
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0013449 A1

US 20140013449A1

Vijay et al. (43) Pub. Date: Jan. 9, 2014

(54) DELAYED VALIDATION FOR SOFTWARE (52) U.S. Cl.
LCENSING AND ACTIVATION CPC H04L 63/0428 (2013.01)

USPC .. 726/29
(75) Inventors: Shyam Sunder Vijay, Fremont, CA

(US); Les G. Woolsey, Ottawa (CA)
(57) ABSTRACT

(73) Assignee: Adobe Systems Incorporated

(21) Appl. No.: 11/191,346 According to Some embodiments, a method, an apparatus and
a system perform delayed validation for Software licensing

(22) Filed: Jul. 28, 2005 and activation. In some embodiments, a method includes
receiving a request to execute a software application having a

Publication Classification license. The method also includes permitting execution of the
Software application. The method includes validating the

(51) Int. Cl. license Subsequent to the permitting of the execution of the
H04L 29/06 (2006.01) Software application.

100

02

APPLICATION
SERVER

106A

Patent Application Publication Jan. 9, 2014 Sheet 1 of 8 US 2014/0013449 A1

100

102

APPLICATION
SERVER

4.

202 UTILITY SERVER
RENDERING

LOGIC

204 206

LICENSE
VALIDATION LOGIC TEMPLATE TABLE

FIG. 2

502

RECEIVE A REQUEST
TO ACCESSA TEMPLATE

304
INTERACTIVE
TEMPLATE

5 O6 308

NO STORE
TEMPLATE

300

TEMPLATE
ALREADY STORED?

RETURN TEMPLATERENDERED
IN ACCESSIBLE FORM

FIG. 3

Patent Application Publication Jan. 9, 2014 Sheet 2 of 8

402
TEMPLATES

HAVING ALICENSE STATE
AS 'UNKNOWN"

NO

YES 404

RETRIEVE A TEMPLATE HAVING
A LICENSE STATE AS "UNKNOWN"

406

RECACULATE ONE OR MORE
HASHES FROM DATA IN THE TEMPLATE

408
ONE

ORMORE HASHES
WALD2

ASSIGN LICENSE STATE FOR THE
TEMPLATE AS "PAYMENT NOT REQUIRED"

NO

414
NUMBER OF

TEMPLATES WITH A LICENSE
STATE AS "PAYMENT REQUIRED" CREATER

THAN THE NUMBER OF
ALLOWED LICENSES

YES

STOP

FIG. 4

US 2014/0013449 A1

400

/

410

ASSIGN LICENSE STATE FOR THE
TEMPLATE AS "PAYMENT REQUIRED"

416

WRITE AN ERROR MESSAGE
TO THE SYSTEM LOG

418

NOTIFY THE USER OF THEIR LICENSE
STATE THROUGH A USER INTERFACE

Patent Application Publication Jan. 9, 2014 Sheet 3 of 8 US 2014/0013449 A1

500

504 502

MACHINE

CLIENT
sout ACTNATION

LOGIC

510

FIG. 5

504

ACTNATION COUNTER
LOGIC UPDATE LOGIC

MACHINE-READABLE MEDIUM

ACTIVATION
DATASTRUCTURES

FIG. 6

Patent Application Publication Jan. 9, 2014 Sheet 4 of 8 US 2014/0013449 A1

102

MACHINE
UNINSTALL

LOGIC

704 512

LICENSE CENT
VALIDATION LOCIC ACTIVATION LOGIC

LICENSE
DATA

FIG. 7

800

N 802
RECEIVE REQUEST TO

ACTNATESOFTWARE APPLICATION

ACTNATION 804
COUNTER FOR THE SOFTWARE

APPLICATION EQUAL TO A MAXIMUM NUMBER
OF ALLOWED ACTNATIONS

808

UPDATE ACTNATION COUNTER

810

TRANSMT COMMUNICATION
TO ACCEPT ACTMATION

806

TRANSMT COMMUNICATION
TO DENY ACTMATION

FIG. 8

Patent Application Publication Jan. 9, 2014 Sheet 5 of 8

900

N
902

OETERMINE THE ACTNATION TEME PERIOD

904

DETERMINE THE NUMBER OF ACTNATIONS
IN THE ACTNATION TIME PERIOD

ANY
ACTNATIONS OUTSIDE

THE ACTNATION
TIME PERIOD?

UPDATE THE ACTNATION COUNTER
BASED ON THE NUMBER OF ACTNATIONS

IN THE ACTNATION TIME PERIOD

910 MULTIPLE
ACTIVATIONS FOR A

SAME MACHINE IN THE
ACTIVATION TIME

PERIOD?

UPDATE THE ACTNATION COUNTER
BASED ON THE MULTIPLE ACTNATIONS FOR A
SAME MACHINE IN THE ACTIVATION TIME PERIOD

FIG. 9

US 2014/0013449 A1

Patent Application Publication Jan. 9, 2014 Sheet 6 of 8 US 2014/0013449 A1

1000

N
1002

RECEIVE A COPY OF A SOFTWARE SUTE
THAT INCLUDES A NUMBER OF SOFTWARE PRODUCTS

FOR INSTALLATION ON A MACHINE

1004
A COPY O

ONE OF THE NUMBER
OF SOFTWARE PRODUCTS ALREADY

ACTIVATED ON THE

YES 1006

DEACTIVATE THE COPY OF THE
SOFTWARE PRODUCT ON THE MACHINE

NOTIFY A USER THAT IS PERFORMING THE
NSTALLATION THAT THE LICENSE OF THE SOFTWARE

PRODUCT IS DEACTIVATED ON THE MACHINE

CHANCE A SERIAL NUMBER OF THE COPY
OF THE SOFTWARE PRODUCT TO MATCH A SERIAL
NUMBER OF THE COPY OF THE SOFTWARE SUTE

REDIRECT A LCENSE OF THE COPY OF THE
SOFTWARE PRODUCT TO ALICENSE OF THE COPY

OF THE COPY OF THE SOFTWARE SUTE

INSTALL THE COPY OF THE SOFTWARE SUTE .

FIG. 1 O

Patent Application Publication Jan. 9, 2014 Sheet 7 of 8 US 2014/0013449 A1

1102 1100

RECEIVE COMMAND TO
UNINSTALL ASOFTWARE PRODUCT

SOFTWARE
PRODUCT ACTNATE0?

USER
SELECT OPTION

TO PERFORM TRANSFER
DEACTNATION?

PERFORM TRANSFER DEACTNATION

TRANSFER
DEACTNATION
SUCCESSFUL?

USER
SELECT ADVANCED

UNINSTALL2

PERFORMSTANDARD UNINSTALL

118

PERFORM ADVANCED UNINSTALL

FIG. 11

Patent Application Publication Jan. 9, 2014 Sheet 8 of 8 US 2014/0013449 A1

1200

1202 PROCESSOR(S)
1204 GRAPHICS

CONTROLLER

DISPLAY DEVICE

IDE/ATA DRIVE(S)

USB PORTS)

KEYBOARD

SELECTION
DEVICE

FIREWALLPORT(S)

NETWORK
INTERFACE

1230 MEMORY UNIT

1206

1208

1210
INPUT/OUTPUT

CONTROLLER HUB-1224

1212

1214

1216

1218

1220

US 2014/0013449 A1

DELAYED VALIDATION FOR SOFTWARE
LCENSING AND ACTIVATION

TECHNICAL FIELD

0001. The application relates generally to data processing,
and, more particularly, to delayed validation for Software
licensing and activation.

BACKGROUND

0002 Licensing is an important part of software. Licens
ing protects the owner of the software from unauthorized use
without remuneration. In addition, licensing protects the cus
tomer for the software from potential lawsuits because of
license misuse. Typically, the license for software is validated
at the time of installation and/or execution.
0003. Also, with regard to software, upgrades to hardware
may not always keep pace with upgrades to Software and vice
Versa. Customers may upgrade their hardware at a rate that
may outpace the upgrades to their software. Accordingly,
customers may attempt to transfer their software on existing
hardware to their upgraded hardware. However, allowing the
ability to transfer must be weighed against massive distribu
tion of a single copy of the Software across a number of
different machines.

