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SYSTEMS AND METHODS FOR
PROCESSING ELECTRONIC IMAGES TO
PREDICT LESIONS

FIELD OF THE INVENTION

[0001] Various embodiments of the present disclosure
relate generally to medical imaging and related methods.
More specifically, particular embodiments of the present
disclosure relate to systems and methods for predicting the
location, onset, and/or change of coronary lesions from
factors such as vessel geometry, physiology, and hemody-
namics.

BACKGROUND

[0002] Coronary artery disease (“CAD”) may produce
coronary lesions, such as a stenosis (abnormal narrowing of
a blood vessel), in the blood vessels providing blood to the
heart. As a result, blood flow to the heart may be restricted.
A patient suffering from coronary artery disease may expe-
rience chest pain, referred to as “chronic stable angina”
during physical exertion, or “unstable angina” when the
patient is at rest. A more severe manifestation of disease may
lead to myocardial infarction, or heart attack.

[0003] A need exists to provide more accurate data relat-
ing to coronary lesions, e.g., size, shape, location, functional
significance (e.g., whether the lesion impacts blood flow),
etc. Patients suffering from chest pain and/or exhibiting
symptoms of coronary artery disease may be subjected to
one or more tests that may provide some indirect evidence
relating to coronary lesions. For example, noninvasive tests
may include electrocardiograms, biomarker evaluation from
blood tests, treadmill tests, echocardiography, single posi-
tron emission computed tomography (SPECT), positron
emission tomography (PET), and coronary computed tomo-
graphic angiography (CCTA). The noninvasive tests may
provide indirect evidence of coronary lesions by looking for
changes in electrical activity of the heart (e.g., using elec-
trocardiography (ECG)), motion of the myocardium (e.g.,
using stress echocardiography), perfusion of the myocar-
dium (e.g., using PET or SPECT), or metabolic changes
(e.g., using biomarkers). However, these noninvasive tests
typically do not provide a direct assessment of coronary
lesions or assess blood flow rates. Thus, patients may also
require an invasive test, such as diagnostic cardiac catheter-
ization, to visualize coronary lesions. Diagnostic cardiac
catheterization may include performing conventional coro-
nary angiography (CCA) to gather anatomic data on coro-
nary lesions by providing a doctor with an image of the size
and shape of the arteries.

[0004] However, both invasive and noninvasive tests for
CAD are only useful in determining an amount of disease
and/or risk of heart attack that has already been incurred.
That is, tests for CAD are unable to predict future amounts
of plaque build-up, stenosis, or other CAD that is likely to
occur based on other known characteristics of an individual.
Even though CAD is known to be associated with various
risk factors, including smoking, diabetes, hypertension, and
dietary habits, no techniques exist for predicting the onset of
CAD. In addition, no techniques exist for predicting the type
or location of plaque that is likely to develop in view of other
known characteristics of an individual.

[0005] Consequently, the present disclosure describes new
approaches for predicting the location, onset, and/or change
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of coronary lesions from factors such as vessel geometry,
physiology, and hemodynamics.

SUMMARY

[0006] Systems and methods are disclosed for predicting
the location, onset, and/or change of coronary lesions from
factors such as vessel geometry, physiology, and hemody-
namics.

[0007] According to one embodiment, a method is dis-
closed for predicting information relating to a coronary
lesion. The method includes: acquiring, for each of a plu-
rality of individuals, a geometric model, blood flow char-
acteristics, and plaque information for at least part of the
individual’s vascular system; identifying, for each of a
plurality of points in the geometric models, features predic-
tive of the presence of plaque within the geometric models
and blood flow characteristics of the plurality of individuals;
training a machine learning algorithm based on the geomet-
ric models and blood flow characteristics for each of the
plurality of individuals, and the predictive features; acquir-
ing, for a patient, a geometric model and blood flow char-
acteristics for at least part of the patient’s vascular system;
and executing the machine learning algorithm on the
patient’s geometric model and blood flow characteristics to
determine, based on the predictive features, plaque infor-
mation of the patient for at least one point in the patient’s
geometric model.

[0008] According to another embodiment, a system is
disclosed for predicting information relating to a coronary
lesion. The system includes a data storage device storing
instructions for predicting information relating to a coronary
lesion; and a processor configured to execute the instructions
to perform a method including the steps of: acquiring, for
each of a plurality of individuals, a geometric model, blood
flow characteristics, and plaque information for at least part
of the individual’s vascular system; identifying, for each of
a plurality of points in the geometric models, features
predictive of the presence of plaque within the geometric
models and blood flow characteristics of the plurality of
individuals; training a machine learning algorithm based on
the geometric models and blood flow characteristics for each
of the plurality of individuals, and the predictive features;
acquiring, for a patient, a geometric model and blood flow
characteristics for at least part of the patient’s vascular
system; and executing the machine learning algorithm on the
patient’s geometric model and blood flow characteristics to
determine, based on the predictive features, plaque infor-
mation of the patient for at least one point in the patient’s
geometric model.

[0009] According to another embodiment, a non-transi-
tory computer-readable medium is disclosed storing instruc-
tions that, when executed by a computer, cause the computer
to perform a method for predicting information relating to a
coronary lesion, the method including: acquiring, for each of
a plurality of individuals, a geometric model, blood flow
characteristics, and plaque information for at least part of the
individual’s vascular system; identifying, for each of a
plurality of points in the geometric models, features predic-
tive of the presence of plaque within the geometric models
and blood flow characteristics of the plurality of individuals;
training a machine learning algorithm based on the geomet-
ric models and blood flow characteristics for each of the
plurality of individuals, and the predictive features; acquir-
ing, for a patient, a geometric model and blood flow char-
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acteristics for at least part of the patient’s vascular system;
and executing the machine learning algorithm on the
patient’s geometric model and blood flow characteristics to
determine, based on the predictive features, plaque infor-
mation of the patient for at least one point in the patient’s
geometric model.

[0010] According to another embodiment, a computer-
implemented method is disclosed for predicting information
relating to a coronary lesion. One method includes acquir-
ing, over a network, for a patient, a geometric model and
blood flow characteristics for at least part of the patient’s
vascular system; and determining plaque information of the
patient for at least one point in the patient’s geometric model
by executing on the patient’s geometric model and blood
flow characteristics, a machine learning algorithm trained
based on plaque predictive features derived from geometric
models, blood flow characteristics, and plaque information
obtained for each of a plurality of individuals.

[0011] Additional objects and advantages of the disclosed
embodiments will be set forth in part in the description that
follows, and in part will be apparent from the description, or
may be learned by practice of the disclosed embodiments.
The objects and advantages of the disclosed embodiments
will be realized and attained by means of the elements and
combinations particularly pointed out in the appended
claims.

[0012] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory only and are not restrictive of
the disclosed embodiments, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
various exemplary embodiments and together with the
description, serve to explain the principles of the disclosed
embodiments.

[0014] FIG. 1 is a block diagram of an exemplary system
and network for predicting the location, onset, and/or change
of coronary lesions from factors such as vessel geometry,
physiology, and hemodynamics, according to an exemplary
embodiment of the present disclosure.

[0015] FIG. 2 is a diagram of an exemplary three-dimen-
sional mesh of a geometric model used in predicting the
location, onset, and/or change of coronary lesions from
factors such as vessel geometry, physiology, and hemody-
namics, according to an exemplary embodiment of the
present disclosure.

[0016] FIG. 3A is a block diagram of an exemplary
method of training a machine learning system for predicting
the location, onset, and/or change of coronary lesions from
factors such as vessel geometry, physiology, and hemody-
namics s, according to an exemplary embodiment of the
present disclosure.

[0017] FIG. 3B is a block diagram of an exemplary
method of using a trained machine learning system for
predicting the location, onset, and/or change of coronary
lesions from factors such as vessel geometry, physiology,
and hemodynamics, according to an exemplary embodiment
of the present disclosure.

[0018] FIG. 4A is a block diagram of an exemplary
method of training a machine learning system for predicting
the location of coronary lesions from factors such as vessel
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geometry, physiology, and hemodynamics, according to an
exemplary embodiment of the present disclosure.

[0019] FIG. 4B is a block diagram of an exemplary
method of using a trained machine learning system for
predicting the location of coronary lesions from factors such
as vessel geometry, physiology, and hemodynamics, accord-
ing to an exemplary embodiment of the present disclosure.
[0020] FIG. 5A is a block diagram of an exemplary
method of training a machine learning system for predicting
the onset and/or change (e.g., rate of growth/shrinkage) of
coronary lesions from vessel geometry, physiology, and
hemodynamics, according to an exemplary embodiment of
the present disclosure.

