US 20230289605A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2023/0289605 A1

LU et al.

43) Pub. Date: Sep. 14, 2023

(54)

(71)

(72)

(73)

@
(22)

(1)

NEURAL BREGMAN DIVERGENCES FOR
DISTANCE LEARNING

Applicant: Booz Allen Hamilton Inc., McLean,
VA (US)

Inventors: Fred Sun LU, Camas, WA (US);
Edward Simon Paster RAFF,
Jamesville, NY (US)

Assignee: Booz Allen Hamilton Inc., McLean,

VA (US)
Appl. No.: 17/689,185
Filed: Mar. 8, 2022

Publication Classification

Int. CL.
GO6N 3/08
GO6N 3/04

(2006.01)
(2006.01)

(52) US.CL
CPC ... GOGN 3/084 (2013.01); GO6N 3/0481

(2013.01)

57 ABSTRACT

A method, system, and computer program product for con-
figuring a computer for data similarity determination using
Bregman divergence may include storing a data set having
plural data pairs with one or more data points corresponding
to one or more features and generating a trained input
convex neural network (ICNN) using the data set, the ICNN
having one or more parameters. Training the ICNN may
include extracting one or more features for each piece of
data in the first data pair, generating an empirical Bregman
divergence for the first data pair, and computing one or more
gradients between the one or more features within the first
data pair using known target distances and the computed
empirical Bregman divergence.

Method for Configuring a Computer for Data Classification Similarity Determination Using Bregman Divergence 300

\‘

302~

Storing a data set, the data set having plural data
pairs with one or more data points corresponding to
one or more features, wherein a first given feature
of a first piece of data in a first data pair has a
known target distance to a second given feature of
a second piece of data in the first data pair.

v

304\ Training an input convex neural network (ICNN)

using the data set, the ICNN having one or more
parameters.

v

306\ Receiving a data file, the data file having one or
more features.
308 i
\1 Inputting the data file into the trained ICNN
3 10\ Generating a Bregman function for each of the one

312
™

or more features of the data file.

v

Calculating a distance between each of the one or
more features of the data file and the one or more
of the data points of the plural data pairs.

Y 314

Outputting a classification of the data file
based on the calculated distances.

Patent Application Publication Sep. 14, 2023 Sheet 1 of 4 US 2023/0289605 A1

(=]
v

10
FIG. 1

106

104

102

v/

001 20UABIRAL] UeWS1g FUIS[] UOHRUIULINR
AILIR[TWIS UONBILISSRL)) BIR(] 107 JIndwo)) © SuLnSjuo)) J0 WIsAS

A .
< <Ol
w,
=4
o
N
o
o
=4
S _ mding
M YT Q0UAFIAAI(] —
=) mding 0€T [at4
SWIEIEINTg] °INPOIN PPOIN

— uonetiteR OUIBIAL(URWIAIY [RINAN
M W hulil ittt » UonedIJISSL|) ‘
o 90BJIU]
< /Bm N eowydein Y, 777
L —_—
= —_ 87t a1 BIe(
x ore S[NpoN 9% :
S 301A9p Kerdsiq Su1s$9001 S[npogAL ndug
A o[Breq olld 'red)4 01T
= wsereg | ** %] wsereq
5 o
7] —

80T
S[MPOIN

= Sumuel], d5eI01g
=] m— g
= 0s¢ [PPOIN — p—
2 (Teuondo) IOMIDN — 907 ¥0¢
= Y44 AIOWSTA] 10859201
- weidold uoneuIuLIRg
.m ﬁocowbim uewdoIg [eInd < 70T
m 901A9(] Sunndwo))
=
=
<
=
&
]
-

Ve Old

‘sared ejep 1einyd oy} Jo syutod eyep oy Jo
—| 910U 10 SUO AU} PUE I[1J BIBP I} JO SIIMILIF AIOU |~
JO 9UO 3} JO (OB USIM]IQ 0UBISIP B Sunemoe) (483

%

"O]1J BIEP O} JO SAINJLIJ AIOW IO
9Uo 3} JO Yors 10§ uonouny uewdoig v Sunerouan [N\ _ 01¢

%

NNDI pauren 9y} our 91 eep 3y} Sumnduy

A

US 2023/0289605 Al

M g0¢

"$9INJBOJ SIOW
JO QUO SUIARY J(IJ BIBP Y} O[1 BIEP © SUIAIIDY /©Om

ﬂ

‘s1ojoureIed
2JOW JO U0 SurARYy NNDI Y} ‘19S eiep ay} Suisn
(NNDI) J}I0MISU [BINSU X9AU0d Indut ue Sututel] | \o b€

%

ared BIRp 1S11J OYI UT BIRP JO 9031d PuOdaS B
JO 9InJeaJ USAIS PUODSS B 0) J0URISIP J5TL) UMOUY
® sey Jred ejep 311y © ul ejep Jo 9091d 1s11J © JO
QINJLAJ UDAIS ISI1J B UIRIOYM ‘SAINIRIJ IOW JO U0 /NOm
"SOOURISIP PIRINOTED Y} UO PIseq 0} Suipuodsa1i0d syutod eyep a1ow IO dUO Y sited
p1e = | o1y eep a1 Jo uonedyissed € Sumnding ejep eanjd Suiaey 19s ejep 91} 198 BIEp € SULI0)S

Sep. 14,2023 Sheet 3 of 4

v/

00€ 20USI2AL(] uewSoIg FuUIS() UONRUTULIIR(] AJLIR[IWIS UOTIBOIISSB]) BIR(] JOJ JoIndwo)) & SuunSyuo)) 10J POYIRN

