wo 2015/200600 A 1[I 0FV0 00000 T O O

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2015/200600 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Filing Date:
25 June 2015 (25.06.2015)

Filing Language: English
Publication Language: English
Priority Data:

62/017,193 25 June 2014 (25.06.2014) US

Applicant: GOOGLE INC. [US/US]; 1600 Amphitheatre
Parkway, Mountain View, California 94303 (US).

Inventors: CHANG, Lawrence; 1600 Amphitheatre Park-
way, Mountain View, California 94043 (US). XU, Hui;
1600 Amphitheatre Parkway, Mountain View, California
94043 (US).

Agent: FRANZ, Paul E.; Fish & Richardson P.C., P.O.
Box 1022, Minneapolis, Minnesota 55440-1022 (US).

30 December 2015 (30.12.2015) WIPO I PCT
International Patent Classification: (81)
GO6F 17/30 (2006.01)

International Application Number:
PCT/US2015/037639

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: DEEP LINKS FOR NATIVE APPLICATIONS

1002

Application
Publisher
106
Application
107

Resource o
Publisher || |®

104

Resource
105

]

Publisher Backend

Web Server
134

Native
Application
Server

Publisher
Store
132

Search
System
110

Application

Application
Crawling And
Indexing System

107

Application
Manifest

109

136

FIG. 1

(57) Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for auto -
matically generating native application deep links and indexing content retrieved from the deep links.

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

DEEP LINKS FOR NATIVE APPLICATIONS

CLAIM OF PRIORITY
This application claims priority under 35 USC §119(e) to U.S. Patent Application
Serial No. 62/017,193, filed on June 25, 2014, the entire contents of which are hereby

incorporated by reference.

BACKGROUND

The Internet provides access to a wide variety of information. For example,
digital image files, video and/or audio files, as well as web page resources for particular
subjects or particular news articles, are accessible over the Internet. With respect to web
page resources, many of these resources are designed to facilitate the performing of
particular functions, such as banking, booking hotel reservations, shopping, etc., or to
provide structured information, such as on-line encyclopedias, movie databases, etc.

A variety of search engines are available for identifying particular web page
resources accessible over the Internet. With the advent of tablet computers and smart
phones, native applications that facilitate the performance of the same functions
facilitated by the use of web page resources are now being provided in large numbers.

A user’s informational need may thus be satisfied by providing search results that
identify either one (or both) of a particular web page resource or a native applications that
facilitates the performance of the same functions facilitated by web page resource, or

presents the same or very similar information as the web page resource.

SUMMARY

The present disclosure relates to native application deep linking, and more
specifically to systems and methods for automatically generating native application deep
links.

In general, one innovative aspect of the subject matter described in this
specification can be embodied in methods that include the actions of receiving publisher
affiliation data for native applications that define, for each native application, an affiliated
publisher for the native application; for each native application of a set of native
applications, determining, based on the publisher affiliation data, whether it is affiliated
with a publisher that provides content addressed by URIs determined for the native

application; for only the native applications that are determined to be affiliated with a

1

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

publisher that provides content addressed by URIs determined for the native application:
selecting URIs based on the URI pattern for the native application, indexing content
accessible by the URI for the native application in an index that is searchable by a search
engine. Other embodiments of this aspect include corresponding systems, apparatus, and
computer programs, configured to perform the actions of the methods, encoded on
computer storage devices.

Another innovative aspect of the subject matter described in this specification can
be embodied in methods that include the actions of determining a uniform resource
identifier (URI) pattern for a native application; instantiating the native application and
selecting a first URI based on the URI pattern to generate an application page in the
native application display environment; indexing application page data of the application
page in an index that is searchable by a search engine; iteratively processing linked
application pages for the native application until a cessation event occurs, the iterative
processing comprising for each iteration; determining, from the application page,
outbound URIs including in the first application page; selecting one or more of the
outbound URISs to generate one or more subsequent application pages in the native
application display environment; indexing the application page data for each of the one or
more subsequent application pages in the index. Other embodiments of this aspect
include corresponding systems, apparatus, and computer programs, configured to perform
the actions of the methods, encoded on computer storage devices.

Particular embodiments of the subject matter described in this specification can be
implemented so as to realize one or more of the following advantages. The generation of
the deep links makes it easier for application developers to participate in native
application indexing, which in turn helps drive usage and re-engagement of their
applications. The system also lowers the barrier for participation.

The details of one or more embodiments of the subject matter described in this
specification are set forth in the accompanying drawings and the description below.

Other features, aspects, and advantages of the subject matter will become apparent from

the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram of an example environment in which deep links for
native applications are generated.

Fig. 2 is a block diagram of an application crawling and indexing system.

2

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

Fig. 3 is a flow diagram of an example process for generating deep links for native
applications.

Fig. 4 is a flow diagram of another example process for generating deep links for
native applications.

Like reference numbers and designations in the various drawings indicate like

elements.

