
US 20220100386A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0100386 A1

Kumar et al . (43) Pub . Date : Mar. 31 , 2022

Publication Classification (54) SNAPSHOT BLOCK STORAGE PATH
STRUCTURE

(71) Applicant : Amazon Technologies , Inc. , Seattle ,
WA (US)

(51) Int . Ci .
G06F 3/06 (2006.01)

(52) U.S. CI .
CPC G06F 3/0611 (2013.01) ; G06F 3/065

(2013.01) ; G06F 3/067 (2013.01) ; G06F
37064 (2013.01)

(72) Inventors : Sandeep Kumar , Sammamish , WA
(US) ; Chakravarthi Kalyana
Valicherla , Redmond , WA (US) ; Ashish
Palekar , Clyde Hill , WA (US) ; Rucha
Nene , Seattle , WA (US) ; Shailendra
Verma , Bellevue , WA (US)

(57) ABSTRACT

(21) Appl . No .: 17 / 303,079
(22) Filed : May 19 , 2021

Generally described , one or more aspects of the present
application relate to a public snapshot service for creating
and managing block - level snapshots . For example , the pub
lic snapshot service can create a snapshot based on (i) a
specification of a parent snapshot to be used as a basis for a
given snapshot , and (ii) a specification of the data blocks to
be backed up in the given snapshot . The data blocks in the
snapshot may be stored in a specific storage path structure
that facilitates computation of a block difference with
respect to the parent snapshot .

Related U.S. Application Data
(63) Continuation of application No. 16 / 586,640 , filed on

Sep. 27 , 2019 , now Pat . No. 11,016,671 .

ELASTIC COMPUTING SYSTEM 120

VOLUMES 100

AGG

o

DO
Ut

BUCKETS 111 INSTANCES 116 BLOCK STORE
SERVERS 105

0 0

Os A
DO VO

c oo Co o

vo UO

OBJECT STORAGE
SERVERS 110

COMPUTE SERVERS
115

NETWORK
104

USER COMPUTING DEVICES 102

Patent Application Publication Mar. 31 , 2022 Sheet 1 of 17 US 2022/0100386 A1

ELASTIC COMPUTING SYSTEM 120

VOLUMES 106

Oo

DO

no
> 0 1

onand
00

0

eo

BUCKETS 111 INSTANCES 116 BLOCK STORE
SERVERS 105

Rog
Out

o oo * . OOO
ooo = >

o
06 ? 0 } ***

910

oo

COMPUTE SERVERS OBJECT STORAGE
SERVERS 110

NETWORK

USER COMPUTING DEVICES 102

FIG . 1

200

ELASTIC COMPUTING SYSTEM 120

o

O

w

GOR

Patent Application Publication

+

Oo

VO

CREATE SNAPSHOTS .

PUBLIC SNAPSHOT SERVICE 130

" RESTORE SNAPSHOTS

CLIENT BLOCK STORE VOLUMES 106

RESTORE SNAPSHOTS
CREATE SNAPSHOTS

Mar. 31 , 2022 Sheet 2 of 17

-- -- -- -- -- -- -- -- -- -- -- -- -- --

0 0

wwwwww 0 0

*

oGo nossos GO

50

CLENT STORAGE SERVERS 103

US 2022/0100386 A1

FIG . 2

300

ELASTIC COMPUTING SYSTEM 120

Patent Application Publication

PUBLIC SNAPSHOT SERVICE 130

Jia

CONTROL PLANE 140

DATA PLANE 132

USER COMPUTING DEVICES 102

METADATA CACHE 134

KEY MANAGER 144

NETWORK 104

INDEX CACHE 136

DATABASE 146

Mar. 31 , 2022 Sheet 3 of 17

$

OBJECT STORAGE 148

000

o

SNAPSHOT WORKERS 138

000 OOO
0

o

< !

BLOCK STORE 150

CLENT STORAGE SERVERS 103

US 2022/0100386 A1

FIG . 3

400

102

140

132

146

348

USER COMPUTING DEVICE

CONTROL PLANE

DATA PLANE

DATABASE

OBJECT STORAGE

KEY MANAGER

(1) START BLOCK SNAPSHOT

Patent Application Publication

(2) GENERATE DATA KEY (3) RETURN KEY

(4) & (5) REQUEST AND ALLOCATE NEW SNAPSHOT D
(6) RETURN

- (7) PUT BLOCK

(8) ACCESS VALIDATION CHECK

Mar. 31 , 2022 Sheet 4 of 17

(9) OBTAIN DECRYPTED DATA KEY

(10) PUT BLOCK RECORD

(11) ENCRYPT BLOCK DATA USING DECRYPTED DATA KEY

- (12) PUT OBJECT (BLOCK

(13) UPDATE BLOCK RECORD

(14) STATUS

US 2022/0100386 A1

FIG . 4

PUBLIC SNAPSHOT SERVICE 130

Patent Application Publication

DATA PLANE

CACHE 154

DECRYPT KEY

(3) DECRYPT KEY

KEY MANAGER 144

132

?

(1) PUT BLOCK

(4) GET BLOCK DETALS

DATABASE

(7) RESPONSE

(2) VALIDATE AUTHORIZE

(6) UPDATE

Mar. 31 , 2022 Sheet 5 of 17

USER COMPUTING DEVICES 102

(5) PUT OBJECT

OBJECT STORAGE 148

CACHE 152

(2) VALIDATE / AUTHORIZE

CONTROL PLANE 140

US 2022/0100386 A1

FIG . 5

Patent Application Publication Mar. 31 , 2022 Sheet 6 of 17 US 2022/0100386 A1

600

BLOCK - LEVEL SNAPSHOT CREATION ROUTINE

START

602

RECEIVE A SNAPSHOT CREATION REQUEST IDENTIFYING A PARENT
SNAPSHOT AND A SUBSET OF DATA BLOCKS

604

RECEIVE THE SUBSET OF DATA BLOCKS IDENTIFIED IN THE SNAPSHOT
CREATION REQUEST

GENERATE AN INCREMENTAL SNAPSHOT BASED ON THE SUBSET OF DATA
BLOCKS AND ONE OR MORE ADDITIONAL DATA BLOCKS ASSOCIATED WITH

THE PARENT SNAPSHOT

608

STORE THE INCREMENTAL SNAPSHOT NA SNAPSHOT REPOSITORY

610

STORE SNAPSHOT LINEAGE DATA IN A SNAPSHOT LINEAGE DATABASE

END

FIG . 6

Patent Application Publication Mar. 31 , 2022 Sheet 7 of 17 US 2022/0100386 A1

SNAPSHOT STORAGE PATH STRUCTURE GENERATION ROUTINE

START

702

RECEIVE A REQUEST TO CREATE A SNAPSHOT OF A STORAGE VOLUME
STORING A PLURALITY OF DATA BLOCKS

704

DETERMINE THAT A SUBSET OF DATA BLOCKS OF THE PLURALITY OF DATA
BLOCKS ARE IDENTICAL TO A CORRESPONDING SET OF BLOCKS

ASSOCIATED WITH A PARENT SNAPSHOT

GENERATE STORAGE PATH STRUCTURE DATA ASSOCIATED WITH THE
SNAPSHOT , THE STORAGE PATH STRUCTURE DATA INCLUDING (0) FIRST

PATH INFORMATION IDENTICAL TO PARENT PATH INFORMATION
ASSOCIATED WITH THE PARENT SNAPSHOT AND (I SECOND PATH

INFORMATION NOT IDENTICAL TO ANY PATH INFORMATION ASSOCIATED
WITH THE PARENT SNAPSHOT

708

STORE THE SNAPSHOT ALONG WITH THE STORAGE PATH STRUCTURE
DATA NA SNAPSHOT REPOSITORY

END

FIG . 7

Patent Application Publication Mar. 31 , 2022 Sheet 8 of 17 US 2022/0100386 A1

800

SNAPSHOT BLOCK DIFFERENCE COMPUTATION ROUTINE

START

802

RECEIVE A REQUEST TO COMPUTEA SNAPSHOT BLOCK DIFFERENCE
BETWEEN A FIRST SNAPSHOT AND A SECOND SNAPSHOT

804

DETERMINE FIRST SNAPSHOT STORAGE PATH STRUCTURE DATA
ASSOCIATED WITH THE FIRST SNAPSHOT AND SECOND SNAPSHOT
STORAGE PATH STRUCTURE DATA ASSOCIATED WITH THE SECOND

SNAPSHOT

806

DETERMINE A LIST OF DATA BLOCKS ASSOCIATED WITH THE SECOND
SNAPSHOT HAVING PATH INFORMATION NOT INCLUDED IN THE FIRST

SNAPSHOT STROAGE PATH STRUCTURE DATA

OUTPUT THE LIST OF DATA BLOCKS ASSOCIATED WITH THE SECOND
SNAPSHOT

END

FIG . 8

902

906

VOL6

Block 1

910B

Block 2

N = 1 <

910C

Block 3

Manifest Line , Starting Blockh , ending Block4 Manifest Line 4 , Starting Block - 8 , Ending Block 10 Manifest Line 7. Starting Block - 11 , Ending Block 13 Manifest Line 10 , Starting Block - 15 , Ending Block = 18 Manifest line 14 Starting Black 19. Ending Block 20

Patent Application Publication

Block 4 Blocks Block 6

1. Black Object l , Snapshot 2. Block Object Snapshot
3 Block Object , Snapshot 1
4 Bleck & Object Snadshot
5 Block 9 , Object 5 Shaoshor 1 6. Block 10 , Object 6 , Snapshot 7 Block Object Snapshop1 8. Block 12 , Object 8 , Snapshot 9 Block 1 objecten Snapshot

30 Block 15 , Oleg 310 , Snapshot 1 Block Objell , Snapshot 12 Block 18 , Object 12. Snapshot 1 Block 19 bar Saapshot 14_Block_20 , Object 14 Soapshot

Block 7

N - 3

Block 8 Blocks Block 10 Block 11 Block 12

N = 5

Block 13

Mar. 31 , 2022 Sheet 9 of 17

Block 14 Block 15 Block 16 Block 17 Block 18 Block 19 Block 20

US 2022/0100386 A1

FIG . 9

1000

(1) REQUEST METADATA FOR ACCESSING SNAPSHOT BLOCK

(2) IDENTIFY MANIFEST FRAGMENT CONTAINING ENTRY FOR REQUESTED BLOCK

Patent Application Publication

130

906

USER COMPUTING DEVICES

PUBLIC SNAPSHOT SERVICE

MANIFEST INDEX

904

(4) IDENTIFY
METADATA FOR ACCESSING THE REQUESTED BLOCK
(5) RETURN

METADATA FOR ACCESSING SNAPSHOT BLOCK

SNAPSHOT MANIFEST

Mar. 31 , 2022 Sheet 10 of 17

(3) RETRIEVE MANIFEST FRAGMENT

US 2022/0100386 A1

FIG . 10

Patent Application Publication Mar. 31 , 2022 Sheet 11 of 17 US 2022/0100386 A1

1100

MANIFEST INDEX GENERATION ROUTINE

RECEIVE SNAPSHOT MANIFEST

CREATE LOGICAL PARTITION OF M ENTRIES FROM
MANIFEST 1104

CREATE MANIFEST INDEX ENTRY INDICATING
STARTING BLOCK AND ENDING BLOCK FOR THEM

ENTRIES 1106

YES

MORE THAN M ENTRIES
REMAINING ?

NO

CREATE LAST MANIFEST INDEX ENTRY INDICATING
STARTING BLOCK AND ENDING BLOCK FOR

REMAINING ENTRIES

END ROUTINE

FIG . 11

Patent Application Publication Mar. 31 , 2022 Sheet 12 of 17 US 2022/0100386 A1

1200

METADATA IDENTIFICATION ROUTINE

RECEIVE REQUEST TO IDENTIFY METADATA FOR
ACCESSING A SNAPSHOT BLOCK 1202

IDENTIFY A MANIFEST FRAGMENT ASSOCIATED
WITH THE SNAPSHOT BLOCK

RETRIEVE MANIFEST FRAGMENT
1206

RETURN METADATA INDICATED IN MANIFEST
FRAGMENT 1208

END ROUTINE

FIG . 12

1303

1304

1302

Patent Application Publication

M

im
mm
mm

wenn

V

w

27

VAD
1

mig

1

13088

1310

13124

Sub - block 1

23088

Sub - block 2

13080

Sub - block 3

1306

130 & D

13118

1311C 13110

1

Sub - block 4 Sub - block 5

1 1

Sko

Song
So blocks 13128 Sub hac 102ka :

Sub - block 6

DO

Sub - block 7 Sub - block 8

1

I 1 1

Sub - block 3

Mar. 31 , 2022 Sheet 13 of 17

Sub - block 10 Sub - block 11

13100

Sub - block 12

1 I

??????
????
didididos
?????

0.0.0.0.0.0
OOOOO
???

????? .

torrent
www
momenna

FIG . 13

US 2022/0100386 A1

(2) GENERATE CHILD SNAPSHOT CONTAINING SUB BLOCK CHANGES (3) GENERATE AND
STORE WRITE - SET DESCRIBING CHILD SNAPSHOT

(1) TRANSMIT CHANGES
MADE TO VOLUME BACKED UP BYA PARENT SNAPSHOT

Patent Application Publication

(4) STORE CHILD SNAPSHOT

102

USER COMPUTING DEVICES

PUBLIC SNAPSHOT SERVICE

130

OBJECT STORAGE SERVERS

110

(5) REQUEST CURRENT SNAPSHOT OF VOLUME

(7) MERGE CHILD
SNAPSHOT TO PARENT SNAPSHOT ACCORDING TO WRITE - SET

Mar. 31 , 2022 Sheet 14 of 17

(6) RETRIEVE
PARENT AND CHILD SNAPSHOTS

(8) TRANSMIT CURRENT SNAPSHOT OF VOLUME

US 2022/0100386 A1

FIG . 14

Patent Application Publication Mar. 31 , 2022 Sheet 15 of 17 US 2022/0100386 A1

1500

CREATE WRITE REPRESENTATION AND WRITE - SET

RECEIVE A WRITE TO A SUB - BLOCK OF A PARENT
SNAPSHOT

CREATE A BUFFER
1504

1506
APPLY WRITTEN DATA TO THE SUB - BLOCK AS
MODIFICATIONS TO THE BUFFER TO CREATE

WRITE REPRESENTATION

CREATE WRITE - SET ENTRY INDICATING OFFSET
AND LENGTH OF DATA WRITTEN 1508

STORE THE WRITE REPRESENTATION AND WRITE
SET

END ROUTINE

FIG . 15

Patent Application Publication Mar. 31 , 2022 Sheet 16 of 17 US 2022/0100386 A1

SNAPSHOT MERGING PROCESS

RETRIEVE PARENT SNAPSHOT
1602

RETRIEVE WRITE REPRESENTATION AND WRITE
SET

IDENTIFY DATA WRITTEN WITHIN WRITE
REPRESENTATION ACCORDING TO WRITE - SET

MERGE PARENT SNAPSHOT BLOCK AND WRITE
REPRESENTATION TO CREATE A CHILD SNAPSHOT

BLOCK

END ROUTINE

FIG . 16

PUBLC SNAPSHOT SERVICE 130

MEMORY 180

Patent Application Publication

PROCESSOR 190

USER INTERFACE MODULE 182 OPERATING SYSTEM 184

NETWORK INTERFACE 192

SNAPSHOT CREATION UNIT 186 SNAPSHOT STORAGE PATH STRUCTURE GENERATION UNIT 187

COMPUTER READABLE MEDIUM 194

Mar. 31 , 2022 Sheet 17 of 17

SNAPSHOT BLOCK DIFFERENCE COMPUTATION UNIT 188

FIG . 17

US 2022/0100386 A1

US 2022/0100386 A1 Mar. 31 , 2022
1

SNAPSHOT BLOCK STORAGE PATH
STRUCTURE

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. applica
tion Ser . No. 16 / 586,640 , filed Sep. 27 , 2019 , the disclosure
of which is hereby incorporated by reference in its entirety .
The present application's Applicant previously filed the
following U.S. patent applications on Sep. 27 , 2019 , the
disclosures of which are hereby incorporated herein by
reference in their entireties :

U.S. applica
tion No.

