
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2014/0372534 A1 

US 20140372534A1 

Little (43) Pub. Date: Dec. 18, 2014 

(54) USING STATUS INQUIRY AND STATUS (52) U.S. Cl. 
RESPONSE MESSAGES TO EXCHANGE CPC ...................................... H04L 67/10 (2013.01) 
MANAGEMENT INFORMATION USPC .......................................................... 709/204 

(71) Applicant: Red Hat, Inc., Raleigh, NC (US) 

(72) Inventor: Mark Cameron Little, Ebchester (GB) (57) ABSTRACT 

(21) Appl. No.: 14/475,331 A status inquiry message is received at a first machine, 
(22) Filed: Sep. 2, 2014 wherein the status inquiry message is directed to one of the 

first machine or a service operating on the first machine. A 
Related U.S. Application Data status response message is generated at the first machine, the 

(63) Continuation of application No. 11/998.717, filed on status response message indicating that at least one of the first 
Nov.30, 2007, now Pat No. 8,832.25 s. s machine or the service is operational. Management informa 

s s sy-- as tion is attached to the status response message, the manage 
Publication Classification ment information including operating statistics of at least one 

of the first machine, the service, or an additional service that 
(51) Int. Cl. operates on the first machine. The status response message is 

H04L 29/08 (2006.01) transmitted to the second machine. 

100 

N 

First Machine 105 

1 Operating System 120 

1 Management 
Application 130 1 Service 150 

1st 1 Intermediary 
145 

Status Agent 
148 

Second Machine 110 

2"Operating System 125 

2"Service 155 

2"Status Agent 
158 

2"Management 
Application 135 

2"Intermediary 
155 

1 Data Store 160 

1Transmission 
Log 165 

1 Management 
information 170 

2"Data Store 175 

2"Transmission 
Log 180 

2"Management 
Information 185 

  

  

  

  

  

  



Patent Application Publication Dec. 18, 2014 Sheet 1 of 6 US 2014/0372534 A1 

-ex. 
First Machine 105 Second Machine 11 

100 

N 

2"Operating System 125 

2"Service 155 

2"Status Agent 
158 

1' Operating System 120 
2"Management 
Application 135 

1 Management st 
Application 130 1 Service 150 

1 Intermediary 
145 

2"Intermediary 
155 

1 Status Agent 
148 

2"Data Store 175 

2"Transmission 
Log 180 

2"Management 
Information 185 

1 Data Store 160 

1 Transmission 
Log 165 

1 Management 
information 170 

Figure 1 

  

    

  

    

  

    

  

    

  

  

  



Patent Application Publication Dec. 18, 2014 Sheet 2 of 6 US 2014/0372534 A1 

200 Na 

Receive Status Inquiry Message At First 
Machine 205 

Status Inquiry Message 
include Unsolicited Management 

Information? 210 

Cache Unsolicited Management information 215 

Forward Unsolicited Management information To 
Management Application 220 

Generate Status Response Message 225 

Attach Management Information To Status 
Response Message 230 

Transmit Status Response Message To Second 
Machine 235 

( End D 

Figure 2 

No 

    

  

  



Patent Application Publication Dec. 18, 2014 Sheet 3 of 6 US 2014/0372534 A1 

C Start ) 
300 

Receive First Status Inquiry Message At First / 
Machine 305 

Generate First Status Response Message 310 

Second Machine 
Equipped To Receive Management 

Information? 315 

YeS 

Attach First Management Information To 
No First Status Response Message 320 

Cache First Management Information in 
Transmission Log 325 

Transmit First Status Response Message To 
Second Machine 330 

Additional 
Status Inquiry Messages 

Received From Second Machine? 
335 

NO 
Generate Additional Status Response Message 340 

Determine New And/Or Additional Management 
information 345 

Compare NewlAdditional Management Information 
To First Management information 350 

NeW/AClditional 
information Different From First 
Management Information? 

355 

Attach New?Additional information To Additional 
Status Response Message 360 

Transmit Additional Status Response Message To 
Second Machine 365 

Figure 3 

No 

  

    

  

  

    

  



Patent Application Publication Dec. 18, 2014 Sheet 4 of 6 US 2014/0372534 A1 

400 Na 

Generate Status inquiry Message At First 
Machine 405 

Onsolicited Management information 
To Status Inquiry Message? 

410 

Attach Unsolicited Management Information To 
Status Inquiry Message 415 

Cache Unsolicited Management Information 420 

Transmit Status Inquiry Message To Second 
Machine 425 m 

Receive Status Response Message From 
Second Machine That includes Management 

Information 430 

Cache Received Management information 435 

Figure 4 

  

  



Patent Application Publication Dec. 18, 2014 Sheet 5 of 6 US 2014/0372534 A1 

500 Na 

Generate Status Inquiry Message At First 
Machine 505 

Transmit Status Inquiry Message To Second 
Machine 510 

Receive Status Response Message From 
Second Machine That includes Management 

information 515 

Cache Received Management Information 520 

Intercept Management Message From 
Management Application 525 

Requested 
anagement information included in 

Received Management information? 
530 

NO 

Generate Additional Status Inquiry Message At 
First Machine 535 

Attach Management information Query To 
Additional Status Inquiry Message 540 

Transmit Additional Status induiry Message To 
Second Machine 545 

Receive Additional Status Inquiry Message From 
Second Machine That includes Requested 