Patent Application Publication

g¢ 'Old

"SJULIPLIS 2IOW JO JUO Y} UO
paseq Jred Biep B IOJ UOTIOUNJ IDUITIIAIP UBWISAIYG
e Indino 03 parn3yguod NNDI pauren) & SuneIduan) N\

US 2023/0289605 Al

80¥

‘uonegedoidyoeq aqnop Sursn pandwod
Su12q JUdIPRIS Y} VOUITIVAIP urWIIAIY [eouIdwd
pandwod oy pue Jred eiep 1SIJ Y} JO SAINJRIJ

QIOW JO JUO Y} UIMIDQ OURISIP 19518} umouy| 3y}
uo paseq Jred Biep 1SI1J AU} UIYHIM SAINJBJ AIOW JO - 90v
QUO Y} UAIMIAQ SIURIPLIS 10w JO duo Funndwo))

4

Ired ejep oy
JOJ 9OUITIAAIP uewSAIg [eourdwd ue SuneIOUdN) N Y0P

Sep. 14,2023 Sheet 4 of 4

Ired e1Rp 1SIIJ Y] UI BIRP
JO 2531d yoBd 10J S2IMNJBIJ AI0W JO U0 FUNIRIXH RS 701

v/

00€ 20UdTIAIL(] UewSAIg SUlS() UONRUIWIAIR(] AJLIR[IWIS UONBIYISSR)) BIe(10} Rndwo)) © SuLn3uo)) 103 pOYRN

Patent Application Publication

US 2023/0289605 Al

NEURAL BREGMAN DIVERGENCES FOR
DISTANCE LEARNING

FIELD

[0001] The present disclosure relates to methods and sys-
tems for configuring a computer for data classification
similarity determination using Bregman divergence.

BACKGROUND

[0002] Learning a task-relevant metric among samples is
a common application of machine learning, with use in
retrieval, clustering, and ranking. A classic example of
retrieval is in visual recognition where given an image of an
object class, a system tries to identify the class of the object
based on an existing labeled dataset by learning a measure
of similarity between pairs of images in the dataset.
Recently, with the broad successes of deep learning, there
has been a surge of interest in deep metric learning in which
neural networks are used to automatically learn these simi-
larities between objects. The traditional approach to deep
metric learning is to learn an embedding function ¢ over the
input space so that a simple distance measure between pairs
of embeddings corresponds to task-relevant spatial relation-
ships between the inputs. The embedding function ¢ is
computed by a neural network, which is learned to encode
those spatial relationships. For example, the basic Euclidean
distance metric can be used to measure the distance between
two samples x and y as ||p(X)—(y)||,- This distance is critical
in two ways: 1) it is used to define the loss functions, such
as triplet loss or contrastive loss, to dictate how this distance
should be used to capture the task-relevant properties of the
input space; and 2) since ¢ is trained to optimize the loss
function, the distance function influences the embedding
function learned. However there are limitations to this
traditional approach in that many tasks can be formulated
where the underlying distance measure should be asymmet-
ric, which by definition cannot be captured by any valid
distance metric, e.g. Euclidean distance. For example, asym-
metric tasks can include determining the similarity between
text snippets, determining image overlap distance, and deter-
mining divergences between probability distributions. Fur-
ther, selecting a fixed distance measure, e.g. Euclidean
distance, relies on the ability of the embedding network to
project the inputs to a space where the distance measure is
effective and for many tasks this is not possible, e.g.,
learning distances on graphs where the triangle inequality
does not hold. An example of triangle inequality, i.e. asym-
metrical object retrieval, is illustrated in FIG. 1. FIG. 1
illustrates a first image 102 of object 104, a second image
106 of object 108, and a third image 110 of object 112. The
distance between the object 104 and the object 112 should be
larger than both the distance between the object 104 and the
object 108 and the distance between the object 108 and the
object 112. This is because there is no similarity between the
object 104 and the object 112, but there is a fifty percent
similarity between the objects 104 and 108 and the object
108 and 112. Therefore, the relationship between the three
objects 104, 108, and 112 violate triangle inequality because
modeling this relationship would require asymmetric mea-
sures and thus this relationship imposes limits on how far
any metric based approach can fully realize the visual
similarity between the three objects 104, 108, and 112. To
address these limits in determining a distance measure

Sep. 14, 2023

between embeddings, a Bregman divergence may be used. A
Bregman divergence fundamentally computes the diver-
gence between two points X and y from a space X using
first-order Taylor approximations of a generating function ¢.
This generating function is defined over X and can be
thought of as (re)encoding or “summarizing” points from X
However, current Bregman divergences are computed by
learning an appropriate divergence measure over a direct
representation of the divergence (D) of the function ¢, which
comes with significant costs to run-time and representational
capacity. Thus, there is a need for a novel solution for more
effectively and efficiently learning a Bregman divergence.

SUMMARY

[0003] A method for configuring a computer for data
classification similarity determination using Bregman diver-
gence is disclosed. The method includes storing a data set,
the data set having plural data pairs with one or more data
points corresponding to one or more features, wherein a first
given feature of a first piece of data in a first data pair has
aknown target distance to a second given feature of a second
piece of data in the first data pair; training an input convex
neural network (ICNN) using the data set, the ICNN having
one or more parameters, wherein training the ICNN
includes: extracting one or more features for each piece of
data in the first data pair; generating an empirical Bregman
divergence for the data pair; computing one or more gradi-
ents between the one or more features within the first data
pair based on the known target distance between the one or
more features of the first data pair and the computed
empirical Bregman divergence, the gradient being computed
using double backpropagation; and generating a trained
ICNN configured to output a Bregman divergence function
for a data pair based on the one or more gradients.

