WO 01/77833 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 October 2001 (18.10.2001)

PCT

(10) International Publication Number

WO 01/77833 A2

(51) International Patent Classification’: GO6F 11/30

(21) International Application Number: PCT/US01/11180

(22) International Filing Date: 6 April 2001 (06.04.2001)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/194,895 6 April 2000 (06.04.2000) US

(71) Applicant: GRANITE TECHNOLOGIES, INC.
[US/US]; 5123 Virginia Way, Suite C-21, Brentwood, TN
37027 (US).

(72) Inventor: TERRY, Robert, F.; 387 Lake Shore Drive, Old
Hickory, TN 37138 (US).

(74) Agents: DE GUZMAN, Arnold, M. et al.; Squire,
Sanders & Dempsey L.L.P.,, 600 Hansen Way, Palo Alto,
CA 94304-1043 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR REAL TIME MONITORING AND CONTROL OF NETWORKED COMPUTERS

125~
Network
Server
105a
110a 129 130
Probe Utility
Application

108
Monitor
15) (Administrator
Monitor Application
Station oP)
100
120 re

Network

105b ~ 1 5]]
1100

105d "{ 5;] I
110d

Prabe Utilty L ’{—De_—l Probe Uity
Application 110¢ Application
Probe Utiity
Application

(57) Abstract: A method of real time monitoring and control of networked computers, includes: providing a monitoring computer
unit and client computer unit both capable of being communicatively coupled to a network system; and detecting states in the client
computer and transmitting the detected states to the monitoring computer unit via the network system.

WO 01/77833 PCT/US01/11180

SYSTEM AND METHOD FOR REAL TIME MONITORING
AND CONTROL OF NETWORKED COMPUTERS

FIELD OF THE INVENTION

The present invention relates generally to the
field of utility (operating system) application
programming, and more particularly but not exclusively,
to systems and methods for the real-time monitoring,
recording and/or controlling the internal environment
of a computer unit such as the activity within a

personal computer (PC) machine.

BACKGROUND OF THE INVENTION

As the use of technology expands in businesses and
organizations, there is an increasing need for
management personnel to effectively track and control
the internal PC machine activity (environment) of
company owned technology.

For example, a PC has an internal operating system
(0/8), which is initiated at the time the PC “boots”
from its internal hard drive. This 0/S includes a
series of hundreds of programs, which manage all third-
party application (program) activity and all user
activity. Every action (event), that an end user
performs, creates an internal reaction (another event)

internal to the 0/S to carry out the user’s request.

WO 01/77833 PCT/US01/11180

Every action (event), that a third-party program
initiates, creates an internal reaction (another event)
internal to the 0/S to carry out the program’s request
and at times, modifies the internal 0/S environment
(structure) of the computer unit.

One of the most critical aspects of a PC 0/S and
all third-party applications is the start-up phase of
the 0/S and all third party applications. This start-
up phase includes critical files and/or registry
entries, which are read by certain internal programs
relative to the 0/S and third-party applications, which
guide the 0/S and third-party applications as to what
is “required” at the time of 0/S “boot up” or third-
party application (program) execution.

These critical files and registry entries are
considered to be “soft tables”, which allow
modification so that an 0/S or third-party application
can have their internal operating environment modified
to fit the specific needs of the computer unit and end-
user.

These critical files and registry entries are so
flexible, that it is possible to initiate computer
programs, unknown to the end-user, which can
significantly modify, collect, report, initiate a task

or destroy information on a computer unit.

WO 01/77833 PCT/US01/11180

The registry entries are those part of the 0/S
which defines and initiates a new program which can
occur automatically without the knowledge of the user.
The registry acts as a “guide” to the actual 0/S. When
certain defined elements of a program are written to
specific parts of the registry, the 0/S will start the
program automatically without notification to the user.

Based on the technological advances of the
Internet and the ability to automatically transfer data
from one computer unit to another computer unit in a
compressed format, it is possible to “disguise”
programs in the form of common data, which initiates on
a computer unit that modifies a critical 0/S or third-
party application start-up file or load to the registry,
which in turn, initiates an unknown program which
collects, reports, initiates a task or destroys
information on a computer unit.

All these possibilities can occur, without the
knowledge of the end-user or any individuals within a
business or organization.

Accordingly, there is a need for a real-time
tracking tool that would permit management to record,
monitor and report the internal environment of each
computer unit in an efficient, non-invasive manner.

Furthermore, there is a need for a real-time tool to

WO 01/77833 PCT/US01/11180

automatically “reverse” any unauthorized internal
modifications and to report these modifications to

management personnel within a business or organization.

SUMMARY

In one embodiment, the present invention provides
a method of real time monitoring and control of
networked computers, includes: providing a monitoring
computer unit and client computer unit both capable of
being communicatively coupled to a network system; and
detecting states in the client computer and
transmitting the detected states to the monitoring
computer unit via the network system.

In another embodiment, the present invention
provides a real-time method of electronically “mapping”
the hard drive the computer unit to record the 0/S and
third-party application start-up environment, including:
(a) analyzing the hard drive for the presence of all
critical directories and files; (b) recording the vital
statistics of all directory information, number of
files, directory size, and other information; (c)
recording the vital statistics for each critical file,

such as file creation time, last modification time,

WO 01/77833 PCT/US01/11180

file size; (d) recording the vital statistics of the
computer unit’s internal registry.

In another embodiment, the present invention also
provides a real-time method of detecting states that
are activated by internal computer unit environment,
which include: (a) monitoring the active window task
manager for all identifiable window handles; (b)
intercepting all operating system messages which are
transmitted between third-party applications (programs)
and the 0/S; (c) detecting any change in a critical 0/S
file or third-party start-up file; (d) detecting any
change in a critical aspect of the registry; (e)
sending a inner-process communications message to any
identifiable window handle which resides within the
active task manager; (f) sending a real time forensic
report to a monitor station defining the state of the
detection.

In another embodiment, the present invention also
provides a real-time method of transmitting and storing
this vital information to a storage device (monitor
station).

In one aspect of the present invention, the
recorded and stored data may be transmitted by a client
computer unit and received by a second computer unit

(monitor station) that allows management to view the

WO 01/77833 PCT/US01/11180

current client computer unit’s internal operating
environment which can be managed and controlled by the
second computer unit (monitor station).

Another aspect of the present invention may
include the ability to report in a real-time
environment to the monitor station, any unknown
modification to the critical 0/S, registry, or
application start-up files by unknown programs and
reverse these modifications back to their original
state.

Another aspect of the present invention may
include the ability to record and analyze a
“penetration patterﬁ” of unknown programs, which
attempt to significantly modify, collect, report,
initiate a task or destroy information on a computer
unit.

Another aspect to the present invention may
include the ability transmit this “penetration pattern”
to the monitor station and analyze the pattern with all
additional computer units to determine the best method
to stop the automated modifications, which may be
executing throughout a local area network (LAN) or a

wide area network (WAN).

BRIEF DESCRIPTION OF THE DRAWINGS

WO 01/77833 PCT/US01/11180

Non-limiting and non-exhaustive embodiments of the
present invention are described with reference to the
following figures, wherein like reference numerals
refer to like parts throughout the various views unless
otherwise specified.

Figure 1 is a flow diagram of a network system
that can implement an embodiment of the present
invention.

Figure 2 is a flow diagram of an “electronic
mapping” of computer units internal registry
information in regards to the start-up “boot up” of a
computer unit and the start-up of all third-party
applications.

Figure 3 is a flow diagram of an “electronic
mapping” of all critical directories and files relative
to the start-up (“boot up”) of a computer unit.

Figure 4 is a flow diagram of an “electronic
mapping” of all critical directories and files relative
to the start-up of all third-party applications
(programs) .

Figure 5 is a flow diagram of a method of
intercepting all messages that are generated between
the operating system and third-party applications.

Figure 6 is a flow diagram of a method of sending

an inter-process communications message to any

WO 01/77833 PCT/US01/11180

identifiable windows handle, which resides within that
active task manager listing.

Figure 7 is a flow diagram of a process of
collecting all computer unit (machine environment)
information, within the internal computer unit, and
organizing this information is such a way as to
automatically transmit this data to a monitor station.

Figure 8 1s a flow diagram of a process of
automatically collecting all computer unit (machine
environment) data from all computer units on a local
area network (LAN) or wide area network (WAN).

Figure 9 is a flow diagram of a process of
automatically analyzing the “penetration patterns” of
foreign entity programs which penetrate a computer unit
to collect, report, initiate a task or destroy
information on a computer unit.

Figure 10 is a flow diagram of a process of
automatically reversing any computer unit (machine
environment) changes that a foreign entity program may
initiate within the actual computer unit.

Figure 11 is a block diagram of a structured
signal file which captures all forensic data relative
to the “penetration pattern”, which is transmitted and

stored at the monitor station.

WO 01/77833 PCT/US01/11180

Figure 12 is a flow diagram of a process for
automatically detecting any unauthorized modification
of the HKEY LOCAL MACHINE:Software registry segment in
a real time environment.

Figure 13 is a flow diagram of a process for
automatically detecting any unauthorized modification
of the HKEY_LOCAL_MACHINE:Software\Microsoft’registry
segment in a real time environment.

Figure 14 is a flow diagram of a process for
automatically detecting any unauthorized modification
of the HKEY LOCAL MACHINE:Software\Microsoft\Run
registry segment in a real time environment.

Figure 15 is a flow diagram of a process for
automatically detecting any unauthorized modification
of the HKEY CLASSS ROOT:CLSID registry segment in a
real time environment.

Figure 16 is a flow diagram of a process for
automatically detecting any unauthorized modification
of the HKEY CLASSES ROOT:CID registry segment (if
present), 1in a real time environment.

Figure 17 is a flow diagram of a process for
automatically detecting any unauthorized modification
of the

HKEY_LOCAL_ MACHINE:Software\Microsoft\Windows\CurrentVe

WO 01/77833 PCT/US01/11180

rsion\Shell Extensions\Approved registry segment in a
real time environment.

Figure 18 is a flow diagram of a process for
automatically detecting any unauthorized modification
of the
HKEY_ LOCAL_MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\Run registry segment in a real time environment.

Figure 19 is a flow diagram of a process for
automatically detecting any unauthorized modification
of the
HKEY_ LOCAL MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\RunOnce registry segment in a real time
environment.

Figure 20 is a flow diagram of a process for
automatically detecting any unauthorized modification
of the
HKEY LOCAL MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\RunOnceEx registry segment in a real time
environment .

Figure 21 is a flow diagram of a process for
automatically detecting any unauthorized modification
of the HKEY CURRENT USER:Software registry segment in a

real time environment.

10

WO 01/77833 PCT/US01/11180

Figure 22 is a block diagram illustrating various
methods utilized to initiate a “defense umbrella” of
the entire PC desktop environment.

Figure 23 is a flow diagram illustrating the
parallel threads controlled by a main application
thread of the monitor station.

Figure 24 is a flow diagram illustrating the
details of the comparison analysis of the forensic

penetration data.

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

In the description herein, numerous specific
details are provided, such as the description of
systems, components, methods, and processes, to provide
a thorough understanding of embodiments of the
invention. One skilled in the relevant art will
recognize, however, that the invention can be practiced
without one or more of the specific details, or Qith
other methods, components, materials, parts, and the
like. 1In other instances, well-known structures,
materials, or operations are not shown or described in
detail to avoid obscuring aspects of the invention.

Reference throughout this specification to “one
embodimeﬁt” or “an embodiment” means that a particular

feature, structure, or characteristic described in

11

WO 01/77833 PCT/US01/11180

connection with the embodiment is included in at least
one embodiment of the present invention. Thus, the
appearances of the phrases “in one embodiment” or “in
an embodiment” in various places throughout this
specification are not necessarily all referring to the
same embodiment. Furthermore, the particular features,
structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

As an overview, an empbodiment of the invention
provides a system and method for the real-time
monitoring, recording and/or controlling the internal
environment of, for example, an actual personal
computer (PC) machine (computer unit) activity, with
regards to the active identifiable Window® handles
listed within the task manager, window messages
processed between all applications (programs) and the
operating system, all critical operating system files,
registry entries which activate programs and all
critical independent application (program) files which
control the start-up (initialization) of a computer
unit and control the start-up (initialization) of all
applications (programs) installed on the computer unit.
Although the various embodiments and features of the
invention is described in this disclosure in the

environment of the Windows operating system, the

12

WO 01/77833 PCT/US01/11180

various embodiments and features of the invention
described in this disclosure may be applicable to other
applications and are not intended to be necessarily
limited to the environment of the Windows operating
system.

Referring now to Figure 1, there is shown an
example of a network system that can implement the
present invention. In this embodiment, the network
system 100 includes a plurality of computer units (or
workstations) 105a-105d and 108, and a network server
125. The computer units 105 and 108 may include
personal computers, workstations, notebook computers,
servers, and/or other suitable computing devices. The
network server 125 may also be implement as, for
example, a server, a computer unit, workstation, or
other suitable devices. As an example, the computer
units 105a-105d may each include a client application
(probe utility application) 110a-110d, respectively, in
accordance with an embodiment of the present invention,
while some of the computer units 105 may not include a
client application 110. However, any of the computer
units 105 in Figure 1 may or may not be implemented
with the client application 110. - To assist in
gxplaining the functionalities of various embodiments

of the invention, any or all of the computers 105a-105d

13

WO 01/77833 PCT/US01/11180

will be referred to as generally computer 105, while
any or all of the client applications 110a-110d will be
referred to as generally client application (probe
utility application) 110.

