a2 United States Patent

US008140575B2

(10) Patent No.: US 8,140,575 B2

Ishihara et al. 45) Date of Patent: Mar. 20, 2012

(54) APPARATUS, METHOD, AND PROGRAM 2005/0256882 Al* 11/2005 Ableetal. ... 707/10
MA 2006/0005070 Al* 1/2006 Zimmer et al. 714/5

gﬁggg§;£gR INFOR TION 2006/0230023 Al* 10/2006 Ericksonetal.c....... 707/3
2006/0271537 Al* 11/2006 Chandrasekharan etal. ... 707/7

2007/0038643 Al* 2/2007 Epsteincccccvenrene. 707/10

(75) Inventors: Tatsuya Ishihara, Yamato (JP); Hisashi 2007/0061382 Al* 3/2007 Davis et al. .. 707/201
Miyashita, Tokyo (JP) 2007/0078840 A1* 4/2007 Sternetal.ccocevrivnna. 707/4

2007/0112803 Al* 5/2007 Pettovello .. 707/100

: . : : : 2007/0143434 Al* 6/2007 Daigle 709/207

(73) Assignee: International Business Machines 2007/0168336 AL* 72007 Ransiletal ! 20773

Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 253 days.

(21) Appl. No.: 11/688,998

(22) Filed: Mar. 21,2007

(65) Prior Publication Data
US 2007/0233696 Al Oct. 4, 2007

(30) Foreign Application Priority Data
Apr.3,2006 (JP) oo 2006-102227
(51) Imt.ClL
GO6F 7/00 (2006.01)
GO6F 17/30 (2006.01)

(52) US.CL ..o 707/781; 707/797; 707/956
(58) Field of Classification Search 707/10
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,065,706 B1* 6/2006 Sankar 715/234
7,472,349 B1* 12/2008 Srivastavaetal. 1/1

2001/0034733 Al* 10/2001 Promptetal. .. 707/102
2002/0184373 Al* 12/2002 Maes 709/228
2003/0126136 Al* 7/2003 Omoiguicccoovvivernn 707/10
2003/0225894 Al* 12/2003 Ito 709/227
2004/0068731 Al* 4/2004 Davisetal. 719/310
2004/0143577 Al* 7/2004 Shalabietal. ... 707/10

2005/0198394 Al* 9/2005
2005/0203957 Al* 9/2005
2005/0234928 Al* 10/2005

Waldorf et al. 709/246
707/104.1

R 707/100

OTHER PUBLICATIONS

Andrew Harrison, Ian J. Taylor, “WSPeer—An Interface to Web
Service Hosting and Invocation,” Workshop Apr. 2005. ipdps, vol. 5,
pp. 175a, 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05) -.*

(Continued)

Primary Examiner — Mohammad Ali

Assistant Examiner — Kannan Shanmugasundaram

(74) Attorney, Agent, or Firm — Mollborn Patents, Inc.;
Fredrik Mollborn

(57) ABSTRACT

Methods and apparatus, including computer program prod-
ucts, implementing and using techniques for providing an
interface for using a web service on an external server device.
A first tree structure used for using the web service is stored.
A request message calling up a web service is generated in
response to having received access to a request node in the
first tree structure. The request node is used for accessing the
web service corresponding to the request node. The request
message is sent to the server device providing the web ser-
vice. A response message, including a result of having
executed the web service from the server device, is received.
The result of the web service execution is reflected in a
response node in the first tree structure for storing the result of
the web service.

21 Claims, 8 Drawing Sheets

Mo m

12 WEB SERVICE INTERFACE <H

apeuCATION]
EXECUTION
AT

WER SERYICE
7| TREE STRUCTURE STORAGE UNT | [CoRyERSION
RACE L

CACHE IT
T

INFORMATION
APPARATUS

CACHEMEE] caghe
PROCESSING | [PROCESSING | PROCESSING
N N Ny

US 8,140,575 B2
Page 2

OTHER PUBLICATIONS

A. Harrison and I. Taylor. “Dynamic Web Service Deployment,
Using WSPeer.” Feb. 2005. In Proceedings of 13th Annual Mardi
Gras Conference—Frontiers of Grid Applications and
Technologies,pp. 11-16.*

Nicola Onose , Jerome Simeon, XQuery at your web service, Pro-
ceedings of the 13th international conference on World Wide Web,
May 17-20, 2004, New York, NY, USA.*

G. Fox, et al., “A Demonstration of Collaborative Web Services and
Peer-to-Peer Grids”, U.S., 2003, In Collaborative Technologies Sym-
posium.

H. Kreger, “Web Services Conceptual Architecture (WSCA 1.0)
Technical report”, [online], May 2001, IBM Software Group, [Search
Date Mar. 30, 2006], Internet <URL:http://www-306.ibm.com/soft-
ware/solutions/webservices/pdf/WSCA.pdf>.

S. Loughran and E. Smith, “Rethinking the Java SOAP Stack”, U.S.,
2005, in ICWS, p. 845-852.

X. Qiu, et al., “Internet Collaboration Using the W3C Document
Object Model”, U.S., 2003, In International Conference on Internet
Computing, pp. 643-647.

* cited by examiner

U.S. Patent Mar. 20, 2012 Sheet 1 of 8 US 8,140,575 B2

19 WEB SERVICE INTERFACE Py
o {

¥
-
X2
m
(ki
s
*3

= 4
:‘Ej
[l
(€]
~d
o
A
-
P

{ 34

APPLICATION : SE LING Ty

ey - BIRUG] ELMNT | TCORVERSICH
EXECUTHN A~ RULE
UNIT -

E
.,

‘ STORACE UNE

‘h l.‘;? jxo‘.r“" » :::'.2 \.-\C}R- .\.-t i I'Q'F-.

N 7 a8

i*i r‘:} !\ 5@ ¥ :{)‘_'-ni.e
kS ,/J \ x“iﬁ /» S

BOCLIMENT SRanaN BRI | [CONVERSEDN
STURAGE /UTREREN, - TREE FOR u
LNIT S OREGIERT N 4 SERTNSE N\

A
£ : :

¥

-)

£ £
CACIE O | [CACHEMEER) cache
PROCESSING | [PROGESSING | PROCESSING
ONIT GNET NI

|8 I(30

REQUEST RESPON
GENERATION REFLEC)

UMY

. E g 38
1”5 4 3 s
INEQRMATION ELUEST RESPONSE
PROCESSING ENDING RECENING
AFFARATUS Y UHIT
&

A0

REQUEST RESPONSE
MESSAE MERSAGE
<
3

“
kY

e,

SERVER L4
DEVICE

<

FIG. 1

U.S. Patent Mar. 20, 2012 Sheet 2 of 8 US 8,140,575 B2
o 'f‘f
.-""‘"
QW&S SERVICE NODE
~40 AN <50
& el \\ g
1 ‘f\" \
REQUEST 7 . RESPONSE
NCDE . NODE
,f e NODE
\«42),
.__J'
< N 52
. N
PARAMETER S X\ PARAMETER \
NODE _ \. NODE \, RETURN
> N{GQE
'y <.>E, \Q,x'{, "
413 44 54
PARTIAL TREE
PARTIAL TREE FOR REQUEST | FOR RESPONSE
o4
,5?’2 -‘;-M g?i
SERVICE NAME WSGL ADDRESS
39— | ACQUISITION || ACQUISITION [—»| ACQUISITION —= 26
UNIT UNIT UNIT

