries to

handle the operations around the forwarding lookups. These lookups are the analogues to the

25 entries generated by the 2L virtualization application for realizing the 2L logical forwarding

plane on top of the IL logical forwarding plane. As with the entries described earlier, the lookups

generated at 1715 include ingress and egress port integration entries to handle ingress context

mapping and egress context mapping, as well as additional entries to handle the tunnels between

different managed switching elements.

30 In some embodiments, these lookup entries are generated as soon as a new machine is

added at a particular physical port (e.g., a virtual interface) and the IL and 2L logical ports are

48

WO 2013/026050 PCT/US2012/051506

bound to that physical port. When ACL entries are generated for a particular port, these

additional physical control plane entries are not affected. For the sake of the examples, the

physical port to which the machine located at IL logical Port K and 2L logical Port X is

connected is Port J in the ongoing examples. Continuing with this example, the ingress port

5 integration entry for this level matches the physical Port J to which the machine is connected to

the IL port K to which the machine is bound. Thus, this entry states "If received from physical

ingress Port J 4 Mark IL ingress as Port K". In order to generate such an entry, the

virtualization application uses input tables that correspond the port bindings between the physical

and logical levels (based on user-provided information).

10 The egress port integration entry matches a forwarding decision, as mapped to the IL

logical level, to a physical port. Specifically, for the continuing example, the egress port

integration entry becomes "If sent to Port K 4 Run through egress pipeline then send to Port J".

Thus, a packet forwarded to Port K at the IL level will be first sent to the egress pipeline and

then sent to the physical Port J. As with the ingress port integration, input tables specifying port

15 bindings are used by the IL virtualization application to generate such egress port integration

entries. In some embodiments, both the ingress and egress port integration lookups are written

specifically for the managed switching element (e.g., a hypervisor) that actually contains Port J.

Only packets originating at this port will need to be mapped to Port K, and packets destined for

Port K will only need to be mapped to physical Port J once received at the managed switching

20 element.

In addition to the ingress and egress port integration lookups, some embodiments also

generate lookups to handle the receipt and transmission of packets through different managed

switching elements within the IL domain containing Port K. Packets might originate at other

managed switching elements within the domain, or originate in a different IL domain and enter

25 via an interconnecting switching element. In this case, the packet will have to travel along at

least one tunnel between two managed switching elements within the IL domain in order to

reach the switching element containing Port J. Thus, two lookups (at the sending and receiving

sides of the tunnel) are generated for the physical control plane. For any managed switching

element that does not contain Port J and that connects directly to the switching element that does

30 contain Port J (the interconnecting managed switching element for the IL domain is often such a

switching element), the virtualization application generates a tunnel encapsulation lookup entry

49

WO 2013/026050 PCT/US2012/051506

that states "If sent to Port K 4 Encapsulate with K's context ID and output to physical port via

tunnel that connects to destination switch". For the receiving side of the tunnel (i.e., at the

managed switching element that contains Port J), the virtualization application generates a tunnel

decapsulation lookup entry that states "If tunneled 4 Decapsulate to identify IL port, then

5 Resubmit". The resubmission results in the execution of the egress port integration described

above.

In some embodiments, the managed switching elements may not be a full mesh. Packets

incoming from other IL domains are generally sent directly from the interconnecting managed

switching element to the destination managed switching element in some embodiments. On the

10 other hand, for networks with pool nodes, the path from a first managed edge switching element

within the IL domain passes through one or more pool nodes in order to reach a second managed

edge switching element (to which the destination machine connects) in some cases. In some such

embodiments, additional lookup entries are generated for sending packets to the appropriate

tunnels from managed switching elements that do not directly connect to the destination

15 managed switching element containing Port J. For each such switching element, the

virtualization application generates a lookup stating that "If sent to Port K - Encapsulate with

K's context ID and output to physical port via tunnel that connects to appropriate next managed

switch". Correspondingly, for any managed switching element that does not contain Port J but

can receive a packet destined for MAC B over such a tunnel, the virtualization application

20 generates a lookup stating that "If tunneled - Decapsulate to identify IL port, then Resubmit".

In this case, the resubmission results in the eventual execution of the next tunnel to the next

managed switching element.

To generate the tunneling lookups, the rules engine of the virtualization application uses

an input table that lists the physical ports connected to each managed switching element, as well

25 as an input table defining the connections between the different managed switching elements

(i.e., indicating through which additional switching elements a packet will have to travel in order

to reach a particular destination switching element from a particular originating switching

element). In addition, to configure the tunnels, some embodiments use an input table that

identifies which types of tunnels are allowed for particular managed switching elements (e.g.,

30 hypervisors, pool nodes, extenders, etc.). In order to connect two managed switching elements,

the rules engine of some embodiments selects a shared tunnel type.

50

WO 2013/026050 PCT/US2012/051506

With all of the physical control plane entries generated for the update received at the

logical forwarding plane, the process 1700 identifies (at 1720) the managed switching elements

to receive the generated lookups. As described for some of the various lookup entries generated

at 1710 and 1715, not all of the managed switching elements within the IL domain will receive

5 every lookup. For example, the tunnel sending lookups will not be sent to the managed switching

element to which the destination machine actually connects, and the tunnel receiving lookup will

not need to be sent to any managed switching elements that will never receive packets sent to the

destination machine in question. Depending on the complexity of the pathways through the IL

domain, in some cases all of the switching elements might be potential recipients. In many

10 situations though, at least some of the other edge switching elements will never receive packets

destined for the machine in question (except directly from the machines connected to those edge

switching elements). The egress and ingress port integration lookups, as well as certain egress

pipeline entries (e.g., the egress ACL for port security) will only be sent to the managed edge

switching element containing the secured port. On the other hand, the forwarding entries and

15 ingress pipeline entries of some embodiments are sent to all of the managed switching elements

within the domain, as any of these switching elements might have a machine sending a packet to

the machine at Port J.

Finally, the process 1700 pushes (at 1725) the generated flow entries to the identified

managed switching elements, then ends. In some embodiments, the IL network controller

20 communicates directly with the managed switching elements. However, in other embodiments,

the IL network controller that performs the conversion of the IL logical forwarding plane data

into the physical control plane data sends physical control plane data to master controllers for the

particular switching elements that are to receive the data, and these master controllers push the

data to the switching elements. In addition, while this example describes the computation of

25 physical control plane data customized for particular switching elements (e.g., with port numbers

of the particular switching elements), some embodiments compute universal physical control

plane data that is generic to any particular switching element. In this case, either the master

controller or a chassis controller at the managed switching element performs the conversion to

customized physical control plane data for the managed switching elements. In some

30 embodiments, the 1L controller propagates the generated flow entries (e.g., to the master

controller, from the master controller to the managed switching elements) through an object

51

WO 2013/026050 PCT/US2012/051506

oriented (NIB) data structure, while other embodiments use direct communication channels (e.g.,

RPC calls, OpenFlow entries, updates over the configuration protocol) to exchange the flow

entries.

Figure 18 conceptually illustrates some of these input and output tables through the

5 various flow generation operations of some embodiments. Specifically, Figure 18 conceptually

illustrates the input and output tables for a 2L control application 1805, a 2L virtualization

application 1810, and one of the 1L virtualization applications 1815. The 2L control application

1805 and 2L virtualization application 1810 are located in the same network controller, while the

IL virtualization application 1805 is located in one of several different IL network controllers

10 for several different 1 L domains (other controllers not shown).

As shown, the control application 1805 includes an API 1820, input tables 1825, a rules

engine 1830, output tables 1835, and a publisher 1840. The API 1820 provides an interface for

translating input into the control plane input tables 1825. This API 1820 may be used by various

types of management tools with which a user can view/and or modify the state of a multi-level

15 logical network (in this case, a two level network). In some embodiments, the management tools

provide a user interface such as a graphical user interface that allows a visual configuration of

port bindings, ACL rules, etc. (e.g., through a web browser). Alternatively, or in conjunction

with the graphical user interface, some embodiments provide the user with a command line tool

or other type of user interface.

20 Based on the information received through the API, as well as updates to the network

state received from the 1L controller (not shown), the control application generates the input

tables 1825. The input tables represent the state of the logical switching elements managed by

the user in some embodiments. As shown in this figure, some of the input tables include the

association of MAC addresses/IP addresses with logical ports of the 2L logical switching

25 element, as well as ACL rules set by the user. In this case, the Port X is associated with MAC

address A and IP address B, and is secured.

The rules engine 1830 of some embodiments performs various combinations of database

operations on different sets of input tables 1825 to populate and/or modify different sets of

output tables 1835. As described in further detail in U.S. Application 13/288,908, incorporated

30 herein by reference, in some embodiments the rules engine is an nLog table mapping engine that

maps a first set of nLog tables into a second set of nLog tables. The output tables 1835 populated

52

WO 2013/026050 PCT/US2012/051506

by the rules engine of the control application 1805 include 2L logical forwarding plane lookups

(e.g., mapping a MAC address to a destination output port) and 2L logical forwarding plane ACL

entries (e.g., securing Port X).

The publisher 1840 is also described in further detail in U.S. Application 13/288,908, and

5 publishes or sends the output tables 1835 to the virtualization application 1810, in order for the

virtualization application to use the output tables 1835 among its input tables. In some

embodiments, the publisher 1840 also outputs the tables to an object-oriented data structure

(NIB) that stores network state information.

The 2L virtualization application 1810 receives the output tables 1835 of the control

10 application 1805, and converts this 2L logical forwarding plane data to IL logical forwarding

plane data. As shown, the 2L virtualization application 1810 includes a subscriber 1845, input

tables 1850, a rules engine 1855, output tables 1860, and a publisher 1865. The subscriber 1845

of some embodiments is responsible for retrieving tables published by the publisher 1840 of the

control application 1805. In some embodiments, the subscriber 1845 retrieves these tables from

15 the same object-oriented data structure to which the publisher stores the table information. In

other embodiments, a change in the tables is detected by the virtualization application in order to

initiate the processing.

The input tables 1850 include, in some embodiments, at least some of the output tables

1835, in addition to other tables. As shown, in addition to the 2L logical forwarding plane data,

20 the input tables 1850 include port binding information that indicates, for each 2L port, the IL

port bound to the same MAC and IP address (and that IL port's IL logical datapath set). In

addition, some embodiments include interconnection information that describes the pathways for

packets to take through the different IL domains. In some embodiments, this information is

generated by the user through the user interface. Other embodiments use user policies and

25 network data to optimize the pathways, as described below by reference to Figure 46.

In some embodiments, the rules engine 1855 is the same as the rules engine 1830. That

is, the control application 1805 and the virtualization application 1810 actually use the same

rules engine in some embodiments. As indicated, the rules engine performs various combinations

of database operations on different sets of input tables 1850 to populate and/or modify different

30 sets of output tables 1860. In some embodiments, the rules engine is an nLog table mapping

engine that maps a first set of nLog tables into a second set of nLog tables. The output tables

53

WO 2013/026050 PCT/US2012/051506

1860 populated by the rules engine 1855 include IL logical forwarding plane lookups (e.g.,

mapping a MAC Address to a destination logical port when the 2L LDPS is matched) and IL

logical forwarding plane ACL entries (e.g., securing Port X). In addition, the ingress and egress

port integration and tunnel sending/receiving lookups are generated by the rules engine 1855 in

5 some embodiments. In addition to the information shown in the figure, some embodiments also

include in the output tables the correct 1 L network controllers to receive the different tables.

The publisher 1865 is similar to the publisher 1840 in some embodiments. The publisher

1865 publishes and/or sends the output tables 1860 to the IL network controllers, including the

controller containing virtualization application 1815. In some embodiments, the publisher 1865

10 also outputs the tables to an object-oriented data structure (NIB) that stores network state

information..

The 1L virtualization application 1815 is located at one of the 1L network controllers in

the two level federated network. Specifically, in this case, the virtualization application 1815 is

part of the network controller located in the 1 L domain at which the machine with MAC address

15 A (located at Port X of the 2L LDPS) is also located. As such, the 1L virtualization application

generates flows that include those for the managed switching element to which this machine

directly connects.

As shown, the IL virtualization application 1815 includes a subscriber 1870, input tables

1875, a rules engine 1880, output tables 1885, and a publisher 1890. The subscriber 1870 of

20 some embodiments is responsible for retrieving tables published by the publisher 1865 of the 2L

virtualization application 1810 (specifically, the tables for its particular 1L controller). In some

embodiments, the subscriber 1870 retrieves these tables from the same object-oriented database

to which the publisher stores the table information. In other embodiments, changes to the output

tables from the 2L virtualization application are transmitted via RPC calls to the IL network

25 controller.

The input tables 1875 include, in some embodiments, at least some of the output tables

1860, in addition to other tables. As shown, in addition to the IL logical forwarding plane data

generated by the 2L virtualization application 1810 that is appropriate to the particular 1L

network controller, the input tables 1875 include additional port binding information (matching

30 1L logical ports with physical ports of particular managed switching elements). In addition, some

embodiments include interconnection information that describes pathways through the managed

54

WO 2013/026050 PCT/US2012/051506

switching elements of the IL network for packets either fully contained within the network (as

shown in the example pathway) or exiting/entering the network to/from other IL domains. In

some embodiments, this information is generated by the user at the 2L network controller and

passed down to the 1 L network controller, or may be generated at the 1 L network controller.

5 In some embodiments, the rules engine 1880 is similar to the rules engines 1855 and

1830. In the situation in which the IL network controller is located in the same hardware as the

2L network controller (i.e., the same physical machine), the IL virtualization application 1815

may use the same rules engine as the 2L network controller. As indicated, the rules engine

performs various combinations of database operations on different sets of input tables 1875 to

10 populate and/or modify different sets of output tables 1885. In some embodiments, the rules

engine is an nLog table mapping engine that maps a first set of nLog tables into a second set of

nLog tables. The output tables 1885 populated by the rules engine 1880 include physical control

plane lookups (e.g., mapping a MAC Address to a destination logical port when the IL and 2L

LDPS is matched) and physical control plane ACL entries (e.g., securing Port X). In addition, the

15 ingress and egress port integration and tunnel sending/receiving lookups are generated by the

rules engine 1880 in some embodiments. In addition to the information shown in the figure,

some embodiments also include in the output tables the correct managed switching elements to

receive the different tables.

Finally, the publisher 1890 is similar to the publisher 1865 in some embodiments. The

20 publisher 1890 publishes and/or sends the output tables 1885 to the managed switching elements

within the domain of the IL network controller containing virtualization application 1815. These

managed switching elements may include hypervisors, pool nodes, extenders, etc. In some

embodiments, the publisher 1890 outputs the tables to an object-oriented data structure (NIB)

that stores network state information.

25 One of ordinary skill in the art will recognize that the input and output tables shown in

this figure are simplified conceptual representations of the actual tables, which are generated in a

database language appropriate for the rules engine (e.g., nLog) and may provide additional

information to that shown. Furthermore, different embodiments will use different sets of tables.

For instance, the port binding tables of some embodiments are actually a single table that binds a

30 particular MAC address and IP address at a particular physical port of a particular hypervisor to

particular IL and 2L logical ports.

55

WO 2013/026050 PCT/US2012/051506

C. Packet Processing

The above section described the generation of the forwarding table entries for a federated

network, through the second level and first level network controllers. The following section

describes the processing of packets being sent from one machine to another in such a federated

5 network, with the managed switching elements using the flows generated as described above.

Figure 19 illustrates a set of logical datapath sets (or logical switching elements) for an

example federated network of some embodiments, which will be used in some of the examples

below. Specifically, Figure 19 illustrates an originating first level logical datapath set 1905

(LDPS K), a destination first level logical datapath set 1910 (LDPS Z), and a connecting second

10 level logical datapath set 1915.

As shown, the first level LDPS K 1905 has four ports for the VMs A, B, C, and D, as

well as a fifth port that connects to the LDPS Z. The first level LDPS Z 1910 also has four ports

for the four VMs E, F, G, and H, as well as a fifth port that connects to the LDPS K. The first

level LDPS K 1905 logically connects machines within a first domain (e.g., a first data center)

15 while the first level LDPS Z 1910 logically connects machines within a second domain (e.g., a

second data center). The second level LDPS 1915 that logically connects these two domains has

eight ports, for the eight VMs A, B, C, D, E, F, G, and H.

The arrows in this figure illustrate logical mappings for a packet sent from VM A in the

first domain to VM H in the second domain. As will be described, these logical mappings are

20 performed at one or more managed switching elements using the forwarding tables generated as

described in the above section. In this case, the packet enters the logical switching element 1905

at Port 1, and is mapped to Port 1 of the second level logical switching element 1915. The

forwarding tables that realize the second level logical switching element recognize the

destination address of the packet as VM H and forward the packet to Port 8 of the second level

25 logical switching element 1915 (actually exiting the logical switching element 1905 through Port

5). Port 8 of the second level logical switching element then maps to Port 4 of the logical

switching element 1910, the first level logical switching element for the second (destination)

domain (actually entering the logical switching element 1910 through Port 5). These mappings

will be described in detail by reference to Figures 20-25.

30 Figure 20 conceptually illustrates the path of a packet 2000 through four managed

switching elements between its source machine in a first domain and its destination machine in a

56

WO 2013/026050 PCT/US2012/051506

second domain. The operation of some of the managed switching elements shown in this figure

will be described in part by reference to Figures 21, 22, and 23, which conceptually illustrate

processes performed by some of the managed switching elements in a federated network in order

to process and forward packets.

5 As shown, the packet 2000 originates from a source machine with a payload 2005 and

headers 2010. The payload 2005 contains the actual data intended for the destination machine,

while the headers 2010 include information appended by the source machine in order to enable

the packet 2000 to reach the destination machine. For instance, the headers 2010 include the

source and destination machines' addresses (e.g., MAC addresses, IP addresses, etc.). These

10 addresses are physical addresses from the perspective of the machines, which are not aware of

the logical network. From the perspective of the switching elements within the network between

the machines, however, these MAC addresses are considered logical addresses, as the initial

managed switching element uses the destination address to perform logical forwarding, and the

address is kept within the encapsulation and therefore not visible to the subsequent logical

15 switching elements.

Thus, the packet leaves the source machine without any sort of logical context ID.