SUMMARY

0004. According to some embodiments, a method, an
apparatus and a system perform delayed validation for soft
ware licensing and activation. In some embodiments, a
method includes receiving a request to execute a Software
application having a license. The method also includes per
mitting execution of the Software application. The method
includes validating the license Subsequent to the permitting of
the execution of the Software application.
0005. In some embodiments, a method includes receiving
a number of requests to render a number of templates. The
method also includes rendering the number of templates in
accessible form. The method also includes validating licenses
of the number of templates subsequent to the rendering of the
number of templates.
0006. In some embodiments, a method includes perform
ing the following operations, in a server, Subsequent to acti
Vations of a Software application. The operations include
determining a total number of activations of the software
application. The operations include determining an activation
time period for activation of the software application. The
operations also includes determining a number of activations
in the activation time period. The operations include updating
an activation counter for the software application if the total
number of activations is not equal to the number of activations
in the activation time period or if more than one activation of
the number of activations in the activation time period is for
activation on a same client device.
0007. In some embodiments, a method includes receiving,
from a first machine, a request to activate Software on the first
machine. The method includes activating the Software on the
first machine in response to a determination that a number of
activations for the Software is less than a maximum number of
allowed activations for the software. The activating of the
Software includes incrementing an activation counter. The
method includes updating the activation counter, at a later
time relative to activating the software, based on a number of
activations in an activation time period for the Software.

Jan. 9, 2014

0008. In some embodiments, an apparatus includes a
machine-readable medium to store a template table. The
apparatus also includes a rendering logic to receive a request
to render a template. The rendering logic is to render the
template. The apparatus also includes a license validation
logic to validate a license of the template after the template is
rendered based on data stored in the template table.
0009. In some embodiments, an apparatus includes a
machine-readable medium to store an activation data struc
ture, wherein an entry in the activation data structure is asso
ciated with a serial number of a software product and includes
an activation counter. The apparatus also includes an activa
tion logic to receive a request to activate a software product on
a device, wherein the activation logic is to allow activation of
the software product if a total number of activations of the
Software product is not greater than a number of allowed
activations of the Software product, the activation logic to
increment the activation counteras part of the activation of the
Software product. The apparatus includes a counter update
logic to recalculate the activation counter, Subsequent to the
activation of the software product based on an activation time
period.

BRIEF DESCRIPTION OF THE DRAWINGS

00.10 Embodiments of the invention may be best under
stood by referring to the following description and accompa
nying drawings which illustrate Such embodiments. The
numbering scheme for the Figures included herein are Such
that the leading number for a given reference number in a
Figure is associated with the number of the Figure. For
example, a system 100 can be located in FIG. 1. However,
reference numbers are the same for those elements that are the
same across different Figures. In the drawings:
0011 FIG. 1 illustrates a system for delayed validation of
a Software license, according to some embodiments of the
invention.
0012 FIG. 2 illustrates a more detailed block diagram of a
server on which delayed validation of a software license is
performed, according to some embodiments of the invention.
0013 FIG. 3 illustrates a flow diagram for rendering a
document based on a template, which is later validated on
whether a software license was used for the template, accord
ing to Some embodiments of the invention.
0014 FIG. 4 illustrates a flow diagram for delayed valida
tion of a Software license, according to Some embodiments of
the invention.
(0015 FIG. 5 illustrates a system for delayed validation of
Software activation based on an activation time period,
according to some embodiments of the invention.
0016 FIG. 6 illustrates a more detailed block diagram of a
server that includes delayed validation of software activation
based on an activation time period, according to some
embodiments of the invention.
0017 FIG. 7 illustrates a more detailed block diagram of a
machine that includes logic to perform Software uninstalla
tion that integrates transfer activation, which updates the acti
Vation counter, according to some embodiments of the inven
tion.
0018 FIG. 8 illustrates a flow diagram for software acti
Vation, according to Some embodiments of the invention.
0019 FIG. 9 illustrates a flow diagram for delayed updates
to the counter for Software activation, according to some
embodiments of the invention.

US 2014/0013449 A1

0020 FIG. 10 illustrates a flow diagram for software suite
activation, according to Some embodiments of the invention.
0021 FIG. 11 illustrates a flow diagram for software unin
stallation that integrates transfer activation, according to
Some embodiments of the invention.
0022 FIG. 12 illustrates a computer device that executes
software for performing operations related to delayed valida
tion for software licensing and activation, according to some
embodiments of the invention.

DETAILED DESCRIPTION

0023 Methods, apparatus and systems for delayed valida
tion for Software licensing and activation are described. In the
following description, numerous specific details are set forth.
However, it is understood that embodiments of the invention
may be practiced without these specific details. In other
instances, well-known circuits, structures and techniques
have not been shown in detail in order not to obscure the
understanding of this description. Additionally, in this
description, the phrase “exemplary embodiment’ means that
the embodiment being referred to serves as an example or
illustration.

Delayed Validation of a Software License
0024. Some embodiments include delayed validation of a
Software license. Thus, there is no performance penalty for
license validation that may include complex computations.
Therefore, in some embodiments, the license is not validated
or checked at the time the software is installed or executed.
Some embodiments periodically validate license compliance
for one to a number of software applications. For example, the
license compliance for the Software applications may be vali
dated during off-peak times of day (e.g., each night at 12:00
a.m.). In particular, the validation may occur when the num
ber of processing tasks is relatively low. By performing the
validation at these times, the system is typically not heavily
loaded so the cost of performing the calculations is negligible.
In some embodiments, if the software license is not in com
pliance, an error message may be written to a system log, the
user(s) may be notified, the Software may not be Subsequently
executed, etc.
0025. In some embodiments, validation is for templates of
documents, forms, etc., which may be modified by users.
Whether a template is being modified and the degree of modi
fication may determine whether a license is being used for this
template. For example, a number of templates may be acces
sible for reading and/or modifying. If a template is modified
beyond a given level, a license is considered being used.
Therefore, if 1000 licenses are available, user(s) may only
modify, beyond a certain level, 1000 templates to stay in
compliance with the license. In some embodiments, what is
being modified within a template and the amount of modifi
cation determines whether a license is used. For example, in
Some embodiments, if a new field is created in the template, a
license is considered used. In some embodiments, if a field
references a different location in a database for populating
that field, a license is considered used. In some embodiments,
the modification of a template is determined based on one or
more hashes of data within the template.
0026 FIG. 1 illustrates a system for delayed validation of
a Software license, according to some embodiments of the
invention. In particular, FIG. 1 illustrates a system 100 that
includes an application server 102, a utility server 104 and