[0004] A system configuring a computer for data similarity
determination classification using Bregman divergence. The
system including a memory configured to: store a data set,
the data set having plural data pairs with one or more data
points corresponding to one or more features, wherein a first
given feature of a first piece of data in a first data pair has
aknown target distance to a second given feature of a second
piece of data in the first data pair; and a processing device
configured to: train an input convex neural network (ICNN)
using the data set, the ICNN having one or more parameters,
wherein training the ICNN includes: extracting one or more
features for each piece of data in the first data pair; gener-
ating an empirical Bregman divergence for the data pair;
computing one or more gradients between the one or more
features within the first data pair based on the known target
distance between the one or more features of the first data
pair and the computed empirical Bregman divergence, the
gradient being computed using double backpropagation; and
generate a trained ICNN configured to output a Bregman
divergence function for a data pair based on the one or more
gradients.

[0005] A computer program product for configuring a
computer for data similarity determination classification
using Bregman divergence. The computer program product
including: a computer-readable storage medium having pro-
gram instructions embodied therewith, the program instruc-
tions executable by a computer to cause the computer to
perform a method, including: storing a data set, the data set
having plural data pairs with one or more data points
corresponding to one or more features, wherein a first given

US 2023/0289605 Al

feature of a first piece of data in a first data pair has a known
target distance to a second given feature of a second piece
of data in the first data pair; training an input convex neural
network (ICNN) using the data set, the [CNN having one or
more parameters, wherein training the ICNN includes:
extracting the one or more features for each piece of data in
the first data pair; generating an empirical Bregman diver-
gence for the data pair; computing one or more gradients
between the one or more features within the first data pair
based on the known target distance between the one or more
features of the first data pair and the computed empirical
Bregman divergence, the gradient being computed using
double backpropagation; and generating a trained ICNN
configured to output a Bregman divergence function for a
data pair based on the one or more gradients.

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

[0006] The scope of the present disclosure is best under-
stood from the following detailed description of exemplary
embodiments when read in conjunction with the accompa-
nying drawings. Included in the drawings are the following
figures:

[0007] FIG. 1 is a block diagram illustrating asymmetric
object retrieval in accordance with the prior art;

[0008] FIG. 2 is a block diagram illustrating a high-level
system architecture for configuring a computer for data
similarity determination using Bregman divergence in
accordance with exemplary embodiments;

[0009] FIGS. 3A-3B is a flowchart illustrating a method
for configuring a computer for data similarity determination
using Bregman divergence in accordance with exemplary
embodiments.

DETAILED DESCRIPTION

[0010] A Bregman divergence fundamentally computes
the divergence between two points, e.g., x and y, from a
space X Current methods and technologies compute diver-
gences using first-order Taylor approximations of a gener-
ating function ¢. This generating function @ is defined over
X and can be thought of as (re)encoding or “summarizing”
points from X A proper and informative generating function
@ is incredibly important as different generating functions @
can capture different properties of the spaces over which
they are defined. A Bregman divergence may be computed
using the following equation:

D)=~ Ve)a—y{
In equation 1, (-,-) represents the dot product and Vo(y) is
the gradient of the generating function ¢ evaluated at y. For
example, if X=R“ and ¢ is the squared Euclidean distance
(@(y)=yl5°=Es, "y, then Vo(y)=2y. This means De(x,
y)=|x—yl|l,%. As an alternative example, if X is the D-dimen-
sional discrete probability distributions (i.e., xe XX, x =1
and 0<x,<1, Vd) then @(x)=(x, log x{ yields the Kullback-
Leibler Bregman divergence

(Equation 1)

Xd
Dy(x, y) = X4 x4 log —.
Yd

Therefore, this shows how a properly defined generating
function @ can capture critical, inherent properties of the
underlying space X The core requirement of a Bregman

Sep. 14, 2023

divergence is that the generating function ¢ be strictly
convex and continuously differentiable. This core require-
ment is fairly straightforward, however, the hypothesis
space of Bregman divergences (i.e., the space of all possible
Bregman divergences D@(x, y) that can be generated by a
strictly convex and continuously differentiable function @) is
valuable due to the fact that many core machine learning
measures are special cases of Bregman divergences such as,
the squared Euclidean distance, the Kullback-Leibler, and
the Ikura-Saito divergences, and others. Furthermore it has
been shown that the class of symmetric Bregman diver-
gences are equivalent to the Mahalanobis distances (of
which the Euclidean distance is a special case), leaving the
current “standard” class of modeling assumptions within the
hypothesis space. While many special cases of the Bregman
divergence are in use today, little progress has been made in
effectively learning Bregman divergences. To learn an arbi-
trary Bregman divergence prior methods and technologies
have used max affine representations of the generating
function ¢ for mathematical convenience, as it allows the
right hand side of Equation 1 to cancel out and to directly
work with the representation D@(x, y). By showing that
representation results in a valid D@(x, y) under correct
constraints prior methods are able to apply their learning
approach to maintain those constraints. However, this comes
at significant cost to run-time and representational capacity.
Exemplary embodiments of the methods and systems pro-
vided herein address these current inefficiencies by provid-
ing a neural method to automatically and more efficiently
compute Bregman divergences by learning more informa-
tive functions @. In particular, exemplary embodiments of
the methods and systems provided herein learn the convex
function @ directly instead of over a direct representation of
D¢. The methods and systems provided herein learn the
convex function @ directly by resolving two constraints: 1)
efficiently computing D¢ from just ¢ using double back-
propagation; and 2) learning ¢ itself while guaranteeing that
the ¢ is convex using an Input Convex Neural Network
(ICNN).

System Overview

[0011] FIG. 2 illustrates system 100 for configuring a
computer for data similarity determination using Bregman
divergence in accordance with exemplary embodiments.
[0012] The computing device 202 includes, for example, a
processor 204, a memory 206, a storage 208, and a neural
Bregman divergence determination program 220. The
device 202 may be a desktop computer, a notebook, a laptop
computer, a tablet computer, a handheld device, a smart-
phone, a thin client, or any other electronic device or
computing system capable of storing, compiling, and orga-
nizing audio, visual, or textual data and receiving and
sending that data to and from other computing devices, such
as the display device 240.