Instead, as described further below, all of the logical context information is added and removed

at the managed switching elements. The end machines, and the network interfaces of the end

machines, need not be aware of the logical network over which the packet is sent. As a result, the

20 end machines and their network interfaces do not need to be configured to adapt to the logical

network. Instead, only the managed switching elements are configured by the network

controllers.

The packet 2000 is first sent to a source hypervisor 2015 in this example. In this case, the

source machine from which the packet originates is a virtual machine (e.g., VM A of Figure 19)

25 that operates on a hypervisor running on a physical machine. Such hypervisors, in some

embodiments, also contain software to operate as managed switching elements, performing

physical and logical forwarding functions for packets originating from and destined for the

virtual machines operating on the hypervisor. As shown, the source hypervisor 2015 executes a

first level flow, which includes performing second level functions. As such, the source

30 hypervisor 2015 executes the 2L flow to add 2L egress information to the packet, and then

completes the 1L flow to add 1L egress information to the packet. The packet 2000 exits the

57

WO 2013/026050 PCT/US2012/051506

source hypervisor with two layers of encapsulation: 2L egress information 2020 encapsulated

inside IL egress information 2025.

Figure 21 conceptually illustrates in greater detail a process 2100 of some embodiments

for processing packets by a first hop managed switching element (e.g., the source hypervisor

5 2015) in a federated network. The first hop managed switching element is the first managed

switching element at which a packet arrives after being sent by its source machine. In the case of

a packet from a virtual machine, this first hop managed switching element is often the hypervisor

on which the virtual machine operates. As in the example of Figure 20, in some embodiments

all of the second level processing, as well as the originating LDPS's first level processing, is

10 performed at the first hop.

As shown, the process 2100 begins (at 2105) by receiving a packet from a local machine

at a physical ingress port. A switching element, whether managed or unmanaged, has several

physical ports through which packets may enter or exit. In general, each port can serve as both an

ingress port (for incoming packets) and an egress port (for outgoing packets), although in some

15 embodiments certain ports may be reserved for either ingress or egress specifically. The packet is

received through a physical port of the switching element to which the source machine of the

packet connects, either directly or through other (unmanaged) switching elements. In the case of

a packet sent from a virtual machine, this switching element is often running on the hypervisor

on which the virtual machine operates.

20 Based on the physical ingress port of the packet, the process determines (at 2110) the

local first level logical ingress port for the packet. That is, the managed switching element maps

the physical ingress port to a IL logical ingress port. In some embodiments, the managed

switching element bases this mapping solely on the physical port through which the packet

arrived, and the fact that the packet is not yet encapsulated with any 1L information. In other

25 embodiments, the managed switching element also uses the packet headers (e.g., the MAC

address of the source machine) to determine the mapping.

Next, the process determines (at 2115) the second level (2L) logical ingress port for the

packet based on the first level logical ingress port. In some embodiments, each IL logical port

corresponds to a second level logical port. For example, in Figure 19, Port 1 of the IL LDPS K

30 1905 corresponds to Port 1 of the 2L LDPS 1915. As shown in Figure 21, operation 2115 is the

58

WO 2013/026050 PCT/US2012/051506

beginning of the second level processing, which is encompassed within the first level processing

(i.e., the first level logical forwarding tables realize the second level logical processing pipeline).

Now that the forwarding tables have begun 2L processing, the process determines (at

2120) the 2L logical egress port for the packet using the logical forwarding tables and the packet

5 destination. That is, the managed switching element examines the packet headers to determine

the packet destination (e.g., the MAC address), and maps the identified destination to a logical

port of the 2L logical switching element. This logical forwarding operation may be performed

for layer 2 processing (e.g., using the MAC address), layer 3 processing (e.g., using an Internet

Protocol (IP) address), or using any other type of network addresses. That is, the concept of

10 having hierarchical network controllers creating hierarchical logical datapath sets is not restricted

to any particular type of network forwarding.

In addition to making a forwarding decision (i.e., mapping to a 2L logical egress port),

some embodiments also perform other forwarding table operations within the 2L processing. For

instance, some embodiments perform ingress and/or egress Access Control List ("ACL")

15 lookups that may contain instructions to drop a packet (e.g., if the source of the packet is known

to be corrupted), queue a packet (e.g., to enforce quality of service controls), allow a packet

through, etc.

After determining the 2L logical egress port, the process encapsulates (at 2125) the

packet with this second level logical egress port information. That is, the managed switching

20 element prepends information to the packet (e.g., a logical context) that includes the 2L egress

port information. An example of such a logical context for OSI Layer 2 processing is described

in detail in U.S. Application No. 13/177,535, incorporated by reference above. The logical

context described therein is a 64-bit tag that includes a 32-bit virtual routing function field (for

representing the logical switching element to which the packet belongs (i.e., the 2L logical

25 switching element)), a 16-bit logical inport field (i.e., the ingress port on the 2L switching

element), and a 16-bit logical outport field (i.e., the 2L egress port).

Some embodiments, however, only include the logical egress port within the logical

context prepended to the packet. That is, the logical context that encapsulates the packet does not

include an explicit tenant ID. Instead, the logical context captures the logical forwarding decision

30 made at the first hop. From this, the LDPS ID (i.e., the LDPS to which the packet belongs) can

be determined implicitly at later switching elements by examining the logical egress port (as that

59

WO 2013/026050 PCT/US2012/051506

logical egress port belongs to a particular logical switching element). This results in a flat context

identifier, meaning that the switching element does not have to slice the context ID to determine

multiple pieces of information within the ID. In some embodiments, the egress port is a 32-bit

ID. However, the use of software switching elements as the managed switching elements that

5 process the logical contexts in some embodiments enables the system to be modified at any time

to change the size of the logical context (e.g., to 64 bits or more), whereas hardware switching

elements tend to be more constrained to using a particular number of bits for a context identifier.

In addition, using a logical context identifier such as those described herein results in an explicit

separation between logical data (i.e., the egress context ID) and source/destination address data

10 (i.e., MAC addresses). While the source and destination addresses are mapped to the logical

ingress and egress ports, the information is stored separately within the packet.

Such logical networks, that use encapsulation to provide an explicit separation of

physical and logical addresses, provide significant advantages over other approaches to network

virtualization, such as VLANs. For example, tagging techniques (e.g., VLAN) use a tag placed

15 on the packet to segment forwarding tables to only apply rules associated with the tag to a

packet. This only segments an existing address space, rather than introducing a new space. As a

result, because the addresses are used for entities in both the virtual and physical realms, they

have to be exposed to the physical forwarding tables. As such, the property of aggregation that

comes from hierarchical address mapping cannot be exploited. In addition, because no new

20 address space is introduced with tagging, all of the virtual contexts must use identical addressing

models and the virtual address space is limited to being the same as the physical address space. A

further shortcoming of tagging techniques is the inability to take advantage of mobility through

address remapping.

With the packet encapsulated with 2L context information (e.g., the egress port), the 2L

25 logical processing realized by the IL logical tables is complete. Next, the process 2100

determines (at 2130) a local first level logical egress port in order for the packet to reach the

second level logical egress port in its encapsulation information. When the packet destination is

at a remote domain, this is the logical egress port for the originating first level logical switching

element that connects to the remote domain containing the destination machine. In the example

30 of Figure 19, this is Port 5 of the originating LDPS K 1905. When the packet destination is

within the same domain, this will be one of the other ports on the originating first level logical

60

WO 2013/026050 PCT/US2012/051506

switching element that connects to the destination machine. The majority of the foregoing

discussion, however, assumes that the packet destination is in a different IL domain than the

packet source.

After determining the IL logical egress port, the process encapsulates (at 2135) the

5 packet with this local first level logical egress port information. That is, the managed switching

element prepends information to the packet (e.g., a logical context) that includes the 1L egress

port information. As with the 2L encapsulation, the logical context information of some

embodiments is a 64-bit tag that includes a 32-bit virtual routing function field (for representing

the logical switching element to which the packet belongs (i.e., the originating IL logical

10 switching element)), a 16-bit logical inport field (i.e., the ingress port on the IL switching

element), and a 16-bit logical outport field (i.e., the IL egress port).

As with the 2L logical egress port, some embodiments only include the 1 L logical egress

port within the IL logical context prepended to the packet. That is, the logical context that

encapsulates the packet does not include an explicit tenant ID. Instead, the 1L logical context

15 captures the logical forwarding decision made at the first hop. From this, the first level LDPS ID

(i.e., the IL LDPS from which the packet originates) can be determined implicitly at later

switching elements within the originating domain by examining the logical egress port (as that

logical egress port belongs to the particular IL logical switching element). This results in a flat

context identifier, meaning that the switching element does not have to slice the context ID to

20 determine multiple pieces of information within the ID. In some embodiments, the egress port is

a 32-bit ID.

At this point, the 1 L logical forwarding is complete. The process 2100 then transmits (at

2140) the twice-encapsulated packet towards the physical location of the first level logical egress

port, and ends. In the case of a packet destination outside of the domain, this physical location is

25 an interconnection switching element (e.g., an extender or a pool node) located at the edge of the

domain. In some embodiments, this transmission actually involves multiple operations. First, the

IL logical egress port is mapped to a physical address (e.g., the address of the interconnection

switching element, or a port thereupon). Next, this physical address is mapped to a physical port

of the managed switching element so that the packet can be transmitted to the next hop. That is,

30 while the interconnection switching element is the ultimate destination (within the local IL

domain), there may be one or more physical switching elements (either managed or unmanaged)

61

WO 2013/026050 PCT/US2012/051506

in between the source managed switching element and the interconnecting managed switching

element.

Returning to Figure 20, the packet 2000 leaves the source hypervisor 2015 with a double

encapsulation, having the 2L egress context 2020 encapsulated inside the 1L egress context

5 2025. As shown, the packet 2000 (destined for a remote machine in a different IL domain)

travels through the local network to a local interconnection switching element 2030 (e.g., an

extender that connects to the remote 2L domain). The local interconnection switching element

2030 executes the local IL flow, which removes the local IL egress context 2025 (as the

switching element 2030 is the physical realization of the local IL egress port). The local

10 interconnection switching element also executes an interconnection flow that encapsulates the

packet 2000 with the ingress context 2035 of the remote IL logical switching element (i.e., the

logical port of the switching element that connects to the local domain, such as Port 5 of logical

switching element 1910 in Figure 19).

Figure 22 conceptually illustrates in greater detail a process 2200 of some embodiments

15 for processing packets by an interconnection managed switching element for a packet exiting the

domain of the interconnection managed switching element (e.g., the interconnection switching

element 2030) in a federated network. This switching element, as stated, may be an extender or a

pool node in various embodiments, and contains information regarding connections to external

networks (including the remote managed network to which the packet is headed). As in the

20 example of Figure 20, in some embodiments only first level processing is performed at the

managed switching elements other than the first hop switching element.

As shown, the process 2200 begins (at 2205) by receiving a packet at the physical

location of the packet's logical egress port. The logical egress port of a packet headed out of the

network is a particular port on the logical switching element that maps to a particular port on the

25 physical interconnection managed switching element (e.g., Port 5 of the logical switching

element 1905 of Figure 19). For an extender, e.g., this is the physical port that faces the local

network (as opposed to one or more ports facing external networks).

As the packet's outermost encapsulation contains local IL egress data, the process

determines (at 2210) from this encapsulation that the packet is directed to the first level logical

30 egress port (which it has now reached). As such, the process removes (at 2215) the local first

level encapsulation of the packet. In general, once a packet reaches a destination that maps to a

62

WO 2013/026050 PCT/US2012/051506

logical egress port in the encapsulation of the packet, the switching element at that destination

will remove the encapsulation in some embodiments (as it is no longer needed).

With the local IL processing complete, the process 2200 determines (at 2220) the remote

first level logical ingress port using interconnection instructions contained within the forwarding

5 tables of the managed switching element. In some embodiments, the 2L network controller

cluster passes these interconnection instructions to the local IL controller, which passes them to

the interconnection switching element within the forwarding table information. Specifically, the

managed switching element uses the interconnection instructions to match the local logical

egress port (from the encapsulation information stripped at 2215) to a remote ingress port. In the

10 context of Figure 19, Port 5 of the originating LDPS 1905 as an egress port matches to Port 5 of

the destination LDPS 1910 as an ingress port.

The process then encapsulates (at 2225) the packet with this remote first level logical

ingress port information. That is, the managed switching element prepends information to the

packet (outside the 2L egress information, which is unmodified), such as a logical context, that

15 includes the remote IL ingress port information. This may be a 64-bit logical context as

described above, in some embodiments, but without the 16-bit outport information (which is

determined at the remote interconnection switching element). In other embodiments, the remote

IL logical ingress port is prepended to the packet without a specific LDPS ID, in the same

manner as the egress ports described above. Just as with the logical egress ports, when the packet

20 reaches the physical realization of the outermost logical port, the encapsulation will be removed.

At this point, the logical processing for the interconnection switching element is

complete. The process 2200 then transmits (at 2230) the twice-encapsulated packet towards the

physical location of the remote site, and ends. Again, this transmission may involve multiple

operations. The managed interconnection switching element maps the logical ingress port to a

25 physical address (e.g., the address of a remote interconnection switching element), then maps

this physical address to a physical port of the managed interconnection switching element

through which the packet can be transmitted to the next hop. In this case, the next hop may be on

an unmanaged network (e.g., the Internet) if the two IL domains are in two different locations

(e.g., data centers in different cities).

30 In Figure 20, the packet 2000 is transmitted from the local (originating network)

interconnection switching element through an interconnecting network to a remote

63

WO 2013/026050 PCT/US2012/051506

interconnection switching element 2040 (e.g., an extender, pool node, etc.). This remote

interconnection switching element 2040 is located at the edge of the remote IL domain (e.g., the

edge of a remote data center). As shown, when the packet arrives at the managed switching

element 2040, the switching element removes both the IL ingress port information 2035 and the

5 2L egress port information 2020, then adds new IL egress port information 2045 to the packet

2000. This IL egress information 2045 indicates the egress port on the local IL logical switching

element for the packet (i.e., the port connected to the destination machine for the packet).

Figure 23 conceptually illustrates in greater detail a process 2300 of some embodiments

for processing packets by an interconnecting managed switching element for a packet entering

10 the domain of the interconnecting managed switching element (e.g., the interconnection

switching element 2040) in a federated network. This switching element, as stated, may be an

extender or a pool node in various embodiments, and contains information regarding connections

to external networks (including the remote managed network from which the packet is received).

As shown, the process 2300 begins by receiving (at 2305) a twice-encapsulated packet at

15 the physical port connected to a remote site. This packet, as shown in Figure 20, contains an

outer encapsulation 2035 identifying the IL ingress port local to the physical managed switching

element performing the process 2300 as well as an inner encapsulation 2020 identifying the 2L

egress port for the packet.

As the packet's outermost encapsulation contains local (to the switching element) IL

20 ingress data, the process determines (at 2310) from this encapsulation that the packet is directed

to the first level logical ingress port (which it has now reached at the interconnecting managed

switching element). As such, the process removes (at 2315) the local first level encapsulation

from the packet. In some embodiments, whenever a switching element removes encapsulation

information from a packet, the switching element saves that information in a temporary storage

25 (e.g., a register of the switching element) for the duration of the processing of the packet, as the

information may be needed for later processing.

With the 1L encapsulation removed, the process determines (at 2320) the second level

egress port based on the 2L encapsulation of the packet. This is the logical port on the 2L

switching element that maps to the packet destination. The process also removes (at 2325) the

30 second level encapsulation from the packet. As with the first level encapsulation, some

64

WO 2013/026050 PCT/US2012/051506

embodiments store this 2L information in a temporary storage (e.g., a register) for use in any

additional processing of the packet.

At this point, the packet has no encapsulation information (at least as relates to the logical

datapath sets of the federated network). Next, the process determines (at 2330) a local first level

5 egress port based on the second level egress port. The 2L egress port from the encapsulation

removed at operation 2325 maps to a particular port in the local (destination) IL logical datapath

set. For instance, in Figure 19, Port 8 of the 2L LDPS 1915 maps to Port 4 of the destination IL

LDPS Z 1910. While described here as using the 2L egress information to determine the IL

egress port, some embodiments also use the destination address contained in the packet headers,

10 as this address also maps to the IL egress port.

In addition, some embodiments may execute egress ACL tables within the 2L processing

at the receiving interconnection switching element. Some embodiments execute such egress ACL

tables when the egress port of a particular logical switching element is removed. Thus, in a

single-level logical network, when a packet reaches the destination managed switching element,

15 some embodiments remove the logical context and run the packet through egress ACL tables.

Similarly, in this case, when the receiving interconnect removes the 2L processing, it may

execute egress ACL tables.

The process 2300 then encapsulates (at 2335) the packet with this local first level logical

egress port information. As with the encapsulations performed at the source managed switching

20 element, in some embodiments the encapsulation is in the form of a context tag, such as the 64

bit context tag described above. In other embodiments, the context tag contains only the IL

logical egress port (e.g., the 32-bit egress port described above).

Next, the process transmits (at 2340) the once-encapsulated packet towards the physical

location of the local first level egress port. In general, there will not be any managed switching

25 elements in between the interconnection managed switching element (usually a non-edge

switching element, such as an extender or pool node) and the destination managed switching

element (an edge switching element that connects to the destination machine). As shown in

Figure 11, some embodiments enable a direct connection between the extender and hypervisor

for federated networks. In other embodiments, an additional managed switching element (e.g., a

30 pool node) may be located between the interconnection switching element and the destination

managed switching element. In addition, the network may contain intervening unmanaged

65

WO 2013/026050 PCT/US2012/051506

switching elements. Again, this transmission may involve multiple operations, including

mapping the IL logical egress port to a physical destination (the destination contained in the

packet headers), then mapping this physical address to a physical port of the managed

interconnection switching element through which the packet can be transmitted to the next hop.

5 Returning again to Figure 20, the packet 2000 is transmitted (with a single level of

encapsulation) through the destination IL network) to a destination hypervisor 2050. This

hypervisor 2050 is the edge managed switching element to which the destination machine

connects (specifically, in this case, the hypervisor on which the destination machine operates).

As shown, this machine executes its IL flow to recognize its outport facing the machine as the

10 IL egress port, remove this egress information 2045, and transmit the packet 2000 (headers and

payload) to the destination machine.

