
United States Patent (19)
Hayes et al.

(54). STACK DATA CACHE HAVING ASTACK
MANAGEMENT HARDWARE WITH
INTERNAL AND EXTERNAL STACK
POINTERS AND BUFFERS FOR HANDLNG
UNDERFLOW AND OVERFLOWSTACK

John R. Hayes, Laurel; Susan C. Lee,
Columbia, both of Md.
The Johns Hopkins University,

75) Inventors:

73 Assignee:
Baltimore, Md.

(21) Appl. No.: 331,718
(22 Filed: Apr. 3, 1989
51) int. Cl... G06F 9/06
52) U.S. C. 395/800; 364/239;

364/239.6, 364/244.3; 364/247; 364/247.7;
364/254.5; 364/251; 364/251.3; 364/933;
364/933.6, 364/955; 364/957.6, 364/965;

364/965.4; 364/DIG. 1; 364/DIG. 2
(58) Field of Search ... 364/200 MS File, 900 MS File
(56) References Cited

U.S. PATENT DOCUMENTS
3,786,432 1/1974 Woods 364/200
3,889,243 6/1975 Drimak 364/200
3,909,797 9/1975 Goss et al. 364/200
4,240,137 12/1980 Matsumoto et al. 364/200
4,334,269 6/1982 Shibasaki et al. 364/200
4,524,416 6/1985 Stanley et al.,, 364/200
4,532,587 7/1985 Roskell et al. 364/200
4,807,185 2/1989 Kamiya 364/900
4,835,738 5/1989 Niehaus et al. 364/900
4,969,091 11/1990 Muller 364/200

OTHER PUBLICATIONS
Kruse; "Data Structure and Program Design", Chapter
2; 1984 by Prentice-Hall, Inc.; pp. 41-63.

26 PUSH 20

STACK POINTER

OUNTER

OWERFLOW

DOWN
COUNTER

NUMBER OF

|||||IIIHIIIHIII
US005 107457A

11 Patent Number:
(45) Date of Patent:

5,107,457
Apr. 21, 1992

The Mechanization of a Push-Down Stack, written by
C. B. Carlson (AFIPS Conf. Proc., V. 24, 1963).
Exploring a Stack Architecture, written by Russel P.
Blake (IEEE Computer, 10, 5, May 1977).
Register Allocation for Free: The C Machine Stack
Cache, written by David R. Ditzel and H. R. McLellan
(Proc. Symposium on Architectural Support for Pro
gramming Languages and Operating Systems, Mar.
1982).
Strategies for Managing the Register File in RISC,
written by Yuval Tamir and Carlo H. Sequin (IEEE
Transection on Computers, vol. C-32, No. 11, Nov.
1983).
Sun Builds an Open RISC Architecture, by Robert B.
Garner (Sun Technology, Summer 1988).
High-Speed Top-of-Stack Scheme for VLSI Proces
sor, by M. Hasegawa and Y. Shigei (Proc. of the 12th
Annual International Symposium on Computer Archi
tecture, pp. 48-54, 1985).
Primary Examiner-Thomas C. Lee
Assistant Examiner-Krisna Lim
Attorney, Agent, or Firm-Robert E. Archibald;
Howard W. Califano; Eugene J. Pawlikowski
57 ABSTRACT
An efficient hardware cache manager controls the top
of-stack data underflow/overflow. A processor chip
includes a processor, a stack buffer and the invented
cache management hardware. The processor chip com
municates with a remove overflow stack through an
address/data bus. The cache management hardware
efficiently manages overflow and underflow to and
from the processor chip in such a manner less than 1%
of the processor's time is spent managing the stack
cache.

3 Claims, 4 Drawing Sheets

34 STACK ADDRESS

AODER
SUB
TRACTER

STACK
BUFFER

SACK
ADDRESS

-
42

STACK EEMENTS COMPARE
GUARANTEED TO coMPARE

UNDERFOW
PONTER

BE ON THE STACK

UPW
DOWN
COUNTER

EXTERNAL STACK
OWERFOW AREA
ADDRESS

U.S. Patent

OVERFLOW

'N
TOP OF STACK pointerie C1

Apr. 21, 1992

- - -
-
H
-

ZZZZZZZZZZZ ON CHIP
ZZZZZZZZZZZ REGISTERS 14
ZZZZZZZZZZ
ZZZZZZZZZZZ
ZZZZZZZZZZZ
2 ZZZZZZZZZZ
YZZYZZ
2
ZZZZZZZZZZZ

EXTERNAL
TOP EXTERNA
1. MEMORY 6

2 a- a

F.G. f.