Jan. 9, 2014

client machines 106A-106N. The client machines 106A
106N may be representative of any apparatus, computer
device, etc. For example, the client machines 106A-106N
may be a desktop computer, notebook computer, Personal
Digital Assistant (PDA), a cellular telephone, etc.
(0027. The client machines 106A-106N are coupled to the
application server 102. The application server 102 is coupled
to the utility server 104. The client machines 106A-106N, the
application server 102 and the utility server 104 may be
coupled together in a number of different network configu
rations. For example, Some embodiments may be incorpo
rated into a distributed or peer-to-peer architecture system.
The client machines 106A-106N, the application server 102
and the utility server 104 may be part of different types of
networks including a Local Area Network, Wide Area Net
work, etc. For example, the network may be the Internet, an
Intranet network, an Ethernet-based network, etc.
0028. In some embodiments, the client machines 106A
106N may be executing different types of software applica
tions. For example, the client machines 106A-106N may be
executing different types of business software. As part of the
execution of the software, the client machines 106A-106N
may access the application server 102. For example, the client
machines 106A-106N may be accessing (including reading
and modifying) templates for forms, documents, etc. as part
of the execution of business software. In some embodiments,
the client machines 106A-106N may modify templates that
are to be rendered into a Portable Document Format (PDF).
Therefore, the client machines 106A-106N may transmit
templates to the application server 102 for rendering. Alter
natively, the client machines 106A-106N may request render
ing of a template already stored thereon. The application
server 102 may transmit the templates to the utility server 104
to perform the rendering. Moreover, the utility server 104
may perform a delayed validation of the license for the tem
plate, as further described below.
0029 FIG. 2 illustrates a more detailed block diagram of a
server on which delayed validation of a software license is
performed, according to some embodiments of the invention.
In particular, FIG. 2 illustrates a more detailed block diagram
of the utility server 104 of FIG. 1, according to some embodi
ments of the invention. The utility server 104 includes a
rendering logic 202, a license validation logic 204 and a
template table 206. The rendering logic 202 is coupled to the
license validation logic 204. The license validation logic 204
is coupled to the template table 206.
0030 The rendering logic 202 and the license validation
logic 204 may be representative of software, hardware, firm
ware or a combination thereof. For example, the rendering
logic 202 and the license validation logic 204 may be soft
ware to be executed on a processor (not shown). An example
of the utility server 104 having this architecture is described
in FIG. 12 below. The template table 206 may be representa
tive of any type of data structure that may be stored in a
machine-readable medium.
0031. A more detailed description of the operations for
delayed validation of a Software license, according to some
embodiments, is now described. FIG. 3 illustrates a flow
diagram for rendering a document based on a template, which
is later validated on whether a software license was used for
the template, according to Some embodiments of the inven
tion. The flow diagram 300 illustrates the operations of the
utility server 104 and is described with reference to FIGS. 1
and 2.

US 2014/0013449 A1

0032. At block 302, the rendering logic 202 receives a
request to access a template. The request may be received
from the application server 102 based on a request from one
of the client machines 106. For example, a user of the client
machine 106A may be modifying a template using business
software that is part of the application server 102. The flow
continues at block 304.

0033. At block 304, the license validation logic 204 deter
mines whether the template is interactive. In some embodi
ments, a template is considered interactive if the result of the
rendering operations is a form (e.g., a PDF form) that may be
used or data captured. For example, the template is interactive
if a user may enter data into fields or if a user may digitally
sign the template. The template is also interactive ifa user can
modify which entry in a database is associated with a field in
the template. Upon determining that the template is not inter
active, the flow continues at block 310, which is described in
more detail below. Upon determining that the template is
interactive, the flow continues at block 306.
0034. At block 306, the license validation logic 204 deter
mines whether a copy of the template is already stored in the
template table 206. Upon determining that the template is
already stored in the template table 206, the flow continues at
block 310, which is described in more detail below. Upon
determining that the template is not already stored in the
template table 206, the flow continues at block 308.
0035. At block 308, the license validation logic 204 stores
a copy of the template in the template table 206. A copy of the
template is stored because the template is subsequently used
to perform the delayed validation of the license. In some
embodiments, the data of the template includes one or more
hashes. As further described below, based on whether the one
or more hashes have been modified and the level of modifi
cation, the license validation logic 204 determines whether a
license is used for the template access. The flow continues at
block 310.

0036. At block 308, the rendering logic 202 returns the
template as rendered in accessible form. For example, the
rendering logic 202 may render a PDF document based on the
template.
0037. A more detailed description of the operations for
validation of a software license, according to Some embodi
ments, is now described. FIG. 4 illustrates a flow diagram for
delayed validation of a software license, according to some
embodiments of the invention. The flow diagram 400 illus
trates the operations of the utility server 104 and is described
with reference to FIGS. 1 and 2. In some embodiments, the
operations of the flow diagram 400 are performed subsequent
to the operations of the flow diagram 300. For example, the
license validation may be performed during off-peak times of
the day (e.g., each night at 12:00 a.m.).
0038. At block 402, the license validation logic 204 deter
mines whether any of the templates stored in the template
table 206 have a license state of “unknown'. In some embodi
ments, the license state may be defined as “unknown”, “pay
ment required' or “payment not required. In some embodi
ments, the license validation logic 204 sets the license state to
“unknown when the template is initially copied into the
template table 206. After validation, the license state is either
set to “payment required or “payment not required, as
further described below. Upon determining that there are no
templates having a license state set to “unknown', the flow
continues at block 414, which is described in more detail

Jan. 9, 2014

below. Upon determining that there is at least one template
having a license state set to “unknown, the flow continues at
block 404.
0039. At block 404, the license validation logic 204
retrieves a template having a license state that is “unknown
from the template table 206. The flow continues at block 406.
0040. At block 406, the license validation logic 204 recal
culates one or more hashes from data in the template. In
particular, the data representative of hashes may be incorpo
rated into the data of the template. The templates stored in the
template table 206 may be received from clients 106A-106N
that may modify parts of the templates. The license validation
logic 204 may recalculate the one or more hashes stored in the
data of the template to determine what types and level of
modifications were made by the clients 106A-106.N.
0041. In some embodiments, one or more hashes are
modified if substantive modifications are made to the tem
plate. Moreover, in some embodiments, hashes are not modi
fied if aesthetic modifications are made to the template. A
Substantive modification may include the adding of a new
field to the template. Another substantive modification may
include modifying which location in a database that a field
references for populating the field. Aesthetic modifications
may include changes to color, font, logos, etc. In some
embodiments, if substantive modifications are made, the tem
plate is considered sufficiently modified such that a license is
considered exercised for this template. The flow continues at
block 408.

0042. At block 408, the license validation logic 204 deter
mines whether the one or more hashes are valid. The license
validation logic 204 may compare the recalculated hashes
with the hashes of the template, original and unmodified by
the clients 106A-106.N. If there are differences between the
associated hashes for a given template, the hash is not con
sidered valid. Upon determining that the one or more hashes
are not valid, the flow continues at block 410. Upon deter
mining that the one or more hashes are valid, the flow con
tinues at block 412.

0043. At block 410, the license validation logic 204
assigns the license state for the template as “payment
required. The license validation logic 204 may update this
attribute for the template in the template table 206. In particu
lar, because Substantive modifications were made to the tem
plate, the license validation logic 204 marks this template as
exercising a license. The flow continues at block 402.
0044. At block 412, the license validation logic 204
assigns the license state for the template as “payment not
required. The license validation logic 204 may update this
attribute for the template in the template table 206. In particu
lar, because no substantive (possibly only aesthetic) modifi
cations were made to the template, the license validation logic
204 marks this template as not exercising a license. The flow
continues at block 402.

0045. At block 414, the license validation logic 204 deter
mines whether the number of templates with a license state as
“payment required' is greater than the number of allowed
licenses. The number of allowed licenses may be for one to a
number of different clients 106. For example, the clients 106
may purchase N number of licenses. Accordingly, the clients
106 may be able to substantively modify N number of tem
plates. Upon determining that the number oftemplates with a
license state as “payment required' is not greater than the
number of allowed licenses, the operations of the flow dia
gram 400 are then complete. Upon determining that the num

US 2014/0013449 A1

ber of templates with a license state as “payment required is
not greater than the number of allowed licenses, the flow
continues at block 416.
0046. At block 416, the license validation logic 204 writes
an error message to a system log. The system log may be
stored in the application server 102 or the utility server 104.
An administrator of the system may have access to the system
log. Accordingly, if the number of licenses is exceeded, the
administrator is notified through the system log. The flow
continues at block 418.
0047. At block 418, the license validation logic 204 noti

fies the administrator that the number of licenses that have
been exercised has exceeded the allowed limit, through a user
interface. The license validation logic 204 may also notify the
administrator through email, etc. In some embodiments, the
license validation logic 204 may deny future requests for
rendering of templates in accessible form until the number of
licenses is increased. The operations of the flow diagram 400
are complete.