[0021] FIG. 5B is a block diagram of an exemplary
method of using a trained machine learning system for
predicting the onset and/or change (e.g., rate of growth/
shrinkage) of coronary lesions from vessel geometry, physi-
ology, and hemodynamics, according to an exemplary
embodiment of the present disclosure.

[0022] FIG. 6 is a simplified block diagram of an exem-
plary computer system in which embodiments of the present
disclosure may be implemented.

DESCRIPTION OF THE EMBODIMENTS

[0023] Reference will now be made in detail to the exem-
plary embodiments of the disclosure, examples of which are
illustrated in the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used throughout
the drawings to refer to the same or like parts.

[0024] The present disclosure describes an approach for
providing prognosis of coronary artery disease (“CAD”) and
for predicting plaque growth/shrinkage based on patient-
specific geometry and blood flow characteristics. Specifi-
cally, the present disclosure describes a system that receives
patient information (e.g., 3D cardiac imaging, patient demo-
graphics, and history) and provides a patient-specific and
location-specific risk score for the pathogenesis of CAD.
Although the present disclosure is described with particular
reference to coronary artery disease, the same systems and
methods are applicable to creating a patient-specific predic-
tion of lesion formation in other vascular systems beyond
the coronary arteries.

[0025] More specifically, the present disclosure describes
certain principles and embodiments for using patients’ car-
diac imaging to: (1) derive a patient-specific geometric
model of the coronary vessels; and (2) perform coronary
flow simulation to extract hemodynamic characteristics,
patient physiological information, and boundary conditions
in order to predict the onset and location of coronary lesions.
The present disclosure is not limited to a physics-based
simulation of blood flow to predict the locations predisposed
to plaque formation, but rather uses machine learning to
predict the lesion location by incorporating various risk
factors, including patient demographics and coronary geom-
etry, as well as the results of patient-specific biophysical
simulations (e.g., hemodynamic characteristics). If addi-
tional diagnostic test results are available, those results may
also be used in the training and prediction. According to
certain embodiments, the presently disclosed methods
involve two phases: (1) a training phase in which the
machine learning system is trained to predict one or more
locations of coronary lesions, and (2) a production phase in
which the machine learning system is used to produce one
or more locations of coronary lesions.
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[0026] Referring now to the figures, FIG. 1 depicts a block
diagram of an exemplary system and network for predicting
the location, onset, and/or change of coronary lesions from
vessel geometry, physiology, and hemodynamics. Specifi-
cally, FIG. 1 depicts a plurality of physician devices or
systems 102 and third party provider devices or systems 104,
any of which may be connected to an electronic network
101, such as the Internet, through one or more computers,
servers, and/or handheld mobile devices. Physicians and/or
third party providers associated with physician devices or
systems 102 and/or third party provider devices or systems
104, respectively, may create or otherwise obtain images of
one or more patients’ cardiac and/or vascular systems. The
physicians and/or third party providers may also obtain any
combination of patient-specific information, such as age,
medical history, blood pressure, blood viscosity, etc. Physi-
cians and/or third party providers may transmit the cardiac/
vascular images and/or patient-specific information to server
systems 106 over the electronic network 101. Server sys-
tems 106 may include storage devices for storing images and
data received from physician devices or systems 102 and/or
third party provider devices or systems 104. Server systems
106 may also include processing devices for processing
images and data stored in the storage devices.

[0027] FIG. 2 is a diagram of an exemplary three-dimen-
sional mesh of a geometric model 200 used in predicting the
location, onset, and/or change of coronary lesions from
vessel geometry, according to an exemplary embodiment of
the present disclosure. For example, as described above, a
third party provider or physician may obtain patient-specific
anatomical data of one or more patients. Patient-specific
anatomical data may include data regarding the geometry of
the patient’s heart, e.g., at least a portion of the patient’s
aorta, a proximal portion of the main coronary arteries (and
the branches extending therefrom) connected to the aorta,
and the myocardium. However, as-described above, patient-
specific anatomical data may also or alternatively be
obtained in relation to any portion of the patient’s vascula-
ture, including beyond the patient’s heart.

[0028] Initially, a patient may be selected, e.g., when the
physician determines that information about the patient’s
coronary blood flow is desired, e.g., if the patient is expe-
riencing symptoms associated with coronary artery disease,
such as chest pain, heart attack, etc. The patient-specific
anatomical data may be obtained noninvasively, e.g., using
a noninvasive imaging method. For example, CCTA is an
imaging method in which a user may operate a computer
tomography (CT) scanner to view and create images of
structures, e.g., the myocardium, the aorta, the main coro-
nary arteries, and other blood vessels connected thereto. The
CCTA data may be time-varying, e.g., to show changes in
vessel shape over a cardiac cycle. CCTA may be used to
produce an image of the patient’s heart. For example,
64-slice CCTA data may be obtained, e.g., data relating to 64
slices of the patient’s heart, and assembled into a three-
dimensional image.

[0029] Alternatively, other noninvasive imaging methods,
such as magnetic resonance imaging (MRI) or ultrasound
(US), or invasive imaging methods, such as digital subtrac-
tion angiography (DSA), may be used to produce images of
the structures of the patient’s anatomy. The imaging meth-
ods may involve injecting the patient intravenously with a
contrast agent to enable identification of the structures of the
anatomy. The resulting imaging data (e.g., provided by
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CCTA, MRI, etc.) may be provided by a third-party vendor,
such as a radiology lab or a cardiologist, by the patient’s
physician, etc.

[0030] Other patient-specific anatomical data may also be
determined from the patient noninvasively. For example,
physiological data such as the patient’s blood pressure,
baseline heart rate, height, weight, hematocrit, stroke vol-
ume, etc., may be measured. The blood pressure may be the
blood pressure in the patient’s brachial artery (e.g., using a
pressure cuff), such as the maximum (systolic) and mini-
mum (diastolic) pressures.

[0031] The patient-specific anatomical data obtained as
described above may be transferred over a secure commu-
nication line (e.g., via electronic network 101 of FIG. 1). For
example, the data may be transferred to server systems 106
or other computer system for performing computational
analysis, e.g., the computational analysis described below
with respect to FIGS. 3-5B. In one exemplary embodiment,
the patient-specific anatomical data may be transferred to
server systems 106 or other computer system operated by a
service provider providing a web-based service. Alterna-
tively, the data may be transferred to a computer system
operated by the patient’s physician or other user.

[0032] In one embodiment, server systems 106 may gen-
erate a three-dimensional solid model and/or three-dimen-
sional mesh 200 based on the received patient-specific
anatomical data. For example, server systems 106 may
generate the three-dimensional model and/or mesh based on
any of the techniques described in U.S. Pat. No. 8,315,812
by Taylor et al., which issued on Nov. 20, 2012, the entirety
of which is hereby incorporated herein by reference.
[0033] FIG. 3A is a block diagram of an exemplary
method 300 for training a machine learning system, based on
a plurality of patients’ blood flow characteristics and geom-
etry, for predicting the location, onset, and/or change of
coronary lesions from vessel geometry, physiology, and
hemodynamics, according to an exemplary embodiment of
the present disclosure. Specifically, as shown in FIG. 3A,
method 300 may include obtaining patient imaging data
(e.g., a geometric model) and physiologic and/or hemody-
namic information 302 for a plurality of patients. Method
300 may include generating feature vectors 304 based on the
plurality of patients’ imaging and physiologic and/or hemo-
dynamic information. Method 300 further includes obtain-
ing information about plaque 306 for the plurality of
patients, and formatting the information about the plurality
of patients’ plaque into the format that is desired of the
output 308 of the learning system. Method 300 completes
the training mode by inputting into a learning system 310
both the feature vectors 304 formed from the plurality of
patients’ imaging data and physiologic and/or hemodynamic
information, and the output 308 of the information about
plaque for the plurality of patients. For example, as will be
described in more detail below, any suitable type of machine
learning system may process both the feature vectors 304
and outputs 308 to identify patterns and conclusions from
that data, for later use in producing outputs of information
about a particular user’s plaque.