Filing
Date Title

16 / 586,683

16 / 586,410

NETWORK - ACCESSIBLE BLOCK
LEVEL SNAPSHOTS
MANIFEST INDEX FOR BLOCK
LEVEL SNAPSHOTS
SUB - BLOCK MODIFICATIONS FOR
BLOCK - LEVEL SNAPSHOTS

Sep. 27 ,
2019
Sep. 27 ,
2019
Sep. 27 ,
2019

16 / 586,565

BACKGROUND

[0005] FIG . 2 depicts a schematic diagram of a network
environment in which the elastic computing system of FIG .
1 is used to implement a public snapshot service in accor
dance with aspects of the present disclosure .
[0006] FIG . 3 depicts a more detailed schematic diagram
of a network environment in which the elastic computing
system of FIG . 1 is used to implement a public snapshot
service in accordance with aspects of the present disclosure .
[0007] FIG . 4 depicts an example workflow for creating a
snapshot within the network environment of FIG . 3 in
accordance with aspects of the present disclosure .
[0008] FIG . 5 depicts another example workflow for cre
ating a snapshot within the network environment of FIG . 3
in accordance with aspects of the present disclosure .
[0009] FIG . 6 is a flowchart of an example process for
creating a snapshot in accordance with aspects of the present
disclosure .
[0010] FIG . 7 is a flowchart of an example process for
generating snapshot storage path structure data in accor
dance with aspects of the present disclosure .
[0011] FIG . 8 is a flowchart of an example process for
computing a snapshot block difference between two snap
shots in accordance with aspects of the present disclosure .
[0012] FIG . 9 depicts an example volume , snapshot mani
fest , and manifest index in accordance with aspects of the
present disclosure .
[0013] FIG . 10 depicts an example workflow for identi
fying metadata for accessing a snapshot block within the
network environment of FIG . 3 in accordance with aspects
of the present disclosure .
[0014] FIG . 11 is a flowchart of an example process for
generating a manifest index in accordance with aspects of
the present disclosure .
[0015] FIG . 12 is a flowchart of an example process for
identifying metadata for accessing a snapshot block in
accordance with aspects of the present disclosure .
[0016] FIG . 13 depicts an example volume and snapshots
of the volume in accordance with aspects of the present
disclosure .
[0017] FIG . 14 depicts an example workflow for creating
a child snapshot from sub - block level modifications and
merging parent and child snapshots in accordance with
aspects of the present disclosure .
[0018] FIG . 15 is a flowchart of an example process for
creating a child snapshot and write - set for sub - block modi
fications made to a snapshot of a volume in accordance with
aspects of the present disclosure .
[0019] FIG . 16 is a flowchart of an example process for
merging a parent and child snapshot in accordance with
aspects of the present disclosure .
[0020] FIG . 17 depicts a general architecture of a com
puting device or system providing a public snapshot service
in accordance with aspects of the present disclosure .

[0002] Cloud computing , in general , is an approach to
providing access to information technology resources
through services , such as Web services , where the hardware
and / or software used to support those services is dynami
cally scalable to meet the needs of the services at any given
time . In cloud computing , elasticity refers to network
delivered computing resources that can be scaled up and
down by the cloud service provider to adapt to changing
requirements of users . The elasticity of these resources can
be in terms of processing power , storage , bandwidth , etc.
Elastic computing resources may be delivered automatically
and on - demand , dynamically adapting to the changes in
resource requirement on or within a given user's system . For
example , a user can use a cloud service to host a large online
streaming service , set up with elastic resources so that the
number of webservers streaming content to users scale up to
meet bandwidth requirements during peak viewing hours ,
and then scale back down when system usage is lighter .
[0003] A user typically will rent , lease , or otherwise pay
for access to resources through the cloud , and thus does not
have to purchase and maintain the hardware and / or software
to provide access to these resources . This provides a number
of benefits , including allowing users to quickly reconfigure
their available computing resources in response to the
changing demands of their enterprise , and enabling the
cloud service provider to automatically scale provided com
puting service resources based on usage , traffic , or other
operational needs . This dynamic nature of network - based
computing services , in contrast to a relatively static infra
structure of on - premises computing environments , requires
a system architecture that can reliably re - allocate its hard
ware according to the changing needs of its user base .

a

DETAILED DESCRIPTION

Introduction

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] Generally described , aspects of the present disclo
sure relate to the more interactive and efficient creation and
management of " snapshots " (e.g. , computing objects that
each represent values of every block of a block storage
volume or device at a specific point in time) , for example , of
volumes of data stored using block storage within a net
worked elastic computing system or on - premises storage

[0004] FIG . 1 depicts a schematic diagram of an elastic
computing system in which various embodiments according
to the present disclosure can be implemented .

US 2022/0100386 A1 Mar. 31 , 2022
2

9

systems external to such a networked elastic computing
system (also referred to herein as private data storage
servers) . In some implementations , the described technology
can beneficially facilitate faster and more efficient snapshot
creation and management for snapshots created within a
cloud environment as backups of external block storage
volumes (e.g. , block storage volumes stored outside of the
cloud environment) . In general , a volume can correspond to
a logical collection of data , such as a set of data maintained
on a user's own proprietary data server or maintained on a
data server in the cloud on behalf of a user . Snapshots are
typically used to back up block storage , such as a hard drive ,
so that the device can be reverted to a previous state (e.g. ,
in the event of data corruption or failure) .
[0022] Typically , such snapshots are created periodically ,
and including all of the available data of the volume in each
of the snapshots may consume unnecessary amounts of
network , processor , and storage resources , especially if most
of the data included in the snapshots remains unchanged
between snapshots . Thus , in some cases , to reduce the
amount of computing resources consumed in creating and
storing such snapshots , snapshots may be incremental in that
they only store the data of blocks that have changed in value
since the most recent snapshot (or a “ parent ” snapshot) .
However , identifying the blocks that have changed in value
since the most recent snapshot by performing a block - by
block data comparison can be time - consuming , especially
for snapshots associated with large amounts of data . Also ,
storing all differences (e.g. , all blocks that have changed in
value since the most recent snapshot) may involve storing
unnecessary information such as changes to page files or
other temporary data that may not be needed in a snapshot .
[0023] One option to address the aforementioned prob
lems is to create snapshots directly within an operating
system , as the operating system generally has knowledge of
what blocks represent what files (and thus can exclude
blocks corresponding to files that are irrelevant) . However ,
this generally requires that the operating system directly
manage and create snapshots . Because the operating system
has limited local resources , this option can be undesirable .
[0024] The presently disclosed technology addresses these
problems by providing an interface through which a client
can specify to a snapshot storage service an ancestral
snapshot (also referred to herein as a parent snapshot) of a
storage volume , and specify and / or provide individual
blocks (or sub - blocks) of the storage volume that have
changed relative to the ancestral snapshot . For example ,
such a client may call an API for creating a snapshot (e.g. ,
of a storage volume of a cloud provider network or of a
storage volume outside the cloud provider network such as
on - premises of a customer of the cloud provider network)
and specify the parent snapshot in the API call . Subse
quently , the client can repeatedly call another API for adding
blocks (or sub - blocks) to the snapshot . When finished , the
client can call yet another API for sealing the snapshot ,
rendering the snapshot immutable . Thus , the snapshot stor
age service can create a snapshot based on the blocks or
sub - blocks specified / provided by the client , which may not
include all the blocks in the storage volume or all the blocks
that have changed since the creation of the ancestral snap
shot . By allowing the client to specify a parent snapshot to
be used for creating the snapshot and / or the blocks (or
sub - blocks) to be added to the snapshot , differential snap
shots (also referred to herein as incremental snapshots or

child snapshots) can be created with only client - specified /
provided blocks (or sub - blocks) that have changed relative
to a past snapshot (e.g. , where the client - specified blocks
may exclude blocks (or sub - blocks) that have changed on
the disk but are unnecessary to store in the snapshot) .
[0025] Further , for various purposes such as to create
differential or incremental snapshots at the user's request or
to provide a list of changed blocks to the user for logging ,
the snapshot storage service may compute the difference
between two snapshots . However , computing the difference
by performing a block - by - block data comparison can be
time - consuming , especially for snapshots associated with
large amounts of data . To address this issue , the present
application provides an improved method of storing snap
shots in a manner that speeds up the block difference
calculation process . For example , at the time of generating
a child snapshot based on a parent snapshot , if a block in the
child snapshot is not changed with respect to a correspond
ing block in the parent snapshot , the block is stored such that
the block has the same path structure as the corresponding
block in the parent snapshot (e.g. , stored in the storage
directory path having the same name) . If a block in the child
snapshot has been changed since the creation of the parent
snapshot , the block is stored such that the block has a path
structure that is different from the corresponding block in the
parent snapshot (e.g. , stored in the storage directory path
having a name different from that storing the corresponding
block in the parent snapshot) . Thus , the difference can be
computed much more quickly by comparing the path struc
ture of the blocks in the two snapshots (e.g. , the names of the
storage directory paths storing the two blocks) , without
having to perform a block - level data comparison , thereby
reducing the consumption of valuable processing resources .
[0026] The aforementioned problems , among others ,
addressed in some embodiments by the disclosed techniques
for creating and managing snapshots of storage volumes .
For example , as described above , the present application
provides a snapshot creation process that can create a
snapshot based on (i) a specification of a parent snapshot to
be used as a basis for a given snapshot , and (ii) a specifi
cation of the data blocks to be backed up in the given
snapshot . Thus , only data blocks specified by the user need
to be retrieved and stored as part of the snapshot , thereby
reducing the consumption of valuable network , processor ,
and storage resources . As another example , as described
above , at the time of generating a child snapshot based on a
parent snapshot , if a data block in the child snapshot has not
been changed with respect to a corresponding block in the
parent snapshot , the block may be stored such that the block
has the same path structure as the corresponding block in the
parent snapshot . If a data block in the child snapshot has
been changed since the creation of the parent snapshot , the
block may be stored such that the block has a path structure
that is different from the corresponding block in the parent
snapshot . By doing so , the difference between the two
snapshots can be computed much more quickly by compar
ing the path structure of the blocks in the two snapshots ,
without having to perform a block - level data comparison ,
thereby reducing the consumption of valuable processing

are

a

resources .

[0027] As described herein , another aspect of the disclo
sure relates to identification of metadata for accessing a
snapshot block . Generally when a snapshot is created and
stored , the snapshot is partitioned into a plurality of logical

US 2022/0100386 A1 Mar. 31 , 2022
3

partitions or objects that are stored on object storage servers .
During the initial creation of the snapshot , a “ table of
contents ” or “ manifest ” file may be written to the object
storage servers . A snapshot manifest can be arranged as an
ordered list of block indices (e.g. , logical blocks of a block
storage device forming the basis of the snapshot) and can
identify the object on the object storage service that holds
data corresponding to that block . A manifest can include
additional data regarding each block such as metadata
relating to the storage location of the block and a snapshot
ID . When a user desires to read or request block of a
snapshot stored in the public snapshot service described
herein , the user may be required to identify the particular
objects storing data of the block . The user may be required
to identify specific metadata relating to the storage location
of the block to gain access to the snapshot block . For
example , the public snapshot service may require metadata
such as an access token which may identify or relate to the
storage location of the underlying block . Such metadata and
location information regarding which object corresponds to
a block of a snapshot can be retrieved from the snapshot
manifest . However , snapshot manifest files can have large
file sizes and thus , the retrieval of a snapshot manifest can
congest network bandwidth and cause a bottleneck in snap
shot operations describe herein . As an example , each entry
of a manifest can be 16 bytes in size and can represent a
block of a snapshot stored as a 512 kB object . In the example
of a 16 TB snapshot , the manifest can be 512 GB in size .
Furthermore , a snapshot of a volume can be sparse (e.g. ,
when not every block of the block storage device forming
the basis of a snapshot has data , unwritten blocks may not
be reflected in the snapshot) , and thus not every block
address of a block storage device may be represented in the
snapshot manifest . Therefore , there is a need for an opti
mized mechanism to identify the metadata or the location of
an object storing data of a particular block of a block storage
device as indicated in the snapshot manifest .
[0028] Aspects of the present disclosure relate to imple
mentation of a manifest index which provide a technical
solution to the technical problems relating to the manifest
described above . Manifest entries can be grouped into
logical partitions or “ fragments " of M entries , and each
fragment of M entries can be associated with an offset .
Manifest entries are generally ordered sequentially by block
indices , indicating metadata for each block such as a par
ticular object of a snapshot that stores data corresponding to
a particular block index in a block storage device from
which the snapshot was created . Thus , each fragment can
also be associated with a starting block index that indicates
the block index of the first entry in each fragment and an
ending block index that indicates the block index of the last
entry in the fragment . A manifest index can comprise entries
indicating the offset and the starting and ending block
indices of each fragment of the manifest file , thus associat
ing a particular fragment of a snapshot's manifest to a
particular block index in a block storage device from which
the snapshot was created . Depending on the selection of
fragment size M , a manifest index can be significantly
smaller in size than a manifest . When the public snapshot
service described herein receives a request to identify the
object storing data associated with one or more blocks of a
block storage device from which a snapshot was created , the
public snapshot service can implement the manifest index to
identify information from the fragment of the manifest

which corresponds to the requested block . Therefore , net
work load is reduced since the manifest index obviates the
need to retrieve or download the entire manifest index from
the object storage servers . In addition , multiple entries or
fragments may be identified and retrieved in parallel to
improve efficiency of the identification operations .
[0029] Generally , block storage devices that store the
volumes that are the basis of the snapshots described herein
are modified or written to at a minimum granularity , gen
erally referred to as a “ block . ” Accordingly , block storage
volumes are typically written to in whole blocks , and
operating systems generally do not support modification of
block storage volumes on a sub - block granularity . As dis
cussed above , snapshots can be stored as a collection of
objects representing blocks of a storage volume . Because the
concept of a “ block ” is a logical abstraction , it is possible
that a block size of a snapshot is not equivalent to the block
size used by an operating system writing data to the snap
shot . This can be particularly true in the case of external
workloads (e.g. , workloads using block storage volumes
stored outside of a cloud provider network , such as on
premises of a customer of the cloud) that create snapshots
within the cloud for backup . For example , a snapshot of the
volume may be configured such that a single “ block ” of the
snapshot represents 512 k of data . For example , an object
storage service storing snapshot blocks may utilize under
lying physical storage media that is optimized to be utilized
in 512 k blocks . However , a user computing device writing
to the snapshot may implement a 4 kB block size . Accord
ingly , a “ block ” of the snapshot may represent 128 blocks
from the point of view of a writing device . In the case of
backing up external workloads to cloud snapshots , this can
require the computer hosting the external block storage
volume to have to buffer much larger amounts of data than
are actually being written in order to send entire snapshot
blocks over a network to the snapshotting service . This
results in inefficient resource usage of both the external host
and the network , in that the host has to request a copy of the
entire snapshot block to buffer and modify , and has to store
and transmit larger quantities of data than it actually needs

a

a

to back up .
[0030] To address this difference in block size from the
point of view of the snapshot and from the point of view of
a writing device , embodiments of the present disclosure
enable blocks of a snapshot (which would otherwise gener
ally be modifiable only as entire units) to be modified at
whatever granularity is desired by a writing device (e.g. , the
block size utilized by an operating system of that device)
using an intermediary , referred to herein as a “ public snap
shot service ” to merge writes from the block device into the
snapshot at the sub - block level . Beneficially , by using the
intermediary to merge sub - block writes into larger snapshot
blocks , the external workloads no longer need to request and
buffer such large amounts of data (like the entire snapshot
block) , and can instead stream the writes to the intermediary
for merging into the appropriate place within the snapshot
block . In such cases where a block of the snapshot (stored
as an object) represents multiple blocks from the point of
view of a writing device , a modification made to a single
block from the point of view of a writing device can be
represented as a modification of only a portion of a block of
the snapshot , which portion is generally referred to herein as
a “ sub - block ” of the snapshot .