Some computer units may include an administrator
(monitor) application 115 in accordance with an
embodiment of the present invention. In the example of
Figure 1, computer unit (monitor station) 108 includes’
the administrator application 115. However, any other
computer units in Figure 1 may also be implemented with
the administrator (monitor) application 115.

The computer units in Figure 1 are coupled
together by, for example, a wiring hub 120.

A conventional network interface card or LAN
adapter (not shown) is typically implemented in each of
the computer units in Figure 1 for operating each
computer unit within the network system. A network
interface card typically serves as an interface between
a given computer unit and the cables in the network
system. A network interface card uses a specialized
processor and routines to move data between the memory.
of the given computer unit and the network cable
attached to the given computer unit.

In one embodiment, the present invention permits

tracking of all internal machine configuration profiles

14

WO 01/77833 PCT/US01/11180

(start-up) in a computer unit 105 having the client
application 110. All internal machine activity, or
changes in those activities are monitored by the client
application 110. The client application 110 co-exists
with the operating system of a computer unit 105 and
acts as a non-invasive machine activity monitor. As an
example, assume the computer unit 105 starts a third-
party program 130, and that program activity and its
start-up information are monitored in the computer unit
105. The client application 110 in the computer unit
105 will determine each activity state and whether that
activity state is normal for daily operations. The
client application 110 constantly cycles, comparing the
internal configuration profile initially recorded, to

its current profile as the computer unit 105 executes.

In one embodiment, the client application 110 is a
utility application, which is designed and developed
within the Microsoft Visual C++ and in the Microsoft 32
Bit API Environment. The client application 110
accesses the conventional Windows operating system
information in two distinct methods; 1) Through a fully
reusable C++ library conventionally known as the
Microsoft Foundation Class (MFC); or 2) Through a

direct interface with operating system native functions

15

WO 01/77833 PCT/US01/11180

called Microsoft Application Programming Interface

(API).

The MFC hides the fundamental, (high level)
application programming interfaces (API) that a
programmer would normally use and provides an abstract
development layer that allows a programmer to
design/develop a Microsoft Windows multithreaded
utility application, without knowing the exact details
of each native independent API within the Microsoft
Operating System; Otherwise stated, the MFC is a
grouping of APIs that make software design and

development easier for the programmer.

In programming, as known to those skilled in the
art, a thread is a part of a program that can execute
independently of other parts. Operating systems that
support multi-threading enable programmers to design
programs whose threaded parts can be executed

concurrently by the operating system.

As stated, the MFC is utilized for “high level”
operating system functions. For the “lower level”
functions, a Microsoft 32 Bit API interface is utilized
by invoking the actual Windows operating system native
independent functions to retrieve the current operating

system machine configuration and activity states.

16

WO 01/77833 PCT/US01/11180

An overview is now presented on the operation of
an embodiment of the administrator application 115.
The monitor station (or administrator application) 108
which resides on, for example, a standard computer unit
PC or network server, collects and maintains all
configuration, forensic data and administrative
policies which are implemented throughout the network

environment which have the client application 110.

As shown in Figure 23, when the monitor station
115 is initiated, the main application thread initiates
a series of sub threads (“parallel threads”), which all
are parallel and are controlled by the main application
thread. Each parallel thread, which is initiated, is
assigned a task to collect and record data relative to
the operational environment of each client application

110.

The first parallel thread is assigned to query
(2310) the network system 100 for any structured signal
files which may contain configuration data on each
computer unit 105 which is operating a client
application 110. As this first parallel thread gathers
configuration data, this thread analyzes (2315) the
configuration data and stores (2320) the configuration

data at a location local to the administrative

17

WO 01/77833 PCT/US01/11180

application 115. This data is the complete
configuration environment of the client application 110
which defines the “electronic footprint” of all 0/S
files, all “third party” startup data and all computer

registry data.

The second parallel thread is assigned to query
(2325) the network system 100 for any structured signal
files which may contain forensic or “penetration
pattern” data on each computer unit 105 which is
operating a client application 110. As this second
parallel thread is polling the network system 100, if
forensic data is transmitted from the client
application 110, the administrative application 115
will collect and store (2320) the data, to be displayed
(2325) within administrative application 115 as

required (selected) by the administrator (or user).

The third parallel thread is assigned to transmit
(2340) configuration and operational policy structured
signal files to each client application 110
individually or all client applications globally. The
thread sends the structured signal file that the
administrator (or user) has created and defined as a
policy structured signal file and selected to transmit

(deploy) the policy via the network system 100.

18

WO 01/77833 PCT/US01/11180

The fourth, fifth and sixth parallel threads are a
series of command and control structured signal files,
which are transmitted (deployed) to each client
application 110, which terminate (2345) the client
application 110 under certain conditions. Each “shut
down” or termination signal has a different effect on a
client application 110. Once a client application 110
is re-started or initiated, the client application 100
may: (1) Continue its normal activity; (2) Initialize
its installation sequence and collect new configuration
data on its associated computer unit 105; and/or (3)
Remain terminated until such time a “resume” structured
signal file is transmitted from the administrative

application 115.

The remaining threads and programs (not shown iﬁ
Figure 23) within the administrative application 115
perform the routine administrative functions of
displaying data, archiving data, and allowing the user

to export or erase information as required.

Reference is now made to Figure 2 for purposes of
discussing the functional mechanics of the client
application in accordance with an embodiment of the
present invention. In particular, Figure 2 is a flow

diagram of the “electronic mapping” of computer units

19

WO 01/77833 PCT/US01/11180

internal registry information in regards to the start-
up “boot up” of a computer unit 105 and the start-up of
all third-party applications (e.g., third-party
application 130 in Figure 1). It is noted that a
third-party application may, for example, be installed
by a user in any of the computer units 105 or may be
downloaded to any of the computer units 105 from a data

network such as the Internet.

Once a client application 110 initiates, the
client application 110 executes a series of parallel
threads functions which poll querying the operating
system for high level information and executing a
series of independent 32 bit API DLLs to collect low
level information. As known to those skilled in the
art, a Dynamic Link Library (DLL) is a library of
executable functions or data that can be used by a
Windows application. Typically, a DLL provides one or
more particular functions and a program accesses the
functions by creating either a static or dynamic link
to the DLL. A static link rémains constant during
program execution, while a dynamic link is created by
the program as needed. DLLs can also contain just data.

The linker automatically looks in libraries for

20

WO 01/77833 PCT/US01/11180

routines that it does not find elsewhere. In MS-Windows

environments, library files have a .dll extension.

The high level information which is polled
includes the active program memory stack, which lists
all of the active programs “handles” which are
currently functioning within memory. The active “focus
window” “points” to the application in current use by

the “end user”.

The independent API DLLs which are executed may
include the following: GTApprvd.dll, GTclsid.dll,
GTCmpNm.dll, GTCUSocft.dll, GTDrvQry.dll, GTKeyBrd.dll,
GTKillAp.dll, GTMicrRun.dll, GTRegQry.dll,
GTRegSoft.dll, GTRgstry.dll, GTRunExe.dll, GTRunWat.dll,
GTShell.dll, GTShellExt.dll, GTShellNme.dll,

GTSysMsg.dll, and GTTaskBar.dll.

Each independent DLL is controlled by a high level
parallel thread. Examples of low level data
(inforﬁation) which is collected is all registry
configuration data, all real time “kernel” system
messages processed between the 0/S and the third party
applications 130 relative to window object, window type,
mouse movement, mouse selection and I/0 operation.
Additional low level data that may be collected may
include, key board intercept, registry status (various

21

WO 01/77833 PCT/US01/11180

key segments critical to program initiation),
application “command and control signals sent to

applications, the program manager and the task bar.

During the initial installation of a client
application 110, a parallel threaded function is
initiated (block 201) which initiates the 32 Bit API
DLL, as described herein and designed and developed by
the inventor, and which retrieves all of the internal

registry information of a computer unit 105.

An internal machine registry of the computer unit
105 maintains an initialization list for every program
utility required to initiate the computer unit 105
properly, in order to execute the basic Windows
operating system and all those programs which are

required to initialize third-party applications 130.

Some third-party applications 130 require certain
programs to be initiated at the time the operating
system initially starts, while others only require
additional programs at the time the user initiates the

third-party application.

In one embodiment, once the computer unit’s
registry information is retrieved by the client

application 110, the registry information stored into

22

WO 01/77833 PCT/US01/11180

memory arrays and 1s written in a structured ASC file,

which is stored within the computer unit 105.

Once all configuration data is collected from the
computer unit 105, the data is stored local to the
computer unit 105, and the following functions are
initiated. A function is initiated which loads all
registry CLASS configuration data into memory arrays
(block 211). A function is initiated which loads all
registry CURRENT (current users) configuration data
into memory arrays (block 212). A function is initiated
which loads all registry LOCAL MACHINE configuration
data into memory arrays (block 213). A function is
initiated which loaded all registry USERS configuration

data into memory arrays (block 214).

Once all registry data is loaded into memory, a
parallel thread initiates (block 215) the series of low
level API 32 Bit DLLs, which poll each defined registry
segment to determine if any registry data has been

modified (block 216).

If the function in block 216, which determines if
a registry modification has been made, identifies a
modification, then the function reports (alerts) the
administrative application 115 by generating and
transmitting a structured signal file (block 218). If

23

WO 01/77833 PCT/US01/11180

there has been no registry modification, then polling
continues (217) for the defined registry segments by

returning to the function in block 215.

In block 218, the structured ASC file can be
electronically retrieved from the computer unit 105, to
the monitor station 115 for a detailed analysis by the

network administrator.

The client application (probe utility application)
110 is indicated as being initiated in block 200.
After the initial recording (block 220) of the registry
information, the parallel thread (block 210), which
éommands the independent 32 Bit API DLL designed and
developed by the inventor, initiates a series of sub-
functions (as described above in blocks 211 through 218)
which then monitor all registry information for real-

time changes within the computer unit 105 environment.

If a program initiates which modifies any of the
internal registry environment, then an internal message
is generated from the client application 110 to the
computer unit’s main screen, alerting the end-user and
generating (transmitting) a signal to the monitor

station.

24

WO 01/77833 PCT/US01/11180

If the registry modification is an unauthorized
change unknown to the user and/or network
administration, the internal registry information,
which was modified, is then reversed back to its

original state.

The configuration files, which are stored within
the computer unit 105, maintain the defined
configuration of the computer unit 105. When a
modification occurs, the client application 110 refers
to the stored configuration data and will restore the
computer unit 105 back to its original state that was
recorded prior to the unauthorized modification. The
characteristics of the change are then recorded in a
structured ASC file and are logged as a penetration
pattern. The computer unit 105 then generates
(transmits) this penetration pattern file to the
monitor station 115 for further comparison analysis by
the monitor station. The comparison analysis initiated
by the monitor station, is a series of parallel
threaded functions, which compare all penetration
patterns received from all computer units 105 (client
applications 110), which transmit information to the

monitor station 115.

25

WO 01/77833 PCT/US01/11180

As shown in Figure 24, the comparison analysis is
performed by énalyzing each structured signal file
which contains forensic penetration data. The file is
first analyzed as to the establishing the unauthorized
modification and defined within the forensic file.

Each unauthorized modification is compared (2400) with
forensic data ffom other computer units 105 with a
client application 110, to establish a “horizontal
pattern” or consistency in the unauthorized
modifications which are occurring across the network
system 100. The next analysis (2405) is by determining
the “window handle” state of each computer unit 105
when the unauthorized modification occurred. By
analyzing (2405) the “window handle state”, a “pattern”
can be established as to the “user condition” that
initiated the unauthorized modification of the computer

unit 105.

In performing an automated analysis of the type of
modification and the user environment which initiated
the modification in a real time environment, the
administrator application 115 can then quickly develop
a “policy” and deploy (transmit) that policy throughout

the network system 100 to automatically stop the

26

WO 01/77833 PCT/US01/11180

unauthorized modification in each computer unit (block

2410) .

As shown in Figure 2, when the client application
110 is installed on a computer unit 105, the client
application 110 will initiate a parallel thread (block
201) which will initiate a series of sub-threads, which
collect registry information throughout various defined
segments of the computer unit 105 registry. The
parallel thread 201 is activated during the initial
installation or re-initialization if the computer unit

105 is updated with new authorized software.

Each sub-thread activates the independent 32 bit
API DLL, which collects registry information within a
defined segment. A sub-thread (block 202) initiates
the 32 Bit API DLL, which collects all registry data on
the HKEY CLASSES ROOT registry key. A sub-thread
(block 203), initiates the 32 Bit API DLL, which
collects all registry data on the HKEY CURRENT USER
registry key. A sub-thread (block 204) initiates the
32 Bit API DLL, which collects all registry data on the
HKEY LOCAL MACHNE registry key. A sub-thread (block
205) initiates the 32 Bit API DLL, which_collects all

registry data on the HKEY USERS registry key.

27

WO 01/77833 PCT/US01/11180

All data collected by each 32 Bit API DLL is
consolidated by a function (block 206), which stores
the data to the local computer unit 105. Once the data
has been stored, a function is then initiated (block
207), which transmits all registry configuration data
to the administrative unit 108 with the monitor

application 115.