DETAILED DESCRIPTION

A system provides native application search results. As used herein, a native
application operates independent of a browser application on the user device. A native
application is an application specifically designed to run on a particular user device
operating system and machine firmware and not within a browser. Native applications
thus differ from browsers, browser-based applications and browser-rendered resources.
The latter require all, or at least some, eclements or instructions downloaded from a web
server each time they are instantiated or rendered. Furthermore, browser-based
applications and browser-rendered resources can be processed by all web-capable mobile
devices within the browser and thus are not operating system specific as are native
applications. Furthermore, as used herein, a native application search result is a search
result that corresponds to a particular native application and that, when selected, invokes
the particular native application.

Examples of native application include applications to create text documents, edit
photographs, play music, interface with a remote banking system, and so on. Mobile
native applications are designed to operate on mobile devices such as smart phones,
tablets, and so on. Web native applications are designed to run within (both visually and
functionally) web browser software. At a very high level, native applications, or simply
“apps,” provide a user with access to content and/or functionality.

Internet search engines provide the ability to search an indexed collection of web
pages that exist on the Internet. The typical search engine provides, in response to a
query, a list of results relevant to the query, often with hyperlinks allowing a user to
quickly navigate to a result of interest. A user may select a linked result and thereby be
provided with a web page(s) containing content about a celebrity, product, business, etc.
The links may be to a site’s “home page” (e.g., a welcome and search page for a site

aggregating cooking information such as recipes) or may be a “content page” that a user

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

can access when navigating from a site’s home page (e.g., a specific recipe at the cooking
information site). Links to content pages, as opposed to home pages, are referred to as
“deep links” (and the process for crawling, indexing, and serving these content pages is
similarly referred to as “deep linking™).

The ability to navigate to a page, as well as the accessibility of content and
functionality that that page provides, is dictated in part by the nature of the published
page. For example, certain pages may contain dynamic content (e.g., asynchronous java
script and XML (AJAX), Adobe Flash, etc.) that are difficult or impossible to crawl and
retrieve. Consequently, these pages may not be available in response to a search, a user
may not be able to save the page as a bookmark or the like, and page navigation via
browser controls (e.g., forward and back in history) may not operate as intended.

Some native applications lack some of the basic properties of websites when it
comes to linking. First, when a search engine crawls a native application, it cannot
simply inspect the existing link to a page and look at the outbound links of the page like it
can by looking at the HTML of a webpage. Second, many native applications do not link
to one another the way that websites inherently do, so search engines cannot rely on
crawling the web to discover app deep links like they can for discovering web links. This
makes it challenging for native application search engines in that it is much more difficult
to discover links that a native application supports. If a native application search engine
cannot discover links, then it cannot index them, retrieve them, and serve them to users.

Furthermore, some native applications have corresponding web pages for the
URISs the native applications access, while others do not. Of those that do have
corresponding web pages, some native applications maintain duplicate or corresponding
content and functionality between the native application and web platforms, while other
native applications have small or large degree differences between mobile and web
platforms.

Some systems for indexing native applications rely on developers to publish their
native application deep links either as HTML markup on their webpages or in their
existing sitemaps. That is, the native application provider must have both a web platform
and at least map the native application pages at the website. Some services providing
native application deep linking also rely on developers publishing their native application

deep links on their webpages.

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

According to the present disclosure, native application deep links may be
automatically generated for indexing purposes. There are numerous methods for native
application deep link generation, depending on the nature of the native application deep
links. For example, some native applications support deep links having URIs that
conform to web-based uniform resource locators (URLS), such as
http://www.example.com, etc. Other native applications use a custom URI that does not
necessarily conform to a particular HTTP protocol.

For native applications that support deep linking based on web-based URLs, a
process to generate native application deep links includes:

1) Native application developers verify their official website with
a centralized indexing service. The service then indexes the native
application based on the previously indexed web URLs discovered through
web crawling.

2) A native application data crawling and indexing system inspects
registration information, such as a manifest file, of the native application
to determine if it supports the appropriate URL structure of the website.

3) If the native application does support the appropriate URL
structure, the native application data crawling and indexing system can
determine and prioritize links based on criteria such as popularity. The
native application data crawling and indexing system will also respect any
non-index tag in the registration information which specifies which URL
paths should not be indexed.

According to a second aspect of the present disclosure, for native applications that
support custom deep linking, a system implements a method comprising the following
steps:

1) Native application developers implement a native application
indexing API that allows specifying the URI address of a particular native
application document, its corresponding web URL (if any), and all
outbound app deep links and their associated web URLs (if any) that are
on the document.

2) Once a native application is updated at a digital distribution
source, the native application data crawling and indexing system inspects

the native application to determine if it is using the native application

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

indexing APL. If so, then the native application data crawling and indexing

system launches the native application and looks for the link to native

applications “home page.” The native application data crawling and

indexing system also looks for any outbound URI links on the application

page. Ifthere are outbound URIs, then the native application data

crawling and indexing system will index each of those links (or only

affiliated links), and will also in turn process the subsequent native

application pages for outbound URIs as well. Thus the native application

data crawling and indexing system is able to automatically discover links.

And at each step, the native application data crawling and indexing system

can check the current link of the application page against the source link as

a method of authentication.

