wo 2012/162128 A1 [N I 000 0O 0 0 A0 O

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2012/162128 Al

29 November 2012 (29.11.2012) WIPO | PCT
(51) International Patent Classification: (74) Agent: DANNENBERG, Ross A.; Banner & Witcoff,
HO04K 1/04 (2006.01) Ltd., 1100 13th Street, Suite 1200, Washington, District of
(21) International Application Number: Columbia 20005-4051 (US).
PCT/US2012/038521 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Aéj, BA, BB, BG, B}{, BR, BW, BY, BZ,
18 May 2012 (18.05.2012) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
61/488,615 20 May 2011 (20.05.2011) Us OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, 8D,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(71) Applicant (for all designated States except US): CITRIX TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
SYSTEMS, INC. [US/US]; 851 West Cypress Creek . o
Road, Fort Lauderdale, Florida 33309 (US). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors; and GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(75) Inventors/Applicants (for US only): NORD, Joseph UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Harry [US/US]; c¢/o Citrix Systems, Inc., 851 West TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Cypress Creek Road, Fort Lauderdale, Florida 33309 (US). EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
GAYLOR, Timothy [US/US]; c¢/o Citrix Systems, Inc., MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
851 West Cypress Creek Road, Fort Lauderdale, Florida TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
33309 (US). TUCKER, Benjamin Elliot [US/US]; c/o ML, MR, NE, SN, TD, TG).
Citrix Systems, Inc., 851 West Cypress Creek Road, Fort Published:

Lauderdale, Florida 33309 (US).

with international search report (Art. 21(3))

(54) Title: SECURING ENCRYPTED VIRTUAL HARD DISKS

Server 106
Tokan
410
Secure Network Storage Anlieat
Py Application delivery
S Server 280
430 hd
Validation
412
Validation /\
2 Token
Token User 1D, 404
AQS password
\/ 402
Authentication plug-in Application
420 delivery client 270
Token
406
Cliert Compuier 102
Figure 4

(57) Abstract: Securing encrypted virtual hard disks may include a variety of processes. In one example, a virtual hard disk is cre-
ated for a user and encrypted with a volume key, and the volume key placed in an administrator header. The administrator header
may be encrypted with a protection key, the protection key created from a user identifier corresponding to the user, a volume identi -
fier corresponding to the virtual hard disk, and two cryptographic secrets. The protection key may then destroyed after encrypting the
administrator header and therefore, might never leave the encryption engine. The two cryptographic secrets may be stored in separate
storage locations, one accessible to the user and the other accessible to administrators. Accordingly, the protection key might never
transmitted or can be intercepted, and no single entity may be compromised to gain access to all of the information needed to recre -
ate the protection key.

WO 2012/162128 PCT/US2012/038521

SECURING ENCRYPTED VIRTUAL HARD DISKS

CROSS-REFERENCE TO RELATED APPLICATION

(1] This application claims the benefit of priority from U.S. provisional application ser.
No. 61/488,615, entitled “Systems and Methods for Securing Encrypted Virtual Hard
Disks,” and filed May 20, 2011. The contents of the above noted application is

incorporated herein by reference in its entirety.

TECHNICAL FIELD

[2] Aspects of the disclosure relate generally to virtual disks and cryptographic key

management. For example, some aspects relate to securing encrypted virtual disks.

BACKGROUND

[3] Many enterprises permit associates to bring their personal laptop or computer to
work and use that laptop as their company computer, use personal computers at home
while working on corporate information, or allow contractors to use personal computers
in their work in lieu of a company machine. In some cases, having an employee or
contractor use their personal computer for work-related computing may result in
employees and contractors storing sensitive company documents and application
information to their generally unsecure personal computers. Memory on a personal
laptop is typically unmanaged and it may be difficult to enforce security policies when a
user is not logged into a company network. Furthermore, in some examples, laptop
computers may be more easily stolen or hacked than corporate computers protected by

security policies and firewalls.

(4] One solution to this problem includes providing users with encrypted virtual hard
disks that may be mounted as if they were physical disks. The user may use a password,
known only to them, that allows them to decrypt the disk and mount it for use. Corporate

data may be stored to the encrypted volume, preventing access by malicious third parties.

WO 2012/162128 PCT/US2012/038521

While this adds security, there may still exist some risks. For example, the corporate
enterprise, who may actually own the data, may be unable to access the encrypted disk
without the user’s password. This may be particularly relevant where the encrypted
virtual hard disk is stored on a cloud service, such as the DROPBOX web-based file
hosting service operated by DROPBOX, INC. of San Francisco, California, or in other
instances where the enterprise may want to recover data without requiring the user or
contractor’s cooperation. Second, if the user forgets their password, an administrator
may not be able to recover the encrypted data. While the enterprise may store user
passwords in a central database, allowing them to decrypt the image in case the user
forgets their password, this requires transmission of passwords over a network where

they may be intercepted, thereby significantly compromising security.

[5] Thus, systems and methods are needed to secure encrypted virtual hard disks and

centrally manage encryption keys.

BRIEF SUMMARY

[6] Described are example embodiments, features and other aspects of methods and
systems for securing encrypted virtual hard disks. In one embodiment, a virtual hard disk
is created for a user and encrypted with a volume key, and the volume key placed in an
administrator header. The administrator header is encrypted with a protection key, the
protection key created from a user identifier corresponding to the user, a volume
identifier corresponding to the virtual hard disk, and two cryptographic secrets. The
protection key is destroyed after encrypting the administrator header and never leaves the
encryption engine. The two cryptographic secrets are stored in separate storage locations,
one accessible to the user and the other accessible to administrators. To unlock the
virtual hard disk, in these example embodiments, the cryptographic secrets are retrieved,
and, using the volume identifier stored in a cleartext header of the virtual hard disk and
the user identifier, the protection key is recreated. The administrator header can then be
decrypted and the volume key retrieved, allowing decryption of the virtual hard disk.

Accordingly, the protection key is never transmitted and therefore cannot be intercepted.

WO 2012/162128 PCT/US2012/038521

Moreover, no single entity can be compromised to gain access to all of the information

needed to recreate the protection key.

[7] Details of various example embodiments, aspects and features of the disclosure are

set forth in the accompanying drawings and the description below.

BRIEF DESCRIPTION OF THE FIGURES

[8] The foregoing and other objects, aspects, features, and advantages will become more
apparent and better understood by referring to the following description taken in

conjunction with the accompanying drawings, in which:

[9] FIG. 1A is a block diagram illustrative of an embodiment of a remote-access,

networked environment with a client machine that communicates with a server;

[10] FIG. 1B and 1C are block diagrams illustrative of an embodiment of computing

machines for practicing the methods and systems described herein;

[11] FIG. 2A is a block diagram illustrative of an embodiment of decrypting and

mounting an encrypted virtual hard disk;

[12] FIG. 2B is a block diagram illustrative of an embodiment of decrypting and
mounting an encrypted virtual hard disk with a centrally managed cryptographic key;

[13] FIG. 2C is a block diagram of a centrally managed cryptographic key;

[14] FIG. 2D is a block diagram illustrative of an embodiment of a system for creating

and managing encrypted virtual disks;

[15] FIG. 3A is a flow diagram illustrative of an embodiment of a method for creating a

secure encrypted virtual hard disk;

WO 2012/162128 PCT/US2012/038521

[16] FIG. 3B is a flow diagram illustrative of an embodiment of a method for providing

secure access to an encrypted virtual hard disk; and

[17] FIG. 4 is a block diagram illustrative of a method of centralized authentication and

access to encrypted virtual hard disks.

[18] The features and advantages of aspects of the present disclosure will become more
apparent from the detailed description set forth below when taken in conjunction with the
drawings, in which like reference characters identify corresponding elements throughout.
In the drawings, like reference numbers generally indicate identical, functionally similar,

and/or structurally similar elements.

DETAILED DESCRIPTION

[19] In enterprises or companies with remote or traveling users with mobile or personal
computing devices, it may be desirable to segregate or partition corporate data from
personal data of the users on said computing devices for security purposes. Users may
create local volumes, folders, or virtual hard disks for the corporate data and encrypt
these volumes, folders or virtual hard disks using software on the user’s computing
device. This allows every user to have independent encryption keys. Such an encryption
method and system may be useful, for example, if a first user’s computing device is
compromised. In such an instance, the encryption key cannot be used for accessing a
second user’s encrypted information on the second user’s computing device. However,
local creation requires the user to have encryption software installed and licensed, which
may not be available, particularly on smart phones or other mobile devices. Similarly,
local creation may be processor intensive, taxing the resources of these devices.
Additionally, local creation results in encrypted volumes that are inaccessible to
administrators, if the user forgets the password or loses the key. Administrators can
avoid these issues by creating and encrypting a virtual hard disk on a central server,
providing it to each user that requests the disk. However, this results in every user having
a disk encrypted with the same key, increasing the possibility of multiple users being

compromised in the same attack.

WO 2012/162128 PCT/US2012/038521

[20] Accordingly, in some embodiments of the methods and systems described herein, a
centralized service may create and encrypt virtual disks, sometimes referred to as virtual
hard disks or disk images, for use by client computers, with individualized encryption
keys for each user. The client computers can mount these encrypted virtual disks as if
they were physical hard disks for isolated and encrypted local storage. The virtual disks
may be customized during creation by default size, encryption passwords, encryption
keys, and storage types. In some embodiments, the encrypted virtual disk may be
delivered to the client via an encrypted network protocol, such as SSL, preventing

interception or man-in-the-middle attacks.

[21] Because each virtual disk has its own encryption key, it may be desirable to centrally
manage these keys to allow administrator access and control, as well as providing a
mechanism for a user to unlock the volume in case of a forgotten password. However,
many existing solutions require the administrator and user to have shared knowledge of
the same key. This reduces security, as well as requiring administrator maintenance of a

user-specific key database.

[22] Some existing solutions assume that the user’s machine is a corporate asset and is a
member of a corporate domain, and utilize domain management properties and policies.
These solutions thus require the user’s machine to be a member in the domain. For
example, BITLOCKER by MICROSOFT CORP. of Redmond, Washington stores
volume key information for encrypted disk volumes in an Active Directory space
associated with the user. Since Domain Administrators are “trusted,” any domain
administrator can access the volume key for any encrypted volume to which the
administrator wants access. However, many enterprises do not want the domain

administrator to have access to all encrypted disk volumes in the system.

[23] Another solution is PGPDISK, manufactured by SYMANTEC CORPORATION of
Mountain View, California. PGPDISK allows the inclusion of multiple headers in an
encrypted virtual disk, each header storing the encryption key or volume key for the disk.
One header may be unlocked by a user passphrase, and another header may be unlocked

by an administrator passphrase. Either users or administrators may unlock the protected

WO 2012/162128 PCT/US2012/038521

volume by entering a string when prompted for an unlock password. The encryption
system loops through each header, trying the given string, until it either successfully
unlocks access to the volume key or runs out of headers, in which case the password is
considered incorrect and a reentry may be prompted. However, this requires a
centralized database of administrator passphrases, and also may require transmission of
the passphrase over a network for remote access to the volume, where it may be

compromised or otherwise intercepted.