9

a

US 2022/0100386 A1 Mar. 31 , 2022
4

object storage servers . The public snapshot service can also
retrieve the child snapshot blocks and the write - set . For each
entry of the write - set , the sub - blocks are retrieved from the
corresponding child snapshot . The public snapshot service
can use the sub - block offset indicated in the write - set to
align and merge the sub - blocks of the child snapshot to the
corresponding sub - blocks of the parent snapshot blocks . The
merged block can be transmitted in response to the request ,
or stored as a new snapshot .
[0034] These and other aspects of the disclosure will now
be described with regard to certain examples and embodi
ments , which are intended to illustrate but not limit the
disclosure . Although the examples and embodiments
described herein will focus , for the purpose of illustration ,
specific calculations and algorithms , one of skill in the art
will appreciate the examples are illustrate only , and are not
intended to be limiting .

a

[0031] One potential mechanism for allowing writes on
the sub - block level is to completely recreate a written - to
snapshot block with each modification of the block . For
example , for data written to a portion of a given snapshot
block , one approach may be to read the entire snapshot
block , apply the written data to the portion of the block , and
resave the snapshot block . To ensure no data is lost , the
saved snapshot block could be stored as part of a new
snapshot (e.g. , a child snapshot of the prior parent snapshot) .
A downside of this technique is that significant data dupli
cation occurs between the newly saved blocks and prior
versions of those blocks . For example , where snapshot
blocks are 512 kB , a write to a 4 kB portion of the block
results in duplication of 508 kB of data . Particularly for large
snapshots , this data duplication can result in significant load
in terms of storage costs .
[0032] Aspects of the disclosure therefore relate to creat
ing snapshots representing modifications made to sub
blocks of a snapshot of a volume . When a modification is
made to a sub - block of an existing snapshot (also referred to
as a " parent " snapshot) , the public snapshot service may
initiate creation of a child snapshot to store the modifications
made to the sub - block . The public snapshot service may also
modify an existing unsealed snapshot to incorporate the
modifications made to the sub - blocks without creating a
child snapshot . The public snapshot service may prepare a
zero buffer that is the size of a snapshot block including the
written - to sub - block . A zero - buffer , or buffer object , may be
an object with file size of a snapshot block , for example , 512
kB , that comprise zeros as the values . When the public
snapshot service receives changes made to one or more
sub - blocks of the snapshot block , the public snapshot ser
vice can apply the changed sub - blocks of data of the
snapshot block held in the buffer . The size of the sub - block
can be any portion of the snapshot block . To complete the
generation of the child snapshot block , the public snapshot
service may encrypt the data of the buffer to generate a
snapshot block of the child snapshot . The generated child
snapshot block can then be stored as an object on object
storage servers , as part of a collection of objects representing
the child snapshot . Furthermore , the snapshot service can
generate a write - set indicating the sub - block offset , the
length , and a checksum of the sub - blocks applied to the child
snapshot block . The sub - block offset can indicate the offset
of the modified block in the underlying volume reflected in
the snapshot . The write - set can be stored on a metadata data
store in communication with the public snapshot services or
on the object storage servers . The creation of child snapshot
blocks from sub - block level changes to a parent snapshot
enables the public snapshot service to avoid a replication of
an entire snapshot (or even an entire snapshot block) for
minor modifications to a backed up volume , thereby reduc
ing network and computing resource burden . In some
embodiments , the public snapshot service may represent the
modifications as a write representation and merge the parent
snapshot with the write representation according to the
processes described herein . The public snapshot service may
store the resulting snapshot as a child snapshot .
[0033] When a user requests a read of a snapshot of
volume , the public snapshot service can present to the user
the up - to - date snapshot by merging the parent snapshot with
subsequently generated child snapshots . In response to
receiving a request to read a snapshot , the public snapshot
service retrieves the blocks of the parent snapshot from the

Overview of Example Computing Environment for Public
Snapshot Service
[0035] FIG . 1 depicts an example computing environment
100 including an elastic computing system 120 in which the
disclosed public snapshot service can be implemented . The
elastic computing system 120 may be a cloud provider
network (sometimes referred to simply as a “ cloud ”) . The
cloud refers to a large pool of network - accessible computing
resources (such as compute , storage , and networking
resources , applications , and services) , which may be virtu
alized or bare - metal . The cloud can provide convenient ,
on - demand network access to a shared pool of configurable
computing resources that can be programmatically provi
sioned and released in response to customer commands .
These resources can be dynamically provisioned and recon
figured to adjust to variable load , which provides the “ elas
ticity ” of the elastic computing system 120. It will be
appreciated that the disclosed snapshot creation and man
agement techniques may be implemented in non - elastic
computing environments as well .
[0036] The elastic computing system 120 can be accessed
by user computing devices 102 over a network 104. The
elastic computing system 120 includes one or more block
store servers 105 , one or more object storage servers 110 ,
and one or more compute servers 115 that are in networked
communication with one another and with the network 104
to provide users with on - demand access to computing
resources including volumes 106 , buckets 111 , and instances
116 , among others . These particular resources are described
in further detail below . Some implementations of elastic
computing system 120 can additionally include domain
name services (“ DNS ”) servers , relational database servers ,
and other server configurations (not illustrated) for support
ing on - demand cloud computing platforms . Each server
includes hardware computer memory and / or processors , an
operating system that provides executable program instruc
tions for the general administration and operation of that
server , and a computer - readable medium storing instructions
that , when executed by a processor of the server , allow the
server to perform its intended functions .
[0037] The elastic computing system 120 can provide
on - demand , scalable computing platforms to users through
the network 104 , for example allowing users to have at their
disposal scalable “ virtual computing devices ” via their use
of the block store servers 105 , object storage servers 110 ,
and compute servers 115. These virtual computing devices

a

US 2022/0100386 A1 Mar. 31 , 2022
5

have attributes of a personal computing device including
hardware (various types of processors , local memory , ran
dom access memory (“ RAM ”) , hard - disk and / or solid state
drive (" SSD ") storage) , a choice of operating systems ,
networking capabilities , and pre - loaded application soft
ware . Each virtual computing device may also virtualize its
console input and output (“ I / O ”) (e.g. , keyboard , display ,
and mouse) . This virtualization allows users to connect to
their virtual computing device using a computer application
such as a browser , application programming interface , soft
ware development kit , or the like , in order to configure and
use their virtual computing device just as they would a
personal computing device . Unlike personal computing
devices , which possess a fixed quantity of hardware
resources available to the user , the hardware associated with
the virtual computing devices can be scaled up or down
depending upon the resources the user requires . Users can
choose to deploy their virtual computing systems to provide
network - based services for their own use and / or for use by
their customers or clients .
[0038] The elastic computing system 120 can be provided
across a number of geographically separate regions , for
example to provide users with lower latencies by having
their virtual computing devices in or near their geographic
location . Each region is physically isolated from and inde
pendent of every other region in terms of location and power
supply , and may communicate data with the other regions
through the network 104. Each region can include two or
more availability zones each backed by one or more physical
data centers provided with redundant and separate power ,
networking and connectivity to reduce the likelihood of two
zones failing simultaneously . While a single availability
zone can span multiple data centers , no two availability
zones share a data center . This can protect users from
data - center level failures . A data center refers to a physical
building or enclosure that houses and provides power and
cooling to one or more of the block store servers 105 , object
storage servers 110 , and compute servers 115. The data
centers within an availability zone and the availability zones
within a region are connected to one another through private ,
low - latency links , for example fiber optic network cables .
This compartmentalization and geographic distribution of
computing hardware enables the elastic computing system
120 to provide fast service to users on a global scale with a
high degree of fault tolerance and stability . To distribute
resources evenly across the zones in a given region , the
provider of the elastic computing system 120 may indepen
dently map availability zones to identifiers for each user
account .

[0039] ning specifically to the roles of the different
servers within the elastic computing system 120 , the com
pute servers 115 include one or more servers on which
provide resizable computing capacity to users for building
and hosting their software systems . Users can use the
compute servers 115 to launch as many virtual computing
environments , referred to as " instances ” 116 , as they need .
Instances 116 can have various configurations of processing
power , memory , storage , and networking capacity depend
ing upon user needs . The compute servers 115 can also
include computer storage for temporary data used while an
instance is running , however as soon as the instance is shut
down this data is lost .
[0040] The block store servers 105 provide persistent data
storage for the compute servers 115 in the form of volumes

106. The block store servers 105 include one or more servers
on which data is stored as blocks . A block is a sequence of
bytes or bits , usually containing some whole number of
records , having a maximum length of the block size .
Blocked data is normally stored in a data buffer and read or
written a whole block at a time . Blocking can reduce
overhead and speed up the handling of the data - stream . Each
block is assigned a unique identifier by which it can be
stored and retrieved , but typically is not assigned metadata
providing further context . A block of data (also referred to
herein as a “ data block ”) can be , for example , 512 bytes , 1
kilobyte (“ kB ”) , 4 kB , 8 KB , 16 kB , 32 kB , 64 kB , 128 kB ,
256 kB , 512 kB , or larger , depending upon the implemen
tation . The snapshots described herein may include any
number of such blocks . The size of a snapshot may vary ,
depending for example upon the size of the user volume for
which the snapshot is created .
[0041] User volumes 106 , which can be treated as an
individual hard drive ranging for example from 1 GB to 1
terabyte TB (or more) in size , are made of one or more
blocks stored on the block store servers 105. Although
treated as an individual hard drive , it will be appreciated that
a volume may be stored as one or more virtualized devices
implemented on one or more underlying physical host
devices . Volumes 106 may be partitioned a small number of
times (e.g. , up to 16) with each partition hosted by a device
of the elastic computing system 120 that has the ability to
transfer data at around 1 GB per second (“ Gbps ”) in some
implementations . These volumes provided persistent , dedi
cated storage that can be attached to particular instances of
the compute servers 115. Each volume may be attached to a
single instance running on a compute server 115 , and can be
detached from that instance and re - attached to another . The
block store servers 105 may have built - in redundancy for
volumes by replicating the volume across multiple servers
within an availability zone , which means that volumes will
not fail if an individual drive fails or some other single
failure occurs .
[0042] The object storage servers 110 represent another
type of storage within the elastic computing system 120. The
object storage servers 110 include one or more servers on
which data is stored as objects within resources referred to
as buckets 111. Each object typically includes the data being
stored , a variable amount of metadata that enables various
capabilities for the object storage servers 110 with respect to
analyzing a stored object , and a globally unique identifier or
key that can be used to retrieve the object . Objects stored on
the object storage servers 110 are associated with a unique
identifier , such that authorized access to them can be
obtained through requests from networked computing
devices in any location . Each bucket 111 is associated with
given user account . Users can store as many objects as

desired within their buckets , can write , read , and delete
objects in their buckets , and can control access to their
buckets and the objects contained therein . Further , in
embodiments having a number of different object storage
servers 110 distributed across different ones of the regions
described above , users can choose the region (or regions)
where a bucket is stored , for example to optimize for latency .
Users can use object storage servers 110 for purposes such
as storing photos on social media websites , songs on music
streaming websites , or files in online collaboration services ,
to name a few examples . Applications developed in the
cloud often take advantage of the vast scalability and

a

US 2022/0100386 A1 Mar. 31 , 2022
6

metadata characteristics of the object storage servers 110 .
The object storage servers 110 can support highly parallel
data accesses and transfers .

a

[0043] The object storage servers 110 can offer even
greater redundancy than the block store servers 105 , as the
object storage servers 110 can automatically replicate data
into multiple availability zones . The object storage servers
110 also have different data throughput than the block store
servers 105 , for example around 20 Mbps for a single stream
of data . While the object ge servers 110 can be used
independently from the instances 116 and volumes 106
described above , they can also be used to provide data
backup as described herein with respect to snapshots (e.g. ,
object - stored backups of volume data) .
[0044] As illustrated in FIG . 1 , the elastic computing
system 120 can communicate over network 104 with user
computing devices 102. The network 104 can include any
appropriate network , including an intranet , the Internet , a
cellular network , a local area network or any other such
network or combination thereof . In the illustrated embodi
ment , the network 104 is the Internet . Protocols and com
ponents for communicating via the Internet or any of the
other aforementioned types of communication networks are
known to those skilled in the art of computer communica
tions and thus , need not be described in more detail herein .
User computing devices 102 can include any network
equipped computing device , for example desktop comput
ers , laptops , smartphones , tablets , e - readers , gaming con
soles , and the like . Users can access the elastic computing
system 120 via the network 104 to view or manage their data
and computing resources , as well as to use websites and / or
applications hosted by the elastic computing system 120 .

snapshot of a volume stored on the client storage servers 103
can be restored onto a volume stored on the client storage
servers 103 .
[0046] In one embodiment , a snapshot is a point - in - time
block - level backup of the volume , stored as a copy of data
on the volume on one or more of the object storage servers
110 (e.g. , as a single object or a collection of objects) . In
addition or as an alternative to managing snapshots through
general interfaces for the object storage servers 110 , snap
shots may be managed through the application programming
interface (“ API ”) of the block store servers 105 and / or the
API of the public snapshot service 130 implemented on the
elastic computing system 120. In one example , snapshots are
implemented as incremental records of data within vol
ume . Illustratively , when the first snapshot of a volume is
taken , all blocks of the volume that contain valid data are
copied as one or more objects to the object storage servers
110 , and then a snapshot “ table of contents ” or “ manifest ”
file is written to the object storage servers 110 that includes
a record of the one or more objects , as well as the blocks of
the volume to which each of the one or more objects
correspond . Due to the use of incremental snapshots , when
the subsequent snapshots are taken of the same volume , only
the blocks that have changed since the first snapshot need be
copied to the object storage servers 110 , and the table of
contents or manifest file can be updated to point to the latest
versions of each data block (or a second table of contents or
manifest file can be created , enabling the initial table of
contents or manifest file to remain as a record of a prior
version of the volume) . An initial snapshot can be used to
reconstruct the volume at the time of the initial snapshot , or
snapshots from subsequent time points can be combined
together or with the initial snapshot to reconstruct the entire
volume at any individual subsequent point in time . In this
way snapshots can serve as both incremental backups and a
full backup of a given volume .
[0047] When creating a snapshot , any data written to the
volume up to the time the snapshot is started can be included
in the snapshot , and users can continue to perform I / O
operations to their volumes during snapshot creation without
affecting the snapshot . Users can create a new volume from
a snapshot , for example to create duplicates of their volumes
or to restore data . The new volume will contain all the data
stored in the snapshot and thus will be a duplicate of the
original volume at the time the snapshot was started . In this
manner , snapshots can also be used to transfer a volume's
data from one availability zone to another . Similarly , snap
shots can be taken of instances to create a new virtual
machine instance of that instance .

2

Example Use Cases of Public Snapshot Service on Elastic
Computing System

[0045] FIG . 2 depicts a computing environment 200 in
which a public snapshot service 130 is implemented on the
elastic computing system 120. Several use cases of the
public snapshot service 130 are illustrated in FIG . 2. For
example , users can instruct the public snapshot service 130
to create snapshots of their volumes stored on the block store
servers 105 (e.g. , client block store volumes 106) and / or
create snapshots of their volumes stored on their own data
storage servers that are external to the elastic computing
system 120 (e.g. , client storage servers 103) . Similarly , users
can instruct the public snapshot service 130 to restore
previously created snapshots of their volumes (either the
client block store volumes 106 or volumes stored on the
client storage servers 103) onto their volumes stored on the
block store servers 105 (e.g. , client block store volumes 106)
and / or onto their volumes stored on their own data storage
servers that are external to the elastic computing system 120
(e.g. , client storage servers 103) . Any combinations of
creation and restore operations illustrated in FIG . 2 can be
performed . For example , (i) a snapshot of a volume stored
on the client storage servers 103 can be restored onto a
volume stored on the block store servers 105 , (ii) another
snapshot of a volume stored on the block store servers 105
can be restored onto a volume stored on the client storage
servers 103 , (iii) yet another snapshot of a volume stored on
the block store servers 105 can be restored onto a volume
stored on the block store servers 105 , and (iv) yet another

Overview of Example Public Snapshot Service
[0048] FIG . 3 depicts a more detailed computing environ
ment 300 in which the public snapshot service 130 is
implemented on the elastic computing system 120. More
specifically , the computing environment 300 includes the
user computing devices 102 and the client storage servers
103 in communication with the elastic computing system
120 via the network 104. The public snapshot service 130 as
implemented by the elastic computing system 120 of FIG . 3
includes a data plane system 132 and snapshot workers 138 .
The data plane system 132 further includes a metadata cache
134 and an index cache 136. Additionally , the elastic com
puting 120 further includes a control plane system 140 in
communication with a key manager 144 , a database 146 , an

US 2022/0100386 A1 Mar. 31 , 2022
7

object storage 148 , and a block store 150. For example , the
object storage 148 may be implemented by the object
storage servers 110 of FIG . 1 and the block store 150 may
be implemented by the block store servers 105 of FIG . 1 .
One or more components of the public snapshot service 130
may be implemented on one or more instances 116 provided
by the compute servers 115 .
[0049] The control plane system 140 provides a set of
APIs that can be used by the users of the user computing
devices 102 to create and complete snapshots (such as the
create snapshot API and complete snapshot API) , and the
data plane system 132 provides a set of APIs that can be used
by the users of the user computing devices 102 to add and
read the data blocks in existing snapshots stored on the
elastic computing system 120 (such as the add data block
API , list snapshot blocks API , list changed blocks API , and
get snapshot block API) .
[0050] When the public snapshot service 130 creates a
snapshot , the public snapshot service 130 may store meta
data of the blocks being added to the snapshot in the
metadata cache . The metadata is used to minimize or reduce
the number of control plane calls . Once a snapshot is
completed , this metadata may be pruned . The public snap
shot service 130 may store the snapshot manifest index in
the index cache 136 , wherein the snapshot manifest index
identifies all the blocks in a snapshot arranged in a specific
order . For example , the metadata index may be a lookup
table of block indices to offsets mapping in the manifest file .
An entry in the metadata index may represent the mapping
of block index and offset of the part of the manifest file that
starts with the block index .