3) The native application data crawling and indexing system can be

used to maintain a list of those links that are actually being viewed by the

user within a native application, and provide that list to the native

application data crawling and indexing system. The native application

data crawling and indexing system uses this list as an additional source of

links, in addition to the automatic discovery described in the previous step.

Furthermore, the lists of links that are actually viewed can be used to

determine link popularity, and the native application data crawling and

indexing system can then prioritize crawling based on the popularity of

links.

Accordingly, the systems and methods described herein can provide an automatic
indexing of native application deep links. The systems and methods may further
determine and utilize link prioritizations from actual user activity. Prioritization permits,
inter alia, optimizing the utilization of search resources. Finally, systems and methods are
disclosed that can accommodate apps with and without corresponding websites,
overcoming the limitations of existing techniques that require apps to publish links
through corresponding webpages.

Fig. 1 is a block diagram of an example environment 100 in which deep links for
native applications are generated. A computer network 102, such as the Internet,
connects resource publisher web sites 104, application publishers 106, user devices 108

and a search engine 120.

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

A resource publisher website 104 includes one or more web resources 105
associated with a domain and hosted by one or more servers in one or more locations.
Generally, a resource publisher website is a collection of web pages formatted in
hypertext markup language (HTML) that can contain text, images, multimedia content,
and programming elements. Each website 104 is maintained by a content publisher,
which is an entity that controls, manages and/or owns the website 104.

A web page resource is any data that can be provided by a publisher website 104
over the network 102 and that has a resource address, e.g., a uniform resource locator
(URL). Web resources may be HTML pages, images files, video files, audio files, and
feed sources, to name just a few. The resources may include embedded information, e.g.,
meta information and hyperlinks, and/or embedded instructions, ¢.g., client-side scripts.

An application publisher website 106 may also include one or more web resources
105, and also provides native applications 107. A native application 107 is an application
specifically designed to run on a particular user device operating system and machine
firmware. Native applications 107 may include multiple versions designed to run on
different platforms. For example, native applications corresponding to a movie database
website may include a first native application that runs on a first type of smart phone, a
second native application that runs on a second type of smart phone, a third native
application that runs on a first type of tablet, etc.

An application page is a particular display environment within a native application
and in which is displayed content, such as text, images, and the like. An application page
is specific to the particular native application, and the native application is specific to the
particular operating system of the user device 108. An application page differs from a
rendered web resource in that the application page is generated within and specific to the
native application, while a web resource may be rendered in any browser for which the
web page resource is compatible, and is independent of the operating system of the user
device.

Some publishers 104 and 106 may be the same, and provide the same content in
both web resources and native applications. The management of the delivery of such
content is handled by a publisher backend 130. The publisher backend 130 includes a
publisher store 132 that stores content the publisher provides, a web server 134 that
provides the content from the publisher store as web resources (e.g., web pages), and a

native application server 136 that handles requests from a native application. The web

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

pages correspond to native application pages, and thus for many native application URIs
there are corresponding web page URIs. Some native applications may also simply use
the same URLSs as the web pages to which they correspond. The content of the publisher
store 132 is accessible for presentation on both the web resources and the corresponding
native application pages. Accordingly, such content is referred to as “synchronized”
content.

Examples of such publishers are news publishers, which may have a “mobile
news app” for reading news content on a mobile device. The news content (e.g., the text
of news story) provided on web resources 105 are the same content that is provided by the
corresponding application pages of the native application 107.

A user device 108 is an electronic device that is capable of requesting and
receiving web page resources 105 and native applications 107 over the network 102.
Example user devices 108 include personal computers, mobile communication devices,
and tablet computers.

The web index 116 is an index of publisher content that has, for example, been
built from crawling the publisher websites 104, by receiving data feeds from the publisher
websites 104, or by other appropriate methods of collecting and indexing data.

The native application index 114 stores data relating to native applications 107.
The application index 114 stores, for example, a list of native applications provided by
the publishers 104 and identifiers that identify the native applications. Furthermore, in
some implementations, publishers 104 may specify that certain native applications 107
are used to access and display synchronized data, and this information may be stored in
the application index. For example, a news publisher may specify that a news reading
application it provides displays synchronized content that is displayed on the news
publisher’s website.

The user devices 108 submit search queries to the search engine 110. In response
to each query, the search engine 110 accesses the web index 116 and the application
index 114 to identify content that is relevant to the query. The search engine 110 may,
for example, identify the resources and applications in the form of web resource search
results and native application search results, respectively, by of use a search result
generator 116. Once generated, the search results are provided to the user device 108

from which the query was received.

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

A web resource search result is data generated by the search engine 110 that
identifies a web resource, based on the content of the resource that satisfies a particular
search query. A web resource search result for a resource can include a web page title, a
snippet of text extracted from the resource, and a uniform resource identifier (URI) for
the resource, ¢.g., the uniform resource locator (URL) of the web page. When selected at
a user device, the web resource search result causes the user device to generate a request
for the resource located at the URL. The web resource that is received is then displayed
in a browser application.