[24] Accordingly, aspects discussed herein provide for generation of an intermediate
protection key that provides access to protected information by administrators and users
who have forgotten their password, while both never leaving the client execution system
and never being stored at the central system. Additionally, key entropy is spread across
two or more separate systems, minimizing the opportunity for a single point of attack on

a central key storage server.

[25] Prior to discussing specifics of creating, delivering, and maintaining encrypted
virtual hard disks, the following description provides an overview of an exemplary
computing environment that may be used in conjunction with various aspects. Figure 1A
illustrates an example embodiment of a computing environment 101 that includes one or
more client machines 102A-102N (generally referred to herein as “client machine(s)
102”) in communication with one or more servers 106A-106N (generally referred to
herein as “server(s) 106”). Installed in between the client machine(s) 102 and server(s)

106 is a network.

[26] In one embodiment, the computing environment 101 may include an appliance
installed between the server(s) 106 and client machine(s) 102. This appliance may
mange client/server connections, and in some cases may load balance client connections

amongst a plurality of backend servers.

[27] The client machine(s) 102 may, in some examples, be referred to as a single client
machine 102 or a single group of client machines 102, while server(s) 106 may be

referred to as a single server 106 or a single group of servers 106. In one embodiment a

WO 2012/162128 PCT/US2012/038521

single client machine 102 communicates with more than one server 106, while in another
embodiment a single server 106 communicates with more than one client machine 102.
In yet another embodiment, a single client machine 102 communicates with a single

server 106.

[28] A client machine 102 may, in some example, be referenced by any one of the
following terms: client machine(s) 102; client(s); client computer(s); client device(s);
client computing device(s); local machine; remote machine; client node(s); endpoint(s);
endpoint node(s); or a second machine. The server 106, in some embodiments, may be
referenced by any one of the following terms: server(s), local machine; remote machine;

server farm(s), host computing device(s), or a first machine(s).

[29] In one embodiment, the client machine 102 can be a virtual machine 102C. The
virtual machine 102C can be any virtual machine, while in some embodiments the virtual
machine 102C can be any virtual machine managed by a hypervisor developed by
XENSOLUTIONS, CITRIX SYSTEMS, IBM, VMWARE, or any other hypervisor. In
other embodiments, the virtual machine 102C may be managed by any hypervisor, while
in still other embodiments, the virtual machine 102C can may managed by a hypervisor

executing on a server 106 or a hypervisor executing on a client 102.

[30] The client machine 102 can in some embodiments execute, operate or otherwise
provide an application that may be any one of the following: software; a program;
executable instructions; a virtual machine; a hypervisor; a web browser; a web-based
client; a client-server application; a thin-client computing client; an ActiveX control; a
Java applet; software related to voice over internet protocol (VolP) communications like
a soft IP telephone; an application for streaming video and/or audio; an application for
facilitating real-time-data communications; a HTTP client; a FTP client; an Oscar client;
a Telnet client; or any other set of executable instructions. Still other embodiments may
include a client device 102 that displays application output generated by an application
remotely executing on a server 106 or other remotely located machine. In these
embodiments, the client device 102 can display the application output in an application

window, a browser, or other output window. In one embodiment, the application is a

WO 2012/162128 PCT/US2012/038521

desktop, while in other embodiments the application is an application that generates a
desktop. A desktop may include a graphical shell providing a user interface for an
instance of an operating system in which local and/or remote applications can be
integrated. Applications, as used herein, are programs that execute after an instance of an
operating system (and, optionally, also the desktop) has been loaded. Each instance of
the operating system may be physical (e.g., one operating system per device) or virtual
(c.g., many instances of an OS running on a single device). Each application may be
executed on a local device, or executed on a remotely located device (e.g., remoted).
Applications may be remoted in multiple ways. In one example, applications may be
remoted in a seamless manner in which windows are created on the client device so as to
make the application display seem as if it were running locally on the client device and
the desktop thereof. In another example, a remoted application may be provided in a
windowed mode where a desktop is remoted to the client device and the application is
displayed as an application executing in the remoted desktop. Various other remoting

methods and techniques may also be implemented or used.

[31] The server 106, in some embodiments, may execute a remote presentation client or
other client or program that uses a thin-client or remote-display protocol to capture
display output generated by an application executing on a server 106 and to transmit the
application display output to a remote client 102. The thin-client or remote-display
protocol can be any one of the following protocols: the Independent Computing
Architecture (ICA) protocol manufactured by CITRIX SYSTEMS, Inc. of Ft. Lauderdale,
Florida; or the Remote Desktop Protocol (RDP) manufactured by the MICROSOFT
Corporation of Redmond, Washington.

[32] The computing environment 101 may include more than one server 106A-106N such
that the servers 106A-106N are logically grouped together into a server farm 106. The
server farm 106 may include servers 106 that are geographically dispersed and logically
grouped together in a server farm 106, or servers 106 that are located proximate to each
other and logically grouped together in a server farm 106. Geographically dispersed

servers 106A-106N within a server farm 106 may, in some examples, communicate using

WO 2012/162128 PCT/US2012/038521

a WAN, MAN, or LAN, where different geographic regions can be characterized as:
different continents; different regions of a continent; different countries; different states;
different cities; different campuses; different rooms; or any combination of the preceding
geographical locations. In some embodiments the server farm 106 may be administered
as a single entity, while in other embodiments the server farm 106 can include multiple

server farms 106.

[33] In some examples, a server farm 106 may include servers 106 that execute a
substantially similar type of operating system platform (e.g., WINDOWS NT,
manufactured by Microsoft Corp. of Redmond, Washington, UNIX, LINUX, or SNOW
LEOPARD.) In other embodiments, the server farm 106 may include a first group of
servers 106 that execute a first type of operating system platform, and a second group of
servers 106 that execute a second type of operating system platform. The server farm
106, in other embodiments, may include servers 106 that execute different types of

operating system platforms.

[34] The server 106, in some examples, may be any server type. For instance, the server
106 may be any of the following server types: a file server; an application server; a web
server, a proxy server; an appliance; a network appliance; a gateway; an application
gateway; a gateway server; a virtualization server; a deployment server; a SSL VPN
server; a firewall; a web server; an application server or as a master application server; a
server 106 executing an active directory; or a server 106 executing an application
acceleration program that provides firewall functionality, application functionality, or
load balancing functionality. In some embodiments, a server 106 may be a RADIUS
server that includes a remote authentication dial-in user service. In embodiments where
the server 106 comprises an appliance, the server 106 may be an appliance manufactured
by any one of the following manufacturers: the Citrix Application Networking Group;
Silver Peak Systems, Inc; Riverbed Technology, Inc.; F5 Networks, Inc.; or Juniper
Networks, Inc. Some embodiments include a first server 106A that receives requests
from a client machine 102, forwards the request to a second server 106B, and responds to

the request generated by the client machine 102 with a response from the second server

WO 2012/162128 PCT/US2012/038521

106B. The first server 106A may acquire an enumeration of applications available to the
client machine 102 and well as address information associated with an application server
106 hosting an application identified within the enumeration of applications. The first
server 106A may then present a response to the client’s request using a web interface, and
communicate directly with the client 102 to provide the client 102 with access to an

identified application.

[35] The server 106 may, in some embodiments, execute any one of the following
applications: a thin-client application using a thin-client protocol to transmit application
display data to a client; a remote display presentation application; any portion of the
CITRIX ACCESS SUITE by Citrix Systems, Inc. like the METAFRAME or CITRIX
PRESENTATION SERVER or XENAPP; MICROSOFT WINDOWS Terminal Services
manufactured by the Microsoft Corporation; or an ICA client, developed by Citrix
Systems, Inc. Other examples or embodiments may include a server 106 that is an
application server such as: an email server that provides email services such as
MICROSOFT EXCHANGE manufactured by the Microsoft Corporation; a web or
Internet server; a desktop sharing server; a collaboration server; or any other type of
application server. Still other embodiments or examples may include a server 106 that
executes any one of the following types of hosted server applications: GOTOMEETING
provided by Citrix Online Division, Inc.; WEBEX provided by WebEx, Inc. of Santa
Clara, California; or Microsoft Office LIVE MEETING provided by Microsoft

Corporation.

[36] Client machines 102 may, in some embodiments, be a client node that secks access
to resources provided by a server 106. In other embodiments, the server 106 may provide
clients 102 or client nodes with access to hosted resources. The server 106, in some
embodiments, functions as a master node such that it communicates with one or more
clients 102 or servers 106. In some embodiments, the master node can identify and
provide address information associated with a server 106 hosting a requested application,
to one or more clients 102 or servers 106. In still other embodiments, the master node

can be a server farm 106, a client 102, a cluster of client nodes 102, or an appliance.

10

WO 2012/162128 PCT/US2012/038521

[37] One or more clients 102 and/or one or more servers 106 can transmit data over a
network 104 installed between machines and appliances within the computing
environment 101. The network 104 can comprise one or more sub-networks, and can be
installed between any combination of the clients 102, servers 106, computing machines
and appliances included within the computing environment 101. In some embodiments,
the network 104 can be: a local-area network (LAN); a metropolitan area network
(MAN); a wide area network (WAN); a primary network 104 comprised of multiple sub-
networks 104 located between the client machines 102 and the servers 106; a primary
public network 104 with a private sub-network 104; a primary private network 104 with a
public sub-network 104; or a primary private network 104 with a private sub-network
104. Still further embodiments include a network 104 that can be any of the following
network types: a point to point network; a broadcast network; a telecommunications
network; a data communication network; a computer network; an ATM (Asynchronous
Transfer Mode) network; a SONET (Synchronous Optical Network) network; a SDH
(Synchronous Digital Hierarchy) network; a wireless network; a wireline network; or a
network 104 that includes a wireless link where the wireless link can be an infrared
channel or satellite band. The network topology of the network 104 can differ within
different embodiments, possible network topologies include: a bus network topology; a
star network topology; a ring network topology; a repeater-based network topology; or a
tiered-star network topology. Additional embodiments may include a network 104 of
mobile telephone networks that use a protocol to communicate among mobile devices,
where the protocol can be any one of the following: AMPS; TDMA; CDMA; GSM;
GPRS UMTS; or any other protocol able to transmit data among mobile devices.

[38] Ilustrated in Figure 1B is an embodiment of a computing device 100, where the
client machine 102 and server 106 illustrated in Figure 1A can be deployed as and/or
executed on any embodiment of the computing device 100 illustrated and described
herein. Included within the computing device 100 is a system bus 150 that communicates
with the following components: a central processing unit 121; a main memory 122;
storage memory 128; an input/output (I/O) controller 123; display devices 124A-124N;

an installation device 116; and a network interface 118. In one embodiment, the storage

11

WO 2012/162128 PCT/US2012/038521

memory 128 includes: an operating system, software routines, and a client agent 120.
The 1/0 controller 123, in some embodiments, is further connected to a key board 126,
and a pointing device 127. Other embodiments may include an I/O controller 123

connected to more than one input/output device 130A-130N.