While this example in Figure 20 (and the subsequent process of Figure 23) illustrates the

removal of the 2L egress port information at the remote interconnection switching element 2040

(as it is no longer needed except to add the IL egress information at that switching element),

15 some embodiments do not strip the 2L egress information until the last managed switching

element that connects directly to the destination machine (i.e., the location of the 2L egress port,

such as hypervisor 2050). In this case, the interconnection switching element at the destination

domain would remove the IL ingress information and encapsulate the packet with the IL egress

information, while leaving the 2L encapsulation intact.

20 The previous set of figures described the packet processing performed at several of the

managed switching elements within a federated network (or set of networks) for a packet

originating in one first level network and destined for a different first level network. Figure 24

conceptually illustrates a different view of the processing performed by a source managed

switching element 2400 (i.e., the managed switching element at which a packet arrives after

25 being sent from its source machine, such as the hypervisor 2015 of Figure 20). Specifically,

Figure 24 illustrates forwarding table entries 2405 for the source managed switching element

2400.

In conjunction with the forwarding table entries, Figure 24 conceptually illustrates the

processing pipeline 2450 performed by the source managed switching element 2400 of some

30 embodiments. As shown by the numbers 1-6, when the managed switching element 2400

receives a packet, the switching element uses numerous forwarding table entries to process the

66

WO 2013/026050 PCT/US2012/051506

packet. In some embodiments, the physical, 1 L, and 2L tables are implemented as a single table

within the managed switching element (e.g., using a dispatch port that returns a packet processed

by a first entry to the forwarding table for processing by a second entry).

As shown, in this example, a VM 1 is coupled to the managed switching element 2400,

5 which is also coupled to a second switching element (which may be a managed switching

element or an unmanaged switching element). The VM 1 sends a packet 2410 to a destination

machine through two levels of logical switching elements that are implemented by the managed

switching element 2400 as well as other managed switching elements.

The managed switching element 2400 receives the packet 2410 through an interface of

10 the switching element, and begins processing the packet using the forwarding tables 2405. The

first stage in the processing pipeline 2450 is an ingress context mapping stage 2455 that maps a

physical ingress port (i.e., the interface through which the packet was received from VM1) to a

local IL logical ingress port (i.e., a port of the logical switching element implementing the local

IL network that corresponds to this interface). As shown by the encircled 1, the managed

15 switching element identifies a record 1 in the forwarding table that implements this ingress

context mapping. This record 1 specifies that the managed switching element 2400 store the

logical context in a register, or meta field, of the managed switching element. The logical inport

is therefore stored within the switching element for the duration of the packet processing, and

can be used in performing additional lookups (e.g., mapping to the next level ingress port). In

20 addition, in some embodiments the logical context (after each of the forwarding table records is

applied) indicates the status of the packet within the processing pipeline (i.e., in this case, that a

first level of ingress context mapping has been performed). The record also specifies to send the

packet to the dispatch port, for additional processing by the forwarding tables 2405.

The second stage in the processing pipeline 2450 is a second ingress context mapping

25 operation 2460 that maps the local IL logical ingress port identified at stage 2455 to a 2L logical

ingress port (i.e., a port of the logical switching element implementing the 2L network). As

shown by the encircled 2, the source managed switching element 2400 identifies a record 2 in the

forwarding tables 2405 that implements this second level of ingress context mapping. At each of

the levels of ingress context mapping, as illustrated conceptually by the pipeline 2450, the

30 forwarding entries map a lower level port to a logical port at the next level up. The federated

network of some embodiments may have more than two levels (e.g., three, four, etc., to allow for

67

WO 2013/026050 PCT/US2012/051506

traffic engineering at different levels), and in such cases, additional records for performing

ingress mapping up to each of the levels would be contained within the forwarding tables. The

record 2 specifies that the managed switching element 2400 store the logical context in a register,

or meta field, of the managed switching element. The 2L logical inport is therefore stored within

5 the switching element for the duration of the packet processing, and can be used in performing

additional lookups. The record also specifies to send the packet to the dispatch port, for

additional processing by the forwarding tables 2405.

Next, the managed switching element 2400 performs the third stage in the processing

pipeline 2450, the forwarding lookups 2465. These forwarding lookups are illustrated here as a

10 single forwarding table record, but may in fact involve the use of several records from several

tables (e.g., one or more ACL tables, a layer 2 or layer 3 forwarding table, etc.). The hierarchical

logical forwarding concept may be applied to any type of switching/routing network, and

therefore any sort of lookups may be implemented at this level of the processing pipeline. Figure

25, described below, gives one such example.

15 The forwarding lookups perform the traditional forwarding decision for the packet 2410,

by identifying an egress port based on the packet destination. Using this destination contained

within the packet header, the forwarding lookups identify a logical port of the 2L switching

element to which the packet should be sent, as well as any additional policies (e.g., drop,

enqueue, etc.) that apply to the packet. These forwarding decisions are implemented by the 2L

20 network controller, which passes its generated flow records to the IL network controller (e.g.,

via an API exposed by the IL network controller). The IL network controller then implements

these received instructions within its IL flow records, and passes these to the managed switching

elements (including the source managed switching element 2400) for application to actual traffic

packets. As shown by the encircled 3, a record 3 (which may conceptually represent several

25 records) implements these forwarding lookups, and at least specifies that the managed switching

element 2400 store the 2L egress port in the packet headers (i.e., encapsulate the packet with the

2L egress context), as well as send the packet to its dispatch port.

Based on the 2L egress port specified at the third stage of the processing pipeline 2450,

the managed switching element performs egress context mapping 2470 that maps the 2L egress

30 port to an IL egress port. As this is performed at a managed switching element in the originating

IL network, the 2L egress port maps to a port of the local IL logical switching element. For a

68

WO 2013/026050 PCT/US2012/051506

packet with a destination outside of the local IL network, this will be a logical port used for

remote packets (e.g., Port 5 of the logical switching element 1905 in Figure 19). As shown by

the encircled 4, the source managed switching element 2400 identifies a record 4 in the

forwarding tables 2405 that implements this egress context mapping. The record 4 specifies that

5 the managed switching element 2400 store the 1L logical egress port in the packet headers (i.e.,

encapsulate the packet with the IL egress context), as well as send the packet to its dispatch port.

Next, the managed switching element 2400 performs another level of egress context

mapping at stage 2475 of the processing pipeline 2450. Whereas the first level of egress context

mapping maps a 2L logical egress port to a IL logical egress port, this second stage maps the IL

10 logical egress port to a physical egress port for the packet within the domain of the IL logical

network. For a packet traveling to a different IL domain, this is not the physical port of a

switching element that interfaces directly with the destination machine, but rather the physical

port on an interconnection managed switching element that faces an external network. In some

embodiments, the egress context mapping back to the physical level also identifies a port on a

15 next hop intermediate switching element (e.g., by the port's MAC address). As shown by the

encircled 5, the source managed switching element 2400 identifies a record 5 in the forwarding

tables 2405 that implements this second level of egress context mapping. As with the ingress

mapping, in a federated network with more than two levels, additional records for performing

egress mapping will be contained within the forwarding tables for each of the logical levels.

20 Each level maps an egress port at the higher level to an egress port at the lower level, down to

the physical level. In some embodiments, the record 5 specifies that the managed switching

element 2400 store the physical egress port in the packet headers, as well as send the packet to its

dispatch port for further processing.

Lastly, the managed switching element 2400 performs the physical mapping stage 2480

25 that specifies a physical port of the managed switching element through which to send the (now

modified) packet 2410 in order to reach the physical egress port identified by the egress context

mapping (and, therefore, eventually, the destination machine). As shown by the encircled 6, the

source managed switching element 2400 identifies a record 6 in the forwarding tables 2405 that

implements this physical mapping. That is, the record 6 specifies which port of the managed

30 switching element to send the packet to in order for the packet to reach the physical address

69

WO 2013/026050 PCT/US2012/051506

identified at stage 2475 (as opposed to the dispatch port that routes the packet back into the

forwarding tables).

The above description for Figure 24 illustrates the logical pipeline performed by the first

hop managed switching element for a packet in a federated network that is being sent from one

5 IL logical network to a second IL logical network. In some embodiments each managed

switching element performs the same logical pipeline, though with different records. However, at

many of these switching elements, some or all of the logical context information is already stored

in the packet, and therefore no actual operation is performed for some of the stages. For example,

at an intermediate managed switching element between the first hop and the interconnection

10 switching element, the logical context would indicate that the IL and 2L processing was already

complete until the IL egress port is reached, which does not happen at the intermediate switching

element. At such an intermediate switching element, the only operation actually performed is the

physical mapping stage to send the packet to a port of the physical switching element.

In addition, not all packets within a federated network are necessarily sent from a

15 machine in a first 1L domain to a machine in a different 1L domain. Instead, packets will often

be sent from a machine in the first IL domain to a different machine in the same IL domain

(e.g., from VM A to VM B in Figure 19). In this case, some embodiments nevertheless perform

the full processing pipeline 2450, as the actual forwarding decisions occur at the 2L level. In

such a case, the source managed switching element would identify the ingress ports at the 1 L and

20 2L level in exactly the same manner as described above for Figure 24. The forwarding lookups

would still identify an 2L egress port, which would in turn map to a IL egress port. The

difference, in this case, is that the 1L egress port would not be the port for remotely-destined

packets, but rather a port that maps to one of the machines in the IL domain. As such, the packet

would generally not reach the interconnection switching element, but instead would travel

25 through the local network to the destination switching element, which would remove all of the

encapsulation and send the packet to the destination machine.

As indicated above, Figure 24 describes a generic processing pipeline. Figure 25

illustrates a processing pipeline 2550 for a specific type of network performing OSI layer 2

forwarding (e.g., forwarding based on MAC address). The pipeline 2550 is the same as the

30 pipeline 2450, except that the forwarding lookups stage 2465 is split into three stages 2555-2565.

70

WO 2013/026050 PCT/US2012/051506

Each of these stages involves a separate forwarding table lookup, as shown in the forwarding

tables 2505 of the managed switching element 2500.

The ingress ACL stage 2555 uses the 2L logical ingress port, as well as other fields

stored in the packet header (e.g., MAC address, identifier of the 2L logical switching element,

5 etc.) to make a decision about how to proceed with the packet. Some ACL operations include

allowing the packet to continue with further processing, denying the packet (which will cause the

switching element to discard the packet and cease further processing), and enqueuing the packet

(e.g., sending the packet to a queue for Quality of Service purposes). The ACL tables may

implement other functionalities as well, such as counters (i.e., counting the number of packets

10 coming from a particular source address or to a destination address), port security (i.e., only

allowing packets coming in through a particular port that originated at a particular machine), and

machine isolation (i.e., only sending broadcast/multicast packets received from a particular

machine to a particular set of machines).

The layer 2 logical forwarding stage 2560 performs the actual forwarding lookup that

15 determines the logical 2L egress port for the packet. As this switching element is performing

layer 2 forwarding, the forwarding table record bases the decision on the destination MAC

address of the packet in some embodiments. Other embodiments performing layer 3 routing

might make a forwarding decision based on the destination IP address of the packet.

The third stage of the processing pipeline 2550 performed at the second logical level is

20 the egress ACL stage 2565. In general, the egress ACL forwarding table records may include the

same operations (e.g., allow, deny, enqueue, etc.) as the ingress ACL forwarding table records,

but are based on egress port information or a combination of ingress and egress port information.

Some embodiments will only have either an ingress ACL table or an egress ACL table, while

other embodiments include both tables. In addition, some embodiments may split forwarding or

25 ACL tables into multiple tables. In some embodiments, depending on the nature of the ACL

rules, the number of resulting lookup entries may be decreased when what could be treated as a

single table is split up into several tables. For instance, certain more complicated ACL rules may

benefit from such a split of the lookup entries into several tables.

Both Figure 24 and Figure 25 illustrate the switching element repeatedly sending

30 packets to a dispatch port, effectively resubmitting the packet back into the switching element. In

some embodiments, using software switching elements provides the ability to perform such

71

WO 2013/026050 PCT/US2012/051506

resubmissions of packets. Whereas hardware switching elements generally involve a fixed

pipeline (due, in part, to the use of an application-specific integrated circuit (ASIC) to perform

the processing), software switching elements of some embodiments can extend a packet

processing pipeline as long as necessary, as there is not much of a delay from performing the

5 resubmissions. In addition, some embodiments enable optimization of the multiple lookups for

subsequent packets within a single set of related packets (e.g., a single TCP/UDP flow). When

the first packet arrives, the managed switching element performs all of the lookups and resubmits

(e.g., the 8 forwarding table records illustrated in Figure 25) in order to fully process the packet.

The switching element then caches the end result of the decision (in the above case, the addition

10 of the particular 2L and IL egress contexts to the packet, and the next-hop forwarding decision

out a particular port over a particular tunnel) along with a unique identifier for the packet that

will be shared with all other related packets (i.e., a unique identifier for the TCP/UDP flow).

Some embodiments push this cached result into the kernel of the switching element for

additional optimization. For additional packets that share the unique identifier (i.e., additional

15 packets within the same flow), the switching element can use the single cached lookup that

specifies all of the actions to perform on the packet. Once the flow of packets is complete (e.g.,

after a particular amount of time with no such packets), in some embodiments the switching

element flushes the cache.

D. Additional Aspects Of Federated Networks

20 The above examples illustrate various cases in which two first level domains (i.e., first

level logical datapath sets) are interconnected via a second level logical datapath set. However,

this is not the only situation in which a network operator may use multiple levels of hierarchical

logical datapath sets. For example, there might be more than two first level domains that are all

connected by a second level logical datapath set, more than two levels of logical datapath sets, or

25 even one first level logical datapath set split into several second level logical datapath sets.

1. Several IL Domains

Figure 26 illustrates a network 2600 with three separate data centers 2605, 2610, and

2615. These three data centers 2605-2615 are similar to the data centers described in Figure 12,

with each center having a set of end machines (either virtual or physical machines), a set of edge

30 managed switching elements, an interconnecting managed switching element at the edge of the

72

WO 2013/026050 PCT/US2012/051506

data center, and a first level controller cluster for implementing first level logical switching

elements within the managed switching elements at the data center.

In this case, the interconnecting managed switching elements form a full mesh. That is,

the switching element 2620 at the first data center 2605 connects to the switching element 2625

5 at the second data center 2610 and the switching element 2630 at the third data center 2615

through the external network, without having to go through one of the other data centers. In

addition, the managed switching element 2625 connects to the switching element 2630 through

the external network, without traveling through the data center 2605.

In addition, the network 2600 includes a second level controller cluster 2635. This

10 controller cluster 2635 connects to first level controller clusters 2640, 2645, and 2650 at the three

different data centers. In this case, the second level controller 2635 is shown as situated outside

of any of the data centers, but as with the second level controllers in Figures 12-14, the

controller 2635 may be situated in one of the data centers, or all three domains could be in a

single data center with the second level controller in some embodiments.

15 Figure 27 illustrates three IL logical datapath sets (or logical switching elements)

connected by a 2L logical datapath set, along with some of the port mappings performed during

packet processing by the logical switching elements as implemented in the managed switching

elements of the network. As shown, this figure illustrates a first IL LDPS 2705, a second IL

LDPS 2710, and a third IL LDPS 2715. Each of these IL LDPS has five ports: three ports for

20 VMs within their local network, and two ports for connecting to the other IL LDPS. As there are

nine machines on the overall network, the 2L LDPS 2720 includes nine ports.

The various arrows shown in Figure 27 represent ingress and egress context mappings

performed by forwarding tables of managed switching elements implementing the logical

switching elements 2705-2720 while processing packets. For instance, a first arrow 2725

25 between Port 2 of the IL LDPS 2705 and the 2L LDPS 2720 indicates that switching elements

may perform both ingress mappings (from IL ingress port to 2L ingress port) and egress

mappings (from 2L egress port to IL egress port) between these two ports. On the other hand,

the unidirectional arrows 2730 and 2735 indicate that switching elements may perform egress

context mappings from Port 6 of 2L LDPS 2720 to either Port 4 of IL LDPS 2705 or Port 5 of

30 IL LDPS 2715, but do not perform ingress mappings from the IL LDPS ports facing external

networks to 2L ports. Packets only originate at these ports from the perspective of the IL logical

73

WO 2013/026050 PCT/US2012/051506

switching element (for packets incoming from other domains), but not from the 2L perspective

(from the 2L perspective, the packets always originate at a source machine).

In some embodiments, machines on the 2L network may wish to send broadcast packets

to all other machines in the network. However, such a setup can create a problem of having

5 broadcast/multicast packets circulate in an infinite loop. For example, if VM A sends a broadcast

packet, the source hypervisor will identify Port 1 as the logical ingress port (for both the 1L

logical switching element 2705 and then the 2L logical switching element 2720). As this is a

broadcast packet, the egress ports identified by the forwarding tables are Ports 2-9 of logical

switching element 2720. However, three of these egress ports (Ports 4-6) map to Port 4 of the IL

10 logical switching element 2705 and three of the ports (Ports 7-9) map to Port 5 of the 1L logical

switching element 2705, so essentially, the packet is broadcast to each of the IL ports, two of

which connect to remote data centers. When such a broadcast packet reaches the remote 1L

logical switching element 2710 (via Port 4), this logical switching element will broadcast the

packet to all of its other ports, including Port 5. Sending the packet to Port 5 of logical switching

15 element 2710 will cause the packet to travel to Port 5 of the logical switching element 2715,

which will in turn broadcast the packet to all of its ports, including Port 4. This sends the

broadcast packet to Port 5 of the originating logical switching element 2705, which broadcasts it

to all of its ports. In this way, two infinite loops are created, with packets traveling between the

networks in both directions. With additional IL domains, the problem can become even worse.

20 Accordingly, different embodiments use different solutions to prevent such an infinite

replication issue. For instance, some embodiments flag incoming broadcast packets to prevent

such an infinite replication issue. Figures 28 and 29 conceptually illustrate processes of some

embodiments for implementing such a flag to prevent broadcast replication.

Figure 28 conceptually illustrates a process 2800 of some embodiments for setting a flag

25 upon receiving a packet. As shown, the process begins by receiving (at 2805) a packet at a first

level logical switching element. In some embodiments, this process is only performed at the

interconnecting managed switching elements (e.g., extenders or pool nodes), because it is only at

these switching elements where the replication problem occurs.