A native application search result specifies a native application and is generated in
response to a search of the application index 114 and the web index 116, as described in
more detail below. When selected at a user device, the native application search result
causes the native application installed on the user device to request the synchronized
content. Once the native application receives the requested content, the native application
displays the content in a user interface of the native application.

To generate the application index 114, the search system utilizes an application
crawling and indexing system 120. Fig. 2 is a block diagram of an application crawling
and indexing system 120. Operation of the system 120 in the context of native
applications that use URLSs is described with reference to Fig. 3. A variation of the
operation for native applications that use custom URIs is described with reference to Fig.
4.

Fig. 3 is a flow diagram of an example process 300 for generating deep links for
native applications. The process 300 is implemented in a data processing apparatus of
one or more computers.

The process 300 receives at the data collector 204 publisher affiliation data 202
for native applications that define, for each native application, an affiliated publisher for
the native application (302). For example, publishers provide data that a particular native
application is affiliated with the publisher, such as an association of a native application
identifier with a site identifier of the publisher. One example site identifier is a domain
name, but other types of data for defining an affiliation between a publisher and native
application can be used.

The process 300, for a native application, determines based on the publisher
affiliation data whether the native application is affiliated with a publisher that provides

content addressed by URIs determined for the native application (304). For example, the

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

application package crawler 206 extracts from an application manifest file 109 (or other
data defining similar application specifications) a scheme, host and path of a URI format
for the native application. For example, in the case of an Android manifest, the following

is extracted from an intent filter section:

<data android:scheme="http"
android:host="example.com"

android:pathPrefix="/gizmos" />

Here the scheme is “http,”, the host is “example.com,” and the path is “/gizmos.”
The process determining a URI pattern for the native application, and whether the URI
pattern defines an affiliated publisher for the native application that matches an affiliated
publisher for the native application specified by the publisher affiliation data 202. To
illustrate, for the example data above, if the affiliation data 202 defines a scheme of
“http” for a native application, and a host of “example.com,” and the manifest 109 of the
native application 107 defines the same scheme and host, then the native application is
affiliated with the host.

If the determination is positive, the URI scheme generator 208 stores the data for
the native application in the URI scheme table 210, and then the process 300 selects URIs
based on the URI pattern for the native application (306). For example, in some
implementations, the URI selector 212 retrieves the URI pattern from the URI scheme
table 210. The selector 212 then searches the web index 116 for URL’s that that include
the URI pattern. In the example above, candidate URLs that being with
http://example.com/gizmos/ will be processed by the selector 212. The selector 212 may
discard URLs that may include an indication they are not to be crawled; that have been
recently searched and indexed for the native application, that are indicated as being
deleted or inactive; or URLs that meet some other exclusion criteria.

The remaining URLSs that are selected are provided to a URI processor 214, which
the collects data from content accessible by the URL. The process 300 then indexes
content accessible by the URL for the native application in an index that is searchable by
a search engine (308). The collection and indexing of data can be done by any
appropriate process. In one example implementation, system 120 instantiates a virtual

machine emulating an operating system for a user device. The virtual machine may, in

10

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

some implementations, be a modified version of the operating system and includes
extractors that extract data from application pages as described in more detail below.

The system 120 also instantiates, within the virtual machine, a native application
107 that generates application pages for display on a user device within the native
application 107, and then accesses, within the virtual machine, application pages of the
native application generated in response to processing the selected URLs. For each
application page, the system 110 generates application page data describing content of the
application page. The content of the page may include, for example, text displayed on the
application page; images displayed on the application page; links on the application page
to other application pages or other web resources; and other content that is appropriate for
indexing.

In some implementations, the virtual machine includes extractors that extract
content data for indexing. The extracted content data is, for example, data that is
provided to a rendering process of the native application. The rendering process renders
content based on the data for display on a user device. Use of extractors allows for more
accurate identification of the various content of an application page. For example, the
text extractor extracts text data provided to a rendering process of the native application.
The text data specifies the text that is to be rendered in the application page. Thus, rather
than processing an image of the application page, or processing binary data of the display,
the virtual machine receives the actual text that is to be rendered in the environment of
the native application 107.

Other extractors can likewise be used, such as an image extractor and a list
extractor. The image extractor provides image data of an image that is to be rendered in
the environment of the native application 107, and the list extractor provides list data of a
list of scrollable items that is rendered in the environment of the native application 107.
Other data can also be extracted, such as application page link data describing links
within the application page that link to another application page; web page link data
describing links within the application page that link to a web resource referenced by a
uniform resource locator and that, when selected, instantiate a browser application that
renders the resource in a browser environment separate from the native application; etc.

The extractors described above, and other appropriate data extractors, can be
implemented using appropriate data handlers for a particular operating system. For

example, for the Android™ operating system, the extractors may be implemented using

11

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

TextView objects, ImageView objects, and ListView objects, respectively. The virtual
machine processes the objects to extract the corresponding data, e.g., by including
instructions that cause the virtual machine to store for indexing the corresponding data
that is provided for rendering.