[39] Figure IC illustrates one embodiment of a computing device 100, where the client
machine 102 and server 106 illustrated in Figure 1A can be deployed as and/or executed
on any embodiment of the computing device 100 illustrated and described herein.
Included within the computing device 100 is a system bus 150 that communicates with
the following components: a bridge 170, and a first I/O device 130A. In another
embodiment, the bridge 170 is in further communication with the main central processing
unit 121, where the central processing unit 121 can further communicate with a second
I/0 device 130B, a main memory 122, and a cache memory 140. Included within the

central processing unit 121, are 1/O ports, a memory port 103, and a main processor.

[40] Embodiments of the computing machine 100 can include a central processing unit
121 characterized by any one of the following component configurations: logic circuits
that respond to and process instructions fetched from the main memory unit 122; a
microprocessor unit, such as: those manufactured by Intel Corporation; those
manufactured by Motorola Corporation; those manufactured by Transmeta Corporation
of Santa Clara, California; the RS/6000 processor such as those manufactured by
International Business Machines; a processor such as those manufactured by Advanced
Micro Devices; or any other combination of logic circuits. Still other embodiments of the
central processing unit 122 may include any combination of the following: a
microprocessor, a microcontroller, a central processing unit with a single processing core,
a central processing unit with two processing cores, or a central processing unit with

more than one processing core.

[41] While Figure 1C illustrates a computing device 100 that includes a single central
processing unit 121, in some embodiments the computing device 100 can include one or
more processing units 121. In these embodiments, the computing device 100 may store

and execute firmware or other executable instructions that, when executed, direct the one

12

WO 2012/162128 PCT/US2012/038521

or more processing units 121 to simultaneously execute instructions or to simultancously
execute instructions on a single piece of data. In other embodiments, the computing
device 100 may store and execute firmware or other executable instructions that, when
executed, direct the one or more processing units to each execute a section of a group of
instructions. For example, each processing unit 121 may be instructed to execute a

portion of a program or a particular module within a program.

[42] In some embodiments, the processing unit 121 can include one or more processing
cores. For example, the processing unit 121 may have two cores, four cores, eight cores,
etc. In one embodiment, the processing unit 121 may comprise one or more parallel
processing cores. The processing cores of the processing unit 121 may in some
embodiments access available memory as a global address space, or in other
embodiments, memory within the computing device 100 can be segmented and assigned
to a particular core within the processing unit 121. In one embodiment, the one or more
processing cores or processors in the computing device 100 can each access local
memory. In still another embodiment, memory within the computing device 100 can be
shared amongst one or more processors or processing cores, while other memory can be
accessed by particular processors or subsets of processors. In embodiments where the
computing device 100 includes more than one processing unit, the multiple processing
units can be included in a single integrated circuit (IC). These multiple processors, in
some embodiments, can be linked together by an internal high speed bus, which may be

referred to as an element interconnect bus.

[43] In embodiments where the computing device 100 includes one or more processing
units 121, or a processing unit 121 including one or more processing cores, the processors
can execute a single instruction simultaneously on multiple pieces of data (SIMD), or in
other embodiments can execute multiple instructions simultaneously on multiple pieces
of data (MIMD). In some embodiments, the computing device 100 can include any

number of SIMD and MIMD processors.

[44] The computing device 100, in some embodiments, can include a graphics processor

or a graphics processing unit (Not Shown). The graphics processing unit can include any

13

WO 2012/162128 PCT/US2012/038521

combination of software and hardware, and can further input graphics data and graphics
instructions, render a graphic from the inputted data and instructions, and output the
rendered graphic. In some embodiments, the graphics processing unit can be included
within the processing unit 121. In other embodiments, the computing device 100 can
include one or more processing units 121, where at least one processing unit 121 is

dedicated to processing and rendering graphics.

[45] One embodiment of the computing machine 100 includes a central processing unit
121 that communicates with cache memory 140 via a secondary bus also known as a
backside bus, while another embodiment of the computing machine 100 includes a
central processing unit 121 that communicates with cache memory via the system bus
150. The local system bus 150 can, in some embodiments, also be used by the central
processing unit to communicate with more than one type of I/O device 130A-130N. In
some embodiments, the local system bus 150 can be any one of the following types of
buses: a VESA VL bus; an ISA bus; an EISA bus; a MicroChannel Architecture (MCA)
bus; a PCI bus; a PCI-X bus; a PCI-Express bus; or a NuBus. Other embodiments of the
computing machine 100 include an I/O device 130A-130N that is a video display 124 that
communicates with the central processing unit 121. Still other versions of the computing
machine 100 include a processor 121 connected to an I/O device 130A-130N via any one
of the following connections: HyperTransport, Rapid 1/O, or InfiniBand. Further
embodiments of the computing machine 100 include a processor 121 that communicates
with one 1/O device 130A using a local interconnect bus and a second I/O device 130B

using a direct connection.

[46] The computing device 100, in some embodiments, includes a main memory unit 122
and cache memory 140. The cache memory 140 can be any memory type, and in some
embodiments can be any one of the following types of memory: SRAM; BSRAM; or
EDRAM. Other embodiments include cache memory 140 and a main memory unit 122
that can be any one of the following types of memory: Static random access memory
(SRAM), Burst SRAM or SynchBurst SRAM (BSRAM); Dynamic random access
memory (DRAM); Fast Page Mode DRAM (FPM DRAM); Enhanced DRAM

14

WO 2012/162128 PCT/US2012/038521

(EDRAM), Extended Data Output RAM (EDO RAM); Extended Data Output DRAM
(EDO DRAM); Burst Extended Data Output DRAM (BEDO DRAM); Enhanced DRAM
(EDRAM); synchronous DRAM (SDRAM); JEDEC SRAM; PC100 SDRAM; Double
Data Rate SDRAM (DDR SDRAM); Enhanced SDRAM (ESDRAM); SyncLink DRAM
(SLDRAM); Direct Rambus DRAM (DRDRAM); Ferroelectric RAM (FRAM); or any
other type of memory. Further embodiments include a central processing unit 121 that
can access the main memory 122 via: a system bus 150; a memory port 103; or any other

connection, bus or port that allows the processor 121 to access memory 122.

[47] One embodiment of the computing device 100 provides support for any one of the
following installation devices 116: a CD-ROM drive, a CD-R/RW drive, a DVD-ROM
drive, tape drives of various formats, USB device, a bootable medium, a bootable CD, a
bootable CD for GNU/Linux distribution such as KNOPPIX®, a hard-drive or any other
device suitable for installing applications or software. Applications can in some
embodiments include a client agent 120, or any portion of a client agent 120. The
computing device 100 may further include a storage device 128 that can be either one or
more hard disk drives, or one or more redundant arrays of independent disks; where the
storage device is configured to store an operating system, software, programs
applications, or at least a portion of the client agent 120. A further embodiment of the
computing device 100 includes an installation device 116 that is used as the storage

device 128.

[48] The computing device 100 may further include a network interface 118 to interface
to a Local Area Network (LAN), Wide Arca Network (WAN) or the Internet through a
variety of connections including, but not limited to, standard telephone lines, LAN or
WAN links (e.g., 802.11, T1, T3, 56kb, X.25, SNA, DECNET), broadband connections
(e.g., ISDN, Frame Relay, ATM, Gigabit Ethernet, Ethernet-over-SONET), wireless
connections, or some combination of any or all of the above. Connections can also be
established using a variety of communication protocols (e.g., TCP/IP, IPX, SPX,
NetBIOS, Ethernet, ARCNET, SONET, SDH, Fiber Distributed Data Interface (FDDI),
RS232, RS485, 1EEE 802.11, IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, CDMA,

15

WO 2012/162128 PCT/US2012/038521

GSM, WiMax and direct asynchronous connections). One version of the computing
device 100 includes a network interface 118 able to communicate with additional
computing devices 100’ via any type and/or form of gateway or tunneling protocol such
as Secure Socket Layer (SSL) or Transport Layer Security (TLS), or the Citrix Gateway
Protocol manufactured by Citrix Systems, Inc. Versions of the network interface 118 can
comprise any one of: a built-in network adapter; a network interface card; a PCMCIA
network card; a card bus network adapter; a wireless network adapter; a USB network
adapter; a modem; or any other device suitable for interfacing the computing device 100
to a network capable of communicating and performing the methods and systems

described herein.

[49] Embodiments of the computing device 100 include any one of the following I/O
devices 130A-130N: a keyboard 126; a pointing device 127; mice; trackpads; an optical
pen; trackballs; microphones; drawing tablets; video displays; speakers; inkjet printers;
laser printers; and dye-sublimation printers; or any other input/output device able to
perform the methods and systems described herein. An I/O controller 123 may in some
embodiments connect to multiple I/O devices 103A-130N to control the one or more 1/0
devices. Some embodiments of the I/O devices 130A-130N may be configured to
provide storage or an installation medium 116, while others may provide a universal
serial bus (USB) interface for receiving USB storage devices such as the USB Flash
Drive line of devices manufactured by Twintech Industry, Inc. Still other embodiments
include an I/O device 130 that may be a bridge between the system bus 150 and an
external communication bus, such as: a USB bus; an Apple Desktop Bus; an RS-232
serial connection; a SCSI bus; a FireWire bus; a FireWire 800 bus; an Ethernet bus; an
AppleTalk bus; a Gigabit Ethernet bus; an Asynchronous Transfer Mode bus; a HIPPI
bus; a Super HIPPI bus; a SerialPlus bus; a SCI/LAMP bus; a FibreChannel bus; or a

Serial Attached small computer system interface bus.

[S0] In some embodiments, the computing machine 100 can connect to multiple display
devices 124A-124N, in other embodiments the computing device 100 can connect to a

single display device 124, while in still other embodiments the computing device 100

16

WO 2012/162128 PCT/US2012/038521

connects to display devices 124A-124N that are the same type or form of display, or to
display devices that are different types or forms. Embodiments of the display devices
124A-124N can be supported and enabled by the following: one or multiple I/O devices
130A-130N; the I/O controller 123; a combination of I/O device(s) 130A-130N and the
I/O controller 123; any combination of hardware and software able to support a display
device 124A-124N; any type and/or form of video adapter, video card, driver, and/or
library to interface, communicate, connect or otherwise use the display devices 124A-
124N. The computing device 100 may in some embodiments be configured to use one or
multiple display devices 124A-124N, these configurations include: having multiple
connectors to interface to multiple display devices 124A-124N; having multiple video
adapters, with each video adapter connected to one or more of the display devices 124A-
124N; having an operating system configured to support multiple displays 124A-124N;
using circuits and software included within the computing device 100 to connect to and
use multiple display devices 124A-124N; and executing software on the main computing
device 100 and multiple secondary computing devices to enable the main computing
device 100 to use a secondary computing device’s display as a display device 124A-
124N for the main computing device 100. Still other embodiments of the computing
device 100 may include multiple display devices 124A-124N provided by multiple
secondary computing devices and connected to the main computing device 100 via a

network.