The process determines (at 2810) whether the source of the packet is a machine from a

30 remote first level logical datapath set. This may be accomplished by checking the header of the

packet in some embodiments. Other embodiments instead use the physical interface of the

74

WO 2013/026050 PCT/US2012/051506

interconnecting switching element at which the packet was received (i.e., determine whether the

packet was received at a port that faces an external network.

When the packet source is a remote machine, the process sets (at 2815) a flag in the

packet to indicate the remote source. Some embodiments use a single bit (e.g., a default value of

5 0, and a value of 1 for remote-source packets). The process then forwards (at 2820) the packet

towards one or more destination ports of the first level logical datapath set. While this process

indicates the determination of whether a packet is a remote source as applied to all packets

received at the managed switching element implementing the process, some embodiments do not

apply a test to all packets received at the switching element. Instead, upon receiving a packet on

10 a port that faces an external network, the switching element automatically applies the remote

source flag to the packet.

Figure 29 conceptually illustrates a process 2900 of some embodiments for determining

whether to broadcast a packet to all ports of a first level logical datapath set. As shown, the

process begins by receiving (at 2905) a packet to broadcast (or multicast) at a first level logical

15 switching element. In some embodiments, the process 2900 may be performed immediately after

the process 2800 within a single managed switching element (i.e., when the process performs the

forwarding decisions at 2820).

The process 2900 determines (at 2910) whether the packet is flagged as having a source

in a remote first level logical switching element. As indicated above, this flag may be a single bit

20 that has been set by either the current or a previous managed switching element in order to

prevent infinite replication of broadcast packets in a federated network.

When the packet is flagged as such, the process broadcasts (at 2915) the packet only to

local machines connected to the first level logical switching element. That is, in the example of

Figure 27, a broadcast packet received on Port 4 of the IL LDPS 2705 with such a flag bit set

25 would only be sent to Ports 1-3 of the IL LDPS. On the other hand, when the packet is not

flagged (e.g., if the packet is received from a machine local to the IL logical switching element),

the process broadcasts (at 2920) the packet to all ports of the first level logical switching

element. The process then ends.

This combination of processes will prevent the infinite replication problem without over

30 suppressing packets in the fully connected network such as is shown in Figure 26. However, in

some embodiments, the various IL domains may not be fully connected. That is, packets

75

WO 2013/026050 PCT/US2012/051506

originating in a first domain with a destination in a second domain may need to travel through a

third domain. Figure 30 conceptually illustrates such a network 3000. In this case, the first data

center 3005 and the third data center 3015 do not have a direct connection. Instead, a packet

traveling from the first data center 3005 to the third data center 3015 would need to travel

5 through the second domain 3010. In this case, the processes shown in Figures 28 and 29 will

prevent broadcast packets from one of the outer domains (IL networks 3005 and 3015) from

reaching the other one of the outer domain. As such, some embodiments use a time to live (TTL)

or other hop counter to prevent the infinite replication problem. That is, each packet can only be

replicated either a particular number of times or for a particular time period before the packet is

10 dropped.

2. Several Hierarchical Levels

While all of the previous examples illustrate two levels of hierarchical logical switching

elements, the principles involved in mapping between logical ingress and egress ports of the

different logical levels may be applied ad infinitum (restricted, of course, by packet sizes, limits

15 of switch forwarding tables, and practicality). Figure 31 illustrates a network 3100 with four

data centers with three levels of network controller clusters. Specifically, the network 3100

includes a first IL domain 3105, a second IL domain 3110, a third IL domain 3115, and a fourth

IL domain 3120. The first IL domain 3105 and the third IL domain 3115 together form a first

2L domain, controlled by a first 2L controller cluster 3125 (which may be located at one of the

20 data centers, or external to both as shown). The second IL domain 3110 and the fourth IL

domain 3120 together form a second 2L domain, controlled by a second 2L controller cluster

3130 (which may be located at one of the data centers, or external to both as shown). Finally, the

two 2L controller clusters are controlled by a 3L controller cluster 3135, from which flow entries

originate in the network 3100. Flow entries originate at the controller cluster 3135 (e.g., in

25 response to user input, detection of a new end machine, etc.), and are pushed down to the 2L

controller clusters 3125 and 3130, then from these controllers to the IL controller clusters and

from there to the managed switching elements.

As shown, the first IL domain 3105 and the third IL domain 3115 includes three VMs

each, while the second IL domain 3110 and the fourth IL domain 3120 include two VMs each.

30 Figure 32 conceptually illustrates the three levels of logical switching elements implemented for

76

WO 2013/026050 PCT/US2012/051506

the network 3100, as well as some of the mappings between the ports of these logical switching

elements.

The first IL logical switching element 3205 includes three ports for the three VMs in this

domain, as well as a fourth port for packets sent to and received from the other IL domain within

5 its 2L group (data center 3), and a fifth port for packets sent to and received from the other 2L

domain (irrespective of which IL domain within the other 2L domain). The other three IL

logical switching elements 3210, 3215, and 3220 have similar port arrangements. Some

embodiments, however, include separate ports for each IL domain in other 2L domains. In this

case, the IL logical switching element 3205 would include six logical ports, as Port 5 would be

10 split into two ports, one for each of the IL domains 3215 and 3220.

The first 2L logical switching element 3225 includes six ports for the six VMs in this

domain, as well as a seventh port for packets sent to and received from the other 2L domain. The

other 2L logical switching element 3230 includes a similar port arrangement, though with only

five ports rather than seven. Finally, the 3L logical switching element 3235 includes ten ports,

15 one for each of the VMs in the network. While this illustrates a three-level hierarchy, in some

embodiments the 3L logical switching element 3235 could have a port for packets sent to and

received from another 3L domain, connected together via an 4L logical switching element.

This figure also illustrates some of the ingress and egress context mappings performed by

the managed switching elements of the network 3100 according to flow instructions received

20 from the network controllers, with ingress mappings flowing from lower levels to higher levels,

and egress mappings flowing in the opposite direction. For instance, the arrows 3240 and 3245

indicates that packets sent from VM 2 will be mapped (ingress) from Port 2 of the IL logical

switching element 3205 to Port 2 of the 2L logical switching element 3225, and then to Port 2 of

the 3L logical switching element 3230, and in the opposite direction for egress mapping of

25 packets directed towards VM 2, once within the domain of the respective switching elements.

For packets directed from one of the VMs 6, 7, or 8 (within the domain of the IL logical

switching element 3210) to VM 2 (or one of VMs 1 and 3), packets will be egress mapped at the

source managed switching element to Port 4 of the logical switching element 3210. For packets

originating at a VM on the IL logical switching element 3210 directed towards one of VMs 4, 5,

30 9, or 10, the source managed switching element will map the egress port of the 3L logical

77

WO 2013/026050 PCT/US2012/051506

switching element 3235 (one of Ports 7-10) to Port 7 of the 2L logical switching element 3225,

and then to Port 5 of the IL logical switching element 3210, as shown by arrows 3250 and 3255.

3. Slicing a First Level Datapath

In the federated network examples illustrated above, multiple first level logical datapath

5 sets are connected together via a single second level logical datapath set. However, in some

situations, a single first level logical datapath set might be sliced into several logical datapath

sets at the second level. As one example, a service provider might host numerous users (e.g.,

tenants) on its network of virtual machines, exposing a single logical datapath set for each user.

However, if a user has multiple departments, each with their own set of virtual machines, and

10 wants to give these departments separate control of their machines, then some embodiments

allow the first level datapath to be sliced into multiple second level datapaths. In some

embodiments, this slicing may be accomplished using mechanisms present in the more standard

federated case (e.g., by matching a particular ingress port of an IL LDPS to a particular ingress

port of a particular 2L LDPS. As will be described, the difference in this case is that different

15 ingress ports on the same IL LDPS will match to different 2L LDPS.

Figure 33 conceptually illustrates a network 3300 that uses such a slicing approach. The

network 3300 includes three managed switching elements for connecting eight virtual machines

within a data center 3305. The data center 3305 includes a single first level network controller

cluster 3310. Connected to this first level controller cluster 3310 are two separate second level

20 controller clusters 3315 and 3320. These second level clusters each separately generate flow

entries that are pushed down to the single first level controller 3310. The first level controller

includes these received flows within the first level flows pushed to the managed switching

elements. Within these first level flows are lookups that identify which ports of the first level

logical switching element match to the different second level logical switching elements.

25 Figure 34 conceptually illustrates example logical switching elements for the network

3300. In this case, only four of the eight VMs shown are part of the logical network. Thus, the

IL LDPS 3405 has four ports, one for each of these VMs. Because there are no VMs in the

network external to this IL domain, the IL logical switching element 3405 has only these four

ports, and no ports facing an external logical network. Each of the second level logical switching

30 elements has two ports - VMs 1 and 5 are on the first 2L logical switching element 3410, while

VMs 2 and 8 are on the second 2L logical switching element 3415. While VMs 1 and 8 are on

78

WO 2013/026050 PCT/US2012/051506

two different second level logical switching elements, they are on the same first level logical

switching element and therefore could theoretically exchange packets within the IL domain.

However, if the owner (e.g., department) of the 2L logical datapath set 3410 wished to isolate its

VMs from those on other 2L datapaths, this could be easily implemented through the 2L ACL

5 tables (e.g., using port security and machine isolation techniques), which are sent to the IL

controller cluster and implemented by the managed switching elements.

In some embodiments, enabling the 1L logical datapath set to be used as a platform for

multiple 2L logical datapath sets requires similar techniques to the use of multiple IL LDPS on a

physical network. That is, just as the IL flows require ingress context matching to identify that a

10 particular physical machine belongs to a particular IL LDPS, the 2L flows require ingress

context matching to identify that a particular port of an IL LDPS belongs to a particular 2L

LDPS, as opposed to other 2L LDPS. This requires that the IL LDPS has to support such

matching in its logical pipeline abstraction.

For a typical single-level (i.e., non-federated) logical network, in some embodiments the

15 packet processing in the IL LDPS's operations requires matching over packet headers, as well as

the slice. Therefore, the physical switching element needs to support matching over a IL LDPS

slice/context ID, and packet headers. In general, implementing a second level logical datapath set

on top of this requires the physical switching element to support matching over the IL LDPS

slice/context ID, a 2L slice/context ID, and the packet headers. This can be implemented as a

20 nested structure, with each IL LDPS slice holding a set of 2L LDPS slices.

In the runtime packet processing, initially there is no slicing. When a managed switching

element receives a packet, the switching element initially identifies the first slice (IL LDPS). In

some embodiments, the switching element loads the IL LDPS context/slice id into a register and

scopes subsequent matches into the IL LDPS. While doing this, the switching element removes

25 the frontmost encapsulation header and saves any information into a register for the IL LDPS.

The IL LDPS then proceeds to its logical lookup tables (though there may be additional lookups

at this level, not discussed above). These lookups identify the 2L LDPS and save this result into

another register in some embodiments. In addition, the managed switching element removes the

frontmost encapsulation header and saves any information into a register for the 2L LDPS. Next,

30 the matches are scoped into the IL and 2L LDPS. After the various 2L LDPS lookups (e.g., ACL

tables, forwarding, etc.) are complete, the packet begins traversing back towards the physical:

79

WO 2013/026050 PCT/US2012/051506

once 2L LDPS processing finishes, the managed switching element saves its forwarding decision

into a packet header by adding a new encapsulation. Similarly, once the IL LDPS processing

finishes, the switching element saves this result into the header by adding an encapsulation to the

front of packet.

5 III. INTERCONNECTING DISPARATE NETWORKS

The above section describes the interconnection of managed networks (e.g., networks

such as those described in Section I). In some cases, however, a network manager will want to

provide connections between a first network segmented using a first tagging or tunneling

technique (e.g., VLAN, Mac-in-Mac, L2 over L3, MPLS, etc.) and a second network segmented

10 using a second tagging or tunneling technique. Even when the two networks use the same

technique (e.g., both networks use VLANs), the implementation of that technique (e.g., the

structure of the tags used in packet headers) may be different between the two networks such that

they are effectively using two different techniques.

Some embodiments provide a mechanism for connecting such disparate networks across

15 a common interconnecting network (e.g., an L3 network) that can forward traffic between the

disparate networks. To connect such networks, some embodiments use a single managed

interconnection switching element (e.g., an extender) at the edge of each of the segmented

networks, then manage these interconnection switching elements with a network controller

cluster that defines a logical datapath set between the sites.

20 A. Network Structure

1. Single Logical Layer

Figure 35 conceptually illustrates three separate segmented networks 3505, 3510, and

3515. The networks 3505 and 3515 are each segmented into two VLANs using VLAN tagging

(network 3505 segmented into VLANs 3520 and 3525, and network 3515 segmented into

25 VLANs 3540 and 3545), while the network 3510 is segmented into two labels 3530 and 3535

using MPLS labeling. The figure illustrates that these networks 3505-3515 are each connected to

an L3 network 3550. However, simply being connected to a common physical network does not

necessarily provide the end machines in the different segments with the ability to communicate

with each other.

30 These three separate networks could be all owned and operated completely

independently, without requiring any interconnection. However, the owner(s) of either the

80

WO 2013/026050 PCT/US2012/051506

physical networks or the virtual machines on the networks might wish for their machines to have

the ability to communicate with each other. For instance, if a first organization that owns the

segmented network 3505 and uses a first type of VLAN tagging merges with a second

organization that owns the segmented network 3515, the merged organization might want their

5 IT departments (e.g., VLAN 1 3520 and VLAN 4 3545) to be able to communicate as though all

the machines were on a single L2 network.

In order to enable communication between network segments at different locations, some

embodiments locate an interconnection switching element, such as an extender, at the edge of

each of the segmented networks, then manage these interconnection switching elements with a

10 network controller cluster. Figure 36 conceptually illustrates such a solution for the networks

3505-3515. This figure illustrates that three interconnection managed switching elements 3605,

3610, and 3615 have been located at the edges of the three segmented networks 3505-3515.

The three interconnecting managed switching elements 3605-3615 are managed by a

network controller cluster 3620, which may be a single network controller or several controllers

15 that share information. This controller cluster is similar to those described above (e.g., with a

control application and virtualization application). However, where the ports of the logical

switching element defined by a network controller instance 610 or 1215 face end machines

(either virtual or physical), the ports of the logical switching element defined by the controller

3620 face network segments (e.g., a particular VLAN at a particular site).

20 Figure 37 conceptually illustrates a logical switching element 3700 defined by the

network controller cluster 3620 and implemented by the three interconnecting managed

switching elements 3605-3615. As shown, each of the ports of the logical switching element

3700 faces one of the network segments from Figure 35. The VLAN 1 3520 connects to Port 1,

the MPLS Label 2 3535 connects to Port 2, and the VLAN 3 3540 connects to Port 3 of the

25 logical switching element 3700. The interconnection switching elements 3605-3615 that

implement the logical switching element 3700 store forwarding tables that include flow entries

pushed down from the network controller that specify how to remove network segmentation

headers (e.g., VLAN tags, MPLS labels, etc.) for outgoing packets, apply security policies,

forward packets between the interconnection switching elements, and insert network

30 segmentation headers for incoming packets. The details of how these flow entries are generated

81

WO 2013/026050 PCT/US2012/051506

by the network controller and pushed down to managed switching elements, as well as the details

of processing packets by the managed switching elements, are described in the sections below.

Figure 38 conceptually illustrates information stored in a managed switching element for

interconnecting segmented networks. Specifically, this figure shows information stored in the

5 tables of the managed switching element 3605, at the edge of the segmented network 3505. The

managed switching element tables include decoding information 3805, logical forwarding

information 3810, and egress mapping information 3815.

The decoding information 3805, along with additional information (e.g., the port on

which a packet arrived), enables the managed interconnection switching element to determine

10 the logical context of a packet exiting the local segmented network (i.e., the segmented network

at the edge of which the switching element is located). In this situation, the decoding information

3805 stores information regarding the VLAN 1 context tag information, which allows the

interconnection switching element to identify a packet as originating at a machine in VLAN 1. In

some embodiments, this decoding information also specifies how to add VLAN 1 information

15 for packets incoming to network 3605 from a remote network, and destined for a machine on

VLAN 1.

The logical forwarding information 3810 implements the logical switching element 3700,

enabling the switching element 3605 to perform logical forwarding decisions between the

different networks on the logical switching element. As shown, the information 3810 includes

20 lists of destination addresses for the different segmented networks connected to the logical

switching element 3700. The switching element uses this information to identify a logical port to

which a packet should be forwarded (by identifying the destination address in one of the lists). In

addition, any ACL tables for implementing security policy are contained within the logical

forwarding tables 3810.

25 Finally, the switching element stores egress mapping and delivery tables 3815, which

specifies how a packet with a given logical destination (e.g., VLAN 3) is delivered to a next hop.

This information includes tunnel information (e.g., specifying tunnels defined across the

interconnecting network between the different managed switching elements) as well as physical

port mapping information to identify the physical port of the switching element through which an

30 outgoing packet should be sent.

82

WO 2013/026050 PCT/US2012/051506

Just as the physical switching elements in a data center may implement several logical

switching elements simultaneously (e.g., between different users' VMs), the physical managed

switching elements interconnecting different segments of networks may also implement several

logical switching elements. Figure 39 illustrates a scenario for the networks 3505-3515 in which

5 two different network controllers 3620 and 3920 generate flow entries for two different logical

networks, and push the flows to the same switching elements 3605-3615. As shown, in this case

both of the controllers connect to all three switching elements, but in some embodiments a first

network controller cluster might control first, second, and third switching elements at the edges

of first, second, and third networks, while a second network controller cluster controls the first

10 switching element as well as a fourth switching element at the edge of a fourth network, or other

similar possibilities.

Figure 40 conceptually illustrates the logical switching elements 3700 and 4000 defined

by the network controller clusters 3620 and 3920, respectively, and implemented by the three

interconnecting managed switching elements 3605-3615. The logical switching element 3700 is

15 described above. The logical switching element 4000 also has three ports that each face a

network segment from Figure 35. In this case, the VLAN 2 3525 connects to Port 1, the MPLS

Label 1 3530 connects to Port 2, and the VLAN 4 3545 connects to Port 3 of the logical

switching element 4000.