Reference is now made to Figure 3 for purposes of
discussing the functional mechanics of the client
application 110 in accordance with an embodiment of the
present invention. In particular, Figure 3 is a flow
diagram of the “electronic mapping” of all critical
directories and files relative to the start-up “boot

up” of a computer unit 105.

During the initial installation of a client
application 110, an additional parallel threaded
function (bloék 340) 1s initiated, which retrieves all
of the computer unit’s internal directory and file
information required at the time the operating system

initiates during start-up (initial “boot-up”).

The computer unit’s internal machine hard drive
maintains a directory architecture for properly storing,
categorizing and separating all directories and files
required to initiate the computer unit 105 properly to

28

WO 01/77833 PCT/US01/11180

execute the basic Windows operating system and all
those programs which are required at the time of start-
up, to initialize third-party applications 130. Once
the directory and file information is retrieved by the
client application 110, the directory information is
stored into memory arrays and is written in a
structured ASC file, which is stored within the
computer unit 105. The structured ASC file can be
electronically retrieved from the computer unit 105, to
the monitor station 115 for a detailed analysis by the

network administrator.

After the initial recording of the directory and
file information, the parallel thread (block 310),
which commands these initial functions, initiates a
series of sub-functions, which then monitor all
directory and file information for real-time changes

within the computer unit 105 environment.

Once the main parallel thread which control the
directory environment is initiated (block 310), a sub-
function is initiated which load all stored directory
configuration from data files to memory arrays (block
311). When the memory arrays are loaded, a parallel
thread is initiated, which cycles the directory

structure of the computer unit 105, analyzing the

29

WO 01/77833 PCT/US01/11180

computer unit 105 for any possible structural changes
within the defined directory architecture. If a new
directory is detected, the probe function (block 312)
will analyze the internal contents of the directory,
searching for any possible unauthorized program (block
313). If an unauthorized program is detected, a
structure forensic signal file is generated and
transmitted back to the computer unit (block 315’. If
no unauthorized program is detected, the probe will
“loop” back to the query function (block 313) and
continue to analyze the directory architecture for

possible unauthorized programs.

If a program initiates (where the program modifies
any of the internal directory or file environment) an
internal message 1s generated from the client
application 110 to the computer unit’s main screen,
alerting the end-user and generating (transmitting) a

signal to the monitor station (block 315).

If the modification is an unauthorized change
unknown to the user and/or network administration, the
computer unit’s internal directory and/or file
information, which was modified, is then reversed back

to its original state.

30

WO 01/77833 PCT/US01/11180

If an unauthorized program is detected within a
directory, the function which analyzes the directory,
refers to the stored configuration data, which defines
the directory architecture prior to the detection of
the unauthorized program. The defined directory
structure is then analyzed, to “reverse” or remove the

new directory which contains the unauthorized program.

The reversal function is initiated by comparing,
the previous architectural “footprint” of the directory
to the new (unauthorized) “footprint”, and the reverse
function is performed, by erasing the new directory
with the unauthorized program, or if an unauthorized
program is moved into an existing directory, erasing

the unauthorized program only.

The characteristics of the change, is then
recorded in a structured ASC file and is logged as a
penetration pattern. The computer unit 105 then
generates (transmits) this penetration pattern file to
the monitor station 115 for further comparison analysis

by the monitor station 115.

The comparison analysis, which is initiated by the
monitor station 115, is a series of parallel threaded
functions, which compare all penetration patterns
received from all computer units 105 (client

31

WO 01/77833 PCT/US01/11180

applications 110), which transmit information to the

monitor station 115.

When the client application 110 is installed on
the computer unit 105, a main parallel thread is
initialized (block 340), which initiates a series of
sub-functions which scan the entire computer unit 105,
to record all existing directories (folders) and sub-
directories (sub-folders). A sub-function is initiated
(block 341), which analyzes the 0/S directory structure,
“root” and all directories and sub-directories (block

342) which exist on the computer unit 105.

After the completion of this analysis, a function
is initiated (block 343), which consolidates and stores

the data to the local computer unit 105.

Once all data has been consolidated and stored at
the local computer unit 105 and transmitted to the
administrative unit 115, a function (block 344), then
initiates the main polling thread (block 310) which
analyzes the computer unit 105 for any new directory

which may contain an unauthorized program.

Reference is now made to Figure 4 for purposes of
discussing the functional mechanics of the client

application 110 in accordance with an embodiment of the

32

WO 01/77833 PCT/US01/11180

present invention. In particular, Figure 4 is a flow
diagram of an “electronic mapping” of all critical
directories and files relative to the start-up of all

third-party applications (programs) 130.

During the initial installation of a client
application 110, an additional parallel threaded
function (block 440) is initiated, which retrieves all
of the computer unit’s internal directory and file
information required at the time the operating system
initiates any third-party program which may be

installed within the computer unit.

The internal machine hard drive of the computer
unit 105 maintains a directory architecture for
properly storing, categorizing, and separating all
directories and files required to initiate every third-
party program and all those additional programs which
are required at the time that the third-party
application is initialized. The directories may be
scanned by use of any known suitable method to look for
possible modifications which may include a new

unauthorized program installation.

Once the third-party directory and file
information i1s retrieved by the client application 110,
the directory information is stored into memory arrays

33

WO 01/77833 PCT/US01/11180

and is written in a structured ASC file, which is
stored within the computer unit 105. The structured
ASC file can be electronically retrieved from the
computer unit 105, to the monitor station 115 for a

detailed analysis by the network administrator.

After the initial recording of the directory and
file information, the parallel thread (block 410)
initiates a series of sub-functions (block 413), which
then monitor all directory and file information for
real-time changes to any third-party application start-

up within the computer unit environment.

If a program initiates and modifies any of the
internal directory or file environment, an internal
message is generated from the client application 110 to
the computer unit 105 main screen, alerting the end-
user and generating (transmitting) a signal to the

monitor station 115.

If the modification is an unauthorized change that
is unknown to the user and/or network administration,
the internal directory and/or file information, which
was modified, is then reversed back to its original

state.

34

WO 01/77833 PCT/US01/11180

The characteristics of the change are then
recorded in a structured ASC file and are logged as a
penetration pattern. The computer unit 105 then
generates (transmits) this penetration pattern file to
the monitor station 115 for further comparison analysis

by the monitor station 115.

The comparison analysis initiated by the monitor
station 115 is a series of parallel threaded functions,
which compare all penetration patterns received from
all computer units 105 (client applications 110), which
transmit information to the monitor station 115. This

comparison analysis was previously described above.

When the parallel thread (block 410) is
initialized, the function in block 411 is initiated,
and this function loads all third party “start up”
information into memory arrays. Once the function (in
block 411) has completed its operations, an additional
function (block 412) is initiated, which loads the
critical “file signature” of all third party “.ini”

(initialization) files into memory arrays.

After all information is loaded into memory, the
parallel thread which initiated the above functions,
initializes (413) a polling function (block 414), which
constantly cycles, comparing all third party “start up”

35

WO 01/77833 PCT/US01/11180

information and “.ini” file information, to the
previously recorded information which is stored into

memory arrays.

If an unauthorized modification is detected, the
function (in block 414) generates a structured signal
file and transmits the structured signal file to the
administrative application 115. If no unauthorized
modification is detected, the function continues to
loop (block 415) back to its poling function which was

initiated in block 414.

A series of additional parallel threads are
initiated to collect and manage all operating system
(0/S) messages, which are generated between the 0/S and
all third-party applications. These threads initiate a
series MFC functions and/or independent 32 Bit API DLLs
designed and developed by the inventor. These MFC
functions and 32 Bit API DLLs, initiate a series of
operating system (0O/S) “hooks” and MFC inter-links,
which monitor and collect real-time data from memory
buffers regarding mouse movement, application to 0/S
messages, device access, keyboard access,
communications port access, Internet web browser access,
application focus, electronic mail management, disk

file movement, active window handle task listing, disk

36

WO 01/77833 PCT/US01/11180

drive (media) management, task bar management, and

program manager management.

When the client application 110 is installed on
the computer unit 105, a parallel thread is initiated
(block 440), which initializes a function (block 441),
which scans the computer unit 105 for all “third party”
“start up” files which may reside within the computer

unit.

When the function (block 441) has been completed,
an additional function is initialized (block 442),
which scans the computer for all “.ini” (initialization)
files and records the “critical file signature” of each

file within the computer unit 105.

Upon completion of the function (block 442), a
function (block 443) consolidates the information and
stores all data is physical files within the computer
unit 105. At the completion of the function in block
443, an additional function (block 444) is initiated
and starts the maintenance poling thread as described

in block 410.

Reference is now made to Figure 5 for purposes of
discussing additional functional mechanics of the

client application 110 in accordance with an embodiment

37

WO 01/77833 PCT/US01/11180

of the present invention. In particular, Figure 5 is a
flow diagram of a method of intercepting all messages
that are generated between the operating system 129 and

third-party applications 130.

A series of MFC functions and 32 Bit API DLLs
designed and developed by the inventor, initiate (block
505) a series of operating system (0/S) “hooks” and MFC
interlinks, which monitor and collect real-time data
from memory buffers regarding mouse movement and
application to O/S messages. The hooks are part of the
“open architecture” development of Microsoft Windows.

~Figure 5 illustrates a “hook” sequence into the actual
Microsoft 0O/S kernel, where at leasf some of the
following may be extracted: all Window object
identifications (Ids), window object type, mouse
movements, mouse instructions and integer relays which
process between the 0/S kernel and all application

activity.

A parallel thread is initiated (500), which
activates the independent 32 bit API DLL (505),
designed and developed by the inventor, which
establishes a “hook” into the actual 0/S kernel. The
“hook” establishes an interlink with the WH SYSMSG ID

(block 510), which monitors the kernel interrupt for

38

WO 01/77833 PCT/US01/11180

mouse movement and mouse activity (block 515), Dialog,
Menu, List Box activity, which defines the Window
object ID and the Window object type (block 520) and
receives an 0/S message as to the mechanical operation

which is being performed by the kernel (block 525)

Based on the information received under to
WH SYSMSG ID, the “hook” can translate its ID (block
535) to the WH_CBT ID, to collect more information
about O/S kernel mechanics which are being initiated in

a real time environment.

The information received from the kernel system
“hook” is compared with other information, which
intercepts the “high leve;” 0/S information, such as
analysis of the active Window handle listing, the
active Window focus handle, along with memory arrays
which currently store the status of all Registry,
0/S and third party “start up” information, which
formulates a “picture” which is interpreted by the
client application 110 as to the actual “real time”
machine and user condition (or event) which is being

initiated on the computer unit (block 545).

The 32 bit API DLL, designed and developed by the
inventor, relays all signal messages intercepted by
Window object access, and type of window object (520),

39

WO 01/77833 PCT/US01/11180

menu or dialog box object ID, mouse movement and
position. Based on the signal (integer) received from
the API, the MFC parallel thread managing the central
processing unit (CPU) can determine the course of
action initiated by the user. This information (525)
is then processed (545) in a real time environment, to
determine the “intent” of the user and whether the user

action in authorized on unauthorized.

Reference i1s now made to Figure 6 for purposes of
discussing additional functional mechanics of the
client application 110 in accordance with an embodiment
of the present invention. In particular, Figure 6 is a
flow diagram of a method of sending an inter-process
communications message to any identifiable windows
handle, which resides within that active task manager

listing.

The independent 32 Bit API DLL, designed and
developed by the inventor, receives real time status
information from the existing MFC parallel threads,
which determine if the users action or internal program
activity is wvalid or invalid. The validity is
determined by comparing the actual activity to all of
the parallel threads (Figures 1 through 5), which are

monitoring the registry, 0/S, third party integrity and

40

WO 01/77833 PCT/US01/11180

operating system kernel messages of the computer unit

105.

If the user or program activity is determined to
be invalid, the parallel thread initiates the
independent 32 Bit API designed and developed by the
inventor, which terminates the program activity which
is currently in main focus by the user or unmanned

computer.

A parallel thread is initiated (block 605), which
cycles the active window handle task listing for all
identifiable handles active within the computer unit
105. This parallel thread constantly cycles,
monitoring the Window I/O (block 610) and monitoring
the actual window handle which is in FOCUS by the user

of the computer unit.

Based on the information which is processed as
described in Figures 1 thru 5, if an unauthorized event
is being initiated within the computer unit 105, the
parallel thread (block 610) will send an automated
inter process communications (IPC) signal message
WM_QUIT (block 615) to the independent 32 bit API DLIL,
designed and developed by the inventor (block 620),

which will accept the IPC and transmit the WM QUIT

41

WO 01/77833 PCT/US01/11180

message (block 625) to the active window handle which

is current in FOCUS by the user.

The API will then check the status of the IPC, to
determine the success of the message IPC Sent, then
pass all information back to the main parallel thread,
which will determine if additional action (block 630)
will be necessary to stop the unauthorized event taking

place within the computer unit 105.

Reference is now made to figure 7 for purposes of
discussing the functional mechanics of the client
application in accordance with an embodiment of the
present invention. Figure 7 is a flow diagram of a
process of collecting all computer unit (machine
environment) information, within the internal computer
unit 105, and organizing this information is such a way
as to automatically transmit this data to a monitor

station 115.