Management information 550 
y 

Cache Requested Management Information 555 

Forward Requested Management Information To 
Management Application 560 

Figure 5 

    

  

  

  

  

    

  

  

  

        

    

  

    

  

  

  

  



Patent Application Publication Dec. 18, 2014 Sheet 6 of 6 US 2014/0372534 A1 

600 

602 -1 610 
PROCESSOR 

N N 
PROCESSING 626 VIDEO DISPLAY 

OGC 

630 
604 612 

N N ALPHA-NUMERC 

software 622 INPUT DEVICE 

606 614 

CURSOR 
STATIC MEMORY CONTROL 

DEVICE 
O 
O 

608 616 

NETWORK SIGNAL 
INTERFACE GENERATION 
DEVICE DEVICE 

618 

SECONDARY MEMORY 
MACHINE-ACCESSIBLE 

620 STORAGEMEDIUM 

N7 

Figure 6 

  

  

  

  



US 2014/0372534 A1 

USING STATUS INQUIRY AND STATUS 
RESPONSE MESSAGES TO EXCHANGE 

MANAGEMENT INFORMATION 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation of U.S. patent 
application Ser. No. 11/998,717 filed Nov.30, 2007, the entire 
contents of which are hereby incorporated by reference. 

TECHNICAL FIELD 

0002 Embodiments of the present invention relate to dis 
tributed systems, and more specifically to exchanging man 
agement information via Status inquiry and status response 
messages in a distributed computing system. 

BACKGROUND 

0003 Distributed computing systems include multiple 
services and/or applications that operate on different 
machines (computing devices) that are connected via a net 
work. Some services or applications may rely on other Ser 
vices and/or applications to operate. However, machines, and 
services and applications that operate on the machines, may 
occasionally become unavailable (e.g., when a machine loses 
power, an application crashes, a network connection to the 
machine is lost, etc.). 
0004. In some distributed computing systems, to deter 
mine which machines, services and applications are operative 
at a given time, each machine in the distributed computing 
system can periodically transmit status inquiry messages, 
which are typically referred to as “are-you-alive messages' or 
“heartbeat messages. The status inquiry message is a small 
control message that is generated and sent between machines 
or services on machines (services may fail independently of 
machines, so simply detecting that the machine is alive may 
not be sufficient). A queried machine that receives the status 
inquiry message generates a status response message. The 
status response message is then sent back to the original 
querying machine that sent the status inquiry message. The 
querying machine can then receive the status response mes 
sage, which provides confirmation that the queried machine 
and/or service is still active. Such status inquiry and status 
response messages may be continuously transmitted between 
machines within a distributed computing system at a speci 
fied frequency. 
0005 Each machine within a distributed computing sys 
tem typically includes a management application that moni 
tors the activities of otherapplications, services and machines 
in the distributed computing system. The management appli 
cations generate and exchange management messages that 
typically include management information about services 
that are available within the distributed computing system, 
Such as how long a service has been active, how many users a 
service has had, the present and past workload of the service, 
Software versions of the service, etc., and about the machines 
on which the services operate. Such as a number of services 
that operate on the machine, capabilities of the machine, etc. 
The management messages exchanged by the management 
applications are separate and distinct from the status inquiry 
and status response messages that are transmitted between 
machines. Each of the status inquiry messages, status 
response messages, and management messages consume 
bandwidth of the distributed computing system. 

Dec. 18, 2014 

BRIEF DESCRIPTION OF THE DRAWINGS 

0006. The present invention is illustrated by way of 
example, and not by way of limitation, in the figures of the 
accompanying drawings and in which: 
0007 FIG. 1 illustrates an exemplary distributed comput 
ing system, in which embodiments of the present invention 
may operate; 
0008 FIG. 2 illustrates a flow diagram of one embodiment 
for a method of attaching management information to status 
response messages in a distributed computing system; 
0009 FIG. 3 illustrates a flow diagram of another embodi 
ment for a method of attaching management information to 
status response messages in a distributed computing system; 
0010 FIG. 4 illustrates a flow diagram of one embodiment 
for a method of receiving management information via status 
response messages in a distributed computing system; 
0011 FIG. 5 illustrates a flow diagram of another embodi 
ment for a method of receiving management information via 
status response messages in a distributed computing system; 
and 
0012 FIG. 6 illustrates a block diagram of an exemplary 
computer system, in accordance with one embodiment of the 
present invention. 

DETAILED DESCRIPTION 

0013 Described herein is a method and apparatus for 
exchanging management information between machines in a 
distributed computing system. In one embodiment, a status 
inquiry message is received at a first machine via a network. 
The status inquiry message may be directed to the first 
machine, or to a service that operates on the first machine. The 
status inquiry message may include management information 
of a second machine from which the status inquiry message 
originated. If the status inquiry message includes such man 
agement information, the management information may be 
cached, and may be forwarded to a management application 
at the first machine. A status response message that indicates 
that the first machine and/or the service is operational is 
generated at the first machine. Management information that 
includes operating statistics of the first machine, the service 
and/or an additional service that operates on the first machine 
is attached to the status response message. Management 
information may include, for example, how long a service has 
been active, how many users a service has had, the present and 
past workload of the service, software versions of the service, 
how long a machine has been active, services operating on a 
machine, and so on. The status response message is then 
transmitted to the second machine. 
0014. In the following description, numerous details are 
set forth. It will be apparent, however, to one skilled in the art, 
that the present invention may be practiced without these 
specific details. In some instances, well-known structures and 
devices are shown in block diagram form, rather than in 
detail, in order to avoid obscuring the present invention. 
0015. Some portions of the detailed descriptions which 
follow are presented in terms of algorithms and symbolic 
representations of operations on data bits within a computer 
memory. These algorithmic descriptions and representations 
are the means used by those skilled in the data processing arts 
to most effectively convey the substance of their work to 
others skilled in the art. An algorithm is here, and generally, 
conceived to be a self-consistent sequence of steps leading to 
a desired result. The steps are those requiring physical 