[S1] In some embodiments, the computing machine 100 can execute any operating
system, while in other embodiments the computing machine 100 can execute any of the
following operating systems: versions of the MICROSOFT WINDOWS operating
systems such as WINDOWS 3.x; WINDOWS 95; WINDOWS 98; WINDOWS 2000;
WINDOWS NT 3.51; WINDOWS NT 4.0; WINDOWS CE; WINDOWS XP; and
WINDOWS VISTA; the different releases of the Unix and Linux operating systems; any
version of the MAC OS manufactured by Apple Computer; OS/2, manufactured by
International Business Machines; any embedded operating system; any real-time
operating system; any open source operating system; any proprictary operating system;

any operating systems for mobile computing devices; or any other operating system. In

17

WO 2012/162128 PCT/US2012/038521

still another embodiment, the computing machine 100 can execute multiple operating
systems. For example, the computing machine 100 can execute PARALLELS or another
virtualization platform that can execute or manage a virtual machine executing a first
operating system, while the computing machine 100 executes a second operating system

different from the first operating system.

[S2] The computing machine 100 may be embodied in any one of the following
computing devices: a computing workstation; a desktop computer; a laptop or notebook
computer; a server; a handheld computer; a mobile telephone; a portable
telecommunication device; a media playing device; a gaming system; a mobile
computing device; a netbook; a device of the IPOD family of devices manufactured by
Apple Computer; any one of the PLAYSTATION family of devices manufactured by the
Sony Corporation; any one of the Nintendo family of devices manufactured by Nintendo
Co; any one of the XBOX family of devices manufactured by the Microsoft Corporation;
or any other type and/or form of computing, telecommunications or media device that is
capable of communication and that has sufficient processor power and memory capacity
to perform the methods and systems described herein. In other embodiments the
computing machine 100 may be a mobile device such as any one of the following mobile
devices: a JAVA-enabled cellular telephone or personal digital assistant (PDA), such as
the 155sr, 158sr, 185s, 188s, 190c, 195¢l, or the im1100, all of which are manufactured by
Motorola Corp; the 6035 or the 7135, manufactured by Kyocera; the 1300 or 1330,
manufactured by Samsung Electronics Co., Ltd; the TREO 180, 270, 600, 650, 680,
700p, 700w, or 750 smart phone manufactured by Palm, Inc; any computing device that
has different processors, operating systems, and input devices consistent with the device;
or any other mobile computing device capable of performing the methods and systems
described herein. In still other embodiments, the computing device 100 can be any one
of the following mobile computing devices: any one series of Blackberry, or other
handheld device manufactured by Research In Motion Limited; the iPhone manufactured
by Apple Computer; Palm Pre; a Pocket PC; a Pocket PC Phone; or any other handheld
mobile device. In yet still other embodiments, the computing device 100 may a smart

phone or tablet computer, including products such as the iPhone or iPad manufactured by

18

WO 2012/162128 PCT/US2012/038521

Apple, Inc. of Cupertino, CA; the BlackBerry devices manufactured by Research in
Motion, Ltd. of Waterloo, Ontario, Canada; Windows Mobile devices manufactured by
Microsoft Corp., of Redmond, WA; the Xoom manufactured by Motorola, Inc. of
Libertyville, IL; devices capable of running the Android platform provided by Google,

Inc. of Mountain View, CA; or any other type and form of portable computing device.

[S3] Aspects, features and embodiments described herein may make use of various
encryption schemes and standards. Throughout this specification, reference is made to a
“hash function,” “hash,” or “hashing”. These terms are in reference to any procedure or
mathematical function that receives data as an input and provides a given output in
response to said input. Said output may be referred to as a hash value, or may be referred
to as a message digest. The output of a hash may be a single datum or integer. The
output of a hash may be a fixed-size bit string. A hash function may rely one or more
keys to accomplish said hashing. Examples of hash functions known in the art include
MD?2 (Message-Digest algorithm), MD4, MD35, SHA-0 (Secure Hash Algorithm), SHA-
I, SHA-2, GOST, HAVAL, PANAMA, RadioGatun, RIPEMD, Tiger, and
WHIRLPOOL.

2% <

[S4] Throughout this disclosure, reference is made to a “public key,” “public keys,” and
“public key encryption.” These terms broadly reference to any methods for transforming
data into a form that can only be interpreted by the intended recipient, recipients, or
otherwise intended audience. Public key encryption methods may involve the use of
asymmetric key algorithms, where a key necessary to encrypt data is different from the
key needed to decrypt the data. This allows the key with which to encrypt said data, the
“Public Key” to be shared widely. Integrity of security is maintained because the
separate key with which to decrypt the encrypted information remains secret. The secret
key may also be referred to as a private key, and the combination of a public key and
corresponding private key may be referred to as a public-private key pair. Thus, public
key encryption does not require a secure initial exchange of one or more secret keys.

Examples of asymmetric key implementations include DSS, RSA Encryption Algorithm,
PGP, Internet Key Exchange, ZRTP, SSH, SSL, TLS, and SILC.

19

WO 2012/162128 PCT/US2012/038521

[S5] It is understood that throughout this disclosure, where public keys or public key
encryption is used or disclosed, one may alternatively or additionally use any other form
of encryption to successfully implement the systems and methods disclosed herein,

including private key encryption or any other form of encryption.

[S6] Throughout this disclosure, reference is made to encryption. Encryption may
broadly refer to any one or more of various means, methods, systems, functions, etc. for
transforming data from an interpreted form and securing it by a process that renders the
data uninterpretable to anyone but those that are able to decrypt the encrypted data.
Encryption may refer to a wide variety of encryption standards and techniques, including
private key and public key encryption. Encryption and decryption may be accomplished
via a system implementing passwords, keys, or a combination of both. Encryption
schemes may include symmetric-key encryption schemes where secret keys are
exchanged between the party seeking to encrypt data and the party secking to decrypt
data. Such schemes may also be referred to as “shared secret” or “pre-shared” encryption
schemes. Examples of such encryption schemes may include the Advanced Encryption

Standard, Blowfish, Twofish, Serpent, CAST5, RC4, 3DES and IDEA.

[S7] It is understood that throughout this disclosure, where symmetric-key, shared secret
encryption, or any other form of encryption is used or disclosed, one could also
alternatively use any other form of encryption to successfully implement the systems and
methods disclosed herein, including public key encryption or any other form of

encryption.

[S8] Throughout this disclosure, reference may be made to a “shared key” or “sharing
keys” for the purposes of encryption or decryption. Shared keys may broadly refer to
keys which may be shared between a particular group of users. A shared key may be any
type or form of key used in any type or form of encryption scheme or standard. In some
examples, a shared key may be unique to a particular file or may be shared with only a
single user, application, or process. Additionally or alternatively, a shared key may be an

asymmetric private/public key pair.

20

WO 2012/162128 PCT/US2012/038521

[S9] Referring now to FIG. 2A, illustrated is an embodiment of decrypting and mounting
an encrypted virtual hard disk 200 including a single encrypted header 202 and a payload
of encrypted disk blocks 204. The encrypted disk blocks 204 may be encrypted with a
volume key 206 stored within the encrypted header 202. Thus, to decrypt disk blocks
204, the system must first decrypt header 202 to obtain access to the volume key. For
example, a password 208 may be received from a user. The password may comprise a
pass phrase, a password, a string, or any other type and form of data. In some examples,
password 208 may comprise a stored decryption key received from an agent upon
authentication, such as the user logging in, using a biometric scanner, providing a key
value, or any other type and form of authentication. Password 208 may comprise a
decryption key for encrypted header 202, such that a mathematical function 210 applied
to the encrypted header 202 and password 208 may result in a decrypted or enclear
header. Mathematical function 210 may comprise any type and form of decryption

function applicable to the encryption scheme used, as discussed above.

[60] When the header 202 is decrypted through use of password 208, the volume key 206
may be recovered at 212. The volume key may comprise a phrase, password, string, or
any other type and form of data used as a decryption key for the encrypted disk blocks
204 of the virtual hard disk 200. A second mathematical function 214 may be applied to
the encrypted disk blocks 204 and volume key 206 to present a decrypted view of the
disk to the operating system, file system, or applications. The volume key is used both
during encryption and decryption of the virtual hard disk, but is never shared outside of

the encryption system.

[61] Although only one header 202 is shown, in some embodiments, multiple headers
may be included, each with its own password or passphrase, and each containing the
volume key. As discussed above, this allows for a separate administrator header.
However, in such examples, the passphrase of the administrator must still be stored

someplace, providing a single point of failure or security breach.

[62] Referring now to FIG. 2B, illustrated is an embodiment of decrypting and mounting
an encrypted virtual hard disk 200’ including a plurality of encrypted headers 202 and

21

WO 2012/162128 PCT/US2012/038521

216, and a payload of encrypted disk blocks 204. Encrypted user header 202 includes
volume key 206 and is decrypted in the same method as discussed above in connection
with FIG. 2A. However, virtual hard disk 200’ further includes an encrypted admin
header 216, which also includes volume key 206. Admin header 216’s decryption key is
not stored, either on the local system or a centralized server. Rather, the decryption key,
referred to below as a protection key, is generated on the fly when access is requested.
This eliminates the possibility of interception of the decryption key if the virtual hard
disk is accessed remotely. Although referred to as a user header 202 and administrator or
admin header 216, each of headers 202 and 216 may be used by users, administrators,
agents, or other entities. Accordingly, user header 202 may broadly refer to a typical
header encrypted by a single password, phrase, key, data string, or other value with or
without added cryptographic salt, while admin header 216 may be interpreted as a header
encrypted with protection keys generated from cryptographic secrets stored in separate

locations as discussed herein.

[63] In some examples, a non-encrypted header 218 of the virtual hard disk 200’ includes
a volume GUID 220. The volume GUID 220 may comprise any globally-unique
identifier of the virtual hard disk 200° and may be generated during creation of the virtual
hard disk. GUID 220 may be stored within a data string, field, or tag as part of the header
218 of the virtual hard disk 200°. Although referred to here as non-encrypted for the
purpose of the present disclosure, in some examples, header 218 may be further
encrypted by additional systems. For example, virtual hard disk 200’ may be stored
within another disk, which may be encrypted by a whole-disk encryption system. Thus,
header 218 may be further encrypted. Accordingly, in some examples, header 218 may
be considered non-encrypted or clear if it is readable by a decryption system or engine
decrypting virtual hard disk 200°. In some embodiments, non-encrypted header 218 may
include a data string of cryptographic salt (not illustrated). The salt may be required by
various encryption schemes, and may be used to pad inputs to an encryption cipher,

provide additional randomization, or for other similar purposes.