The process for automatically collecting computer
unit (machine environment) data on the internal
computer 105 and organizing the information for
automatic or “request on demand” transmission to a
monitor station 115, 1s managed by a parallel thread
(block 700) which receives a structure file signal from
the monitor station 115, as described above. If a

42

WO 01/77833 PCT/US01/11180

signal has been received from the monitor station 115,
the parallel thread initiates an MFC sub-function,

which transmits (block 750) all configuration data to

the monitor station 115.

The function in block 705 and the data indicated
in blocks 710a through 710d were similarly described
above with regard to Figure 2. The function in block
715 and the data indicated in blocks 720a through 720b
were similarly described above with regard to Figure 3.
The function in block 725 and the data indicated in
blocks 730a through 730b were similarly described above

with regard to Figure 4.

The collected computer unit (machine environment)
data are stored locally for probe retrieval and update
(block 740). 1If a structure file signal is received
from the monitor station 115 (block 745), as described
above, then the collected machine environment data is

transferred to the monitor station 115.

Reference is now made to figure 8 for purposes of
discussing additional functional mechanics of the
client application 110 in accordance with an embodiment
of the present invention. In particular, Figure 8 is a
flow diagram of a process of automatically collecting
all computer unit (machine environment) data from all

43

WO 01/77833 PCT/US01/11180

computer units 105 on a local area network (LAN) or

wide area network (WAN) (e.g., network system 100).

The monitor station 115 has the capability to
automatically receive all configuration data from a
computer unit 105 or transmit a structure signal file
(initiated by the administrator), to request all
configuration data to be transmitted to the monitor

station 115.

Figure 8 is a flow diagram of an operation after
the administrative application 115 is installed on the
network system 100 and a client application 110 is
installed on the network system 100, and if the network
path has been set up correctly, where the client
application 110 can effectively communicate with the
administrative application 115. Essentially, after fhe
client application 110 performs its analysis of the
computer unit 105, stores all information to its data
files, and converts all data into memory arrays (block
830), a parallel thread (block 835) is initiated to
poll the status of the network connection and to ensure
all proper pathways are established for the client
application 110 to communicate with administrative

application 115.

44

WO 01/77833 PCT/US01/11180

If the parallel thread (block 840) detects the
presence of the network and all defined pathways are
established correctly, the client application 110 will
transmit all data to the administrative application 115

(block 845).

The administrative application 115 will also start
a parallel thread (block 802), which will poll (block
805) to check the status of the network and whether the
defined network pathways are established. If the
overall network status is correct, the administrative
application 115 will automatically receive structure

file signal information from the client application 110.

In the event certain command and control
instructions are initiated from the administrative
application 115 via the user, such as an update request,
an internal function (block 810) will initiate the
structured signal file, which in turn will be
transmitted to the client application 110 (block 815).
In one embodiment, the structured signal file is
transferred by use of a network production directory
(block 825) which may, for example, be located locally
in the computer unit 105. The function passes the

information back to the main parallel thread which will,

45

WO 01/77833 PCT/US01/11180

in turn, receive and process the information received
from the client application (block 820).

Reference is now made to Figure 9 for purposes of
discussing additional functional mechanics of the
client application 110 in accordance with an embodiment
of the present invention. In particular, Figure 9 is a
flow diagram of a process of automatically analyzing
the “penetration patterns” of foreign entity programs
which penetrate a computer unit to collect, report,
initiate a task or destroy information on a computer
unit.

The utility application 110 is initialized, thus
causing the above-mentioned probing function to
initialize (Block 200). The function of block 905
represents the data collection functions performed by
blocks 201-206 (Figure 2), blocks 340-343 (Figure 3),
and blocks 440-443 (Figure 4).

The function of block 910 represents the functions
performed by blocks 210-215 (Figure 2). The checking
functions of blocks 915-920 are represented by the
functions of blocks 216-217. The function of block 925
represents the functions performed by blocks 310-312
(Figure 3). The checking functions of block 930-935
are represented by the functions of blocks 313-314.

The function of block 940 represents the functions

46

WO 01/77833 PCT/US01/11180

-

pefformed 5§%5106£;“110—413 (Figure 4). The checking

functions of block 945-950 are represented by the
functions of blocks 414-415. The functions of block

955 are represented by the functions of blocks 218, 315,
and 416, as previously described above. Thus, Figure 9
shows an overview of an overview of an analysis of
penetration patterns which are received from each
computer unit 110 transmitting data to the monitor
station 115.

Reference is now made'to Figure 10 for purposes of
discussing the functional mechanics of the client
application in accordance with an embodiment of the
present invention. In particular, Figure 10 is a flow
diagram of a process of automatically reversing any
computer unit (machine environment) changes that a
foreign entity program may initiate within the actual
computer unit 110. The functions in blocks 1005
through 1050 were previously described in and are
identical to blocks 905-950 in Figure 9. In block 1055,
the client application 110 looks at the data dictionary
that is local to the client computer 105, and if there
is an unauthorized modification in the architecture by
a foreign entity program that is initiated in the

computer unit 105, then the client application 110 will

47

WO 01/77833 PCT/US01/11180

reverse the architecture back to the defined
architecture prior to the unauthorized modification.

Reference is now made to Figure 11 for purposes of
discussing the functional mechanics of the client
application in accordance with an embodiment of the
present invention. In particular, Figure 11 is a block
diagram of a structured signal file which captures all
forensic data relative to the “penetration pattern”,
which is transmitted and stored at the monitor station
115.

The structured file 1100 is created and transmits
all “penetration pattern” (forensic) data from the
client application 110 to the monitor station 115. As
shown in Figure 11, the following are shown in the data
structure 1100 that permits a computer forensic design

that functions in a real time environment.

SOT [cr] [1f]

Date=CCYY\MM\DD[cr] [1£]
Time=HH:MM:SS[cr] [1f]

3Wind=Variable Up To 500 Characters[cr][1lf]
2Wind=Variable Up To 500 Characters[cr][lf]
1Wind=Variable Up To 500 Characters|[cr][1f]
Mssg—- Variable Up To 500 Characters{cr][1f]
EOT [cr] [1£f]

The above parameters are defined as follows:

48

WO 01/77833 PCT/US01/11180

SOT - Start Of Transmission;

[cr] - Carriage Return ASCII Control Character;

[1f] - Line Feed ASCII Control Character;

EOT - End Of Transmission;

3Wind - Previous Window Handle In Focus Before 2Wind;

2Wind - Previous Window Handle In Focus Before 1Wind;

1Wind - Window Handle In Focus At The Time Of
Unauthorized Activity; and

Mssg - Definition Of Unauthorized Activity.

Reference is now made to figure 12 for purposes of
discussing the functional mechanics of the client
application in accordance with an embodiment of the
present invention. In particular, Figure 12 is a flow
diagram of a process for automatically detecting any
unauthorized modification of the -

HKEY LOCAL_MACHINE:Software registry segment in a real
time environment. The flow diagram illustrate a
process of automatically analyzing the “penetration
patterns” of foreign entity programs which may
penetrate a computer unit 105 to collect, report,
initiate a task or destroy information on a computer

unit 105. Analysis of penetration patterns which are

49

WO 01/77833 PCT/US01/11180

received from each computer unit 105 are transmitted as

data to the monitor station 115.

After the collection of all internal registry data
of a client computer 105 is transmitted to the monitor
station 115, a PC probe (of the client application 110)
initiates an additional parallel threaded function
(block 1205) designed and developed by the inventor,
and the additional parallel threaded function initiates
an additional independent 21 API DLL designed and
developed by the inventor, which performs an analysis
on the HKEY LOCAL MACHINE:Software (hereafter known as
the DEFINED SEGMENT), which is a segment of the
internal registry. One example of the above PC probe
is of the type from Granite Technologies, Inc., a
Tennessee Corporation. The analysis includes a méthod
opening the physical registry key and opening and
querying the DEFINED SEGMENT for any possible
unauthorized changes within this particular area of the

registry.

The internal registry is a database used by the
Windows operating system (e.g., Windows 95 and NT) to
store configuration information. The registry

typically includes the following major sections:

50

WO 01/77833 PCT/US01/11180

(1) HKEY Classes_Root - file associations and
Object Linking aﬁd Embedding (OLE) information;

(2) HKEY Current User - all preferences set for
current user;

(3) HKEY User - all the current user information
for each user of the system;

(4) HKEY Local Machine - settings for hardware,
operating system, and installed applications;

(5) HKEY Current Configuration - settings for the
display and printers;

(6) HKEY Dyn Data - performance data.

Most Windows applications write data to the registry,
at least during installation. The registry can be
edited directly by using the Registry Editor
(regkEdit.exe) provided with the operating system.
Thus, the Windows registry stores system configuratidn
details so that Windows looks and behaves in a desired
manner. The registry stores user profile information
such as wallpaper, color schemes, and desktop
arrangements in a file called “user.dat” and stores
hardware-specific details and software-specific
details, such as device management and file extension
associations, in a file called “system.dat”. In many
ways, the Registry replaces functions of win.ini and

system.ini from earlier versions of Windows, though

51

WO 01/77833 PCT/US01/11180

these files persist because so many Windows

applications refer to them.

The registry is opened by initiating the 32 Bit
API function call defined within the Microsoft API

development environment.

At the time the registry is opened,.the DEFINED
SEGMENT is passed as a parameter to successfully open
the particular segment of the registry. This parameter
is included within the 32 API function (from the
Microsoft API development environment), which is

initiated to open a registry segment.

The method includes establishing a “base count” of
all authorized entries within this particular segment
of the registry. The “base count” is the total amount
of entries which are recorded within the defined
segment of the registry. After the “base count” is
established, a numeric integer of the “base count” is
stored in memory (e.g. RAM). The MFC parallel thread
(block 1215) then initiates the 32 BIT API designed and
developed by the inventor, which initiates an algorithm
that calculates if any change has occurred to the “base
count” of this particular defined segment of the
registry. The actual function of the 32 bit API design

is described further below. A sub-thread (block 1240)

52

WO 01/77833 PCT/US01/11180

initiates the 32 Bit API DLL, which collects all
registry data on the HKEY LOCAL MACHINE:SOFTWARE
registry segment. The other functions in Figure 12
perform as similarly described in the previous drawings

for corresponding similar functions.

The algorithm method designed by the inventor
queries the DEFINED SEGMENT of the registry in such a
way, where virtually no resource utilization is
registered within the CPU. This is possible, because
within the defined segment of the registry, entries are

listed in no particular order and are random in nature.

While, the actual 0/S has to gquery the each
registry segment within the entirety of the registry to
establish and maintain its program environment, the
method designed and developed by the inventor, is an
algorithm which calculates the maximum “base count”
(integer) for all entries within this defined registry
segment, less the “base count” minus 2. The “base
count” minus 2, equates to the start position pointer
in which the algorithm continues to count the remaining
entries and the last “date-time modification” within

this particular defined portion of the registry segment.

53

WO 01/77833 PCT/US01/11180

When the algorithm initiates its count at the
start position pointer, the algorithm will proceed to
count the remaining entries within the DEFINED SEGMENT
of the registry. If the maximum count equation, does
not-equal the pre-calculated results, the defined
registry segment has been violated by a manual edit
from the user or by modification from an unauthorized

program.

As an example, HKEY LOCAL MACHINE:Software may
contain 50 entries which record various applications
which are installed within the computer. The 32 Bit
API DLL which monitors and controls this environment,
will poll this segment, to detect an unauthorized
registry entry or deletion within every five to eight
seconds. If the registry segment is modified, the
unauthorized modification is detected and reported td
the main parallel thread which initiated the 32 Bit APT

DLL.

The pre-calculated results guarantees 100%
accurate results from the query (where the query is
from the registry segment itself via the 32 API
function call from the Microsoft 32 Bit API developers
environment), because the algorithm is designed to

query the defined segment, for example, every about

54

WO 01/77833 PCT/US01/11180

five to eight seconds. The speed of the query makes it
impossible for a user to delete and add a new entry to
the defined segment, without being intercepted by the

algorithm.

The speed and accuracy at about five to eight
seconds is sufficient, because any unauthorized program
or user which attempts to delete and then add a record
to a registry segment, forces the registry segment into
an “update cycle”, whereby it performs its internal
“house keeping”. The “house keeping” requires around
about 4 to 6 seconds to mechanically perform its
internal operations. Furthermore, unauthorized
programs perform a calculation to add entries to a
defined area of the registry, which makes the algorithm
designed by the inventor 100% accurate against

unauthorized program activity.

Finally, the registry protection, along with the
remaining functions which protect the 0/S and third
party start up environment, provide a multi-layer
defense posture protecting the computer unit 105 from
all points of an unauthorized modification to the

computer unit.

The above-mentioned parallel threads can perform

the polling functions without causing a spike or damage

55

WO 01/77833 PCT/US01/11180

to the resources utilized by the CPU clock. This
advantageous result is accomplished by designing the
cycling of the parallel threads in their execution
state with an automated sleep state and based on how
critical the particular thread, so that the system
operation does not slow down.

Reference is now made to Figure 13 for purposes of
discussing additional functional mechanics of the
client application 110 in accordance with an embodiment
of the present invention. In particular, Figure 13 is
a flow diagram of a process for automatically detecting
any unauthorized modification of the
HKEY LOCAL MACHINE:Software\Microsoft registry segment

in a real time environment.