[0051] The snapshot workers 138 may perform one or
more operations of the public snapshot service 130 such as
building the snapshot using the blocks specified / provided by
the user , performing integrity validation , and communicat
ing with other components of the elastic computing system
120 .

[0052] The key manager 144 may utilize a hardware
security module to encrypt and decrypt data provided by the
public snapshot service 130. For example , the key manager
144 may communicate with a hardware trusted platform
module (TPM) to encrypt the data key provided by the
public snapshot service 130. In other cases , the key manager
144 may access a key file that includes one or more keys
usable by the key manager 144 to encrypt or decrypt data
provided by the public snapshot service 130. The key
manager 144 may provide an HTTP API exposed to the
public snapshot service 130 .
[0053] The database 146 can be a database implemented
by one or more relational or non - relational database servers
of the elastic computing system 120 and may store the
records associated with the individual blocks in a snapshot
(e.g. , indicating the status thereof) . Additionally , the data
base 146 may store the lineage data indicating the parent
child relationships of the snapshots . The object storage 148
can be one or more buckets of the object storage servers 110
described above that includes a snapshot of a volume . The
block store 150 can be one or more volumes of the block
store servers 105 described above (e.g. , virtual disks of a
virtual machine instance) for which one or more snapshots
are created and / or onto which one or more snapshots can be
restored .

Example Snapshot Creation Workflow
[0054] FIG . 4 depicts interactions among the various
components shown in FIG . 3 in creating a block - level
snapshot in accordance with aspects of the present disclo
sure . As shown in FIG . 4 , at (1) , the user computing device
102 calls a control plane API to initiate the block snapshot
creation process . The API call may specify the parameters to
be used for creating a block snapshot such as , for example ,
(i) the size of the volume for which the block snapshot is to
be created , (ii) an indication of any previous / parent snap
shot , (iii) a unique token associated with the request (e.g. , to
ensure idempotency such that a subsequent retry of the
request will not create another snapshot) , (iv) a key to be
used to encrypt the snapshot (if unspecified , a default key or
the key that was used to encrypt the previous / parent snap
shot may be used) , (v) a timeout period after which the
request can be canceled if no progress is made , and the like .
At (2) , the control plane system 140 requests a data key from
the key manager 144. At (3) , the key manager 144 generates
a data key and transmits the generated data key to the control
plane system 140. In some embodiments , the request at (1)
includes the data key to be used to encrypt the snapshot , and
(2) and (3) are omitted . In other embodiments , the request at
(1) specifies a previous / parent snapshot , and control plane
system 140 determines the data key by identifying the data
key that was used to encrypt the previous / parent snapshot .
At (4) and (5) , the control plane system 140 requests and
allocates a new snapshot ID based on the data key obtained
from the key manager 144 (or otherwise identified) . The
allocated snapshot ID can be used by the user computing
device 102 to identify the new block snapshot and to
perform additional operations with respect to the block
snapshot as further illustrated below . At (6) , the control
plane system 140 returns a response to the user computing
device 102. For example , the returned response may include
the allocated snapshot ID and other parameters needed to
utilize the snapshot such as the block size (size of the blocks
in the block snapshot) .
[0055] At (7) , the user computing device 102 calls a data
plane API for adding blocks of a storage volume to the
snapshot . The data plane API may take as input the snapshot
ID created in (1) - (6) , block index indicating the location of
the data block being added to the snapshot , the data stored
in the data block (also referred to herein as block data) , the
length of the data block , and checksum information . In some
embodiments , one or more sub - blocks (along with their
offset , data , and length) may be specified in the data plane
API call . In some cases , the operating system associated
with the storage volume that may track and indicate which
blocks of the storage volume should be included in the
snapshot (e.g. , to ignore changes to unneeded files in the
storage volume) .
[0056] At (8) the data plane system 132 transmits an
access and validation check request to the control plane 140
and receives a return response . For example , the checksum
information included in the request received at (7) may
include a client checksum value , and the control plane 140
may validate the integrity of the block data using the client
checksum value . Although not shown in FIG . 4 , the client
checksum value may be stored in the database 146. In some
cases , instead of specifying a full block , the request received
at (7) specifies a list of sub - blocks to be part of the full block .
The sub - blocks may be validated separately (e.g. , using the
checksum information included in the request) . At block (9) ,

9

a

-

US 2022/0100386 A1 Mar. 31 , 2022
8

the data plane system 132 obtains a decrypted data key by
transmitting a request to decrypt the encrypted data key to
the key manager 144 and receiving the decrypted data key
in response . At (10) , the data plane system 132 transmits a
request to the database 146 to create a block record in the
database 146 and receives a return response . For example ,
the block record may indicate the state of the block record
is “ pending . " At (11) , the data plane system 132 encrypts the
data block with the decrypted data key , to result in an
encrypted data block . At (12) , the data plane system 132
transmits a request to the object storage 148 to store the
encrypted data block in the object storage 148 and receives
a return response . Although not shown in FIG . 4 , prior to
proceeding to (12) , the data plane 132 may calculate a
checksum of the encrypted data block and determine
whether the checksum matches the client checksum value
included in the request received at (7) . At (13) , the data plane
system 132 transmits a request to the database 146 to update
the block record in the database 146 and receives a return
response . For example , the updated block record may indi
cate the state of the block record is “ added . ” At (14) , the data
plane system 132 transmits a status to the user computing
device 102. For example , the status may indicate that the
data block identified at (7) was successfully added to the
snapshot . Interactions (7) - (14) of FIG . 4 may be repeated to
add additional data blocks to the snapshot .
[0057] After all the data blocks have been added , the user
computing device 102 may call a control plane API for
completing or sealing the snapshot . The control plane API
may take as input the snapshot ID , the number of data blocks
that have been changed in the snapshot (e.g. , this number
should match the number of data blocks added in (7) - (14)) ,
and checksum information . The snapshot completion can be
started as an asynchronous task and its progress can be
tracked with an API by specifying the snapshot ID in the
request . During the completion process , the checksum and
version information of the added / changed blocks may be
checked using the checksum information provided in the
request to complete the snapshot . Once the snapshot is
completed , the control plane 140 may return a success return
value . Prior to the completion of the snapshot , the blocks
within the snapshot may not be readable , and requests to
read blocks within the snapshot may result in an error . Once
the snapshot is successfully sealed , the snapshot may
become immutable , additional data blocks may not be able
to be added to the snapshot , and the data blocks within the
snapshot may become readable .

the user computing device 102 is stored in the cache 152. If
so , the data plane system 132 validates / authorizes the
request using the information . If not , the data plane system
132 transmits a validation / authorization request to the con
trol plane 140. After validating / authorizing the request , the
data plane system 132 checks if the cache 154 stores the
decrypted data key usable by the data plane system 132. If
so , the data plane system 132 uses the decrypted key stored
in the cache 154. If not , at (3) the data plane system 132
requests the decrypted data key from the key manager 144
and receives the decrypted key . At (4) , the data plane system
132 transmits a request to the database 146 to create a block
record in the database 146 and receives a return response .
For example , the block record may indicate the state of the
block record is “ pending . ” At (5) , the data plane system 132
encrypts the data block with the decrypted data key , and at
(6) , transmits a request to the object storage 148 to store the
data block in the object storage 148 and receives a return
response . At (7) , the data plane system 132 transmits a
request to the database 146 to update the block record in the
database 146 and receives a return response . For example ,
the updated block record may indicate the state of the block
record is “ added . ” At (7) , the data plane system 132 returns
a response to the user computing device 102. For example ,
the returned response may indicate that the data block
identified at (1) was successfully added to the snapshot .
Interactions (1) - (7) of FIG . 5 may be repeated to add
additional data to blocks of the snapshot .

Example Routine for Creating a Snapshot Based on Lineage
and Difference Information

Example Workflow for Writing Data to Blocks of a Snapshot
[0058] FIG . 5 depicts another example workflow for writ
ing data to blocks of a snapshot that has been allocated (e.g. ,
as illustrated in (1) - (6) of FIG . 4) . As shown in FIG . 5 , at (1) ,
the user computing device 102 sends a request (e.g. , in the
form of an API call) to the data plane system 132 to add data
to a block of the snapshot by specifying the snapshot ID
associated with the snapshot (e.g. , one that was created prior
to the request at (1) but not yet sealed or completed) along
with the block index indicating the location of the data block
being added to the snapshot , the block data , the length of the
data block , and checksum information . In some embodi
ments , writes may occur at a sub - block level , as discussed in
more detail below with respect to FIG . 14. At (2) , the data
plane system 132 checks if the validation / authorization
information necessary to validate / authorize the request from

[0059] As illustrated in FIGS . 4 and 5 , a block snapshot
can be created from volumes stored on the elastic computing
system 120 or on - premises volumes by calling the snapshot
creation API . In response , the public snapshot service 130
can generate the encryption parameter for the snapshot and
pass those parameters to the block store 150 to generate a
new snapshot ID . Upon a successful response from the block
store 150 , the public snapshot service 130 can return the
response of the snapshot creation API that may include the
allocated snapshot ID , block size , etc. The user computing
device 102 (or applications running thereon) can then
repeatedly in sequential or parallel workflows) call the add
data block API to add the data blocks into the snapshot . After
all changed blocks have been added to the snapshot , the user
computing device 102 (or applications running thereon) can
seal the snapshot by calling the complete snapshot API . The
public snapshot service 130 (or the control plane system
140) can then initiate an asynchronous task to validate and
seal the snapshot . With reference to FIG . 6 , the snapshot
creation process is described in greater detail .
[0060] FIG . 6 depicts an illustrative routine 600 for cre
ating a block - level snapshot in accordance with aspects of
the present disclosure . The routine 600 may be carried out ,
for example , by the public snapshot service 130 or one or
more other components of the elastic computing system 120
described herein . For convenience , the steps of routine 600
are described as being performed by a public snapshot
server . For example , such a public snapshot server may
include one or more hardware computing devices and non
transitory physical computer storage storing instructions
that , when executed by the one or more hardware computing
devices , cause the one or more hardware computing devices
to perform the steps of the routine 600 .

US 2022/0100386 A1 Mar. 31 , 2022
9

9

[0061] The routine 600 begins at 602 , wherein the public
snapshot server receives a snapshot creation request to
create an incremental snapshot of a storage volume , where
the storage volume is implemented by a client data storage
server and stores a plurality of data blocks . The client data
storage server may be external to the elastic computing
system 120 and in networked communication with the
elastic computing system 120 (e.g. , via the network 104) .
Alternatively , the snapshot creation request may be for a
storage volume implemented by the elastic computing sys
tem 120 such as the volume 106 .
[0062] The snapshot creation request may identify a parent
snapshot stored in a snapshot repository in networked com
munication with the public snapshot server . The parent
snapshot may represent a prior state of the storage volume
(e.g. , the state of the storage volume at the time the parent
snapshot was created , which may be different from the
current state of the storage volume) . In some cases , the
parent snapshot identified in the request is an immediate
parent snapshot of the snapshot currently being created . In
other cases , the parent snapshot identified in the request is a
more distant parent snapshot , where one or more snapshots
of the storage volume have been created between the time at
which the parent snapshot was created and the time at which
the current snapshot is being created .
[0063] The snapshot creation request may also identify a
subset of data blocks of the plurality of data blocks stored in
the storage volume . For example , of the 200 data blocks
stored in the storage volume , the snapshot creation request
may indicate only data blocks 51-100 should be included in
the snapshot . The request may be submitted , for example , by
a user through an API of the public snapshot service 130 .
[0064] At block 604 , the public snapshot server receives ,
from the client data storage server , the subset of data blocks
identified in the snapshot creation .
[0065] At block 606 , the public snapshot server generates
the incremental snapshot based on the subset of data blocks
received from the client data storage server and one or more
additional data blocks associated with the parent snapshot .
By doing so , the public snapshot server may generate the
incremental snapshot without accessing all of the data
blocks in the storage volume for which the incremental
snapshot is created . For example , each block in the incre
mental snapshot may be represented using its storage loca
tion (e.g. , in the object storage 148) , the snapshot ID (e.g. ,
ID of the parent / ancestor snapshot if a reference to the
parent / ancestor snapshot was made , or ID of the current
snapshot if the data block has been uploaded for the first
time or if the data block was previously uploaded but a
reference to the corresponding parent / ancestor snapshot was
not made) , and a block index (e.g. , representing the logical
position of the current block in the storage volume) . Thus ,
if a data block is part of both the parent snapshot and the
incremental snapshot referring back to the parent snapshot ,
the data block may be represented as having the same
storage location (e.g. , in the object storage 148) in both the
parent snapshot and the incremental snapshot . The public
snapshot server may determine , based on the block index
associated with the block provided in the request to add the
block to the incremental snapshot , which blocks in the
incremental snapshot should be derived from the parent /
ancestor snapshot . The public snapshot server , by allowing
the snapshot creation request to specify a parent snapshot ,
eliminates the need to access and store data blocks that are

part of the parent snapshot again in the incremental snap
shot , thereby reducing the amount of computing resources
consumed by the creation of the incremental snapshot .
[0066] At block 608 , the public snapshot server causes the
incremental snapshot to be stored in the snapshot repository .
For example , the public snapshot server may store the
incremental snapshot in the object storage 148 described
herein . Before or after the incremental snapshot is stored in
the object storage 148 , the incremental snapshot may
undergo a sealing process . After all of the blocks within the
incremental snapshot have been submitted , the client com
puting device may provide a manifest of the blocks in the
incremental snapshot , and the public snapshot server may
use the manifest to validate the blocks that have been added
to the incremental snapshot (in addition to or alternative to
other integrity checks such as one that uses the checksum
information provided by the client computing device) . A
snapshot manifest provided by the client computing device
may contain the references to all blocks for the incremental
snapshot . In some cases , the manifest includes references to
data chunks or blocks in one or more ancestor snapshots in
the lineage . After all of the blocks within the incremental
snapshot have been validated according to the manifest , the
sealing process ends , and the incremental snapshot becomes
immutable and readable . Alternatively , in some embodi
ments , such a manifest is not provided by the client com
puting device , and is instead generated by the public snap
shot server upon successful completion of the incremental
snapshot . In such embodiments , the snapshot sealing process
may involve other types of integrity checks (e.g. , check
sum) .
[0067] While shown in FIG . 6 as a single series of
operations , blocks 604-608 may be repeated multiple times ,
each repetition receiving a block of the subset of data blocks ,
updating the incremental snapshot , and storing the updated
snapshot . For example , the public snapshot server may
receive repeated calls to the add data block API provided by
the public snapshot server (e.g. , as illustrated in FIGS . 4 and
5) .
[0068] At block 610 , the public snapshot server causes the
snapshot lineage data stored in the snapshot lineage database
to be updated to reflect a lineage between the parent snap
shot and the incremental snapshot . For example , the public
snapshot server may store the snapshot lineage data in the
database 146 described herein . The routine 600 may then
end .
[0069] In the example of FIG . 6 , the public snapshot
server enables a user to write blocks directly into the
snapshot by submitting an API call for each block to be
added to the snapshot . By doing so , the public snapshot
server allows the user to determine which blocks of the
parent / ancestor snapshot he or she wishes to keep and which
blocks of the parent / ancestor snapshot he or she wishes to
overwrite , giving the user the freedom to inherit blocks from
the parent / ancestor snapshot even if those blocks have
changed since the creation of the parent / ancestor snapshot in
the event that such blocks are not important to the user ,
thereby resulting in computing resource savings . Since the
API would rely on the user to indicate which new blocks will
be added to the incremental snapshot and which previously
stored blocks will be inherited from the parent / ancestor
snapshot (s) , the user may need to keep track of the changes
that have been made to the current volume (for which the
incremental snapshot is to be created) relative to the parent /

