«» UK Patent Application «»GB 2 343032 A

(43) Date of A Publication 26.04.2000

(21) Application No 9917120.9 {(51) INTCL’
GO6F 9/30 9/312
(22) Date of Filing 21.07.1999
{52) UKCL (EditionR)
(30) Priority Data G4A APB

{31) 09126560 {32) 30.07.1998 {33) US
{56) Documents Cited

GB 2273186 A US5388235A US 5233691 A

{71) Applicant(s) US 5107457 A
Sun Microsytems Inc
{Incorporated in USA - California) {58) Field of Search
901 San Antonio Road, Palo Alto, UK CL (Edition R) G4A AFN APB APM APP APX
California 94043-1100, United States of America INT CL7 GOGF 9/30 9/312 9/40 11/34 12/08

Online: WPI, EPODOC, PAJ, TDB
(72) Inventor{s)

Peter C Damron

(74) Agent and/or Address for Service
Withers & Rogers
Goldings House, 2 Hays Lane, LONDON, SE1 2HW,
United Kingdom

(54) Abstract Title
Minimizing exception traps from a top-of-stack cache

(57) Reducing the number of overflow and underflow exception traps generated during the execution of a
program on a computer that uses a top-of-stack cache, e.g. in a register window file architecture whereby the
top of the stack is maintained in registers directly accessible by the CPU and the rest of the stack is maintained
in memory. The number of stack elements spilled or filled from/to the top-of-stack cache to/from memory, in
response to an overflow or underflow trap respectively, is controlled by a predictor value. The predictor value
reflects the history of the trap exceptions, in order to minimize future exceptions. Different predictor values
can select different overflow and underflow vectors (Fig. 4), or a hash mechanism (Fig. 6) enables multiple
predictors to separately control the spiliffill of the stack file dependant on where in memory the exceptions
occur. Further, an exception history can be maintained (Fig. 7) and hashed with the address of the computer
instruction that caused the exception, to generate an index into a set of predictors.

20

initialize Predictor &
Setup Stack Trap

Y

205 .| Receive Stack Trap

Y

Adjust Predictor &
Process Stack Trap per
Predictor

203~

207 ~

200" Fig. 2

V CE0EYEC 89

101

100

“1/10

CPU 121 L 115
131 103 : /
107 -
Memory
105 113
129 I/O
127 35 \

Fig. 1

119

203

205 ~

207 ~

200

2/10

o @

Initialize Predictor &

Setup Stack Trap

Y

Receive Stack Trap

!

Adjust Predictor &
Process Stack Trap per

Predictor

Fig. 2

3/10

o am

Receive Stack Overflow
03 Trap

Determine Amount of
Stack to Spill Based
on Predictor

y

Spill Stack Amount

305

307

If
Predictor
< Max

311
[

Increment Predictor

300 309~

Return from Trap

GG Fig. 3A

313\

4/10

D

Receive Stack

353~ Underflow Trap
355 Determine Amount of

Stack to Fill Based
on Predictor

357 N

Fill Stack Amount

350

If
Predictor

, 361

Decrement Predictor

363

Return from Trap

s (2

Fig. 3B

5/10

401~ Predictor

403 Stack Overflow Stack Underflow
Vectors 405~ Vectors
_— Spill 1 Vector 4__.L'_>./ Fill 3 Vector
Spill 2Vector 1~ 407 411~1 Fill 2 Vector
Spill 2 Vector Fill 2 Vector
Spill 3 Vector - Fill 1 Vector
Spill 1 Stack Handler Fill 3 Stack Handler
| » - -

409 413

400" Fig. 4

503 ~

;___[*

6/10
501

Initialize Stack
Management Values

505 Processing

an (o

500~

511 A

509~ Gathering Stgck Use
Information
{L el
Adjust Stack
‘Management Values
WRT Stack Use

Fig. 5

7/10

603~ 605~
— Predictor0
Predictor 1

601 ~] Hash (Trap Address)

Predictor n-1

Predictor n

607/

600

Fig. 6A

8/10

@

Get Address of

653 Trapping Instruction

Y

Hash Address
655~

v

- Access Predictor

6577 Through Hash Table

oo (>

650

Fig. 6B

9/10

ul0ppeld 1€

L-U J0joIpeld

| l0101p8Id

0 J0)olpalgq —fl——
Vioz

yseH
wews|
OM|

0L

v. "b6i4

— 00L
ssaippy desp
/mon
ojonooNiNININ

gak=

0L

o/ "bi4

@ 1S/ »\O.VN

uonedlpu| h.epy | uomedpu; Ksps
mojuepunN 19S MOJBAQ 39S -

10/10

edAL
14N uondeox3 140

N Eh.
sjueuo) AloisiH s .

@ 7]

g/ "bi4

o

S

- 0eL

a|qeL yseH ybnoay
10}0ipe1d SS800y

XA

|

AioysiH uondeoxg
UM UOI}I0d SS8JppY YseH

N Gel

1

uononsuj buiddey; jo
SS8.pPY JO UORIO 195

N €2

oW

10

15

2343032

Page: 1

Field of the Invention

This invention relates to the field of computer architecture. Specifically, this
invention is a method, apparatus and computer program product for reducing overflow and
underflow exception traps resulting from the use of a stack file.

Background

Some computer architectures include a windowed register file (the register window
file) that contains a set of registers. A mgister window is a selection of registers that are
available to a program at a particular moment. Register windows are used to improve
performance of subroutine calls (among other reasons). The SPARC® architecture is an
example of a computer architecture that uses a register window file.

A register window file is one example of a stack file. A “stack file” consists of a stack
structure that is partially stored in memory and partially stored in a register file for faster
access. The “top-of-stack cache” refers to the registers of the stack file. Stack elements are
moved from the registers to memory and back again based on stack underflow and overflow
exception traps.