22

WO 2012/162128 PCT/US2012/038521

[64] The virtual hard disk 200’ may be created for a specific user or responsive to a user
request in some instances. The user may be identified by a user ID 220, which may
comprise a user-specific identifier or string. In many embodiments, user ID 220 may
comprise a user name, user workgroup, or other similar identifier or combination of

identifiers.

[65] When virtual hard disk 200’ is created, two cryptographic secrets, secret 1 224A and
secret 2 224B (e.g., cryptographic secrets 224 or secrets 224, and/or a first cryptographic
secret and a second cryptographic secret) may also be created. As discussed in more
detail below, secret 1 224A may be stored in a first storage location, such as a user’s
network storage space or on the user’s computer’s hard drive. Secret 2 224B may be
stored in a second storage location, such as a server 106, administrative database,
authentication server, or other location, separate from secret 1 224A. In one example,

cryptographic secrets 224 may comprise 1024 bits of cryptographically random data.

[66] A mathematical function 228 may be applied to the GUID 220, user ID 222, secret 1
224A, secret 2 224B, and, in embodiments utilizing a salt, salt stored in header 218. The
mathematical function may comprise one or more functions of any type and form to
deterministically calculate a protection key, including concatenation, hash functions, or
other deterministic functions. The protection key may be retrieved at 230, and, as
discussed above, may include or otherwise correspond to a decryption key for the
encrypted admin header 216. A second mathematical function 232 may be applied to the
protection key and encrypted admin header 216, similar to mathematical function 210, to

decrypt the header and retrieve the volume key 212.

[67] Accordingly, the protection key may be generated on the fly, locally at the machine
accessing the virtual hard disk 200°, without requiring the protection key to be
transmitted over the network. Additionally, although one or both cryptographic secrets
224 may be retrieved over the network, access to one secret does not break or otherwise
compromise the encryption of the admin header 216 or virtual hard disk 200’ (e.g., in

contrast to systems in which an administrator password is stored centrally).

23

WO 2012/162128 PCT/US2012/038521

[68] Referring briefly to FIG. 2C, illustrated is a block diagram of a centrally managed
cryptographic key. As discussed above, a unique volume identifier 220, and, in some
embodiments, cryptographic salt, may be stored in a cleartext header 218 of the
encrypted virtual hard disk. The user ID 222 may comprise a unique identifier of the user
for which the disk was created. Secret 1 224A may be stored in a first storage location,
such as a user network location 232, and secret 2 224B may be stored in a second storage
location (e.g., different from the first storage location), such as an administrator network
storage location 234. The volume ID, salt (if applicable), user ID, and secrets may be
used as inputs to a mathematical function to create a protection key 236, which may be
used to encrypt a header of a virtual hard disk file. The protection key 236 may then be
destroyed or deleted. In a particular example, the protection key 236 may be deleted or
destroyed without allowing any transmission (e.g., a network transmission and/or other

types of transmissions) of the protection key 236.

[69] Illustrated in FIG. 2D is a block diagram of an embodiment of a system for creating
and managing encrypted virtual disks. In some embodiments, the system can include a
client computer 102 and a server 106 that communicate via a network 104. The client
can include a disk space 250’ that may include secret 1 224A and a virtual hard disk 200°.
In some embodiments, secret 1 224A may be stored external to client computer 102 or a
disk space 250” of client computer 102, such as on a user network drive (not illustrated)
stored on a server. Executing on the client can be a virtual hard disk service 260, an
application delivery client 270 and a management service 275. The server can execute
one or more applications 240A-240N (generally referred to as server applications 242 or
applications 240), and can also execute an application delivery server 280. The client can
execute one or more applications 242A-242N (generally referred to as client applications
242 or applications 240), which may be locally installed applications, or applications
installed in storage attached to client computer 102. In some embodiments, a virtual disk
creator 285 can execute on the server 106 to intercept client requests and create virtual

disks.

24

WO 2012/162128 PCT/US2012/038521

[70] Further referring to Figure 2, and in more detail, in one embodiment the system may
include a client computer 102 and a server 106. The client computer 102 may be any
computing device 100 described herein and may be any client 102 described herein.
Similarly, the server 106 may be any computing device 100 described herein and may be
any server 106 described herein. In some embodiments, the server 106 can be a server
farm that includes one or more servers 106. The client 102 and the server 106 may

communicate over a network 104 such as any network 104 described herein.

[71] In some embodiments, client 102 may execute one or more applications 242A-242N
(generally applications 242). In other embodiments, server 106 may execute one or more
applications 240A-240N (generally, applications 240), which may be delivered to the
client via application delivery client 270 and application delivery server 280. In some
embodiments the application delivery client 270 executing on the client 102 may be an
application, client or program that may receive application output, such as graphical
display output or other data output, from an application delivery server 280 executing on
the server 106. The application delivery client 270 of the client 102 may receive
application output and display the application output in an application window on the
client 102. In some examples, the application delivery client 270 can facilitate the
creation of a virtual channel between the client 102 and the server 106, and can facilitate
communication between the application delivery system of the client 102 and the
application delivery system of the server 106. The application delivery client 270 of the
client computer 102 can communicate with the application delivery server 280 of the
server 106 and can transmit and receive file access requests. In some example, the
application delivery client 270 may be an ICA client manufactured by CITRIX
SYSTEMS. In other embodiments, application delivery client 270 may be a remote
desktop client, a desktop presentation client, or any similar type of client, and may

communicate with server 106 via a presentation layer protocol such as ICA or RDP.

[72] The application delivery server 280 of the server 106 can execute on the server 106
and can interface with applications 240 executing on the server 106. In some

embodiments, the server application delivery server 280 may intercept, retrieve or receive

25

WO 2012/162128 PCT/US2012/038521

graphical application output, ¢.g. draw commands issued by an application 240,
generated by an application 240 and may forward the application output together with
any related image data to the application delivery client 270 of the client 102. The
application delivery client 270 of the client computer 102 can use the application output
and image data to redraw the application as it would be displayed on a display screen of
the server 106. In some embodiments, the application delivery server 280 may be an ICA
server manufactured by CITRIX SYSTEMS. In some embodiments, the application
delivery client 270 of the client 102 may communicate with the application delivery
server 280 over one or more virtual channels and one or more transport layer

connections.

[73] In still other example, application delivery client 270 and application delivery server
280 may comprise applications for streaming an application 240 from server 106 for
execution on client computer 102. In yet still other embodiments, application delivery
client 270 and application delivery server 280 may comprise applications, services,
agents, or other executable code for downloading an application to client computer 102
for online or offline execution. Accordingly, an application may be executed at server
106 with output transmitted to client 102; may be streamed for execution by client 102;
may be downloaded or otherwise transferred to client 102 for local execution; or may be

installed on client 102, without departing from the scope of the disclosure.

[74] The applications 240 and 242 (referred to generally as server applications 240 or
client applications 242) may be any application. In some examples, the application 240
may include any application described herein, or any other application. In some
embodiments, applications 240 executing on server 106 may interface with the
application delivery server 280 by transmitting application output to the application
delivery client 270. In other embodiments, as discussed above, applications 242 may
execute on the client 102 and/or may be streamed to client 102 for execution by client

102.

[75] In some embodiments, the client computer 102 can include disk space 250’ that may

include a virtual hard disk 200” and a first cryptographic secret 224A. Although

26

WO 2012/162128 PCT/US2012/038521

illustrated within client computer 102, disk space 250’ may include both physical disks
included in the client computer 102, external physical disks available to the client
computer 102, including dedicated disks and network disks, and virtual disks available to
the client computer 102. For example, the first cryptographic secret 224A may be stored
in a user-specific network drive or virtual drive. Although referred to as disks, in some
embodiments, disk space 250’ may comprise flash storage, magnetic storage, optical
storage, combinations of any of these, or any other type and form of storage device.
Similarly, server 106 may include a disk space 250, or may maintain or communicate
with physical, virtual, and/or network disks, and may store a second cryptographic secret
224B. In some embodiments, the second cryptographic secret 224B may be stored in an
administrator network drive or virtual drive. Furthermore, although virtual hard disk
200’ is illustrated within disk space 250°, in some embodiments, the virtual hard disk
200’ may be created by server 106 and stored within disk space 250 prior to being

transferred to client computer 102.

[76] According to some arrangements, a virtual hard disk service 260 may be executed by
the client computer 102. Virtual hard disk service 260 may comprise an application,
service, daecmon, routine, file system filter driver, or other executable logic for mounting
virtual hard disks or disk images, and presenting the virtual hard disk or disk image to an
operating system or applications as if it were a physical disk. Virtual hard disk service
260 may interact with the application delivery client 270 or other applications 242
executing on the client to intercept requests to read information from or write information
to the virtual hard disk 200’ on the client computer 102 and process the request according
to the methods and systems described herein. In some embodiments, a virtual hard disk
service 260 may also execute on the server, for creation and management of virtual hard

disks for transfer to client computers 102.

[771 In some examples, a management service 275 may execute on the client 102 and
may interface with the virtual hard disk service 260 and the application delivery client
270. In some embodiments, the management service 275 may comprise an application,

server, service, daemon, routine, or other executable code, and may execute in user-mode

27

WO 2012/162128 PCT/US2012/038521

or kernel-mode. In some embodiments, management service 275 may act as or comprise
a policy engine. The management server 275 or a policy engine of the management
service may manage the security policies and other management policies that determine
which applications should be identified as trusted and which applications should be
identified as not trusted. In some embodiments, the management service 275 may
execute within the application delivery client 270 as a policy engine of the application
delivery client and may be used to determine whether to direct data generated by an
application to a virtual hard disk 200°. For example, data genecrated by trusted
applications may be considered corporate data, and may be written to the virtual hard
disk, while data generated by non-trusted applications may be written to a user’s personal
storage. In other embodiments, the management service 275 or a policy engine of the
management service 275 may be used to identify an application executing on the client as
a trusted or non-trusted application. In some embodiments, a corporate administrator can
set policies to mark certain applications as trusted. Additional folders may also be

specified as trusted and therefore needing to be enabled for automatic redirection.

[78] In one example, management service 275 or a policy engine may identify an
application as a trusted application responsive to a user credential of the user executing
the application. For example, in one embodiment, the user may be required to log in
prior to executing the application as a trusted application. If the user does not log in, the
application may be executed as a non-trusted application. In another embodiment, the
application may be executed by a root or administrative user, and may be identified as a
trusted application responsive to these user privileges. In yet another embodiment, the
application may be provided by a server 106 and be identified as a trusted application by
being provided by the server. For example, remotely executed applications or streamed
applications, or applications downloaded from a corporate server, may be identified as
trusted, while applications installed locally by the user or obtained elsewhere may be
identified as non-trusted. Other definitions of trusted and non-trusted might also be used
depending on needs or preferences. In some embodiments, an application may be trusted
or non-trusted depending on execution parameters of the session. For example, as

discussed above, a user may be required to log in to execute the application as a trusted

28

WO 2012/162128 PCT/US2012/038521

application. Depending on whether the user has logged in or not, the application may be
executed either as a trusted application or a non-trusted application. This may be done to

avoid requiring multiple instances of identical applications installed.