[0013] The processor 204 may be a special purpose or a
general purpose processor device specifically configured to
perform the functions discussed herein. The processor 204
unit or device as discussed herein may be a single processor,
a plurality of processors, or combinations thereof. Processor
devices may have one or more processor “cores.” In an
exemplary embodiment, the processor 204 is configured to
perform the functions associated with the modules of the
neural Bregman divergence determination program 220 as
discussed below with reference to FIGS. 3A-3B.

US 2023/0289605 Al

[0014] The memory 206 can be a random access memory,
read-only memory, or any other known memory configura-
tions. Further, the memory 206 can include one or more
additional memories including the storage 208 in some
embodiments. The memory 206 and the one or more addi-
tional memories can be read from and/or written to in a
well-known manner. In an embodiment, the memory and the
one or more additional memories can be non-transitory
computer readable recording media. Memory semiconduc-
tors (e.g., DRAMs, etc.) can be means for providing soft-
ware to the computing device such as the neural Bregman
divergence determination program 220. Computer pro-
grams, e.g., computer control logic, can be stored in the
memory 206.

[0015] The storage 208 can include, for example, data sets
210a-210n, a data file 212, and a neural Bregman divergence
model 214. The storage 208 can be deployed on one or more
nodes, e.g., storage or memory nodes, or one or more
processing-capable nodes such as a server computer, desk-
top computer, notebook computer, laptop computer, tablet
computer, handheld device, smart-phone, thin client, or any
other electronic device or computing system capable of
storing, compiling, and/or processing data and computer
instructions (e.g., data sets 210a-210#, a data file 212, and
neural Bregman divergence model 214), and receiving and
sending that data to and from other devices, such as the
display device 240. The storage 208 can be any suitable
storage configuration, such as, but not limited to, a relational
database, a structured query language (SQL) database, a
distributed database, or an object database, etc. Suitable
configurations and storage types will be apparent to persons
having skill in the relevant art.

[0016] The datasets 210a-2102 may be any known or
generated data set containing data pairs. Each of the data
pairs of the datasets 210 may include any number of
features. The datasets 210 may contain data of any type, for
example, but not limited to, image files, text files, sensor
data, numerical measurements, or any other suitable data
type which will be apparent to those skilled in the art, etc.
Further the one or more of the features of each piece of data
in a data pair may have a known target distance to another
feature of the corresponding piece of data in the data pair.
For example, a first given feature of a first piece of data in
a first data pair has a known target distance to a second given
feature of a second piece of data in the first data pair. For
example, a dataset 210 can be generated having data pairs of
x-dimensional vectors from a standard Normal distribution.
The generated data pairs can have a number of features used
to compute the target divergence between the data pairs as
well as a number of features used as distractor features. In
another embodiment, the datasets 210 can be any known
dataset containing data pairs having one or more features
such as but not limited to, the INRIA Holidays dataset, the
3d dataset, the 3dd dataset, the octagon dataset, the taxi
dataset, and the traffic dataset, etc. While a plurality of data
sets 210a-210r are illustrated in FIG. 2, it can be appreciated
that the storage 208 can include a single data set 210 or any
number of data sets 210. The data of the datasets 210 may
be stored in the storage 208 as data tuples. For example, the
storage 208 may be a relational database and each tuple,
.e.g., each row of the database, contains all the data, e.g., all
the features, for an individual piece of data while each
column of the storage 208 defines the features of the data.

Sep. 14, 2023

[0017] The data file 212 may be a data file of one or more
of the data sets 2104-210% or the data file 212 may be a
separate data file. For example, the data file 212 may be a
data file of a data set 210 being used to train the neural
Bregman divergence model 214. As another example, the
data file 212 may be a data file separate from the data set 210
that is input into the neural Bregman divergence model 214
to classify the data file 212. Further, the data file 212 may
include a single piece or data, e.g., a single image, or a
plurality of pieces of data, e.g., a plurality of images.
[0018] The neural Bregman divergence model 214 is a
neural network that computes the Bregman divergence
between one or more features of a data pair within the
dataset 210. In an exemplary embodiment, the neural Breg-
man divergence model 214 is an Input Convex Neural
Network (ICNN) such as deployed by Amos et al. “Input
convex neural networks,” herein incorporated by reference.
The ICNN composes linear layers with non-negative
weights W* and affine functions with unconstrained weights
U with convex activation functions g(-). The composition of
these three components for the ith layer of an ICNN is given
by equation 2, where z, is the input to the i’th layer and z,+1
is the output.

zA41=g(W; 24Uz +b,) (Equation 2)

The neural Bregman divergence model 214 uses the Softplus
activation g(x)=log(1+exp(x)) which give the neural Breg-
man divergence model 214 smoothness and strict convexity.
The use of the Softplus activation combined with an appro-
priate parametrization of the non-negative layers in the
ICNN, outperforms the default approach in divergence
learning tasks of using piecewise linear activation functions,
e.g., ReLU variants for g(-)=max(x,0). This is because
evaluating @(y) involves the second derivatives, and the
second derivative of any piecewise learning activation, e.g.
the default approach, will be zero almost everywhere, which
will cause vanishing gradients in the computation of { V(y),
x-y{ thereby restricting its capacity to learn. In extended
testing, RelLU activation functions prevented effective learn-
ing entirely. The generation of the neural Bregman diver-
gence model 214 is discussed in more detail below.