Generally, on entering a subroutine, the subroutine invokes a “save” instruction (or
similar instruction). The “save” instruction provides the subroutine with a new register
window. If the register window file does not contain enough registers to hold the new register
window, the “save” instruction causes an overflow trap. When the register window file
overflows, the registers in at least one older register window in the register window file must
be saved (spilled) to memory to release régistcrs for a new register window. In a similar

10

15

Page: 2

manner the register window file underflows when register window file is empty and the
computer executes an instruction (such as a “‘restore” instruction) to restore a previously saved

register window.

In both of these circumstances, the computer generates a register window exception
trap. This stack exception trap invokes a trap handler that executes instructions to handle the
exception. For a register window overflow condition, the contents of one or more existing
register windows are spilled (saved) to memory. For a register window underflow condition,
the previously saved contents of one or more register windows are restored to the stack file (a
fill).

Prior art operating systems spill and fill a fixed number of register windows at each '
register window exception trap (often the trap only affects a single register window). This is
inefficient when there are deeply nested or recursive subroutine calls. Historically, a single
fill or spill was considered appropriate because most traditional programming methodologies
did not generate deep subroutine call chains. Modem programming methodologies (in
particular object-oriented programs, and programs that use recursion) often generate deep call
chains. For these programming methodologies, window exceptions would be reduced if more
than one spill/fill occurred on a register window exception trap. However, the program mix
on most computer systems includes some programs that use the traditional methodology and
other programs that use the modern methodology. In addition, a single program often
includes both methodologies. Thus, simply spilling or filling a fixed number of register
windows does not improve the overall system efficiency.

The register window file is but one example of the use of a *“top-of-stack cache.”
Another example is illustrated by the Intel® floating point unit (FPU) architecture. Yet
another example is the hardware stack provided by a stack oriented computer architecture
(such as a Forth Computer). Still another example is a return address top-of-stack cache (such
as those used in some Forth computer architectures). Each of these hardware stacks are a
form of a “top-of-stack cache” in that the top of the stack can be maintained in registers
directly accessible by the CPU and the rest of the stack can be maintained in memory and that
each stack can invoke an overflow trap or an underflow trap.

10

15

Page: 3

It would be advantageous to provide a spill/fill handler for top-of-stack caches that
adapt to the characteristics of the currently executing program. This adaptation would
improve the efficiency of the computér system by reducing the number of top-of-stack cache

exceptions generated by the executing program.

Summary of the Invention

The present invention improves the performance of a computer (that includes a top-of-
stack cache) by adjusting the contents of the top-of-stack cache dependant on a predictor that
contains information about the past usage of the top-of-stack cache. One aspect of the
invention is a computer controlled method for selecting a predictor from a set of predictors to
minimize exceptions in a computer having a memory and a top-of-stack cache. The method
initializes an exception history. The exception history is used to track occurrences of a
plurality of exception traps from the top-of-stack cache. The method also invokes an
exception trap and updates the exception history dependent on the exception trap that was
invoked. The method also includes the step of selecting the predictor from the set of
predictors based on the exception history. Once the predictor is selected, the method
processes the exception trap dependéﬁi on the predictor.

Another aspect of the invention is an apparatus, that has a central processing unit
(CPU) and a memory coupled to the CPU, for selecting a predictor from a set of predictors to
minimize exceptions in a computer having a memory and a top-of-stack cache. The apparatus
includes an initialization mechanism that is configured to initialize an exception history. The
exception history is used to track occurrences of a plurality of exception traps from the top-of-
stack cache. The apparatus also includes a trap mechanism that is configured to invoke an
exception trap. In addition, the apparatus includes a history tracking mechanism that is
configured to update the exception history dependent on the exception trap. A predictor
selection mechanism is configured to select the predictor from the set of predictors based on
the exception history. In additioh, a trap handler mechanism, in the computer, is configured
to process the exception trap dependent on the predictor.

Yet a further aspect of the invention is a computer program product embodied on a

computer usable medium for causing a computer to select a predictor from a set of predictors

10

15

Page: 4

to minimize exceptions in a computer having a memory and a top-of-stack cache. When
executed on a computer, the computer readable code causes the computer to effect an
initialization mechanism, a trap mechanism, a history tracking mechanism, a predictor
selection mechanism and a trap handler mechanism. Each of these mechanisms having the

same functions as the corresponding mechanisms for the previously described apparatus.

Another aspect of the invention is a computer data signal embodied in a carrier wave
having computer readable code embodied therein for causing a computer to select a predictor
from a set of predictors to minimize exceptions in a computer having a memory and a top-of-
stack cache. When executed on a computer, the computer readable code causes the computer
to effect an initialization mechanism, 3 trap mechanism, a history tracking mechanism, a
predictor selection mechanism and a trap handler mechanism. Each of these mechanisms
having the same functions as the corresponding mechanisms for the previously described
apparatus.

Yet another aspect of the invention is a computer controlled method for minimizing
exceptions in a computer having a memory and a return address top-of-stack cache. The
method includes the step of initializing a predictor for tracking exceptions from the return
address top-of-stack cache. The method also invokes an exception trap that is processed
dependent on the predictor. In addition, the method includes the step of changing the
predictor responsive to the exception trap.

Still another aspect of the invention is an apparatus, that has a central processing unit
(CPU) and a memory coupled to the CPU, for minimizing exceptions in a computer having a
return address top-of-stack cache. The apparatus includes a predictor initialization
mechanism that is configured to initialize a predictor. The predictor is used for tracking
exceptions from the return address top-of-stack cache. The apparatus also includes a trap
mechanism, that is configured to invoke an exception trap in the computer, and a trap handler
mechanism, in the computer, that is configured to process the exception trap dependent on the
predictor. In addition the apparatus includes a predictor maintenance mechanism that is
configured to change the predictor responsive to the exception trap.