[79] In some embodiments, a virtual disk creator 285 may execute on the server 106 to
intercept client requests to create or deploy virtual hard disks. The virtual disk creator
285 may comprise an application, service, server, dacmon, logic, routine, or other
executable code for creating, deploying, and managing virtual hard disks. In some
embodiments, virtual disk creator 285 may comprise or communicate with an encryption
engine 290. In one embodiment, the virtual disk creator 285 can communicate directly
with the application delivery client 270 executing on the client 102. The virtual disk
creator 285 can, in some embodiments, execute substantially perpetually on the server
106. In other embodiments, the virtual disk creator 285 can wait for client requests to
come over a secure network connection (e.g. SSL), where the request can include
information on the size of the requested virtual disk, the encryption strength and the
encrypted disk size. The virtual disk creator 285 can create the virtual disk using virtual
disk creation methods, such as the virtual hard disk (VHD) APIL. In some embodiments,

the virtual disk creator 285 may encrypt the created virtual disk.

[80] In some embodiments, an encryption engine 290° may execute on the client
computer 102. Encryption engine 290’ may comprise an application, service, server,
daemon, routine, or other executable logic for encrypting and decrypting one or more
headers of a virtual hard disk 200’ and a payload of encrypted disk blocks 204 of the
virtual hard disk 200°. In some embodiments, encryption engine 290’ may comprise

functionality for retrieving cryptographic secrets 224 from one or more storage locations.

[81] Referring now to FIG. 3A, illustrated is a flow diagram illustrative of an embodiment
of a method for creating a secure encrypted virtual hard disk. At step 302, a server may
receive a request to generate an encrypted virtual hard disk, the request including a user
identifier of the user for whom the virtual hard disk will be created. In some
embodiments, the request may be received by a virtual hard disk creator or virtual hard

disk creation engine executed by the server. Additionally or alternatively, the virtual disk

29

WO 2012/162128 PCT/US2012/038521

creation engine can execute within the context of an application delivery server such that
the virtual disk creation engine can intercept any requests issued by a client 102 to the
server 106 for an encrypted virtual disk. In other embodiments, the virtual disk creator
may receive requests from a management service, a client agent, or another application
executing on the client. The client 102, in some embodiments, can issue the request
responsive to determining that an application requires a secure storage area. In other
embodiments, the client 102 can issue the request responsive to determining that no
secure storage area exists on the client 102. The request issued by the client, in some
embodiments, can include virtual disk information such as the size of the requested
virtual disk, the type of encryption to be used, the strength of the encryption to be
applied, encryption passwords to be used, encryption keys to be used, and the type of
storage. In other embodiments, the request may comprise user credentials, such as a user
name, user password, user identifier, or other information, and/or machine credentials,
such as a machine identifier, operating system type and version, management service
version or capabilities, MAC address, or any other type and form of information. In
some embodiments, the request can be transmitted from the client 102 to the server 106
and can be transmitted over a secure network (e.g. SSL.) In still other embodiments, the

client can deliver the request using an encrypted network protocol.

[82] The disk creator, in some embodiments, can respond to receiving the request by
queuing the request. In such examples, the disk creator can queue the requests until a
later point in time, or until the disk creator has availability to respond to the requests. In
still other embodiments, the disk creator can queue the requests and re-issue them to

another disk creator executing on a different server.

[83] At step 304, in some embodiments, the server or virtual hard disk creation engine
may generate a volume identifier for the virtual hard disk. The server or virtual hard disk
creation engine may further create a volume key, a first cryptographic secret, and a
second cryptographic secret. In some embodiments, the key and secrets may be
generated based on one or more elements of the request. For example, the request may

specify a type or size of encryption for the virtual hard disk, and the volume key may be a

30

WO 2012/162128 PCT/US2012/038521

corresponding size of encryption key. In some embodiments, the server or virtual hard
disk creation engine may generate cryptographic salt for use in an encryption function for

generating a protection key.

[84] At step 306, an encryption engine executed by the server may create a protection
key. The protection key may be created using the user identifier, the volume identifier,
the salt (if applicable), and the first and second cryptographic secrets. Various algorithms
may be used to create the protection key including concatenation, hashing, XORing, or

any other type and form of deterministic algorithm.

[85] At step 308, the server or virtual hard disk creation engine may create the virtual
hard disk. The virtual hard disk may be generated using any type and form of virtual
hard disk creation system, such as the VHD API provided by Microsoft Corp. In other
embodiments, the disk creator 250 can execute virtual disk creation functions that can
create the virtual disk. In some embodiments, the server or virtual hard disk creation
engine may create the virtual hard disk according to parameters received in the request,
such as a specified size or format. For example, if the client request specified a disk size
and type of storage, the virtual disk creator can create a virtual disk having that disk size
and storage type. In some embodiments, the virtual hard disk may be created at a
minimum size or very small size, and may be created as a dynamically-sized disk rather
than a fixed-size disk. This may be done to reduce bandwidth requirements to transfer
the disk to the client. For example, a very small disk, such as 10 MB, may be generated
and encrypted at the server, and may be transferred to the client, where it may be
expanded to a much larger size, such as several GB. In a further embodiment, the disk
may be expanded over time as a user of the client writes data to the disk. In one
embodiment, creating the virtual hard disk may further comprise creating one or more
headers including a user header and administrator header (e.g., logically separate
headers), each including the volume key. Creating the virtual hard disk may also
comprise creating a cleartext or non-encrypted header including the volume identifier,

and, in some embodiments, the cryptographic salt used to create the protection key.

31

WO 2012/162128 PCT/US2012/038521

[86] At step 310, an encryption engine executed by the server may encrypt the virtual
hard disk or payload of the virtual hard disk using the volume key. The encryption
engine may use any type and form of encryption method discussed herein, or any similar
encryption method. In some embodiments, the encryption engine can encrypt the virtual
disk using encryption technologies such as Bitlocker or TruCrypt. In other embodiments,
the encryption engine can encrypt the virtual disk using any whole-disk encryption
technology. The encryption engine can, in some embodiments, encrypt the virtual disk
according to the encryption attributes specified in the client request. In other
embodiments, an administrator of the system may set predetermined encryption
parameters to be used when encrypting the disk, such as specific encryption and hashing
algorithms to be used, including bit length and block sizes, and passwords or key files to
be used. In some embodiments, the encryption engine may also encrypt a user header of
the virtual hard disk with a user provided or preset password or key. In a further
embodiment, the administrator may set a policy allowing the user to change the virtual

hard disk user password or user header encryption key.

[87] At step 312, the encryption engine may encrypt an administrator header of the virtual
hard disk with the protection key. The administrator header may comprise the volume
key, such that decrypting the administrator header allows a decryption engine access to
the volume key, with which the payload may be decrypted. After encrypting the virtual
hard disk header, the encryption engine may delete or otherwise destroy the protection
key. In some embodiments in which the encryption engine generates the protection key
and destroys the protection key after encrypting the administrator header, the protection
key may never leave the encryption engine (e.g., no transmission or storage to a

removable device or the like may be allowed).

[88] At step 314, the server, encryption engine, or virtual hard disk creation engine may
store the first cryptographic secret to a first storage location, and the second
cryptographic secret to a second storage location. For example, the first storage location
may comprise a user network storage drive, specific to the user for whom the virtual hard

disk is created. The second storage location may comprise an administrator network

32

WO 2012/162128 PCT/US2012/038521

storage drive, accessible by administrators of the system. In some embodiments, storing
the secrets may comprise establishing a secure communication channel with each storage

location or a server maintaining each storage location.

[89] The virtual hard disk, once created and encrypted, may be transferred to a client
computing device, network storage of the user, or other storage location for use by the
user. In some embodiments, transferring the virtual hard disk may comprise establishing
a secure communication channel for transferring the disk. In some examples, the
encryption key generation and other encryption processes may be performed by the client

computing device or other device.

[90] Ilustrated in FIG. 3B is a flow diagram illustrative of an embodiment of a method
for providing secure access to an encrypted virtual hard disk. At step 322, an encryption
engine executed by a computing device may receive a request to access an encrypted
virtual hard disk. In some embodiments, the encryption engine may receive the request
from an application, operating system, service, or other module executed by the
computing device, while in other embodiments, the encryption engine may receive the
request from an application or operating system of a remote computing device, such as an
administrator server or computer. In some embodiments, the encryption engine may
receive the request from a file system filter driver. The encrypted virtual hard disk may
comprise a payload of encrypted data blocks encrypted with a volume key, and an
administrator header including the volume key encrypted with a protection key. In some
embodiments, the virtual hard disk may also include a user header including the volume
key, encrypted with a user password. In still other embodiments, the virtual hard disk
may also include a cleartext header. The cleartext header may include a volume
identifier or GUID, and, in some embodiments, cryptographic salt generated during
creation of the protection key as discussed above. In some embodiments, the request may
include a volume identifier corresponding to the encrypted virtual hard disk. In other
embodiments, the request may include a user identifier of the user for whom the virtual
hard disk was created. For example, an administrator attempting to unlock the virtual

hard disk may include the user identifier of the user for whom the virtual hard disk was

33

WO 2012/162128 PCT/US2012/038521

created. In yet other embodiments, the request may include a user identifier of the user
for whom the request was created. For example, a request generated by an application
may include the user identifier of the user on whose behalf the application is executing,

or a user identifier of a currently logged in user.

[91] At step 324, the encryption engine may, responsive to receiving the request, retrieve
a first cryptographic secret from a first storage location and a second cryptographic from
a second storage location. In some embodiments, the first storage location may comprise
a user storage location, such as a local storage volume, user directory on a network
storage device, or other user-specific storage. The second storage location may comprise
an administrator storage location, such as a storage volume local to an administration
server, an administrator directory on a network storage device, or other administrator-
specific storage. In some embodiments, the encryption engine may establish a secure
connection, such as an SSL connection, to the corresponding storage location to retrieve

either cryptographic secret.

[92] At step 326, the encryption engine may generate the protection key, based on the
user identifier, volume identifier, first cryptographic secret and second cryptographic
secret. Creating the protection key may comprise performing a deterministic algorithm
on the user identifier, volume identifier, first cryptographic secret and second
cryptographic secret to recreate the protection key that was initially created when the
virtual hard disk was created. In some embodiments, the encryption engine may further
base the protection key on cryptographic salt in the cleartext header of the virtual hard
disk.