US 2014/0372534 A1 

manipulations of physical quantities. Usually, though not 
necessarily, these quantities take the form of electrical or 
magnetic signals capable of being stored, transferred, com 
bined, compared, and otherwise manipulated. It has proven 
convenient at times, principally for reasons of common 
usage, to refer to these signals as bits, values, elements, sym 
bols, characters, terms, numbers, or the like. 
0016. It should be borne in mind, however, that all of these 
and similar terms are to be associated with the appropriate 
physical quantities and are merely convenient labels applied 
to these quantities. Unless specifically stated otherwise, as 
apparent from the following discussion, it is appreciated that 
throughout the description, discussions utilizing terms such 
as 'generating”, “determining”, “attaching”, “transmitting. 
“comparing, or the like, refer to the action and processes of 
a computer system, or similar electronic computing device, 
that manipulates and transforms data represented as physical 
(electronic) quantities within the computer system's registers 
and memories into other data similarly represented as physi 
cal quantities within the computer system memories or reg 
isters or other such information storage, transmission or dis 
play devices. 
0017. The present invention also relates to an apparatus for 
performing the operations herein. This apparatus may be 
specially constructed for the required purposes, or it may 
comprise a general purpose computer selectively activated or 
reconfigured by a computer program stored in the computer. 
Such a computer program may be stored in a computer read 
able storage medium, such as, but not limited to, any type of 
disk including floppy disks, optical disks, CD-ROMs, and 
magnetic-optical disks, read-only memories (ROMs), ran 
dom access memories (RAMs), EPROMs, EEPROMs, mag 
netic or optical cards, or any type of media Suitable for storing 
electronic instructions, each coupled to a computer system 
bus. 

0018. The algorithms and displays presented herein are 
not inherently related to any particular computer or other 
apparatus. Various general purpose systems may be used with 
programs in accordance with the teachings herein, or it may 
prove convenient to construct more specialized apparatus to 
perform the required method steps. The required structure for 
a variety of these systems will appear as set forth in the 
description below. In addition, the present invention is not 
described with reference to any particular programming lan 
guage. It will be appreciated that a variety of programming 
languages may be used to implement the teachings of the 
invention as described herein. 

0019. The present invention may be provided as a com 
puter program product, or Software, that may include a 
machine-readable medium having stored thereon instruc 
tions, which may be used to program a computer system (or 
other electronic devices) to perform a process according to 
the present invention. A machine-readable medium includes 
any mechanism for storing or transmitting information in a 
form readable by a machine (e.g., a computer). 
0020 For example, a machine-readable (e.g., computer 
readable) medium includes a machine (e.g., a computer) read 
able storage medium (e.g., read only memory (“ROM), ran 
dom access memory (RAM), magnetic disk storage media, 
optical storage media, flash memory devices, etc.), a machine 
(e.g., computer) readable transmission medium (electrical, 
optical, acoustical or other form of propagated signals (e.g., 
carrier waves, infrared signals, digital signals, etc.)), etc. 

Dec. 18, 2014 

0021 FIG. 1 illustrates an exemplary distributed comput 
ing system 100, in which embodiments of the present inven 
tion may operate. In one embodiment, the distributed com 
puting system 100 includes a service oriented architecture 
(SOA). A service oriented architecture (SOA) is an informa 
tion system architecture that organizes and uses distributed 
capabilities (services) for one or more applications. SOA 
provides a uniform means to offer, discover, interact with and 
use capabilities (services) distributed over a network. 
Through the SOA, applications may be designed that com 
bine loosely coupled and interoperable services. 
0022. The distributed computing system 100 includes 
multiple machines (e.g., first machine 105 and second 
machine 110) connected via a network 115. The network 115 
may be a public network (e.g., Internet), a private network 
(e.g., Ethernet or a local area Network (LAN)), or a combi 
nation thereof. In one embodiment, the network 115 includes 
an enterprise service bus (ESB). An ESB is an event-driven 
and Standards-based messaging engine that provides services 
for more complex architectures. The ESB provides an infra 
structure that links together services and clients to enable 
distributed applications and processes. The ESB may be 
implemented to facilitate a SOA. In one embodiment, the 
ESB is a single bus that logically interconnects all available 
services and clients. Alternatively, the ESB may include mul 
tiple buses, each of which may logically interconnect differ 
ent services and/or clients. 