Delayed Validation of a Software Activation
0048. Some embodiments include delayed validation of a
Software activation. In some embodiments, the delayed Vali
dation of the software activation is based on an activation time
period. In some embodiments, copies of software products or
a Suite of Software products may include a limited license
based on a serial number. In other words, a copy of a Software
product may not be activated on an unlimited number of
machines. A suite of software products may include one or
more software products. While a copy of a software product
or suite of software may be installed on any of a number of
machines, in some embodiments, the copy of a Software
productor suite of software may only be activated on a limited
number of machines. An activation may require communica
tion with a server over a network prior to execution of the
software. The activation may be based on a serial number and
other data that uniquely identifies the machine (such as a
machine disk identifier (MDI) that uniquely identifies a hard
disk drive of the machine on which the software is activated).
In some embodiments, an activation may be transferred to
different machines. For example, if customers purchase a new
machine, the customers may transfer the activation from an
old machine to this new one.
0049. Some embodiments incorporate an activation time
period in the deactivation and activation of a copy of a soft
ware product. For example, the activation time period may be
a period of time starting from the present and looking back a
given period (e.g., three months, six months, 12 months, etc.).
For a six-month activation time period, if an activation or
deactivation occurs on July 1, the activation time period is
from July 1 back to January 1 of the same year. In some
embodiments, the limited activations are relative to the acti
Vation time period. For example, if two activations are
allowed for a given Software product, two activations are
available in the activation time period. The given software
product may have more activations beyond the activation time
period. Such embodiments provide a trade-off between lim
iting the number of activations versus the processing of a
large amount of customer service calls regarding the activa
tion.
0050 For example, assume that two activations are
allowed for a given copy of a software product and that there
is a six-month activation time period. After purchasing a copy
of a Software product, a user typically attempts to install the

Jan. 9, 2014

copy on a first machine and on a second machine, which is
allowed. Shortly thereafter, if the user attempts to install the
copy on a third machine, the activation is denied. If the user
attempts to install the copy on a third machine eight months
later, it is assumed that the user has upgraded their hardware
because of the length of time. In other words, it is assumed the
copy of the software product is actually only being executed
on two machines because of this upgrade. Therefore, the third
activation is allowed because the activation is outside the
activation time period. Accordingly, activations beyond the
limited number are allowed outside the activation time period
in exchange for a reduction in the number of customer service
calls. In other words, based on a cost-benefit analysis, the cost
would be that the copy of the software product is activated
outside the activation time period. The benefit is the reduction
in the number of customer service calls from users attempting
to activate on new hardware outside the activation time
period. The number of activations for a software application
may be tracked using an activation counter.
0051. Thus, if a software application is activated, the acti
Vation counter is incremented, and if a Software application is
deactivated, the activation counter is decremented. Some
embodiments delay the updating of an activation counter
relative to the activation time period off-line relative to the
activations and deactivations. For example, the activation
counter may be updated for one to a number of software
applications each night at midnight.
0052 FIG. 5 illustrates a system for delayed validation of
software activation based on an activation time period,
according to Some embodiments of the invention. In particu
lar, FIG. 5 illustrates a system 500 that includes a machine
502 that is coupled to a server 504 through a network506. The
machine 502 may be representative of any apparatus, com
puter device, etc. For example, the machine 502 may be a
desktop computer, notebook computer, Personal Digital
Assistant (PDA), a cellular telephone, etc. The machine 502
includes a software product A 510 that has been installed
thereon. The machine 502 also includes a client activation
logic 512. The client activation logic 512 may be representa
tive of software, hardware, firmware or a combination
thereof. For example, the client activation logic 512 may be
Software to be executed on a processor (not shown). An
example of the machine 502 having this architecture is
described in FIG. 5 below.

0053 A more detailed description of an architecture of the
machine 502 and/or the server 504, according to some
embodiments, is set forth below. While FIG. 5 employs a
client-server architecture, embodiments are not limited to
Such an architecture. For example, some embodiments may
be incorporated into a distributed or peer-to-peer architecture
system. The network 506 may be different types of networks
including a Local Area Network, Wide Area Network, etc. For
example, the network 506 may be the Internet, an Intranet
network, an Ethernet-based network, etc.
0054 FIG. 5 also includes a number of operations that
may be part of the activation of the software product A510.
The operations include an activation operation 526 and an
activation result operation 528. The activation operation 526
is an operation to activate the software product A510 on the
machine 502. In some embodiments, the activation operation
526 may be based on a user of the machine 502 attempting to
activate the software product A510. In some embodiments, a
copy of the software product A510 may only be activated on
a limited number of machines. Activation and deactivation of

US 2014/0013449 A1

Software products on machines are performed based on com
munications with the server 504. As further described below,
logic within the server 504 limits the number of activations
for a copy of a Software product using a license number of the
Software and a unique identification of the machines. The
logic within the server 504 accepts or denies activation of a
copy of a Software product based on the number of activations
in a given activation time period. An activation time period is
a period that is between the present time and a point in the
past. In some embodiments, an activation counter is used to
track the number of activations for a given software applica
tion/product. In some embodiments, logic in the server 504
may delay (relative to the activation operation) updates to the
activation counter based on the activation time period.
0055. The logic within the server 504 receives the activa
tion operation 526 and determines whether to perform the
activation of the software product A510. The result of this
determination is the activation result operation 528. In par
ticular, the logic within the server 504 returns a result of the
activation back to the machine 502. In some embodiments,
the result may be an acceptance or denial of the attempt to
perform the activation.
0056 FIG. 6 illustrates a more detailed block diagram of a
server that includes delayed validation of software activation
based on an activation time period, according to some
embodiments of the invention. In particular, FIG. 6 illustrates
a more detailed block diagram of the server 504 of FIG. 5. As
shown, the server 504 includes a counter update logic 602, an
activation logic 603 and a machine-readable medium 604.
The machine-readable medium 604 stores activation data
structures 606. The activation data structures 606 may be
tables, objects, data arrays, etc. The counter update logic 602
and the activation logic 603 may be representative of soft
ware, hardware, firmware or a combination thereof. For
example, the counter update logic 602 and the activation logic
603 may be software to be executed on a processor (not
shown). An example of the server 504 having this architecture
is described in FIG. 9 below.

0057 The activation logic 603 may track activations/de
activations based on a unique identification of the machine or
a component therein. For example, in some embodiments, the
unique identification may be a machine disk identifier. The
machine disk identifier is a value that is calculated based on
information related to the hard disk drive (e.g., identifications
of sectors or tracks of the hard disk drive). The activation
logic 603 may also track activations/deactivations based on
an identification of a processor of the machine, the amount of
memory, etc. In some embodiments, the activation logic 603
may also track activations/deactivations based on any com
bination of those identifications listed above. The activation
logic 603 may store these unique identifications along with a
unique serial number for the license of the software product
into the activation data structures 606. The counter update
logic 602 may perform delayed updates (relayed to activation
of software) to activation counters stored in the deactivation
data structures 606 for one or more licenses of such software.

0058 FIG. 7 illustrates a more detailed block diagram of a
machine that includes logic to perform Software uninstalla
tion that integrates transferactivation, which updates the acti
Vation counter, according to some embodiments of the inven
tion. In particular, FIG. 7 illustrates a more detailed block
diagram of the machine 502 of FIG. 5. In addition to the
software product A110 and the client activation logic 512, the
machine 502 includes an uninstall logic 702, a license vali

Jan. 9, 2014

dation logic 704, license data 708 and anchor data 710. The
uninstall logic 702 and the license validation logic 704 may
be representative of software, hardware, firmware or a com
bination thereof. For example, the uninstall logic 702 and the
license validation logic 704 may be software to be executed
on a processor (not shown). An example of the machine 102
having this architecture is described in FIG. 12 below. The
machine also includes license data 708 and anchor data 710,
which may be files, data stored as part of a file, etc. The anchor
data 710 may include data indicating the time when the soft
ware product was installed on the machine 102. The anchor
data 710 may also include data related to activation (whether
the Software product is activated, when activated, etc.).
0059 A more detailed description of the operations for
software activation and delayed updates to the counter for
software activation is now described. FIG. 8 illustrates a flow
diagram for Software activation, according to Some embodi
ments of the invention. The flow diagram 800 illustrates the
operations of the activation logic 603.
0060. At block 802, the activation logic 603 receives a
request to activate a software application. With reference to
FIG. 5, the client activation logic 512 transmits the request.
The flow continues at block 804.