FIG. 3

US 8,140,575 B2

) e LEs (i
i o it -
ol L £5% Pyl
£ iy 03 5
\\ .% “n. _"“

rf

E 42
DE 53

4

» REQUEST NOGD

o

)

WG

Sheet 3 of 8
i

B

s RESPLH:

£S

280

Mar. 20, 2012

B g g
§ 3

&

il i i
DB £y Vi
s Bl L
i s

ESEAL
DEVICE 140

L] L]
20 ey
b Wi e %\I!Pu.
b Lt L §
¥ oY o= 5y :
L] i bed e e
= g U R P
7 L b 5 &
). &)
: gl :

7 Ul

N
f

|-

U.S. Patent

o

FiG. 4

U.S. Patent Mar. 20, 2012 Sheet 4 of 8 US 8,140,575 B2

{8
<ngideCGetCaehea¥ Pags ymloginel= “nro'WebSeareh” »
<key gxittypes Y xsdisiring” >0000<keys
<url xeitypes Vxadistring” shttpffwwwanasas com/<inrls
UdatietCachedFage>

ey

e

(B}

doftetCachedVapelkayn’ D000 and wel=’ hitpfwwwasasan.coml’ i

FIG.

-c::mrwsf@;;vmn*;.iam smise<"uraexamplewebdyasil”
minsixsi="httpiwwww i org/ 1RO X8 L Transform ™
“yagnnat K}";ﬂxﬁni‘r‘:“ad{tc{:tf:}ﬂ.nhﬁﬁ?&gﬁu"'
<predicate condv doGetCanhadPagslley=t00ool i
<t{ransfermsation tergeis" s
<xabintyieshests

wiyslsiyloshast™
<itrznsformation>
wirequest>
«<reguest same="deWehBSe ar@%t":;‘v
<tranaformation targess"r
sxplsiyioshent>
“iwsistyleshaels
<Hranaformstions
“lraquests
<fyransformationgs

FIG. 6

U.S. Patent

Mar. 20, 2012

Sheet 5 of 8

SROWSER EXECUTION UNIT

LY

RENDERNG
FROCESSING

US 8,140,575 B2

I

S HTM

SERVER

DEVICE

Yo

Q“% !

by
LS

SERVER
DEVICE

WFORMATION &

ROCESSING APEA

U.S. Patent Mar. 20, 2012 Sheet 6 of 8 US 8,140,575 B2

{ sTART)

SENB URI —=531

ACQUIRE HTML DOCUMENT 322

RENDER HTRL DOCURENT | Q2%
AND LOAD SCRWPT

DETECT EVENT - 524

CALL FUNCTION OF S8CRIPT 30
MODIFY REQUEST NODE 42 ANDL.. q2g

ACCESS RESPONSE NODE &2

SEND REQUESY MESSAGE |~-527

RECEIVE RESPONSE MESSAGE |~ 538

REFLECT RESPONSE MESSAGE |...g2¢
IN RESPONSE NODE 52

MODIFY HTML DOCUMENT [(~-530

RENDER MOGIFIED 52
HTAMEL DOCUMENT T

U.S. Patent Mar. 20, 2012 Sheet 7 of 8

var deifsslachedage
webBareiee seioptRiaglaNaded

fRops ORD

v
}

Swaiuery|

BitpHiwowecibay dam

FIG. 9A

-
3
A

3 oo
[HAW RELW .

war ey eBeds » respenste selesiBinglsNade

Qs

K

FIG. 9B

wis YWehRervices

WS:QU ery {

~ -

y watResponse

A0~ weReguest)

o “,
& ",
P)Y
kv el | dyetuwen

7
K

rwadoGetCachedpage i

Vwr Roguestigwa dnGetlsehadl
e leRe e

: . ; . LY, TR
AgwaiduletlachedPageNesponselretl arnfiiitexsidii” .

US 8,140,575 B2

T o
“age

el

respaaiel

a

swodaeGetUachedpageResponse

FIG. 10

US 8,140,575 B2

Sheet 8 of 8

Mar. 20, 2012

U.S. Patent

| ApisC] 04 HHD O
08077 04077
T wou t
HOECD 7
=7 1R
(9027 dTTIOMLNGD] | AAf
] N NETAIACED
[amwa a7 o0
WG QEvH _ : ————————
A L A MIVIOHINGDL ETIOHANODL | e
BB e SOHAYES =
oz B 7 4 7
(20e it § T GinL OR0E-
(D
00027
0081

AUOMLEN

US 8,140,575 B2

1

APPARATUS, METHOD, AND PROGRAM
PRODUCT FOR INFORMATION
PROCESSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. 119(a)-(d)
from Japanese Patent Application No. JP2006-102227
entitled “APPARATUS, METHOD AND PROGRAM
PRODUCT FOR INFORMATION PROCESSING” filed
Apr. 3, 2006, the entire disclosure of which is incorporated
herein by reference for all purposes.

BACKGROUND

This invention relates generally to information processing.
More specifically, the invention relates to providing an inter-
face for using a web service on an external server device.

A web service is an application component accessed via
the Internet. An information processing apparatus can pro-
vide a distributed component environment through a network
by using the web service on an external server device. The
information processing apparatus using the web service sends
out a SOAP message in a format corresponding to the web
service and receives a response from the web service. Con-
ventionally, a program executed by the information process-
ing apparatus using the web service generates a request mes-
sage, and receives and interprets the same in the web service,
using an OOP (Object-Oriented Programming) model.

A HTML (Hypertext Markup Language) document or an
XML (eXtensible Markup Language) document, for
example, which is used by a web browser application (here-
inafter, simply referred to as a browser), is created based on a
tree structure model, such as the DOM (Document Object
Model).

A programming model for the web service based on the
OOP model is described in, for example, H. Kreger, “Web
services conceptual architecture (wsca 1.0). Technical
report”, May, 2001, IBM Software Group, Internet <URL:
http://'www-306.ibm.com/software/solutions/webservices/
pd/WSCA.pdf>and in S. Loughran and E. Smith, “Rethink-
ing the Java SOAP stack”, U.S., 2005, In ICWS, P. 845-852.
The operation of the DOM (Document Object Model) as a
web service is described in, for example, G. Fox, H, Bulut, K.
Kim, S.-H. Ko, S. Lee, S. Oh, S. Pallickara, X. Qiu A. Uyar,
M. Wang, and W. Wu, “Collaborative web services and peer-
to-peer girds”, U.S., 2003, In Collaborative Technologies
Symposium, and in X. Qiu, B. Carpenter, and G. Fox, “Inter-
net collaboration using the w3c document object model”,
U.S., 2003, In International Conference on Internet Comput-
ing, pages 643-647.

SUMMARY

In general, in one aspect, the invention provides methods
and apparatus, including computer program products, imple-
menting and using techniques for providing an interface for
using a web service on an external server device. A first tree
structure used for using the web service is stored. A request
message calling up a web service is generated in response to
having received access to a request node in the first tree
structure. The request node is used for accessing the web
service corresponding to the request node. The request mes-
sage is sent to the server device providing the web service. A
response message, including a result of having executed the
web service from the server device, is received. The result of

20

25

30

35

40

45

50

55

60

65

2

the web service execution is reflected in a response node in the
first tree structure which stores the result of the web service.