After the collection of all internal registry data
is transmitted to the monitor station 115, the PC Probe
in the client application 110 initiates an additional
parallel threaded function designed and developed by
the inventor, which initiates an additional independent
21 API DLL designed and developed by the inventor,
which performs an analysis on the
HKEY LOCAL MACHINE:Software\Microsoft segment of the
internal registry. This analysis includes a method

opening the physical registry key and opening and

56

WO 01/77833 PCT/US01/11180

querying this segment for any possible unauthorized
changes within this particular area of the registry.
The method includes establishing a “base count” of all
authorized entries within this particular segment of
the registry. After the “base count” is established, a
numeric integer of the “base count” is stored in RAM.
The MFC parallel thread then initiates a 32 BIT API
designed and developed by the inventor, which initiates
an algorithm that calculates if any change has occurred
to the “base count” of this particular defined segment

of the registry.

The MFC parallel thread (block 1315) then
initiates the 32 BIT API designed and developed by the
inventor, which initiates an algorithm that calculates
if any change has occurred to the “base count” of this
particular defined segment of the registry. The actual
function of the 32 bit API design is described further
below. A sub-thread (block 1340) initiates the 32 Bit
API DLL, which collects all registry data on the
HKEY LOCAL MACHINE:Software\Microsoft registry segment.
The other functions in Figure 13 perform as similarly
described in the previous drawings for corresponding

similar functions.

57

WO 01/77833 PCT/US01/11180

The algorithm method designed by the inventor
queries the defined segment of the registry in such a
way, where virtually no resource utilization is
registered within the CPU. This is possible, because
within the defined segment of the registry, entries are

listed in no particular order and are random in nature.

While, the actual 0/S has to query the each
registry segment within its entirety to establish and
maintain its program environment, the method designed
and developed by the inventor, i1s an algorithm which
calculates the maximum “base count” (integer) for all
entries within this defined registry segment, less the
“base count” minus 2. The “base count” minus 2,
equates to the start position pointer in which the
algorithm continues to count the remaining entries and
the last “date-time modification” within this

particular defined portion of the registry segment.

When the algorithm initiates its count at the
start position pointer, the algorithm will proceed to
count the remaining entries within the defined segment
of the registry. If the maximum count equation does
not equal the pre-calculated results, the defined

registry segment has been violated by a manual edit

58

WO 01/77833 PCT/US01/11180

from the user or by modification from an unauthorized

program.

The pre-calculated results guarantees 100%
accurate results from the query, because the algorithm
is designed to query the defined segment every about
five to eight seconds. The speed of the query makes it
impossible for a user to delete and add a new entry to
the defined segment, without being intercepted by the
algorithm. Furthermore, unauthorized programs perform
a calculation to add entries to a defined area of the
registry, which makes the algorithm designed by the
inventor 100% accurate against unauthorized program
activity.

Reference 1s now made to Figure 14 for purposes of
discussing additional functional mechanics of the
client application 110 in accordance with an embodiment
of the present invention. 1In particular, Figure 14 is
a flow diagram of a process for automatically detecting
any unauthorized modification of the
HKEY_LOCAL MACHINE:Software\Microsoft\Run registry

segment in a real time environment.

After the collection of all internal registry data
is transmitted to the monitor station 115, the PC Probe

in the client application 110 initiates an additional

59

WO 01/77833 PCT/US01/11180

parallel threaded function designed and developed by
the inventor, which initiates an additional independent
21 API DLL designed and developed by the inventor,
which performs an analysis on the

HKEY LOCAL MACHINE:Software\Microsoft\Run segment of
the internal registry. This analysis includes a method
opening the physical registry key and opening and
querying this segment for any possible unauthorized
changes within this particular area of the registry.
The method includes establishing a “base count” of all
authorized entries within this particular segment of
the registry. After the “base count” is established, a
numeric integer of the “base count” is stored in RAM.
The MFC parallel thread then initiates a 32 BIT API
designed and developed by the inventor, which initiates
an algorithm that calculates if any change has occurred
to the “base count” of this particular defined segment

of the registry.

The MFC parallel thread (block 1415) then
initiates the 32 BIT API designed and developed by the
inventor, which initiates an algorithm that calculates
if any change has occurred to the “base count” of this
particular defined segment of the registry. The actual
function of the 32 bit API design is described further

below. A sub-thread (block 1440) initiates the 32 Bit

60

WO 01/77833 PCT/US01/11180

APTI DLL, which collects all registry data on the

HKEY LOCAL MACHINE:Software\Microsoft\Run registry
segment. The other functions in Figure 14 perform as
similarly described in the previous drawings for

corresponding similar functions.

The algorithm method designed by the inventor
queries the defined segment of the registry in such a
way, where virtually no résource utilization is
registered within the CPU. This is possible, because
within the defined segment of the registry, entries are

listed in no particular order and are random in nature.

While, the actual 0/S has to query the each
registry segment within its entirety to establish and
maintain its program environment, the method designed
and developed by the inventor, is an algorithm which
calculates the maximum “base count” (integer) for all
entries within this defined registry segment, less the
“base count” minus 2. The “base count” minus 2,
equates to the start position pointer in which the
algorithm continues to count the remaining entries and
the last “date-time modification” within this

particular defined portion of the registry segment.

61

WO 01/77833 PCT/US01/11180

When the algorithm initiates its count at the
start position pointer, the algorithm will proceed to
count the remaining entries within the defined segment
of the registry. If the maximum count equation does
not equal the pre-calculated results, the defined
registry segment has been violated by a manual edit
from the user or by modification from an unauthorized

program.

The pre-calculated results guarantees 100%
accurate results from the query, because the algorithm
is designed to query the defined segment every about
five to eight seconds. The speed of the query makes it
impossible for a user to delete and add a new entry to
the defined segment, without being intercepted by the
algorithm. Furthermore, unauthorized programs perform a
calculation to add entries to a defined area of the
registry, which makes the algorithm designed by the
inventor 100% accurate against unauthorized program
activity.

Reference is now made to Figure 15 for purposes of
discussing additional functional mechanics of the
client application 110 in accordance with an embodiment
of the present invention. In particular, Figure 15 is

a flow diagram of a process for automatically detecting

62

WO 01/77833 PCT/US01/11180

any unauthorized modification of the
HKEY CLASSS ROOT:CLSID registry segment in a real time

environment.

After the collection of all internal registry data
is transmitted to the monitor station 115, the PC Probe
initiates an additional parallel threaded function
designed and developed by the inventor, which initiates
an additional independent 21 API DLL designed and
developed by the inventor, which performs an analysis
on the HKEY_ CLASSES_ROOT:CLSID segment of the internal
registry. This analysis includes a method opening the
physical registry key and opening and querying this
segment for any possible unauthorized changes within
this particular area of the registry. The method
includes establishing a “base count” of all authorized
entries within this particular segment of the registry.
After the “base count” is established, a numeric
integer of the “base count” is stored in RAM. The MFC
parallel thread then initiates a 32 BIT API designed
and developed by the inventor, which initiates an
algorithm that calculates if any change has occurred to
the “base count” of this partiéular defined segment of

the registry.

63

WO 01/77833 PCT/US01/11180

The MFC parallel thread (block 1515) then
initiates the 32 BIT API designed and developed by the
inventor, which initiates an algorithm that calculates
if any change has occurred to the “base count” of this
particular defined segment of the registry. The actual
function of the 32 bit API design is described further
below. A sub-thread (block 1540) initiates the 32 Bit
API DLL, which collects all registry data on the
HKEY CLASSES ROOT:CLSID registry segment. The other
functions in Figure 15 perform as similarly described
in the previous drawings for corresponding similar

functions.

The algorithm method designed by the inventor
queries the defined segment of the registry in such a
way, where virtually no resource utilization is
registered within the CPU. This is possible, because
within the defined segment of the registry, entries are

listed in no particular order and are random in nature.

While, the actual O/S has to query the each
registry segment within its entirety to establish and
maintain its program environment, the method designed
and developed by the inventor, is an algofithm which
calculates the maximum “base count” (integer) for all

entries within this defined registry segment, less the

64

WO 01/77833 PCT/US01/11180

“base count” minus 2. The “base count” minus 2,
equates to the start position pointer in which the
algorithm continues to count the remaining entries and
the last “date-time modification” within this

particular defined portion of the registry segment.

When the algorithm initiates its count at the
start position pointer, the algorithm will proceed to
count the remaining entries within the defined segment
of the registry. If the maximum count equation does
not equal the pre-calculated results, the defined
registry segment has been violated by a manual edit
from the user or by modification from an unauthorized

program.

The pre-calculated results guarantees 100%
accurate results from the query, because the algorithm
is designed to query the defined segment every about
five to eight seconds. The speed of the quefy makes it
impossible for a user to delete and add a new entry to
the defined segment, without being intercepted by the
algorithm. Furthermore, unauthorized programs perform
a calculation to add entries to a defined area of the
registry, which makes the algorithm designed by the
inventor 100% accurate against unauthorized program

activity.

65

WO 01/77833 PCT/US01/11180

Reference is now made to Figure 16 for purposes of
discussing additional functional mechanics of the
client application 110 in accordance with an embodiﬁent
of the present invention. In particular, Figure 16 is
a flow diagram of a process for automatically detecting
any unauthorized modification of the
HKEY CLASSES ROOT:CID registry segment (if present), in

a real time environment.

After the collection of all internal registry data
is transmitted to the monitor station 115, the PC Probe
initiates an additional parallel threaded function
designed and developed by the inventor, which initiates
an additional independent 21 API DLL designed and
developed by the inventor, which performs an analysis
on the HKEY CLASSES ROOT:CID segment of the internal
registry. This analysis includes a method opening the
physical registry key and opening and querying this
segment for any possible unauthorized changes within
this particular area of the registry. The method
includes establishing a “base count” of all authorized
entries within this particular segment of the regigtry.
After the “base count” is established, a numeric
integer of the “base count” is stored in RAM. The MFC

parallel thread then initiates a 32 BIT API designed

66

WO 01/77833 PCT/US01/11180

and developed by the inventor, which initiates an
algorithm that calculates if any change has occurred to
the “base count” of this particular defined segment of

the registry.

The MFC parallel thread (block 1615) then
initiates the 32 BIT API designed and developed by the
inventor, which initiates an algorithm that calculates
if any, “hange has occurred to the “base count” of this
particular defined segment of the registry. The actual
function of the 32 bit API design is described further
below. A sub-thread (block 1640) initiates the 32 Bit
API DLL, which collects all registry data on the
HKEY CLASSES ROOT:CID registry segment. The other
functions in Figure 16 perform as similarly described
in the previous drawings for corresponding similar

functions.

The algorithm method designed by the inventor
queries the defined segment of the registry in such a
way, where virtually no resource utilization is
registered within the CPU. This is possible, because
within the defined segment of the registry, entries are

listed in no particular order and are random in nature.

While, the actual 0/S has to query the each
registry segment within its entirety to establish and

67

WO 01/77833 PCT/US01/11180

maintain its program environment, the method designed
and developed by the inventor, is an algorithm which
calculates the maximum “base count” (integer) for all
entries within this defined registry segment, less the
“base count” minus 2. The “base count” minus 2,
equates to the start position pointer in which the
algorithm continues to count the remaining entries and
the last “date-time modification” within this

particular defined portion of the registry segment.

When the algorithm initiates it’s count at the
start position pointer, the algorithm will proceed to
count the remaining entries within the defined segment
of the registry. If the maximum count equation does
not equal the pre-calculated results, the defined
registry segment has been violated by a manual edit
from the user or by modification from an unauthorized

program.

The pre-calculated results guarantees 100%
accurate results from the query, because the algorithm
is designed to query the defined segment every about
five to eight seconds. The speed of the query makes it
impossible for a user to delete and add a new entry to
the defined segment, without being intercepted by the

algorithm. Furthermore, unauthorized programs perform a

68

WO 01/77833 PCT/US01/11180

calculation to add entries to a defined area of the
registry, which makes the algorithm designed by the
inventor 100% accurate against unauthorized program

activity.

Reference is now made to Figure 17 for purposes of
discussing additional functional mechanics of the
client application 115 in accordance with an embodiment
of the present invention. In particular, Figure 17 is
a flow diagram of a process for automatically detecting
any unauthorized modification of the
HKEY LOCAL MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\Shell Extensions\Approved registry segment in a

real time environment.

After the collection of all internal registry data
is transmitted to the monitor station 115, the PC Probe
initiates an additional parallel threaded function
designed and developed by the inventor, which initiates
an additional independent 21 API DLL designed and
developed by the inventor, which performs an analysis
on the
HKEY LOCAL MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\Shell Extensions\Approved segment of the internal
registry. This analysis includes a method opening the

physical registry key and opening and querying this

69

WO 01/77833 PCT/US01/11180

segment for any possible unauthorized changes within
this particular area of the registry. The method
includes establishing a “base count” of all authorized
entries within this particular segment of the registry.
After the “base count” is established, a numeric
integer of the “base count” is stored in RAM. The MFC
parallel thread then initiates a 32 BIT API designed
and developed by the inventor, which initiates an
algorithm that calculates if any change has occurred to
the “base count” of this particular defined segment of

the registry.

The MFC parallel thread (block 1715) then
initiates the 32 BIT API designed and developed by the
inventor, which initiates an algorithm that calculates
if any change has occurred to the “base count” of this
particular defined segment of the registry. The actual
function of the 32 bit API design is described further
below. A sub-thread (block 1740) initiates the 32 Bit
API DLL, which collects all registry data on the
HKEY LOCAL MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\Shell Extensions\Approved registry segment. The
other functions in Figure 17 perform as similarly
described in the previous drawings for corresponding

similar functions.