0061. At block 804, the activation logic 603 determines
whether an activation counter for the software application
equals to a maximum number of allowed activations. The
activation logic 603 may retrieve an entry from the activation
data structures 606 that is associated with the software appli
cation based on a serial number. The entry may include the
activation counter and the maximum number of allowed acti
Vations for the Software application. Upon determining that
the activation counter for the Software application equals a
maximum number of allowed activations, the flow continues
at block 806. Upon determining that the activation counter for
the Software application does not equal a maximum number
of allowed activations, the flow continues at block 808, which
is described in more detail below.
0062. At block 806, the activation logic 603 transmits a
communication back to the machine 502 that indicates that
the activation was denied. Therefore, the activation logic 603
does not update the activation counter for this software. The
flow continues at block 808.
0063. At block 808, the activation logic 603 updates the
activation counter for the software application. In particular,
the activation logic 603 increments the activation counter to
account for the new activation. The flow continues at block
810.

0064. At block 810, the activation logic 603 transmits a
communication back to the machine 502 that the activation
was accepted. The operations of the flow diagram 800 are
complete.
0065. A more detailed description for delayed operations
(relative to the software activation) for updating the activation
counter for software activation is now described. In particu
lar, the activation counter for Software activation may be
updated based on an activation time period, Subsequent to the
activation described in the flow diagram 800 of FIG.8. FIG.
9 illustrates a flow diagram for delayed updates to the counter
for software activation, according to Some embodiments of
the invention. The flow diagram 900 illustrates the operations
of the counter update logic 602. In some embodiments, these
operations may be performed periodically and during an off
peak time of day. For example, these operations may be
performed once a night at 12:00 a.m. While described with

US 2014/0013449 A1

reference to updating the activation counter for one software
application, in some embodiments, the counter update logic
602 performs these operations for any of a number of soft
ware applications. For example, in Some embodiments, the
counter update logic 602 may update all of the activation
counters (for the different software applications) stored in the
activation data structures 606.

0066. At block 902, the counter update logic 602 deter
mines the activation time period for the Software application.
The activation time period may be stored in the entry in the
activation data structures 606 associated with the software
application. As described above, the activation time period
may be a time period starting from the present and looking
back a given period (e.g., three months, six months, 12
months, etc.). The flow continues at block 904.
0067. At block 904, the counter update logic 602 deter
mines the number of activations in the activation time period.
The counter update logic 602 may determine this number
based on the data stored in the activation data structures 606.
The activation logic 603 may store the date of activation for
each machine for a given serial number of a software appli
cation. The flow continues at block 906.

0068. At block 906, the counter update logic 602 deter
mines whether there are any activations outside the activation
time period. In particular, if any activations are outside the
activation time period, the counter update logic 602 needs to
update the activation counter for this software application.
Upon determining that there are no activations outside the
activation time period, the flow continues at block 910, which
is described in more detail below. Upon determining that
there are activations outside the activation time period, the
flow continues at block 908.

0069. At block 908, the counter update logic 602 updates
the activation counter based on the activation time period. In
particular, the activation counter may include activations out
side the activation time period. In some embodiments, the
activation logic 603 updates the activation counter indepen
dent of the activation time period (as shown in FIG. 8).
Accordingly, the time to complete the activation is less (in
comparison to if the activation logic 603 included the activa
tion time period in the determination of activation shown in
FIG. 8). Therefore, the counter update logic 602 updates the
number of activation based on the number of activations in the
activation time period. For example, if five activations were
performed in the activation time period and if four activations
were outside the activation time period, the activation logic
603 would have set the activation counter to nine (based on
the operations in FIG. 8). Therefore, the counter update logic
602 sets the activation counter to five (based on the activation
in the activation time period). The flow continues at block
910.

0070. At block 910, the counter update logic 602 deter
mines whether there are multiple activations for a same
machine in the activation time period. The counter update
logic 602 may make this determination based on the data
stored in the table in the activation data structures 606 for this
software application. The table may store the identification of
the machines on which the activation is performed. Upon
determining that there are no multiple activations for a same
machine in the activation time period, the operations of the
flow diagram 900 are complete. Upon determining that there
are multiple activations for a same machine in the activation
time period, the flow continues at block 912.

Jan. 9, 2014

0071. At block 912, the counter update logic 602 updates
the activation counter based on the multiple activations for a
same machine in the activation time period. For example, if
the same machine was updated 20 times in the activation time
period, the counter update logic 602 marks this as only a
single activation. Thus, in some embodiments, for each
unique machine activated in the activation time period, the
counter update logic 602 increments the activation counter by
one. The operations of the flow diagram 900 are complete.
0072 A more detailed description of deactivation of a
software product based on a software suite activation, which
updates the activation counter, according to some embodi
ments, is now described. A delayed update of the activation
counter may then be performed based on the operations
shown in the flow diagram 900 of FIG.9. In particular, FIG.
10 illustrates a flow diagram for software suite activation,
according to some embodiments of the invention. The flow
diagram 1000 illustrates the operations for activating a soft
ware Suite having a number of individual software products
on a machine. Moreover, Such operations are described
wherein a copy of one of the individual software products is
already activated on the machine. Such operations may be
performed for a greater number of activated individual soft
ware products. The flow diagram 1000 is described with
reference to the components of FIGS. 5-7. The flow diagram
1000 commences at block 1002.

(0073. At block 1002, the client activation logic 512 of a
machine may receive a copy of a software Suite (that includes
a number of software products) for installation on the
machine. The machine 502 may include an input/output logic
for receiving the copy of the software suite for installation.
Examples of different I/O logic are shown in FIG. 12 that is
described below. The flow continues at block 1004.

(0074 At block 1004, the client activation logic 512 deter
mines whether a copy of one of the number of software
products is already activated on the machine. In some
embodiments, the client activation logic 512 may make this
determination based on the existence of a file stored on the
hard disk drive of the machine 502, the setting of a flag in a file
that is part of the installation of the software product, etc. In
Some embodiments, the client activation logic 512 may make
this determination based on a query to the activation logic 603
on the server 504 over the network 506. Upon determining
that a copy of one of the number of software products is not
already activated on the machine 502, the flow continues at
block 1012, which is described in more detail below.
0075. At block 1006, upon determining that a copy of one
of the number of software products is already activated on the
machine 502, the client activation logic 512 deactivates the
copy of the software product on the machine 502. The client
activation logic 512 communicates a deactivation message to
the activation logic 603 of the server 504. The activation logic
603 of the server 504 may deactivate the license of the copy of
the software product A510 for the machine 502. For example,
the activation logic 603 may update a data structure for the
software product in the activation data structures 606. In some
embodiments, based on the deactivation, the activation logic
603 decrements the activation counter within the data struc
ture for this software product. Accordingly, even if the license
of copy of the software product A510 has a limited number of
activations, the copy may be activated on a different machine.
Therefore, the individual copy of the software product is not
adopted by the software suite prior to deactivation, thereby

US 2014/0013449 A1

allowing for reuse of the license of the software product A
510. The flow continues at block 1007.

0076. At block 1007, the client activation logic 512 noti
fies a user that is performing the installation of the software
suite that the license of the software product A 510 is now
deactivated on the machine 502. The client activation logic
512 may also notify the user that the license is now available
for use on a different machine. This notification may be
through a pop-message during the activation, an email mes
sage, a telephone call, etc. The flow continues at block 1008.
0077. At block 1008, the client activation logic 512
changes a serial number of the copy of the Software product A
510 to match a serial number of the copy of the software suite.
The serial numbers may be stored in one or more locations in
files in storage on the machine 502. Accordingly, the client
activation logic 512 updates the serial number in those loca
tions. The flow continues at block 1010.