Returning to 304, if the determination is negative, then the process 300 does not
process URIs of publisher (310). This facilitates the indexing of publisher content for
only the native application that are affiliated with the publisher (e.g., published by the
publisher or approved by the publisher to display publisher content).

For native applications that support custom deep linking that does not necessarily
conform to a website, a different process is used to generate deep links. Fig. 4 is a flow
diagram of another example process for generating deep links for native applications.
The process 400 is implemented in a data processing apparatus of one or more computers.

The process 400 determines a URI pattern for a native application (402). For
example, the application manifest 109 may be accessed to determine the URI scheme.
The URI scheme may be used to define a “top level” native application URI resource, or
may be used to select URIs that have already been indexed for the native application.

The process 400 instantiate the native application and selects a first URI based on
the URI pattern to generate an application page in the native application display
environment (404). For example, a virtual machine is instantiated, and on the virtual
machine the native application is also instantiated. The URI is provided to the native
application and the application page is rendered.

The process 400 begins an iterative discovery process (406). The process will
continue until a complete set of URIs have been processed.

The process 400 determines, from the application page, outbound URIs including
in the first application page (408). For example, a native application API determines
from the application page data URIs that link to other native application URIs. The
determination can be made, for example, by processing text extracted from the
application page for matches to the URI pattern generated from the manifest 109; or
based on the API selecting mark-up text that defines outgoing URIs.

The process 400 selects one or more of the outbound URIs to generate one or
more subsequent application pages in the native application display environment (410).
In some implementations, all outgoing URIs are selected. In other implementations, only

the outbound URIs conforming to the URI pattern of the native application are selected.

12

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

The process 400 indexes the application page data for each of the one or more
subsequent application pages in the index (412). As described above, the system 110 can
use a virtual machine, or some other construct, to extract the application page data for
indexing.

The process 400 determines if the iterative discovery process has ended (414). If
the iterative discovery process has ended, then the process 400 ends application indexing
for the native application (416). Otherwise, the process 400 returns to step 406 and
begins another iteration.

In some implementations, when actual users view content within the native
applications, the native application API can be used to let the application crawling and
indexing system 120 know that links that are actually being viewed by users. The
application crawling and indexing system 120 can use this information as an additional
source of links, in addition to the organic discovery described above. Furthermore, the
application crawling and indexing system 120 can also prioritize crawling based on the
popularity of links.

Embodiments of the subject matter and the operations described in this
specification can be implemented in digital electronic circuitry, or in computer software,
firmware, or hardware, including the structures disclosed in this specification and their
structural equivalents, or in combinations of one or more of them. Embodiments of the
subject matter described in this specification can be implemented as one or more
computer programs, i.e., one or more modules of computer program instructions, encoded
on computer storage medium for execution by, or to control the operation of, data
processing apparatus. Alternatively or in addition, the program instructions can be
encoded on an artificially-generated propagated signal, e.g., a machine-generated
electrical, optical, or electromagnetic signal that is generated to encode information for
transmission to suitable receiver apparatus for execution by a data processing apparatus.
A computer storage medium can be, or be included in, a computer-readable storage
device, a computer-readable storage substrate, a random or serial access memory array or
device, or a combination of one or more of them. Moreover, while a computer storage
medium is not a propagated signal, a computer storage medium can be a source or
destination of computer program instructions encoded in an artificially-generated

propagated signal. The computer storage medium can also be, or be included in, one or

13

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

more separate physical components or media (e.g., multiple CDs, disks, or other storage
devices).

The operations described in this specification can be implemented as operations
performed by a data processing apparatus on data stored on one or more computer-
readable storage devices or received from other sources.

The term “data processing apparatus” encompasses all kinds of apparatus, devices,
and machines for processing data, including by way of example a programmable
processor, a computer, a system on a chip, or multiple ones, or combinations, of the
foregoing. The apparatus can also include, in addition to hardware, code that creates an
execution environment for the computer program in question, e.g., code that constitutes
processor firmware, a protocol stack, a database management system, an operating
system, a cross-platform runtime environment, a virtual machine, or a combination of one
or more of them. The apparatus and execution environment can realize various different
computing model infrastructures, such as web services, distributed computing and grid
computing infrastructures.

A computer program (also known as a program, software, software application,
script, or code) can be written in any form of programming language, including compiled
or interpreted languages, declarative or procedural languages, and it can be deployed in
any form, including as a stand-alone program or as a module, component, subroutine,
object, or other unit suitable for use in a computing environment. A computer program
may, but need not, correspond to a file in a file system. A program can be stored in a
portion of a file that holds other programs or data (e.g., one or more scripts stored in a
markup language document), in a single file dedicated to the program in question, or in
multiple coordinated files (e.g., files that store one or more modules, sub-programs, or
portions of code). A computer program can be deployed to be executed on one computer
or on multiple computers that are located at one site or distributed across multiple sites
and interconnected by a communication network.