Advantageous implementations can include one or more of
the following features. An application execution unit can
execute an application using the web service and a second
storage unit can store a document used by the application ina
second tree structure. The application execution unit can rep-
licate a partial tree in the first tree structure including the at
least one response node in which the result of the web service
is reflected as a partial tree into the second tree structure.

An application execution unit can execute an application
using the web service and the storage unit can store a docu-
ment used by the application with the first tree structure. The
application execution unit, as a result of having used the web
service for part of the document, can access the request node
in the first tree structure, where the first tree structure is
defined corresponding to the part of the document. The
response reflection unit can reflect the result of having
executed the web service in the part of the document.

The first storage unit can store the first tree structure, which
has a partial tree for request accessed for executing a request
to the web service and a partial tree for response reflecting the
result of the web service. The request generation unit can
generate the request message in response to accessing the
request node in the partial tree for request, and the response
reflection unit can reflect the result of having executed the
web service in the response node in the partial tree for
response.

An application execution unit can execute the application
using the web service. The application execution unit can set
each parameter provided to the web service for the parameter
nodes corresponding to each parameter in the first tree struc-
ture. The request generation unit can acquire the parameter
from each of the parameter nodes to which the parameters are
set by the application execution unit to generate the request
message including the parameters.

The request generation unit can generate a request message
in response to having accessed the request node with a path
indicating a position in the first tree structure. The application
execution unit can set each parameter provided to the web
service to each of the parameter nodes descended from the
request nodes defined corresponding to the web services. The
request generation unit can include a service name acquisi-
tion unit which can acquire a name of the web service from
the request node, a WSDL acquisition unit which can acquire
a WSDL (Web Services Description Language) description
defining a specification of the web service using the name of
the web service, and an address acquisition unit which can
acquire an address of the server device which provides the
web service from the WSDL description. The request sending
unit can send the request message to the address acquired by
the address acquisition unit.

The first storage unit can cache the response node in which
the result of the web service is reflected. The first storage unit
can include a cache hit processing unit for returning the result
of the web service cached on the first storage unit, if the
request nodes have already been registered in the first tree
structure, and a cache miss processing unit for causing the
request sending unit to send the request message in order to
cache the result of the web service on the first storing unit, and
to register anew the request nodes as nodes in the first tree
structure, when the request nodes have not been registered in
the first tree structure.

The request generation unit can generate the request mes-
sage in response to accessing the response node after access-
ing the request node. A conversion rule storage unit can store
a conversion rule to convert the response message received

US 8,140,575 B2

3

complying with having accessed the request node in response
to the each request node. A conversion unit can convert the
first tree structure in which the result of the web service
included in the response message has been reflected based on
the conversion rule corresponding to the response message.

The invention can be implemented to include one or more
of the following advantages. Since it is possible to use a web
service through an access to a node in a tree structure, this
enables to readily use the web service on a server device.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-
tion below. Other features and advantages of the invention
will be apparent from the description and drawings, and from
the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 shows an information processing apparatus along
with a server device in accordance with one embodiment of
the invention.

FIG. 2 shows a schematic example of configurations of a
partial tree for request and a partial tree for response in accor-
dance with one embodiment of the invention.

FIG. 3 shows an example of a configuration of a request
generation unit in accordance with one embodiment of the
invention.

FIG. 4 is a flowchart illustrating processing of the infor-
mation processing apparatus in accordance with one embodi-
ment of the invention.

FIG. 5(A) shows an example of a body part of a SOAP
request message when using a web service providing a web
page cached in a server device in accordance with one
embodiment of the invention.

FIG. 5(B) shows an XPath formula for sending a request by
specifying the partial tree for request as the basis of (A) in
accordance with one embodiment of the invention.

FIG. 6 shows an example of a conversion condition by a
conversion unit in accordance with one embodiment of the
invention.

FIG. 7 is a schematic view of the information processing
apparatus along with the server device and an HTML server
device in accordance with one embodiment of the invention.

FIG. 8 is a flowchart for processing of the web service by
the information processing apparatus of FIG. 7 in accordance
with one embodiment of the invention.

FIG. 9(A) shows an XPath formula for accessing “ws:
Request” in a tree structure for using the web service provid-
ing the cached web page in accordance with one embodiment
of the invention.

FIG. 9(B) shows an XPath formula for accessing “ws:
Response” in the tree structure in accordance with one
embodiment of the invention.

FIG. 10 shows an example of the tree structure generated
by the XPath formula illustrated in FIGS. 9(A) and 9(B) in
accordance with one embodiment of the invention.

FIG. 11 shows an example of a hardware configuration of
a computer in accordance with one embodiment of the inven-
tion.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

As is known, browsers and creation tools for HTML docu-
ments are widely used. Often a user uses the browser as a
client application of a web service. However, when using the
browser as the client application of a web service, the user

20

25

30

35

40

45

50

55

60

65

4

must create a document based on a tree structure model and
create an access program to the web service based on the OOP
model, which has resulted in a large burden due to handling
different programming models.

The various embodiments of the invention described
herein provide an information processing apparatus, methods
and computer program products, which can solve the above
problems. The invention will be described below by way of
example. However, it should be noted that the embodiments
below do not limit the invention as defined in the claims, and
that the combinations of the features described in the embodi-
ments below are not necessarily essential.

FIG. 1 is a schematic bock diagram of an information
processing apparatus 10 in accordance with one embodiment
of the invention. A server device 100 stores a web service
which is an application component accessed from an external
device using the Internet. The server device 100 executes the
web service when the server device 100 receives a request
message in accordance with the SOAP from the information
processing apparatus 10. When completing execution of the
web service, the server device 100 returns a response message
that includes a result of having executed the web service to the
information processing apparatus 10 in accordance with the
SOAP. Since the web service adopts an XML interface, the
web service is also referred to as an XML web service.

While executing an application, the information process-
ing apparatus 10 provides an interface for using the web
service on an external server device. The information pro-
cessing apparatus 10 may provide the interface for using the
web service as an API (Application Program Interface), or
may provide the same as a part of the application, such as a
web browser.

The information processing apparatus 10 has an applica-
tion execution unit 12, a document storage unit 14, and a web
service interface 20. The application execution unit 12
executes the application using the web service. The applica-
tion execution unit 12 accesses the web service interface 20 to
use the web service on the server device 100. The document
storage unit 14 may store a document used by the application
execution unit 12. The document storage unit 14 stores a
tree-structured document such as the XHTML (eXtensible
Hypertext Markup Language).

The web service interface 20 is an example of an interface
in accordance with one embodiment of the invention, and
when being accessed by the application execution unit 12 to
use the web service on the external server device 100, the web
service interface 20 sends a request message to the server
device 100 and receives a response message including a result
of the web service execution from the server device 100 via a
network such as the Internet.