[93] At step 328, the encryption engine may decrypt the administrator header using the
generated protection key. Decrypting the header may comprise performing any type or
form of decryption algorithm using the encrypted header and the protection key. In one
embodiment, the encryption engine may attempt to decrypt a plurality of headers of the
virtual hard disk using the protection key, iteratively proceeding through the plurality of
headers of the virtual hard disk until either running out of headers (at which point,

decryption fails, and the encryption engine may report an error) or unlocking or

34

WO 2012/162128 PCT/US2012/038521

decrypting a header. This may be done in instances where the administrator header may
not necessarily be the first header of the plurality of headers. After decrypting the
administrator header, in some embodiments, the encryption engine may delete or destroy
the protection key (e.g., without any transmission of the protection key). Thus, the
protection key never leaves the encryption engine and is not accessible to malicious third

parties.

[94] At step 330, the encryption engine may retrieve the volume key from the decrypted
administrator header, and at step 332, the encryption engine may decrypt the payload of
the virtual hard disk. In some embodiments, the virtual hard disk may be mounted or
otherwise provided to an operating system or application such that normal read/write
operations or read/write operations via a whole-disk encryption method such as

BitLocker or TruCrypt may be performed.

[95] Accordingly, through the systems and methods discussed herein, cryptographic keys
may be managed in a form that allows for offline user authentication through user
passwords, and administrator access without compromised security through centrally
storing administrator keys or utilizing an administrator passphrase. Additionally, the
same systems may be used to allow both online user authentication and user reset of
passwords without administrator assistance in a lost password scenario, without requiring
the user to be a member of a computer domain or Active Directory group. The user may
utilize the same mechanisms used by the administrator to unlock the virtual hard disk and
recover the volume key. If the user has forgotten his or her password, but is online and
can retrieve both cryptographic secrets, the encryption engine may decrypt the
administrator header, recover the volume key, and rewrite the user header including the
volume key, encrypted with a new user password. This allows for automated password
reset without administrator intervention and without transmitting the password over the

network.

[96] Furthermore, if the user is online and can retrieve both cryptographic secrets, then in
some embodiments, the encryption engine may utilize the methods discussed herein to

access the virtual hard disk without requiring the user to enter their user password. This

35

WO 2012/162128 PCT/US2012/038521

may be done for convenience and efficiency, as well as reducing the number of

passwords a user is required to enter when logged into an authentication system.

[97] FIG. 4 is a block diagram illustrative of a method of centralized authentication and
access to encrypted virtual hard disks. In brief overview, a client computer 102 may
communicate via an authentication plug-in 420 with a secure network storage server 430.
In some embodiments, the authentication plug-in 420 may comprise a XenVault plug-in
manufactured by Citrix Systems, Inc. The secure network storage server 430 may
comprise a XenVault server, also manufactured by Citrix Systems, Inc. Although
illustrated as separate, in some embodiments, authentication plug-in 420 may be part of
application delivery client 270, and/or secure network storage server 430 may be part of

server 106.

[98] At 402, the application delivery client 270 may transmit a user identifier and
password to the application delivery server 280. This may be done, for example, when
the user logs in. At 404, the application delivery server 280 may respond with a token.
The token may be a cryptographic hash, random data, or other data string unique to the

user login session. The token may be passed to the authentication plug-in 420 at 406.

[99] At 408, the token may be transmitted to the secure network storage server 430. The
secure network storage server may comprise a storage location for one of the
cryptographic secrets, discussed above. In some embodiments, transmitting the token to
the secure network storage server 430 may comprise establishing a secure

communication channel, such as an SSL connection.

[100] The token may be passed to the application delivery server 280 at 410. In some
embodiments, the secure network storage server 430 may establish a secure
communication channel with the application delivery server. In other embodiments, the
secure network storage server and application delivery server 280 may be behind a
firewall or other security zone, and may therefore not require additional security between

them.

36

WO 2012/162128 PCT/US2012/038521

[101] The application delivery server 280 may check the token received from the secure
network storage server 430 against a database of currently valid tokens, or in some
embodiments, may verify the token by checking a hash of the token against a user
identifier transmitted with the token. If the token is valid, then at 412, the application
delivery server 280 may return a validation response to secure network storage server
430. At 414, the secure network storage server 430 may return the validation response to
the authentication plug-in 420. In some embodiments, the secure network storage server
430 may further provide access to a storage location or other protected resources,

responsive to the token verification.

[102] Accordingly, a single sign-on may be used to authenticate the user and receive a
token which may be automatically provided to additional servers and verified with the
token issuer. Once connected, the encryption engine may retrieve the cryptographic
secrets and generate the protection key, providing access to the encrypted virtual hard

disk without requiring the user password.

[103] The systems and methods discussed herein may also be used to provide a “kill pill”
or disable the user header of an encrypted virtual hard disk, preventing user access
without deleting the information stored within the virtual hard disk. For example, if a
user’s laptop is stolen by a malicious attacker, the attacker may attempt brute force
decryption methods or dictionary attacks to decode the user header and recover the
volume key. While some systems may provide for destroying the virtual hard disk in
response to a predetermined number of failed access attempts, this results in the
permanent loss of corporate data within the virtual hard disk that may be valuable,
particularly if the laptop is recovered. In one embodiment, the user header of the virtual
hard disk may be deleted, while still retaining the administrator header and payload. If
the device is recovered or the attacker otherwise defeated, the administrator header can be
used to recover the volume key and generate a new user header, similar to the methods

discussed above regarding user password resetting.

[104] In one embodiment, a security agent on the computing device may be configured to

periodically contact a server, authentication server, security server, or other entity, either

37

WO 2012/162128 PCT/US2012/038521

at predetermined intervals, whenever the computing device finds a new network
connection, or at other times. The security agent may comprise a service, dacmon,
application, routine, or other executable code for communicating with a server and
deleting a user header of a virtual hard disk. In some embodiments, the server may be
configured to deliver a “kill pill”, token, or other message indicating that the security
agent should delete the user header. For example, if a consultant’s contract expires or a
user is terminated from the corporation, or the user notifies the organization that their
computing device has been stolen or otherwise compromised, an administrator may
configure the server to deliver the kill pill to the computing device to delete the user
header (e.g., without deleting the administrator header) and prevent the user from

accessing the virtual hard disk.

[105] In another example, the security agent may also act as a “dead man’s switch” in case
the computing device is offline for an extended period. The security agent may execute a
timer function. If the timer, representing a “lease period” or how long the user can use
the encrypted virtual hard disk without needing to communicate with a security server,
expires, the security agent may delete the user header. This may be done to prevent an
attacker from using a brute force attack on the user header while keeping the computing
device offline, or otherwise force a user to periodically check in with the server (and

incidentally retrieve any kill pill that is waiting to be delivered).

[106] As discussed above, if the user header is deleted, either via a kill pill or expiration of
the timer, the virtual hard disk is not destroyed. If the user is still privileged or part of the
organization, the user may log in or otherwise authenticate to the server and retrieve the
cryptographic secrets to generate the protection key to decrypt the administrator header
and retrieve the volume key. The user or encryption engine may then generate a new
user header with the decrypted volume key and access the protected data in the virtual
hard disk. In one example, the user or encryption engine may determine that a user
header has been deleted for various reasons. In such a case, the user or encryption engine
(e.g., user device or server) may automatically generate the new user header upon a next

login/authentication of the user associated with the virtual hard disk to the server in

38

WO 2012/162128 PCT/US2012/038521

response to determining that the user header has been deleted. In some examples, the
server may require that the condition under which the user header was deleted match with
various pre-defined or specific qualifying conditions (e.g., not logging in for a threshold
amount of time, too many failed attempts, etc.) to re-generate the user header. Otherwise
(e.g., the specified conditions are not met), a user may be required to perform various
actions, other than logging into the server, to have the user header re-generated and
access restored, such as bringing the computing device into an organization or service
location. Accordingly, the methods and systems discussed herein provide additional

security without destruction of corporate information.

[107] It should be understood that the systems described above may provide multiple ones
of any or each of those components and these components may be provided on either a
standalone machine or, in some embodiments, on multiple machines in a distributed
system. The systems and methods described above may be implemented as a method,
apparatus or article of manufacture using programming and/or engineering techniques to
produce software, firmware, hardware, or any combination thereof. In addition, the
systems and methods described above may be provided as one or more computer-
readable programs embodied on or in one or more articles of manufacture. The term
"article of manufacture” as used herein is intended to encompass code or logic accessible
from and embedded in one or more computer-readable devices, firmware, programmable
logic, memory devices (e¢.g., EEPROMs, ROMs, PROMs, RAMs, SRAMs, etc.),
hardware (e.g., integrated circuit chip, Field Programmable Gate Array (FPGA),
Application Specific Integrated Circuit (ASIC), etc.), electronic devices, a computer
readable non-volatile storage unit (e.g., CD-ROM, floppy disk, hard disk drive, etc.).
The article of manufacture may be accessible from a file server providing access to the
computer-readable programs via a network transmission line, wireless transmission
media, signals propagating through space, radio waves, infrared signals, etc. The article
of manufacture may be a flash memory card or a magnetic tape. The article of
manufacture includes hardware logic as well as software or programmable code
embedded in a computer readable medium that is executed by a processor. In general,

the computer-readable programs may be implemented in any programming language,

39

WO 2012/162128 PCT/US2012/038521

such as LISP, PERL, C, C++, C#, PROLOG, or in any byte code language such as
JAVA. The software programs may be stored on or in one or more articles of

manufacture as object code.

[108] While various embodiments of the methods and systems have been described, these
embodiments are exemplary and in no way limit the scope of the described methods or
systems. Those having skill in the relevant art can effect changes to form and details of
the described methods and systems without departing from the broadest scope of the
described methods and systems. Thus, the scope of the methods and systems described
herein should not be limited by any of the exemplary embodiments and should be defined

in accordance with the accompanying claims and their equivalents.

40

WO 2012/162128 PCT/US2012/038521

What 1s claimed is:

1. A method comprising:

determining, by a computing device, a first encryption secret and a second encryption
secret;

generating, by the computing device, an encryption key based on an encryption algorithm
using the first encryption secret and the second encryption secret;

encrypting, by the computing device, a header of a data storage using the encryption key,
wherein the header of the data storage stores a volume key used to encrypt at least a payload of
the data storage;

deleting, by the computing device, the encryption key after encrypting header; and

storing, by the computing device, the first encryption secret to a first storage location and
the second encryption secret to a second storage location, wherein the first storage location and

the second storage location correspond to different network locations.

2. The method of claim 1, wherein the encryption key is deleted without allowing any

transmission of the encryption key.

3. The method of claim 1, wherein generating the encryption key based on the encryption

algorithm further uses a volume identifier of the data storage.

4. The method of claim 1, further comprising:
encrypting a second header of the data storage, different from the header encrypted using
the encryption key, using a key different from the encryption key, wherein the second header

stores the volume key.

5. The method of claim 4, further comprising:
determining that the second header has been deleted;
in response to determining that the second header has been deleted, determining whether

a user associated with the data storage has been authenticated; and

41

WO 2012/162128 PCT/US2012/038521

in response to determining that the user associated with the data storage has been

authenticated, re-generating the second header.