The processes and logic flows described in this specification can be performed by
one or more programmable processors executing one or more computer programs to
perform actions by operating on input data and generating output. Processors suitable for
the execution of a computer program include, by way of example, both general and
special purpose microprocessors, and any one or more processors of any kind of digital

computer. Generally, a processor will receive instructions and data from a read-only

14

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

memory or a random access memory or both. The essential elements of a computer are a
processor for performing actions in accordance with instructions and one or more
memory devices for storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or transfer data to, or both, one or
more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or
optical disks. However, a computer need not have such devices. Moreover, a computer
can be embedded in another device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a Global Positioning System
(GPS) receiver, or a portable storage device (e.g., a universal serial bus (USB) flash
drive), to name just a few. Devices suitable for storing computer program instructions
and data include all forms of non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash
memory devices; magnetic disks, e.g., internal hard disks or removable disks;
magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated in, special purpose logic circuitry.

To provide for interaction with a user, embodiments of the subject matter
described in this specification can be implemented on a computer having a display device,
e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying
information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball,
by which the user can provide input to the computer. Other kinds of devices can be used
to provide for interaction with a user as well; for example, feedback provided to the user
can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile
feedback; and input from the user can be received in any form, including acoustic,
speech, or tactile input. In addition, a computer can interact with a user by sending
documents to and receiving documents from a device that is used by the user; for
example, by sending web pages to a web browser on a user’s user device in response to
requests received from the web browser.

Embodiments of the subject matter described in this specification can be
implemented in a computing system that includes a back-end component, e.g., as a data
server, or that includes a middleware component, e.g., an application server, or that
includes a front-end component, ¢.g., a user computer having a graphical user interface or
a Web browser through which a user can interact with an implementation of the subject

matter described in this specification, or any combination of one or more such back-end,

15

10

15

20

25

30

WO 2015/200600 PCT/US2015/037639

middleware, or front-end components. The components of the system can be
interconnected by any form or medium of digital data communication, e.g., a
communication network. Examples of communication networks include a local area
network (“LAN”) and a wide area network (“WAN”), an inter-network (e.g., the
Internet), and peer-to-peer networks (e.g., ad hoc peer-to-peer networks).

The computing system can include users and servers. A user and server are
generally remote from each other and typically interact through a communication
network. The relationship of user and server arises by virtue of computer programs
running on the respective computers and having a user-server relationship to each other.
In some embodiments, a server transmits data (e.g., an HTML page) to a user device (e.g.,
for purposes of displaying data to and receiving user input from a user interacting with
the user device). Data generated at the user device (e.g., a result of the user interaction)
can be received from the user device at the server.

While this specification contains many specific implementation details, these
should not be construed as limitations on the scope of any inventions or of what may be
claimed, but rather as descriptions of features specific to particular embodiments of
particular inventions. Certain features that are described in this specification in the
context of separate embodiments can also be implemented in combination in a single
embodiment. Conversely, various features that are described in the context of a single
embodiment can also be implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may be described above as acting
in certain combinations and even initially claimed as such, one or more features from a
claimed combination can in some cases be excised from the combination, and the claimed
combination may be directed to a subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in a particular order, this
should not be understood as requiring that such operations be performed in the particular
order shown or in sequential order, or that all illustrated operations be performed, to
achieve desirable results. In certain circumstances, multitasking and parallel processing
may be advantageous. Moreover, the separation of various system components in the
embodiments described above should not be understood as requiring such separation in
all embodiments, and it should be understood that the described program components and
systems can generally be integrated together in a single software product or packaged into

multiple software products.

16

WO 2015/200600 PCT/US2015/037639

Thus, particular embodiments of the subject matter have been described. Other
embodiments are within the scope of the following claims. In some cases, the actions
recited in the claims can be performed in a different order and still achieve desirable
results. In addition, the processes depicted in the accompanying figures do not
necessarily require the particular order shown, or sequential order, to achieve desirable
results. In certain implementations, multitasking and parallel processing may be
advantageous.

What is claimed is:

17

WO 2015/200600 PCT/US2015/037639

CLAIMS

1. A computer-implemented method performed by data processing apparatus
comprising one or more computers in data communication, the method comprising:
receiving publisher affiliation data for native applications that define, for each
native application, an affiliated publisher for the native application;
for each native application of a set of native applications, determining, based on
the publisher affiliation data, whether the native application is affiliated with a publisher
that provides content addressed by URIs determined for the native application;
for only the native applications that are determined to be affiliated with a
publisher that provides content addressed by URIs determined for the native application:
selecting URIs based on the URI pattern for the native application; and
indexing content accessible by the URI for the native application in an

index that is searchable by a search engine.

2. The computer-implemented method of claim 1, wherein:
determining, based on the publisher affiliation data, whether a native application
is affiliated with a publisher that provides content addressed by URIs determined for the
native application comprises:
determining a URI pattern for the native application;
determining whether the URI pattern defines an affiliated publisher for the
native application that matches an affiliated publisher for the native application specified
by the publisher affiliation data; and
determining that that native application is affiliated with the publisher only when
the URI pattern for the native application defines an affiliated publisher for the native
application that matches an affiliated publisher for the native application specified by the
publisher affiliation data.