The web service interface 20 includes a tree structure stor-
age unit 22, a request generation unit 24, a request sending
unit 26, a response receiving unit 28, a response reflection
unit 30, a cache processing unit 32, a conversion rule storage
unit 34, and a conversion unit 36. The tree structure storage
unit 22 stores a tree structure used for using the web service.
The tree structure storage unit 22 may store, for example, the
tree structure as an XML document. The tree structure stored
in tree structure storage unit 22 includes a partial tree for
request 40, which is accessed for sending a request for the
web service, and a partial tree for response 50 which reflects
the result of the web service. The partial tree for request 40
includes a request node 42 for calling the web service. The
partial tree for response 50 includes a response node 52 for
storing the result of the web service. Here, the partial tree for
request 40 and the partial tree for response 50 may render
either different nodes or an identical node to be a parent. In

US 8,140,575 B2

5

addition, the request node 42 and the response node 52 may
be the same node. Moreover, the tree structure storage unit 22
may cache the response node 52 in which the result of the web
service is reflected. Furthermore, the tree structure storage
unit 22 may not store the request node 42 if the request
generation unit 24 generates the request message.

The request generation unit 24 generates the request mes-
sage for calling the web service according to the request node
42 in response to having accessed the request node 42 in the
tree structure. In this embodiment, the request generation unit
24 generates the request message in response to being
accessed by the application execution unit 12. The request
sending unit 26 sends the request message generated by the
request generation unit 24 to the server device 100 providing
the web service as a target of the request message. The
response receiving unit 28 receives the response message,
including the result of having executed the web service, from
the server device 100. The response reflection unit 30 reflects
the result of having executed the web service included in the
response message received by the response receiving unit 28
in the response node 52 in the tree structure.

The cache processing unit 32 controls caching of the
response node 52 by the tree structure storage unit 22. The
cache processing unit 32 may include a cache hit processing
unit 62 and a cache miss processing unit 64. When accessed to
execute the request for the web service, the cache hit process-
ing unit 62 returns the result of the web service cached in the
tree structure storage unit 22 to an access source, if the request
node 42 has already been registered in the tree structure.
When accessed to execute the request for the web service, the
cache miss processing unit 64 causes the request sending unit
26 to send the request message to cache the result of the web
service in the tree structure storage unit 22, and to register the
request node 42 anew as a node in the tree structure, if the
request node 42 has not been registered in the tree structure.

The conversion rule storage unit 34 stores a conversion rule
for converting the response message received in response to
accessing the request node 42, for each request node 42. The
conversion unit 36 converts the tree structure reflecting the
result of the web service included in the response message
based on the conversion rule for the response message stored
in the conversion rule storage unit 34.

FIG. 2 shows an example of a partial tree for request 40 and
a partial tree for response 50. The partial tree for request 40
includes a request node 42 as a root node. In addition, the
partial tree for request 40 may include one or more parameter
nodes 44 descended from the request node 42. Each param-
eter node 44 stores a parameter provided for the web service.
For example, each parameter node 44 can store an argument
passed to the web service. The application execution unit 12
may set each parameter provided for the web service for each
parameter node 44 descended from the request node 42
defined in response to the web service. In this case, the request
generation unit 24, as an example, may acquire the parameter
from each parameter node 44 for which the parameter has
been set by the application execution unit 12 to generate the
request message including the parameter. Since it is possible
to describe the argument included in the request message in
the XML format in the SOAP, the request generation unit 24
may directly include the parameter node 44 expressed in the
tree structure as an argument in the request message.

The partial tree for response 50 includes a response node 52
as the root node. In addition, the partial tree for response 50
may include one or more return nodes 54 descended from the
response node 52. The return node 54 stores the result of
having executed the web service included in the response
message. The return node 54 stores a return value included in

20

25

30

35

40

45

50

55

60

65

6

the response message. The response reflection unit 30 may
reflect the result of the web service execution included in the
response message in each return node 54 descended from the
response node 52 defined in response to the web service.
Since it is possible to describe the return value included in the
response message in an XML format in SOAP, the response
reflection unit 30 may directly replace the return value
included in the response message for the return node 54.

In addition, since the result of the web service execution
corresponding to the request message can be determined
uniquely, the tree structure storage unit 22, may store the
partial tree for request 40 and the partial tree for response 50,
for example, for each web service or for each parameter sent
to the web service, for the purpose of caching the result of the
web service execution. In this case, when accessed by the
application execution unit 12, the tree structure storage unit
22 stores the partial tree for request 40 and the partial tree for
response 50, if the corresponding partial tree for request 40
has not been registered in the tree structure. Moreover, when
accessed by the application execution unit 12, the tree struc-
ture storage unit 22 returns the partial tree for request 40 and
the partial tree for response 50 which have been cached, if the
corresponding partial tree for request 40 has been registered
in the tree structure. This enables replying athigh speed to the
access by the application execution unit 12 in accordance
with the tree structure storage unit 22.

FIG. 3 shows a schematic block diagram of a request gen-
eration unit 24. The request generation unit 24 may include a
service name acquisitionunit 72, a WSDL acquisition unit 74,
and an address acquisition unit 76. The service name acqui-
sition unit 72 acquires a name of the web service from the
request node 42. The WSDL acquisition unit 74 acquires a
WSDL (web Services Description Language) description
defining a specification of the web service using the name of
the web service acquired by the service name acquisition unit
72. The WSDL acquisition unit 74 may acquire the WSDL
description by searching a registry, for example, using the
UDDI (Universal Description Discovery, and Integration).

The address acquisition unit 76 acquires an address of the
server device 100 providing the web service from the WSDL
description acquired by the WSDL acquisition unit 74. The
request sending unit 26 then sends the request message to the
address acquired by the address acquisition unit 76. This
makes it possible for the web service interface 20 to acquire a
destination of the request message, namely, a location of the
corresponding web service, and to send the request message
to the server device 100 providing the corresponding web
service.

FIG. 4 shows a flowchart of the information processing
apparatus 10 in accordance with one embodiment of the
invention. When using the web service, the application execu-
tion unit 12 first accesses the request node 42 of the partial
tree for request 40 in the tree structure stored in the tree
structure storage unit 22 (step S11). In this case, the applica-
tion execution unit 12 may access the request node 42 defined
according to the web service to be used by specifying a path
indicating a position of the request node 42 in the tree struc-
ture. When the accessed request node 42 has not been regis-
tered in the tree structure, the tree structure storage unit 22
registers the partial tree for request 40 and the partial tree for
response 50 in the path specified in the tree structure.

The application execution unit 12 then accesses the
response node 52 of the partial tree for response 50 in the tree
structure stored in the tree structure storage unit 22 (step S12).
In this case, the application execution unit 12 may access the
response node 52 determined according to the web service to
beused by specifying the path for following the tree structure.

US 8,140,575 B2

7

When the accessed response node 52 has already been regis-
tered in the tree structure, the tree structure storage unit 22
may return to the application execution unit 12 the result of
the web service execution to be stored in the response node 52
or the node descended from the response node 52, and end the
processing.

If the accessed request node 42 has not been registered in
the tree structure, the request generation unit 24 generates the
request message for calling up the web service corresponding
to the request node 42 (step S13). The request sending unit 26
then sends the request message to the server device 100 pro-
viding the web service (step S14). The request message hav-
ing been sent is provided to the server device 100. The server
device 100 which received the request message executes the
web service. The server device 100 then returns the response
message including the result of the web service execution.

The response receiving unit 28 then receives the response
message from the server device 100 (step S15). The response
reflection unit 30 then reflects the result of the web service
execution included in the response message in the response
node 52 in the tree structure (step S16). The tree structure
storage unit 22 then returns the result of the web service
execution to be stored in the response node 52 or the node
descended from the response node 52, to the application
execution unit 12, which ends the process.