0078. At block 1010, the client activation logic 512 redi
rects a license of the copy of the software product A510 to a
license of the copy of the software suite. The client activation
logic 512 may perform this redirection based on creation of a
file, setting a flag in a file, etc. Therefore, if a change is to
occur to a license of the Software Suite, the same change will
be made to the license of the copy of the software A product
510 and vice versa. Logic that is to make changes to the
license may be updated accordingly. For example, if the
license of the software suite is to be transferred to a different
machine, to be deactivated, etc., the logic to perform this
operation may check for the existence of a certain file. Upon
determining that this file exists, the logic may perform the
same operation to the license of the software A product 510.
The flow continues at block 1012.

0079. At block 1012, the client activation logic 512 acti
vates the copy of the software suite. The clientactivation logic
512 may activate the copy of the software suite by sending an
activation message to the activation logic 603 on the server
504. The activation logic 603 on the server 504 may deter
mine whether the copy of the software suite may be activated.
For example, individual data structures may be stored in the
activation data structures 606 for the software suite. These
individual data structures may include activation counters for
the different copies of the software suites that are tracked
based on serial numbers (similar to the activation counters for
the individual software products). Therefore, if the copy of
the software suite has already been activated for a set limit, the
activation logic 603 may deny activation and transmit a deny
message back to the machine 502. If the copy of the software
suite is below the set limit, the activation logic 603 updates its
number of activations for this copy of the software suite and
sends an activation message back to the machine 502. There
fore, in Some embodiments, delayed updates may be per
formed for the activation counters for the software suites.
0080 Embodiments are not limited to the operations
shown in the flow diagram 1000. For example, in some
embodiments, the activation of the Software Suite may cause
the adoption of the individual copy of the software product
but not cause the deactivation of the individual copy of the
Software product. Alternatively, in Some embodiments, the
activation of the Software Suite may cause the deactivation of
the individual copy of the software product, but not cause the
adoption of the individual copy of the software product.
0081. A more detailed description of software uninstalla
tion that integrates transferactivation, which updates the acti
Vation counter, according to some embodiments, is now

Jan. 9, 2014

described. A delayed update of the activation counter may
then be performed based on the operations shown in the flow
diagram 900 of FIG.9. FIG. 11 illustrates a flow diagram for
Software uninstallation that integrates transfer activation,
according to some embodiments of the invention. The flow
diagram 1100 is described with reference to the components
of FIGS. 5-7. The flow diagram 1100 commences at block
1102.

I0082. At block 1102, the uninstall logic 702 receives a
command to uninstall a software product that is installed on
the machine 102. For example, the command may be gener
ated from an uninstall application that is executed by a user of
the machine 502 to uninstall the software product A510. The
flow continues at block 1104.

I0083. At block 1104, the license validation logic 704
determines whether the license of the software product A510
is valid. Once the command to uninstall is received, the unin
stall logic 702 may call the license validation logic 704 to
perform this determination. The license validation logic 704
may make this determination by validating the license data
708. For example, the license validation logic 704 may check
whether a valid value is stored for the license in the license
data 708. Upon determining that the license of the software
product A510 is not valid, the flow continues at block 1118,
which is described in more detail below. Upon determining
that the license of the software product A510 is valid, the flow
continues at block 1106.

I0084. At block 1106, the license validation logic 704
determines whether the software product A510 is activated.
In some embodiments, the license validation logic 704 deter
mines whether the anchordata 710 includes an indication that
the software product A 510 has been activated. In some
embodiments, the software product A 510 may be executed
on the machine 502 for a trial period without requiring the
software to be activated. This may be any predetermined time
period (e.g., 30 days) from the time of installation. The data
representative of this predetermined time period may be
stored in the anchor data 710. Therefore, if the software
product A510 is not activated, the license validation logic 704
may check the anchor data 710 if the software product A510
has been installed within the predetermined time period. In
some embodiments, if the software product A510 is activated
or the software product A 510 has been installed within the
predetermined time period, the license of the software prod
uct A510 is considered activated. Upon determining that the
software product A510 is not activated, the flow continues at
block 1112, which is described in more detail below. Upon
determining that the software product A510 is activated, the
flow continues at block 1108.

I0085. At block 1108, the uninstall logic 702 determines
whether the user (that initiated the uninstall) has selected an
option to perform a transfer activation of the software product
A prior to the uninstall. The uninstall logic 702 may cause a
Graphical User Interface (GUI) window to be opened on a
monitor of the device 102 that allows the user to make the
selection. Upon determining that the user did not select the
option to perform the transfer activation, the flow continues at
block 1114, which is described in more detail below. Upon
determining that the user did select the option to perform the
transfer activation, the flow continues at block 1110.
I0086. At block 1110, the client activation logic 512 per
forms the transfer activation of the software product A510.
The client activation logic 512 may transmit a communica
tion to the activation logic 603 on the server 504. The com

US 2014/0013449 A1

munication may include the serial number associated with the
software product A510 and the identification of the machine
502. The communication includes an indication that the soft
ware product A510 is to be deactivated for the machine 502.
As described above, the activation logic 603 may update the
deactivation data structures 306 to reflect this deactivation. In
Some embodiments, based on the transfer activation, the acti
vation logic 603 decrements the activation counter within the
data structure for this software product. The activation logic
603 may transmit a communication back to the client activa
tion logic 512 that is indicative of whether the transfer acti
vation was successful. The flow continues at block 1112.

I0087. At block 1112, the client activation logic 512 deter
mines whether the transfer activation of the software product
A 510 was successful. The client activation logic 512 may
make this determination based on if a Successful communi
cation is received back from the activation logic 603 of the
server 504. The transfer activation may not be successful if
the network 506 or the server 504 is not operational, if the data
that the activation logic 603 is to update is not accessible,
corrupted, etc., if the data transmitted over the network is
corrupted, etc. Upon determining that the transfer activation
was successful, the flow continues at block 1118, which is
described in more detail below. Upon determining that the
transfer activation was not successful, the flow continues at
block 1114.

I0088. At block 1114, the uninstall logic 702 determines
whether the user selected an advanced uninstall of the soft
ware product A510. The uninstall logic 702 may cause a GUI
window to be opened on a monitor of the device 502 that
allows the user to make the selection. Upon determining that
the user did select the advanced uninstall, the flow continues
at block 1118, which is described in more detail below. Upon
determining that the user did not select the advanced unin
stall, the flow continues at block 1116.
I0089. At block 1116, the uninstall logic 702 performs the
standard uninstall of the software product A510. As part of
the standard uninstall, the uninstall logic 702 may remove
application files, update registry data, etc. However, the unin
stall logic 702 does not remove the data related to the activa
tion of the copy of the software product A510 and the anchor
data 710. Accordingly, the standard uninstall operation pre
serves the activation data on the machine, which allows users
to reinstall the copy of the software product A 510 without
reactivating of the Software. A standard uninstall operation
may be executed for users who plan on re-installing the Soft
ware product on the same machine. The flow diagram 1100 is
then complete.
0090. At block 1118, the uninstall logic 702 performs the
advanced uninstall of the software product A510. As part of
the advanced uninstall, the uninstall logic 702 may remove
application files, update registry data, etc. In addition, the
uninstall logic 702 may remove the activation data. In some
embodiments, the uninstall logic 702 may remove all data and
files associated with the software product A, except for the
data (stored in the anchor data 710) that indicates that the
software has been installed and time of installation. Such data
may remain to preclude users from cyclically installing and
uninstalling the software to stay within the trial period and
continuing using the product beyond its intended use as a
trial. Accordingly, the users are required to activate the Soft
ware. The user may select the advanced uninstall operation if
the trial period has expired and the user has not activated the
Software. The user may also select the advanced uninstall

Jan. 9, 2014

operation if the user has already transferred the activation.
The user may select the advanced uninstall operation if the
license of the software is corrupt and requires reactivation.
The flow diagram 1100 is then complete.
0091 Embodiments are not limited to the operations
shown in the flow diagram 1100. For example, in some
embodiments, if the software product is part of a software
Suite, a transfer activation may not be performed. Rather, a
standard uninstall of the software product is performed with
out a transfer activation.