[0034] FIG. 3B is a block diagram of an exemplary
method 350 for using the trained machine learning system
310 for predicting, for a particular patient, the location,
onset, and/or change of coronary lesions from vessel geom-
etry, physiology, and hemodynamics, according to an exem-
plary embodiment of the present disclosure. As shown in
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FIG. 3B, method 350 may include obtaining patient imaging
data (e.g., a geometric model) and physiologic and/or hemo-
dynamic information 312 for a particular patient, for whom
it is desired to predict plaque location, onset, and/or change
based on the trained learning system 310. Of course, method
350 may include obtaining the patient imaging data and
physiologic and/or hemodynamic information for any num-
ber of patients for whom it is desired to predict plaque
location, onset, and/or change based on the trained learning
system. Method 350 may include generating a feature vector
314 for each of a plurality of points of the patient’s geo-
metric model, based on one or more elements of the received
physiologic and/or hemodynamic information. Method 350
may then include operating the machine learning system 310
on the feature vectors generated for the patient to obtain an
output 316 of the estimates of the presence or onset of
plaque at each of a plurality of points in the patient’s
geometric model, and translating the output into useable
information 318 about the location, onset, and/or change of
plaque in the patient 318.

[0035] Described below are exemplary embodiments for
implementing a training mode method 300 and a production
mode method 350 of machine learning for predicting the
location, onset, and/or change of coronary lesions from
vessel geometry, physiology, and hemodynamics, e.g. using
server systems 106, based on images and data received from
physicians and/or third party providers over electronic net-
work 101. Specifically, the methods of FIGS. 4A-5B may be
performed by server systems 106, based on information
received from physician devices or systems 102 and/or third
party provider devices or systems 104 over electronic net-
work 101.

[0036] FIG. 4A is a block diagram of an exemplary
method 400 for training a machine learning system (e.g., a
machine learning system 310 executed on server systems
106) for predicting the location of coronary lesions from
vessel geometry, physiology, and hemodynamics, according
to an exemplary embodiment of the present disclosure.
Specifically, method 400 may include, for one or more
patients (step 402), obtaining a patient-specific geometric
model of a portion of the patient’s vasculature (step 404),
obtaining one or more estimates of physiological or pheno-
typic parameters of the patient (step 406), and obtaining one
or more estimates of biophysical hemodynamic character-
istics of the patient (step 408).

[0037] For example, the step of obtaining a patient-spe-
cific geometric model of a portion of the patient’s vascula-
ture (step 404) may include obtaining a patient-specific
model of the geometry for one or more of the patient’s blood
vessels, myocardium, aorta, valves, plaques, and/or cham-
bers. In one embodiment, this geometry may be represented
as a list of points in space (possibly with a list of neighbors
for each point) in which the space can be mapped to spatial
units between points (e.g., millimeters). In one embodiment,
this model may be derived by performing a cardiac CT
imaging of the patient in the end diastole phase of the
cardiac cycle. This image then may be segmented manually
or automatically to identify voxels belonging to the aorta
and the lumen of the coronary arteries. Given a 3D image of
coronary vasculature, any of the many available methods
may be used for extracting a patient-specific model of
cardiovascular geometry. Inaccuracies in the geometry
extracted automatically may be corrected by a human
observer who compares the extracted geometry with the
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images and makes corrections as needed. Once the voxels
are identified, the geometric model can be derived (e.g.,
using marching cubes).

[0038] The step of obtaining one or more estimates of
physiological or phenotypic parameters of the patient (step
406) may include obtaining a list of one or more estimates
of physiological or phenotypic parameters of the patient,
such as blood pressure, blood viscosity, in vitro blood test
results (e.g., LDL/Triglyceride cholesterol level), patient
age, patient gender, the mass of the supplied tissue, etc.
These parameters may be global (e.g., blood pressure) or
local (e.g., estimated density of the vessel wall at a location).
In one embodiment, the physiological or phenotypic param-
eters may include, blood pressure, hematocrit level, patient
age, patient gender, myocardial mass (e.g., derived by
segmenting the myocardium in the image, and calculating
the volume in the image and using an estimated density of
1.05 g/mL to estimate the myocardial mass), general risk
factors of coronary artery disease (e.g., smoking, diabetes,
hypertension, abdominal obesity, dietary habits, family his-
tory, etc.), and/or in vitro blood test results (e.g., LDL,
Triglyceride cholesterol level).

[0039] The step of obtaining one or more estimates of
biophysical hemodynamic characteristics of the patient (step
408) may include obtaining a list of one or more estimates
of biophysical hemodynamic characteristics from computa-
tional fluid dynamics analysis, such as wall-shear stress,
oscillatory shear index, particle residence time, Reynolds
number, Womersley number, local flow rate, and turbulent
kinetic energy, etc. Specifically, the mean wall-shear stress,
may be defined as
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t,, which may be the wall shear stress vector defined as the
in-plane component of the surface traction vector. The
oscillatory shear index (OSI), may be defined as
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which may be a measure of the uni-directionality of shear
stress. The particle residence time may be a measure of the
time it takes blood to be flushed from a specified fluid
domain. The turbulent kinetic energy (“TKE”) may be a
measure of the intensity of turbulence associated with eddies
in turbulent flow, and may be characterized by measured
root-mean-square velocity fluctuation, and may be normal-
ized by kinetic energy. The Reynolds number may be
defined as pUD/p where (p: density of blood, U: average
flow velocity, D: vessel diameter, p: dynamic viscosity). The
Womersley number may be defined as
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where (®: angular frequency, equal to

1
cardiac cycle length)'

[0040] Method 400 may further include obtaining an indi-
cation of the presence or absence of plaque at one or more
locations of the patient-specific geometric model (step 410).
For example, in one embodiment, the location of calcified or
non-calcified plaque may be determined using CT and/or
other imaging modalities, including intravascular ultra-
sound, or optical coherence tomography. For example, the
plaque may be detected in the three-dimensional image (200
of FIG. 2) generated from patient-specific anatomical data.
The plaque may be identified in a three-dimensional image
or model as areas that are lighter than the lumens of the
aorta, the main coronary arteries, and/or the branches. Thus,
the plaque may be detected by the computer system as
having an intensity value below a set value or may be
detected visually by the user. The location of detected
plaques may be parameterized by a distance from the ostium
point (left main or right coronary ostium) to the projection
of centroid of plaque coordinates onto the associated vessel
centerline and an angular position of plaque with respect to
myocardium (e.g., myocardial/pericardial side). The loca-
tion of detected plaques may be also parameterized by start
and end points of the projection of plaque coordinates onto
the associated vessel centerline. If plaque exists at a loca-
tion, method 400 may include obtaining a list of one or more
measurements of coronary plaque composition, e.g., type,
Hounsfield units (“HU”), etc., burden, shape (eccentric or
concentric), and location.

[0041] Method 400 may further include, for each of a
plurality of points in the patient-specific geometric model
for which there is information about the presence or absence
of plaque (step 412), creating a feature vector for the point
(step 414) and associating the feature vector with the pres-
ence or absence of plaque at that point (step 416). In one
embodiment, the step of creating a feature vector for the
point may include creating a feature vector for that point that
consists of a numerical description of the geometry and
biophysical hemodynamic characteristics at that point, and
estimates of physiological or phenotypic parameters of the
patient. For example, a feature vector for attributes: distance
to ostium, wall shear stress, local flow rate, Reynolds
number, and centerline curvature, may be in the form of (50
mm, 70 dyne/cm?, 1500 mm?/sec, 400, 1 mm™). Global
physiological or phenotypic parameters may be used in the
feature vector of all points, and local physiological or
phenotypic parameters may change in the feature vector of
different points.

[0042] In one embodiment, an exemplary feature vector
generated in step 414 may include one or more of: (i)
systolic and diastolic blood pressure, (ii) heart rate, (iii)
blood properties including: plasma, red blood cells (eryth-
rocytes), hematocrit, white blood cells (leukocytes) and
platelets (thrombocytes), viscosity, yield stress, etc. (iv)
patient age, gender, height, weight, etc., (v) lifestyle char-
acteristics, e.g., presence or absence of current medications/
drugs, (vi) general risk factors of CAD, such as smoking,
diabetes, hypertension, abdominal obesity, dietary habits,
family history of CAD, etc., (vii) in vitro blood test results,
such as LDL, Triglyceride cholesterol level, etc., (viii)

Sep. 21, 2023

coronary calcium score, (ix) amount of calcium in aorta and
valve, (x) presence of aortic aneurysm, (xi) presence of
valvular heart disease, (xii) presence of peripheral disease,
(xiii) presence of dental disease, (xiv) epicardial fat volume,
(xv) cardiac function (ejection fraction), (xvi) stress
echocardiogram test results, (xvii) characteristics of the
aortic geometry (e.g., cross-sectional area profile along the
ascending and descending aorta, and surface area and vol-
ume of the aorta, (xviii) a SYNTAX score, as described in
U.S. patent application Ser. No. 13/656,183, filed by Timo-
thy A. Fonte et al. on Oct. 19, 2012, the entire disclosure of
which is incorporated herein by reference, (xix) plaque
burden of existing plaque, (xx) adverse plaque characteris-
tics of existing plaque (e.g., presence of positive remodeling,
presence of low attenuation plaque, presence of spotty
calcification), (xxi) characteristics of the coronary branch
geometry, (xxii) characteristics of coronary cross-sectional
area, (xxiii) characteristics of coronary lumen intensity, e.g.,
intensity change along the centerline (slope of linearly-fitted
intensity variation), (xxiv) characteristics of surface of coro-
nary geometry, e.g., 3D surface curvature of geometry
(Gaussian, maximum, minimum, mean), (xxv) characteris-
tics of volume of coronary geometry, e.g., ratio of total
coronary volume compared to myocardial volume, (xxvi)
characteristics of coronary centerline, (xxvii) characteristics
of coronary deformation, (xxviii) characteristics of existing
plaque, and (xxix) characteristics of coronary hemodynam-
ics derived from computational flow dynamics or invasive
measurement.