70

WO 01/77833 PCT/US01/11180

The algorithm method designed by the inventor
queries the defined segment of the registry in such a
way, where virtually no resource utilization is
registered within the CPU. This is possible, because
within the defined segment pf the registry, entries are

listed in no particular order and are random in nature.

While, the actual 0/S has to query the each
registry segment within its entirety to establish and
maintain its program environment, the method designed
and developed by the inventor, is an algorithm which
calculates the maximum “base count” (integer) for all
entries within this definea registry segment, less the
“base count” minus 2. The “base count” minus 2,
equates to the start position pointer in which the
algorithm continues to count the remaining entries and
the last “date-time modification” within this

particular defined portion of the registry segment.

When the algorithm initiates its count at the
start position pointer, the algorithm will proceed to
count the remaining entries within the defined segment
of the registry. If the maximum count equation does
not equal the pre-calculated results, the defined

registry segment has been violated by a manual edit

71

WO 01/77833 PCT/US01/11180

from the user or by modification from an unauthorized

program.

The pre-calculated results guarantees 100%
accurate results from the query, because the algorithm
is designed to query the defined segment every about
five to eight seconds. The speed of the query makes it
impossible for a user to delete and add a new entry to
the defined segment, without being intercepted by the
algorithm. Furthermore, unauthorized programs perform
a calculation to add entries to a defined area of the
registry, which makes the algorithm designed by the
inventor 100% accurate against unauthorized program
activity.

Reference is now made to figure 18 for purposes of
discussing additional functional mechanics of the
client application 110 in accordance with an embodiment
of the present invention. In particular, Figure 18 is
a flow diagram of a process for automatically detecting
any unauthorized modification of the
HKEY_ LOCAL MACHINE:Software\Microsoft\Windows\CurrentVe

rsion\Run registry segment in a real time environment.

After the collection of all internal registry data
is transmitted to the monitor station 115, the PC Probe

initiates an additional parallel threaded function

12

WO 01/77833 PCT/US01/11180

designed and developed by the inventor, which initiates
an additional independent 21 API DLL designed and
developed by the inventor, which performs an analysis
on the

HKEY_LOCAL MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\Run segment of the internal registry. This
analysis includes a method opening the physical
registry key and opening and querying this segment for
any possible unauthorized changes within this
particular area of the registry. The method includes
establishing a “base count” of all authorized entries
within this particular segment of the registry. After
the “base count” is established, a numeric integer of
the “base count” is stored in RAM. The MFC parallel
thread then initiates a 32 BIT API designed and
developed by the inventor, which initiates an algorithm
that calculates if any change has occurred to the “base
count” of this particular defined segment of the

registry.

The MFC parallel thread (block 1815) then
initiates the 32 BIT API designed and developed by the
inventor, which initiates an algorithm that calculates
if any chanée has occurred to the “base count” of this
particular defined segment of the registry. The actual

function of the 32 bit API design is described further

13

WO 01/77833 PCT/US01/11180

below. A sub-thread (block 1840) initiates the 32 Bit
APT DLL, which collects all registry data on the

HKEY LOCAL MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\Run registry segment. The other functions in
Figure 18 perform as similarly described in the

previous drawings for corresponding similar functions.

The algorithm method designed by the inventor
queries the defined segment of the registry in such a
way, where virtually no resource utilization is
registered within the CPU. This is possible, because
within the defined segment of the registry, entries are

listed in no particular order and are random in nature.

While, the actual 0/S has to query the each
registry segment within its entirety to establish and
maintain its program environment, the method designed
and developed by the inventor, is an algorithm which
calculates the maximum “base count” (integer) for all
entries within this defined registry segment, less the
“base count” minus 2. The “base count” minus 2,
equates to the start position pointer in which the
algorithm continues to count the remaining entries and
the last “date-time modification” within this

particular defined portion of the registry segment.

74

WO 01/77833 PCT/US01/11180

When the algorithm initiates its count at the
start position pointer, the algorithm will proceed to
count the remaining entries within the defined segment
of the registry. If the maximum count equation does
not equal the pre-calculated results, the defined
registry segment has been violated by a manual edit
from the user or by modification from an unauthorized

program.

The pre-calculated results guarantees 100%
accurate results from the query, because the algorithm
is designed to query the defined segment every about
five to eight seconds. The speed of the gquery makes it
impossible for a user to delete and add a new entry to
the defined segment, without being intercepted by the
algorithm. Furthermore, unauthorized programs perform a
calculation to add entries to a defined area of the
registry, which makes the algorithm designed by the
inventor 100% accurate against unauthorized program
activity.

Reference is now made to Figure 19 for purposes of
discussing the functional mechanics of the client
application in accordance with an embodiment of the
present invention. In particular, Figure 19 is a flow

diagram of a process for automatically detecting any

75

WO 01/77833 PCT/US01/11180

unauthorized modification of the
HKEY LOCAL MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\ RunOnce registry segment in a real time

environment.

After the collection of all internal registry data
is transmitted to the monitor station 115, the PC Probe
initiates an additional parallel threaded function
designed and developed by the inventor, which initiates
an additional independent 21 API DLL designed and
developed by the inventor, which performs an analysis
on the .

HKEY LOCAL MACHINE:Software\Microsoft\Windows\CurrentVe
réion\ RunOnce segment of the internal registry. This
analysis includes a method opening the physical
registry key and opening and querying this segment for
any possible unauthorized changes within this
particular area of the registry. The method includes
establishing a “base count” of all authorized entries
within this particular segment of the registry. After
the “base count” is established, a numeric integer of
the “base count” is stored in RAM. The MFC parallel
thread then initiates a 32 BIT API designed and
developed by the inventor, which initiates an algorithm

that calculates if any change has occurred to the “base

76

WO 01/77833 PCT/US01/11180

count” of this particular defined segment of the

registry.

The MFC parallel thread (block 1915) then
initiates the 32 BIT API designed and developed by the
inventor, which initiates an algorithm that calculates
if any change has occurred to the “base count” of this
particular defined segment of the registry. The actual
function of the 32 bit API design is described further
below. A sub-thread (block 1940) initiates the 32 Bit
API DLL, which collects all registry data on the
HKEY LOCAL MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\ RunOnce registry segment. The other functions
in Figure 19 perform as similarly described in the

previous drawings for corresponding similar functions.

The algorithm method designed by the inventor
queries the defined segment of the registry in such a
way, where virtually no resource utilization is
registered within the CPU. This is possible, because
within the defined segment of the registry, entries are

listed in no particular order and are random in nature.

While, the actual 0/S has to query the each
registry segment within its entirety to establish and
maintain its program environment, the method designed

and developed by the inventor, is an algorithm which

71

WO 01/77833 PCT/US01/11180

calculates the maximum “base count” (integer) for all
entries within this defined registry segment, less the
“base count” minus 2. The “base count” minus 2,
equates to the start position pointer in which the
algorithm continues to count the remaining entries and
the last “date-time modification” within this

particular defined portion of the registry segment.

When the algorithm initiates its count at the
start position pointer, the algorithm will proceed to
count the remaining entries within the defined segment
of the registry. If the maximum count equation does
not equal the pre-calculated results, the defined
registry segment has been violated by a manual edit
from the user or by modification from an unauthorized

program.

The pre-calculated results guarantees 100%
accurate results from the query, because the algorithm
is designed to query the defined segment every about
five to eight seconds. The speed of the query makes it
impossible for a user to delete and add a new entry to
the defined segment, without being intercepted by the
algorithm. Furthermore, unauthorized programs perform a
calculation to add entries to a defined area of the

registry, which makes the algorithm designed by the

78

WO 01/77833 PCT/US01/11180

inventor 100% accurate against unauthorized program
activity.

Reference is now made to Figure 20 for purposes of
discussing the functional mechanics of the client
application 110 in accordance with an embodiment of the
present in&ention. In particular, Figure 20 is a flow
diagram of a process for automatically detecting any
unauthorized modification of the
HKEY LOCAL_MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\RunOnceEx registry segment in a real time

environment.

After the collection of all internal registry data
is transmitted to the monitor station 115, the Probe
initiates an additional parallel threaded function
designed and developed by the inventor, which initiates
an additional independent 32 Bit API DLL designed and
developed by the inventor, which performs an analysis
on the
HKEY_LOCAL_MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\RunOnceEx segment of the internal registry. This
analysis includes a method opening the physical
registry key and opening and querying this segment for
any possible unauthorized changes within this

particular area of the registry. The method includes

79

WO 01/77833 PCT/US01/11180

establishing a “base count” of all authorized entries
within this particular segment of the registry. After
the “base count” is established, a numeric integer of
the “base count” is stored in RAM. The MFC parallel
thread then initiates a 32 BIT API designed and
developed by the inventor, which initiates an algorithm
that calculates if any change has occurred to the “base
count” of this particular defined segment of the

registry.

The MFC parallel thread (block 2015) then
initiates the 32 BIT API designed and developed by the
inventor, which initiates an algorithm that calculates
if any change has occurred to the “base count” of this
particular defined segment of the registry. The actual
function of the 32 bit API design is described further
below. A sub-thread (block 2040) initiates the 32 Bit
API DLL, which collects all registry data on the
HKEY LOCAL MACHINE:Software\Microsoft\Windows\CurrentVe
rsion\RunOnceEx registry segment. The other functions
in Figure 20 perform as similarly described in the

previous drawings for corresponding similar functions.

The algorithm method designed by the inventor
queries the defined segment of the registry in such a

way, where virtually no resource utilization is

80

WO 01/77833 PCT/US01/11180

registered within the CPU. This is possible, because
within the defined segment of the registry, entries are

listed in no particular order and are random in nature.

While, the actual 0/S has to query the each
registry segment within its entirety to establish and
maintain its program environment, the method designed
and developed by the inventor, is an algorithm which
calculates the maximum “base count” (integer) for all
entries within this defined registry segment, less the
“base count” minus 2. The “base count” minus 2,
equates to the start position pointer in which the
algorithm continues to count the remaining entries and
the last “date-time modification” within this

particular defined portion of the registry segment.

When the algorithm initiates its count at the
start position pointer, the algorithm will proceed to
count the remaining entries within the defined segment
of the registry. If the maximum count equation does
not equal the pre-calculated results, the defined
registry segment has been violated by a manual edit
from the user or by modification from an unauthorized

program.

The pre-calculated results guarantees 100%
accurate results from the query, because the algorithm

81

WO 01/77833 PCT/US01/11180

is designed to query the defined segment every about
five to eight seconds. The speed of the query makes it
impossible for a user to delete and add a new entry to
the defined segment, without being intercepted by the
algorithm. Furthermore, unauthorized programs perform a
calculation to add entries to a defined area of the
registry, which makes the algorithm designed by the
inventor 100% accurate against unauthorized program
activity.

Reference is now made to Figure 21 for purposes of
discussing additional functional mechanics of the
client application 110 in accordance with an embodiment
of the present invention. In particular, Figure 21 is
a flow diagram of a process for automatically detecting
any unauthorized modification of the
HKEY CURRENT USER:Software registry segment in a real

time environment.

After the collection of all internal registry data
is transmitted to the monitor station 115, the PC Probe
initiates an additional parallel threaded function
designed and developed by the inventor, which initiates
an additional independent 32 Bit API DLL designed and
developed by the inventor, which performs an analysis

on the HKEY CURRENT USER:Software segment of the

82

WO 01/77833 PCT/US01/11180

internal registry. This analysis includes a method
opening the physical registry key and opening and
querying this segment for any possible unauthorized
changes within this particular area of the registry.
The method includes establishing a “base count” of all
authorized entries within this particular segment of
the registry. After the “base count” is established, a
numeric integer of the “base count” is stored in RAM.
The MFC parallel thread then initiates a 32 BIT API
designed and developed by the inventor, which initiates
an algorithm that calculates if any change has occurred
to the “base count” of this particular defined segment

of the registry.

The MFC parallel thread (block 2115) then
initiates the 32 BIT API designed and developed by the
inventor, which initiates an algorithm that calculates
if any change has occurred to the “base count” of this
particular defined segment of the registry. The actual
function of the 32 bit API design is described further
below. A sub-thread (block 2140) initiates the 32 Bit
API DLL, which collects all registry data on the
HKEY CURRENT USER:Software registry segment. The other
functions in Figure 21 perform as similarly described
in the previous drawings for corresponding similar

functions.

83

WO 01/77833 PCT/US01/11180

The algorithm method designed by the inventor
queries the defined segment of the registry in such a
way, where virtually no resource utilization is
registered within the CPU. This is possible, because
within the defined segment of the registry, entries are

listed in no particular order and are random in nature.

While, the actual 0/S has to query the each
registry segment within its entirety to establish and
maintain its program environment, the method designed
and developed by the inventor, is an algorithm which
calculates the maximum “base count” (integer) for all
entries within this defined registry segment, less the
“base count” minus 2. The “base count” minus 2,
equates to the start position pointer in which the
algorithm continues to count the remaining entries and
the last “date-time modification” within this

particular defined portion of the registry segment.

When the algorithm initiates its count at the
start position pointer, the algorithm will proceed to
count the remaining entries within the defined segment
of the registry. If the maximum count equation does
not equal the pre-calculated results, the defined

registry segment has been violated by a manual edit

84

WO 01/77833 PCT/US01/11180

from the user or by modification from an unauthorized

program.