Figure 41 conceptually illustrates information stored in the managed switching element

20 3605 for interconnecting the segmented networks on the two logical switching elements 3700

and 4000. In this case, the switching element essentially stores two sets of information. The

decoding information 4105 includes context tag information for both of the VLANs in the

network 3505, as both are on logical datapath sets. Similarly, the logical forwarding information

4110 implements both of the logical switching elements 3700 and 4000, including all of the

25 information shown in the forwarding tables 3810 as well as corresponding information

implementing the logical switching element 4000. The flow entries for these tables are received

separately from the two different network controllers, and are also generated separately (from the

received physical control plane data to the stored physical forwarding plane data) by the

managed switching element.

30 Finally, the egress mapping and delivery tables 4115 includes some overlapping

information used for transmitting packets on either of the two logical switching elements in some

83

WO 2013/026050 PCT/US2012/051506

embodiments. For instance, packets may use the same tunnels between the physical switching

elements irrespective of to which logical switching element the packet is assigned.

2. Several Logical Layers

The above examples illustrate a situation in which several segmented networks are

5 connected at a single logical layer. That is, a single logical switching element is defined by a

network controller cluster, and this logical switching element contains a single port for each of

the network segments. In some embodiments, the principles described above in Section II, for

hierarchically arranging networks using multiple levels of controller clusters and logical datapath

sets, can be applied to the problem of interconnecting several segmented networks.

10 Figure 42 conceptually illustrates four segmented networks 4205-4220 (for simplicity,

illustrating only one VLAN at each network), connected using multiple logical layers. As shown,

the network 4205 contains a VLAN 1 4225, and has a managed interconnecting switching

element 4245 at its edge. The network 4210 contains a VLAN 2 4230, and has a managed

interconnecting switching element 4250 at its edge. The network 4215 contains a VLAN 3 4235,

15 and has a managed interconnecting switching element 4255 at its edge. Finally, the network 4220

contains a VLAN 4 4240, and has a managed interconnecting switching element 4260 at its edge.

In this example, however, there is no single controller cluster that connects to each of the

physical switching elements 4245-4260 to generate the flows for those switching elements.

Instead, the first and second switching elements 4245 and 4250 are controlled by a first first

20 level controller cluster 4265 and the third and fourth switching elements 4255 and 4260 are

controlled by a second first-level controller cluster 4270. As such, a first logical switching

element routes packets between machines on VLAN 1 4225 and machines on VLAN 2 4230,

while a second logical switching element routes packets between machines on VLAN 3 4235 and

machines on VLAN 4 4240.

25 In addition, the provider of the interconnecting services (e.g., the owner of the four

networks being interconnected) may want the ability to connect all four of the VLANs 4225

4240 together. As such, a second level controller cluster 4275 is introduced in order to handle

connect the two logical datapath sets defined by the first level controllers. As in the case of

federation between managed networks described above, the second level controller cluster 4275

30 generates flow entries defining the second level logical switching element, that are passed down

to the two first level controller clusters 4265 and 4270, which generate their own flow entries

84

WO 2013/026050 PCT/US2012/051506

(that implement the flows received from the second level controller cluster) and pass these flows

to their respective managed interconnection switching elements.

Figure 43 conceptually illustrates the three logical datapath sets defined by the three

network controller clusters of Figure 42. Specifically, the figure illustrates two 1L logical

5 datapath sets 4305 and 4310, with an interconnecting 2L logical datapath set 4315. The first level

logical datapath set 4305 defined by the first IL controller cluster 4265 includes three ports: one

port for each of the two VLANs being connected, and a third port for the remote network

segments (VLANs 4235 and 4240). Similarly, the first level logical datapath set 4310 defined by

the second IL controller cluster 4270 includes three ports as well: one for each of the VLANs

10 connected on its half of the overall network, and a third port for the remote network segments

(VLANs 1 and 2). The 2L logical datapath set 4315, meanwhile, includes only four ports, one for

each of the network segments.

This second interconnection model, applying the federated network concept to the

interconnecting switching elements, enables more robust traffic engineering. While not

15 necessarily as important in the illustrated example (with only four total networks being

connected, the hierarchical approach enables more intelligent traffic engineering, especially in

larger-scale scenarios. In the single-level model, a full mesh of tunnels between the managed

switching elements are defined, and this requires a reliable connectivity for each such

connection. Especially as the number of networks being connected increases, and the networks

20 move further apart physically, this may result in overprovisioning of the network capacity.

Furthermore, as the packets are encapsulated in these tunnels, traffic engineering to enforce

policies is difficult. To perform such engineering, the intermediate switching elements would

need to look inside the encapsulation in order to make decisions.

In the hierarchical approach, the second level network controller cluster receives traffic

25 engineering policies from user settings, and uses optimization routines combined with network

statistics received from the lower-level controllers. In some embodiments, the lower-level

controllers automatically collect information regarding their respective regions of the

interconnecting network (i.e., from the switching elements implementing their lower-level

logical datapath set), and pass this information upward to the second level network controller. In

30 some embodiments, these statistics relate to the number of packets being sent out and received at

85

WO 2013/026050 PCT/US2012/051506

various ports of the managed switching elements, the travel time of the packets along different

paths, etc.

Irrespective of whether any specific policies have been set by users, the second level

controller uses the statistics as an input into an optimization routine that determines in which

5 direction traffic should be routed. For example, a packet sent from a machine at a network

segment on a first 1L logical datapath set to a machine at a network segment on a second 1L

logical datapath set might have several different paths it could take to arrive at the second 1L

logical datapath set. Based on the network statistics, the second level controller determines an

optimal one of these several different paths (which might travel through different sets of

10 intervening IL logical datapath sets) for packets to travel along from the first to the second IL

logical datapath set.

The optimization routine may also be affected by user settings in some embodiments. The

user settings might specify that a certain quality of service (QoS) is required for packets sent

from a particular machine, from a particular network segment, to a particular destination

15 machine or network segment, etc. User settings can also specify that either packets from/to a

particular source/destination should always be sent along a particular path (overriding the

optimization processing) or should always receive the best connection. The user can specify

different classes of traffic as well. For packets either given a lower class, or not addressed (i.e.,

with no guaranteed QoS), the optimization routines of some embodiments attempt to send the

20 packets over the best connection without interrupting higher class traffic.

B. Generation of Flow Entries

In a single level interconnected network of some embodiments, flow entries are generated

by the network controller and pushed down to the managed switching elements, as would be the

case in a typical managed network within a data center. That is, a network controller of some

25 embodiments includes (i) a control application that receives logical control plane data and

converts this to logical forwarding plane data and (ii) a virtualization application that receives

logical forwarding plane data and converts this to physical control plane data, which is pushed to

the managed interconnection switching elements. In some embodiments, each of these sets of

data (logical control plane, logical forwarding plane, physical control plane) are stored in the

30 network controller as nLog tables, and the control and virtualization applications perform nLog

table mapping operations to convert from one data plane to the next using an nLog rules engine.

86

WO 2013/026050 PCT/US2012/051506

In some embodiments, in fact, the control application and virtualization application use the same

rules engine to perform their table mappings. As mentioned previously, the network controller of

some embodiments is described in greater detail in U.S. Application 13/177,533, incorporated by

reference above.

5 However, some differences do emerge to account for the fact that the logical ports

correspond to network segments (which may have numerous associated addresses) rather than

single machines. When a new VM is added or moved within a network, some embodiments

require new logical flow entries, while other embodiments do not. This situation is described in

subsection D below, regarding learning in the interconnected network of some embodiments.

10 When a user specifies that a new network segment be added to the interconnected

network, the control application receives an event that a particular segment is at a new logical

port ("Port Y"). This event is analogous to the addition of a new machine in a typical managed

network, such as is described above in Section I. The control application then translates this

event into an update to the logical lookup table that instructs a switching element to forward a

15 packet to the new logical Port Y when the packet destination matches with the new network

segment (i.e., when the destination address belongs to the particular network segment). The

virtualization application then generates a physical forwarding plane lookup that adds another

layer of matching. This new lookup states that if the 2L logical datapath set is matched (i.e., the

source network segment is on the logical switching element) and that the destination address

20 matches the new network segment, then the packet should be forwarded to the new logical Port

Y. The virtualization application then pushes this lookup entry to the different interconnection

switching elements.

Figure 44 conceptually illustrates a process 4400 of some embodiments performed by the

network controller for an interconnecting network in order to generate new flow entries for an

25 event detected at the logical control plane. As shown, the process 4400 begins by receiving (at

4405) an update to the logical control plane. Such an update may be a user entering a particular

ACL policy (e.g., enabling port security or machine isolation at a particular port, requiring a

particular QoS for a particular machine, etc.). In addition, updates pushed upwards from the

managed switching elements may be received at the control plane. When the user configures a

30 new network segment (e.g., a new VLAN) to attach to the network, this generates an event. In

addition, when a new machine (e.g., a new MAC address) is detected within one of the network

87

WO 2013/026050 PCT/US2012/051506

segments by one of the interconnecting switching elements, some embodiments push this

information up to the network controller.

The process then determines (at 4410) whether the update to the logical control plane

requires the creation of new flow entries. For instance, if the update simply indicates that the

5 network state has not changed, then no new entries are required, and the process ends. On the

other hand, if the update specifies new ACL rules, or indicates the attachment of a new network

segment to the network, then the network controller will begin generating new flow entries. In

addition, as described below, different embodiments use different learning models to distribute

the MAC addresses associated with each port (as each port will have several possible destination

10 MAC addresses).

Next, when the update requires new entries, the process 4400 translates (at 4415) the

logical control plane update into an update to the lookups in the logical forwarding plane. In

some embodiments, this translation involves turning a piece of data into a lookup entry. For

instance, if a new network segment (VLAN Q) is attached to a logical Port Z of the logical

15 switching element for the interconnecting network, then the logical control plane states "VLAN

Q is at Port Z". Using tables that list the MAC addresses associated with VLAN Q, the control

application translates this update into an update to the logical forwarding plane lookup table that

reads "If destination matches MAC {A} 4 Forward to Port Z". In this case, {A} is the set of

MAC addresses associated with VLAN Q. Some embodiments create this forwarding plane

20 lookup as a separate entries for each MAC address in the set {A}

In addition, as with the multi-level network described above, the generation of ACL table

entries will also be described. As with the entries in Section II, the conversions tend to be feature

agnostic (again, primarily involving the addition of match conditions). Thus, at the logical

control plane, the user specifies that the Port Z should be secured - that is, that network data

25 entering and exiting the logical switching element through the particular port have only certain

addresses that the switching element has restricted the port to use. However, these entries differ

somewhat from the example given for the federated network above, because each port will have

numerous MAC addresses/IP addresses with which it is associated. For example, if a particular

VLAN has 1000 machines running on it, then the port security entry for that VLAN will need to

30 include 1000 different MAC addresses and IP addresses as allowed. For instance, the logical

forwarding plane entry for the ingress ACL will state "If received from Ingress Port Z 4 Allow,

88

WO 2013/026050 PCT/US2012/051506

or Drop If ARP MAC not {A} or IP not {B}, or Drop If MAC not {A} or IP not {B}. In this

case, {A} is the set of MAC addresses associated with VLAN Q (as stated above), and {B} is the

set of IP addresses at VLAN Q. The egress ACL lookup prevents packets not sent to a correct

address from exiting the switching element at Port Z onto the VLAN Q, with an instruction of "If

5 sent to Egress Port Z 4 Drop If dest. IP not {B}". This prevents other IP addresses from being

used within the VLAN Q; by the nature of the logical forwarding, packets sent to MAC

addresses not in the set {A} will not be directed to Port Z in the first place. In addition, some

embodiments also mandate a match of the MAC address to the IP address in the egress ACL

entry. That is, the entry requires that "If sent to Egress Port Z and match MAC AN 4 Drop If

10 dest. IP not BN", where AN and BN are matching MAC and IP addresses. This ensures that a first

VM within the VLAN Q does not use the IP address of a different VM within the same VLAN.

After translating the logical control plane update into logical forwarding plane lookups,

the process then translates (at 4420) the logical forwarding plane data into physical control plane

lookups. As with the logical control plane to logical forwarding plane translation, in some

15 embodiments the conversion from logical forwarding plane to physical control plane is

performed as an nLog table mapping operation (e.g., using the same table mapping engine as for

the logical control plane to logical forwarding plane operation). For both the ACL lookups and

the attachment of a new machine, the virtualization application adds a match of the logical

datapath set to the entry. These conversions are the same as for a single level network within a

20 datacenter. Thus, the first entry (to attach a new VLAN Q) now states "If match LDPS and If

destination matches MAC {A} - Forward to Port Z". Similarly, the ingress ACL entry reads "If

match LDPS and If received from Ingress Port Z - Allow, or Drop If ARP MAC not {A} or IP

not {B}, or Drop If MAC not {A} or IP not {B}", and the egress ACL reads "If match LDPS and

If sent to Egress Port Z - Drop If dest. IP not {B}".

25 In addition to translating the logical forwarding lookups to physical control plane

lookups, the process 4400 also generates (at 4425) additional physical control plane entries in

order to realize the logical forwarding plane over the physical network. In some embodiments,

the virtualization application rules engine creates additional flow entries to handle the operations

around the forwarding lookups. As described in the federating case, these lookups include

30 ingress port integration, egress port integration, and tunnel sending and receiving entries.

89

WO 2013/026050 PCT/US2012/051506

In some embodiments, these lookups are generated as soon as the new network segment

(e.g., VLAN Q) is added to the interconnecting network at a particular physical port. When ACL

entries are subsequently generated for the particular port, these additional physical control plane

entries are not affected. For the sake of the ongoing example, the physical port to which the

5 network containing VLAN Q connects is Port W of the extender located at the edge of the

segmented network. For this example, the ingress port integration entry matches the physical

Port W (and the VLAN Q) to the logical ingress port Z. Thus, this entry states "If received from

physical ingress Port W and match VLAN Q 4 Mark logical ingress as Port Z". The additional

match over VLAN Q enables the interconnection switching element to differentiate between

10 several network segments located on the same network, based on the segment context headers

identified in the packet.

The egress port integration entry matches the forwarding decision at the logical level to a

physical port. Specifically, the virtualization application generates an entry that states "If sent to

Port Z 4 Run through egress pipeline then send to Port W". As for the flows described in

15 Section II, these entries are sent to the managed interconnection switching element to which

VLAN Q connects. However, for a packet to be sent out onto VLAN Q, the interconnection

switching element will also need to append the VLAN context tag. Accordingly, some

embodiments modify the egress port integration lookup to send to the particular interconnection

switching element, so that the lookup states "If sent to Port Z - Run through egress pipeline

20 then append VLAN Q context then send to Port W". In other embodiments, the appending of the

network segment context is specified in a separate lookup entry.

In addition, as with the federated network described above, some embodiments also

generate lookups to handle the receipt and transmission of packets across the different

interconnection switching elements. In the full mesh case, there is a separate tunnel between each

25 pair of interconnection switching elements, and thus the only interconnection switching element

that receives a packet for a tunnel is the interconnection switching element at the destination

network for the packet. Thus, the other interconnection switching elements get a physical control

plane lookup of "If sent to Port Z - Encapsulate with Z's context ID and output to physical port

via tunnel that connects to destination switch". For the receiving side of the tunnel, at the

30 managed switching element that contains Port W, the virtualization application generates a

tunnel decapsulation lookup entry that states "If tunneled - Decapsulate to identify logical port,

90

WO 2013/026050 PCT/US2012/051506

then Resubmit". The resubmission results in the execution of the egress port integration

described above.

With all of the physical control plane entries generated, the process 4400 identifies (at

4430) the managed switching elements to receive the generated lookups. As described for some

5 of the various lookup entries generated at 4420 and 4425, not all of the managed interconnection

switching elements will receive every lookup. For example, the tunnel sending lookups will not

be sent to the managed switching element to which the network segment actually connects, while

the tunnel receiving and port integration lookups are only sent to that managed switching

element. Furthermore, except in the rare situation that two of the network segments on the same

10 logical switching element are also in the same segmented network (e.g., VLAN 1 and VLAN 2

of a particular VLAN-segmented network), the actual forwarding lookups will not need to be

sent to the interconnection switching element to which the destination network segment is

connected.

Finally, the process 4400 pushes (at 4435) the generated flow entries to the identified

15 interconnection switching elements, then ends. In some embodiments, the network controller

communicates directly with the managed interconnection switching elements. However, in other

embodiments, the network controller that performs the conversion of the logical forwarding

plane data into the physical control plane data sends physical control plane data to master

controllers for the particular interconnection switching elements that are to receive the data, and

20 these master controllers push the data to the switching elements. In addition, while this example

describes the computation of physical control plane data customized for particular switching

elements (e.g., with port numbers of the particular switching elements), some embodiments

compute universal physical control plane data that is generic to any particular switching element.

In this case, either the master controller or a chassis controller at the managed interconnection

25 switching element performs the conversion to customized physical control plane data for the

managed switching elements. In some embodiments, the IL controller propagates the generated

flow entries (e.g., to the master controller, from the master controller to the managed switching

elements) through an object-oriented (NIB) data structure, while other embodiments use direct

communication channels (e.g., RPC calls, OpenFlow entries, updates over the configuration

30 protocol) to exchange the flow entries.

91

WO 2013/026050 PCT/US2012/051506

Figure 45 conceptually illustrates some of these input and output tables through the

various flow generation operations of some embodiments. Specifically, Figure 45 conceptually

illustrates the input and output tables for a control application 4505 and a virtualization

application 4510 of a network controller that manages an interconnecting network. As shown,

5 the control application 4505 includes an API 4515, input tables 4520, a rules engine 4525, output

tables 4530, and a publisher 4535.

The API 4515 provides an interface for translating input into the control plane input

tables 4520. This API 4515 may be used by various types of management tools with which the

user can view/and or modify the state of a logical network (in this case, network for

10 interconnecting network segments). In some embodiments, the management tools provide a user

interface such as a graphical user interface that allows a visual configuration of port bindings,

ACL rules, etc. (e.g., through a web browser). Alternatively, or in conjunction with the graphical

user interface, some embodiments provide the user with a command line tool or other type of

user interface.