[0043] In one embodiment, the characteristics of the coro-
nary branch geometry may include one or more of: (1) total
number of vessel bifurcations, and the number of upstream/
downstream vessel bifurcations; (2) average, minimum, and
maximum upstream/downstream cross-sectional areas; (3)
distances (along the vessel centerline) to the centerline point
of minimum and maximum upstream/downstream cross-
sectional areas, (4) cross-sectional area of and distance
(along the vessel centerline) to the nearest upstream/down-
stream vessel bifurcation, (5) cross-sectional area of and
distance (along the vessel centerline) to the nearest coronary
outlet and aortic inlet/outlet, (6) cross-sectional areas and
distances (along the vessel centerline) to the downstream
coronary outlets with the smallest/largest cross-sectional
areas, and/or (7) upstream/downstream volumes of the coro-
nary vessels.

[0044] In one embodiment, the characteristics of coronary
cross-sectional area may include one or more of: (1) cross-
sectional lumen area along the coronary centerline, (2)
cross-sectional lumen area to the power of N (where N can
be determined from various source of scaling laws such as
Murray’s law (N=1.5) and Uylings’ study (N=1.165~1.5)),
(3) a ratio of lumen cross-sectional area with respect to the
main ostia (LM, RCA) (e.g., measure of cross-sectional area
at the LM ostium, normalized cross-sectional area of the left
coronary by LM ostium area, measure of cross-sectional
area at the RCA ostium, normalized cross-sectional area of
the right coronary by RCA ostium area), (4) ratio of lumen
cross-sectional area with respect to the main ostia to the
power of N (where N can be determined from various
sources of scaling laws such as Murray’s law (N=1.5) and
Uyling’s study (N=1.165~1.5)), (5) degree of tapering in
cross-sectional lumen area along the centerline (based on a
sample centerline points within a certain interval (e.g., twice
the diameter of the vessel) and computation of a slope of
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linearly-fitted cross-sectional area), (6) location of stenotic
lesions (based on detecting minima of cross-sectional area
curve (e.g., detecting locations, where first derivative of area
curve is zero and second derivative is positive, and smooth-
ing cross-sectional area profile to avoid detecting artifactual
peaks)., and computing distance (parametric arc length of
centerline) from the main ostium, (7) length of stenotic
lesions (computed based on the proximal and distal locations
from the stenotic lesion, where cross-sectional area is recov-
ered), (8) degree of stenotic lesions, by evaluating degree of
stenosis based on reference values of smoothed cross-
sectional area profile using Fourier smoothing or kernel
regression, (9) location and number of lesions corresponding
to 50%, 75%, 90% area reduction, (10) distance from
stenotic lesion to the main ostia, and/or (11) irregularity (or
circularity) of cross-sectional lumen boundary.

[0045] In one embodiment, the characteristics of coronary
centerline may include: (1) curvature (bending) of coronary
centerline, such as by computing Frenet curvature, based on
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where p is a coordinate of the centerline, and computing an
inverse of the radius of a circumscribed circle along the
centerline points, and (2) tortuosity (non-planarity) of coro-
nary centerline, such as by computing Frenet torsion, based
on
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where p is a coordinate of the centerline.

[0046] In one embodiment, calculation of the characteris-
tics of coronary deformation may involve multi-phase
CCTA (e.g., diastole and systole), including (1) distensibility
of coronary artery over cardiac cycle, (2) bifurcation angle
change over cardiac cycle, and/or (3) curvature change over
cardiac cycle. In one embodiment, the characteristics of
existing plaque may be calculated based on: (1) volume of
plaque, (2) intensity of plaque, (3) type of plaque (calcified,
non-calcified), (4) distance from the plaque location to
ostium (LM or RCA), and (5) distance from the plaque
location to the nearest downstream/upstream bifurcation.
[0047] In one embodiment, the characteristics of coronary
hemodynamics may be derived from computational flow
dynamics or invasive measurement. For example, pulsatile
flow simulation may be performed to obtain transient char-
acteristics of blood, by using a lumped parameter coronary
vascular model for downstream vasculatures, inflow bound-
ary condition with coupling a lumped parameter heart model
and a closed loop model to describe the intramyocardial
pressure variation resulting from the interactions between
the heart and arterial system during cardiac cycle. For
example, the calculation may include: measured FFR, coro-
nary flow reserve, pressure distribution, FFRct, mean wall-
shear stress, oscillatory shear index, particle residence time,
turbulent kinetic energy, Reynolds number, Womersley
number, and/or local flow rate.

[0048] Method 400 may then include associating the fea-
ture vector with the presence or absence of plaque at each
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point of the patient-specific geometric model (step 416).
Method 400 may involve continuing to perform the above
steps 412, 414, 416, for each of a plurality of points in the
patient-specific geometric model (step 418), and for each of
any number of patients on which a machine learning algo-
rithm may be based (step 420). Method 400 may then
include training the machine learning algorithm to predict
the probability of the presence of plaque at the points from
the feature vectors at the points (step 422). Examples of
machine learning algorithms suitable for performing this
task may include support vector machines (SVMs), multi-
layer perceptrons (MLPs), and/or multivariate regression
(MVR) (e.g., weighted linear or logistic regression).
[0049] Method 400 may then include storing or otherwise
saving the results of the machine learning algorithm (e.g.,
feature weights) to a digital representation, such as the
memory or digital storage (e.g., hard drive, network drive)
of a computational device, such as a computer, laptop, DSP,
server, etc. of server systems 106 (step 424).

[0050] FIG. 4B is a block diagram of an exemplary
method 450 for using a machine learning system trained
according to method 400 (e.g., a machine learning system
310 executed on server systems 106) for predicting, for a
particular patient, the location of coronary lesions from
vessel geometry, physiology, and hemodynamics, according
to an exemplary embodiment of the present disclosure. In
one embodiment, method 450 may include, for one or more
patients (step 452), obtaining a patient-specific geometric
model of a portion of the patient’s vasculature (step 454),
obtaining one or more estimates of physiological or pheno-
typic parameters of the patient (step 456), and obtaining one
or more estimates of biophysical hemodynamic character-
istics of the patient (step 458).

[0051] Specifically, the step of obtaining a patient-specific
geometric model of a portion of the patient’s vasculature
(step 454) may include obtaining a patient-specific model of
the geometry for one or more of the patient’s blood vessels,
myocardium, aorta, valves, plaques, and/or chambers. [n one
embodiment, this geometry may be represented as a list of
points in space (possibly with a list of neighbors for each
point) in which the space can be mapped to spatial units
between points (e.g., millimeters). In one embodiment, this
model may be derived by performing a cardiac CT imaging
of the patient in the end diastole phase of the cardiac cycle.
This image then may be segmented manually or automati-
cally to identify voxels belonging to the aorta and the lumen
of the coronary arteries. Inaccuracies in the geometry
extracted automatically may be corrected by a human
observer who compares the extracted geometry with the
images and makes corrections as needed. Once the voxels
are identified, the geometric model can be derived (e.g.,
using marching cubes).