According to the web service interface 20 described above,
the result of having executed the web service is returned by
the application execution unit 12 accessing the node in the
tree structure. That is, by using the web service interface 20,
itis possible to enable the application execution unit 12 to use
the web service on the external server device by performing
the same processing as the processing executed when access-
ing the document layered by the tree structure. Hence, by
using the web service interface 20, even when using both the
document layered by the tree structure and the web service, it
is possible to unify a program to be executed by the applica-
tion execution unit 12 into a program using a program model
for accessing data layered by the tree structure. This makes it
possible to use the web service interface 20 to reduce the
programming burden for the user.

In addition, when the document storage unit 14 stores a
document to be used by the application in a second tree
structure different from the tree structure that is stored in the
tree structure storage unit 22, the application execution unit
12 may duplicate the partial tree for response 50 in the tree
structure including the at least one response node 52 in which
the result of one web service has been reflected, as a partial
tree in the second tree structure stored in the document stor-
age unit 14. This makes it possible for the application execu-
tion unit 12, to handle the result of having executed the web
service acquired by the web service interface 20 as a part of
the document created by the application execution unit 12.

Moreover, the tree structure storage unit 22 may store the
document to be used by the application in the tree structure
used for using the web service. In this case, the application
execution unit 12 accesses the tree structure stored in the tree
structure storage unit 22 to use the document. Furthermore,
when reflecting the result of using the web service in a part of
the document, the application execution unit 12 accesses the
request node 42 defined in response to the part of the docu-
ment in the tree structure stored in the tree structure storage
unit 22. The response reflection unit 30 then reflects the result
of having executed the web service in the part of the docu-
ment. This makes it possible for the application execution unit
12 to handle the result of the web service execution acquired
by the web service interface 20 as the part of the document
created by the application execution unit 12.

20

25

30

35

40

45

50

55

60

65

8

Further, the web service interface 20 can send the request
message and register the response node 52 in any of a syn-
chronous mode, an asynchronous mode, or a lazy mode.

In case of a synchronous mode, the tree structure storage
unit 22 registers the request node 42 in response to the request
node 42 having been accessed. When registering the request
node 42, the web service interface 20 blocks the application
having accessed to the request node 42 until the result of the
web service execution is reflected in the response node 52.
The request generation unit 24 generates the request message
in response to the request node 42 having been accessed. The
request sending unit 26 sends the request message to the
server device 100. The response reflection unit 30 registers
the response node 52 in response to the response message
having been received by the response receiving unit 28 and
reflects the result of the web service execution in the regis-
tered response node 52. The tree structure storage unit 22 then
returns the result of the web service execution in response to
the response node 52 having been accessed, and opens the
application having been blocked. By the web service inter-
face 20 operating in such a synchronous mode, the applica-
tion execution unit 12 can execute the program created with-
out being conscious of a processing time in the web service.

In case of an asynchronous mode, the tree structure storage
unit 22 registers the request node 42 in response to the request
node 42 having been accessed. When registering the request
node 42, the web service interface 20 opens the application
having accessed to the request node 42. This enables the
application to execute other processing. The request genera-
tion unit 24 generates the request message in response to
accessing the request node 42. The request sending unit 26
sends the request message to the server device 100. The
response reflection unit 30 reflects the result of the web ser-
vice execution in the response node 52 in response to receiv-
ing the response message by the response receiving unit 28.
The tree structure storage unit 22 then stands by for the access
to the response node 52 by the application, and returns the
result of the web service execution to the access source in
response to accessing the response node 52. By the web
service interface 20 operating in such an asynchronous mode,
the application execution unit 12 can execute other process-
ing in parallel during a period between the access to the
request node 42 and the access to the response node 52.

In case of a lazy mode, the tree structure storage unit 22
registers the request node 42 and the response node 52 in
response to accessing the request node 42. The request gen-
eration part 24 does not generate the request message at the
time when the request node 42 is accessed, but subsequently
generates the request message in response to accessing the
response node 52 after accessing the request node 42. The
request sending unit 26 sends the request message to the
server device 100. The response reflection unit 30 reflects the
result of the web service execution in the response node 52 in
response to receiving the response message by the response
receiving unit 28. The tree structure storage unit 22 then
returns the result of the web service execution to the access
source. By the web service interface 20 operating in such a
lazy mode, the application execution unit 12 does not need
access after detecting that the result of the web service execu-
tion has been prepared. Operating the web service interface
20 in the lazy mode makes it possible to call up the web
service for which an execution result is likely to be used.
Thus, the web service interface 20 can prevent unnecessary
calls to the web service.

FIG. 5(A) shows an example of a body part of the request
message of the SOAP when using the web service providing
the web page which the server device 100 caches inside, while

US 8,140,575 B2

9

FIG. 5(B) shows an XPath formula for sending the request by
specifying the partial tree for request 40 as the basis of (A).
When receiving the request message in which a search key
and an URL (Uniform Resource [ocator) as a target of search
are described in an XML format, the web service in this
example searches the cached web page of the relevant URL
and returns the hit web page.

The request message of FIG. 5(A) includes a key element
and a URL element in an element (for example, doget-
CachedPage) for specitying the web service of this example.
The key element specifies the search key (for example, 0000).
The URL element specifies the URL (for example, http://
www.aaaaaa.com) as the target of search. In order to cause the
request generation part 24 to create such a request message,
the tree structure storage unit 22 may store a sub-tree includ-
ing a dogetCachedPage node indicating the web service of
this example as the root node of the partial tree for request 40
and the search key and the URL as the target of search as child
nodes. The request generation part 24 can extract “xsi:type="
from the WSDL description.

Here, the tree structure storage unit 22 may add a new
sub-tree to the stored tree structure in response to the tree
structure being accessed by the application execution unit 12
using XPath. This enables the application execution unit 12 to
create the sub-tree intended for creating the SOAP request
message illustrated in FIG. 5(A) by accessing the tree struc-
ture using the XPath formula illustrated in FIG. 5(B).

The tree structure storage unit 22 may execute the follow-
ing processing to add the new sub-tree to the tree structure in
response to being accessed using the XPath. When being
accessed by the XPath, the tree structure storage unit 22 first
determines whether or not the node selected by the XPath has
been registered. When the node has been registered, the tree
structure storage unit 22 returns the node, and ends the pro-
cessing. When the node has not been registered, the tree
structure storage unit 22 breaks down the XPath formula into
location steps and determines whether or not there is a node
for every location step. When the location step in which there
is not any node is detected, the tree structure storage unit 22
adds the corresponding node to the tree structure. This
enables the tree structure storage unit 22 to add the sub-tree to
the tree structure according to the access by the XPath.