15 Based on the information received through the API, as well as updates to the network

state received from the managed switching elements (not shown), the control application

generates the input tables 4520. The input tables represent the state of the logical switching

elements managed by the user in some embodiments. As shown in this figure, some of the input

tables include the association of sets of MAC addresses/IP addresses that are part of a particular

20 network segment with logical ports of the logical switching element, as well as ACL rules set by

the user. In this case, the Port Z is associated with VLAN Q, which includes the MAC addresses

{A} and IP addresses {B} and is secured. In some embodiments, the input tables also include

information on the context tags (e.g., for VLAN Q).
The rules engine 4525 of some embodiments performs various combinations of database

25 operations on different sets of input tables 4520 to populate and/or modify different sets of

output tables 4530. As described in further detail in U.S. Application 13/288,908, incorporated

by reference above, in some embodiments the rules engine is an nLog table mapping engine that

maps a first set of nLog tables into a second set of nLog tables. The output tables 4540 populated

by the rules engine of the control application 4505 include logical forwarding plane lookups

30 (e.g., mapping a set of MAC address to a destination output port) and logical forwarding plane

ACL entries (e.g., securing Port X).

92

WO 2013/026050 PCT/US2012/051506

The publisher 4535 is also described in further detail in U.S. Application 13/288,908, and

publishes or sends the output tables 4530 to the virtualization application 4510, in order for the

virtualization application to use the output tables 4530 among its input tables. In some

embodiments, the publisher 4535 also outputs the tables to an object-oriented data structure

5 (NIB) that stores network state information.

The virtualization application 4510 receives the output tables 4530 of the control

application 4505, and converts this logical forwarding plane data to physical control plane data

to be sent to the managed interconnection switching elements. As shown, the 2L virtualization

application 4510 includes a subscriber 4540, input tables 4545, a rules engine 4550, output tables

10 4555, and a publisher 4560. The subscriber 4540 of some embodiments is responsible for

retrieving tables published by the publisher 4535 of the control application 4505. In some

embodiments, the subscriber 4540 retrieves these tables from the same object-oriented data

structure to which the publisher stores the table information. In other embodiments, a change in

the tables is detected by the virtualization application in order to initiate the processing.

15 The input tables 4530 include, in some embodiments, at least some of the output tables

4530, in addition to other tables. As shown, in addition to the logical forwarding plane data

generated by the control application 4505, the input tables 4545 include additional port binding

information (matching logical ports with physical ports of particular managed interconnection

switching elements). In addition, some embodiments include tunnel information that describes

20 the tunnels between the various interconnection switching elements (e.g., extenders). In some

embodiments, additional pathway information is not needed, because the interconnection

switching elements form a full mesh.

In some embodiments, the rules engine 4550 is the same as the rules engine 4525. That

is, the control application 4505 and the virtualization application 4510 actually use the same

25 rules engine in some embodiments. As indicated, the rules engine performs various combinations

of database operations on different sets of input tables 4545 to populate and/or modify different

sets of output tables 4555. In some embodiments, the rules engine is an nLog table mapping

engine that maps a first set of nLog tables into a second set of nLog tables. The output tables

4555 populated by the rules engine 4550 include physical control plane lookups (e.g., mapping a

30 set of MAC Addresses to a destination logical port when the LDPS is matched) and physical

control plane ACL entries (e.g., securing Port X). In addition, the ingress and egress port

93

WO 2013/026050 PCT/US2012/051506

integration and tunnel sending/receiving lookups are generated by the rules engine 4550 in some

embodiments. In addition to the information shown in the figure, some embodiments also

include in the output tables the correct managed switching elements to receive the different

tables.

5 Finally, the publisher 4560 is similar to the publisher 4535 in some embodiments. The

publisher 4560 publishes and/or sends the output tables 4555 to the managed interconnection

switching elements that implement the logical network between network segments. In some

embodiments, these managed interconnection switching elements are all extenders, though in

other embodiments other types of managed switching elements may be included (e.g., pool

10 nodes). In some embodiments, the publisher 4560 outputs the tables to an object-oriented data

structure (NIB) that stores network state information.

One of ordinary skill in the art will recognize that the input and output tables shown in

this figure are simplified conceptual representations of the actual tables, which are generated in a

database language appropriate for the rules engine (e.g., nLog) and may provide additional

15 information to that shown. Furthermore, different embodiments will use different sets of tables.

For instance, the logical port address and port binding tables of some embodiments are actually a

single table that binds a particular set of MAC and IP addresses in a network segment behind a

particular physical port of a particular extender to a particular logical port.

The foregoing discussion in this section related to the flat full mesh interconnection

20 network. As indicated, however, some embodiments apply the principles of federated networks

to the interconnecting network. In such a scenario, the flow generation processes take place at

multiple levels of controllers, as described in Section II above. In addition, the modifications

related to having numerous destination MAC addresses at each of the logical ports, and the need

to remove/add network segment context tags will be accounted for. Thus, the control plane (at

25 the 2L network controller) will state that a particular network segment binds to a particular 2L

port and a particular IL port. The forwarding lookups are generated as described above, from the

2L controller to the IL controller, resulting in a physical control plane lookup of "If match IL

LDPS and if match 2L LDPS and if destination matches Network Segment - Forward to 2L

Port". In addition, the 2L controller generates entries for IL *-4 2L port mapping, and for the

30 tunnels between the IL domains. Similarly, each IL controller generates entries for physical

*-4 1L port mapping, and the tunnels within its IL domain.

94

WO 2013/026050 PCT/US2012/051506

In some embodiments, the pathways between IL domains are determined by the 2L

network controller. For instance, a machine in a first network segment located in a first domain

might send a packet to a machine in a second network segment located in a second domain that

does not have a direct connection to the first domain (i.e., there is no tunnel defined between any

5 extender in the first domain and any extender in the second domain). In addition, in some

situations, multiple possible paths through the IL domains are possible in order for the packet to

reach its destination. For example, the packet might be able to travel either through a third

domain or a combination of a fourth domain and a fifth domain.

The determination as to which of these different pathways through the interconnected

10 network a packet should travel is determined by the 2L network controller. In some

embodiments, the 2L network controller performs optimization processing, in order to generate

input tables that specify the optimized pathways. The virtualization application in the 2L network

controller can then use these optimized pathways to generate the appropriate tunneling lookups

to send packets along the correct path through the network.

15 Figure 46 conceptually illustrates such optimization processing in a higher-level network

controller of some embodiments. Specifically, Figure 46 conceptually illustrates a pathway

optimizer 4600 that receives (i) user-defined policies 4605 and (ii) a traffic matrix 4610, and

outputs optimized paths for packets through the network. For instance, in a two-level network,

this optimization processing would be performed in a second level network controller in order to

20 determine pathways through the first level domains.

As shown, in some embodiments the pathway optimizer 4600 receives user-defined

policies 4605 from a user interface 4615. In some embodiments, the user interface 4605 is the

same user interface through which input tables to the control application are generated. The user

interface may be a graphical user interface, a command line interface, or other mechanism for

25 allowing the user to input pathway data. Through the user interface, the user may input various

policies. For instance, the user settings might specify that a certain quality of service (QoS) is

required for packets sent from a particular machine, from a particular network segment, to a

particular destination machine or network segment, etc. User settings can also specify that

packets to/from a particular source/destination should always be sent along a particular path

30 (overriding the optimization processing) or should always receive the best connection. The user

95

WO 2013/026050 PCT/US2012/051506

can specify different classes of traffic as well (e.g., high priority, medium priority, low priority),

which has the effect of treating the packets differently from a QoS perspective.

In addition, the pathway optimizer 4610 receives a traffic matrix 4610 from the lower

level controllers (collectively represented as box 4620). The traffic matrix 4610 contains

5 statistics regarding network data within and between the various IL domains. In various

embodiments, this traffic matrix contains various information regarding the number of packets

being sent out and received at various ports of the managed switching elements of the IL

networks, the travel time of the packets along various paths within and between domains, etc. In

some embodiments, this data is collected by the various managed switching elements and then

10 retrieved by the IL network controllers (e.g., by querying the managed switching elements). The

IL network controllers may perform some processing on the data first or pass the raw data

directly to the higher-level network controllers, for use in the pathway optimizer. Some

embodiments collect the network statistics on a regular basis (e.g., every hour, every four hours,

etc.) in order to regularly update the pathways through the network and keep the pathways

15 optimized.

The pathway optimizer 4600 generates a set of optimized paths 4625, which may be used

as an input table by the logical forwarding plane of the higher-level controller in order to

determine optimized pathways through the domain. Various different optimization algorithms

are used by different embodiments, such as simulated annealing, etc. The optimizer uses the

20 policies 4605 as constraints and determines the best set of pathways given the traffic matrix

4610. The most important packets (highest QoS) are given the best pathways, while the

optimizer attempts to additionally optimize the lowest QoS packets as well, without harming the

high QoS packets. These optimized paths 4625 are output for use by the virtualization

application for generating lookup entries for the lower-level logical forwarding plane.

25 C. Packet Processing

While the above section describes the generation of forwarding table entries for the

interconnecting managed switching elements in a network that interconnects network segments

at different network sites, the following section will describe the processing of packets by those

managed switching elements using the generated flows. The subsections will describe the

30 processing of packets by managed switching elements in both a full mesh interconnecting

96

WO 2013/026050 PCT/US2012/051506

network with a single logical datapath set and a hierarchical logical network with multiple levels

of logical datapath sets.

1. Single Logical Layer

Figure 47 conceptually illustrates the path of a packet 4700 through two managed

5 switching elements between its source in a first network segment and its destination in a second

network segment. The operation of the managed interconnection switching elements shown in

this figure will be described in part by reference to Figures 48 and 50, which conceptually

illustrate processes performed by some of the managed switching elements in such an

interconnection network in order to process and forward packets.

10 As shown, the packet 4700 originates from a source machine (in a network segment) with

a payload 4705, headers 4710, and segment information 4715. The payload 4705 contains the

actual data intended for the destination machine, while the headers 4710 include information

appended by the source machine in order to enable the packet 4700 to reach the destination

machine. For instance, the headers 4710 might include the source and destination machines'

15 physical addresses (e.g., MAC addresses) and/or network addresses (e.g., IP addresses).

The segment information 4715 is a context tag in some embodiments that indicates the

local network segment of the source machine. This segment information may be a VLAN tag,

MPLS header, MAC-in-MAC header, etc. In some embodiments, one or more of the network

segments may be a managed network, such as those shown in Section I, and the segment info is a

20 logical context tag for the network.

The packet 4700 is sent from the source machine through its local network (in most

cases, through one or more switching elements within the local network). The local network

switching elements will have learned that packets sent to the destination address in the packet

header 4710 should be forwarded to the local interconnection switching element 4720. In some

25 embodiments, the segment info 4715 includes a destination address field, with an indicator for

remote destinations that the local switching elements recognize, causing them to forward the

packet to the local interconnection switching element 4720.

As shown, the local interconnection switching element 4720 (e.g., an extender at the edge

of the local segmented network, that faces the external interconnecting network) first removes

30 the local context tag information (i.e., the segment info 4715). In some embodiments, the

interconnection switching element 4720 uses the decoding information for the local segmented

97

WO 2013/026050 PCT/US2012/051506

network stored in its tables. The switching element 4720 then executes the logical flow for the

interconnection network, in which it adds logical egress information 4725 to the packet 4700.

Figure 48 conceptually illustrates in greater detail a process 4800 of some embodiments

for processing packets by the source network's interconnection switching element. As indicated

5 above, in some embodiments this switching element is an extender managed by a network

controller cluster.

As shown, the process 4800 begins by receiving (at 4805) a packet with a destination

external to the local segmented network at the physical ingress port facing the local segmented

network. A switching element, whether managed or unmanaged, has several physical ports

10 through which packets may enter or exit. In general, each port can serve as both an ingress port

(for packets entering the switching element) and an egress port (for packets exiting the switching

element), although in some embodiments certain ports may be reserved for either ingress or

egress specifically. In general, the extender or other interconnection switching element will have

a single port that connects to the local segmented network, though the switching element could

15 have several such ports in some embodiments.

The process then removes (at 4810) the local network segment tagging. As stated, the

network segment context tag may be a VLAN tag, MPLS label, MAC-in-MAC header, etc.,

depending on the segmenting technique used by the local network. The switching element uses

its decoding information to identify the local context tag portion of the packet in some

20 embodiments. That is, the decoding information specifies which bits of a packet will have the

local context tag, and what each bit within the context tag means. As such, the switching element

will not only remove the context tag, but can store any relevant information in its registers (e.g.,

the specific VLAN on which the source machine resides).

Next, the process determines (at 4815) the logical ingress port of the packet based on the

25 physical ingress port and the segment tag. In some embodiments, this entails first identifying the

logical datapath set to which the packet belongs. For instance, in the example of Figures 39 and

40, packets from either of the two VLANs 3520 and 3525 could arrive on the same physical port

of the managed switching element 3605 that connects to the network 3505. As such, the physical

port alone cannot be used to determine the logical datapath set and ingress port in some

30 embodiments. Instead, the switching element uses the network segment context tag that was

removed at operation 4810 to identify the logical datapath set and ingress port. In some

98

WO 2013/026050 PCT/US2012/051506

embodiments, the switching element may also, or alternatively, use the source machine address

to identify the logical datapath set and ingress port.

Next, the process 4800 identifies (at 4820) a destination network for the packet. In some

embodiments, the managed switching element uses the destination address (e.g., a MAC address,

5 IP address, etc.) stored in the packet header and matches this destination address to one of the

network segments connected by the logical datapath set identified at operation 4815. As shown

in Figure 40 above, in some embodiments the managed switching element stores a list of all

known addresses for each of the network segments connected by each of the logical datapath sets

that the switching element implements. In some embodiments, the switching element uses a

10 traditional flooding-based learning algorithm to handle packets for which it does not recognize

the destination in order to determine on which network segment a particular machine is located.

The process next determines (at 4825) a logical egress port for the identified destination

network on the logical datapath set. In some embodiments, the identification of the destination

network and the subsequent identification of the logical egress port are performed as a single

15 operation by the managed switching element. In addition to making a forwarding decision (i.e.,

mapping to a logical egress port), some embodiments also perform other forwarding table

operations within the logical processing. For instance, some embodiments perform ACL lookups

that may contain instructions to drop the packet, enqueue the packet (e.g., to enforce quality of

service controls), allow a packet through, etc. In some embodiments, operations 4820 and 4825

20 are performed as a single operation (i.e., as a single lookup). That is, the managed switching

element executes a forwarding table lookup entry that simply matches the destination network of

the packet to a logical egress port, without having a separate operation for identifying the

destination network.

After determining the logical egress port, the process encapsulates (at 4830) the packet

25 with this logical egress port information. That is, the managed switching element prepends

information to the packet (e.g., a logical context) that includes the egress port information. An

example of such a logical context for OSI Layer 2 processing is described in detail in U.S.

Application No. 13/177,535, incorporated by reference above. This logical context is a 64-bit tag

that includes a 32-bit virtual routing function field (for representing the logical datapath set to

30 which the packet belongs), a 16-bit logical inport field (i.e., the ingress port of the datapath that

99

WO 2013/026050 PCT/US2012/051506

corresponds to the local network segment), and a 16-bit logical outport field (i.e., the identified

logical egress port that corresponds to the destination remote network segment).

At this point, the forwarding decisions for the packet are complete, and the process 4800

transmits (at 4835) the encapsulated packet towards the physical location of the logical egress

5 port, and ends. This location, in some embodiments, is an interconnection switching element

(e.g., extender) at the edge of the network containing the destination network segment. In some

embodiments, this transmission actually involves several operations. First, the logical egress port

is mapped to a physical address (e.g., the address of a port on the interconnection switching

element). Next, this physical address is mapped to a physical port of the managed

10 interconnection switching element performing the operations so that the packet can be

transmitted to the next hop. While the remote interconnection switching element is the ultimate

destination (as far as the logical network is concerned), there will generally be several physical

switching elements in between the source interconnection switching element and the remote

interconnection switching element. In some embodiments, a tunnel is defined between the two

15 switching elements, and the packet is encapsulated with the tunnel information to be sent over

the intervening network.

Figure 49 conceptually illustrates an example of some of the forwarding table operations

performed by a source interconnection switching element 4900 (i.e., the managed

interconnection switching element that connects to a network containing the source of a packet).

20 Specifically, Figure 49 illustrates forwarding table entries 4905 for the source interconnection

switching element 4900.

In conjunction with the forwarding table entries, Figure 49 conceptually illustrates the

processing pipeline 4950 performed by the source interconnection switching element 4900 of

some embodiments. As shown by the numbers 1-4, when the interconnection switching element

25 4900 receives a packet, it uses numerous forwarding table entries to process the packet. In some

embodiments, the physical and logical tables (including any ACL tables) are implemented as a

single table within the managed switching element (e.g., using a dispatch port that returns a

packet processed by a first entry to the forwarding table for processing by a second entry).

The VMs in this example refer to those shown in Figure 39. As shown, VM 1 sends a

30 packet 4910 that arrives at the source interconnection switching element 4900 (corresponding to

the interconnection switching element 3605). This packet, in most cases, will not have been sent

100

WO 2013/026050 PCT/US2012/051506

directly from the VM to the interconnection switching element, but will usually have traveled

through at least one switching element within the segmented network between the VM and the

interconnection switching element.

The managed switching element 4900 receives the packet 4910 through an interface of

5 the switching element, and begins processing the packet using the forwarding tables 4905. The

first stage in the processing pipeline 4950 is an ingress context mapping stage 4955 that maps a

physical ingress port (i.e., the interface through which the packet was received from VM 1) and

packet information (e.g., the VLAN tags) to a logical ingress port (i.e., a port of one of the

logical switching elements implemented by the physical switching element that corresponds to

10 the source VLAN).

As shown by the encircled 1, the interconnection switching element identifies a record 1

in the forwarding table that implements the ingress context mapping. Specifically, this record

identifies the network segment from which the packet was sent (VLAN 1) and matches this

network segment to a logical port of a particular logical datapath set (Port 1 of LDPS A). In this

15 case, the forwarding tables 4905 include additional records for matching different source VMs

on the same and different VLANs to logical ingress ports - different source VMs on the same

VLAN will be matched to the same port, while source VMs on different VLANs are matched to

ports of different logical switching elements. Some embodiments only store one record for each

network segment for ingress port matching. That is, the forwarding tables do not care from

20 which VM the packet originated, only using the VLAN (or other network segment) information.