[0052] In one embodiment, the step of obtaining one or
more estimates of physiological or phenotypic parameters of
the patient (step 456) may include obtaining a list of one or
more estimates of physiological or phenotypic parameters of
the patient, such as blood pressure, blood viscosity, in vitro
blood test results (e.g., LDL/Triglyceride cholesterol level),
patient age, patient gender, the mass of the supplied tissue,
etc. These parameters may be global (e.g., blood pressure) or
local (e.g., estimated density of the vessel wall at a location).
In one embodiment, the physiological or phenotypic param-
eters may include, blood pressure, hematocrit level, patient
age, patient gender, myocardial mass (e.g., derived by
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segmenting the myocardium in the image, and calculating
the volume in the image and using an estimated density of
1.05 g/mL to estimate the myocardial mass), general risk
factors of coronary artery disease (e.g., smoking, diabetes,
hypertension, abdominal obesity, dietary habits, family his-
tory, etc.), and/or in vitro blood test results (e.g., LDL,
Triglyceride cholesterol level).

[0053] In one embodiment, the step of obtaining one or
more estimates of biophysical hemodynamic characteristics
of the patient (step 458) may include obtaining a list of one
or more estimates of biophysical hemodynamic character-
istics from computational fluid dynamics analysis, such as
wall-shear stress, oscillatory shear index, particle residence
time, Reynolds number, Womersley number, local flow rate,
and turbulent kinetic energy, etc. Specifically, the mean
wall-shear stress, may be defined as
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which may be the wall shear stress vector defined as the
in-plane component of the surface traction vector. The
oscillatory shear index (OSI), may be defined as
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which may be a measure of the uni-directionality of shear
stress. The particle residence time may be a measure of the
time it takes blood to be flushed from a specified fluid
domain. The turbulent kinetic energy (TKE) may be a
measure of the intensity of turbulence associated with eddies
in turbulent flow, and may be characterized by measured
root-mean-square velocity fluctuation, and may be normal-
ized by kinetic energy. The Reynolds number may be
defined as pUD/p where (p: density of blood, U: average
flow velocity, D: vessel diameter, p: dynamic viscosity). The
Womersley number may be defined as
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[0054] Method 450 may include, for every point in the
patient-specific geometric model of the patient (step 460),
creating for that point a feature vector comprising a numeri-
cal description of the geometry and biophysical hemody-
namic characteristic at that point, and estimates of physi-
ological or phenotypic parameters of the patient (step 462).
Global physiological or phenotypic parameters may be used
in the feature vector of one or more points, and local
physiological or phenotypic parameters may change in the
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feature vector of different points. Method 450 may involve
continuing to perform the above steps 460, 462, for each of
a plurality of points in the patient-specific geometric model
(step 464).

[0055] Method 450 may then include producing estimates
of the probability of the presence or absence of plaque at
each point in the patient-specific geometric model based on
the stored machine learning results (stored at B, FIG. 4A)
(step 468). Specifically, method 450 may use the saved
results of the machine learning algorithm 310 produced in
the training mode of method 400 (e.g., feature weights) to
produce estimates of the probability of the presence of
plaque at each point in the patient-specific geometric model
(e.g., by generating plaque estimates as a function of the
feature vector at each point). These estimates may be
produced using the same machine learning algorithm tech-
nique used in the training mode (e.g., the SVM, MLP, MVR
technique). In one embodiment, the estimates may be a
probability of the existence of plaque at each point of a
geometric model. If there is no existing plaque at a point, the
method may include generating an estimated probability of
the onset of plaque (e.g., lipid-rich, non-calcified plaque). If
plaque does exist at a point, the method may include
generating an estimated probability of progression of the
identified plaque to a different stage (e.g., fibrotic or calci-
fied), and the amount or shape of such progression. In one
embodiment, the estimates may be a probability of a shape,
type, composition, size, growth, and/or shrinkage of plaque
at any given location or combination of locations. For
example, in one embodiment, (in the absence of longitudinal
training data) the progression of plaque may be predicted by
determining that the patient appears that they should have
disease characteristic X based on the patient’s population,
despite actually having characteristic Y. Therefore, the esti-
mate may include a prediction that the patient will progress
from state X to state Y, which may include assumptions
and/or predictions about plaque growth, shrinkage, change
of type, change of composition, change of shape, etc.).
Method 450 may then include saving the estimates of the
probability of the presence or absence of plaque (step 470),
such as to the memory or digital storage (e.g., hard drive,
network drive) of a computational device, such as a com-
puter, laptop, DSP, server, etc., of server systems 106, and
communicating these patient-specific and location-specific
predicted probabilities of lesion formation to a health care
provider, such as over electronic network 101.

[0056] FIG. 5A is a block diagram of an exemplary
method 500 for training a machine learning system (e.g., a
machine learning system 310 executed on server systems
106) for predicting the onset or change (e.g., growth and/or
shrinkage), of coronary lesions over time, such as by using
longitudinal data (i.e., corresponding data taken from the
same patients at different points in time) of vessel geometry,
physiology, and hemodynamics, according to an exemplary
embodiment of the present disclosure. Specifically, method
500 may include, for one or more patients (step 502),
obtaining a patient-specific geometric model of a portion of
the patient’s vasculature (step 504), obtaining one or more
estimates of physiological or phenotypic parameters of the
patient (step 506), and obtaining one or more estimates of
biophysical hemodynamic characteristics of the patient (step
508).

[0057] For example, the step of obtaining a patient-spe-
cific geometric model of a portion of the patient’s vascula-
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ture (step 504) may include obtaining a patient-specific
model of the geometry for one or more of the patient’s blood
vessels, myocardium, aorta, valves, plaques, and/or cham-
bers. In one embodiment, this geometry may be represented
as a list of points in space (possibly with a list of neighbors
for each point) in which the space can be mapped to spatial
units between points (e.g., millimeters). In one embodiment,
this model may be derived by performing a cardiac CT
imaging of the patient in the end diastole phase of the
cardiac cycle. This image then may be segmented manually
or automatically to identify voxels belonging to the aorta
and the lumen of the coronary arteries. Inaccuracies in the
geometry extracted automatically may be corrected by a
human observer who compares the extracted geometry with
the images and makes corrections as needed. Once the
voxels are identified, the geometric model can be derived
(e.g., using marching cubes).

[0058] The step of obtaining one or more estimates of
physiological or phenotypic parameters of the patient (step
506) may include obtaining a list of one or more estimates
of physiological or phenotypic parameters of the patient,
such as blood pressure, blood viscosity, in vitro blood test
results (e.g., LDL/Triglyceride cholesterol level), patient
age, patient gender, the mass of the supplied tissue, etc.
These parameters may be global (e.g., blood pressure) or
local (e.g., estimated density of the vessel wall at a location).
In one embodiment, the physiological or phenotypic param-
eters may include, blood pressure, hematocrit level, patient
age, patient gender, myocardial mass (e.g., derived by
segmenting the myocardium in the image, and calculating
the volume in the image and using an estimated density of
1.05 g/mL to estimate the myocardial mass), general risk
factors of coronary artery disease (e.g., smoking, diabetes,
hypertension, abdominal obesity, dietary habits, family his-
tory, etc.), and/or in vitro blood test results (e.g., LDL,
Triglyceride cholesterol level).

[0059] The step of obtaining one or more estimates of
biophysical hemodynamic characteristics of the patient (step
508) may include obtaining a list of one or more estimates
of biophysical hemodynamic characteristics from computa-
tional fluid dynamics analysis, such as wall-shear stress,
oscillatory shear index, particle residence time, Reynolds
number, Womersley number, local flow rate, and turbulent
kinetic energy, etc. Specifically, the mean wall-shear stress,
may be defined as
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which may be the wall shear stress vector defined as the
in-plane component of the surface traction vector. The
oscillatory shear index (OSI), may be defined as
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which may be a measure of the uni-directionality of shear
stress. The particle residence time may be a measure of the
time it takes blood to be flushed from a specified fluid
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domain. The turbulent kinetic energy (TKE) may be a
measure of the intensity of turbulence associated with eddies
in turbulent flow, and may be characterized by measured
root-mean-square velocity fluctuation, and may be normal-
ized by kinetic energy. The Reynolds number may be
defined as pUD/p where (p: density of blood, U: average
flow velocity, D: vessel diameter, p: dynamic viscosity). The
Womersley number may be defined as
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[0060] Method 500 may further include obtaining an indi-
cation of the growth, shrinkage, or onset of plaque at one or
more locations of the patient-specific geometric model (step
510). For example, in one embodiment, the location of
plaque may be determined using CT and/or other imaging
modalities, including intravascular ultrasound, or optical
coherence tomography. If plaque exists at a location, method
500 may include obtaining a list of one or more measure-
ments of coronary plaque composition, burden and location.