a

US 2022/0100386 A1 Mar. 31 , 2022
10

ancestor snapshot (s) . Additionally , by allowing the user to
specify the blocks that the user wishes to add to the
incremental snapshot , the public snapshot server does not
need to perform time - consuming block comparisons in order
to determine which blocks have been changed relative to the
parent / ancestor snapshot .
[0070] Additionally , in some cases , the user may wish to
write “ null ” data to a block in the incremental snapshot (e.g. ,
in a case where the user does not wish the block to be
inherited from the parent / ancestor snapshot but the block
does not contain any meaningful data) . In such cases , rather
than writing null data to the block and storing it in the object
storage , the public snapshot server may indicate that the
block is null (or contains null data) . By doing so , the public
snapshot server can realize further computing resource sav
ings by not having to store a null block in the object storage .
For example , the user may indicate that the block contains
null data or the public snapshot server may determine , based
on the block data provided by the user , determine that the
block contains null data .
[0071] Although not illustrated in FIG . 6 , the public
snapshot server can cause the incremental snapshot to be
restored onto one or more storage volumes implemented by
the client data storage server (e.g. , one that is external to the
elastic computing system 120) or cause the incremental
snapshot to be restored onto one or more storage volumes
implemented by a block store server different from the client
data storage server (e.g. , a storage volume implemented by
the elastic computing system 120 such as the volumes 106) .
Example Routine for Generating a Snapshot Storage Path
Structure

snapshot server . For example , such a public snapshot server
may include one or more hardware computing devices and
non - transitory physical computer storage storing instruc
tions that , when executed by the one or more hardware
computing devices , cause the one or more hardware com
puting devices to perform the steps of the routine 700 .
[0074] The routine 700 begins at 702 , wherein the public
snapshot server receives a snapshot creation request to
create an incremental snapshot of a storage volume storing
a plurality of data blocks . The storage volume may be
associated with a parent snapshot that was previously cre
ated and stored in a snapshot repository in networked
communication with the public snapshot server . The parent
snapshot may represent a prior state of the storage volume
(e.g. , the state of the storage volume at the time the parent
snapshot was created , which may be different from the
current state of the storage volume) . The request may be
submitted , for example , by a user through an API of the
public snapshot service 130 .
[0075] At block 704 , the public snapshot server deter
mines that a subset of data blocks of the plurality of data
blocks stored in the storage volume are identical to a
corresponding set of data blocks associated with the parent
snapshot . For example , the public snapshot server may
determine that the subset of data blocks are identical based
on an identification of the subset of data blocks provided by
a user of the public snapshot server , without performing a
block - by - block data comparison between the parent snap
shot and the incremental snapshot . Alternatively , the public
snapshot server may determine that the subset of data blocks
are identical based on a block - by - block data comparison
between the parent snapshot and the incremental snapshot .
[0076] At block 706 , the public snapshot server generates
first storage path structure data associated with the incre
mental snapshot , wherein the first storage path structure data
includes (i) first path information associated with the subset
of data blocks and (ii) second path information associated
with one or more additional data blocks of the plurality of
data blocks , wherein the first path information is identical to
parent path information associated with the corresponding
set of data blocks associated with the parent snapshot , and
the second path information is not identical to any path
information associated with the parent snapshot . In some
embodiments , the storage path structure data of a given
snapshot may be a list of storage directory paths correspond
ing to the set of data blocks associated with the given
snapshot . For example , the parent snapshot may include 3
data blocks , and the storage path structure data of the parent
snapshot may include “ path : // snapshots / snapshot - id - 2 /
block - 1 ” , “ path : // snapshots / snapshot - id - 2 / block - 2 ” , and
" path : // snapshots / snapshot - id - 2 / block - 3 " for the 3 data
blocks , respectively . In the same example , the incremental
snapshot includes the same 3 data blocks , but the data in the
third data block has changed . The storage path structure data
of the incremental snapshot may include " path : // snapshots /
snapshot - id - 2 / block - 1 ” , “ path : // snapshots / snapshot - id - 2 /
block - 2 ” , and “ path : // snapshots / snapshot - id - 2 / block - 3-1 ” ,
respectively . In this example , the storage paths " path : //
snapshots / snapshot - id - 2 / block - 1 ” and “ path : // snapshots /
snapshot - id - 2 / block - 2 ” of the incremental snapshot are
found in the storage path structure data of the parent
snapshot . On the other hand , the storage path for the third
data block , " path : // snapshots / snapshot - id - 2 / block - 3-1 ” is
not found in the storage path structure data of the parent

a

[0072] For various purposes such as for creating incre
mental snapshots or for tracking changed blocks over time ,
a system may compute the difference between two snap
shots . However , computing the difference by performing a
block - by - block data comparison can be time - consuming ,
especially for snapshots associated with large amounts of
data . To address this issue , techniques described herein
provide an improved method of storing snapshots in a
manner that speeds up the block difference calculation
process . For example , at the time of generating a child
snapshot based on a parent snapshot , if a block in the child
snapshot is not changed with respect to a corresponding
block in the parent snapshot , the block is stored such that the
block has the same path structure as the corresponding block
in the parent snapshot . If a block in the child snapshot has
been changed since the creation of the parent snapshot , the
block is stored such that the block has a path structure (e.g. ,
a storage directory path in the object store) that is different
from the corresponding block in the parent snapshot . Thus ,
the difference can be computed much more quickly by
comparing the path structure of the blocks in the two
snapshots , without having to perform a block - level data
comparison , thereby reducing the consumption of valuable
processing resources . Such techniques are described in
greater detail below with reference to FIG . 7 .
[0073] FIG . 7 depicts an illustrative routine 700 for gen
erating a snapshot storage path structure in accordance with
aspects of the present disclosure . The routine 700 may be
carried out , for example , by the public snapshot service 130
or one or more other components of the elastic computing
system 120 described herein . For convenience , the steps of
routine 700 are described as being performed by a public

US 2022/0100386 A1 Mar. 31 , 2022
11

snapshot . As described in greater detail with reference to
FIG . 8 , the public snapshot server may quickly determine
which data blocks of the incremental snapshot represent
changed data blocks with respect to the parent snapshot by
determining , for each respective data block in the incremen
tal snapshot , whether the path information of the respective
data block is found in the storage path structure data of the
parent snapshot , without performing a block - by - block data
comparison for all the data blocks in the incremental snap
shot .
[0077] At block 708 , the public snapshot server causes the
incremental snapshot to be stored in the snapshot repository
along with the first storage path structure data . In some
embodiments , the incremental snapshot is stored in the same
storage device as the first storage path structure data . In
other embodiments , the incremental snapshot is stored in a
storage device separate from the storage device in which the
first storage path structure data is stored . The routine 700
may then end .
[0078] Although not illustrated in FIG . 7 , the public
snapshot server can cause the incremental snapshot to be
restored onto one or more storage volumes implemented by
the client data storage server (e.g. , one that is external to the
elastic computing system 120) or cause the incremental
snapshot to be restored onto one or more storage volumes
implemented by a block store server different from the client
data storage server (e.g. , a storage volume implemented by
the elastic computing system 120 such as the volumes 106) .

may be represented as a tree , with a root snapshot indicating
a snapshot without prior lineage , incremental snapshots
created from the root snapshot being child nodes of the root
snapshot , further incremental snapshots being children of
those child nodes , etc. In some embodiments , the two
snapshots compared via the routine 800 have a parent - child
relationship . In some of such embodiments , the parent
snapshot identified in the request is an immediate parent
snapshot of the other snapshot identified in the request . In
other embodiments , the parent snapshot identified in the
request is a more distant parent snapshot of the other
snapshot identified in the request , where one or more snap
shots of the same storage volume have been created between
the time at which the parent snapshot was created and the
time at which the other snapshot identified in the request was
created . In another embodiment , two of the snapshots com
pared in routine 800 may be “ sibling ” or “ cousin ” snap
shot — two snapshots that share a common ancestor snapshot
within a lineage tree . Thus , reference to “ parent ” and “ child ”
snapshots in FIG . 8 should be understood to refer to one
example comparison that may be conducted via the routine
800. The request may be submitted , for example , by a user
through an API of the public snapshot service 130 .
[0082] At block 804 , the public snapshot server generates
a list of data blocks that are each associated with path
information not included in the parent path information
associated with the parent snapshot . For example , the public
snapshot server may generate the list of data blocks by
determining , for each respective data block associated with
the incremental snapshot , whether the path information
associated with the respective data block is included in the
parent path information associated with the parent snapshot ,
and identifying a set of data blocks whose path information
is not included in the parent path information . For example ,
the parent snapshot may have a storage path structure that
includes " path : // snapshots / snapshot - id - 2 / block - 1 ” , “ path : //
snapshots / snapshot - id - 2 / block - 2 ” , and “ path : // snapshots /
snapshot - id - 2 / block - 3 ” , respectively , for the 3 data blocks in
the parent snapshot , respectively , and the incremental snap
shot may have a storage path structure that includes " path : //
snapshots / snapshot - id - 2 / block - 1 ” , “ path : // snapshots / snap
shot - id - 2 / block - 2 ” , and “ path : // snapshots / snapshot - id - 2 /
block - 3-1 ” , respectively , for the 3 data blocks in the parent
snapshot . In this example , the public snapshot server may
determine that the third block of the incremental snapshot
having the path information “ path : // snapshots / snapshot - id
2 / block - 3-1 ” has changed and output the third block , based
on the path information " path : // snapshots / snapshot - id - 2 /
block - 3-1 " not being in the storage path structure of the
parent snapshot .
[0083] At block 806 , the public snapshot server outputs
the list of data blocks for presentation on the user computing
device . The routine 800 may then end .

a

Example Routine for Computing Snapshot Block Difference
[0079] Users of the public snapshot service 130 may
request the difference between two snapshots , for example
by calling a snapshot difference API and specifying the IDs
of the two snapshots . In response the public snapshot service
130 may return a list of changed data blocks . By storing the
data blocks of a snapshot in a specific storage path structure
described with reference to FIG . 7 , the difference can be
computed much more quickly by comparing the path struc
ture of the data blocks in the two snapshots , without having
to perform a block - level data comparison , thereby reducing
the consumption of valuable processing resources . The
snapshot block difference computation routine is described
in greater detail below with reference to FIG . 8 .
[0080] FIG . 8 depicts an illustrative routine 800 for com
puting the snapshot block difference between two snapshots
in accordance with aspects of the present disclosure . The
routine 800 may be carried out , for example , by the public
snapshot service 130 or one or more other components of the
elastic computing system 120 described herein . For conve
nience , the steps of routine 800 are described as being
performed by a public snapshot server . For example , such a
public snapshot server may include one or more hardware
computing devices and non - transitory physical computer
storage storing instructions that , when executed by the one
or more hardware computing devices , cause the one or more
hardware computing devices to perform the steps of the
routine 800 .
[0081] The routine 800 begins at 802 , wherein the public
snapshot server receives , from a user computing device 102 ,
a request to compute a snapshot block difference between a
parent snapshot and an incremental snapshot . Although
referred to herein as a parent snapshot and an incremental
snapshot , these snapshots can be any two snapshots stored
on the public snapshot server . Illustratively , snapshot lineage

Example Snapshot Manifest and Manifest Index
[0084] FIG . 9 depicts an example snapshot manifest 904
and a corresponding manifest index 906 that represent a
snapshot of a volume 902 representing a block storage
device . It should be understood that these depictions of the
volume , manifest , and manifest index are only one example
implementing one or more aspects of the present disclosure .
While the volume 902 is depicted to be comprised of 20
blocks , a person skilled in the art would understand that the
snapshot can have more or less than 20 blocks . Similarly ,

US 2022/0100386 A1 Mar. 31 , 2022
12

though FIG . 9 depicts the entries of the snapshot manifest
904 and manifest index 906 as comma separated values or
expressions , a person of the ordinary skill in the arts would
understand that the entries can be implemented in other
ways such as the entries represented in binary , the entries as
entries of a database structure , key - value data , look - up table ,
and the like .
[0085] FIG . 9 depicts a volume 902 that comprise 20
blocks including blocks 910A , 910B , 910C . Each block such
as blocks 910A , 910B , 910C can be logical segments of a
volume 902 , representing an illustrative block storage
device . A block of a volume 902 can be associated with a
block index or identifier representing , for example , a logical
block address of the volume . As depicted in FIG . 9 , the
blocks of volume 902 have block indices 1-20 . While a
sequence of consecutive numeral indices is show in FIG . 9 ,
other sequences are possible , such as non - consecutive inte
ger sequences , sequences starting at an integer other than 1 ,
or non - numeric sequences (e.g. , alphabetical sequences) . A
volume 902 and accordingly , the resulting snapshot of the
volume 902 can be sparse , meaning that some partitions , or
blocks , of the volume 902 do not have written data . In FIG .
9 , blocks of the volume 902 with written data such as blocks
910A and 910B are shaded gray . Blocks without written data
such as block 910C are unshaded .
[0086] A snapshot is logically portioned into objects such
that an object of a snapshot corresponds to one or more
blocks of the volume . Generally described , a snapshot
manifest 904 enumerates the blocks of a volume 902 and the
particular objects of the snapshot that store data correspond
ing to those blocks . The snapshot manifest 904 may addi
tionally contain metadata relating to the storage location of
the objects that store data corresponding to snapshot blocks .
As depicted in FIG . 9 , a snapshot may exclude blocks of
volume 902 without written data and accordingly , the snap
shot manifest 904 may exclude blocks such as block 910C
without written data and enumerate only the blocks with
written data . The snapshot manifest 904 may enumerate the
blocks in sequential order according to the block indices , for
example , in ascending order . While each block of a volume
904 in FIG . 9 is associated with a single object , in some
cases a single object of a snapshot may store information
regarding multiple blocks of a volume . In FIG . 9 , each row
of the snapshot manifest 904 represents an entry of the
snapshot manifest 904. Each entry of the snapshot manifest
904 is enumerated by entry number (manifest entries 1-14 in
FIG . 9) . Each entry of the snapshot manifest 904 can
indicate a block index , the object in which data of the block
is stored , and the snapshot ID to which the object belongs .
For example , in FIG . 9 , the first entry indicates Block 1 of
Snapshot 1 which is stored within Object 1. As another
example , the fourth entry indicates Block 8 of Snapshot 1
which is stored within Object 4. The block index , objects ,
and snapshot ID may be indicated as integers , hexadecimals ,
string expressions , or the like . In some instances , an object
identifier may include a prefix identifier indicating the top
level logical path the object storage server in which the
object is stored . The entry may contain additional informa
tion such as prefix , the address within the logical path of an
object containing the block , filepath data , checksum of the
object data , sub - block or block metadata for blocks within
the object , object metadata (e.g. , an access token algorith
mically linked to a storage location of the object storing data
of a block , as described below) , or the like . An entry of the

manifest 904 can be 8 kB , 16 kB , 32 kB , 100 kB , 1 MB , or
the like . The snapshot manifest 904 may be stored on the
object storage servers 110 upon creation of the snapshot and
may be modified in response to snapshot operations
described herein .
[0087] The snapshot manifest 904 can be logically parti
tioned into “ fragments " of M entries . The last fragment may
have less than M entries , depending on how many total
entries make up the snapshot manifest 904. The size of the
manifest index 906 is inversely proportional to M. In other
words , a large M can be selected to reduce the size of the
manifest index 906. In turn , the manifest partitions or
fragments have more entries , and thus , process 1200 of
identifying location of a snapshot block may require a
download or retrieval of a larger manifest fragment and
more computations to search the fragment for the requested
block . The fragment size M can be selected in configuring
the public snapshot service , or may be specified on a
per - customer basis by a customer generating a snapshot . The
fragment size M can be determined according to an optimi
zation scheme to balance manifest index size , bandwidth
and storage requirements , and desired search speed . For
example , a larger M may result in a smaller manifest index
that is more quickly scanned , but larger manifest partitions
which are more slowly scanned . Conversely , a smaller M
may result in larger manifest index that is more slowly
scanned , but smaller manifest partitions which are more
quickly scanned . In one embodiment , the fragment size M
can be determined according to the size of the volume or
snapshot ; a larger volume can have larger M and smaller
volume can have smaller M. In FIG . 9 , fragment size M is
3 entries , and thus each fragment N = 1 to N = 4 has 3 entries .
The last entry N = 5 has 2 entries . Each fragment of the
manifest can be associated with an offset indicating the
position of the fragment with respect entries within the
snapshot manifest 904. For instance , a fragment with offset
N comprises of the entries in position ((N - 1) xM + 1) to
position (N) xM . If the fragment is the last fragment of the
snapshot manifest 904 and has less than M entries , the
entries comprise the entries in position ((N - 1) xM + 1) to the
last entry of the snapshot manifest 904. The offset of a
manifest entry can illustratively refer to the line of the
manifest where the entry is positioned . In such case , as
depicted in FIG . 9 , the offset of the manifest entry pertaining
to Block 8 is 4 .
[0088] In FIG . 9 , each entry of the manifest index 906
contains an entry indicating the offset of a fragment in the
manifest (e.g. , as a line number) , the starting block associ
ated with the fragment and the ending block associated with
the fragment . Thus , for the example snapshot manifest 904
depicted in FIG . 9 , the manifest index 906 can contains 5
entries , one for each fragment N = 1 to N = 5 . Illustratively , the
starting block for fragment N = 2 , starting at manifest line 4 ,
is Block 8 , the block associated with the first entry of
fragment N = 2 as enumerated in the snapshot manifest 904 in
FIG . 9. The ending block for the fragment N = 2 is Block 10 .
The offset and starting and ending blocks may be indicated
as integers , hexadecimals , string expressions , or the like . An
entry of the manifest index 906 can be 4 B , 8 B , 16 B , 100
B , 1 kB , 8 KB , 16 kB , 32 kB , 100 kB , 1 MB , or the like .
[0089] While entries within the manifest index are shown
in FIG . 9 as reflecting offsets of the manifest fragments , in
some instances entries in the manifest index may addition
ally or alternatively reflect a logical position of a fragment

a

?