In this case, the record 1 specifies that the managed interconnection switching element 4900

store the logical context of the packet in a field of the packet's header, which indicates the

logical inport of a particular logical datapath set for the packet. In some embodiments, the record

also specifies to send the packet to the dispatch port, for additional processing by the forwarding

25 tables 4905

The second stage in the processing pipeline 4950 is the logical forwarding lookups 4960.

As in the federated network examples shown above, the forwarding lookups 4960 are illustrated

here as a single forwarding table record, but may actually involve several different records

performing several different functions. For instance, the tables 4905 do not illustrate any ACL

30 tables, which might be present to enforce security policies for packets sent by VM 1 or from

VLAN 1, or sent to particular VMs.

101

WO 2013/026050 PCT/US2012/051506

As shown by the encircled 2, the interconnection switching element 4900 identifies a

record 2 in the forwarding tables 4905 that implements the logical forwarding decision.

Specifically, this record identifies the packet destination (specified in the packet header) as a

particular VM 13 and sets the logical egress of the packet to be a particular port (Port 2) of the

5 already-identified logical datapath set. As shown, in some embodiments the forwarding table

includes records for each of the possible destination addresses (i.e., each of the machines on the

different network segments connected by the interconnection network). Thus, the forwarding

table 4905 includes records for setting the logical egress to the same Port 2 of the same logical

datapath set when the destination is VM 14, and a different Port 3 of the same logical datapath

10 set when the packet destination is VM 20. In some embodiments, the record instead specifies that

when a network segment (e.g., MPLS Label 2) is matched based on a list of all of the VMs on

that network segment, the record maps the network segment to a particular port. The record 2

specifies that the managed switching element 4900 store the logical egress port in the packet

headers (i.e., encapsulate the packet with the logical egress context), as well as send the packet to

15 its dispatch port.

Based on the logical egress port specified at the second stage of the processing pipeline,

the managed switching element performs egress context mapping 4965 that maps the logical

egress port to a physical egress port for the packet within the interconnecting network. For a

packet traveling from one network segment at a first site to a different network segment at a

20 second site, this will be the physical port of a different interconnection switching element at the

second site. As shown by the encircled 3, the source interconnection switching element 4900

identifies a record 3 in the forwarding tables 4905 that implements the egress context mapping.

Specifically, the record 3 matches the logical egress as Port 2 of LDPS A, and sets the

destination to be a particular extender 2 that faces the MPLS-segmented site containing Label 2.

25 In some embodiments, the destination is set as the MAC address of a particular port (i.e., the port

facing the interconnecting network) of the extender 2. In some embodiments, this involves

encapsulating the packet in a tunnel between the managed interconnection switching element

4900 and the extender 2 specified as the physical egress port. In some embodiments, the record 3

also specifies to send the packet to its dispatch port for further processing.

30 Finally, the managed interconnection switching element 4900 performs the physical

mapping stage 4970 that specifies a physical port of the managed switching element through

102

WO 2013/026050 PCT/US2012/051506

which to send the (now-modified) packet 4910 in order to reach the physical egress port

identified by the egress context mapping. As shown by the encircled 4, the interconnection

switching element 4900 identifies a record 4 in the forwarding tables 4905 that implements this

physical mapping. Specifically, the record 4 matches the destination (extender 2) and maps the

5 packet to a port 2 of the interconnection switching element 4900 (referred to in the table as

"extender 1"). This port is different from the dispatch port, and therefore the packet is now sent

out this port towards the destination interconnection switching element, for eventual delivery to

VM 13.

Returning to Figure 47, the packet is sent from the local interconnection switching

10 element 4720 through the interconnecting network to the remote interconnection switching

element 4730 (i.e., through a tunnel defined between ports of the two switching elements). The

remote interconnection switching element executes the logical flow for the interconnection

network, which involves removing the logical egress encapsulation (as the packet has reached its

destination, as far as the logical network is concerned). The interconnection switching element

15 4730 also adds new segment context information 4735, so that the packet can be processed by

switching elements on the receiving segmented network and delivered to its destination machine.

Figure 50 conceptually illustrates in greater detail a process of some embodiments for

processing packets by the destination network's interconnection switching element. As indicated

above, in some embodiments this switching element is an extender managed by a network

20 controller cluster (i.e., the same network controller cluster that manages an extender at the source

site).

As shown, the process 5000 begins by receiving (at 5005) an encapsulated packet at a

physical port that faces an external interconnecting network with a destination in a segmented

network local to the receiving switching element. In some embodiments, however, the

25 destination cannot yet be determined, because the actual end machine destination is hidden

within the encapsulation. In many cases, the physical switching element will have several ports

that face away from the local segmented network, but the tunnel between the sending

interconnection switching element and the receiving interconnection switching element is

defined between particular ports on each switching element.

30 The process then removes (at 5010) the encapsulation on the packet. In some

embodiments, the encapsulation includes a tunneling protocol used to send the packet to the

103

WO 2013/026050 PCT/US2012/051506

particular receiving interconnection switching element, as well as the logical egress context of

the packet. The switching element recognizes its ingress port as the end of the tunnel, and

therefore removes the tunneling encapsulation, and additionally recognizes itself as the logical

egress port for the packet, removing the logical egress information. In some embodiments, the

5 switching element stores the logical context information in registers, in case the information is

needed for further processing.

Next, the process 5000 identifies (at 5015) a destination in the segmented network local

to the interconnection switching element. In some embodiments, the switching element uses the

removed logical context to map to a particular segmented network. The logical egress port,

10 information about which was removed at operation 5010, corresponds to a particular network

segment within the local site network. Some embodiments, on the other hand, use the address of

the destination machine (e.g., the MAC address) to identify the local network segment to which

the packet should be sent.

The process then adds (at 5020) the context tags for the local segmented network. These

15 tags may be a VLAN tag, MPLS label, MAC-in-MAC header, etc., depending on the segmenting

technique used by the local network. The switching element uses its decoding information, in

some embodiments, to determine which bits of the packet should be used for the different

portions of the context tag. These portions may include a network identifier (e.g., a VLAN ID), a

destination on the VLAN, etc.

20 Finally, the process transmits (at 5025) the packet onto the local segmented network

towards the packet's physical destination, then ends. In most cases, the packet will not be sent

directly from the managed interconnection switching element to the end machine (physical

machine or virtual machine) that is the packet's destination. Instead, there will likely be one or

more intervening switching elements on the local network that process the packet according to its

25 network segment context tags.

Figure 51 conceptually illustrates an example of some of the forwarding table operations

performed by a destination interconnection switching element 5100 (i.e., the managed

interconnection switching element that connects to a network containing the destination of a

packet). Specifically, Figure 51 illustrates forwarding table entries 5105 for the destination

30 interconnection switching element 5100.

104

WO 2013/026050 PCT/US2012/051506

In conjunction with the forwarding table entries, Figure 51 conceptually illustrates the

processing pipeline 5150 performed by the source interconnection switching element 5100 of

some embodiments. This processing pipeline 5150 contains the same four stages as the pipeline

4950 shown in Figure 49 for the source interconnection switch: ingress context mapping, then

5 logical forwarding, then egress context mapping, and physical forwarding. In some

embodiments, each managed switching element in a single-level logical network performs the

same processing pipeline, though some of the stages may not actually involve the performance of

any operations (e.g., at managed switching elements in the middle of a network that simply pass

a packet onwards to the next managed switching element).

10 Thus, the first forwarding table record identified by the interconnection switching

element 5150 implements the ingress context mapping stage. This record, shown by the encircled

1, identifies that the logical context has already been set to a particular logical datapath set, and

performs no additional operation, while simply sending the packet to the dispatch port (and, in

some embodiments, storing this information to a register). Next, the switching element identifies

15 a forwarding table record that identifies that (i) the packet already includes its logical egress

information and (ii) that information can be removed because the packet has now reached its

logical egress. At the egress context mapping stage, the switching element identifies that logical

egress corresponds to a particular network segment on its local network and that the destination

is a particular machine (VM 13) on that network segment. Finally, at the physical mapping stage,

20 the switching element identifies a particular physical port to which it sends the packet, in order

for the packet to reach its destination on the segmented network.

2. Several Logical Layers

In the above scenario, only two managed switching elements are generally involved for a

particular packet: the interconnection switching element at the source network and the

25 interconnection switching element at the destination network, with a tunnel defined between the

two. On the other hand, in the multi-level interconnection scenario, with at least two layers of

logical datapath sets, in some cases a packet may travel through numerous such interconnection

switching elements, enabling various traffic forwarding decisions. In this scenario, the second

level controller can make decisions about which of several paths a packet should take to travel

30 from a source network in a first IL domain to a destination network in a second IL domain (e.g.,

through one or the other of two possible intervening IL domains). The second level controller

105

WO 2013/026050 PCT/US2012/051506

pushes these decisions down to the first level controllers, which implement the decisions within

their first level flows sent to the interconnection switching elements within their respective

domain.

In Subsection A of this Section, a simplistic example was illustrated for the case of

5 interconnecting network segments via multiple levels of logical datapath set. Figure 52

conceptually illustrates a more complex network 5200, with four separate IL domains of three

interconnected networks each. For simplicity, the segmented networks located behind the twelve

interconnection switching elements are not shown in this figure. Instead, only a first VM 5205

and a second VM 5210 are illustrated, as these will be used to describe an example packet flow.

10 The hierarchical network 5200 includes a first IL domain 5215 ("West") with three

interconnection switching elements 5216-5218, a second IL domain 5220 ("North") with three

interconnection switching elements 5221-5223, a third IL domain 5225 ("South") with three

interconnection switching elements 5226-5228, and a fourth IL domain 5230 ("East") with three

interconnection switching elements 5231-5233. Each of these interconnection switching

15 elements is located at the edge of a segmented network (e.g., a network segmented using

VLANs, MPLS Labeling, MAC-in-MAC, etc.). In some embodiments, the segmented networks

may also use the logical network virtualization as described in Section I. Each of the four IL

domains includes a IL network controller cluster (not shown) that generates flows and pushes

the flows to the interconnection switching elements within the IL domain. These four IL

20 network controller clusters are all connected to a 2L network controller cluster, that generates 2L

flows and pushes the flows to the IL controller clusters for incorporation within their flows. In

addition, the 2L network controller cluster may make decisions about the preferred path of

several different paths through the IL domains for packets from different source networks or

machines and to different destination networks or machines.

25 Figure 53 illustrates an example of a packet 5300 traveling through the network 5200

from VM 1 5205 to VM 2 5210. In this case, the packet travels through six of the interconnection

switching elements, labeled in this figure as extenders. As shown, the packet originates at VM 1

5205 with its payload and headers 5305 (e.g., source and destination MAC address, source and

destination IP address, etc.), as well as a VLAN context tag 5310 identifying the packet as

30 belonging to VLAN 1 (the VLAN to which the source VM 1 belongs). In most cases, the packet

106

WO 2013/026050 PCT/US2012/051506

will have traveled through at least one switching element within the segmented network that

contains VLAN 1 before arriving at the first extender 5216.

Upon receiving the packet 5300, the extender 5216 first removes the VLAN context tag

5305, and identifies the IL and then 2L logical ingress ports (performing ingress context

5 mapping). The extender performs the 2L logical forwarding decisions, including any ACL

decisions. The policy decisions implemented by the ACL flow entries may be generated by the

2L controller and then pushed down to the IL controller and then to the managed switching

elements, as described above. In addition, the 2L logical forwarding identifies an 2L egress port,

which corresponds to a particular port on extender 5232 to which the destination VM 2 5210

10 attaches. As in the single-layer scenario from the previous subsection, the extender 5216 stores a

list of the ports to which different destination addresses (e.g., MAC addresses) correspond.

After encapsulating the packet with 2L egress information 5315, the extender 5216

executes the remaining IL processing pipeline. This includes egress context mapping of the 2L

egress port to a particular IL egress port. In this case, the packet can arrive at its destination (in

15 the East IL domain) via either the North domain or the South domain. In some embodiments,

this decision is determined by the 2L controller, which determines which path should be taken

through the IL datapaths for packets from different source networks or machines and to different

destination networks or machines. The 2L controller of some embodiments might specify that a

packet from a particular source (either machine or network segment) to a particular destination

20 (either machine or network segment) should travel along a specific set of 1L datapaths. For the

originating IL datapath, this will be implemented by specifying an egress port of the IL datapath

that sends the packet to the "next hop" IL datapath. Upon arriving at that next IL datapath, the

IL egress port will be determined such that the packet is again sent to the appropriate next IL

datapath. Within the IL datapath, forwarding decisions between physical interconnection

25 switching elements are determined by the IL controller cluster.

In order to generate the forwarding lookups, the 2L controller cluster of some

embodiments combines user input specifying policies for traffic as well as network statistics (i.e.,

a traffic matrix) received from the 1L controllers. In some embodiments, the lower-level

controllers automatically collect information regarding their respective regions of the

30 interconnecting network (i.e., from the switching elements implementing their lower-level

logical datapath set), and pass this information upward to the second level network controller. In

107

WO 2013/026050 PCT/US2012/051506

some embodiments, these statistics relate to the number of packets being sent out and received at

various ports of the managed switching elements, the travel time of the packets along different

paths, etc.

In different embodiments, the user policies might specify different classes of traffic (e.g.,

5 high, medium, and low priority packets), guarantee a particular QoS for specific packets while

making no guarantees about other packets, direct specific packets to follow a particular path, etc.

The packets might be classified based on source machine, source network segment, source IL

datapath, destination machine, destination network segment, destination IL datapath, or a

combination thereof, in different embodiments. For instance, a user might specify packets from a

10 VLAN 5 at Network A to a VLAN 6 at Network B to be high priority packets, while packets

from VLAN 5 at Network A to a VLAN 3 at Network C are low priority packets. As another

example, the user might specify a particular guaranteed QoS for all packets from a first IL

datapath to a second IL datapath, or from a particular source machine (irrespective of

destination). One of ordinary skill in the art will recognize that many different combinations are

15 possible for determining policy.

The 2L controller (or associated processing) performs an optimization routine (e.g., a

constrained optimization algorithm) to generate the paths through the IL datapaths. The

optimization routine attempts to identify an optimal set of paths for all different possible packets

that best carries out the user-set policies based on the most recent network statistics. For

20 instance, if a particular connection to a particular IL datapath does not appear reliable, then the

optimization routine will require the higher-priority traffic to follow a different path that does not

travel over the unreliable connection, so long as a better option is available. For low priority

packets, the optimization routine will generally choose the best option that will not interfere with

the higher priority packets.

25 In the case illustrated in Figure 53, the optimization performed by the 2L controller has

specified that the particular packet should be sent via the South IL domain 5225, rather than the

North IL domain 5220. Accordingly, the extender 5216 adds the West IL egress information

5320, which specifies the logical egress port connecting to the South IL domain 5225. The

extender 5216 maps this logical egress port to a port of the extender 5218 and transmits the

30 packet out of its port through a tunnel to the extender 5218.

108

WO 2013/026050 PCT/US2012/051506

The packet travels through the West 1L network and arrives at the extender 5218, the

location of the West IL egress port towards the South IL domain. This extender 5218 removes

the West IL egress encapsulation 5320, and executes interconnection instructions contained

within its forwarding tables. The interconnection instructions specify the South IL ingress port

5 (corresponding to a port on extender 5226), and the switching element 5218 encapsulates the

packet with this ingress information 5325 and sends the packet through the interconnecting

network (e.g., through several non-managed switching elements) to the extender 5226.

The receiving interconnection switching element 5226 in the South IL domain (and, in a

more complex example, any additional intervening IL domains between the source and

10 destination 1L domains) does not modify the 2L encapsulation. Instead, the extender 5226

receives the packet, removes the South IL ingress information, and maps the 2L egress port to its

own IL egress port that corresponds to a next IL datapath. As in the extender 5216, this IL

mapping decision is governed by the lookup entries provided by the 2L controller. The extender

5226 encapsulates the packet with its South IL egress information 5330 for transmission through

15 the South IL domain to the extender 5227.

The operations performed by the extender 5227 are parallel to those performed by the

extender 5218 at the edge of the West IL datapath. This interconnection switching element

removes the South IL egress information (as the packet 5300 will be exiting the South IL

domain) and adds East IL ingress information 5335. The extender 5227 then sends the packet

20 through the interconnecting network to the ingress port of the East IL domain at extender 5231.

At the East IL domain, the extender 5231 first removes the IL ingress information. Next,

the extender runs the 2L pipeline, which maps the 2L egress port to the East IL port that

corresponds to the extender 5232. As the 2L egress port now maps to a port facing a segmented

network, rather than a different IL domain, the extender 5231 removes the 2L encapsulation as

25 well. The extender adds the IL egress information 5340, and transmits the packet through the

East IL network to the final extender 5232.

This extender 5232 includes a port to which a segmented network, including the segment

VLAN 2, connects. The destination machine VM 2 5210 belongs to this VLAN 2. Upon

receiving the packet 5300, the extender 5232 removes the IL encapsulation, and uses the

30 information it stores for its network segments (including VLAN 2) to add a context tag 5345 for

109

WO 2013/026050 PCT/US2012/051506

VLAN 2 to the packet. The extender then forward the packet onto the segmented network for its

eventual arrival at the destination VM 2 5210.

As mentioned, the above example of a two level interconnecting network is a somewhat

simplistic example, with only two possible paths between the East and West 1L domains. As

5 with the hierarchical networks described in Section II, in some embodiments more than two

levels may be used to divide a network into separate datapaths. For instance, some embodiments

might use IL datapaths to connect networks within a building or a city block, 2L datapaths to

connect IL datapaths within a city, 3L datapaths to connect 2L datapaths within a region (e.g., a

state), 4L datapaths to connect 3L datapaths within a country, etc. One of ordinary skill in the art

10 will understand that different geographic regions, or other mechanisms for grouping networks,

may be used.

Within such a hierarchical network, the first hop processing at each logical datapath set

of a given level will use a set of packet forwarding instructions from the higher level controller

to identify the next logical datapath set at the given level. That is, just as the set of forwarding

15 instructions from the 2L controller in the example governed the choice of a next IL datapath

each time a packet entered an IL datapath, an 3L controller would generate a set of packet

forwarding instructions to govern the choice of a next 2L datapath for packets traveling across

2L datapaths. Thus, at the first hop in a three-level interconnection network, the 3L processing

would identify an 3L egress port (for this description, assumed to be located in a different 2L

20 datapath). Based on a set of forwarding instructions from the 3L controller, this 3L egress port

maps to an 2L egress port connecting to a particular next 2L datapath. The 2L network controller

would also have a generated set of forwarding instructions that describes how to forward the

packet internal to its 2L domain in order to get the packet from the current IL domain to the IL

domain through which the packet exits the datapath.