0023 Machines (e.g., first machine 105 and second 
machine 110) may be desktop computers, laptop computers, 
servers, etc. In one embodiment, first machine 105 is con 
nected with a first data store 160, and second machine 110 is 
connected with a second data store 175. First data store 160 
and second data store 175 may be hard disk drives, optical 
drives, Solid State memory, and/or tape backup drives. First 
data store 160 and second data store 175 may be internal to the 
first machine 105 and second machine 110, respectively. 
Alternatively, first data store 160 and second data store 175 
may be external to the first machine 105 and second machine 
110. Data stores 160, 175 may be used to store transmission 
logs, management information, or other data, as discussed in 
greater detail below. 
0024. Each of the machines 105,110 includes an operating 
system (e.g., first operating system 120 and second operating 
system 125) that manages an allocation of resources of the 
machine (e.g., by allocating memory, prioritizing system 
requests, controlling input and output devices, managing file 
systems, facilitating networking, etc.). Examples of operating 
systems that may be included in machines 105, 110 include 
Linux, Unix, Windows.(R), OS X(R), etc. Different machines 
may include different operating systems, and/or multiple 
machines may each include the same operating system. For 
example, first machine 105 and second machine 110 may 
each include Linux, or first machine 105 may include Linux 
and second machine 110 may include Unix. 
0025 To facilitate networking, each operating system 
102,125 may include a status agent (e.g., first status agent 148 
and second status agent 158) that can transmit, receive and 
respond to status inquiry messages. Status inquiry messages 
are used to determine whether remote machines, services and 
applications are operative at a given time. Upon receipt of a 
status inquiry message, a status agent (e.g., of a queried 
machine) generates a status response message, and transmits 
the status response message back to a sender of the status 



US 2014/0372534 A1 

inquiry message. The status response message notifies the 
sender of the status inquiry message that the queried machine 
or service is active. 

0026. In one embodiment, the first status agent 148 is 
integrated into the first operating system 120, and second 
status agent 158 is integrated into second operating system 
125. The integrated first status agent 148 and second status 
agent 158 may use internet control message protocol (ICMP) 
messages as the status inquiry and status response messages. 
For example, the first status agent 148 and second status agent 
158 may use an echo request and/or echo response message to 
determine the operating status of a remote machine. ICMP is 
a core protocol of the internet protocol Suite, and provides a 
means for operating systems 120, 125 to exchange low level 
error messages and informational messages. ICMP messages 
are created at a network level (e.g., of the five layer TCP/IP 
model), and are encapsulated within an internet protocol (IP) 
datagram. 
0027. In another embodiment, the first status agent 148 is 
a distinguished service on the first machine 105, and the 
second status agent 158 is a distinguished service on the 
second machine 110. Each status agent can be tied to the 
operating system on which it resides Such that if the operating 
system crashes and recovers, the status agent will always be 
made active (e.g., boot up). The status agents may be located 
at well known addresses on the distributed computing system 
100, and may respond to status inquiry messages on behalf of 
the machines on which they reside. If, for example, first 
service 150 (or first machine 105) wants to know if second 
machine 110 is alive, it can ping second status agent 158 (e.g., 
sends a status inquiry message to second status agent 158). If 
able, second status agent 158 would then respond with a 
Status response message. 
0028 Status inquiry messages and status response mes 
sages each have a size on the order of magnitude of approxi 
mately 100 bytes. However, for networks that are imple 
mented using Ethernet, there is a minimum of approximately 
1400 bytes (1040 bytes of data plus a 360 byte header) of 
bandwidth that is consumed for the transmission of a mes 
sage, irregardless of that message's size. Therefore, even if 
the status inquiry message and status response messages have 
a size of only 64 bytes, they still consume about 1400 bytes of 
bandwidth in transmission. Accordingly, additional informa 
tion can be attached to the status inquiry and status response 
messages without consuming additional bandwidth on the 
network 115. So long as the message and attachment, in 
combination, do not have a size larger than approximately 
1400 bytes (or 1040 bytes if no header is considered), no 
additional bandwidth is consumed during message transmis 
S1O. 

0029. Each of the operating systems may include clients 
(e.g., client 138), services (e.g., first service 150 and second 
service 155), management applications (e.g., first manage 
ment application 130 and second management application 
135), and intermediaries (e.g., first intermediary 145 and 
second intermediary 255). Clients may be applications that 
run on a machine, and that access services. Services 150, 155 
are discretely defined sets of contiguous and autonomous 
functionality (e.g., business functionality, technical function 
ality, etc.) that operate on a machine or machines. Each Ser 
vice 250, 255 may represent a process, activity or other 
resource that can be accessed and used by other services or 
clients on network 115. Each service 150, 155 may be inde 