10

15

Page: 5

Yet a further aspect of the invention is a computer program product embodied on a

computer usable medium for causing a computer to minimize exceptions. The computer

includes a return address top-of-stack cache. When executed on a computer, the computer

readable code causes the computer to effect a predictor initialization mechanism, a trap

mechanism, a trap handler mechanism and a predictor maintenance mechanism. Each of

these mechanisms having the same functions as the corresponding mechanisms for the

previously described apparatus.

The foregoing and many other aspects of the present invention will become obvious to
those of ordinary skill in the art after having read the following detailed description of
preferred embodiments that are illustrated in the various drawing figures.

Fig. 1

Fig. 2

Fig. 3A

Fig. 3B

Fig. 4

Fig. 5

Fig. 6A

Description of the Drawings

illustrates a computer system capable of using the invention in
accordance with a preferred embodiment;

illustrates an overview of the stack exception handling process in
accordance with a preferred embodiment;

illustrates the operation of a stack overflow trap handler process used
in Fig. 2;

illustrates the operation of a stack underflow trap handler process used
in Fig. 2;
illustrates a predictor dependent vector in accordance with a preferred

embodiment;

illustrates an ‘adaptive stack use adjustment’ process in accordance
with a preferred embodiment;

illustrates a hash mechanism used in accordance with a preferred
embodiment;

10

15

Page: 6

Fig. 6B illustrates a predictor selection process used in accordance with a
preferred embodiment;
Fig. 7A illustrates components of a predictor selection process used in

accordance with a preferred embodiment;

Fig. 7B illustrates a predictor selection process used in accordance with a
preferred embodiment; and

Fig. 7C illustrates a exception history maintenance process used in accordance
with a preferred embodiment.

ription of the Preferr mbodimen

Operating Environment

One example of a computer architecture that uses a register window file is the
SPARC® architecture. This architecture is defined in The SPARC Architecture Manual:
Version 9, Weaver & Germond, © 1994 SPARC International, Inc., ISBN 0-13-099227-5.
The following sections of this document are related to register window files and are
incorporated by reference in their entirety: §§ 2, 3.2.7, 3.3, 5.1.1-5.1.4, 5.2.10-5.2.11,6.3.6.1-
6.3.6.4,64,7.52.1, A8, A21, A24, A44-46, H.

Intel® processors use a register stack for floating point operations that can be
organized as a top-of-stack cache. This register stack organization is described by Chapter 7
of Intel Architecture Software Developer's Manual: Basic Architecture, order number ;
243190, ©1996, 1997, hereby incorporated by reference in its entirety.

A general register top-of-stack cache is also used in a microprocessor designed to
directly execute Forth programs. This device is described by An Architecture for the Direct
Execution of the Forth Programming Language, by Hayes, Fraeman, Williams and Zaremba,
© 1987 ACM 0-89791-238-1/87/1000-0042, Proceedings Second International Conference on
Architectural Support for Programming Languages and Operating Systems, October 1987,
hereby incorporated by reference in its entirety.

10

15

Page: 7

Branch prediction technology improves performance in pipelined computers. This
technology can be applied to minimizing exception traps resulting from overflow and
underflow conditions of a top—of-stéck cache. An overview of branch prediction approaches
is provided by A study of Branch Prediction Strategies, by James E. Smith, © 1981 by The
Institute of Electrical and Electronics Engineers, Inc., New York, N.Y. IEEE order number:
81CH1593-3 hereby incorporated by reference in its entirety.

Fig. 1 illustrates a computer, indicated by general reference character 100, that
incorporates the invention. The computer 100 includes a processor 101 that incorporates a
central processor unit (CPU) 103, a memory section 105 and an input/output (I/O) section
107. The I/O section 107 is connected to a keyboard 109, a display unit 111, a disk storage
unit 113 and a CD-ROM drive unit 115. The CD-ROM drive unit 115 can read a CD-ROM
medium 117 that typically contains a program and data 119. The CD-ROM drive unit 115
(along with the CD-ROM medium 117) and the disk storage unit 113 comprise a filestorage
mechanism. Some embodiments of iiljvé'invention include a network interface 121 that
connects the computer 100 to a network 123. The processor 101 includes the capability of
generating exception traps that are handled by a trap handler 125. The trap handler 125 is
generally (although not always) part of an operating system 127 within the memory section
105. An application program 129 generally makes system calls to the operating system 127 to
perform services and provide resources. The CPU 103 includes a ‘top-of-stack cache’ 131.
In the case of computers conforming to the SPARC architecture the ‘top-of-stack cache’ 131
is a register file that is organized into register windows. One skilled in the art will understand
that not all of the displayed features of the computer 100 need to be present to practice the
invention.

Much of the invention is described with reference to the register window file of the
SPARC architecture. One skilled in the art will understand how to apply the invention as
described with respect to the register file to other top-of-stack cache architectures. One
example architecture uses a general purpose register file that invokes a general purp;)se
register file exception trap when the general purpose top-of-stack cache overflows or
underflows. Another example architecture includes a floating point top-of-stack cache
capable of generating a floating point register file exception trap when the floating point top-

10

15

Page: 8

of-stack cache overflows or underflows. Yet another example architecture includes a return
address top-of-stack cache (similar to those used in some Forth computer architectures).

Fig. 2 illustrates a ‘stack exception handling’ process, indicated by general reference
character 200, for minimizing the number of overflow and underflow exceptions. The ‘stack
exception handling’ process 200 initiates at a ‘start’ terminal 201 and continues to an
‘initialization’ procedure 203. A procedure is any sequence of instructions that can be
executed by a computer. The ‘initialiiaiion’ procedure 203 initializes a predictor, initializes
stack element management values associated with the predictor, and initializes the top-of-
stack cache overflow and underflow trap vectors.