It should be noted that when creating the sub-tree in the tree
structure of the XML document, the application execution
unit 12 preferably creates the XPath formula expressed in
accordance with the following first and second conditions. As
the first condition, the application execution unit 12 creates
the XPath formula in which all of test nodes are specified by
specific element names. For example, the application execu-
tion unit 12 creates the XPath formula using an expression in
which all specific elements, such as asterisks and “//”, are
specified. Moreover, as the second condition, the application
execution unit 12 creates an XPath formula in which a predi-
cate is subject to the following format. [PathExpr=Literal . . .
and PathExpr=Literal]. Here, PathExpr and Literal are
defined in accordance with an XPath specification (J. Clark
and S. DeRose, XML Path Language (XPath) Version 1.0,
W3C Recommendation 16 Nov. 1999, http://www.w3.org/
TR/1999/REC-xpath-19991116). By being accessed with the
XPath formula expressed in accordance with these first and
second conditions, the tree structure storage unit 22 can
uniquely specify the node in the tree structure.

The tree structure storage unit 22 can also preliminarily
verify the validity of the tree structure after having added the
sub-tree, using a WSDL file. When the tree structure is not
valid after having added the sub-tree, the tree structure stor-
age unit 22 does not need to add the sub-tree.

20

25

30

35

40

45

50

55

60

65

10

As described above with reference to the application
execution unit 12, since it is possible to access the tree struc-
ture stored in the tree structure storage unit 22 by the XPath,
this the web service can be used on the external server device
100 with the same processing as the processing executed in
the XML document.

FIG. 6 shows an exemplary description of a conversion
condition by the conversion unit 36. The conversion unit 36
converts the tree structure of the partial tree for response 50,
in which the result of the web service stored in the tree
structure storage unit 22 is reflected, based on the conversion
rule stored in the conversion rule storage unit 34. The conver-
sion unit 36 can convert, for example, a tree structure in
accordance with the conversion rule described in the XML
conversion language as illustrated in FIG. 6.

In FIG. 6, a request element indicates that a partial tree for
response 50 corresponding to either request message is to be
converted. A predicate element indicates the parameter
included in the request message. A Transformation element
indicates a conversion method. A target attribute in the Trans-
formation element specifies a position of the node to be a
conversion target in the tree structure, for example. More
specifically, the target attribute specifies the partial tree for
response 50 as the conversion target when the attribute is
described as target=""", or specifies the whole tree structure as
the conversion target when the attribute is described as tar-
get="/". A style sheet element indicates specific contents of
the conversion.

By being provided with the conversion unit 36 as described
above, according to the web service interface 20, it is possible
to convert the result of the web service execution into a
structure suitable for the application using the web service. In
addition, by being provided with the conversion unit 36,
according to the web service interface 20, it is not necessary
to change the description of the program of each application
even when the specification of the result of execution the web
service is modified, and therefore, it is possible to reduce the
burden on the user.

FIG. 7 shows a configuration of the information processing
apparatus 10 according to another embodiment, along with
the server device 100 and an HTML server device 200. Since
each component illustrated in FIG. 7 adopts the substantially
same configuration and function as the component with the
same reference numeral illustrated in FIG. 1, the description
thereof will be omitted below, except for differences. The
HTML server device 200 provides the information process-
ing apparatus 10 with the HTML (Hypertext Markup Lan-
guage) document.

The information processing apparatus 10 in this example is
has a browser execution unit 80. The browser execution unit
80 executes a browser for browsing the HTML document in
addition to using the web service. The browser execution unit
80 has an HTML processing unit 82, a script processing unit
84, a rendering processing unit 86, and the web service inter-
face 20. The HTML processing unit 82 acquires and analyzes
the HTML document. The script processing unit 84 executes
a script included in the HTML document. The rendering
processing unit 86 renders the HTML document analyzed by
the HTML processing unit 82. The application execution unit
12 illustrated in FIG. 1A is an example of a functional block
combining the HTML processing unit 82, the script process-
ing unit 84, and the rendering processing unit 86.

FIG. 8 is a flowchart showing an example of the processing
of'the web service by the information processing apparatus 10
illustrated in FIG. 7. First, the HTML processing unit 82
sends a URI (Uniform Resource Identifier) to the HTML
server device 200 (step S21). The HTML processing unit 82

US 8,140,575 B2

11

then acquires and analyzes the corresponding HTML docu-
ment (step S22). The rendering processing unit 86 then ren-
ders the HTML document acquired by the HTML processing
unit 82. Therewith, the script processing unit 84 loads the
script included in the HTML document (step S23). The
HTML processing unit 82 then detects that an event accom-
panying execution of the loaded script is generated (step S24).
The HTML processing unit 82, may detect, for example, that
the event is generated in response to a keyword input into a
search key word box in the HTML document.

The HTML processing unit 82 then calls up the corre-
sponding script loaded by the script processing unit 84 (step
S25). The script processing unit 84 then, while executing the
script using the web service, calls up the web service interface
20, and accesses the request node 42 and the response node
52, for example, by specifying the XPath (step S26).

The web service interface 20 then, in response to having
received the access to the request node 42, generates the
request message for calling up the web service complying
with the request node 42 and sends the message to the server
device 100 (step S27). The web service interface 20 then
receives the response message from the server device 100
(step S28). The web service interface 20 then reflects the
result of the web service execution included in the response
message, in the response node 52 (step S29).

The script processing unit 84 then modifies a correspond-
ing part of the HTML document held by the HTML process-
ing unit 82 based on the response node 52 in which the result
of'the web service execution is reflected (step S30). The tree
structure storage unit 22 may duplicate, for example, the
partial tree for response 50 including the response node 52 in
which the result of the web service execution is reflected to
the HTML document held by the HTML processing unit 82.
The rendering processing unit 86 then renders the modified
HTML document (step S31).

With such a browser execution unit 80, since it is possible
to use the web service interface 20 within the script, access to
the web service from the script is facilitated. By executing the
script, the browser execution unit 80 can incorporate the
result of the web service execution into the HTML document.
More specifically, for example, the browser execution unit 80
may display the result of the web service execution reflected
in the response node 52 of the tree structure in the web service
interface 20 when having detected the operation to a certain
object included in the HTML document, or may display the
object in the original HTML document when not having
detected the operation to the object.

FIG. 9(A) illustrates an example of the script for accessing
“ws:Request” for acquiring the web service providing the
cached web page, while FIG. 9(B) illustrates an example of a
code of'the script for accessing “ws:Response”. FIG. 10 illus-
trates an example of the tree structure generated by the XPath
formula illustrated in FIGS. 9(A) and 9(B).

When using the web service providing the cached web
page, the script processing unit 84 may access the web service
interface 20 by the XPath formula illustrated in FIG. 9(A).
This enables the script processing unit 84 to create a new
partial tree for request 40 and a partial tree for response 50
under “ws:Query”, as illustrated in FIG. 10. The script pro-
cessing unit 84 can access the request node 42 with a rela-
tively short code by using the XPath.

The tree structure illustrated in FIG. 10 has four nodes,

“ws:webService”, “ws:Query”, “ws:Request”, and “ws:Re-

sponse”. “ws:webService” is a root node of the tree structure,
and may have the URL ofthe WSDL file used for determining
whether or not the tree structure after having added the sub-

tree is valid. “ws:Query” is a child of “ws:webService”, and

20

25

30

35

40

45

50

55

60

65

12

expresses a query corresponding to each of web services.
“ws:Query” contains the partial tree for request 40 including
“ws:Request” and the partial tree for response 50 including
“ws:Response” as the children.