Dec. 18, 2014 

pendent of other services, and may be accessed without 
knowledge of its underlying platform implementation. 
0030. In an example for a business function of “managing 
orders, services 150, 155 may include, for example, create 
order, fulfill order, ship order, invoice order, cancel/update 
order, etc. Each such service 150, 155 may be autonomous 
from the other services that are used to manage orders, and 
may be remote from one another and have different platform 
implementations. However, the services may be combined 
and used by one or more applications to manage orders. 
0031 Management applications 130, 135 monitor the 
activities of other applications, services and machines in the 
distributed computing system. Each management application 
130, 135 may gather operating statistics of applications and/ 
or services to which the management application is connected 
(e.g., those applications and services that operate on a 
machine on which the management application operates). For 
example, first management application 130 may collect oper 
ating statistics of client 138, first service 150 and first 
machine 105, and second management application 135 may 
collect operating statistics on second service 155 and second 
machine 110. Management applications 130, 135 may collect 
data on, for example, how long a service has been active, how 
many clients have used a service, the current and past work 
load of a service, software versions being used by an appli 
cation or service, etc. Management applications 130, 135 may 
also gather operating statistics of the machine on which the 
management application operates (e.g., how long the 
machine has been active, number of services operating on the 
machine, machine capabilities, etc.). Collected management 
information (e.g., first management information 170 and sec 
ond management information 185) can then be stored in a 
data store (e.g., first data store 160 and second data store 175). 
0032. Management applications 130, 135 exchange col 
lected management information with other management 
applications. For example, in one embodiment first manage 
ment application 130 transmits first management information 
170 (including operating statistics on first service 150, client 
138 and/or first machine 105) to second management appli 
cation 135, and receives second management information 
185 (including operating statistics on second service 155 
and/or second machine 110) from second management appli 
cation 135. Management applications 130, 135 may generate 
management messages that query other management appli 
cations about specific services and/or clients operating on 
other machines. Alternatively, management applications may 
send general queries that request all available management 
information pertaining to a queried machine. 
0033. In one embodiment, the exchange of management 
information is performed by intermediaries (e.g., first inter 
mediary 145 and second intermediary 155). In one embodi 
ment, intermediaries 140, 145 are low level services that 
operate below the application level (e.g. at the network layer 
of the five layer TCP/IP model). For example, first interme 
diary 145 may be a function of first operating system 120, and 
second intermediary may be a function of second operating 
system 125. In another embodiment, intermediaries 140,145 
are distinct services that operate at the application (or service) 
level. Each intermediary 140, 145 may be connected with a 
management application 130, 135 and a status agent 148,158. 
The intermediary 140, 145 can thereby receive management 
information from, and forward management information to, 
the attached management application 130, 135. The interme 
diary can also attach management information to, and retrieve 



US 2014/0372534 A1 

management information from, status inquiry and status 
response message through its connection to the status agent. 
0034 Intermediaries 140, 145 can exchange management 
information by attaching it to status inquiry messages and 
status response messages. For example, when second status 
agent 158 receives a status inquiry message from first 
machine 105 (e.g., from first operating system 120 or first 
status agent 148), second status agent 158 generates a status 
response message. Second intermediary 155 may then attach 
second management information 185 to the status response 
message. When first status agent 148 (or first operating sys 
tem 120) receives the status response message, first interme 
diary 145 can then remove the second management informa 
tion 185 from the status response message, and forward it to 
first management application 130 and/or store it in first data 
store 160. So long as the attachment and the status response 
message do not have a combined size that is greater than 
approximately 1400 bytes (in a network that uses Ethernet), 
the management information is exchanged without consum 
ing any additional bandwidth. However, even if greater band 
width is consumed in the transmission of the status response 
message, such a transmission can still be more efficient than 
sending a separate management message to transmit the sec 
ond management information 185 (e.g. due to reduced over 
head that is introduced by reducing a number of transmissions 
sent over network 115). 
0035 Intermediaries 140, 145 may detect incoming and 
outgoing status inquiry messages and status response mes 
Sages, for example, by monitoring all incoming and outgoing 
messages. Alternatively, intermediaries 140, 145 may detect 
status inquiry and status response messages by monitoring 
activity at specific ports (e.g., ports that are reserved for status 
inquiry and status response messages). Other detection tech 
niques may also be used. 
0036. In one embodiment, intermediaries 140, 145 deter 
mine whether a machine that is to receive a status inquiry 
message or a status response message is equipped to receive 
management information via the status inquiry and/or status 
response message. Such a determination may be made by 
examining a table that identifies for each machine in a dis 
tributed computing system whether or not the machine is 
equipped to receive management information via status 
inquiry and/or status response messages. The table (not 
shown) may be stored in a data store (e.g., first data store 160 
or second data store 175). Alternatively, such a determination 
may be made by examining the status inquiry or status 
response message. Status inquiry and status response mes 
sages may include a tag that identifies whether they were 
generated by a machine that can receive management infor 
mation via Status response messages. Such a tag may be 
placed by an intermediary on the status inquiry message or 
status response message even when no management informa 
tion is attached to the message, thereby providing notification 
that a machine is equipped to receive management informa 
tion vie status inquiry and status response messages. 
0037. Management applications 130, 135 may generate 
management messages that include queries about specific 
management information, and send Such management mes 
sages to queried machines. In one embodiment, an interme 
diary 140, 145 may intercept such a management message, 
and attach the query included in the management message to 
a next status inquiry message. An intermediary may intercept 
a management message by monitoring a management appli 
cation to which the intermediary may be connected. Alterna 