After some period of operation the top-of-stack cache overflows (or, at a later time,
the top-of-stack cache may underflow) invoking a stack exception trap through one of the trap
vectors initialized by the ‘initialization’ procedure 203. A ‘receive stack trap’ event 205
receives the trap, saves the computer’s state as trap information and causes the CPU 103 to
execute computer instructions residing in the trap handler 125. The trap handler 125 includes
a ‘process stack trap’ procedure 207. The ‘process stack trap’ procedure 207 processes the
stack exception trap to spill or fill one or more stack elements (such as register windows)
depending on the predictor. Next, the ‘process stack trap’ procedure 207 changes the
predictor depending on whether the stack exception trap was caused by a stack overflow or
underflow. When the next stack exception trap occurs, the ‘stack exception handling” process
200 repeats starting at the ‘receive stack trap’ event 205. One skilled in the art will
understand that the saved trap information is used to restore the computer’s state (generally to
re-execute the trapped instruction) when the trap returns.

One of the advantages of the invention is that it determines the number of stack
elements that are to be spilled/filled dependent on the spill/fill history reflected by the value of
the predictor. Thus, if more overflow traps than underflow traps have occurred, more stack
elements can be spilled to memory on each overflow trap. For register window stacks the
stack elements are register windows. This aspect of the invention becomes very important
with modern programming methodologies that generate deep call sequences (for example,

object-oriented and/or recursive programming).

10

15

Page: 9

The stack elements in other top-of-stack cache architectures need not be register
windows. For example, the Intel FPU contains a register stack having stack elements that are
floating point registers while the Forth architecture contains general purpose registers. The
invention operates on these stack files to spill or fill a specified number of registers (stack
elements) to or from memory at every overflow or underflow exception trap dependent on a

predictor.

Fig. 3A illustrates a stack overflow trap handler process, indicated by general
reference character 300, configured to process a stack overflow trap. One skilled in the art
will understand that some computer architectures have only one trap vector associated with
both register window overflow and underflow conditions. Other computer architectures have
separate vectors associated with the register window underflow and overflow conditions. Still
other computer architectures incorporate multiple vectors for both overflow traps and
underflow traps. Regardless of the actual trap details, a stack exception trap handler similar to
the stack overflow trap handler process 300 is invoked on an overflow trap. For the purposes
of the following discussion, the term “stack exception trap” encompasses both a stack
underflow trap and a stack overflow trap.

The stack overflow trap handler process 300 initiates at a ‘start’ terminal 301 after the
‘initialization’ procedure 203 executes. Once a stack overflow trap occurs, the stack overflow
trap handler process 300 continues to a ‘receive stack overflow’ event 303 that is invoked as a
direct or indirect result of the occurrence of a stack overflow trap. Next, the stack overflow
trap handler process 300 determines how many stack elements to spill to memory based on
the predictor. Because the trap is a stack overflow trap, the top-of-stack cache is full. Thus,

- although the stack overflow trap handler process 300 must spill at least one stack element, it

can spill more than one stack element to make additional room in the top-of-stack cache.
Thus, for a register window file the process can make room for anticipated execution of
“save” instructions. A ‘determine amount of stack to spill’ procedure 305 determines how

many stack elements to spill based on the predictor.

In one preferred embodiment, the predictor is a two-bit variable that is used to select a
spill value from a table of stack element management values. For example, Table ! illustrates
one example of stack element management values indexed by a two-bit predictor.

10

15

20

Page: 10

Predictor Spill Fill
00 1 3
o1 - 2 2
10 2 2
| 11 = .3 1
Table 1

Thus, assuming that the predictor is initially set to zero, the first stack overflow trap
spills only one stack element. A second or third stack overflow trap without an intervening
stack underflow trap will spill two stack elements. A fourth trap (and all subsequent stack
overflow traps that do not have an intervening stack underflow trap) will spill three stack
elements. However, as is subsequently described, each stack underflow trap will decrement
the predictor and potentially change the number of stack elements that are spilled to memory.

One skilled in the art will understand that for register window top-of-stack caches, the
number of stack elements is the number of register windows to fill/spill. For other top-of-
stack caches the stack element management values can determine the number of stack
elements to spill from or fill to the toﬁ-bf-stack cache.

Once the spill value is selected by the ‘determine amount of stack to spill’ procedure
305, the stack overflow trap handler process 300 continues to a *spill stack amount’ procedure
307 that spills the number of register windows to memory specified by the spill value.

Next, the stack overflow trap handler process 300 continues to a ‘predictor less than
maximum’ decision procedure 309 that determines whether the predictor is less than its
maximum. If so, the stack overflow trap handler process 300 continues to an ‘increment
predictor’ procedure 311 that changes the predictor so that the next stack exception trap will
use the larger predictor. Once the predictor is incremented, or if the predictor is already at its
maximum, the stack overflow trap handler process 300 continues to a ‘return from trap’
procedure 313. The ‘return from trap’ procedure 313 returns to the program that attempted to
execute an instruction that caused the stack overflow. In the case of a register file, this
instruction is a “save” instruction. Thus, the ‘return from trap’ procedure 313 re-executes the

10

15

.. - Page: 11

“save” instruction. Because the top-of-stack cache now has room for a register window, the
“save” instruction succeeds and the program continues execution. The stack overflow trap
handler process 300 then completes through an ‘end’ terminal 315.

One skilled in the art will understand that the predictor can be of any size, from a
single bit to many bits depending on the amount of information needed to anticipate the next
stack exception trap. Further, one skilled in the art will understand that the invention need not
decrement or increment the predictor. Instead, one preferred embodiment stores a state value
in the predictor and changes the state value dependent on the existing state and whether an
overflow or underflow trap occurs.