[0061] In order to synchronize geometry obtained from
patients over time, it may be desirable to determine point
correspondence between multiple time variant scans of each
individual. In other words, it may be desirable to learn the
vessel characteristics in a location at the earlier time point
that are correlated with the progression of disease in the
same location at the later time point, such as by using a
database of pairs of images of the same patient at two
different time points. Given the image of a new patient,
training data of local disease progression may then be used
to predict the change in disease at each location. Accord-
ingly, in one embodiment, step 510 may further include: (i)
determining a mapping of a coronary centerline from an
initial scan to a follow-up scan; and (ii) determining a
mapping of extracted plaques using curvilinear coordinates
defined along the centerline. In one embodiment, the coro-
nary centerline mapping may be determined by (i) extracting
centerlines of major epicardial coronary arteries (e.g., left
descending coronary artery, circumflex artery, right coronary
artery) and branch vessels (e.g, diagonal, marginal, etc) for
each scan; (ii) using bifurcating points as fiducial landmarks
to determine common material points between the scans;
and (iii) for points between bifurcations, using linear inter-
polation or cross-sectional area profile (e.g., value, slope) of
coronary vessels to identity correspondence. In one embodi-
ment, the mapping of extracted plaques may be determined
by: (i) extracting plaque from each scan; (ii) parameterizing
the location of plaque voxels by curvilinear coordinate
system for each associated centerline (r,0,s); and determin-
ing correspondence of plaque voxels in each curvilinear
coordinate system. In one embodiment, the curvilinear coor-
dinate system may be defined where:
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[0062] r=distance from plaque voxel to the associated
centerline (projection of plaque);

[0063] s=distance from ostium point (Left main or right
coronary) to the projection of plaque voxel onto associated
centerline; and

[0064] 6=angular position with respect to reference par-
allel path to centerline.

[0065] Method 500 may further include, for each of a
plurality of points in the patient-specific geometric model
for which there is information about the growth, shrinkage,
or onset of plaque (step 512), creating a feature vector for the
point (step 514) and associating the feature vector with the
growth, shrinkage, or onset of plaque at that point (step 516).
In one embodiment, the step of creating a feature vector for
the point may include creating a feature vector for that point
that consists of a numerical description of the geometry and
biophysical hemodynamic characteristics at that point, and
estimates of physiological or phenotypic parameters of the
patient. For example, a feature vector for attributes: hema-
tocrit, plaque burden, plaque Hounsfield unit, distance to
ostium, wall shear stress, flow, Reynolds number, and cen-
terline curvature may be in the form of: (45%, 20 mm?, 130
HU, 60.5 mm, 70 dyne/cm?, 1500 mm?>/sec, 400, 1 mm™).
Global physiological or phenotypic parameters may be used
in the feature vector of all points, and local physiological or
phenotypic parameters may change in the feature vector of
different points.

[0066] In one embodiment, an exemplary feature vector
generated in step 514 may include one or more of: (i)
systolic and diastolic blood pressure, (ii) heart rate, (iii)
blood properties including: plasma, red blood cells (eryth-
rocytes), hematocrit, white blood cells (leukocytes) and
platelets (thrombocytes), viscosity, yield stress, etc. (iv)
patient age, gender, height, weight, etc., (v) lifestyle char-
acteristics, e.g., presence or absence of current medications/
drugs, (vi) general risk factors of CAD, such as smoking,
diabetes, hypertension, abdominal obesity, dietary habits,
family history of CAD, etc., (vii) in vitro blood test results,
such as LDL, Triglyceride cholesterol level, etc., (viii)
coronary calcium score, (ix) amount of calcium in aorta and
valve, (x) presence of aortic aneurysm, (xi) presence of
valvular heart disease, (xii) presence of peripheral disease,
(xiii) presence of dental disease, (xiv) epicardial fat volume,
(xv) cardiac function (ejection fraction), (Xxvi) stress
echocardiogram test results, (xvii) characteristics of the
aortic geometry (e.g., cross-sectional area profile along the
ascending and descending aorta, and Surface area and vol-
ume of the aorta, (xviii) a SYNTAX score, as described
above, (xix) plaque burden of existing plaque, (xx) adverse
plaque characteristics of existing plaque (e.g., presence of
positive remodeling, presence of low attenuation plaque,
presence of spotty calcification), (xxi) characteristics of the
coronary branch geometry, (xxii) characteristics of coronary
cross-sectional area, (xxiii) characteristics of coronary
lumen intensity, e.g., intensity change along the centerline
(slope of linearly-fitted intensity variation), (xxiv) charac-
teristics of surface of coronary geometry, e.g., 3D surface
curvature of geometry (Gaussian, maximum, minimum,
mean), (xxv) characteristics of volume of coronary geom-
etry, e.g., ratio of total coronary volume compared to myo-
cardial volume, (xxvi) characteristics of coronary centerline,
(xxvii) characteristics of coronary deformation, (Xxviii)
characteristics of existing plaque, and/or (xxix) characteris-
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tics of coronary hemodynamics derived from computational
flow dynamics or invasive measurement.

[0067] Inone embodiment, the characteristics of the coro-
nary branch geometry may include one or more of: (1) total
number of vessel bifurcations, and the number of upstream/
downstream vessel bifurcations; (2) average, minimum, and
maximum upstream/downstream cross-sectional areas; (3)
distances (along the vessel centerline) to the centerline point
of minimum and maximum upstream/downstream cross-
sectional areas, (4) cross-sectional area of and distance
(along the vessel centerline) to the nearest upstream/down-
stream vessel bifurcation, (5) cross-sectional area of and
distance (along the vessel centerline) to the nearest coronary
outlet and aortic inlet/outlet, (6) cross-sectional areas and
distances (along the vessel centerline) to the downstream
coronary outlets with the smallest/largest cross-sectional
areas, and/or (7) upstream/downstream volumes of the coro-
nary vessels.

[0068] In one embodiment, the characteristics of coronary
cross-sectional area may include one or more of: (1) cross-
sectional lumen area along the coronary centerline, (2)
cross-sectional lumen area to the power of N (where N can
be determined from various source of scaling laws such as
Murray’s law (N=1.5) and Uylings’ study (N=1.165~1.5)),
(3) a ratio of lumen cross-sectional area with respect to the
main ostia (LM, RCA) (e.g., measure of cross-sectional area
at the LM ostium, normalized cross-sectional area of the left
coronary by LM ostium area, measure of cross-sectional
area at the RCA ostium, normalized cross-sectional area of
the right coronary by RCA ostium area, (4) ratio of lumen
cross-sectional area with respect to the main ostia to the
power of N (where power can be determined from various
source of scaling laws such as Murray’s law (N=1.5) and
Uylings’ study (N=1.165~1.5)), (5) degree of tapering in
cross-sectional lumen area along the centerline (based on a
sample centerline points within a certain interval (e.g., twice
the diameter of the vessel) and compute a slope of linearly-
fitted cross-sectional area), (6) location of stenotic lesions
(based on detecting minima of cross-sectional area curve
(e.g., detecting locations, where first derivative of area curve
is zero and second derivative is positive, and smoothing
cross-sectional area profile to avoid detecting artifactual
peaks)., and computing distance (parametric arc length of
centerline) from the main ostium, (7) length of stenotic
lesions (computed based on the proximal and distal locations
from the stenotic lesion, where cross-sectional area is recov-
ered, (8) degree of stenotic lesions, by evaluating degree of
stenosis based on reference values of smoothed cross-
sectional area profile using Fourier smoothing or kernel
regression, (9) location and number of lesions corresponding
to 50%, 75%, 90% area reduction, (10) distance from
stenotic lesion to the main ostia, and/or (11) irregularity (or
circularity) of cross-sectional lumen boundary.

[0069] In one embodiment, the characteristics of coronary
centerline may include: (1) curvature (bending) of coronary
centerline, such as by computing Frenet curvature, based on
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where p is a coordinate of the centerline, and computing an
inverse of the radius of a circumscribed circle along the
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centerline points, and/or (2) tortuosity (non-planarity) of
coronary centerline, such as by computing Frenet torsion,
based on
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where p is a coordinate of the centerline.