Architecture for Delayed Validation of a Software
License and Activation

0092 An embodiment wherein software performs opera
tions related to delayed validation for software licensing and
activation as described herein is now described. In particular,
FIG. 12 illustrates a computer device that executes software
for performing operations related to delayed validation for
Software licensing and activation, according to some embodi
ments of the invention. FIG. 12 illustrates a computer device
1200 that may be representative of the application server 102.
the utility server 104, the clients 106A-106N, the machine
502 or the server 504.
(0093. As illustrated in FIG. 12, the computer system 1200
comprises processor(s) 1202. The computer system 1200 also
includes a memory unit 1230, processor bus 1222, and Input/
Output controller hub (ICH)1224. The processor(s) 1202, the
memory unit 1230, and the ICH 1224 are coupled to the
processorbus 1222. The processor(s) 1202 may comprise any
suitable processor architecture. The computer system 1200
may comprise one, two, three, or more processors, any of
which may execute a set of instructions in accordance with
embodiments of the invention.
0094. The memory unit 1230 may store data and/or
instructions, and may comprise any Suitable memory, such as
a random access memory (DRAM). For example, the
memory 1230 may be a Synchronous RAM (SRAM), a Syn
chronous Dynamic RAM (SDRAM). DRAM, a double data
rate (DDR) Synchronous Dynamic RAM (SDRAM), etc. The
computer system 1200 also includes IDE drive(s) 1208 and/or
other suitable storage devices. A graphics controller 1204
controls the display of information on a display device 1206,
according to some embodiments of the invention.
(0095. The input/output controller hub (ICH) 1224 pro
vides an interface to I/O devices or peripheral components for
the computer system 1200. The ICH 1224 may comprise any
suitable interface controller to provide for any suitable com
munication link to the processor(s) 1202, memory unit 1230
and/or to any suitable device or component in communication
with the ICH 1224. In some embodiments, the ICH 1224
provides suitable arbitration and buffering for each interface.
0096. For some embodiments of the invention, the ICH
1224 provides an interface to one or more suitable integrated
drive electronics (IDE) drives 1208, such as a hard disk drive
(HDD) or compact disc read only memory (CDROM) drive,
or to suitable universal serial bus (USB) devices through one
or more USB ports 1210. For one embodiment, the ICH 1224
also provides an interface to a keyboard 1212, mouse 1214,
CD-ROM drive 1218, or other suitable devices through one or
more firewire ports 1216. In some embodiments, the ICH
1224 also provides a network interface 1220 though which
the computer system 1200 can communicate with other com
puters and/or devices. The ICH 1224 is connected to a wire
less interface, which enables the computer system 1200 to

US 2014/0013449 A1

wirelessly connect to computing devices using any Suitable
wireless communication protocol (e.g., 802.11b. 802.11g,
etc.).
0097. In some embodiments, the computer system 1200
includes a machine-readable medium that stores a set of
instructions (e.g., Software) embodying any one, or all, of the
methodologies described herein. Furthermore, software may
reside, completely or at least partially, within memory unit
1230 and/or within the processor(s) 1202.
0098. With reference to FIGS. 2, 5-7, the memory 1230
and/or one of the IDE/ATA drives 1208 may store the render
ing logic 202, the license validation logic 204, the software
product A 510, the client activation logic 512, the counter
update logic 602, the activation logic 603, the uninstall logic
702, the license validation logic 704, the license data 708 and
the anchor data 710. In some embodiments, the rendering
logic 202, the license validation logic 204, the software prod
uct A510, the client activation logic 512, the counter update
logic 602, the activation logic 603, the uninstall logic 702 and
the license validation logic 704 may be instructions executing
within the processor(s) 1202. The rendering logic 202, the
license validation logic 204, the client activation logic 512,
the counter update logic 602, the activation logic 603, the
uninstall logic 702 and the license validation logic 704 may
be stored in a machine-readable medium that are a set of
instructions (e.g., Software) embodying any one, or all, of the
methodologies described herein. For example, the rendering
logic 202, the license validation logic 204, the client activa
tion logic 512, the counter update logic 602, the activation
logic 603, the uninstall logic 702 and the license validation
logic 704 may reside, completely or at least partially, within
the memory 1230, the processor(s) 1202, one of the IDE/ATA
drive(s) 1208, etc.
0099. In the description, numerous specific details such as
logic implementations, opcodes, means to specify operands,
resource partitioning/sharing/duplication implementations,
types and interrelationships of system components, and logic
partitioning/integration choices are set forth in order to pro
vide a more thorough understanding of the present invention.
It will be appreciated, however, by one skilled in the art that
embodiments of the invention may be practiced without such
specific details. In other instances, control structures, gate
level circuits and full software instruction sequences have not
been shown in detail in order not to obscure the embodiments
of the invention. Those of ordinary skill in the art, with the
included descriptions will be able to implement appropriate
functionality without undue experimentation.
0100 References in the specification to “one embodi
ment”, “an embodiment”, “an example embodiment, etc.,
indicate that the embodiment described may include a par
ticular feature, structure, or characteristic, but every embodi
ment may not necessarily include the particular feature, struc
ture, or characteristic. Moreover, Such phrases are not
necessarily referring to the same embodiment. Further, when
a particular feature, structure, or characteristic is described in
connection with an embodiment, it is submitted that it is
within the knowledge of one skilled in the art to affect such
feature, structure, or characteristic in connection with other
embodiments whether or not explicitly described.
0101 Embodiments of the invention include features,
methods or processes that may be embodied within machine
executable instructions provided by a machine-readable
medium. A machine-readable medium includes any mecha
nism which provides (i.e., stores and/or transmits) informa

Jan. 9, 2014

tion in a form accessible by a machine (e.g., a computer, a
network device, a personal digital assistant, manufacturing
tool, any device with a set of one or more processors, etc.). In
an exemplary embodiment, a machine-readable medium
includes Volatile and/or non-volatile media (e.g., read only
memory (ROM), random access memory (RAM), magnetic
disk storage media, optical storage media, flash memory
devices, etc.), as well as electrical, optical, acoustical or other
form of propagated signals (e.g., carrier waves, infrared sig
nals, digital signals, etc.).
0102. Such instructions are utilized to cause a general or
special purpose processor, programmed with the instructions,
to perform methods or processes of the embodiments of the
invention. Alternatively, the features or operations of embodi
ments of the invention are performed by specific hardware
components which contain hard-wired logic for performing
the operations, or by any combination of programmed data
processing components and specific hardware components.
Embodiments of the invention include software, data pro
cessing hardware, data processing system-implemented
methods, and various processing operations, further
described herein.
0103) A number of figures show block diagrams of sys
tems and apparatus for delayed validation for Software licens
ing and activation, in accordance with Some embodiments of
the invention. A number of figures show flow diagrams that
illustrate the operations for delayed validation for software
licensing and activation, in accordance with some embodi
ments of the invention. The operations of the flow diagram are
described with references to the systems/apparatus shown in
the block diagrams. However, it should be understood that the
operations of the flow diagram could be performed by
embodiments of systems and apparatus other than those dis
cussed with reference to the block diagrams, and embodi
ments discussed with reference to the systems/apparatus
could perform operations different than those discussed with
reference to the flow diagram.
0104. In view of the wide variety of permutations to the
embodiments described herein, this detailed description is
intended to be illustrative only, and should not be taken as
limiting the scope of the invention. What is claimed as the
invention, therefore, is all such modifications as may come
within the scope and spirit of the following claims and equiva
lents thereto. Therefore, the specification and drawings are to
be regarded in an illustrative rather than a restrictive sense.
What is claimed is:
1-11. (canceled)
12. A method comprising:
performing the following operations, in a server, Subse

quent to a current activation of a Software application:
determining a total number of activations of the software

application;
determining an activation time period for activation of

the Software application, the activation time period
being a period of time from a time of the current
activation or a deactivation back for a predetermined
period;

determining a number of activations and deactivations in
the activation time period;

allowing activations, greater than an allowed number of
activations, outside of the activation time period; and

updating an activation counter for the software applica
tion if the total number of activations is not equal to
the number of activations in the activation time period

US 2014/0013449 A1

or if more than one activation of the number of acti
Vations in the activation time period is for activation
on a same client device.