Dec. 18, 2014 

tively, the intermediary may monitor a specific port or ports 
used by the management application and/or analyze outgoing 
messages to determine if they are management messages. An 
intermediary 140, 145 resident on the queried machine may 
then gather the requested management information (e.g., by 
requesting it from a management application), and attach it to 
a status response message that is transmitted in response to 
the status inquiry message. Specific management information 
may therefore be exchanged at the request of management 
applications via status inquiry and status response messages. 
0038. In some instances, there may be more management 
information available than is attached to a status inquiry or 
status response message. This may occur, for example, if the 
management information in combination with a status 
response message would be larger than approximately 1400 
bytes. In one embodiment, management information is 
divided into multiple portions. For example, management 
information may be divided into multiple portions that are 
each smaller than approximately 1000 bytes. Each portion 
may be attached to a separate status inquiry or status response 
message until all the portions have been transmitted. To moni 
tor what management information has been transmitted, in 
one embodiment intermediaries 14014.5 maintain a transmis 
sion log in a data store (e.g., first transmission log 165 and 
second transmission log 180) that identifies management 
information that has previously been sent to remote 
machines. Therefore, an intermediary 140, 145 may deter 
mine what management information has not yet been trans 
mitted, and attach that management information to a status 
response or status inquiry message. In a further embodiment, 
current management information can be compared to the 
transmission log to determine whether the management infor 
mation has changed since a last transmission. An intermedi 
ary 140,145 may attach only changed management informa 
tion to a Subsequent status response or status inquiry message. 
Alternatively, if the management information will not 
increase a bandwidth necessary to transmit a status response 
or status inquiry message, the management information may 
be added to the message even if the management information 
has not changed. This may be useful, for example, in case 
originally transmitted management information was cor 
rupted, or if it was never received. 
0039 FIG. 2 illustrates a flow diagram of one embodiment 
for a method 200 of attaching management information to 
status response messages in a distributed computing system. 
In one embodiment, the distributed computing system is a 
service oriented architecture (SOA) that includes an enter 
prise service bus (ESB). The method may be performed by 
processing logic that may comprise hardware (e.g., circuitry, 
dedicated logic, programmable logic, microcode, etc.), soft 
ware (such as instructions run on a processing device), or a 
combination thereof. In one embodiment, method 200 is per 
formed by a machine of distributed computing system 100 of 
FIG 1. 

0040. Referring to FIG. 2, method 200 includes receiving 
a status inquiry message at a first machine (block 205). The 
status inquiry message may be received by a status agent that 
is included in the first machine. The status inquiry message 
may have been generated at a second machine. 
0041 At block 210, processing logic determines whether 
the status inquiry message includes unsolicited management 
information. When an operating system (or status agent) gen 
erates a status inquiry message, the operating system may add 
unsolicited management information pertaining to a machine 



US 2014/0372534 A1 

on which the operating system operates, and/or services and 
applications that operate on the machine. In one embodiment, 
the status inquiry message consumes a same amount of band 
width with the attached management information as it would 
have if it had been transmitted without the management infor 
mation. If the status inquiry message includes unsolicited 
management information, the method continues to block 215. 
If the status inquiry message does not include unsolicited 
management information, the method proceeds to block 225. 
0042. At block 215, the unsolicited management informa 
tion is cached. The management information may be cached, 
for example, in a data store, or in a temporary volatile 
memory. At block 220, the unsolicited management informa 
tion is forwarded to a management application. The unsolic 
ited management information may be forwarded to the man 
agement application prior to intercepting a request from the 
management application for the management information. 
Alternatively, the unsolicited management information may 
be provided to the management application upon intercepting 
a management message that requests the management infor 
mation. In either case, the management information can be 
immediately available when the management application 
needs it. 
0043. At block 225, a status response message is gener 
ated. The status response message may be generated by a 
status agent that is included in the first machine. At block 230, 
management information is attached to the status response 
message. The management information may include operat 
ing statistics that that pertain to the first machine and/or 
applications and services that operate on the first machine. At 
block 235, the status response message is transmitted to a 
second machine from which the status inquiry message origi 
nated. The method then ends. 

0044 FIG.3 illustrates a flow diagram of another embodi 
ment for a method 300 of attaching management information 
to status response messages in a distributed computing sys 
tem. In one embodiment, the distributed computing system is 
a service oriented architecture (SOA) that includes an enter 
prise service bus (ESB). The method may be performed by 
processing logic that may comprise hardware (e.g., circuitry, 
dedicated logic, programmable logic, microcode, etc.), soft 
ware (such as instructions run on a processing device), or a 
combination thereof. In one embodiment, method 300 is per 
formed by a machine of distributed computing system 100 of 
FIG 1. 

0045 Referring to FIG.3, method 300 includes receiving 
a first status inquiry message at a first machine (block 305). At 
block 310, a status response message is generated. At block 
315, processing logic determines whether a second machine 
from which the status inquiry message originated is equipped 
to receive management information via status response mes 
sages. Such a determination may be made by examining a 
table that identifies for each machine in a distributed comput 
ing system whether or not the machine is equipped to receive 
management information via status inquiry and/or status 
response messages. 

0046 Alternatively, such a determination may be made by 
examining the status inquiry message. Status inquiry mes 
sages may include a tag that identifies whether they were 
generated by a machine that can receive management infor 
mation via Status response messages. Moreover, if the status 
inquiry message includes unsolicited management informa 
tion, this identifies the machine that generated the status 
inquiry message as equipped to receive management infor 

Dec. 18, 2014 

mation. If the second machine is equipped to receive man 
agement information via status response messages, the 
method proceeds to block 320. Otherwise the method pro 
ceeds to block 330. 