[0070] In one embodiment, calculation of the characteris-
tics of coronary deformation may involve multi-phase
CCTA (e.g., diastole and systole), including (1) distensibility
of coronary artery over cardiac cycle, (2) bifurcation angle
change over cardiac cycle, and/or (3) curvature change over
cardiac cycle. In one embodiment, the characteristics of
existing plaque may be calculated based on: (1) volume of
plaque, (2) intensity of plaque, (3) type of plaque (calcified,
non-calcified), (4) distance from the plaque location to
ostium (LM or RCA), and/or (5) distance from the plaque
location to the nearest downstream/upstream bifurcation.
[0071] In one embodiment, the characteristics of coronary
hemodynamics may be derived from computational flow
dynamics or invasive measurement. For example, pulsatile
flow simulation may be performed to obtain transient char-
acteristics of blood, by using a lumped parameter coronary
vascular model for downstream vasculatures, inflow bound-
ary condition with coupling a lumped parameter heart model
and a closed loop model to describe the intramyocardial
pressure variation resulting from the interactions between
the heart and arterial system during cardiac cycle. For
example, the calculation may include one or more of:
measured FFR, coronary flow reserve, pressure distribution,
FFRct, mean wall-shear stress, oscillatory shear index, par-
ticle residence time, turbulent kinetic energy, Reynolds
number, Womersley number, and/or local flow rate.

[0072] Method 500 may then include associating the fea-
ture vector with the growth, shrinkage, or onset of plaque at
each point of the patient-specific geometric model (step
516). Method 500 may involve continuing to perform the
above steps 512, 514, 516, for each of a plurality of points
in the patient-specific geometric model (step 518), and for
each of any number of patients for which a machine learning
algorithm may be based (step 520). Method 500 may also
involve continuing to perform the above steps 512, 514, 516,
for each of a plurality of points in the patient-specific
geometric model, and for each of any number of patients for
which a machine learning algorithm may be based, across
any additional time period or periods useful for generating
information about the growth, shrinkage, or onset of plaque
(i.e., the change and/or rate of change of plaque at each point
of the model) (step 522).

[0073] Method 500 may then include training a machine
learning algorithm to predict the probability of amounts of
growth, shrinkage, or onset of plaque at the points from the
feature vectors at the points (step 524). Examples of
machine learning algorithms suitable for performing this
task may include support vector machines (SVMs), multi-
layer perceptrons (MLPs), and/or multivariate regression
(MVR) (e.g., weighted linear or logistic regression). In one
embodiment, if training data causes the machine learning
algorithm to predict a lower amount (e.g., size or extent) of
plaque than what is detected, then the machine learning
algorithm may be interpreted as predicting plaque shrinkage;
if training data causes the machine learning algorithm to
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predict a higher amount (e.g., size or extent) of plaque than
what is detected, then the machine learning algorithm may
be interpreted as predicting plaque growth.

[0074] Method 500 may then include storing or otherwise
saving the results of the machine learning algorithm (e.g.,
feature weights) to a digital representation, such as the
memory or digital storage (e.g., hard drive, network drive)
of a computational device, such as a computer, laptop, DSP,
server, etc. of server systems 106 (step 526).

[0075] FIG. 5B is a block diagram of an exemplary
method of using the machine learning system (e.g., machine
learning system 310 executed on server systems 106) for
predicting, for a particular patient, the rate of onset, growth/
shrinkage, of coronary lesions from vessel geometry, physi-
ology, and hemodynamics, according to an exemplary
embodiment of the present disclosure. In one embodiment,
method 550 may include, for one or more patients (step
552), obtaining a patient-specific geometric model of a
portion of the patient’s vasculature (step 554), obtaining one
or more estimates of physiological or phenotypic parameters
of the patient (step 556), and obtaining one or more esti-
mates of biophysical hemodynamic characteristics of the
patient (step 558).

[0076] Specifically, the step of obtaining a patient-specific
geometric model of a portion of the patient’s vasculature
(step 554) may include obtaining a patient-specific model of
the geometry for one or more of the patient’s blood vessels,
myocardium, aorta, valves, plaques, and/or chambers. [n one
embodiment, this geometry may be represented as a list of
points in space (possibly with a list of neighbors for each
point) in which the space can be mapped to spatial units
between points (e.g., millimeters). In one embodiment, this
model may be derived by performing a cardiac CT imaging
of the patient in the end diastole phase of the cardiac cycle.
This image then may be segmented manually or automati-
cally to identify voxels belonging to the aorta and the lumen
of the coronary arteries. Inaccuracies in the geometry
extracted automatically may be corrected by a human
observer who compares the extracted geometry with the
images and makes corrections as needed. Once the voxels
are identified, the geometric model can be derived (e.g.,
using marching cubes).

[0077] In one embodiment, the step of obtaining one or
more estimates of physiological or phenotypic parameters of
the patient (step 556) may include obtaining a list of one or
more estimates of physiological or phenotypic parameters of
the patient, such as blood pressure, blood viscosity, in vitro
blood test results (e.g., LDL/Triglyceride cholesterol level),
patient age, patient gender, the mass of the supplied tissue,
etc. These parameters may be global (e.g., blood pressure) or
local (e.g., estimated density of the vessel wall at a location).
In one embodiment, the physiological or phenotypic param-
eters may include, blood pressure, hematocrit level, patient
age, patient gender, myocardial mass (e.g., derived by
segmenting the myocardium in the image, and calculating
the volume in the image and using an estimated density of
1.05 g/mL to estimate the myocardial mass), general risk
factors of coronary artery disease (e.g., smoking, diabetes,
hypertension, abdominal obesity, dietary habits, family his-
tory, etc.), and/or in vitro blood test results (e.g., LDL,
Triglyceride cholesterol level).

[0078] In one embodiment, the step of obtaining one or
more estimates of biophysical hemodynamic characteristics
of the patient (step 558) may include obtaining a list of one
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or more estimates of biophysical hemodynamic character-
istics from computational fluid dynamics analysis, such as
wall-shear stress, oscillatory shear index, particle residence
time, Reynolds number, Womersley number, local flow rate,
and turbulent kinetic energy, etc. Specifically, the mean
wall-shear stress, may be defined as
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which may be the wall shear stress vector defined as the
in-plane component of the surface traction vector. The
oscillatory shear index (OSI), may be defined as
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which may be a measure of the uni-directionality of shear
stress. The particle residence time may be a measure of the
time it takes blood to be flushed from a specified fluid
domain. The turbulent kinetic energy (TKE) may be a
measure of the intensity of turbulence associated with eddies
in turbulent flow, and may be characterized by measured
root-mean-square velocity fluctuation, and may be normal-
ized by kinetic energy. The Reynolds number may be
defined as pUD/p where (p: density of blood, U: average
flow velocity, D: vessel diameter, p: dynamic viscosity). The
Womersley number may be defined as
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where (®: angular frequency, equal to

1
cardiac cycle length)'

[0079] Method 550 may include, for every point in the
patient-specific geometric model (step 560), creating for that
point a feature vector comprising a numerical description of
the geometry and biophysical hemodynamic characteristic at
that point, and estimates of physiological or phenotypic
parameters of the patient. Global physiological or pheno-
typic parameters can be used in the feature vector of all
points and local physiological or phenotypic parameters can
change in the feature vector of different points. Method 550
may involve continuing to perform the above steps 560, 562,
for each of a plurality of points in the patient-specific
geometric model (step 564).

[0080] Method 550 may then include producing estimates
of the probability and/or rate of the growth, shrinkage, or
onset of plaque at each point in the patient-specific geomet-
ric model based on the stored machine learning results
(stored at B, FIG. 5A) (step 566). Specifically, method 550
may use the saved results of the machine learning algorithm
produced in the training mode of method 500 (e.g.. feature
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weights) to produce estimates of the probability of growth,
shrinkage, or onset (e.g., rates of growth/shrinkage) of
plaque at each point in the patient-specific geometric model
(e.g., by generating plaque estimates as a function of the
feature vector at each point). These estimates may be
produced using the same machine learning algorithm tech-
nique used in the training mode (e.g., the SVM, MLP, MVR
technique). Method 550 may then include saving the esti-
mates of the probability of the growth, shrinkage, or onset of
plaque (step 568), such as to the memory or digital storage
(e.g., hard drive, network drive) of a computational device,
such as a computer, laptop, DSP, server, etc., of server
systems 106, and communicating these patient-specific and
location-specific predicted probabilities of lesion formation
to a health care provider.

[0081] FIG. 6 is a simplified block diagram of an exem-
plary computer system 600 in which embodiments of the
present disclosure may be implemented, for example as any
of the physician devices or servers 102, third party devices
or servers 104, and server systems 106. A platform for a
server 600, for example, may include a data communication
interface for packet data communication 660. The platform
may also include a central processing unit (CPU) 620, in the
form of one or more processors, for executing program
instructions. The platform typically includes an internal
communication bus 610, program storage and data storage
for various data files to be processed and/or communicated
by the platform such as ROM 630 and RAM 640, although
the server 600 often receives programming and data via a
communications network (not shown). The hardware ele-
ments, operating systems and programming languages of
such equipment are conventional in nature, and it is pre-
sumed that those skilled in the art are adequately familiar
therewith. The server 600 also may include input and output
ports 650 to connect with input and output devices such as
keyboards, mice, touchscreens, monitors, displays, etc. Of
course, the various server functions may be implemented in
a distributed fashion on a number of similar platforms, to
distribute the processing load. Alternatively, the servers may
be implemented by appropriate programming of one com-
puter hardware platform.