[0019] The neural Bregman divergence determination pro-
gram 220 is a software component that utilizes the data sets
210a-2107 stored in the storage 208 to generate the neural
Bregman divergence model 214 and then outputs a classi-
fication similarity determination of a data file, e.g., the data
file 212, utilizing the neural Bregman divergence model 214.
In an exemplary embodiment, the neural Bregman diver-
gence determination program 220 includes, a model training
module 224, a data file input module 226, a data file
processing module 228, and a classification determination
output module 230. The neural Bregman divergence deter-
mination program 220 is a software component specifically
programmed to implement the methods and functions dis-
closed herein for configuring a computer for data classifi-
cation using Bregman divergence. The neural Bregman
divergence determination program 220 and the modules
224-230 are discussed in more detail below with reference
to FIGS. 3A-3B.

[0020] The neural Bregman divergence determination pro-
gram 220 can include a graphical user interface 242. The
graphical user interface 242 can include components used to
receive input from the computing device 202, and/or the
display device 240 and transmit the input to the neural

US 2023/0289605 Al

Bregman divergence determination program 220 or con-
versely to receive information from the neural Bregman
divergence determination program 220 and display the
information on the computing device 202, and/or the display
device 240. In an example embodiment, the graphical user
interface 242 uses a combination of technologies and
devices, such as device drivers, to provide a platform to
enable users of the computing device 202, and/or the display
device 240 to interact with the neural Bregman divergence
determination program 220. In the example embodiment, the
graphical user interface 242 receives input from a physical
input device, such as a keyboard, mouse, touchpad, touch-
screen, camera, microphone, etc. In an exemplary embodi-
ment, the graphical user interface 242 may display a diver-
gence output 244. While the graphical user interface 242 is
illustrated as part of the display device 240, it can be
appreciated that the graphical user interface 242 is a part of
the neural Bregman divergence determination program 220
and may be a part of the computing device 202, and/or the
display device 240.

[0021] While the processor 204, the memory 206, the
storage 208, and the neural Bregman divergence determi-
nation program 220 are illustrated as part of the computing
device 202, it can be appreciated that each of these elements
or a combination thereof can be a part of a separate com-
puting device.

[0022] The display device 240 can include the graphical
user interface 242. The display device 240 be any computing
device, such as, but not limited to, a cell phone, a server
computer, a desktop computer, a notebook, a laptop com-
puter, a tablet computer, a handheld device, a smart-phone,
a thin client, or any other electronic device or computing
system capable of receiving display signals from another
computing device, such as the computing device 202, etc.
and outputting those display signals to a display unit such as,
but not limited to, an LCD screen, plasma screen, LED
screen, DLP screen, CRT screen, etc. For example, the
graphical user interface 242 may receive the divergence
output 244 from the neural Bregman divergence determina-
tion program 220 and display the divergence output 244 on
the display device 240. Further, the graphical user interface
242 may receive data input files, e.g., the data file 212, from
a user and transmit those data input files, e.g., the data file
212, to the neural Bregman divergence determination pro-
gram 220. The data input files e.g., the data file 212, can
include a single piece of data (e.g., a single image) or
multiple pieces of data (e.g., a plurality images). The display
device 240 may communicate with the computing device
202 via a hard-wired connection or via the network 250. For
example, the display device 240 may have a hard-wired
connection to the image device such as, but not limited to,
a USB connection, an HDMI connection, a display port
connection, a VGA connection, or any other known hard-
wired connection capable of transmitting and/or receiving
data between the computing device 202 and the display
device 240. While the display device 240 is illustrated as
being separate from the computing device 202, it can be
appreciated that the display device 240 can be a part of the
computing device 202.

[0023] The optional network 250 may be any network
suitable for performing the functions as disclosed herein and
may include a local area network (LAN), a wide area
network (WAN), a wireless network (e.g., WiF1), a personal
area network (PAN) (e.g. Bluetooth), a near-field commu-

Sep. 14, 2023

nication (NFC) network, a mobile communication network,
a satellite network, the Internet, fiber optic, coaxial cable,
other hardwired networks, infrared, radio frequency (RF), or
any combination of the foregoing. Other suitable network
types and configurations will be apparent to persons having
skill in the relevant art. In general, the network 250 can be
any combination of connections and protocols that will
support communications between the computing device 202
and the display device 240. In some embodiments, the
network 250 may be optional based on the configuration of
the computing device 202, and the display device 240.

Exemplary Method for Configuring a Computer for
Data Similarity Determination Using Bregman
Divergence

[0024] FIGS. 3A-3B illustrates a method 300 for config-
uring a computer for data similarity determination using
Bregman divergence in accordance with exemplary embodi-
ments.

[0025] The method 300 can include block 302 of storing
a data set, e.g., one or more of the data sets 210a-210z,
where each data set includes one or more data pairs with one
or more data points that correspond to one or more features.
In an exemplary embodiment, a first given feature of a first
piece of data in a first data pair has a known target distance
to a second given feature of a second piece of data in the first
data pair.

[0026] The method 300 can include block 304 of training
an input convex neural network (ICNN), e.g. the neural
Bregman divergence model 214, using the data set 210. The
original feature space is rarely ideal for computing the
distance measures between samples. Prior metric learning
methods generally attempt to apply a linear transformation
to the feature space in order to apply a fixed distance
function D(-,"), such as Euclidean distance. In prior deep
metric learning methods, a neural network fy is used to
embed the samples into a latent space where the distance
function is more useful [27]. In exemplary embodiments of
the method 300, instead of fixing the distance function, a
Bregman divergence as the distance measure is learned
using Equation 3 where §=f,(y) is treated as a constant:

Dolfo@) o=@l))- RVe(). s
(y)< (Equation 3)

In training the ICNN using Equation 3, one or more param-
eters must be learned including those associated with ¢ and
those associated with the encoder (0). During training, the
one or more parameters are simultaneously learned through
gradient descent, which involves back-propagating through
the gradient function Vo(-) to update 6 via double back-
propagation. In an exemplary embodiment, the model train-
ing module 224 can be configured to execute the method of
block 304. The training of the neural Bregman divergence
model 214 is described in more detail with reference to FIG.
3B.