US 2022/0100386 A1 Mar. 31 , 2022
13

2

among other fragments . For example , a first entry may
indicate fragment N = 1 , a second entry may indicate frag
ment N = 2 , etc. As shown above , logical fragment numbers
and the offset of such fragment within the manifest may be
mathematically derived from one another .
[0090] In some embodiments , each entry within manifest
index 906 may further indicate a checksum value of mani
fest fragment (or information within that fragment , such as
block indices) associated with the entry , for verifying frag
ments of the manifest 904 retrieved or downloaded from the
object storage servers 110 .
[0091] The manifest index 906 may be stored on the object
storage servers 110 upon creation of the snapshot and may
be modified in response to snapshot operations described
herein . The manifest index 906 may be retrieved and cached
into local memory of the public snapshot service in response
to the first operation on a snapshot .

a

Example Workflow for Identifying a Location of a Snapshot
Block

[0092] FIG . 10 depicts an example workflow 1000 for
identifying metadata for accessing data of a block within a
snapshot on the network environment of FIG . 3. For
example , the metadata for accessing data of the block may
be an access token generated based on a location of (i.e. the
object corresponding to) a block as stored on the object
storage servers 110. Illustratively , the token for each block ,
independently or in conjunction with other information ,
such as a block number , may be algorithmically linked to a
storage location of the object storing data of the block on the
on the object storage servers 110 , such that processing of the
token and the other information , if any , through the algo
rithm results in a location of the object on the object storage
servers 110 representing data of the block . In one embodi
ment , the token is opaque to a requesting user computing
device 102 , such that the device 102 is unable to determine
the location of the object .
[0093] At step (1) , the user computing device 102 requests
metadata for accessing the block from the public snapshot
service 130. The user computing device 102 can request
such metadata for multiple blocks in parallel or in series . For
example , the user computing device 102 may request a list
of metadata for a specified number of blocks of a snapshot ,
beginning from a given block number (e.g. , list the next 100
blocks recorded within the snapshot starting at block 1) . The
identification request may be a part of snapshot operations
such as reading a snapshot or modifying a snapshot . At step
(2) , the public snapshot service 130 identifies , using the
manifest index 906 , the manifest fragment containing the
entry for the requested block . The public snapshot service
130 may implement process 1200 to identify the offset N
(e.g. , by line within the manifest) associated with the mani
fest fragment containing the entry for the requested block .
The manifest index 906 may be stored in an object storage
server 110. In such examples , the manifest index 906 can be
retrieved from the object storage server 110 and cached
locally on the computing system of a public snapshot service
130 .
[0094] At step (3) , the public snapshot service 130
retrieves the identified manifest fragment . In one embodi
ment , the manifest 904 is stored as a single file , from which
the manifest fragment can be individually retrieved . The
snapshot service 130 can retrieve M entries from the mani
fest fragment starting from the manifest line indicated in the

manifest index entry for the fragment . If the fragment is the
last fragment of the manifest 904 and has less than M entries ,
the entries comprise the entries from the manifest line
indicated in the manifest index entry to the last entry of the
manifest 904. In the case the manifest index indicates a
logical fragment number N , the snapshot service 130 can
retrieve the entries in position ((N - 1) xM + 1) to position
(N) XM of the snapshot manifest 904 wherein N is the logical
fragment number identified in step (2) . If the fragment is the
last fragment of the manifest 904 and has less than Mentries ,
the entries comprise the entries in position ((N - 1) xM + 1) to
the last entry of the manifest 904. In another embodiment ,
the manifest 904 is stored as a series of files (e.g. , manifest
1 , manifest - 2 , etc.) and thus the service 130 can directly
retrieve the file corresponding to the manifest fragment .
After retrieving the identified manifest fragment , the public
snapshot service 130 may verify that the retrieved manifest
fragment is valid by comparing a checksum value of the
retrieved manifest fragment (e.g. , generated by passing the
manifest fragment through a checksum calculation , such as
an MD5 algorithm) with the checksum value indicated in the
manifest index 906 .
[0095] At step (4) , the public snapshot service 130 iden
tifies metadata for accessing of the requested block from the
manifest fragment . Specifically , at step (4) , the public snap
shot service 130 can search the retrieved manifest fragment
for the entry corresponding to the requested block and
accordingly identify the object storing data of the block as
indicated in the manifest entry . The snapshot service 130
may identify other metadata stored in the snapshot manifest
904 , such as prefix metadata , the address within the logical
path containing the block , filepath data , checksum of the
object data , sub - block or block metadata for blocks within
the object , object metadata , or the like . At step (5) , the public
snapshot service 130 returns the metadata for accessing . For
example , the metadata can be an object or address for the
object storing data of the requested block , or an access token
generated by the public snapshot and corresponding to the
storage location of the requested block . In a situation where
an entry for the block is not identified in step (4) , the public
snapshot service 130 may return a null or error message . A
null message may indicate that the requested block of the
block storage device volume has not been backed up by a
snapshot (e.g. , because it was not written to) . In a situation
where the request at step (1) was for an enumeration of
multiple blocks , the public snapshot service 130 may return
an enumerated list containing metadata for accessing the
specified number of snapshot blocks . For example , the
service 130 may identify a first entry within the retrieved
manifest fragment , as well as any additional entries up to the
specified number of total entries , and return metadata for
each block within those total entries . In some cases , the
specified number of blocks may exceed the fragment size M ,
and as such , the service 130 may at (3) read entries within
the manifest outside of the initially retrieved fragments .

a

a

Example Routine for Creating Manifest Index
[0096] FIG . 11 is a flowchart of an example routine 1100
for generating a manifest index . The routine 1100 may be
carried out , for example , by the public snapshot service 130
or one or more other components of the elastic computing
system 120 described herein . For convenience , the steps of
routine 1100 are described as being performed by a public
snapshot server . For example , such a public snapshot server

US 2022/0100386 A1 Mar. 31 , 2022
14

2

may include one or more hardware computing devices and
non - transitory physical computer storage storing instruc
tions that , when executed by the one or more hardware
computing devices , cause the one or more hardware com
puting devices to perform the steps of the routine 1100 .
Routine 1100 may be initiated by the finalization of a
snapshot of a volume (e.g. , subsequent to blocks of the
volume being written into the snapshot) . Additionally or
alternatively , routine 1100 may be initiated by a request to
create a manifest index .
[0097] At block 1102 , the public snapshot service 130
receives a snapshot manifest 906 , which may be created by
the service 130 during finalization of the snapshot . The
snapshot manifest 906 may be received from an object
storage server 110. If routine 1100 is carried out before the
manifest is stored into the object storage server 110 , the
snapshot manifest may be received from local cache .
[0098] At block 1104 , the public snapshot service 130
creates a logical partition or a fragment for M entries from
the manifest , M being the manifest fragment size . At block
1106 , the public snapshot service 130 creates a manifest
index entry indicating , the position of the fragment within
the manifest (e.g. the line number of an entry of the manifest
in which the fragment starts) , and the starting and ending
block for the entries within the manifest fragment . The
public snapshot service 130 may further indicate in the
manifest index entry a checksum value associated with the
manifest fragment (e.g. , generated by passing the entries for
the fragment through a checksum calculation) .
[0099] At decision block 1108 , the public snapshot service
130 determines whether there are more than M entries
remaining in the manifest that have not been partitioned and
entered into the manifest index . If there are more than M
entries remaining , the routine returns to block 1104 to
partition the next fragment of Mentries . If there are less than
or equal to M entries remaining , the routine proceeds to
block 1110. At block 1110 , the public snapshot service 130
creates the last manifest index entry indicating the position
of the fragment within the manifest and the starting and
ending blocks for the entries within the fragment . The last
manifest fragment may have less than M entries . After block
1110 , the routine 1100 ends . The public snapshot service 130
may store the created manifest index in the object storage
service 110 or local cache . In one embodiment , the public
snapshot service 130 stores the created manifest index by
separate fragments .

9

include one or more hardware computing devices and non
transitory physical computer storage storing instructions
that , when executed by the one or more hardware computing
devices , cause the one or more hardware computing devices
to perform the steps of the routine 1200 .
[0101] At block 1202 , the public snapshot service 130
receives a request to identify metadata for accessing a block
of a volume reflected in a snapshot . The request may be
received from a user computing device 102 .
[0102] At block 1204 , the public snapshot service 130
identifies the manifest fragment that may contain the entry
for the requested block from the manifest index . The public
snapshot service 130 can identify which fragment may
contain the requested block by comparing the block index of
the requested block with the starting and ending block
indices of each fragment as enumerated in the manifest
index . The public snapshot can identify an entry of the
manifest index whose range includes the requested block ,
and thus identify the fragment associated with the block . In
another example , the public snapshot service 130 can iden
tify which fragment may contain the requested block by
comparing the block index of the requested block with the
starting block indices of each fragment as enumerated in the
manifest index . For example , the public snapshot service
130 may determine the manifest fragment that precedes the
first manifest fragment with a starting block index greater
than the requested block index . With respect to the manifest
index 906 depicted in FIG . 9 , the public snapshot service
130 may be requested to identify the storage location , or the
object storing the data , of Block 9. The public snapshot
service 130 can determine from the manifest index 906 that
manifest fragment N = 2 may contain the entry for Block 9
because the first manifest fragment with the starting block
index that is greater than Block 9 is N = 3 where the starting
block of the fragment is Block 11 .
[0103] At block 1206 , the public snapshot service 130
retrieves the identified manifest fragment . The public snap
shot service 130 may retrieve the identified manifest frag
ment from object storage servers 110. In one embodiment ,
the manifest 904 is stored as a single file . The snapshot
service 130 can retrieve M entries from the manifest frag
ment starting from the manifest line indicated in the mani
fest index entry for the fragment . If the fragment is the last
fragment of the manifest 904 and has less than Mentries , the
entries comprise the entries from the manifest line indicated
in the manifest index entry to the last entry of the manifest
904. In the case the manifest index indicates an offset N , the
snapshot service 130 can retrieve the entries in position
((N - 1) xM + 1) to position NxM of the snapshot manifest
wherein Nis logical fragment number identified at block
1204 and M is the fragment size . If the fragment is the last
fragment of the manifest and has less than M entries , the
entries comprise the entries in position ((N - 1) xM + 1) to the
last entry of the manifest . In another embodiment , the
manifest 904 is stored as a series of files (e.g. , manifest - 1 ,
manifest - 2 , etc.) and thus the service 130 can directly
retrieve the file corresponding to the manifest fragment .
After retrieving the identified manifest fragment , the public
snapshot service 130 may verify that the retrieved manifest
fragment is valid by comparing the checksum value of the
retrieved manifest fragment (e.g. , generated by passing the
manifest fragment through a checksum calculation , such as
an MD5 algorithm) with the checksum value indicated in the
manifest index .

Example Routine for Identifying an Object Using Manifest
Index

[0100] FIG . 12 is a flowchart of an example routine 1200
for identifying the metadata for accessing a snapshot block .
For example , the metadata may be the storage location an
object storing data corresponding to a block of a volume
reflected in a snapshot or an access token corresponding to
on a location of (i.e. the object corresponding to) a block
within a snapshot . The request may be for metadata for
accessing multiple blocks . For example , the request may
indicate a list of a specified number of blocks of a snapshot a
from a given block number . The routine 1200 may be carried
out , for example , by the public snapshot service 130 or one
or more other components of the elastic computing system
120 described herein . For convenience , the steps of routine
1200 are described as being performed by a public snapshot
server . For example , such a public snapshot server may

US 2022/0100386 A1 Mar. 31 , 2022
15

[0104] At block 1208 the public snapshot service 130 can
determine whether the retrieved fragment contains an entry
for the requested block . In one embodiment where an object
stores data of one block of the block storage device volume ,
for example , the public snapshot service 130 may conduct a
search through the entries of the manifest fragment for the
requested block index . In another embodiment , an object
may store data of more than one block , and accordingly the
snapshot manifest may indicate that a range of blocks are
stored on an object . In such embodiment , the public snap
shot service 130 may conduct a search to identify the object
including the requested block , based on ranges indicated
within the manifest . In instances where a request specifies
multiple blocks , the service may identify entries within the
manifest for each such block . For example , where the
request is a “ list ” operation requesting metadata of a given
number of blocks beginning with a specific block number ,
the service may identify a number of entries of the manifest
fragment of specified size , beginning from the entry corre
sponding to the specified block number . In the case of the
specified size exceeding the number of entries within the
manifest fragment , the service may obtain subsequent frag
ments and continue to read such entries .
[0105] In addition , at block 1208 , the public snapshot
service 130 returns the metadata for accessing the requested
block , which may be read from entry for the block identified
in the manifest fragment . For example , the metadata may be
the storage location an object storing data corresponding to
a block of a volume reflected in a snapshot or an access
token corresponding to a location of (i.e. the object corre
sponding to) a block within a snapshot . The public snapshot
service 130 may return additional information indicated in
the manifest entry , for example , prefix metadata , the address
within the logical path containing the block , filepath data ,
checksum of the object data , sub - block or block metadata for
blocks within the object , other object metadata , or the like .
If the public snapshot 130 determines that the retrieved
fragment does not contain an entry for the requested block ,
the public snapshot 130 can return a null indication or
message . The null indication or message may indicate that
the requested block was not backed up and stored as part of
a snapshot . The error indication or message may indicate
that the manifest index or the manifest is corrupted . If an
entry for the requested block is not found in the fragment in
an embodiment where the request is for metadata enumer
ated for multiple blocks starting at the requested block , the
public snapshot 130 may begin enumerating the metadata
from the next sequential block (i.e. the block with the lowest
block index that is higher than the requested block) that has
an entry in the manifest . For example , where a “ list ”
operation request is submitted for the first 100 blocks
beginning with block 5 (i.e. a list for 100 blocks identified
sequentially from block 5) and block 5 is not stored within
the snapshot , the operation may result in returning of meta
data for the first 100 entries in the manifest corresponding to
a block index higher than 5. Furthermore , in an embodiment
where the request is for metadata enumerated for multiple
blocks starting at the requested block , the public snapshot
130 may determine that additional manifest fragments are to
be retrieved in order to generate a list of the specified size .