Fig. 3B illustrates a stack undeiflow trap handler process, indicated by general
reference character 350 configured to 'pro'ce‘ss a stack underflow trap. As previously
described with respect to Fig. 3A, there are many ways to invoke the stack underflow trap
handler process 350. The stack underflow trap handler process 350 initiates at a ‘start’
terminal 351 after the ‘initialization’ procedure 203 executes. Once a stack underflow trap
occurs, the stack underflow trap handler process 350 continues to a ‘receive stack underflow’
event 353 that is invoked as a direct or indirect result of the occurrence of a stack underflow
trap. Next, the stack underflow trap handler process 350 continues to a ‘determine amount of
stack to fill’ procedure 355 that determines how many register windows to fill from memory
based on the predictor.

As was previously described, in one preferred embodiment, the predictor is a two-bit
variable that is used to select a fill vdlqé from a table of stack element management values
similar to that shown in Table 1. Because the trap is a stack underflow trap, the top-of-stack
cache is empty. Thus, although the stack underflow trap handler process 350 must fill at least
one stack element, it can fill more than one stack element to preload the top-of-stack cache.
In the case of a register window, the register file can be filled in anticipation of the execution

of more “restore” instructions than “save” instructions.

Once the fill value is selected by the ‘determine amount of stack to fill’ procedure 355,
the stack underflow trap handler process 350 continues to a ‘fill stack amount’ procedure 357
that fills the number of stack elements from memory specified by the fill value.

10

15

Page: 12

Next, the stack underflow trap handler process 350 continués to a ‘predictor greater
than minimum’ decision procedure 359 that determines whether the predictor is greater than
its minimum value. If so, the stack underflow trap handler process 350 continues to a
‘decrement predictor’ procedure 361 that decrements the predictor so that the next stack
exception trap will use the new predictor. Once the predictor is decremented, or if the
predictor is already at its minimum, the stack underflow trap handler process 350 continues to
a ‘return from trap’ procedure 363. In the case of a register window underflow trap, the trap
returns to the program that attempted to execute a “restore” instruction and re-executes the
“restore” instruction. Because the register file now contains a register window, the “restore”
instruction succeeds and the program continues execution. The stack underflow trap handler
process 350 then completes through an ‘end’ terminal 365.

In one embodiment the stack overflow trap handler process 300 and the stack
underflow trap handler process 350 reside within the operating system and execute in a
privileged environment. In another embodiment, the stack overflow trap handler process 300
and the stack underflow trap handler process 350 reside in an application and execute within a
protected environment. In this case, the trap is generally first vectored to program
instructions in the operating system that re-directs the trap to execute the register window
handlers in the application.

One skilled in the art will understand that the stack element management values
indicated in Table 1 are only one possible set of values. The optimum set of values will
depend on the number of stack elements in the top-of-stack cache and the characteristics of
the types of programs that are executed by the computer. Such a one will also understand that
the predictor represents a state. Thus, the invention contemplates storing particular values in
the predictor instead of incrementing or decrementing the predictor.

Fig. 4 illustrates a stack exception trap vector architecture, indicated by general
reference character 400 that can be used to effectuate a preferred embodiment. A predictor
register 401 contains the value of the predictor. The value contained in the predictor register
401 is used to select which overflow vector, in a stack overflow vector array 403, and which
underflow vector, in a stack underflow vector array 405, to use when a stack exception trap-

occurs. For example, the current value in the predictor register 401 selects a selected

10

15

Page: 13

overflow vector 407 on an overflow exception. The selected overflow vector 407 causes the
computer to execute instructions in a ‘spill 1 stack element’ handler 409. The ‘spill 1 stack
element’ handler 409 contains instructions that spill one stack element (for example, a single
register or one register window) and that increment the value in the predictor register 401 (up
to a maximum). However, the current value in the predictor register 401 also specifies a
selected underflow vector 411 that causes the computer to execute instructions in a ‘fill 3
stack elements’ handler 413. The ‘fill 3 stack elements’ handler 413 contains instructions that
will fill three stack elements and that decrements the value in the predictor register 401 (down
to a minimum). Thus, as the value in the predictor register 401 changes (due to stack
exception traps) different spill/fill handlers are selected by specifying which trap vectors in
the vector arrays are selected.

Fig. 5 illustrates an ‘adaptive stack use adjustment’ process, indicated by general
reference character 500, for adaptively changing the stack element management values
responsive to information gathered about the performance characteristics of a particular

executing program.

The ‘adaptive stack use adjustment’ process S00 initiates at a ‘start’ terminal 501 and
continues to an ‘initialize stack element management value’ procedure 503. The ‘initialize
stack element management value’ procedure 503 initializes the stack element management
values associated with the predictor. This initialization can be accomplished (without
limitation) once when the operanng system boots, when a new application program process is
initiated, or whenever the application program intends to reset the stack element management
values. Once the stack element management values are initialized, the ‘adaptive stack use
adjustment’ process 500 continues to a ‘processing’ procedure 5035 that performs the steps
involved to effectuate the program’s purpose. When the processing is complete, the ‘adaptive
stack use adjustment’ process 500 completes through an ‘end’ terminal 507. However, after
the ‘initialize stack element management value’ procedure 503 and during the execution of
the ‘processing’ procedure 505 a ‘gather stack use information’ procedure 509 also executes.
The ‘gather stack use information’ procedure 509 gathers stack use information resulting from
the execution of the ‘processing’ procedure 505. The stack use information is used by an
‘adjust stack element management value’ procedure 511 to adjust the stack element

10

15

Page: 14

management values to optimize the stack file fill/spill characteristics during the execution of
the ‘processing’ procedure 505. The stack element management values can be adjusted
through an operating system service iii’&ocation or other technique suited to changing these
values dependent on the specific characteristics of an embodiment.