Sheet 1 of 4

OVERFOW

H
ZYZZZZZZZY
ZZZZZZZZZZ
ZZZZZZZZZZ
ZZZZZZZZZZ
ZZZZZZZZZZZ
ZZZZZZZZZZZ
ZZZZZZZZZZ
ZYZZZZZZZZ
ZZZZZZZZZZZ
YZZZZZZZZZZ
ZZZZZZZZZZZ

5,107,457

ON CHIP
REGISTERS

ZZZZZZZZZZZ AA/OAP AA7 ZZZZZZZZZZZ
ZZZZZZZZZ
ZZZZZZZZZZZ

EXTERNA E" NZ ZZZZZZZZZZZ EXTERNAL
ZZ MEMORY

FG. Ae
A/OA. AA77

OOOOOO

Accer - - - - - - - - - -

o. oooo------------- its FLOWER -O-O-

EA 8 ser

.OOOO NERA -O-O-

O.OOO TRAPS
F - - - -e ss or

O.OOO

o.OOO
2 s 4. s s so

NER OF REGISTERS rRANSFERRED ON
overflow or UNDERFOW

F6, 9

O

U.S. Patent Apr. 21, 1992 Sheet 2 of 4 5,107,457

SACK ADDRESS

ADDER W
SU8
TRACTER

STACK
BUFFER

44
STACK
ADDRESS

coMPARE
UPA
DOWN
COUNTER

NUMBER OF
STACK ELEMENTS
GUARANTEED TO

UNDERFLOW
POINTER

EXTERNAL STACK
OVERFLOW AREA
ADDRESS

1F6, 4
STACK PON TER OVERFLOW

UNDERFLOW

FIG 55
AA/O AA77

U.S. Patent Apr. 21, 1992 Sheet 3 of 4 5,107,457

1F6. 5
A/OA. AAPT

FIG. 6a
A/OA. AAPT

UNDER FOW

STACK POINTER

F6, 6b
AA/OA. AA7

OVERFLOW

UNDERFLOW

STACK POINTER

F6, 6c
Prof. Af

5,107,457
1.

STACK DATA CACHE HAVING ASTACK
MANAGEMENT HARDWARE WITH INTERNAL
AND EXTERNAL STACK POINTERS AND

BUFFERS FOR HANDLING UNDERFLOW AND
OWERFLOWSTACK

STATEMENT OF GOVERNMENTAL INTEREST
The Government has rights in this invention pursuant

to Contract No. N00039-87-C-5301 awarded by the
Department of the Navy.

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an apparatus for effectively

transferring overflow/underflow data from a stack
buffer to an external overflow stack.

2. Description of Prior or Contemporary Art
Computer designers have for years attempted to use a

rapidly accessible buffer or stack cache that is associ
ated with a slower or more remote main memory. An
article entitled "The Mechanization of a Push-down
Stack", written by C. B. Carlson (AFIPS Conf. Proc.,
V. 24, 1963), describes an early Burroughs machine that
places the top two elements of a stack in machine regis
ters with the rest in main memory. Similarly, an early
article by Russell P. Blake entitled "Exploring a Stack
Architecture" (IEEE Computer, 10, 5, May 1977) de
scribes the buffer stack arrangement in the early HP
3000 computer system.
More recently attempts have been made to optimize

cache management for the C-language, a general pur
pose computing language, An article entitled "Register
Allocation for Free: The C Machine Stack Cache',
written by D. R. Ditzel and H. R. McLellan (Proc.
Symposium on Architectural Support for Programming
Languages and Operating Systems, March, 1982) de
scribes a cache management scheme that allocates a
stack frame in the cache memory. The size of the frame
is determined by the number of registers necessary to
perform a particular procedure. The number/register
written out of or into the cache is determined by the
space needed for the procedure frame. An article enti
tled "Strategies for Managing the Register file in RISC"
written by Y. Tamir and C. H. Séquin (IEEE Transec
tion on Computers, Vol. C-32, No. 11, November 1983)
describes a RISC (reduced instruction set computer)
architecture utilizing a cache arrangement in which a
register window is set up for each procedure. The out
put from one procedure becomes the input of a called
procedure through overlapping register window. When
overflow or underflow occurs, an entire register win
dow (comprised of 16 registers) is written out of or into
the stack cache. An article entitled "Sun Builds an Open
RISC Architecture' by Robert B. Garner (Sun Tech

O

15

20

25

30

35

40

45

nology, Summer 1988) describes the implementation of 55
the same RISC cache management scheme in a con
mercial processor chip. Again, the single processor chip
embodiment transfers fixed windows comprising multi
ple register values with each overflow or underflow.
An article entitled "High Speed Top-of-Stack

Scheme for VLSI Processor" by M. Hasegawa and Y.
Shigei (Proc. of the 12th Annual International Sympo
sium on Computer Architecture, pp. 48-54, 1985) is a
theoretical study of a cache stack to determine the opti
mum management scheme. The article assumes that
stack depth is a random walk function. Applicants have
shown this assumption to be false and have found that
the cache depth reaches a particular value and then

2
proceeds to oscillate slightly around that value. As a
result, the optimum cache stack management scheme
suggested by the above article differs from the scheme
described in this patent application.