disclosure . It should be understood that these depictions of
the volume , snapshots , and write - set are only one example
implementing one or more aspects of the present disclosure .
While the volume 1302 is depicted to be comprised of 12
operating - system level blocks or snapshot sub - blocks , a
person skilled in the art would understand that the snapshot
can have more or less than 12 snapshot sub - blocks . Further
more , though each block 1310A of parent snapshot 1303 and
each block 1312A of the child snapshot 1304 are logically
partitioned into four partitions , or sub - blocks , a person
skilled in the art would understand that the snapshot block
can be partitioned into more or less than four partitions .
Indeed , in accordance with aspects of the present disclosure ,
modifications to sub - blocks may be made at any desired
granularity (e.g. , at the level of individual bytes) . Similarly ,
though FIG . 13 depicts the entries of the write - set 1306 as
comma separated values or expressions , a person of the
ordinary skill in the arts would understand that the entries
can be implemented in other ways such as the entries
represented in binary , the entries as entries of a database
structure , key - value data , look - up table , and the like .
[0107] FIG . 13 depicts a volume 1302 of a block storage
device that is the basis for the parent snapshot 1303 and
child snapshot 1304. As depicted in FIG . 13 , the volume
1302 comprises operating - system - level blocks (e.g. , logical
groupings of data organized by an operating system of a user
computing device 102) , which are generally referred to
herein as “ sub - blocks , " as further detailed below . As an
example , each operating - system - level block of the block
storage volume can be 4 kB and represent the unit of data at
which an operating system writes to the block storage
device . In the course of its operation , a user computing
device 102 may modify the volume 1302. In FIG . 13 ,
operating - system - level blocks such as 1308A and 1308B
that have been modified since the last back - up (i.e. since the
parent snapshot 1303 was created) are striped . Operating
system - level blocks that were not modified such as 1308C
and 1308D are not striped .
[0108] Generally described , a snapshot can be a point - in
time representation of a block storage volume 1302 , wherein
the snapshot is stored on the one or more object storage
servers as a set of objects . Parent snapshot 1303 comprises
3 snapshot blocks 1310A , 1310B , 1310C and each block is
shown as logically partitioned into sub - blocks (though this
partitioning may not actually be apparent within the data
representing the snapshot block) . For example , parent snap
shot block 1301A is shown as partitioned into snapshot
blocks 1311A - D . As depicted in FIG . 13 , an operating
system - level blocks 1308A - D of a volume 1302 can be
represented in the parent snapshot 1303 as sub - blocks of a
snapshot block , such as sub - blocks 1311A - D . In other
words , data stored in operating - system - level blocks 1-4 of
the volume 1302 are stored in the object servers as a single
snapshot block 1310A . Likewise , data stored in operating
system - level blocks 5-8 of the volume 1302 are stored in the
object servers as a single snapshot block 1310B , and data
stored in operating - system - level blocks 9-12 of the volume
1302 are stored in the object servers as a single snapshot
block 1310C . As depicted in FIG . 13 , sub - blocks that have
been modified since the parent snapshot 1303 was created
are striped . The modified sub - blocks such as 1311A , 1311B
correspond to the modified operating - system - level blocks
such as 1308A , 1308B . The modified sub - blocks in snapshot

Example Volume and Sub - Block Level Snapshots
[0106] FIG . 13 depicts an example volume and snapshots
of the volume in accordance with aspects of the present

US 2022/0100386 A1 Mar. 31 , 2022
16

a

block 1310C correspond to the modified operating - system
level blocks 10-12 of the volume 1302 .
[0109] Child snapshot 1304 can comprise snapshot blocks
1312A , 1312B that represent writes to the parent snapshot
1303 at the level of sub - blocks (e.g. , OS - level blocks) ,
which may for example represent modifications made to the
volume 1302 since creation of the parent snapshot . Like the
parent snapshot blocks 1310A - C , child snapshot blocks
1312A , 1312B can be stored as objects on object storage
servers . In FIG . 13 , the shaded sub - blocks of child snapshot
blocks 1312A , 1312B corresponds to the sub - block modi
fications written to the child snapshot blocks 1312A , 1312B .
As depicted in FIG . 13 , parent snapshot blocks with no
sub - block level changes , such as parent snapshot block
1310B may not be represented in the child snapshot 1304 .
When a child snapshot 1304 is created , for example by
process 1500 , a corresponding write - set is also created . As
depicted in FIG . 13 , the write - set contains entries for each
child snapshot block 1312A , 1312B ; each write - set entry
can indicate a sub - block offset and length of data written to
the modified snapshot block . The sub - block offset can
indicate the offset or position of data written to the modified
block . In one embodiment , the offset is relative to the
beginning of the snapshot block (e.g. , indicating that writes
occurred at a first sub - block within the block , 4 kB into the
snapshot block , etc.) . In another embodiment , the offset is
relative to logical block addresses used by an operating
system controlling the underlying volume 1302. For
example , in FIG . 13 , the child snapshot block 1312A cor
responds to sub - blocks 1-4 and represents changes to sub
blocks 1-2 . The block offset of snapshot block 1312A may ,
for example , be a value of 1 , as the data of the child block
1312A begins at the first sub - block of the volume 1302. The
child snapshot block 1312B corresponds to sub - blocks 9-12
and represents changes to sub - blocks 10-12 . The block offset
of snapshot block 1312B may therefore be a value of 10 , as
snapshot block 1312B corresponds to data written to sub
block 10-12 . As depicted in FIG . 13 , the logical positions of
the sub - block modifications represented in child snapshot
block 1312A , 1312B correspond to the logical positions of
the modified OS - level blocks within the volume 1302 .
Offsets may be indicated in terms of sub - block identifiers
(e.g. , corresponding to OS - level blocks) and / or byte values
(e.g. , a number of kilobytes) , as these values may be
mathematically interchangeable given knowledge of a block
size used by an operating system maintaining the volume
1302 .

information received at step (1) as sub - block changes , such
that the buffer contains a record of the sub - block changes to
the parent snapshot block . In embodiments where snapshots
are stored at the public snapshot service 130 in encrypted
form , the public snapshot service can encrypt the contents of
the buffer to result in the creation of the child block . At step
(3) , the public snapshot service 130 generates and stores a
write - set for the child snapshot block . The public snapshot
service 130 can generate entries of the write - set for each
child snapshot block , indicating a sub - block offset (e.g. , a
position within the child block at which data is written) and
length of the data written to the child blocks . The public
snapshot service 130 can calculate a checksum for each
entry of the write - set . For example , the public snapshot
service 130 can compute the checksum (e.g. Base64
encoded SHA256 checksum) by concatenating the check
sums of all sub - blocks belonging to the child snapshot block
in the increasing order by their logical positions and then
computing checksum of the concatenated checksums . In
some embodiments , the write set further includes a logical
position of the child block relative to other blocks of the
snapshot (e.g. , as block 1 , 2 , 3 , etc.) . In other embodiments ,
the logical position of the child block may be stored outside
the write set (e.g. , within path information for the child
block , as discussed above) . The public snapshot service 130
can store the write - set in a metadata data store or in an object
storage server . A person skilled in the arts will understand
that step (2) and (3) can occur sequentially or at least partly
concurrently . At step (4) , the public snapshot service stores
one or more blocks of the child snapshot as one or more
objects in the object storage servers 110 .
[0112] At step (5) , the user computing device 102 requests
a current snapshot of a block storage volume backed up by
the public snapshot service 130. At step (6) , the public
snapshot service 130 retrieves the parent and child snapshots
associated with the request . At step (7) , the public snapshot
service merges the child snapshot blocks with the parent
snapshot blocks according to offsets indicated in the write
set . Specifically , the public snapshot service may " overlay "
written data within the child snapshot blocks with the data
in a corresponding parent snapshot block in order to gener
ate data representing a modified block . The data written
within the child snapshot blocks may be identified on the
basis of the offset and length , such as by beginning to read
from the child snapshot at a position indicated by the offset
and for a number of bytes indicated by the length . At step
(7) , the public snapshot service 130 may execute process
1600 to merge the child and parent snapshots . At step (8) , the
public snapshot service 130 may transmit the merged snap
shot to the user computing device 102. In other embodi
ments , the public snapshot service 130 may store the merged
snapshot as a new snapshot in the object storage servers 110 .
(0113] While the interactions above generally relate to
merging child and parent snapshot blocks in response to a
request from a user computing device 102 , in other embodi
ments merging may occur prior to such a request . For
example , merging may occur on instruction of a user com
puting device 102 to " seal " or complete a snapshot . Illus
tratively , interactions (1) - (3) may occur repeatedly , as the
user computing device 102 transmits changes to a volume
since a parent snapshot . Thereafter , prior to interaction (4) ,
the public snapshot service 130 may , for each block of the
child snapshot containing sub - block changes , merge the
block with a corresponding block of the parent snapshot

a

2

a
a

Example Workflow for Creating Sub - Block Level Snapshots
[0110] FIG . 14 depicts an example workflow for creating
a child snapshot from sub - block level modifications and
merging parent and child snapshots . At step (1) , a user
computing device 102 transmits to the public snapshot
service 130 a write to a sub - block of a snapshot , which write
may reflect changes made to a block storage volume such as
on an on - premise storage device backed up by a parent
snapshot . In other embodiments , the public snapshot service
130 may receive writes reflecting changes made to a volume
hosted on a block storage service .
[0111] At step (2) , the public snapshot service can gener
ate a child snapshot block containing the sub - block level
changes . The public snapshot service can generate a buffer
object containing a defined bit pattern (e.g. , all zeros to
result in a “ zero buffer ”) , to which to apply the written

US 2022/0100386 A1 Mar. 31 , 2022
17

according to the write - set for the block . The child snapshot
stored at (4) may then include all blocks modified relative to
the parent , either as completely altered blocks or partially
altered blocks generated by merging sub - block writes with
a parent block according to a corresponding write - set . The
child snapshot may further include a manifest of these
altered blocks , such that reading the altered blocks stored
within the child snapshot together with unaltered blocks of
the parent snapshot enables reading of the snapshot . Illus
tratively , conducting a merging of sub - block modifications
to create partially altered blocks prior to storing the child
snapshot may speed servicing of requests to read data from
the child snapshot . a

some embodiments , the public snapshot service may encrypt
the data of the sub - buffer prior to storing the write repre
sentation .
[0118] At block 1508 , the public snapshot server 130
creates a write - set entry for the write representation indi
cating an offset and length of the data written to as the
sub - block write . The offset can indicate the offset or position
of the data written within the sub - block write . The offset
may be described relative to a beginning of the written - to
snapshot block and / or the beginning of the snapshot , in
terms of a logical block position (e.g. , an OS - level block) , a
byte position , or similar information . The public snapshot
service 130 can calculate a checksum for each entry of the
write - set . For example , the public snapshot service 130 can
compute the checksum (e.g. Base64 encoded SHA256
checksum) by concatenating the checksums of all sub
blocks in the increasing order by their offsets and then
computing checksum of the concatenated checksums .
[0119] At block 1510 , the public snapshot service 130
stores the write representation and write - set . The write
representation can be stored as an object in an object storage
server , or held in memory of the snapshot service 130 for
merging with a version of the block from a parent snapshot
(e.g. , during sealing of a child snapshot) . The write - set can
be stored on a metadata data store in maintained by the
public snapshot service 130 , in an object storage server , in
an external database , or the like .

a

a

Example Routine for Creating Sub - Block Write
Representations and Write - Set for Sub - Blocks
[0114] FIG . 15 is a flowchart of an example process for
creating a write representation and write - set for sub - block
modifications made to a snapshot of a volume in accordance
with aspects of the present disclosure . The routine 1500 may
be carried out , for example , by the public snapshot service
130 or one or more other components of the elastic com
puting system 120 described herein . For convenience , the
blocks of routine 1500 are described as being performed by
a public snapshot server . For example , such a public snap
shot server may include one or more hardware computing
devices and non - transitory physical computer storage stor
ing instructions that , when executed by the one or more
hardware computing devices , cause the one or more hard
ware computing devices to perform the blocks of the routine
1500 .
[0115] At block 1502 , the public snapshot service 130
receives a write to a sub - block of a parent snapshot block .
The public snapshot service 130 may receive the write from
the user computing devices 102 , on - premise storage devices ,
or other block storage services . Data written to sub - blocks
may reflect changes made to the OS - level blocks of a
volume . For example , an operating system may perform
operations on its storage volumes by 4 kB block units , and
a snapshot created from the volume may be configured
store the snapshot as a plurality of partitions , or snapshot
blocks , of size 512 kB stored as objects on one or more
object storage servers . In such example , each snapshot block
can store data corresponding to 128 OS - level blocks . The
OS - level blocks and snapshot blocks may be identified with
sequential addresses or identifiers , for example , as depicted
by the example volume 1302 in FIG . 13. A snapshot of a
volume may be sparse , meaning that snapshot blocks may
not exist for sub - blocks of the volume that do not contain
data . The volume may be modified such that some but not all
sub - blocks are modified , as depicted by the example volume
1302 in FIG . 13 .
[0116] At block 1504 , the public snapshot server creates a
buffer object for applying the data written to the sub - blocks .
The buffer object may be an object comprising zeros that is
the size of a snapshot block .
[0117] At block 1506 , the public snapshot server 130
applies the written data to the sub - blocks as modifications to
the buffer , such that the buffer contains contents representing
the write to the sub - block (a “ write representation ”) . Apply
ing the written data to the buffer may comprise writing the
written data to the positions within the buffer corresponding
to the sub - blocks position in the snapshot block , as depicted
in the example child snapshot blocks 1312A , 1312B . In

Example Routine for Merging Child and Parent Snapshots
[0120] FIG . 16 is a flowchart of an example process for
merging a parent and child snapshot in accordance with
aspects of the present disclosure . The routine 1600 may be
carried out , for example , by the public snapshot service 130
or one or more other components of the elastic computing
system 120 described herein . For convenience , the blocks of
routine 1600 are described as being performed by a public
snapshot server . For example , such a public snapshot server
may include one or more hardware computing devices and
non - transitory physical computer storage storing instruc
tions that , when executed by the one or more hardware
computing devices , cause the one or more hardware com
puting devices to perform the blocks of the routine 1600. In
one embodiment , routine 1600 is initiated by the public
snapshot service 130 in response to receiving a request to
" seal " or complete a child snapshot , subsequent to a user
computing device 102 writing to one or more blocks of the
child snapshot .
[0121] At block 1602 , the public snapshot service 130
retrieves the parent snapshot corresponding to the requested
child snapshot from the object storage servers . Retrieval of
the parent snapshot may occur in response to identifying the
metadata enabling access to the snapshot using routine 1200 .
In one embodiment , the public snapshot service 130 may
retrieve one or more blocks of the parent snapshot as
specified by a request to generate a child snapshot .
[0122] At block 1604 , the public snapshot service 130
retrieves the write representations for writes made to the
child snapshot . The public snapshot service 130 further
retrieves the write - sets corresponding to the write represen
tations from a metadata data store or an object storage
server . The public snapshot service 130 can perform a
checksum on the retrieved sub - block write representations to
verify that the checksum is as indicated in the write - set entry
corresponding to the sub - blocks .

US 2022/0100386 A1 Mar. 31 , 2022
18

a
[0123] At block 1606 , the public snapshot service 130
identifies data written within each write representation
according to the write - set . For example , the public snapshot
service 130 may , for each write representation , obtain the
write - set corresponding to the write representation , and
identify data to be written to the child snapshot block
according to the offset and length information within the
write - set . The public snapshot service 130 may further
identify the parent snapshot block corresponding to child
snapshot block .
[0124] At block 1608 , the public snapshot service 130
merges the identified parent snapshot block and write rep
resentation to generate a child snapshot block . Merging the
parent snapshot block and the write representation may
comprise , for each write representation , replacing data
within the corresponding parent snapshot block with the
corresponding data written to the write representation (e.g. ,
as identified according to the offset and length in the write
set) . When the parent snapshot block and write representa
tion are merged , the resulting child snapshot block may be
transmitted to the requesting user , or stored as part of the
child snapshot in the object servers . Routine 1600 can be
repeated or be performed in at least partly concurrently to
create multiple child snapshot blocks according to the write
set .
[0125] While the interactions above generally relate to
merging a write representation to a parent snapshot block to
generate child snapshot block , in other embodiments , the
public snapshot service 130 may merge multiple write
representations to create a child snapshot block . For
example , before a child snapshot is sealed , the public
snapshot service 130 may receive multiple sub - block level
modifications that are represented as multiple write repre
sentations . Accordingly , blocks 1604-1608 may be repeated
to merge the multiple sub - block level modifications to the
parent snapshot block to generate a child snapshot . More
over , in some embodiments , the public snapshot service 130
may merge one or more write representations with a prior
version of a block for a given snapshot to create a final
version of that block . Illustratively , a user may initially write
data to an entire block of a snapshot , and subsequently (e.g. ,
prior to sealing of that snapshot) conduct a write against a
sub - block of that block . The public snapshot service 130 , via
the interactions described above , may thus during sealing of
the snapshot merge a write representation of that sub - block
write with the previously - written data (representing a prior
version of the block) to result in a final version of the block .
Thus , merging may occur both on the basis of a block of a
parent snapshot or on the basis of a prior version of block
data for a current snapshot (whether that snapshot is a
standalone snapshot , a child snapshot , etc.) .