13. The method of claim 12, wherein the total number of
activations of the Software application are from on an activa
tion request from one or more client devices.

14. The method of claim 12, further comprising perform
ing the following operations upon receiving an activation
request for the Software application from a client device:

determining the total number of activation of the software
application;

determining a maximum number of allowed activations for
the Software application;

performing the following operations if the total number of
activations of the Software application is less than or
equal to a maximum number of allowed activations for
the Software application:
incrementing the activation counter for the Software

application; and
transmitting a communication to allow activation back

to the client device.
15. The method of claim 14, wherein performing the fol

lowing operations upon receiving an activation request for the
Software application from a client device further comprises
transmitting a communication to deny activation back to the
client device if the total number of activations of the software
application is greater than a maximum number of allowed
activations for the Software application

16. The method of claim 12, wherein performing the fol
lowing operations, in the server comprises performing the
following operations at an off-peak time of day for the server.

17. A method comprising:
receiving, from a first machine, a request to activate Soft
ware on the first machine;

activating the Software on the first machine in response to
a determination that a number of activations for the
Software is less than a maximum number of allowed
activations for the software, the activating of the soft
ware including incrementing an activation counter;

allowing activations, greater than an allowed number of
activations, outside of the activation time period; and

updating the activation counter, at a later time relative to the
activating of the Software, based on a number of activa
tions in an activation time period for the software, the
activation time period being a period of time from a time
of the activating or a deactivating of the Software back
for a predetermined period.

18. The method of claim 17, further comprising:
receiving a request to remove activation of the Software

from a second machine as part of an uninstall operation
of the software from the second machine; and

deactivating the software on the second machine, wherein
the deactivating of the Software includes decrementing
the activation counter.

19. The method of claim 18, wherein the updating of the
activation counter based on the number of activations in the
activation time period for the software is a later time relative
to deactivating the Software on the second machine.

20. The method of claim 17, further comprising:
receiving a request from a second machine to deactivate a

first copy of the software that is activated on second
machine based on installation of a Software Suite that
includes a second copy of the Software on the second
machine; and

Jan. 9, 2014

deactivating the first copy of the Software on the second
machine, wherein the deactivating of the first copy of the
Software includes decrementing the activation counter.

21. The method of claim 20, wherein the updating of the
activation counter based on the number of activations in the
activation time period for the software is a later time relative
to deactivating the first copy of the software on the second
machine.

22-25. (canceled)
26. An apparatus comprising:
a non-transitory machine-readable medium to store an acti

Vation data structure, an entry in the activation data
structure being associated with a serial number of a
Software product and including an activation counter,

an activation logic executed by a processor of the apparatus
to receive a request to activate a Software product on a
device, the activation logic allowing activation of the
software product based on a total number of activations
of the software product not being greater than a number
of allowed activations of the software product, the acti
Vation logic to increment the activation counteras part of
the activation of the software product, the activation
logic allowing activations greater than the allowed acti
Vations outside of the activation time period; and

a counter update logic executed by the processor of the
apparatus to recalculate the activation counter, Subse
quent to the activation of the software product based on
an activation time period, the activation time period
being a period of time from a time of the activation or a
deactivation of the software product back for a predeter
mined period.

27. The apparatus of claim 26, wherein the counter update
logic is to update the activation counter Subsequent to the
activation of the software product, if the total number of
activations is not equal to the number of activations in the
activation time period.

28. The apparatus of claim 26, wherein the counter update
logic is to update the activation counter Subsequent to the
activation of the software product, if more than one activation
of the number of activations in the activation time period is for
activation on a same client device.

29. The apparatus of claim 26, wherein the counter update
logic is to recalculate the activation counter at an off-peak
time of day.

30-39. (canceled)
40. A non-transitory machine-readable storage medium

that provides instructions which, when executed by at least
one processor of a machine, cause said machine to perform
operations comprising:

performing the following operations, in a server, Subse
quent to a current activation of a Software application:
determine a total number of activations of the software

application;
determine an activation time period for activation of the

Software application, the activation time period being
a period of time from a time of the current activation
or a deactivation back for a predetermined period;

determine a number of activations and deactivations in
the activation time period;

allow activations, greater than an allowed number of
activations, outside of the activation time period; and

updating an activation counter for the software applica
tion if the total number of activations is not equal to
the number of activations in the activation time period

US 2014/0013449 A1

or if more than one activation of the number of acti
Vations in the activation time period is for activation
on a same client device.

41. The machine-readable storage medium of claim 40,
wherein the total number of activations of the software appli
cation are from on an activation request from one or more
client devices.

42. The machine-readable storage medium of claim 40,
wherein the total number of activations of the software appli
cation include an activation by a customer service represen
tative.

43. The machine-readable storage medium of claim 40,
further comprising performing the following operations upon
receiving an activation request for the Software application
from a client device:

determining the total number of activation of the software
application;

determining a maximum number of allowed activations for
the Software application;

performing the following operations if the total number of
activations of the Software application is less than or
equal to a maximum number of allowed activations for
the Software application:
incrementing the activation counter for the Software

application; and
transmitting a communication to allow activation back

to the client device.
44. The machine-readable storage medium of claim 43,

wherein performing the following operations upon receiving
an activation request for the Software application from a client
device further comprises transmitting a communication to
deny activation back to the client device if the total number of
activations of the Software application is greater than a maxi
mum number of allowed activations for the software applica
tion.

45. A non-transitory machine-readable storage medium
that provides instructions which, when executed by at least
one processor of a machine, cause said machine to perform
operations comprising:

receiving, from a first machine, a request to activate Soft
ware on the first machine;

activating the Software on the first machine in response to
a determination that a number of activations for the
Software is less than a maximum number of allowed
activations for the software, the activating of the soft
ware including incrementing an activation counter;

allowing activations, greater than an allowed number of
activations, outside of the activation time period; and

updating the activation counter, at a later time relative to the
activating of the Software, based on a number of activa
tions in an activation time period for the software, the

Jan. 9, 2014

activation time period being a period of time from a time
of the activating or a deactivating of the Software back
for a predetermined period.

46. The machine-readable storage medium of claim 45.
further comprising:

receiving a request to remove activation of the Software
from a second machine as part of an uninstall operation
of the software from the second machine; and

deactivating the Software on the second machine, wherein
the deactivating of the Software includes decrementing
the activation counter.

47. The machine-readable storage medium of claim 46,
wherein the updating of the activation counter based on the
number of activations in the activation time period for the
software is a later time relative to deactivating the software on
the second machine.

48. The machine-readable storage medium of claim 45.
further comprising:

receiving a request from a second machine to deactivate a
first copy of the software that is activated on second
machine based on installation of a Software Suite that
includes a second copy of the Software on the second
machine; and

deactivating the first copy of the Software on the second
machine, wherein the deactivating of the first copy of the
Software includes decrementing the activation counter.

49. The machine-readable storage medium of claim 48,
wherein the updating of the activation counter based on the
number of activations in the activation time period for the
software is a later time relative to deactivating the first copy of
the Software on the second machine.

50. The method of claim 12, further comprising determin
ing whether any activations occur outside of the activation
time period, a number of activations occurring outside of the
activation time period to be removed from the total number of
activations.

51. The method of claim 12, wherein the updating the
activation counter comprises:

determining whether more than one activation of the num
ber of activations in the activation time period is for
activation on a same client device; and

based on the determining, marking the more than one acti
Vation as a single activation.

52. The method of claim 12, wherein the determinable time
is a present time.

53. The method of claim 12, wherein any number of acti
vations are allowed outside of the activation time period.

54. The method of claim 12, wherein the activation is a last
activation and the performing occurs offline in the server,
Subsequent to and delayed from the last activation.

k k k k k