0047. At block 320, first management information is 
attached to the first status response message. First manage 
ment information includes operating statistics that pertain to 
the first machine and/or applications and services that operate 
on the first machine. At block 325, first management infor 
mation is cached in a transmission log. The transmission log 
identifies what management information is sent to remote 
machines. At block 330, the first status response message is 
transmitted to a second machine from which the status 
inquiry message originated. 
0048. At block 335, processing logic determines whether 
any additional status inquiry messages are received from the 
second machine. If no additional status inquiry messages are 
received, the method ends. If additional status inquiry mes 
sages are received from the second machine, the method 
proceeds to block 340. 
0049. At block 340, an additional status response message 

is generated. At block 345, processing logic determines new 
and/or additional management information to attach to the 
additional status response message. Additional management 
information may include management information that was 
not sent in the initial status response message. For example, 
first machine may have failed to attach management informa 
tion pertaining to one or more services that operate on the first 
machine in the initial status response message. New manage 
ment information may include updates to management infor 
mation that was included in the initial status response mes 
sage. For example, if a state of a first service included in the 
first machine has changed, this data may be included in the 
new management information. 
0050. At block 350, the new and/or additional manage 
ment information is compared to first management informa 
tion (e.g., by examining the transmission log). At block 355. 
processing logic determines whether the new/additional man 
agement information is different from the first management 
information. If the new/additional management information 
is not different from first management information, the 
method proceeds to block 365. If the new/additional manage 
ment information is different from first management infor 
mation, the method continues to block 360. 
0051. At block 360, the new/additional management 
information is attached to the additional status response mes 
sage. At block 365, the additional status response message is 
transmitted to the second machine. The method then proceeds 
to block 335. 

0.052 Method 300 may continue indefinitely so long as 
status inquiry messages continue to be received from second 
machine. In one embodiment, if no additional status inquiry 
messages are received in a specified time period, processing 
logic times out, and the method is terminated. 
0053 FIG. 4 illustrates a flow diagram of one embodiment 
for a method 400 of receiving management information via 
status response messages in a distributed computing system. 
In one embodiment, the distributed computing system is a 
service oriented architecture (SOA) that includes an enter 
prise service bus (ESB). The method may be performed by 
processing logic that may comprise hardware (e.g., circuitry, 
dedicated logic, programmable logic, microcode, etc.), soft 
ware (such as instructions run on a processing device), or a 



US 2014/0372534 A1 

combination thereof. In one embodiment, method 400 is per 
formed by a machine of distributed computing system 100 of 
FIG 1. 
0054 Referring to FIG.4, method 400 includes generating 
a status inquiry message at a first machine (block 405). The 
status inquiry message may be generated by an operating 
system or status agent that runs on the first machine. The 
status inquiry message may be directed to a second machine, 
or to a service that operates on the second machine. 
0055. At block 410, processing logic determines whether 
to attach unsolicited management information to the status 
inquiry message. In one embodiment, management informa 
tion is attached to the status inquiry message if a recipient of 
the status inquiry message is equipped to receive manage 
ment information via status inquiry messages. If the process 
ing logic is to attach management information to the status 
inquiry message, the method proceeds to block 415. Other 
wise, the method proceeds to block 425. 
0056. At block 415, the unsolicited management informa 
tion is attached to the status inquiry message. At block 420, 
the unsolicited management information is cached in a trans 
mission log. At block 425, the status inquiry message is 
transmitted to a second machine. 
0057. At block 430, a status response message is received 
from the second machine. The status response message may 
include management information. At block 435, the received 
management information is cached (e.g., in a data store). The 
received management information may also be forwarded to 
a management application that is included in the first 
machine. The method then ends. 
0058 FIG. 5 illustrates a flow diagram of another embodi 
ment for a method 500 of receiving management information 
via status response messages in a distributed computing sys 
tem. In one embodiment, the distributed computing system is 
a service oriented architecture (SOA) that includes an enter 
prise service bus (ESB). The method may be performed by 
processing logic that may comprise hardware (e.g., circuitry, 
dedicated logic, programmable logic, microcode, etc.), soft 
ware (such as instructions run on a processing device), or a 
combination thereof. In one embodiment, method 500 is per 
formed by a machine of distributed computing system 100 of 
FIG 1. 

0059 Referring to FIG.5, method 500 includes generating 
a status inquiry message at a first machine (block 405). The 
status inquiry message may be generated by an operating 
system or status agent that runs on the first machine. The 
status inquiry message may be directed to a second machine, 
or to a service that operates on the second machine. At block 
510, the status inquiry message is transmitted to a second 
machine. At block 515, a status response message is received 
from the second machine that includes management informa 
tion. At block 520, the received management information is 
cached (e.g., in a data store). 
0060. At block 525, a management message is intercepted 
from a management application. The intercepted manage 
ment message may include a request for management infor 
mation. At block 530, processing logic determines whether 
the requested management information is included in the 
received management information. For example, the received 
management information may include operating statistics on 
a first service and a second service. If the request is for 
operating statistics on the first service, then the requested 
management information would be included in the received 
management information. If the request is for operating sta 

Dec. 18, 2014 

tistics of a third service, then the requested management 
information is not included in the received management 
information. If the requested management information is 
included in the received management information, the 
method proceeds to block 560. If the requested management 
information is not included in the received management 
information, the method continues to block 535. 
0061. At block535, an additional status inquiry message is 
generated at the first machine. At block 540, a management 
information query is attached to the additional status inquiry 
message. The management information query identifies the 
requested management information. At block 545, the addi 
tional status inquiry message is transmitted to the second 
machine. 

0062. At block 550, an additional status response message 
is received that includes the requested management informa 
tion. At block 555, the requested management information is 
cached. At block 560, the requested management information 
is forwarded to the management application. The method 
then ends. 