[0027] Referring to FIG. 3B, the method 300 can include
block 402 of extracting one or more features for each piece
of'data in a first data pair, e.g., a data pair of the dataset 210.
The features of the data pair may be extracted using any
arbitrary neural network feature extractor. In an exemplary
embodiment, the model training module 224 can be config-
ured to execute the method of block 402. The block 402 is
also illustrated below with reference to steps 1-5 of Algo-
rithm 1 below.

US 2023/0289605 Al

[0028] The method 300 can include block 404 of gener-
ating an empirical Bregman divergence for the first data pair
of the dataset 210. In an exemplary embodiment, the model
training module 224 can be configured to execute the
method of block 404. The block 404 is also illustrated below
with reference to step 7 of Algorithm 1 below.

[0029] The method 300 can include block 406 of comput-
ing one or more gradients between one or more features
within a first data pair of the dataset 210 based on the known
target distance between the one or more features of the first
data pair and the computed empirical Bregman divergence,
e.g. the Vo(y) term of Equation 1. In an exemplary embodi-
ment, the gradient is computed using double backpropaga-
tion. Double backpropagation allows the use of automatic
differentiation to efficiently compute gradients with respect
to the inputs in an efficient manner, and the dot-product
between a gradient and another value in particular has
specialized “Jacobian vector product” operation that ensures
the term R Vu(y), x—y{ of Equation 1 can be computed in
the cost of evaluating @(y) one additional time. Thus,
because there are already three calls to ¢ in Equation 1, there
is only a twenty-five percent increase in computational
overhead to backpropagate though Equation 1. This is in
contrast to current methods for computing the gradient of
V(y) that construct a Hessian, which results in a quadratic
increase in computation and memory use of the computing
device 202. In an exemplary embodiment, the model train-
ing module 224 can be configured to execute the method of
block 406. The block 406 is also illustrated below with
reference to step 6 of Algorithm 1 below.

[0030] The blocks 402-406 of the method 300 may be
repeated for each of the one or more data pairs in the dataset
210.

[0031] The method 300 can include block 408 of gener-
ating a trained ICNN, e.g., the neural Bregman divergence
model 214, based on the one or more gradients computed,
e.g., the one or more gradients computed in block 408. The
trained ICNN, e.g., the neural Bregman divergence model
214 outputs a Bregman divergence function for the one or
more data pairs of the dataset 210. In an exemplary embodi-
ment, the model training module 224 can be configured to
execute the method of block 304. The block 408 is also
illustrated below with reference to steps 8-11 of Algorithm
1 below.

[0032] The training of the neural Bregman divergence
model 214 as described above with reference to FIG. 3B is
further summarized in Algorithm 1:

Algorithm 1 Neural Bregman Divergence (NBD) Learning.
Given data tuples (a; b;), our approach (1) learns fg to compute
effective ways of featurizing a; and b; and (2) learns a function

¢ that can be used to compute a Bregman divergence value

¥ between the featurized data points. The computed Bregman
divergence is trained via a task-specific loss function{to be
close to a target divergence value y,. If a target divergence
value isn’t available, an implicit loss function can be used.

Require: Dataset of pairs and target distance, Loss function
4R R

fg < any arbitrary neural network as a feature extractor
2: ¢ < a ICNN network parameterized as specified by

—

Equation 2
3: for each data tuple (a;, b;) with label y; in dataset do
4: x = fg(a;) ®Perform feature extraction
5: y = fo(b)

Sep. 14, 2023

-continued

Algorithm 1 Neural Bregman Divergence (NBD) Learning.
Given data tuples (a; b;), our approach (1) learns fg to compute
effective ways of featurizing a; and b;; and (2) learns a function

¢ that can be used to compute a Bregman divergence value

¥ between the featurized data points. The computed Bregman
divergence is trained via a task-specific loss function{to be
close to a target divergence value y,. If a target divergence
value isn’t available, an implicit loss function can be used.

[

ths < (V¢(y), x-y) computed with double backprop
™e.g., using torch.autograd.functional.jvp
7: ¥y =— ¢(x) - ¢(y) - rhs ®Empirical Bregman
divergence computed

8: 4§, y;).backward() ®Compute gradients
9: update parameters of ¢ and 6
end for

return Jointly trained feature extractor fg and learned
Bregman Divergence ¢

[0033] Referring back to FIG. 3A, the method 300 can
include block 306 of receiving a data file, e/g/, the data file
212, having one or more features. The neural Bregman
divergence determination program 220 may receive the data
file 212, for example, but not limited to, from a user of the
computing device 202 and/or the display device 240, e.g.,
via the graphical user interface 242, from the storage 208,
and/or from the memory 206. The data file 212 may have
one or more of the features of the data set 210 used to train
the neural Bregman divergence model 214. In an exemplary
embodiment, the data input module 226 can be configured to
execute the method of block 306.

[0034] The method 300 can include block 308 of inputting
the data file 212 into the neural Bregman divergence model
214. For example, the data file 212 may be, but is not limited
to, an image of handwritten numbers, such as from the
Modified National Institute of Standards and Technology
(MNIST) database. In an exemplary embodiment, the data
input module 226 can be configured to execute the method
of block 308.

[0035] The method 300 can include block 310 of gener-
ating a Bregman function for each of the one or more
features of the data file 212. Continuing with the example
above, the one or more features may include, but are not
limited to, the curvature, the angularity, and/or the edges of
the handwritten numbers of the MNIST image, e.g. the data
file 212. In an exemplary embodiment, the data file process-
ing module 228 can be configured to execute the method of
block 310.