[0082] As described above, the computer system 600 may
include any type or combination of computing systems, such
as handheld devices, personal computers, servers, clustered
computing machines, and/or cloud computing systems. In
one embodiment, the computer system 600 may be an
assembly of hardware, including a memory, a central pro-
cessing unit (“CPU”), and/or optionally a user interface. The
memory may include any type of RAM or ROM embodied
in a physical storage medium, such as magnetic storage
including floppy disk, hard disk, or magnetic tape; semicon-
ductor storage such as solid state disk (SSD) or flash
memory; optical disc storage; or magneto-optical disc stor-
age. The CPU may include one or more processors for
processing data according to instructions stored in the
memory. The functions of the processor may be provided by
a single dedicated processor or by a plurality of processors.
Moreover, the processor may include, without limitation,
digital signal processor (DSP) hardware, or any other hard-
ware capable of executing software. The user interface may
include any type or combination of input/output devices,
such as a display monitor, touchpad, touchscreen, micro-
phone, camera, keyboard, and/or mouse.
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[0083] Program aspects of the technology may be thought
of'as “products” or “articles of manufacture” typically in the
form of executable code and/or associated data that is
carried on or embodied in a type of machine readable
medium. “Storage” type media include any or all of the
tangible memory of the computers, processors or the like, or
associated modules thereof, such as various semiconductor
memories, tape drives, disk drives and the like, which may
provide non-transitory storage at any time for the software
programming. All or portions of the software may at times
be communicated through the Internet or various other
telecommunication networks. Such communications, for
example, may enable loading of the software from one
computer or processor into another, for example, from a
management server or host computer of the mobile com-
munication network into the computer platform of a server
and/or from a server to the mobile device. Thus, another type
of media that may bear the software elements includes
optical, electrical and electromagnetic waves, such as used
across physical interfaces between local devices, through
wired and optical landline networks and over various air-
links. The physical elements that carry such waves, such as
wired or wireless links, optical links or the like, also may be
considered as media bearing the software. As used herein,
unless restricted to non-transitory, tangible “storage” media,
terms, such as computer or machine “readable medium”
refer to any medium that participates in providing instruc-
tions to a processor for execution.

[0084] Other embodiments of the disclosure will be appar-
ent to those skilled in the art from consideration of the
specification and practice of the invention disclosed herein.
It is intended that the specification and examples be con-
sidered as exemplary only, with a true scope and spirit of the
invention being indicated by the following claims.

1-29. (canceled)

30. A method for prognosis management based on medi-
cal information of a patient, comprising:

receiving the medical information including at least a
medical image of the patient reflecting a morphology of
an object associated with the patient at a first time;

predicting, by a processor, a progression condition of the
object at a second time based on the medical informa-
tion of the first time, wherein the progression condition
is indicative of a prognosis risk, wherein the second
time is after the first time;

generating, by the processor, a prognosis prediction at the
second time reflecting the morphology of the object at
the second time based on the medical information of
the first time; and

providing the progression condition of the object at the
second time and the prognosis prediction at the second
time to an information management system for presen-
tation to a user.

31. The method of claim 30, wherein the medical infor-
mation further includes non-image clinical data associated
with a progression of the object.

32. The method of claim 31, wherein the non-image
clinical data associated with the progression of the object
includes at least one of gender, age, a time period from onset
to a first inspection, a diabetes history, a smoking history, a
drinking history, a blood pressure, or a history of cardio-
vascular disease of the patient.
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33. The method of claim 30, further comprising:

presenting, by the information management system, an

extent over time between the first time and the second
time in an associated manner with at least one of the
progression condition of the object at the second time
or the prognosis image at the second time.

34. The method of claim 30, further comprising:

presenting volume, subtype and location of the object

associated with the medical image of the patient at the
first time.

35. The method of claim 30, wherein the object includes
a lesion, and the prognosis risk includes an enlargement risk
of a lesion, and the first time is after onset of the lesion.

36. The method of claim 30, wherein the prognosis risk
includes at least one of an enlargement risk of the object, a
deterioration risk of the object, an expansion risk of the
object, a metastasis risk of the object, a recurrence risk of the
object, a location of the object, a volume of the object, or a
subtype of the object.

37. The method of claim 30, wherein generating the
prognosis prediction at the second time based on the medical
information of the first time further includes:

generating the prognosis prediction at the second time

using a machine learning algorithm, based on the
medical information of the first time and a time interval
between the first time and the second time.

38. A system for prognosis management based on medical
information of a patient, comprising:

an interface configured to receive the medical information

including at least a medical image of the patient reflect-
ing a morphology of an object associated with the
patient at a first time; and

a processor configured to:

predict a progression condition of the object at a second
time based on the medical information of the first
time, wherein the progression condition is indicative
of a prognosis risk, wherein the second time is after
the first time;

generate a prognosis prediction at the second time
reflecting the morphology of the object at the second
time based on the medical information of the first
time; and

provide the progression condition of the object at the
second time and the prognosis prediction at the
second time for presentation to a user.

39. The system of claim 38, further comprising:

an information management system configured to present

an extent over time between the first time and the
second time in an associated manner with at least one
of the progression condition of the object at the second
time or the prognosis image at the second time.

40. The system of claim 39, wherein the information
management system is further configured to:

present a medical age of the patient at the first time;

present non-image clinical data associated with a progres-

sion of the object of the patient at the first time; and
present the prognosis image of the patient at the second
time.

41. The system of claim 40, wherein the object includes
a lesion, and the prognosis risk includes an enlargement risk
of the lesion, and the first time is after onset of the lesion.

42. The system of claim 38, wherein to generate the
prognosis image at the second time based on the medical
information, the processor is further configured to generate
the prognosis image at the second time using a machine



US 2023/0298176 Al

learning model, based on the medical information and a time
interval between the first time and the second time.

43. A non-transitory computer-readable storage medium
having a computer program stored thercon, wherein the
computer program, when executed by at least one processor,
performs a method for prognosis management based on
medical information of a patient, comprising:

receiving the medical information including at least a

medical image of the patient reflecting a morphology of
an object associated with the patient at a first time;

predicting a progression condition of the object at a

second time based on the medical information of the
first time, wherein the progression condition is indica-
tive of a prognosis risk, wherein the second time is after
the first time;

generating a prognosis prediction at the second time

reflecting the morphology of the object at the second
time based on the medical information of the first time;
and

providing the progression condition of the object at the

second time and the prognosis prediction at the second
time to an information management system for presen-
tation to a user.

44. The non-transitory computer-readable storage
medium of claim 43, wherein the medical information
further includes non-image clinical data associated with a
progression of the object.

45. The non-transitory computer-readable storage
medium of claim 44, wherein the non-image clinical data
associated with the progression of the object includes at least
one of gender, age, a time period from onset to a first
inspection, a diabetes history, a smoking history, a drinking
history, a blood pressure, or a history of cardiovascular
disease of the patient.
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46. The non-transitory computer-readable storage
medium of claim 43, wherein the method further includes:
presenting, by the information management system, an
extent over time between the first time and the second
time in an associated manner with at least one of the
progression condition of the object at the second time
or the prognosis image at the second time.
47. The non-transitory computer-readable storage
medium of claim 43, wherein the method further includes:
presenting volume, subtype and location of the object
associated with the medical image of the patient at the
first time.

48. The non-transitory
medium of claim 43, wherein:

computer-readable storage

the object includes a lesion, and the prognosis risk
includes an enlargement risk of a lesion, and the first
time is after onset of the lesion; and

the prognosis risk includes at least one of an enlargement
risk of the object, a deterioration risk of the object, an
expansion risk of the object, a metastasis risk of the
object, a recurrence risk of the object, a location of the
object, a volume of the object, or a subtype of the
object.

49. The non-transitory computer-readable storage
medium of claim 43, wherein generating the prognosis
prediction at the second time based on the medical infor-
mation of the first time further includes:

generating the prognosis prediction at the second time

using a machine learning algorithm, based on the
medical information of the first time and a time interval
between the first time and the second time.
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