“ws:Request” is an example of the request node 42. “ws:
Request” has a parameter node 44 with the same configura-
tion as that of the body part of the request message by the
SOAP. In this example, “ws:Request” has “gws:doGet-
CachePage” as the child, as well as “gws:key” and “gws:url”
as grandchildren. “gws:doGetCachePage” indicates contents
of the web service. “gws:key” indicates the search key, and
“gws:url” indicates the target of search.

“ws:Response” is an example of a response node 52. “ws:
Response™ has a return node 54 with the same configuration
as that of the body part of the response message by the SOAP.
Here, “ws:Response” has “gws:doGetCachePageResponse”
as the child of return node 54 and “gws:return” indicating a
search result as the grandchild of the return node 54.

The script processing unit 84 may also access the web
service interface 20 by the XPath formula illustrated in FIG.
9(B). This enables the script processing unit 84 to acquire the
result of the web service execution providing the cached web
page from the partial tree for response 50 under “ws:Re-
sponse” as illustrated in FIG. 10. By using the XPath, the
script processing unit 84 can acquire the result of the web
service execution from the response node 52 with the rela-
tively short code.

FIG. 11 is a schematic block diagram of a hardware con-
figuration of a computer 1900 in accordance with one
embodiment of the invention. The computer 1900 is provided
with a CPU periphery unit having a CPU 2000, a RAM 2020,
a graphics controller 2075, and a display 2080, which are
interconnected by host controller 2082, an I/O unit having a
communication interface 2030, a hard disk drive 2040, and a
CD-ROM drive 2060, which are connected to the host con-
troller 2082 via an 1/O controller 2084, and a legacy I/O unit
having a ROM 2010, a flexible disk drive 2050, and an I/O
chip 2070, which are connected to the /O controller 2084.

The host controller 2082 connects the RAM 2020 with the
CPU 2000 and the graphics controller 2075 which access the
RAM 2020 at a high transfer rate. The CPU 2000 operates
based on the program stored in the ROM 2010 and the RAM
2020, and controls each unit. The graphics controller 2075
acquires image data generated on a frame buftfer provided in
the RAM 2020 by the CPU 2000 and the like, and displays the
same on the display 2080. Alternatively, the graphics control-
ler 2075 may include a frame buffer for storing the image data
generated by the CPU 2000 and the like.

The 1/O controller 2084 connects the host controller 2082
to the communication interface 2030, the hard disk drive
2040, and the CD-ROM drive 2060, which are relatively
high-speed 1/O devices. The communication interface 2030
communicates with other devices via the network. The hard
disk drive 2040 stores the program and the data used by the
CPU 2000 in the computer 1900. The CD-ROM drive 2060
reads the program or the data from the CD-ROM 2095, and
provides the same to the hard disk drive 2040 via the RAM
2020.

The I/O controller 2084 is also connected to the ROM
2010, the flexible disk drive 2050, and the 1/O chip 2070,
which are relatively low-speed /O devices. The ROM 2010
stores a boot program executed by the computer 1900 when
starting up, the program depending on hardware of the com-
puter 1900, or the like. The flexible disk drive 2050 reads the
program or the data from a flexible disk 2090, and provides
the same to the hard disk drive 2040 via the RAM 2020. The
1/0O chip 2070 connects the flexible disk drive 2050, as well as

US 8,140,575 B2

13

various [/O devices via a parallel port, a serial port, a key-
board port, a mouse port, or the like.

The program provided to the hard disk drive 2040 via the
RAM 2020 is stored in a recording medium, such as a flexible
disk 2090, a2 CD-ROM 2095, or an IC card, and is provided by
the user. The program is read from the recording medium,
installed in the hard disk drive 2040 in the computer 1900 via
the RAM 2020, and executed in the CPU 2000.

The program which is installed in the computer 1900 and
causes the computer 1900 to function as the web service
interface 20 is provided with a tree structure storage unit
module, a request generation unit module, a request sending
unit module, a response receiving unit module, a response
reflection unit module, a cache processing unit module, a
conversion rule storage unit module, and a conversion unit
module. These programs or modules work on the CPU 2000
or the like to cause the computer 1900 to function as the tree
structure storage unit 22, the request generation unit 24, the
request sending unit 26, the response receiving unit 28, the
response reflection unit 30, the cache processing unit 32, and
the conversion rule storage unit 34, respectively.

The programs or modules mentioned above may be stored
in an external storage medium. In addition to the flexible disk
2090 and the CD-ROM 2095, as the storage medium, it is
possible to use an optical recording medium such as a DVD or
a CD, an optical magnetic recording medium such as an MO,
a tape medium, and a semiconductor memory such as an IC
card. In addition, storage device such as a hard diskora RAM,
provided in a server system connected to a dedicated com-
munication network or the Internet may be used as the record-
ing medium to provide the program to the computer 1900 via
the network.

The invention can take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in soft-
ware, which includes but is not limited to firmware, resident
software, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer readable medium can be any apparatus
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk—read only memory (CD-
ROM), compact disk—read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

20

25

30

35

40

45

50

55

60

65

14

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

While the invention has been described using the above
exemplary embodiments, the technical scope of the invention
is not limited to the scope of the above-described embodi-
ments. It is clear to a person skilled in the art that various
modifications or improvement may be made to the above-
described embodiments. It is clear from the description of the
claims that such modified or improved embodiments are also
included within the scope of the invention.

The invention claimed is:

1. A client-side information processing apparatus operable
to provide an interface for using a web service on an external
server device, comprising:

a processor;

a first storage unit operable to store a first tree structure for
accessing the web service, wherein the first tree structure
includes:
apartial tree for request having a request node and one or

more parameter nodes descended from the request
node, wherein each parameter node is operable to
store a parameter to be provided to the web service
when executing a request to the web service, and

a partial tree for response having a response node and
one or more return nodes descended from the
response node, wherein each response node is oper-
able to store a result of having executed the request at
the web service;

an application execution unit operable to execute an appli-
cation using the web service and to store each parameter
to be provided to the web service into each parameter
node descended from the request node for the web ser-
vice;

a request generation unit operable to:
acquire the parameters from each parameter node in

which a parameter has been stored by the application
execution unit, and

generate a request message including the parameters for
calling up the web service,

wherein the request generation unit further includes:

a service name acquisition unit operable to acquire a
name of the web service from the request node;

a Web Services Description Language acquisition unit
operable to acquire a Web Services Description Lan-
guage description defining a specification of the web
service using the name of the web service; and

an address acquisition unit operable to acquire an
address of the server device which provides the web
service from the Web Services Description Language
description;

arequest sending unit operable to send the request message
to the server device providing the web service, as defined
by the address acquired by the address acquisition unit;

a response receiving unit operable to receive a response
message, including a result of having executed the web
service, from the server device; and

a response reflection unit operable to store the response
from the web service in the response node and the one or
more return nodes in the partial tree for response.

US 8,140,575 B2

15

2. The information processing apparatus of claim 1, further
comprising:

a second storage unit operable to store a document used by

the application in a second tree structure,

wherein the application execution unit is operable to rep-
licate the partial tree for response in the first tree struc-
ture including the at least one response node in which the
result of the web service is stored as a partial tree into the
second tree structure.