Another aspect of the invention provides multiple predictors as a function of the
address of the instructions that invoke a stack exception trap. Fig. 6A illustrates a hash
mechanism, as indicated by general reference character 600, that selects a predictor as a
function of the address of the instruction that caused a stack exception trap. The hash
mechanism 600 includes a ‘hash index generation’ procedure 601, which is subsequently
described with respect to Fig. 6B, and a hash table 603. The ‘hash index generation’
procedure 601 takes as input the address in memory of the instruction that caused the stack
exception trap (for example, in the case of a register window file, the “save” or “restore”
instruction that caused the stack exception trap). Using well known methods, the address is
hashed to generate an index to an entry in the hash table 603. The hash table 603 contains a
first predictor entry 605 and an n* predictof entry 607. The first predictor entry 60S through
the n® predictor entry 607 comprise a set of predictor entries. Each predictor entry in the hash
table 603 can contain the predictor value itself, a pointer to the appropriate predictor value, or
other value used to specify a predictor. One skilled in the art will understand that the use of
the hash mechanism 600 allows multiple predictors to separately control the spill/fill of the
stack file dependant on where in memory the overflow and underflow exceptions occur. Such
a one will also understand that the hash mechanism is but one possible way of using
information saved by the trap to direct the selection of a predictor.

Fig. 6B illustrates a predictor selection process, as indicated by general reference
character 650, for accessing a predictor from the hash table 603 of Fig. 6A. The predictor
selection process 650 is invoked by the ‘hash index generation’ procedure 601 and initiates at
a ‘start’ terminal 651. Next, a ‘get address of trapping instruction’ procedure 653 accesses the
information saved as a result of the stéck,exception trap to obtain the address of the
instruction that caused the trap. Next, a ‘hash address’ procedure 655 uses well understood
techniques to generate an appropriate index into the hash table 603 based on the address

obtained from the ‘get address of trapping instruction’ procedure 653. Next, an ‘access

10

15

Page: 15

predictor’ procedure 657 uses the contents of the hash table 603 as (or to obtain) the predictor.
Once the predictor (or a pointer to the predictor) is selected, the previously described
processes can operate on the predictor and appropriately spill/fill the stack file. The predictor
selection process 650 completes through an ‘end’ terminal 659.

Another approach to minimizing exception traps from a top-of-stack cache is to
maintain a history of the recent exception traps and use this pattern of overflow traps and
underflow traps to better select a predictor.

Fig. 7A illustrates a predictor selection overview, indicated by general reference
character 700, that includes a hash table 701 containing predictors or pointers to predictors. A
‘two element hash index generation’ procedure 703 uses a trap address 705 and an exception
history 707 to generate a hash index into the hash table 701. The trap address 705 is
determined as was described with respect to Fig. 6A. The exception history 707 is a variable
that contains a number of “places”. These places are usually single-bit fields. However,
depending on the number of types of exceptions being tracked each place may contain
multiple bits. Single-bit fields are sufficient if only overflow and underflow traps are tracked.
In response to a tracked exception trap, the contents of the exception history 707 is shifted one
place (one bit) and the place freed by the shift is set to a value that identifies the exception
trap. Thus, the exception history 707 represents a usage pattern for the top-of-stack cache.
This usage pattern can be used in conjunction with the address of the trapping instruction to
select the appropriate predictor for the instant exception trap.

Fig. 7B illustrates a predictor selection process, indicated by general reference
character 720, that selects a predictor from the set of predictors in the hash table 701. The
predictor selection process 720 initiates at a ‘start’ terminal 721 and continues to a ‘get trap
address’ procedure 723 that accesses the information saved by the operation of the trap to
determine the address of the instruction that caused the trap. Next, a ‘hash exception history
with trap address’ procedure 725 hashes all or a portion of the trap address with the exception
history 707 to generate a hash index into the hash table 701. Once the hash index is
generated, an ‘access predictor’ procedure 727 uses the contents of the hash table 701 as (or to
obtain) the predictor. Once the predictor (or a pointer to the predictor) is selected, the

10

15

Page: 16

previously described processes can operate on the predictor and appropriatély spill/Afill the
stack file. The predictor selection process 720 completes through an ‘end’ terminal 729.

Fig. 7C illustrates an exception history maintenance process, indicated by general
reference character 740, that maintains an ordered sequence bits that represent the history of
overflow exceptions and underflow exceptions from said top-of-stack cache. The exception
history maintenance process 740 is invoked by the ‘process stack trap’ procedure 207 of Fig.
2 and initiates at a “start’ terminal 741. The exception history maintenance process 740 then
continues to a ‘shift history’ procedure 743 that shifts the contents of the exception history by
one place leaving a free place in the exception history. If the exception history is only
tracking two types of exceptions (overflow and underflow) the shift is one bit. Next, the
‘exception type’ decision procedure 745 determines which exception occurred. If the
exception was a stack overflow exception, the exception history maintenance process 740
continues to a ‘set overflow indication’ procedure 747 that sets the free place in the exception
history to indicate that the current exception was an overflow. However, if the exception was
an underflow, the exception history maintenance process 740 continues to a ‘set underflow
indication’ procedure 749 that sets the free place in the exception hiétory to indicate that the
current exception was an underflow. After the free place in the exception history is set, the
exception history maintenance process 740 completes through an ‘end’ terminal 751. One
skilled in the art will understand that if the procedure used to shift the exception history leaves
the free place in a known state (that is one or zero) one of the ‘set overflow indication’
procedure 747 and the ‘set underflow indication’ procedure 749 need not perform any

operation.

One skilled in the art will understand that the invention improves the performance of
computer systems having a stack file (or other top-of-stack cache) by reducing the number of
stack exception traps resulting from the execution of a program.