[0036] The method 300 can include block 312 of calcu-
lating a distance between each of the one or more features
of'the data file 212 and the one or more of the data points of
the data pairs of the data set 210. The distance is calculated
by obtaining the Bregman divergence between the one or
more features of the data file 212 and the one or more of the
data points of the data pairs of the data set 210 using the
generated respective Bregman function for each of the one
or more features of the data file 212. For example, a
Bregman divergence can be calculated between each of the
features of the data file 212 and the known features of the
data set 210. In an exemplary embodiment, the data file
processing module 228 can be configured to execute the
method of block 312.

[0037] The method 300 can include block 314 of output-
ting a data classification similarity determination, e.g., the
divergence output 244, of the data file 212 based on the

US 2023/0289605 Al

generated Bregman functions for each of the one or more
features of the data file 212. The divergence output 244 is
generated by determining the smallest Bregman divergence
between each of the pairs of features, e.g., the curvature, the
angularity, and/or the edges, of the handwritten numbers,
e.g. the data file 212, and the known features, e.g. the data
points of the data pairs of the data set 210. Continuing with
the example above, the values made up of the pairs of
features of the data 212 can be classified as being the same
as the known data points with the smallest Bregman diver-
gence. For example, the data file 212 may contain a hand-
written value that has the smallest Bregman divergence to
the number “8” in the data set 210, e.g., the numbers made
up of the features can be identified. The neural Bregman
divergence determination program 220 may output the
divergence output 244 to a user via the graphical user
interface 242 on the display 240 and/or the computing
device 202. In an exemplary embodiment, the classification
determination module 230 can be configured to execute the
method of block 314.

[0038] A person having ordinary skill in the art would
appreciate that embodiments of the disclosed subject matter
can be practiced with various computer system configura-
tions, including multi-core multiprocessor systems, mini-
computers, mainframe computers, computers linked or clus-
tered with distributed functions, as well as pervasive or
miniature computers that can be embedded into virtually any
device. For instance, one or more of the disclosed modules
can be a hardware processor device with an associated
memory.

[0039] A hardware processor device as discussed herein
can be a single hardware processor, a plurality of hardware
processors, or combinations thereof. Hardware processor
devices can have one or more processor “cores.” The term
“non-transitory computer readable medium” as discussed
herein is used to generally refer to tangible media such as a
memory device.

[0040] Various embodiments of the present disclosure are
described in terms of an exemplary computing device. After
reading this description, it will become apparent to a person
skilled in the relevant art how to implement the present
disclosure using other computer systems and/or computer
architectures. Although operations can be described as a
sequential process, some of the operations can in fact be
performed in parallel, concurrently, and/or in a distributed
environment, and with program code stored locally or
remotely for access by single or multi-processor machines.
In addition, in some embodiments the order of operations
can be rearranged without departing from the spirit of the
disclosed subject matter.

[0041] A system, as used herein, can be in combination
with one or more nodes, wherein the system resides in the
one or more nodes. A node can be configured to interface or
contain one or more components of the systems described
herein.

[0042] A hardware processor, as used herein, can be a
special purpose or general purpose processor device. The
hardware processor device can be connected to a commu-
nications infrastructure, such as a bus, message queue,
network, multi-core message-passing scheme, etc. An exem-
plary computing device, as used herein, can include a
memory (e.g., random access memory, read-only memory,
etc.), and can also include one or more additional memories.
The memory and the one or more additional memories can

Sep. 14, 2023

be read from and/or written to in a well-known manner. In
an embodiment, the memory and the one or more additional
memories can be non-transitory computer readable record-
ing media.

[0043] Data stored in the exemplary computing device
(e.g., in the memory) can be stored on any type of suitable
computer readable media, such as optical storage (e.g., a
compact disc, digital versatile disc, Blu-ray disc, etc.),
magnetic tape storage (e.g., a hard disk drive), solid-state
drive, etc. An operating system can be stored in the memory.
[0044] In an exemplary embodiment, the data can be
configured in any type of suitable data storage configuration
or database configuration, such as a relational database, a
structured query language (SQL) database, a distributed
database, an object database, etc. Suitable configurations
and storage types will be apparent to persons having skill in
the relevant art.

[0045] The exemplary computing device can also include
a communications interface. The communications interface
can be configured to allow software and data to be trans-
ferred between the computing device and external devices.
Exemplary communications interfaces can include a
modem, a network interface (e.g., an Ethernet card), a
communications port, a PCMCIA slot and card, etc. Soft-
ware and data transferred via the communications interface
can be in the form of signals, which can be electronic,
electromagnetic, optical, or other signals as will be apparent
to persons having skill in the relevant art. The signals can
travel via a communications path, which can be configured
to carry the signals and can be implemented using wire,
cable, fiber optics, a phone line, a cellular phone link, a radio
frequency link, etc.

[0046] Memory semiconductors (e.g., DRAMs, etc.) can
be means for providing software to the computing device.
Computer programs (e.g., computer control logic) can be
stored in the memory. Computer programs can also be
received via the communications interface. Such computer
programs, when executed, can enable the computing device
to implement the present methods as discussed herein. In
particular, the computer programs stored on a non-transitory
computer-readable medium, when executed, can enable a
hardware processor device to implement the exemplary
methods, or similar methods, as discussed herein. Accord-
ingly, such computer programs can represent controllers of
the computing device.

[0047] Where the present disclosure is implemented using
software, the software can be stored in a computer product
or non-transitory computer readable medium and loaded into
the computing device using a removable storage drive or
communications interface. In an exemplary embodiment,
any computing device disclosed herein can also include a
display interface that outputs display signals to a display
unit, e.g., LCD screen, plasma screen, LED screen, DLP
screen, CRT screen, etc.