0063 FIG. 6 illustrates a diagrammatic representation of a 
machine in the exemplary form of a computer system 600 
within which a set of instructions, for causing the machine to 
perform any one or more of the methodologies discussed 
herein, may be executed. In alternative embodiments, the 
machine may be connected (e.g., networked) to other 
machines in a Local Area Network (LAN), an intranet, an 
extranet, or the Internet. The machine may operate in the 
capacity of a server or a client machine in a client-server 
network environment, or as a peer machine in a peer-to-peer 
(or distributed) network environment. The machine may be a 
personal computer (PC), a tablet PC, a set-top box (STB), a 
Personal Digital Assistant (PDA), a cellular telephone, a web 
appliance, a server, a network router, Switch or bridge, or any 
machine capable of executing a set of instructions (sequential 
or otherwise) that specify actions to be taken by that machine. 
Further, while only a single machine is illustrated, the term 
“machine' shall also be taken to include any collection of 
machines (e.g., computers) that individually or jointly 
execute a set (or multiple sets) of instructions to perform any 
one or more of the methodologies discussed herein. 
0064. The exemplary computer system 600 includes a pro 
cessor 602, a main memory 604 (e.g., read-only memory 
(ROM), flash memory, dynamic random access memory 
(DRAM) such as synchronous DRAM (SDRAM) or Rambus 
DRAM (RDRAM), etc.), a static memory 606 (e.g., flash 
memory, static random access memory (SRAM), etc.), and a 
secondary memory 618 (e.g., a data storage device), which 
communicate with each other via a bus 630. 

0065 Processor 602 represents one or more general-pur 
pose processing devices such as a microprocessor, central 
processing unit, or the like. More particularly, the processor 
602 may be a complex instruction set computing (CISC) 
microprocessor, reduced instruction set computing (RISC) 
microprocessor, very long instruction word (VLIW) micro 
processor, processor implementing other instruction sets, or 
processors implementing a combination of instruction sets. 
Processor 602 may also be one or more special-purpose pro 
cessing devices such as an application specific integrated 
circuit (ASIC), a field programmable gate array (FPGA), a 
digital signal processor (DSP), network processor, or the like. 
Processor 602 is configured to execute the processing logic 
626 for performing the operations and steps discussed herein. 



US 2014/0372534 A1 

0066. The computer system 600 may further include a 
network interface device 608. The computer system 600 also 
may include a video display unit 610 (e.g., a liquid crystal 
display (LCD) or a cathode ray tube (CRT)), an alphanumeric 
input device 612 (e.g., a keyboard), a cursor control device 
614 (e.g., a mouse), and a signal generation device 616 (e.g., 
a speaker). 
0067. The secondary memory 618 may include a machine 
readable storage medium (or more specifically a computer 
readable storage medium) 631 on which is stored one or more 
sets of instructions (e.g., software 622) embodying any one or 
more of the methodologies or functions described herein. The 
software 622 may also reside, completely or at least partially, 
within the main memory 604 and/or within the processing 
device 602 during execution thereof by the computer system 
600, the main memory 604 and the processing device 602 also 
constituting machine-readable storage media. The software 
622 may further be transmitted or received over a network 
620 via the network interface device 608. 

0068. The machine-readable storage medium 631 may 
also be used to store the first intermediary 145, first status 
agent 148 and/or first management application 130 of FIG. 1, 
and/or a software library containing methods that call the first 
intermediary 145, first status agent 148 and/or first manage 
ment application 130. While the machine-readable storage 
medium 631 is shown in an exemplary embodiment to be a 
single medium, the term “machine-readable storage 
medium” should be taken to include a single medium or 
multiple media (e.g., a centralized or distributed database, 
and/or associated caches and servers) that store the one or 
more sets of instructions. The term “machine-readable stor 
age medium’ shall also be taken to include any medium that 
is capable of storing or encoding a set of instructions for 
execution by the machine and that cause the machine to 
performany one or more of the methodologies of the present 
invention. The term “machine-readable storage medium” 

Dec. 18, 2014 

shall accordingly be taken to include, but not be limited to, 
Solid-state memories, and optical and magnetic media. 
0069. It is to be understood that the above description is 
intended to be illustrative, and not restrictive. Many other 
embodiments will be apparent to those of skill in the art upon 
reading and understanding the above description. Although 
the present invention has been described with reference to 
specific exemplary embodiments, it will be recognized that 
the invention is not limited to the embodiments described, but 
can be practiced with modification and alteration within the 
spirit and scope of the appended claims. Accordingly, the 
specification and drawings are to be regarded in an illustrative 
sense rather than a restrictive sense. The scope of the inven 
tion should, therefore, be determined with reference to the 
appended claims, along with the full scope of equivalents to 
which such claims are entitled. 
What is claimed is: 
1. A method, comprising: 
receiving a status inquiry message at a first machine, the 

first machine comprising a processor, via a network, 
wherein the status inquiry message is directed to one of 
the first machine or a service operating on the first 
machine; 

generating a status response message at the first machine, 
the status response message indicating that at least one 
of the first machine or the service is operational; 

determining, by the processor, whether a second machine 
is equipped to receive management information; 

attaching the management information to the status 
response message based on the determination, the man 
agement information comprising operating statistics of 
at least one of the first machine, the service, and an 
additional service that operates on the first machine; and 

transmitting the status response message, with the attached 
management information, to the second machine at 
which the status inquiry message was generated. 

ck ck ck ck ck 