Although the present invention has been described in terms of presently preferred
embodiments, one skilled in the art will understand that various modifications and alterations
may be made without departing from the scope of the invention. Accordingly, the scope of

Page: 17

the invention is not to be limited to the particular invention embodiments discussed herein,
but should be defined only by the appended claims and equivalents thereof.

10

n

Page: 18

What is claimed is:

(a)

(b)

©

@

(O]

dn

(d2)

A computer controlled method for selecting a predictor from a set of predictors to
minimize exceptions in a computer having a memory and a top-of-stack cache, said
method comprising the steps of:

initializing an exception history used to track occurrences of a plurality of
exception traps from said top-of-stack cache;

invoking an exception trap;
updating said exception history dependent on said exception trap;

selecting said predictor from said set of predictors based on said exception history;

and

processing said exception trap dependent on said predictor.

The computer controlled method of claim 1 wherein step (d) comprises:
accessing trap information saved by said exception trap; and

selecting said predictor from said set of predictors, said selection based on said trap
information and said exception history.

The computer controlled method of claim 1 wherein said exception history
represents an ordered sequence of overflow exceptions and underflow exceptions
from said top-of-stack cache.

The computer controlled method of claim 1 further comprising changing said

predictor responsive to said exception trap.

10

1"
12

Page: 19

An apparatus having a central processing unit (CPU) and a memory coupled to said
CPU for selecting a predictor from a set of predictors to minimize exceptions in a
computer having a memory and a top-of-stack cache, said apparatus comprising:
an initialization mechanism configured to initialize an exception history used
to track occurrences of a plurality of exception traps from said top-of-stack cache;

a trap mechanism configured to invoke an exception trap;

a history tracking mechanism configured to update said exception history
dependent on said exception trap;

a predictor selection mechanism configured to select said predictor from said
set of predictors based on said exception history; and

a trap handler mechanism, in said computer, configured to process said
exception trap dependent on said predictor.

The apparatus of claim 5 wherein the predictor selection mechanism comprises:

a trap information access mechanism configured to access trap information

saved by said exception trap; and

a directed selection mechanism configured to select said predictor from said set
of predictors, said selection based on said trap information and said exception
history. '

The apparatus of claim 5 wherein said exception history represents an ordered
sequence of overflow exceptions and underflow exceptions from said top-of-stack

cache.

The apparatus of claim 5 further comprising a predictor maintenance mechanism

configured to change said predictor responsive to said exception trap.

o & WO N

[

10

11
12
13

14
15
16

17
18
19

Page: 20

A computer program product comprising:

a computer usable storage medium having computer readable code embodied
therein for causing a computer to select a predictor from a set of predictors to
minimize exceptions in a computer having a memory and a top-of-stack cache, said
computer readable code comprisiﬂg:

computer readable program code configured to cause said computer to effect
an initialization mechanism configured to initialize an exception history used to
track occurrences of a plu;ality of exception traps from said top-of-stack cache;

computer readable program code configured to cause said computer to effect a
trap mechanism configured to invoke an exception trap;

computer readable program code configured to cause said computer to effect a
history tracking mechanism configured to update said exception history dependent
on said exception trap;

computer readable program code configured to cause said computer to effect a
predictor selection mechanism configured to select said predictor from said set of
predictors based on said exception history; and

computer readable program code configured to cause said computer to effect a
trap handler mechanism, in said computer, configured to process said exception
trap dependent on said predictor.

10.

11.

12.

Page: 21)

The computer program product of claim 9 wherein the predictor selection

mechanism comprises:

computer readable program code configured to cause said computer to effect a
trap information access mechanism configured to access trap information saved by
said exception trap; and

computer readable program code configured to cause said ¢omputer to effect a
directed selection mechanism configured to select said predictor from said set of
predictors, said selection based on said trap information and said exception history.

The computer program product of claim 9 wherein said exception history represents
an ordered sequence of overflow exceptions and underflow exceptions from said
top-of-stack cache.

The cdmputer program product of claim 9 further comprising computer readable
program code configured to cause said computer to effect a predictor maintenance
mechanism configured to change said predictor responsive to said exception trap.

a2 W N

»

.10

11
12
13

14

15
16

17
i8
19

13.

Page: 22

A computer program product comprising:

a computer data signal embodied in a carrier wave having computer readable
code embodied therein for causing a computer to select a predictor from a set of
predictors to minimize exceptions in a computer having a memory and a top-of-
stack cache, said computer readable code comprising:

computer readable program code configured to cause said computer to effect
an initialization mechanism configured to initialize an exception history used to
track occurrences of a plurality of exception traps from said top-of-stack cache;

computer readable program code configured to cause said computer to effect a
trap mechanism configured to invoke an exception trap;

computer readable program code configured to cause said computer to effecta
history tracking mechanism configured to update said exception history dependent
on said exception trap;

computer readable program code configured to cause said computer to effect a
predictor selection mechanism configured to select said predictor from said set of
predictors based on said exception history; and

computer readable program code configured to cause said computer to effect a

. trap handler mechanism, in said computer, configured to process said exception

trap dependent on said predictor.

4] & WN

(& /] &~ ON ~

-

14,

(a)

)]
©)
@

15.

)

(c2)

16.

(cD)

(c2)

Page: 23

A computer controlled method for minimizing exceptions in a computer having a
memory and a return address top-of-stack cache, said method comprising the steps
of:

initializing a predictor for tracking exceptions from said return address top-of-stack
cache;

invoking an exception trap;

processing said exception trap dependent on said predictor; and

changing said predictor responsive to said exception trap.

The computer controlled method of claim 14 wherein said predictor is associated
with at least one stack element management value that includes a fill value, the
stack exception trap is a stack underflow trap, said return address top-of-stack
cache is organized into a plurality of stack elements and step (c) further comprises:

determining said fill value dependant on said -predictor, said fill value used to
specify how many of said plurality of stack elements are to be filled; and

filling at least one of said plurality of stack elements dependant on said fill value.