9

order to provide an enabling disclosure . As illustrated , the
public snapshot service 130 includes a processor 190 ,
network interface 192 , and a computer readable medium
194 , all of which may communicate with one another by
way of a communication bus . The network interface 192
may provide connectivity to one or more networks or
computing systems . The processor 190 may thus receive
information and instructions from other computing systems
or services via the network 104 illustrated in FIGS . 1 and 3 .
[0127] The processor 190 may also communicate with
memory 180. The memory 180 may contain computer
program instructions (grouped as modules in some embodi
ments) that the processor 190 executes in order to implement
one or more aspects of the present disclosure . The memory
180 may include RAM , ROM , and / or other persistent ,
auxiliary , or non - transitory computer - readable media . The
memory 180 may store an operating system 184 that pro
vides computer program instructions for use by the proces
sor 190 in the general administration and operation of the
public snapshot service 130. The memory 180 may further
include computer program instructions and other informa
tion for implementing one or more aspects of the present
disclosure . For example , in one embodiment , the memory
180 includes a user interface module 182 that generates user
interfaces (and / or instructions therefor) for display upon a
user computing device (e.g. , user computing device 102 of
FIG . 1) , e.g. , via a navigation and / or browsing interface such
as a browser or application installed on the user computing
device . In addition , the memory 180 may include or com
municate with one or more data stores .
[0128] In addition to and / or in combination with the user
interface module 182 , the memory 180 may include the
snapshot creation unit 186 , the snapshot storage path struc
ture generation unit 187 , and the snapshot block difference
computation unit 188 that may be executed by the processor
190. In one embodiment , the snapshot creation unit 186 , the
snapshot storage path structure generation unit 187 , and the
snapshot block difference computation unit 188 individually
or collectively implement various aspects of the present
disclosure , e.g. , creating a snapshot , generating a snapshot
storage path structure for storing the data blocks in the
snapshot , restoring the snapshot onto a destination volume ,
computing a snapshot block difference between the snapshot
and another snapshot (e.g. , a parent snapshot) , creating
manifest indices , creating sub - block level snapshots , and / or
other aspects discussed herein or illustrated in FIGS . 1-16 .
[0129] While the snapshot creation unit 186 , the snapshot
storage path structure generation unit 187 , and the snapshot
block difference computation unit 188 are shown in FIG . 17
as part of the public snapshot service 130 , in other embodi
ments , all or a portion of the snapshot creation unit 186 , the
snapshot storage path structure generation unit 187 , and the
snapshot block difference computation unit 188 may be
implemented by other components of the elastic computing
system 120 and / or another computing device . For example ,
in certain embodiments of the present disclosure , another
computing device in communication with the elastic com
puting system 120 may include several modules or compo
nents that operate similarly to the modules and components
illustrated as part of the public snapshot service 130. It will
also be appreciated that , in some embodiments , a user
computing device (e.g. , the user computing device 102 of
FIG . 1) may implement functionality that is otherwise
described herein as being implemented by the elements

2

a

Example Architecture of Public Snapshot Service
[0126] FIG . 17 depicts an example architecture of a com
puting system (referred to as the public snapshot service
130) that can be used to perform one or more of the
techniques described herein or illustrated in FIGS . 1-16 . The
general architecture of the public snapshot service 130
depicted in FIG . 17 includes an arrangement of computer
hardware and software modules that may be used to imple
ment one or more aspects of the present disclosure . The
public snapshot service 130 may include many more (or
fewer) elements than those shown in FIG . 17. It is not
necessary , however , that all of these elements be shown in

US 2022/0100386 A1 Mar. 31 , 2022
19

and / or modules of the public snapshot service 130. For
example , the user computing device 102 may receive code
modules or other instructions from the public snapshot
service 130 and / or other components of the elastic comput
ing system 120 via the network 104 that are executed by the
user computing device 102 to implement various aspects of
the present disclosure .

TERMINOLOGY

[0130] All of the methods and tasks described herein may
be performed and fully automated by a computer system .
The computer system may , in some cases , include multiple
distinct computers or computing devices (e.g. , physical
servers , workstations , storage arrays , cloud computing
resources , etc.) that communicate and interoperate over a
network to perform the described functions . Each such
computing device typically includes a processor (or multiple
processors) that executes program instructions or modules
stored in a memory or other non - transitory computer - read
able storage medium or device (e.g. , solid state storage
devices , disk drives , etc.) . The various functions disclosed
herein may be embodied in such program instructions , or
may be implemented in application - specific circuitry (e.g. ,
ASICs or FPGAs) of the computer system . Where the
computer system includes multiple computing devices , these
devices may , but need not , be co - located . The results of the
disclosed methods and tasks may be persistently stored by
transforming physical storage devices , such as solid - state
memory chips or magnetic disks , into a different state . In
some embodiments , the computer system may be a cloud
based computing system whose processing resources are
shared by multiple distinct business entities or other users .
[0131] The processes described herein or illustrated in the
figures of the present disclosure may begin in response to an
event , such as on a predetermined or dynamically deter
mined schedule , on demand when initiated by a user or
system administrator , or in response to some other event .
When such processes are initiated , a set of executable
program instructions stored on one or more non - transitory
computer - readable media (e.g. , hard drive , flash memory ,
removable media , etc.) may be loaded into memory (e.g. ,
RAM) of a server or other computing device . The executable
instructions may then be executed by a hardware - based
computer processor of the computing device . In some
embodiments , such processes or portions thereof may be
implemented on multiple computing devices and / or multiple
processors , serially or in parallel .
[0132] Depending on the embodiment , certain acts ,
events , or functions of any of the processes or algorithms
described herein can be performed in a different sequence ,
can be added , merged , or left out altogether (e.g. , not all
described operations or events are necessary for the practice
of the algorithm) . Moreover , in certain embodiments , opera
tions or events can be performed concurrently , e.g. , through
multi - threaded processing , interrupt processing , or multiple
processors or processor cores or on other parallel architec
tures , rather than sequentially .
[0133] The various illustrative logical blocks , modules ,
routines , and algorithm steps described in connection with
the embodiments disclosed herein can be implemented as
electronic hardware (e.g. , ASICs or FPGA devices) , com
puter software that runs on computer hardware , or combi
nations of both . Moreover , the various illustrative logical
blocks and modules described in connection with the

embodiments disclosed herein can be implemented or per
formed by a machine , such as a processor device , a digital
signal processor (" DSP) , an application specific integrated
circuit (“ ASIC ”) , a field programmable gate array (“ FPGA ”)
or other programmable logic device , discrete gate or tran
sistor logic , discrete hardware components , or any combi
nation thereof designed to perform the functions described
herein . A processor device can be a microprocessor , but in
the alternative , the processor device can be a controller ,
microcontroller , or state machine , combinations of the same ,
or the like . A processor device can include electrical cir
cuitry configured to process computer - executable instruc
tions . In another embodiment , a processor device includes
an FPGA or other programmable device that performs logic
operations without processing computer - executable instruc
tions . A processor device can also be implemented as a
combination of computing devices , e.g. , a combination of a
DSP and a microprocessor , a plurality of microprocessors ,
one or more microprocessors in conjunction with a DSP
core , or any other such configuration . Although described
herein primarily with respect to digital technology , a pro
cessor device may also include primarily analog compo
nents . For example , some or all of the rendering techniques
described herein may be implemented in analog circuitry or
mixed analog and digital circuitry . A computing environ
ment can include any type of computer system , including ,
but not limited to , a computer system based on a micropro
cessor , a mainframe computer , a digital signal processor , a
portable computing device , a device controller , or a com
putational engine within an appliance , to name a few .
[0134] The elements of a method , process , routine , or
algorithm described in connection with the embodiments
disclosed herein can be embodied directly in hardware , in a
software module executed by a processor device , or in a
combination of the two . A software module can reside in
RAM memory , flash memory , ROM memory , EPROM
memory , EEPROM memory , registers , hard disk , a remov
able disk , a CD - ROM , or any other form of a non - transitory
computer - readable storage medium . An exemplary storage
medium can be coupled to the processor device such that the
processor device can read information from , and write
information to , the storage medium . In the alternative , the
storage medium can be integral to the processor device . The
processor device and the storage medium can reside in an
ASIC . The ASIC can reside in a user terminal . In the
alternative , the processor device and the storage medium can
reside as discrete components in a user terminal .
[0135] Conditional language used herein , such as , among
others , “ can , ” “ could , ” “ might , ” “ may , ” “ e.g. , " and the like ,
unless specifically stated otherwise , or otherwise understood
within the context as used , is generally intended to convey
that certain embodiments include , while other embodiments
do not include , certain features , elements or steps . Thus ,
such conditional language is not generally intended to imply
that features , elements or steps are in any way required for
one or more embodiments or that one or more embodiments
necessarily include logic for deciding , with or without other
input or prompting , whether these features , elements or steps
are included or are to be performed in any particular
embodiment . The terms “ comprising , ” “ including , " " hav
ing , ” and the like are synonymous and are used inclusively ,
in an open - ended fashion , and do not exclude additional
elements , features , acts , operations , and so forth . Also , the
term " or ” is used in its inclusive sense (and not in its

US 2022/0100386 A1 Mar. 31 , 2022
20

a

a a

a

?

exclusive sense) so that when used , for example , to connect
a list of elements , the term “ or ” means one , some , or all of
the elements in the list .
[0136] Disjunctive language such as the phrase " at least
one of X , Y , or Z , " unless specifically stated otherwise , is
otherwise understood with the context as used in general to
present that an item , term , etc. , may be either X , Y , or Z , or
any combination thereof (e.g. , X , Y , or Z) . Thus , such
disjunctive language is not generally intended to , and should
not , imply that certain embodiments require at least one of
X , at least one of Y , and at least one of Z to each be present .
[0137] While the above detailed description has shown ,
described , and pointed out novel features as applied to
various embodiments , it can be understood that various
omissions , substitutions , and changes in the form and details
of the devices or algorithms illustrated can be made without
departing from the spirit of the disclosure . As can be
recognized , certain embodiments described herein can be
embodied within a form that does not provide all of the
features and benefits set forth herein , as some features can
be used or practiced separately from others . All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope .

1. - 20 . (canceled)
21. A computer - implemented method , comprising :
receiving a request to identify a difference between a first

snapshot of a data storage volume from a first point in
time and a second snapshot of the data storage volume
from a second point in time subsequent to the first point
in time , wherein each of the first and second snapshots
represent a replica of data within the data storage
volume at the respective first and second points in time ,
wherein the data storage volume is hosted in a first
physical location ;

identifying a portion of the data storage volume , as
replicated within the second snapshot , that stores data
not replicated within the first snapshot ;

outputting an indication of the identified portion of the
data storage volume ; and

creating a copy of the data storage volume in a second
physical location that is different from the first physical
location by transferring , over a network between the
first physical location and the second physical location ,
a subset , but not all , of the data replicated within the
second snapshot , wherein the subset of the data
includes at least data corresponding to the identified
portion of the data storage volume .

22. The computer - implemented method of claim 21 ,
wherein the first physical location and the second physical
location are different regions of a cloud provider network .

23. The computer - implemented method of claim 21 ,
wherein the second physical location is within a cloud
provider network , and the first physical location is within an
on - premises computer network that is external to and in
communication with the cloud provider network .

24. The computer - implemented method of claim 21 ,
wherein the first physical location is within a cloud provider
network , and the second physical location is within an
on - premises computer network that is external to and in
communication with the cloud provider network .

25. The computer - implemented method of claim 21 , fur
ther comprising accessing metadata associated with the
second snapshot indicating one or more portions of the data
storage volume , as replicated within the second snapshot ,

that store data that is not replicated within the first snapshot ,
wherein the identification of the portion of the data storage
volume that stores data not replicated within the first snap
shot is based at least in part on the metadata associated with
the second snapshot .

26. The computer - implemented method of claim 25 ,
wherein the metadata associated with the second snapshot
comprises (i) first path information associated with a set of
data blocks present in both the first snapshot and the second
snapshot , and (ii) second path information associated with
one or more additional data blocks that are present in the
second snapshot but not in the first snapshot .

27. The computer - implemented method of claim 26 , fur
ther comprising :

determining , for each respective data block associated
with the second snapshot , whether path information
associated with the respective data block is included in
parent path information associated with the first snap
shot , without comparing block data within the respec
tive data block to block data within a corresponding
data block associated with the parent snapshot ; and

outputting a list of data blocks that are each associated
with path information not included in the parent path
information associated with the first snapshot .

28. A non - transitory computer - readable medium storing
instructions that , when executed by a computing system ,
cause the computing system to perform operations compris
ing :

receiving a request to identify a difference between a first
snapshot of a data storage volume from a first point in
time and a second snapshot of the data storage volume
from a second point in time subsequent to the first point
in time , wherein each of the first and second snapshots
represent a replica of data within the data storage
volume at the respective first and second points in time ,
wherein the data storage volume is hosted in first
physical location ;

identifying a portion of the data storage volume , as
replicated within the second snapshot , that stores data
not replicated within the first snapshot ;

outputting an indication of the identified portion of the
data storage volume ; and

creating a copy of the data storage volume in a second
physical location that is different from the first physical
location by transferring , over a network between the
first physical location and the second physical location ,
a subset , but not all , of the data replicated within the
second snapshot , wherein the subset of the data
includes at least data corresponding to the identified
portion of the data storage volume .

29. The non - transitory computer - readable medium of
claim 28 , wherein the first physical location and the second
physical location are different regions of a cloud provider
network .

30. The non - transitory computer - readable medium of
claim 28 , wherein the second physical location is within a
cloud provider network , and the first physical location is
within an on - premises computer network that is external to
and in communication with the cloud provider network .

31. The non - transitory computer - readable medium of
claim 28 , wherein the first physical location is within a cloud
provider network , and the second physical location is within
an on - premises computer network that is external to and in
communication with the cloud provider network .

a

a

US 2022/0100386 A1 Mar. 31 , 2022
21

32. The non - transitory computer - readable medium of
claim 28 , storing further instructions that , when executed by
the computing system , cause the computing system to per
form operations comprising accessing metadata associated
with the second snapshot indicating one or more portions of
the data storage volume , as replicated within the second
snapshot , that store data that is not replicated within the first
snapshot , wherein the identification of the portion of the data
storage volume that stores data not replicated within the first
snapshot is based at least in part on the metadata associated
with the second snapshot .

33. The non - transitory computer - readable medium of
claim 32 , wherein the metadata associated with the second
snapshot comprises (i) first path information associated with
a set of data blocks present in both the first snapshot and the
second snapshot , and (ii) second path information associated
with one or more additional data blocks that are present in
the second snapshot but not in the first snapshot .

34. The non - transitory computer - readable medium of
claim 33 , storing further instructions that , when executed by
the computing system , cause the computing system to per
form operations comprising :

determining , for each respective data block associated
with the second snapshot , whether path information
associated with the respective data block is included in
parent path information associated with the first snap
shot , without comparing block data within the respec
tive data block to block data within a corresponding
data block associated with the parent snapshot ; and

outputting a list of data blocks that are each associated
with path information not included in the parent path
information associated with the first snapshot .

35. A system , comprising :
one or more processors ; and
one or more memories having stored thereon instructions ,
which , when executed by the one or more processors ,
cause the one or more processors to :
receive a request to identify a difference between a first

snapshot of a data storage volume from a first point
in time and a second snapshot of the data storage
volume from a second point in time subsequent to
the first point in time , wherein each of the first and
second snapshots represent a replica of data within
the data storage volume at the respective first and
second points in time , wherein the data storage
volume is hosted in a first physical location ;

identify a portion of the data storage volume , as rep
licated within the second snapshot , that stores data
not replicated within the first snapshot ;

output an indication of the identified portion of the data
storage volume ; and

cause a copy of the data storage volume to be created
in a second physical location that is different from
the first physical location by transferring , over a
network between the first physical location and the
second physical location , a subset , but not all , of the
data replicated within the second snapshot , wherein
the subset of the data includes at least data corre
sponding to the identified portion of the data storage
volume .

36. The system of claim 35 , wherein the first physical
location and the second physical location are different
regions of a cloud provider network .

37. The system of claim 35 , wherein the second physical
location is within a cloud provider network , and the first
physical location is within an on - premises computer net
work that is external to and in communication with the cloud
provider network .

38. The system of claim 35 , wherein the first physical
location is within a cloud provider network , and the second
physical location is within an on - premises computer net
work that is external to and in communication with the cloud
provider network .

39. The system of claim 35 , wherein the instructions ,
when executed , further cause the one or more processors to
access metadata associated with the second snapshot indi
cating one or more portions of the data storage volume , as
replicated within the second snapshot , that store data that is
not replicated within the first snapshot , wherein the identi
fication of the portion of the data storage volume that stores
data not replicated within the first snapshot is based at least
in part on the metadata associated with the second snapshot .

40. The system of claim 39 , wherein the instructions ,
when executed , further cause the one or more processors to :

determining , for each respective data block associated
with the second snapshot , whether path information
associated with the respective data block is included in
parent path information associated with the first snap
shot , without comparing block data within the respec
tive data block to block data within a corresponding
data block associated with the parent snapshot ; and

outputting a list of data blocks that are each associated
with path information not included in the parent path
information associated with the first snapshot .

a a

a

* *