3. The computer-implemented method of claim 2, wherein determining the URI
pattern for the native application comprises processing a native application manifest file

for data describing the URI pattern.

18

WO 2015/200600 PCT/US2015/037639

4, The computer-implemented method of claim 2, wherein the publisher affiliation
data for each native application defines an affiliation between a domain of a publisher and

a native application identifier of a native application.

5. The computer-implemented method of claim 4, wherein the determining whether
the URI pattern defines an affiliated publisher for the native application comprises
determining whether the URI has a host name that matches the domain of the publisher,
wherein a match of a host name of the URI to the domain of the publisher results in a
positive determination, and not matching the host name of the URI to the domain of the

publisher results in a negative determination.

6. The computer-implemented method of claim 2, wherein selecting URIs based on
the URI pattern for the native application comprises selecting, from an index, URIs that

include the URI pattern.

7. The computer implemented method of claim 6, wherein the URIs are uniform

resource locators (URLS).

3. The computer-implemented method of claim 2, wherein selecting URIs based on
the URI pattern for the native application comprises:
instantiating the native application and selecting a first URI based on the URI
pattern to generate an application page in the native application display environment;
iterative processing linked application pages for the native application until a
cessation event occurs, the iterative processing comprising for each iteration;
determining, from the application page, outbound URIs including in the
first application page; and
selecting one or more of the outbound URIs to generate one or more

subsequent application pages in the native application display environment.

19

WO 2015/200600 PCT/US2015/037639

9. A computer-implemented method performed by data processing apparatus
comprising one or more computers in data communication, the method comprising:
determining a uniform resource identifier (URI) pattern for a native application;
instantiating the native application and selecting a first URI based on the URI
pattern to generate an application page in the native application display environment;
indexing application page data of the application page in an index that is
searchable by a search engine;
iteratively processing linked application pages for the native application until a
cessation event occurs, the iterative processing comprising for each iteration;
determining, from the application page, outbound URIs including in the
first application page;
selecting one or more of the outbound URIs to generate one or more
subsequent application pages in the native application display environment;
indexing the application page data for each of the one or more subsequent

application pages in the index.

10. The computer-implemented method of claim 9, wherein selecting one or more of
the outbound URIs to generate one or more subsequent application pages in the native
application display environment comprises:

for each outbound URI, determining whether the outbound URI conforms to the
URI pattern; and

selecting only the outbound URIs that conform to the URI pattern.

11. The computer-implemented method of claim 10, determining whether the
outbound URI conforms to the URI pattern comprises determining whether the outbound

URI includes the URI pattern.

20

WO 2015/200600 PCT/US2015/037639

12. A system, comprising;:
a data processing apparatus; and
software stored in non-transitory computer readable storage medium storing
instructions executable by the data processing apparatus and that upon such execution
cause the data processing apparatus to perform operations comprising:
receiving publisher affiliation data for native applications that define, for each
native application, an affiliated publisher for the native application;
for each native application of a set of native applications, determining, based on
the publisher affiliation data, whether the native application is affiliated with a publisher
that provides content addressed by URIs determined for the native application;
for only the native applications that are determined to be affiliated with a
publisher that provides content addressed by URIs determined for the native application:
selecting URIs based on the URI pattern for the native application; and
indexing content accessible by the URI for the native application in an

index that is searchable by a search engine.

13. The system of claim 12, wherein:
determining, based on the publisher affiliation data, whether a native application
is affiliated with a publisher that provides content addressed by URIs determined for the
native application comprises:
determining a URI pattern for the native application;
determining whether the URI pattern defines an affiliated publisher for the
native application that matches an affiliated publisher for the native application specified
by the publisher affiliation data; and
determining that that native application is affiliated with the publisher only when
the URI pattern for the native application defines an affiliated publisher for the native
application that matches an affiliated publisher for the native application specified by the
publisher affiliation data.

14. The system of claim 13, wherein determining the URI pattern for the native
application comprises processing a native application manifest file for data describing the

URI pattern.

21

WO 2015/200600 PCT/US2015/037639

15. The system of claim 13, wherein the publisher affiliation data for each native
application defines an affiliation between a domain of a publisher and a native application

identifier of a native application.

16. The system of claim 15, wherein the determining whether the URI pattern defines
an affiliated publisher for the native application comprises determining whether the URI
has a host name that matches the domain of the publisher, wherein a match of a host name
of the URI to the domain of the publisher results in a positive determination, and not
matching the host name of the URI to the domain of the publisher results in a negative

determination.

17. The system of claim 13, wherein selecting URIs based on the URI pattern for the

native application comprises selecting, from an index, URIs that include the URI pattern.
18. The system of claim 17, wherein the URIs are uniform resource locators (URLS).

19. The system of claim 18, wherein selecting URIs based on the URI pattern for the
native application comprises:
instantiating the native application and selecting a first URI based on the URI
pattern to generate an application page in the native application display environment;
iterative processing linked application pages for the native application until a
cessation event occurs, the iterative processing comprising for each iteration;
determining, from the application page, outbound URIs including in the
first application page; and
selecting one or more of the outbound URIs to generate one or more

subsequent application pages in the native application display environment.