The computer controlled method of claim 14 wherein said predictor is associated
with at least one stack element management value that includes a spill value, the
stack exception trap is a stack overflow trap, said return address top-of-stack cache
is organized into a plurality of stack elements and step (c) further comprises:

determining said spill value dependant on said predictor, said spill value used to
specify how many of said plurality of stack elements are to be spilled; and

spilling to said memory at least one of said plurality of stack elements dependant on
said spill value.

10

d WO N

wn

17.

(e)

18.

19.

Page: 24

The computer controlled method of claim 14 wherein said predictor is associated
with at least one stack element management value and said method further
comprises:

adjusting said at least one stack element management value.

An apparatus having a central processing unit (CPU) and a memory coupled to said
CPU for minimizing exceptions in a computer having a retun address top-of-stack
cache, said apparatus comprises:

a predictor initialization mechanism configured to initialize a predictor for
tracking exceptions from said return address top-of-stack cache;

a trap mechanism configured to invoke an exception trap in said computer;

a trap handler mechanism, in said computer, configured to process said
exception trap dependent on said predictor; and

a predictor maintenance mechanism configured to change said predictor
responsive to said exception trap.

The apparatus of claim 18 wherein said predictor is associated with at least one
stack element management value that includes a fill value, the stack exception trap
is a stack underflow trap, said return address top-of-stack cache is organized into a
plurality of stack elements and the trap handler mechanism further comprises:

a fill determination mechanism configured to determine said fill value
dependant on said predictor, said fill value used to specify how many of said
plurality of stack elements are to be filled; and

a fill mechanism configured to fill at least one of said plurality of stack
elements dependant on said fill value.

&S WNn

(3.}

20.

21.

Page: 25

The apparatus of claim 18 wherein said predictor is associated with at least one
stack element management value that includes a spill value, the stack exception trap
is a stack overflow trap, said return address top-of-stack cache is organized into a
plurality of stack elements and the trap handler mechanism further comprises:

a spill determination mechanism configured to determine said spill value
dependant on said predictor, said spill value used to specify how many of said
plurality of stack elements are to be spilled; and '

a spill mechanism configured to spill to said memory at least one of said
plurality of stack elements dependant on said spill value.

The apparatus of claim 18 wherein said predictor is associated with at least one
stack element management value and said apparatus further comprises:

an adjustment mechanism configured to adjust said at least one stack element
management value.

10
11
12

13
14
15

e

o & W N

w0 o N o

10
11
12

22.

23.

Page: 26

A computer program product comprising:

a computer usable storage medium having computer readable code embodied
therein for causing a computer to minimize exceptions, said computer having a
return address top-of-stack cache, said computer readable code comprising:

computer readable program code configured to cause said computer to effect a
predictor initialization mechanism configured to initialize a predictor for tracking
exceptions from said return address top-of-stack cache;

computer readable program code configured to cause said computer to effect a
trap mechanism configured to invoke an exception trap in said computer;

computer readable program code configured to cause said computer to effect a
trap handler mechanism, in said computer, configured to process said exception
trap dependent on said predictor; and

computer readable program code configured to cause said computer to effect a
predictor maintenance mechanism configured to change said predictor responsive
to said exception trap.

The computer program product of claim 22 wherein said predictor is associated
with at least one stack element management value that includes a fill value, the
stack exception trap is a stack underflow trap, said retun address top-of-stack
cache is organized into a plurality of stack elements and the trap handler
mechanism further comprises:

computer readable program code configured to cause said computer to effect a
fill determination mechanism configured to determine said fill value dependant on
said predictor, said fill value used to specify how many of said plurality of stack

elements are to be filled; and

computer readable program code configured to cause said computer to effect a
fill mechanism configured to fill at least one of said plurality of stack elements
dependant on said fill value.

—y

w & W N

© o N o

10

11
12

24.

Page: 27

The computer program product of claim 22 wherein said predictor is associated
with at least one stack element management value that includes a spill value, the
stack exception trap is a stack overflow trap, said return address top-of-stack cache
is organized into a plurality of stack elements and the trap handler mechanism
further comprises:

computer readable program code configured to cause said computer to effect a
spill determination mechanism configured to determine said spill value dependant
on said predictor, said spill value used to specify how many of said plurality of
stack elements are to be spilled; and

- computer readable program code configured to cause said computer to effect a
spill mechanism configured to spill to said memory at least one of said plurality of
stack elements dependant on said spill value.

The computer program product of claim 22 wherein said predictor is associated
with at least one stack element management value and said product further

comprises:

computer readable program code configured to cause said computer to effect
an adjustment mechanism configured to adjust said at least one stack element

management value.

Paters {)
v
INVESTOR IN PEOPLE

oD

Application No: GB 9917120.9 Examiner: Melanie Gee
Claims searched: 1-13 Date of search: 17 February 2000
Patents Act 1977

Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.R): G4A (AFN, APB, APM, APP, APX)
Int Cl (Ed.7): GOGF 9/30, 9/312, 9/40, 11/34, 12/08
Other: Online: WPI, EPODOC, PAJ, TDB

Documents considered to be relevant:

Category| Identity of document and relevant passage gei'f:ﬁ;
A | GB2273186 A (HITACHI), see page 1 - page 5 line 1
A | US 5388235 A (IKENAGA et al.), see col. 4 lines 19-64
A US 5233691 A (ANDO et al.), see cols. 1-2
A | US 5107457 A (HAYES), see whole document.

X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Documentpublished on orafter the declared priority date butbefore the
with one or more other documents of same category. filing date of this invention.
E Patent document published on or afier, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