25 D. Learning in Interconnected Network

The above examples describe situations in which the various interconnection switching

elements already knew the locations of the destination machines for the packets. However, as

machines are added to a network or moved from one network segment to another, in some cases

the interconnection switching elements may not have the required information to make the

30 forwarding decision to a particular logical egress port. In some embodiments, the interconnection

switching elements use standard learning mechanisms, and flood the network of interconnection

110

WO 2013/026050 PCT/US2012/051506

switching elements in order to identify behind which of the other switching elements a particular

destination MAC address is located.

In some embodiments, however, alternatives to the standard learning-by-flooding may be

used. A centralized solution of some embodiments uses the network controller clusters to

5 accumulate and distribute data. In such an approach, the interconnection switching elements

(e.g., extenders) at each segmented network report the addresses (e.g., MAC addresses) of the

machines seen at their site networks to the virtualization application of the network controller.

The virtualization application reports these addresses (via its logical datapath set abstraction) to

the centralized control plane of the network controller. The network controller can then compute

10 the necessary updates to the forwarding table (i.e., populating the lists of MAC addresses to

associate with different logical ports shown in Figure 41). In effect, in the centralized approach,

the interconnection switching elements all report the MAC addresses on their different network

segments to the network controller, and the network controller then distributes this information

to the other extenders.

15 Other embodiments use a decentralized approach to learning that does not require

flooding. In this approach, the interconnection switching elements communicate directly, rather

than through the central network controller. The interconnection switching elements distribute, to

the other interconnection switching elements, lists of the addresses they have seen at their

respective network segments. The addresses may be disseminated whenever there is a change, in

20 some embodiments (e.g., a new machine with a new address appears in a segmented network).

An additional decentralized approach of some embodiments builds on a distributed

lookup service that provides an ability to execute a lookup for an address to site location binding.

That is, a lookup service exists (in a distributed fashion) that stores the lists of addresses for

different network segments. The interconnection switching elements can send an unresolved

25 address to the lookup service and receive an identification of the network segment at which that

address is located.

In some embodiments, the same considerations apply to replication of an address

resolution protocol (ARP) database across the sites. Scaling this replication, in some

embodiments, requires replacing the standard flooding-based mechanism with one of the

30 centralized or decentralized approaches described above.

111

WO 2013/026050 PCT/US2012/051506

IV. COMPUTER SYSTEM

Many of the above-described features and applications are implemented as software

processes that are specified as a set of instructions recorded on a computer readable storage

medium (also referred to as computer readable medium). When these instructions are executed

5 by one or more processing unit(s) (e.g., one or more processors, cores of processors, or other

processing units), they cause the processing unit(s) to perform the actions indicated in the

instructions. Examples of computer readable media include, but are not limited to, CD-ROMs,

flash drives, RAM chips, hard drives, EPROMs, etc. The computer readable media does not

include carrier waves and electronic signals passing wirelessly or over wired connections.

10 In this specification, the term "software" is meant to include firmware residing in read

only memory or applications stored in magnetic storage which can be read into memory for

processing by a processor. Also, in some embodiments, multiple software inventions can be

implemented as sub-parts of a larger program while remaining distinct software inventions. In

some embodiments, multiple software inventions can also be implemented as separate programs.

15 Finally, any combination of separate programs that together implement a software invention

described here is within the scope of the invention. In some embodiments, the software

programs, when installed to operate on one or more electronic systems, define one or more

specific machine implementations that execute and perform the operations of the software

programs.

20 Figure 54 conceptually illustrates a computer system 5400 with which some

embodiments of the invention are implemented. The electronic system 5400 may be a computer,

server, dedicated switch, phone, or any other sort of electronic device. Such an electronic system

includes various types of computer readable media and interfaces for various other types of

computer readable media. Electronic system 5400 includes a bus 5405, processing unit(s) 5410, a

25 system memory 5425, a read-only memory 5430, a permanent storage device 5435, input devices

5440, and output devices 5445.

The bus 5405 collectively represents all system, peripheral, and chipset buses that

communicatively connect the numerous internal devices of the electronic system 5400. For

instance, the bus 5405 communicatively connects the processing unit(s) 5410 with the read-only

30 memory 5430, the system memory 5425, and the permanent storage device 5435.

From these various memory units, the processing unit(s) 5410 retrieve instructions to

112

WO 2013/026050 PCT/US2012/051506

execute and data to process in order to execute the processes of the invention. The processing

unit(s) may be a single processor or a multi-core processor in different embodiments.

The read-only-memory (ROM) 5430 stores static data and instructions that are needed by

the processing unit(s) 5410 and other modules of the electronic system. The permanent storage

5 device 5435, on the other hand, is a read-and-write memory device. This device is a non-volatile

memory unit that stores instructions and data even when the electronic system 5400 is off. Some

embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and

its corresponding disk drive) as the permanent storage device 5435.

Other embodiments use a removable storage device (such as a floppy disk, flash drive, or

10 ZIP® disk, and its corresponding disk drive) as the permanent storage device. Like the

permanent storage device 5435, the system memory 5425 is a read-and-write memory device.

However, unlike storage device 5435, the system memory is a volatile read-and-write memory,

such a random access memory. The system memory stores some of the instructions and data that

the processor needs at runtime. In some embodiments, the invention's processes are stored in the

15 system memory 5425, the permanent storage device 5435, and/or the read-only memory 5430.

From these various memory units, the processing unit(s) 5410 retrieve instructions to execute

and data to process in order to execute the processes of some embodiments.

The bus 5405 also connects to the input and output devices 5440 and 5445. The input

devices enable the user to communicate information and select commands to the electronic

20 system. The input devices 5440 include alphanumeric keyboards and pointing devices (also

called "cursor control devices"). The output devices 5445 display images generated by the

electronic system. The output devices include printers and display devices, such as cathode ray

tubes (CRT) or liquid crystal displays (LCD). Some embodiments include devices such as a

touchscreen that function as both input and output devices.

25 Finally, as shown in Figure 54, bus 5405 also couples electronic system 5400 to a

network 5465 through a network adapter (not shown). In this manner, the computer can be a part

of a network of computers (such as a local area network ("LAN"), a wide area network

("WAN"), or an Intranet, or a network of networks, such as the Internet. Any or all components

of electronic system 5400 may be used in conjunction with the invention.

30 Some embodiments include electronic components, such as microprocessors, storage and

memory that store computer program instructions in a machine-readable or computer-readable

113

WO 2013/026050 PCT/US2012/051506

medium (alternatively referred to as computer-readable storage media, machine-readable media,

or machine-readable storage media). Some examples of such computer-readable media include

RAM, ROM, read-only compact discs (CD-ROM), recordable compact discs (CD-R), rewritable

compact discs (CD-RW), read-only digital versatile discs (e.g., DVD-ROM, dual-layer DVD

5 ROM), a variety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW, etc.),

flash memory (e.g., SD cards, mini-SD cards, micro-SD cards, etc.), magnetic and/or solid state

hard drives, read-only and recordable Blu-Ray@ discs, ultra density optical discs, any other

optical or magnetic media, and floppy disks. The computer-readable media may store a computer

program that is executable by at least one processing unit and includes sets of instructions for

10 performing various operations. Examples of computer programs or computer code include

machine code, such as is produced by a compiler, and files including higher-level code that are

executed by a computer, an electronic component, or a microprocessor using an interpreter.

While the above discussion primarily refers to microprocessor or multi-core processors

that execute software, some embodiments are performed by one or more integrated circuits, such

15 as application specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs). In

some embodiments, such integrated circuits execute instructions that are stored on the circuit

itself.

As used in this specification and any claims of this application, the terms "computer",

"server", "processor", and "memory" all refer to electronic or other technological devices. These

20 terms exclude people or groups of people. For the purposes of the specification, the terms display

or displaying means displaying on an electronic device. As used in this specification and any

claims of this application, the terms "computer readable medium" and "computer readable

media" are entirely restricted to tangible, physical objects that store information in a form that is

readable by a computer. These terms exclude any wireless signals, wired download signals, and

25 any other ephemeral signals.

While the invention has been described with reference to numerous specific details, one

of ordinary skill in the art will recognize that the invention can be embodied in other specific

forms without departing from the spirit of the invention. In addition, a number of the figures

(including Figures 16, 17, 21, 22, 23, 28, 29, 44, 48, and 50) conceptually illustrate processes.

30 The specific operations of these processes may not be performed in the exact order shown and

described. The specific operations may not be performed in one continuous series of operations,

114

WO 2013/026050 PCT/US2012/051506

and different specific operations may be performed in different embodiments. Furthermore, the

process could be implemented using several sub-processes, or as part of a larger macro process.

115

CLAIMS

1. A network control system for managing a set of switching elements in a network,

the network control system comprising:

a first set of network controllers for managing a first plurality of forwarding

elements, that enable communication between a first plurality of machines, by defining a first

logical datapath set to which the machines of the first plurality logically connect, the first logical

datapath set for implementation by the first plurality of forwarding elements;

a second set of network controllers for managing a second plurality of forwarding

elements, that enable communication between a second plurality of machines, by defining a

second logical datapath set to which the machines of the second plurality logically connect, the

second logical datapath set for implementation by the second plurality of forwarding elements,

wherein the second plurality of forwarding elements is separate from the first plurality of

switching elements and the second plurality of machines is separate from the first plurality of

machines; and

a third set of network controllers for managing the first and second sets of

network controllers in order to enable communication between machines in the first set of

machines and machines in the second set of machines by defining a third logical datapath set to

which the machines of the first and second pluralities of machines logically connect, the third

logical datapath set for implementation by the first and second pluralities of managed forwarding

elements.

2. The network control system of claim 1, wherein the first set of forwarding

elements and second set of forwarding elements comprise software forwarding elements

operating on a host device.

N018.AU (NCRA.PO101AUS) 133

3. The network control system of claim 2, wherein the machines comprise virtual

machines, wherein a particular virtual machine operates on a same host device as a particular

software forwarding element.

4. The network control system of claim 1, wherein the first set of forwarding

elements comprises a first interconnection forwarding element for connecting to an external

network and the second set of forwarding elements comprises a second interconnection

forwarding element for connecting to the external network.

5. The network control system of claim 4, wherein the first set of forwarding

elements further comprises a first set of edge forwarding elements that each directly couple to at

least one machine in the first set of machines, wherein the second set of forwarding elements

further comprises a second set of edge forwarding elements that each directly couple to at least

one machine in the second set of machines.

6. The network control system of claim 5, wherein the first set of edge forwarding

elements are for forwarding network traffic packets, sent from the first plurality of machines to

the second plurality of machines, to the first interconnection forwarding element in order for the

first interconnection forwarding element to forward the network traffic packets to the second

interconnection forwarding element and the second interconnection forwarding element to

forward the network traffic packets to the second set of edge forwarding elements.

7. The network control system of claim 1, wherein the first set of network

controllers, first set of forwarding elements, and first set of machines are located in a first data

center while the second set of network controllers, second set of forwarding elements, and

second set of machines are located in a second data center.

N018.AU (NCRA.PO101AUS) 134

8. The network control system of claim 7, wherein the third set of network

controllers is located in the first data center.

9. The network control system of claim 8, wherein the first data center has a more

reliable connection to an interconnecting network than the second data center.

10. The network control system of claim 7, wherein the third set of network

controllers is located in a location separate from the first and second data centers that has a

reliable connection to both of the data centers.

11. The network control system of claim 1, wherein the first, second, and third sets of

network controllers are located in a single data center.

12. The network control system of claim 1 further comprising a fourth set of network

controllers for managing a third set of forwarding elements that enable communication between

a third set of machines, the third set of forwarding elements separate from the first and second

sets of forwarding elements and the third set of machines separate from the first and second sets

of machines.

13. The network control system of claim 12, wherein the third set of network

controllers is further for managing the fourth set of network controllers in order to enable

communication between machines in the first, second, and third sets of machines.

14. A network system comprising:

a first set of machines in a first domain and a second set of machines in a second

domain;

within each of the domains, a plurality of edge forwarding elements that are each

for (i) coupling to the machines in the domain and (ii) forwarding network data to and from the

machines in the domain;

N018.AU (NCRA.PO1O1AUS) 135

a first set of network controllers in the first domain and a second set of network

controllers in the second domain, each of the first and second sets of network controllers for

managing the edge forwarding elements within their particular domain by specifying a first level

logical forwarding element that couples to the set of network hosts within the particular domain,

the first level logical forwarding element for implementation by the edge forwarding elements

within the domain; and

a third set of network controllers for (i) specifying a second level logical

forwarding element comprising logical ports to which machines of both the first and second sets

of machines logically couple and (ii) communicating with the first and second sets of network

controllers in order for the first and second sets of network controllers to implement the second

level logical forwarding element within the specification of the respective first level logical

forwarding elements.

15. The network system of claim 14 further comprising a first interconnection

forwarding element in the first domain for forwarding network data between edge forwarding

elements in the first domain and a second interconnection forwarding element in the second

domain, the second interconnection switching element for forwarding network data between

edge forwarding elements in the second domain and the first interconnection forwarding

element.

16. The network system of claim 15, wherein the first and second interconnection

forwarding elements are extenders.

17. A network control system for interconnecting a plurality of separate networks, the

system comprising:

N018.AU (NCRA.PO1O1AUS) 136

a plurality of interconnection forwarding elements, each interconnection

forwarding element in the plurality for connecting one of the separate networks to a common

interconnecting network; and

a first set of network controllers for managing a first set of the interconnection

forwarding elements at a first set of the separate networks by defining a first logical datapath set

having logical ports to which different networks within the first set of separate networks couple,

the first logical datapath set for implementation by the interconnection forwarding elements of

the first set of interconnection forwarding elements in order for machines at the different

networks within the first set of separtate networks to communicate with each other;

a second set of network controllers for managing a second set of the

interconnection forwarding elements at a second set of the separate networks by defining a

second logical datapath set having logical ports to which different networks within the second set

of separate networks couple, the second logical datapath set for implementation by the

interconnection forwarding elements of the second set of interconnection forwarding elements in

order for machines at the different networks within the second set of separate networks to

communicate with each other; and

a third set of network controllers for managing the first and second sets of

network controllers by defining a third logical datapath set having logical ports to which the

networks in the first and second sets of separate networks couple, the third logical datapath set

for implementation by the interconnection forwarding elements of the first and second sets of

interconnection forwarding elements in order for machines at networks in the first set to

communicate with machines at networks in the second set.

N018.AU (NCRA.PO101AUS) 137

18. The network control system of claim 17 further comprising a fourth set of

network controllers for managing a third set of the interconnection forwarding elements at a third

set of the separate networks by defining a fourth logical datapath set having logical ports to

which different networks within the third set of separate networks couple, the fourth logical

datapath set for implementation by the interconnection forwarding elements of the third set of

interconnection forwarding elements in order for machines at different networks within the third

set of separate networks to communicate with each other.

19. The network control system of claim 18, wherein the third set of network

controllers is further for managing the fourth set of network controllers in order for machines at

networks in the third set of separate networks to communicate with machines at networks in the

first and second sets of separate networks, wherein the third logical datapath set has logical ports

to which the networks in the third set of separate networks couple, the third logical datapath set

further for implementation by the interconnection forwarding elements of the third set of

interconnection forwarding elements.

20. The network control system of claim 19 further comprising a fifth set of network

controllers for managing a fourth set of interconnection switching elements at a fourth set of the

separate networks by defining a fifth logical datapath set having logical ports to which different

networks within the fourth set of separate networks couple, the fifth logical datapath set for

implementation by the interconnection forwarding elements of the fourth set of interconnection

forwarding elements in order for machines at different networks within the fourth set to

communicate with each other, wherein the third set of network controllers is further for

managing the fifth set of network controllers in order for machines at networks in the fourth set

to communicate with machines at networks in the first, second, and third sets, wherein the third

N018.AU (NCRA.PO1O1AUS) 138

logical datapath set has logical ports to which the networks in the fourth set of separate networks

couple, the third logical datapath set further for implementation by the interconnection

forwarding elements of the fourth set of interconnection forwarding elements.

21. The network control system of claim 20, wherein the third set of controllers is for

determining a path for a packet to travel from the first set of interconnection forwarding elements

to the fourth set of interconnection forwarding elements.

22. The network control system of claim 17 further comprising:

a fourth set of network controllers for managing a third set of the interconnection

forwarding elements at a third set of the separate networks by defining a fourth logical datapath

set having logical ports to which different networks within the third set of separate networks

couple, the fourth logical datapath set for implementation by the interconnection forwarding

elements of the third set of interconnection forwarding elements in order for machines at

different networks within the third set to communicate with each other;

a fifth set of network controllers for managing a fourth set of the interconnection

forwarding elements at a fourth set of the separate networks by defining a fifth logical datapath

set having logical ports to which different networks within the fourth set of separate networks

couple, the fifth logical datapath set for implementation by the interconnection forwarding

elements of the fourth set of interconnection forwarding elements in order for machines at

different networks within the fourth set to communicate with each other; and

a sixth set of network controllers for managing the fourth and fifth sets of network

controllers by defining a sixth logical datapath set having logical ports to which the networks in

the third and fourth sets of separate networks couple, the sixth logical datapath set for

implementation by the interconnection forwarding elements of the third and fourth sets of

N018.AU (NCRA.PO1O1AUS) 139

interconnection forwarding elements in order for machines at networks in the third set to

communicate with machines at networks in the fourth set.

23. The network control system of claim 22 further comprising:

a seventh set of network controllers for managing the third and sixth sets of

network controllers by defining a seventh logical datapath set having logical ports to which the

networks in the first, second, third, and fourth sets of separate networks couple, the seventh

logical datapath set for implementation by the interconnection forwarding elements of the first,

second, third, and fourth sets of interconnection forwarding elements in order for machines at

networks in the first and second sets of networks to communicate with machines at networks in

the third and fourth sets of networks.

N018.AU (NCRA.PO1O1AUS) 140

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