22

WO 2015/200600 PCT/US2015/037639

20. A system, comprising:
a data processing apparatus; and
software stored in non-transitory computer readable storage medium storing
instructions executable by the data processing apparatus and that upon such execution
cause the data processing apparatus to perform operations comprising;:
determining a uniform resource identifier (URI) pattern for a native application;
instantiating the native application and selecting a first URI based on the URI
pattern to generate an application page in the native application display environment;
indexing application page data of the application page in an index that is
searchable by a search engine;
iteratively processing linked application pages for the native application until a
cessation event occurs, the iterative processing comprising for each iteration;
determining, from the application page, outbound URIs including in the
first application page;
selecting one or more of the outbound URIs to generate one or more
subsequent application pages in the native application display environment;
indexing the application page data for each of the one or more subsequent

application pages in the index.

21. A non-transitory computer readable storage medium storing instructions
executable by a data processing apparatus and that upon such execution cause the data
processing apparatus to perform operations comprising:
receiving publisher affiliation data for native applications that define, for each
native application, an affiliated publisher for the native application;
for each native application of a set of native applications, determining, based on
the publisher affiliation data, whether it is affiliated with a publisher that provides content
addressed by URIs determined for the native application;
for only the native applications that are determined to be affiliated with a
publisher that provides content addressed by URIs determined for the native application :
selecting URIs based on the URI pattern for the native application;
indexing content accessible by the URI for the native application in an

index that is searchable by a search engine.

23

WO 2015/200600 PCT/US2015/037639

22. A non-transitory computer readable storage medium storing instructions
executable by a data processing apparatus and that upon such execution cause the data
processing apparatus to perform operations comprising:
determining a uniform resource identifier (URI) pattern for a native application;
instantiating the native application and selecting a first URI based on the URI
pattern to generate an application page in the native application display environment;
indexing application page data of the application page in an index that is
searchable by a search engine;
iterative processing linked application pages for the native application until a
cessation event occurs, the iterative processing comprising for each iteration;
determining, from the application page, outbound URIs including in the
first application page;
selecting one or more of the outbound URIs to generate one or more
subsequent application pages in the native application display environment;
indexing the application page data for each of the one or more subsequent

application pages in the index.

24

WO 2015/200600 PCT/US2015/037639
1/4

1002 | o

: °
Application
Publisher)
| : m Y

Resource P Application User
Publisher o 107 H Devices

104 108
Resource

105 1

Network
102

Publisher Backend
130 A Application
107
Webgzrver Search Application
, 104 Crawling And
Publisher icati
uSttl)re . System Indexing System Appll(?atlon
132 , N?tlv? 110 120 Me;’z)";%t
pplication 109
Server
136 \ /
\ 4
Web
Index
116

FIG. 1

WO 2015/200600

Affiliation

Data
202

PCT/US2015/037639
2/4
Application Crawling And Indexing System
120
Application UR
Package Indexer
Processor >
Crawler 214 210
206 —
A
\ 4
Datq URI Scheme URI Selector
Collection |—» Generator 919
204 208 =

A 4

URI Scheme Table
210

FIG. 2

WO 2015/200600

300 1‘

3/4

PCT/US2015/037639

Receive publisher affiliation data for native
applications that define, for each native
application, an affiliated publisher for the native

j 302

application
304
4
For a native application, determine based
on the publisher affiliation data, whether "
ili ’ Unaffiliat
Affiliated the native application is affiliated with a naffiliated
publisher that provides content addressed
by URIs determined for the native
application
A A
306 5
Select URIs based on the URI j 0 not pr?)?ezs URIs of
pattern for the native application publisher

j310

A

y

Index content accessible by the 308

URI for the native application in j

an index that is searchable by a
search engine

FIG. 3

WO 2015/200600 PCT/US2015/037639
4/4

400 1‘

)’402
Determine a URI pattern for a native application

y
Instantiate the native application and select a first| < 404
URI based on the URI pattern to generate an j
application page in the native application display
environment

A 4 406
Begin iterative
discovery process

408
Determine, from the application page, j
outbound URIs including in the first
application page

Select one or more of the outbound j 410

URIs to generate one or more
subsequent application pages in the
native application display environment

A 4

412

Index the application page data for each j
of the one or more subsequent
application pages in the index

y 414
No
End?

y Yes j 416
End application indexing for the native application

FIG. 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/037639

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, COMPENDEX, INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 2014/040226 Al (SADHUKHA SHAJIB [US] ET 1-22
AL) 6 February 2014 (2014-02-06)
abstract; claim 1; figures 1-7
paragraph [0001] - paragraph [0006]
paragraph [0014] - paragraph [0046]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

17 September 2015

Date of mailing of the international search report

25/09/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Konig, Wolfgang

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/037639
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2014040226 Al 06-02-2014 (N 104508665 A 08-04-2015
EP 2880564 Al 10-06-2015
US 2014040226 Al 06-02-2014
WO 2014022325 Al 06-02-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report