The pre-calculated results guarantees 100%
accurate results from the query, because the algorithm
is designed to query the defined segment every about
five to eight seconds. The speed of the query makes it
impossible for a user to delete and add a new entry to
the defined segment, without being intercepted by the
algorithm. Furthermore, unauthorized programs perform a
calculation to add entries to a defined area of the
registry, which makes the algorithm designed by the
inventor 100% accurate against unauthorized program
activity.

Reference is now made to figure 22 for purposes of
discussing addition functional mechanics of the client
application 110 in accordance with an embodiment of the
present invenfion. In particular, Figure 22 is a block
diagram illustrating various methods utilized to
initiate a “defense umbrella” of the entire PC desktop

environment.

The parallel threads and all 32 Bit API DLLs
designed and developed by the inventor, working

together within the client application 110, envelope a

85

WO 01/77833 PCT/US01/11180

“defense umbrella” or “immune system” over the entire

PC client computer environment.

The client application 110, constantly polls and
queries every major critical segment of the client
computer, from the configuration of the 0/S files
(2215), the third-party “start up” (2210), the creation
of new directories or folders (2220), the creation of
new programs and maintaining the configuration of the
computer registry (2205). The registry 2225 was also
discussed above in various sections.

Further, at least some of the components of this
invention may be implemented by using a programmed
general purpose digital computer, by using application
specific integrated circuits or field programmable gate
arrays, oOr byAusing a network of interconnected
components and circuits. Connections may be wired,
wireless, by modem, and the like.

It is also within the scope of the present
invention to implement a program or code that can be
stored in a machine-readable medium to permit a
computer to perform any of the methods described above.

The above description of illustrated embodiments
of the invention, including what is described in the

Abstract, is not intended to be exhaustive or to limit

86

WO 01/77833 PCT/US01/11180

the invention to the precise forms disclosed. While
specific embodiments of, and examples for, the
invention are described herein for illustrative
purposes, various eguivalent modifications are possible
within the scope of the invention, as those skilled in
the relevant art will recognize.

These modifications can be made to the invention
in light of the above detailed description. The terms
used in the following claims should not be construed to
limit the invention to the specific embodiments
disclosed in the specification and the claims. Rather,
the scope of the invention is to be determined entirely
by the following claims, which are to be construed in
accordance with established doctrines of claim

interpretation.

87

WO 01/77833 PCT/US01/11180

CLAIMS

WHAT IS CLAIMED IS:

1. A system of real time monitoring and control of

networked computers, comprising:

a monitoring computer unit capable of being

communicatively coupled to a network system; and

a client computer unit capable of being
communicatively coupled to the network system, the
client computer including a client application that can
detect states in the client computer and transmit the
detected states to the monitoring computer unit via the

network system.

2. The system of claim 1 wherein the monitoring
computer unit includes an administrator application

capable to analyze the transmitted detected states.

3. The system of claim 2 wherein the administrator
application is capable to issue command signal to
control the client computer unit in response to a

particular detected state in the client computer unit.

4. A method of real time monitoring and control of

networked computers, comprising:

88

WO 01/77833 PCT/US01/11180

providing a monitoring computer unit and client
‘computer unit both capable of being communicatively

coupled to a network system; and

detecting states in the client computer and
transmitting the detected states to the monitoring

computer unit via the network system.

89

PCT/US01/11180

WO 01/77833

1/24

uoneoyddy
Aimn eqoid
a POLL
(B -— PGOL
0c¢l
001 -
uonels
(uoneoyddy I0JUO}\
J0}RLSIuIPY) Y
JoJIuoly -
80!

E

uoneoyddy
AN 8qoid .
0L uoneoyjddy
o | 950} Aumn sqoud
- qoll
= 450}
uoneoyddy
SOMISN MmN egoid
6¢l
0€by " —E0l
| DG I I A |
N
eg0l
Janeg
ylomjeN
— GCl

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

2/24

¢ Ol

Gle
%00]g OL
81T ne A
ualy 9qo.d |eubis fienp Buiddeyy enunuon
107 —~| pealyL Buijjod eoueusiule}y sjemu| wHﬂ uoljeouipol juudiood Ausibey Mz
H 91¢ J +
abelo}g [edishud 10} 8] [[QSY (8207 a ‘o ‘g ‘v suopoun4
90¢ ~— o) suonoun4 Buiddey jo synsey eicig SLC 1 fuenp Buiddeyy a4 sziienu)
G0T ~ A
_ uonoun Buiddeyy] Aowsapy o siesn
Syasn ADHezenu [rie 0 814 1198V Peo (a [
uonoun Buiddepy Alowspy ojul sulyoel (8207
50z —| INIHOVIN T¥O0 T AI¥H sziiemu; [~ | the 1048114 [[0SY Peo (0 ||
_ uonoun4 Buiddeyy < 717 Alowap ojul JusLng
0 H3SN INTHEND AIMH oZieniy| 10} 914 110SY peot (9]
uonound buiddepy Alowspy oul S8sse)
A - ' _" — —
ez 100Yd S3SSVYTO AIMH 8zijeni| ~ he 10} 814 [[OSY peoq (v
; 0¢e N
pesaiy] Juswideg , Y pojenu|
Ansibay |o|lesed sreniy| Amm A oco_E__mﬂc_ el ON > pealy] buijjod soueusiuiep
J C
oc uoneoyddy 0l¢
002 1 fyumn aqo.d ereniuy

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

3/ 24

€ Ol

GLE

uonoun4

yely aqoid |eubis

cle
X90|g 0L
piey A
fienp) Buiddeyy enunuon

pye —] PESIUL Buljod soueusjule}y sjemiu]

+

—>

obelog edishud 1o} 8lld [|DSY [8207]
0] suonoun4 Buiddepy Jo sinsay 810}

eve
o

A

uopoun4 buiddejy
<] 15As'Blyu0 Jegroaxeoiny
SMOPUIAA SZljeliu|

<

uonoun4 Buiddeyy oji4
T s/ smopuim ezienu

1pe —

pealy] uswbag S/0

wajsAg bunessdQ jo)jeied sieniy]

022 ~

-«

Luole|[ejsul [eniu|

SOA

ﬂ uopeolyIpoj julidjoo4 a

olg -

N

cle |

juudiood 8ji4 yoe3
ajepljep 0} uonoun4 Asenp
Buiddeyy i &zieny]

H

LE

xuyepy Aelly Alowepy ojul
oll4 obeliolS |[OSY PeoT

SOA

ove -

00¢

A

ON

uoneoyjddy
RN 8qoid sjeniul

pajeniu
peaiy] Buljjod edueusjulepy

Colg

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

4,24

¥ Ol

vy — peslyL mc___on_ aoueusjulely sleliu|

A

0¢c N

piy
9l 100jg oL
N
uonoun4 Gy +
Ua)y 8qoid [eubis Asenp Buiddepy anunuon
UOEOPOI
SOA Juudioo dn-peis ON
ny- A
g ‘y suonoun4 Aiend
ely—1 Budden |4 azijeniu]
A
S|l Jur', I Joj Alowepy | |
A4 oI 9|l ||DSY peoT (g
B soll{ ,dn-pels, Iy <
Wy 10y 8114 [0SV peoT (v

Luonelelsul fenu|

A

ON

abei0)g [eaisAud Joj ajl4 ||OSY 18207
| 0] suonoun4 Buiddeyy Jo s)nsay 810l

N A

ey D
uonoun4 Buiddeyy aji4
Rl Ryied payL Jur, (I ozieniu| <
uojound buiddeyy aji4 ,dn-peis,
7| WAued payL, smopui ezienu; [
Ly —
pealy] uswbag |
fued payL [slfesed sieniui SOA
Ovy -
002

uoneoyddy
Ann eqoid ejeny|

pajeniu]

peaJy | Buljjod soueusuB)

Coup

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833
5/24
Initiate Probe Utility Application |—" 200
i—\ 500
Initialize Message Signaling | 505
Independent 32 AP! DLL "Hook"
Set System Message Filter |
>\ \ith WH_SYSMSGFILTER | >0
—>» Mouse Movement }—- 515
—| Dialog, Menu, List Box [— 520
—>» Feedback Message |}— 525
(530
——>» Over 150 Possible Messages |—>
——>» Set System Message Filter with WH_CBT | 935
-~ 540
—» 10 Possible System Messages |—>
Y
945

Initialize Filter Function
to Analyze Received Messages

SUBSTITUTE SHEET (RULE 26)

WO 01/77833 PCT/US01/11180

6,24

Initiate Probe Utility Application ~ f~— 200

!

Initiate Parallel Polling Thread |~ g5
for Window Handle Listing

s 610

Initiate Function to Load Each
Active Handle into a Memory Array

615
Y [

No Send a WM_QUIT Yes
Communications Signal
to a Window Handle

620
(

Initialize 32 Bit API DLL "KILL APP" Function

l - 625

Send WM_QUIT Message to the Active Window Handle

l o 630

Active Window Handle (Program) Terminated

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 01/77833 PCT/US01/11180

7/24

Main Probe Thread Initialized |~ 700

—»| Registry Thread - Figure 2 | 705

—>» Classes_Root ASC File |~ 710a

» Current_User ASC File }—~710b

—>» Local_Machine ASC File ‘}— 710c

—> Users ASC File — 710d

> 0/S"Start-up" - Figure 3 |— 715

—>| 0O/S Window Directory [720a

> Autoexec.Bat, Config.sys 720b

—>» Third Party Applications - Figure 4 }—795

—>»| Map Start-up Directory to ASC File | 730a

—> All ".ini" Files into ASC File — 730b

Y

Files are Stored into Next Sub-Directory for | _ 740
Probe Retrieval and Update

Has a Signal Been Received to Transfer Data

f to Monitor Station? 745

Transfer Data — 750

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 01/77833

Administrative Application

is fnitialized
115

Y

C 802

Main Application Thread
is Initialized

l - 805

Polling Threads are
Initialized to Receive
Data from Probe
Workstations

v 810

No

User Requests Update
from Probe

Yes

* 815

Signal File is
Transferred to

8/24

Network

825

—>>

Network
Production
Directory

o

Production Network
Directory

l C 820

Data is Received and
Populated into
Monitor Station

-«

«#"T;O%/v

PCT/US01/11180

Utility Application
(Probe)
110

Y

C 830

Parallel Threads are
Initialized and Data is
Stored - See Figure 7

v /835

Thread is Initialized

to Query Production

Network Directory for
Possible Signal

¢ 840

No

Signal File from
Monitor Exists in
Network Directory

Yes

845
vy (

FIG. 8

SUBSTITUTE SHEET (RULE 26)

All Stored Data is
Transferred to
Network Production
Directory

WO 01/77833

PCT/US01/11180
9/24
Probe is Initialized ~ }— 200
All Data is Recorded | 905
and Stored - See Figure 7
910 ¢ | i 925 i
) C %0
Registry Queue Third Party Applications
Thread OfS Thread Thread
- 915 s 930 C 945
Check Each Check Each Check Each
Entry for Entry for || Enfry for
_ﬂ any Possible g any Possible any Possible
Change Change Change
Y 9 | \J [~ 95 ’ Y %
Is There a Change? Is There a Change? Is There a Change?
No No No
Yes Yes Yes
Y
Y
Signal Probe Alert Function and Transmit | 955
Penetration to Monitor Station

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 01/77833 PCT/US01/11180

10724

Probe is Initiated — 200
All Data is Recorded
1005
and Stored - See Figure 7 —

00y | | |
\ - - 1040
Registry Queue Third Party Applications
Thread OfS Thread Thread
F1015 F1030 (1045
Check Each Check Each Check Each
Entry for Entry for .| Entryfor
g any Possible g any Possible any Possible
Change Change Change
—> —>
| Vo L I L v - 1050
[s There a Change? Is There a Change? Is There a Change?
No : No No
Yes Yes Yes

!