[0048] It will be appreciated by those skilled in the art that
the present disclosure can be embodied in other specific
forms without departing from the spirit or essential charac-
teristics thereof. The presently disclosed embodiments are
therefore considered in all respects to be illustrative and not
restrictive. The scope of the disclosure is indicated by the
appended claims rather than the foregoing description, and
all changes that come within the meaning, range, and
equivalence thereof are intended to be embraced therein.

US 2023/0289605 Al

1. A method for configuring a computer for data similarity
determination using Bregman divergence, the method com-
prising:

storing a data set, the data set having plural data pairs with

one or more data points corresponding to one or more
features, wherein a first given feature of a first piece of
data in a first data pair has a known target distance to
a second given feature of a second piece of data in the
first data pair; and

training an input convex neural network (ICNN) using the

data set, the ICNN having one or more parameters,
wherein training the ICNN includes:

for each data pair within the data set:

extracting one or more features for each piece of data
in the first data pair;

generating an empirical Bregman divergence for the
data pair; and

computing one or more gradients between the one or
more features within the first data pair based on the
known target distance between the one or more
features of the first data pair and the empirical
Bregman divergence, the one or more gradients
being computed using double backpropagation,
automatic differentiation to compute the one or more
gradients with respect to one or more data inputs, and
a dot-product between the one or more gradients and
another value;

generating a trained ICNN configured to output an arbi-

trary Bregman divergence function within a space of all
possible Bregman divergences for a data pair based on
the one or more gradients;

receiving a data file, the data file having one or more

features;
inputting the data file into the trained ICNN;
generating a Bregman function for each of the one or
more features of the data file, the one or more features
including at least one of curvature and angularity;

calculating a distance between the one or more features of
the data file and the one or more data points of the
plural data pairs; and

outputting a classification of the data file based on the

calculated distance.

2. (canceled)

3. The method of claim 1, wherein the ICNN is trained
using Softplus activation.

4. The method of claim 1, wherein the plural data pairs are
image pairs.

5. The method of claim 1, wherein the plural data pairs are
text pairs.

6. A system configuring a computer for data similarity
determination using Bregman divergence, the system com-
prising:

a memory configured to:

store a data set, the data set having plural data pairs with

one or more data points corresponding to one or more
features, wherein a first given feature of a first piece of
data in a first data pair has a known target distance to
a second given feature of a second piece of data in the
first data pair; and

a processing device configured to:

train an input convex neural network (ICNN) using the
data set, the ICNN having one or more parameters,
wherein training the ICNN includes:

Sep. 14, 2023

for each data pair within the data set:

extracting one or more features for each piece of data
in the first data pair;

generate an empirical Bregman divergence for the data
pair; and

compute one or more gradients between the one or
more features within the first data pair based on the
known target distance between the one or more
features of the first data pair and the empirical
Bregman divergence, the one or more gradients
being computed using double backpropagation,
automatic differentiation to compute the one or more
gradients with respect to one or more data inputs, and
a dot-product between the one or more gradients and
another value;

generate a trained [CNN configured to output an arbitrary
Bregman divergence function within a space of all
possible Bregman divergences for a data pair based on
the one or more gradients;

receive a data file, the data file having one or more
features;

input the data file into the trained ICNN;

generate a Bregman function for each of the one or more
features of the data file, wherein the one or more
features include at least one of curvature and angular-
ity;

calculate a distance between the one or more features of
the data file and the one or more data points of the
plural data pairs; and
output a classification of the data file based on the

calculated distance.
7. (canceled)
8. The system of claim 6, wherein the ICNN is trained
using Softplus activation.
9. The system of claim 6, wherein the plural data pairs are
image pairs.
10. The system of claim 6, wherein the plural data pairs
are text pairs.
11. A computer program product for configuring a com-
puter for data similarity determination using Bregman diver-
gence, the computer program product comprising:
a non-transitory computer-readable storage medium hav-
ing program instructions embodied therewith, the pro-
gram instructions executable by a computer to cause
the computer to perform a method, including:
storing a data set, the data set having plural data pairs with
one or more data points corresponding to one or more
features, wherein a first given feature of a first piece of
data in a first data pair has a known target distance to
a second given feature of a second piece of data in the
first data pair;
training an input convex neural network (ICNN) using the
data set, the ICNN having one or more parameters,
wherein training the ICNN includes:
for each data pair within the data set:
extracting the one or more features for each piece of
data in the first data pair;

generating an empirical Bregman divergence for the
data pair; and

computing one or more gradients between the one or
more features within the first data pair based on the
known target distance between the one or more
features of the first data pair and the empirical
Bregman divergence, the one or more gradients

US 2023/0289605 Al

being computed using double backpropagation,
automatic differentiation to compute the one or more
gradients with respect to one or more data inputs, and
a dot-product between the one or more gradients and
another value;
generating a trained ICNN configured to output an arbi-
trary Bregman divergence function within a space of all
possible Bregman divergences for a data pair based on
the one or more gradients;
receiving a data file, the data file having one or more
features;
inputting the data file into the trained ICNN;
generating a Bregman function for each of the one or
more features of the data file, wherein the one or more
features include at least one of curvature and angular-
ity;
calculating a distance between the one or more features of
the data file and the one or more data points of the
plural data pairs; and
outputting a classification of the data file based on the
calculated distance.
12. (canceled)
13. The computer program product of claim 11, wherein
the ICNN is trained using Softplus activation.
14. The computer program product of claim 11, wherein
the plural data pairs are image pairs.
15. The computer program product of claim 11, wherein
the plural data pairs are text pairs.

#* #* #* #* #*

Sep. 14, 2023