3. The information processing apparatus of claim 1,

wherein
the storage unit is operable to store a document used by the
application with the first tree structure,
the application execution unit, as a result of having used the
web service for part of the document, is operable to
access the request node in the first tree structure, the first
tree structure being defined corresponding to the part of
the document, and
the response reflection unit is operable to store the result of
having executed the web service in the part of the docu-
ment.
4. The information processing apparatus of claim 1,
wherein the request generation unit is operable to generate a
request message in response to having accessed the request
node with a path indicating a position in the first tree struc-
ture.
5. The information processing apparatus of claim 1,
wherein:
the first storage unit is operable to cache the response node
in which the result of the web service is stored, the first
storage unit further comprising:
acachehit processing unit operable to return the result of
the web service cached on the first storage unit, if the
request nodes have already been registered in the first
tree structure; and

a cache miss processing unit operable to cause the
request sending unit to send the request message in
order to cache the result of the web service on the first
storage unit, and to register anew the request nodes as
nodes in the first tree structure, when the request
nodes have not been registered in the first tree struc-
ture.

6. The information processing apparatus of claim 1,
wherein the request generation unit is operable to generate the
request message in response to accessing the response node
after accessing the request node.

7. The information processing apparatus of claim 1, further
comprising:

a conversion rule storage unit operable to store a conver-
sion rule to convert the response message received com-
plying with having accessed the request node in
response to the each request node; and

aconversion unit operable to convert the first tree structure
in which the result of the web service included in the
response message has been stored based on the conver-
sion rule corresponding to the response message.

8. A computer-implemented method for providing an inter-
face which uses a web service on an external server device by
a client-side information processing apparatus, the method
comprising the steps of:

storing a first tree structure for accessing the web service in
a first storage unit in the information processing appa-
ratus, wherein the first tree structure includes:

a partial tree for request having a request node and one or
more parameter nodes descended from the request
node, wherein each parameter node is operable to

20

25

30

35

40

45

50

55

60

65

16

store a parameter to be provided to the web service
when executing a request to the web service, and
a partial tree for response having a response node and
one or more return nodes descended from the
response node, wherein each response node is oper-
able to store a result of having executed the request at
the web service;
executing an application using the web service;
storing each parameter to be provided to the web service
into each parameter node descended from the request
node for the web service;
acquiring the parameters from each parameter node in
which a parameter has been stored;
generating a request message including the parameters for
calling up the web service;
acquiring a name of the web service from the request node;
acquiring a Web Services Description Language descrip-
tion defining a specification of the web service using the
name of the web service;
acquiring an address of the server device which provides
the web service from the Web Services Description Lan-
guage Description;
sending the request message to the server device providing
the web service, as defined by the acquired address;
receiving a response message which includes a result of
having executed the web service from the server device;
and
storing the response from the web service in the response
node and the one or more return nodes in the partial tree
for response.
9. The method of claim 8, further comprising:
storing a document used by the application in a second tree
structure;
wherein executing includes replicating the partial tree for
response in the first tree structure including the at least
one response node in which the result of the one web
service is stored as a partial tree into the second tree
structure.
10. The method of claim 8, further comprising:
storing a document used by the application with the first
tree structure,
accessing the request node in the first tree structure, the first
tree structure being defined corresponding to the part of
the document, and
storing the result of having executed the web service in the
part of the document.
11. The method of claim 8, further comprising:
generating a request message in response to having
accessed the request node with a path indicating a posi-
tion in the first tree structure.
12. The method of claim 8, further comprising:
caching the response node in which the result of the web
service is stored, wherein the caching includes:
returning the result of the web service cached on the first
storage unit, if the request nodes have already been
registered in the first tree structure; and
sending the request message in order to cache the result
of the web service on the first storage unit, and regis-
tering anew the request nodes as nodes in the first tree
structure, when the request nodes have not been reg-
istered in the first tree structure.
13. The method of claim 8, further comprising generating
the request message in response to accessing the response
node after accessing the request node.

US 8,140,575 B2

17

14. The method of claim 8, further comprising:

storing a conversion rule to convert the response message
received complying with having accessed the request
node in response to the each request node; and

converting the first tree structure in which the result of the
web service included in the response message has been
stored based on the conversion rule corresponding to the
response message.

15. A computer program product for providing an interface
which uses a web service on an external server device by a
client-side information processing apparatus, the computer
program product comprising:

a tangible non-transitory computer readable storage
medium having computer readable program code
embodied therewith, the computer readable program
code comprising:

computer readable program code configured to store a first
tree structure for accessing the web service in a first
storage unit in the information processing apparatus,
wherein the first tree structure includes:

a partial tree for request having a request node and one or
more parameter nodes descended from the request
node, wherein each parameter node is operable to
store a parameter to be provided to the web service
when executing a request to the web service, and

a partial tree for response having a response node and
one or more return nodes descended from the
response node, wherein each response node is oper-
able to store a result of having executed the request at
the web service;

computer readable program code configured to execute an
application using the web service;

computer readable program code configured to store each
parameter to be provided to the web service into each
parameter node descended from the request node for the
web service;

computer readable program code configured to acquire the
parameters from each parameter node in which a param-
eter has been stored;

computer readable program code configured to generate a
request message including the parameters for calling up
the web service;

computer readable program code configured to acquire a
name of the web service from the request node;

computer readable program code configured to acquire a
Web Services Description Language description defin-
ing a specification of the web service using the name of
the web service;

computer readable program code configured to acquire an
address of the server device which provides the web
service from the Web Services Description Language
Description;

computer readable program code configured to send the
request message to the server device providing the web
service, as defined by the acquired address;

computer readable program code configured to receive a
response message which includes a result of having
executed the web service from the server device; and

computer readable program code configured to store the
response from the web service in the response node and
the one or more return nodes in the partial tree for
response.

20

35

40

50

60

18

16. The computer program product of claim 15, further
including:

computer readable program code configured to store a

document used by the application in a second tree struc-
ture;

wherein the computer readable program code configured to

execute the application includes computer readable pro-
gram code configured to replicate the partial tree for
response in the first tree structure including the at least
one response node in which the result of the one web
service is stored as a partial tree into the second tree
structure.

17. The computer program product of claim 15, further
including:

computer readable program code configured to store a

document used by the application with the first tree
structure,

computer readable program code configured to access the

request node in the first tree structure, the first tree struc-
ture being defined corresponding to the part of'the docu-
ment, and

computer readable program code configured to store the

result of having executed the web service in the part of
the document.

18. The computer program product of claim 15, further
including:

computer readable program code configured to generate a

request message in response to having accessed the
request node with a path indicating a position in the first
tree structure.
19. The computer program product of claim 15, further
including:
computer readable program code configured to cache the
response node in which the result of the web service is
stored, wherein the computer readable program code
configured to cache includes:
computer readable program code configured to return
the result of the web service cached on the first storage
unit, if the request nodes have already been registered
in the first tree structure; and
computer readable program code configured to send the
request message in order to cache the result ofthe web
service on the first storage unit, and register anew the
request nodes as nodes in the first tree structure, when
the request nodes have not been registered in the first
tree structure.
20. The computer program product of claim 15, further
including computer readable program code configured to
generate the request message in response to accessing the
response node after accessing the request node.
21. The computer program product of claim 15, further
including:
computer readable program code configured to store a
conversion rule to convert the response message
received complying with having accessed the request
node in response to the each request node; and

computer readable program code configured to convert the
first tree structure in which the result of the web service
included in the response message has been stored based
on the conversion rule corresponding to the response
message.