Reversal Function is Initiated and Receives
"Parameters” of the Type of Change and | 1055
Reverses the Registry, O/S File or Start-up
File Back to its Original State and Kills
Window Handle in Memory

(See Figure 6)

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 01/77833 PCT/US01/11180

11,/24

1100
C

SOT [CR] [LF]

Date=CCYY\MM\DD [cr] [If]

Time=HH : MM : SS [cr] [If]

3Wind=Variable Up To 500 Characters [cr] [If]
2Wind=Variable Up To 500 Characters [cr] [If]
1Wind=Variable Up To 500 Characters [cr] [If]
Mssg=Variable Up To 500 Characters [cr] [If]
EOT [cr] [H]

Structured Signal File Block Diagram

FIG. 11

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

12/24

¢l Ol

Iojuol [eubis Ausibey flod
8521 ~ 0gz) e
peaiy | Buijjod soueusjulely ajenuj S UONEOUIPOYy AsIBoY
% SOA : L. : ; ON
0zz) A.
0ge) | TONION 3 mﬂo HHSTELL JusWIUOJIAUT BWI| [eday e ul
_ JUYMLL0S
obeIo)g | 3ANIHOYW TWOOT AZMH
g Lzl

Svzl ledisAud 1o} 8jid [IOSY f1anp 0)
[2007 0} S}insay 810}S 110 (dV 4 Z€ reniy|
» A

uonoun4 Buiddepy Aowsy oyl

IHYMLA0S JHYML40S
| aNHOYW Vo0 T ADIH [| INHOVW VOO T ADIH [

0¥eh azi[enu| Olch uo 8fi4 [[OSY PeoT

022~
K ot o <« suoneersur jemuy |-X——»{ peeuy Buyjod eouusiuiely
Js1bey ejemu| SoA ON

szl » Caoz)

002

uoneoljddy
AN 8qo.d Seny|

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

13/24

€1 9l4

Jojuop\ [eubig fnsifiay |iod
N ogel czeL—
peaJy] Buijjod soueusjule)y ajemu | OREONPON Aoy
SOA i p. i i ON
» 0Z8} »
ogey | NS mﬂm_ L JUBLIUOIIAUT BWI | |eay e ul
JOSOIIN\THYMLAOS :
ofei0)g grep—| INIHOVA T¥OOT ADH
mqm\v [eaisAud 1o} sjid [10SY Aienp 0}
[e007 0} S}NsaY 8109 110 IdY g Z€ erenu)
A
uonoun4 Buiddeyy Aiowspy oju
HOSOLIN\FHYMLAOS - HOSCLINFHVMLAOS :
INIHOYIW VIO T AIMH < 4 INIHOVIN TVOOT AINH <
ovel] azijeny| 0Lel uo aji4 [IQSY Peo’]
g I | zuoneqersu) fenu) |-Y——» peauyy Bugjod soueusiutel
1s1Bey Sjeny] soA ON
gegl - » Cgoel

002

uoneoyddy
Ay qoid sjeniul

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

vl Ol

Jojiuo} [eubig Ausibey fjod
TN , ocyl e
pealy | bulljod soueusiuie|y aleniuj S UONEoNpOjy ASiboy ‘
SOA D —1 ON
» 0zyl a
o5y} | ONT mﬂ.n_ s JUSWIUOJIAUT sWl| |eay e ul
UNY\OSOIN\THYMLAOS
- sbelos INIHOVIN TWO0T AIYH
& g | reosfudloyed f1oSy Gyl —" Aienp o}
S |e207 0} S)Nsay 8103 710 1dv g Z¢ seny|
A A
uonoun4 Buiddepy Alowsy o
UNY\IOSCOINNTHYMLAOS : UNYOSOOIANTHVYMLIOS -
INIHOVIN VOO T AIYH [| INIHOYW T¥OOT ADIH (<
oyl 1 azjlenu| 0Lyl uo oji4 []OSY peo]
02Z ~ «
am_mwmm_m_mmﬁ_:_ «—— ¢uonejeisul fepu] ————{ peaiy] Buijjod soueusjule|y
. o SOA ON
gepl - » Cgopy

00¢

uoneolddy
AjBn 8qoid ejen|

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

gl "ol

104Ul [eubls Ansifay fiod
5551 ~ 0gs1 - 6z61—
peaiy . Buijjod soueusjule) S1eRIU| | ZUONEoUIPO}y AnSIBoY
ﬁ SOA — i ON
025} H
06} —{ HONO mﬂo WL JUswiuoJIAUg uE_ | [eay e Ul
~ ais1o:
ebelols 100Y S3SSY10 ATMH
S o | reosfudioraid liosy G161 -1 Ksenp o)
A [e007 0} S}nseYy 810}S 110 1Y ¥4 ¢ eeny|
A A
uonoun4 Buiddepy Aiowspy oul
~ ais1o: ~ aisTo:
100Y S3SSY10 AIIH [] 1OOY SISSYI0 AIDIH <
ovs) oz|leny| 015} U0 8ji4 [IOSY PeoT
022 ~
109300 <« zuonenersuy ey |-X——— peaiy) Bujog soueusyupepy
Ansibay ajen| SOA ON

gegL

1

00¢

uoneoyddy
AN aqoid syenu|

Cgopl

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

16,24

9l Ol

Jouopy [eubis Ausibey jjod
599}~ 089} 7 629 ~
peaiy | Buljjod eoueusjuiey sjenuj JUOnEoNpoN Ansiboy
» SoA - ON
029} a
0gg) —|_“OHHON 9} BI5q el JUSLUUOIIAUT BWI| [BSY B Ul
A _an:
obeio)g “S3SSYTO AIMH
cpop | 1B0ISAud 104 31 110SY 51911 fuenp 0}
[E007] O} SYNS9Y 910)S T11d idVY 39 ¢€ el
A A
uonoun4 Buiddeyy Kiowspy o
dlio- aio-
1004 S3SSYT10 AIMH <& | 100Y S3SSY10 AIMH <
0v9) 1 azieniu| 019} uo sji [I0SY Peoi
02C ~
0 uo9)j0d <«—— juonejeisuj enuj | Y 5| peaiy Bugjod soueusiutepy
1s16ay ajeniu] saA ON
Ge9L - » C 001

00¢

uoneolddy
Ayinn 9qoid sreny|

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

17/24

ovL) J

mmtJ

pealy| Buijjod eoueusiulep syenuj

Ll Ol

A

05/ —] 4OHUOI O} Eleq Jwsuel]

A

abelo)s
Gyl

7| [eashyd o aliq 1OSY
[e007 O] S)NS8Y 8.0}S

uonoun4 Buiddeyy paroiddy
\suoisusixdy ||sys

\UOISIBA JUs.LINg
\SMOPUIA\LOSOIDIN\BIEMLOS :
ANIHOVIN TVO0T AIMH
9zZl[eniul

A

uoo9||09
Riysibey syeniu

Joyuoly [eubis Ansibey lod
0cLl” sziL—
‘ s UoneslIpo Ansibe
LS neauipoly Ansifey o
0zL) - A

022 ~

JUSWIUOJIAUT 3w} |eay ul paAciddy
\SUOISUSIXT ||oYS\UOISISA Judling
\SMOPUIANHOSOIOI\\SIEMYOS -

/] ANIHOVIN Tv20T A3MH
GL/L A1enp 0} 110 IdY 14 Z€ Senul

A

Aiowapy ol panoiddy
\SuoIsusIx3 ||vys

\UOISIBA JUBLINY
\SMOPUIM\HOSOIOIN\SIEMYOS : |
ANIHOVIN V00T AIMH

Uo 9Ji4 |]OSY PeoT

L1~

(UONEEISUL [ERIU]

|<|..V peaiy] Buijod soueusiuep

SOA

ce/L -

1

ON

Cgos1

00¢

uoneoyddy
AInn 8qoud sjeniul

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

18724

8l Ol

078} L

Jojluoly [eubis Ausibey fiod
5981~ 0ggl 7 5781~
peaiy, bulod QM:S@E_@_\,_ b o s uoneouipoly Ansibay o
D,
0cgy —| JONUOH O) BleQ Nwsuel] 0c8l %

+ JUSWUOIIAUT B [eay Ui uny
\UOISIBA Juslingd
pu abelois \SMOPUIAA\LOSOUOIA\BIeMUOS
ooy | 1EO1SAUd 10} Il 11OSY Vs ANIHOYIN 1¥D0T AZNH
83077 0} S}iNSey 1015 G181 A1enp 0} 710 IdY 4 Z¢ syeny]
A A

uonoun4 Buiddepy uny Asowapy ojul uny

\UOISIBA Jusing ~\UoISIsA Jualng

\SMOPUIAN\LOSOIOI|N\D1eMYOS \SMOPUIA\LOSOIOIN\BIBMYOS
ANIHOVW VD0 T AIYH [ANIHOYW V00T AIMH [

ez|leniu| Uo 8jid ||DSY PeoT

uonos|j0) ¢ oi8l /
. <« zuoneeisu) epu |-X——» peauy] Bugjod soueusiuepy
KuysiBey syeniul SoA ON
gegl - » Cgogl
uoneoljddy
00¢ 71 funn eqoid eyemyl

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

19,24

6l Ol

Jojuop [eubis Kusibey |1od
G961~ 0c6l 7 6261~
peasy L Buijjod eoueusiuiel ajeniuf T oNEoupoN Ansiboy ‘
+ SOA -+ ON
0261 A
0s6lL —| 4ONUO O} Bleq Jwisuel]
+ JUSLWUUOIIAUT BWi] |esy e ul
: 92UQ UNY\UOISIBA Jualing
] obelo)s \SMOPUIAA\LOSOOIA\SJeMYOS :
CHB1 [asAUg 10} 8]l 110SY Vs ANIHOVIN TVOOT A3MH
[8307 O} SISy 81018 crgll Aend 01 1710 IdY g Z¢ srenu|
A A
uonoun4 Buiddepy souQuny Aowsy ojul 80UQ uny
\UOISIBA JUBLIND \UOISIBA JulINg
\SMOPUIA\LOSOIOIN\S1eMI0S \SMOPUIAALOSOIOIN\BJEeMYOS
ANIHOVIN VOO T ADMH [ANIHOVIN ™ T¥O0T ATMH [
azj[enu| uo 8ji4 [[OSY PeoT
076l TS Oce I 0161~
. <« ¢uonejeisu [enu] ————1 peasy] Buijjod soueusjulely
Ansifay ajen| SOA ON
ge6l - » Coosl
uoneojddy
00 71 Ay eqoid oreny

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

0¢ 9l4

Iojuoly feudis Aasibey Jjod
907 0807 7 6207
peailL bujjod mw,m%z_% i e Ansiboy ~
0202 - A
050z — JOHUO O} Ejeq Jwisuel|
'y JUSWIUONAUT SWi] [88y Ul
X3 89UQ UNY\UOISISA JusLInNg
obeiols \SMOPUIAA\HOSOIDIN\SIBMYOS
< gyoz | 1EoSAud 0l BII 11OSY INIHOYW YO0 AIMH
5 [B007] 0} S}INS9Y 210}S croz]l Mend oy 11a 1dv 1g zg ereniyy
” A
uonound Buiddepy xgeouQuny boEmE OJUl X3 89UQ Uny
\UOISJaA JUBLIND \UOISISA JusLINg
\SMOPUIM\LOSOIOIN\BIBMLOS : \SMOPUIAMLOSOIOIN\8IBMYOS
ANIHOYW Y00 T AIMH [ANIHOVW YOO T ATNH [
ozllenu] Uo 84 IOSY PeoT
0v07 RS 0cz~ | ovee J
. «—— ¢uonejelsu) ey FY——— peauy Buijod soueusjurey
Ansibay sren| ™ ON
5e0z - » Cso0z
uonesl|ddy
002 1 Auwn sqoiq erenul

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

21724

¢ Ol

Iojuol [eubig fasibey jlod
5812~ oclz” sz1z —
pealy) Buljjod eouBUS IR S1EnU| | T
+ SOA i p. : . ON
0212 A
051z — JCHUO O} Bl Nwisuel|
A JUSLULIOJIAUZ BLU}| [B8Y B Ul
abeiolg - o%stow _._
— ¥ASN™LNFHUND AN
[eaisAud 1o} ajid 10SY
S oo o synsey el0g m:\N Aisnp 0} 710 IdY 1g Z€ renu)
A A
uonoun4 Buiddepy Kiowsy oyl
BIEMHOS - QIBM}JOS :
HIASNINTHEND ADIH [¥ISNTINTHND ADH [
ozenu uo 814 JIDSY Peo’
onz— 022 ~ oz~
A B <« cuonepesur jenu) Y———»| peayy Bugjod soueusiuiey
js1Bay aeni| SaA ON
geLz- ﬁ Coorz
uoneoyddy
002 1 Aumn eqoid sreny

SUBSTITUTE SHEET (RULE 26)

PCT/US01/11180

WO 01/77833

22,24

¢¢ Old

0d 8ejdwo) 8y} jo ,81el1S papiens,

sall SjoneT
hd oM]]S}
mw_\w ‘Sl pajealn) AimeN
glee PO 104 IOJUOYY 0222
_an‘asm
100Y S3SSY10 AIMH
uny -
1JOSOJOI\ -
8Jemuos -
HOVIN ™ T¥00T AYH
Geée
dn vers, ém‘?(sa110}0811(
Ryed >mc=m_xm_
SNOIAS!
0122 piyl [Snoirsld

1ebie|

G0ce

JEj2IquIn 8susyeq, (19

SUBSTITUTE SHEET (RULE 26)

WO 01/77833

23424

PCT/US01/11180

Initiate Monito
Statiqn 115

r} 2300

'

Initiate a Series of |~ 2305
Threads
First Second Third Fourth,
Parallel Parallel Parallel Fifth, and
Thread Thread Thread Sixth
Parallel
Thread
2310 ~ Y 2325 ~N Y Y /2340 2345\ V
Query and Gather | | Query and Gather ¢ ?end . Control Signals
Configuration Data Forensic or ontigur at_lon , to Terminate
"Penetration g“l‘_j Ogctaratltonaé Client
Pattern” Data Olicy Siructure Application 110
2315~ J Signal Files ppication
Analyze the | 2330 i to Client
Configuration Data - _ Application 110
, Store Forensic End
or Penetration
2320 l Patten Data End
Store the ¢
Configuration Data 2335 N
' Display Forensic
or Penetration
End Pattem Data
End

FIG.

23

SUBSTITUTE SHEET (RULE 26)

WO 01/77833

24,24

PCT/US01/11180

Compare Each Unauthorized Modification with
Forensic Data

2400

!

Analyze Window Handle State of Each
Computer Unit when the Unauthorized
Modification Occurred

— 2405

i

Develop and Deploy a Policy Throughout
the Network System to Stop Unauthorized
Modification in Each Computer Unit

- 2410

End

FIG. 24

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