6. The method of claim 4, further comprising:

determining that at least one predefined condition has been satisfied; and

in response to determining that the at least one predefined condition has been satisfied,
transmitting a command to delete the user header without deleting the header encrypted using the

encryption key.

7. The method of claim 6, wherein the at least one predefined condition includes expiration

of a time period.

8. The method of claim 6, wherein the at least one predefined condition includes a number

of failed authentication attempts.

9. A method comprising:

receiving, by a computing device, a request to decrypt at least a payload of a data storage
encrypted using a first key;

retrieving, by the computing device, a first encryption secret from a first network location
and a second encryption secret from a second network location;

generating, by the computing device, a second key using the first and second encryption
secrets;

decrypting, by the computing device, a header of the data storage using the second key;

retrieving, by the computing device, the first key from the decrypted header; and

decrypting, by the computing device, the at least a payload of the data storage.

10. The method of claim 9, wherein the second key is further generated using at least one of:

a volume identifier of the data storage and a user identifier of a user associated with the data

storage.

42

WO 2012/162128 PCT/US2012/038521

11. The method of claim 9, further comprising deleting the generated second key after
decrypting the header of the data storage and without any transmission of the generated second

key.

12. The method of claim 9, wherein the first network location is a user storage location and

the second network location is an administrator storage location.

13. The method of claim 9, wherein the data storage is a virtual hard disk mountable to a

user’s computing device.

14. The method of claim 9, wherein generating the second key is further performed using a

cryptographic sale stored in a cleartext header of the data storage.

15. A non-transitory computer readable medium storing computer readable instructions that,
when executed, cause the apparatus to:

determine a first encryption secret and a second encryption secret;

generate an encryption key based on an encryption algorithm using the first encryption
secret and the second encryption secret;

encrypt a header of a data storage using the encryption key, wherein the header of the
data storage stores a volume key used to encrypt at least a payload of the data storage;

delete the encryption key after encrypting header; and

store the first encryption secret to a first storage location and the second encryption secret
to a second storage location, wherein the first storage location and the second storage location

correspond to different network locations.

16. The non-transitory computer readable medium of claim 15, wherein the encryption key is

deleted prior to any transmission of the encryption key.
17. The non-transitory computer readable medium of claim 15, wherein generating the

encryption key based on the encryption algorithm further uses a volume identifier of the data

storage.

43

WO 2012/162128 PCT/US2012/038521

18. The non-transitory computer readable medium of claim 15, further comprising
instructions for:

encrypting a second header of the data storage, different from the header encrypted using
the encryption key, using a key different from the encryption key, wherein the second header

also stores the volume key.

19. The non-transitory computer readable medium of claim 18, further comprising
instructions for:

determining that the second header has been deleted;

in response to determining that the second header has been deleted, determining whether
a user associated with the data storage has been authenticated; and

in response to determining that the user associated with the data storage has been

authenticated, re-generating the second header.
20. The non-transitory computer readable medium of claim 19, wherein the data storage is a

virtual storage disk mounted to a computing device of the user and wherein the second header is

re-generated to the user’s computing device.

44

w

PCT/US2012/038521

1/10

WO 2012/162128

%
>
%
%

25 2%
Gt
fadasaddnsadany

rrrrrrrssy
fsssisd

wxxw\w«c\w.“\
AR,

)

y 545 \““““““““““mmxw
P

A vﬂmﬂmmmmww
B,
P \\\\w 3
Yot .
A I

7
%
operrrisssosiirs,
Z

R

tennasssrsssaandl;
S

PCT/US2012/038521

2/10

WO 2012/162128

v
Yer s
“&M RV

%

& o e,
4
3
%
%
Y 7
[
S
'R
L
7z
:
P o
[¢
i
X
A
P
3
o
% iz
H I
% Fa
R g
3 ¢ %
£ Z N
R 4 Z .
A . ..
z F £ P
A % S
% g 7
s -ty %%
NG
£,

Figure 1B

Vi
s ey
£ g
P B ““» .
e Y.

o
M

*

ol

RO
\§

o e
i e #

Y
% :
7% £
Grrrrrrrrrr, m

g

Y
£y
3

PCT/US2012/038521

WO 2012/162128

3/10

S

PE N
’i {::\ 2y

e
-

SN
L

PEVEVERVEVEVERVRVEVERVIVEVERVRT

gy

[EOCEVERTRTeE Neverer

vevivcrverieeedy

Figure 1C

PCT/US2012/038521

WO 2012/162128

4/10

vZ @inbi

G0Z X8I0 PIBH 1BNLIA

07 S320|g ¥sip pediiouy

{907 Aoy swnion)
707 Jepesy padAious

N/

vie
JBBI0US So88 WsAs Buneiado '$300i0 peidAinus S58% JBALD 80IAB(]

{Asy awnjoa '$yo0ig paydAious) UiBw

.

SOOI ¥SID 1O maia pasdAioer

- =

SLUNOA YSID 1O MBIA WSSAG

[]
< =
012 {piomssed

lepesy
paydAious) UiBig

<~

AT
Aoy swnion 106
— JOPBSY JBanud

A JOA

DIOMSSR

802
JOSTT LU0 PBAISOSRS DIOMSSBY

PCT/US2012/038521

WO 2012/162128

S5/10

gz ainbi-

L0C MBI PieH [BRLIA

POz $H0IG %3P paydiiouy \

{007 ASY BUWNOA) {007 Aay BUINIOA)
£0¢ lepesy 91¢ ispeay
Jasn peydAioug wuipe padiiousg

{022 QIND SWNoA)
Q17 Jopeay gl Jesin

Si=

¢

01z {(puomssed 922
Sepeay Jesn gzz Aay (5194008
aydAious) e uoosi0id 189 ‘01 desn ‘o

NS

L7 (A8 swnoa 5% oA ZL7 A8y sWnoa
‘Sxomid pe1diAious) UIBW 186 — jopesy Jesouly

@Eaﬁ xwﬁ
10 MBIA DBIGAIDUS-UON

= _~

BUINIOA HSID 10 MBIA Eﬁ@»my

<~ < >

orz (A uonosioud
Jspeay upupe
paydAious) yiep

~~ =~

SWINIOA) UIBI

(A
{1 Jesn

dvid
Z 184088

Yed
| 18108Q

WO 2012/162128

TN
N

User storage
232

A

PCT/US2012/038521

6/10
Volume 1D 229\
Disk Image
Volume Salt || cleartext header
218
User D 222

N~

Secret 1 224A

Secrat 2 22418

Administrator

Network storage

L

234

{1

Protection key
236

Figure 2C

PCT/US2012/038521

7/10

WO 2012/162128

- === === == 1
I
_ Q02 M8 piBH BRUIA
Y ——————————————— | | 0z 202 312 812
“ _ _ HI0IQ 4SIP Jopesy iopesy iepeay
_ %MMM@ “ _ poidAiaug BN LHUUDYY (el
1 oszeoeds ye | |
I o o o — — — — — — — — — — — — — — — _
{8z _ Yee
062 g8z
aubug 018D MM\MWM _ L 181093 q
. _ L0662 200G Ysig
uondAious NS IBNLIA uoneaddy L e e
06¢
[m—————— e —] aubuy 002 SNBSS USI PIBH [BNIIA
_ NGbZ I uodAous
I
Loy “
_ o _ 042 81¢
| o | Jen ABaed suibuz Aaijod
_ 057 _ uonenddy ¢ /7 aonies uswsbeuepy
“ g ddy “ |||||||
“ Ove | _1 ||||||||||||||||||||
I
_ vope suoneoiddy | _ NZwe 000 q42v2 A\ AL
Hed I
_ v ddy BABS L_ _ p diby g ddy v ddy
IIIIIIIIIIIIIIIIIII _ Zy¢ suoneoyddy wseD
901 Jerieg Sy L
201 Jendwod wslD

WO 2012/162128

PCT/US2012/038521

8/10

Receive request including user 1D to
generate encrypted virtual hard disk
302

A 4

Generate volume identifier, volume
key, first secret, and second secret
304

Create protection key
306

A 4

Create virtual hard disk
308

- Y \
Encrypt virtual hard disk payload
with volume key

310

\-

A 4

-
Encrypt virtual hard disk header with
protection key
312
N\ J

A 4

Store first secret to first location and
second secret {0 second location
314

Figure 3A

WO 2012/162128

9/10

Receive reguest {0 access
encrypted virtual hard disk
322

A 4

Retrieve first sacret from first
location and second secreat from
second location
324

A 4

Generate protection key
328

A 4

Decrypt administrator header
328

A 4

Hetrieve volume key from decrypled

header
230

A 4

|
|
|
|
|
|

Decrypt payload
332

|
|
|
|
|
|

Figure 3B

PCT/US2012/038521

PCT/US2012/038521

WO 2012/162128

10/18

& 8.nbi

201 indwon ween

0%
Uy |
042 8o Asalep agy
uoyesyddy ui-Bnyd uonrInUBYINY
/\ 2 /\
paomssed 8%
— ‘1 Jas
e i N UENO L
ENEH 55
< LUoNERHEA
Ziy
usiiepliep
0RZ 1BAIBS v 0eY
IBAS
Aleaiap uoneoiddy
A abeI0IS WIOMIBN BIN08g
0oLy
USyo |
oL JBAIBG

INTERNATIONAL SEARCH REPORT International application No.

PCT/US 12/38521

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - HO4K 1/04 (2012.01)
USPC - 380/40
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification
IPC(8): HO4K 1/04 (2012.01)
USPC: 380/40

system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 380/30, 28, 277 (keyword limited; terms below))

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PubWEST (PGPB, USPT, EPAB, JPAB); Google Scholar; Google Patents; FreePatentsOnline. Search terms used: virtual-disk virtual-
hard-disk virtual-disk-drive virtual-hard-drive volume-key encrypt-volume-key, cryptographic-key encryption-secret first-secret second-
secret encryption-algorithm, payload encrypt-payload content, header ...

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2005/0086504 A1 (YOU et al.) 21 April 2005 (21.04.2005) entire document, especially 1-20
Abstract; Fig.3; para [0009], [0017], [0019], [0021], [0029], [0048], [0049), {0072], [0074]), [0075)
Y US 2010/0153703 A1 (DODGSON et al.) 17 June 2010 (17.06.2010) entire document, 1-20
especially Abstract; para [0013], [0060], [0064], [0116], [0118), [0122], [0123), [0125], [0126],
[0131], [0165], [0167], [0168], [0175], [0178), [0191]
Y US 2004/0083369 A1 (ERLINGSSON et al.) 29 April 2004 (29.04.2004) entire document, 9-14
especially Abstract; para [0008], [0046], [0052]
A US 2009/0106551 A1 (BOREN et al.) 23 April 2009 (23.04.2009) entire document 1-20

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the intemational filing date or priority
date and not in conflict with the aeﬁlican'on but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

13 July 2012 (13.07.2012)

Date of mailing of the international search report

23 JUl 2012

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.0. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 574.273-3201

Authorized officer: .
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - wo-search-report