SUMMARY OF THE INVENTION

The present invention teaches an efficient means for
transferring overflow/underflow data between a stack
buffer located on the processor chip and an external
overflow stack. This efficient stack management hard
ware results from the inventors' discovery that only
transferring data stored in one register to or from the
external stack, with each overflow/underflow occur
rence, is more efficient than transferring a block of data
contained in several registers.
A processor, such as a RISC processor, is located

with the stack buffer on a processor chip. A single ad
dress/data bus connects the processor chip to the exter
nal overflow stack, thereby reducing the pin count for
the processor chip. The processor generally must fetch
a new instruction every clock cycle. Since there is only
a single path between the processor and external mem
ory, the overflow/underflow operations must stall in
struction fetches and, consequently, instruction execu
tion. During these stalls, the processor is not making
any progress on the program it is trying to run. The
overhead for managing the stack cache is the number of
processor cycles spent overflowing and underflowing
divided by the total number of processor cycles. The
present invention is a cache and management hardware
means that reduces this overhead.
The invention generally comprises: an on-chip stack

buffer having a plurality of locations addressed by a
pointer; an external overflow buffer having a plurality
of locations addressed by an external buffer pointer; a
counter means for incrementing or decrementing the
stack pointer, wherein a push of data onto the stack
buffer will increment the stack pointer and a pop of data
from the stack buffer will decrement the stack pointer;
and, a stack management hardware means for: (1) com
paring the stack pointer with an overflow pointer and
an underflow pointer to determine if underflow or over
flow has occurred; (2) incrementing the overflow/und
erflow pointers by one, and writing into the external
overflow buffer a single element stored in the stack
buffer, one location past the location addressed by the
stack pointer, if overflow has occurred, and (3) writing
an element stored at the top of the external overflow
buffer into the stack buffer at a location a set number of
locations below the stack pointer, decrementing the
overflow and underflow pointer one location and incre
menting the exterhal stack buffer pointer, if underflow
has occurred.
The resulting cache management hardware handles

overflow and underflow in such a manner that less than
1% of the processor's time is spent managing the stack
cache. This is a very low (almost negligible) overhead
and a small price to pay for an on-chip stack cache that
communicates with an external overflow stack through
a single address bus. The cache management hardware
also allows the distance between the overflow and un
derflow pointers to be pre-set, thereby guaranteeing
that a certain number of registers in the stack buffer
always contain current data.

5,107,457
3

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagrammatic view of the present inven

tion showing both on-chip registers and external stack
buffers.

FIG. 2 is a diagrammatic view of a cache stack just
prior to an overflow condition.

FIG. 3 is a graph showing the effect in processor
overhead for a given number of transfers during over
flow or underflow.

FIG. 4 is a block diagram of the cache management
hardware.
FIGS. 5a, Sb and 5c are diagrammatic views of the

cache stack during overflow.
FIGS. 6a, 6b and 6c are diagrammatic views of the

cache stack during underflow.
F.G. 7 is a flow chart which illustrates the combina

tion of the elements for carrying out the preferred em
bodiment of the invention.

DESCRIPTION OF THE PREFERRED
EMBOOMENT

FIG. 1 shows a diagrammatic view of a stack buffer
10 that is located on the same integrated circuit chip
with a processor. The processor chip connects to an
external memory 12 (or an external overflow buffer).
Since the same external memory is used to hold over
flow from the on-chip stack buffer, as well as the pro
cessor's programs and data, only a single address/data
bus (not shown), is needed to connect the external men
ory to the processor chip. This is significant because it
reduces the pin count of the processor chip. The in
vented stack management hardware keeps the top por
tion of the stack in the on-chip registers 14 with the
remainder of the stack kept in the external memory 16.
As the contents of the on-chip stack buffer grows and
shrinks, the top of the stack pointer 18 moves up and
down within the registers. If the registers fill, then the
cache management hardware intervenes to push one of
the register values onto the external overflow stack.
Similarly, when the on-chip registers are almost empty,
a value from the external stack is popped into an on
chip stack register.
FIG.2 shows the on-chip stackbuffer on the verge of

overflow. If an additional instruction pushes data onto
the stack, the instruction is completed and then the
special stack management hardware (discussed in detail
later) takes over. The value in the bottom most register
in FIG. 2 is then pushed onto the external stack by
decrementing the external overflow buffer pointer and
storing the register value at this address. Then the freed
register is reallocated to the top of the on-chip stack
buffer to allow for future stack growth. Finally, the
overflow and underflow markers are moved up one
register location. For stack buffer underflow, a similar
and symmetric operation is done. The entire overflow
(or underflow) operation takes two clock cycles in the
current chip implementation.

Generally processors, such as RISC processors, must
fetch a new instruction every clock cycle. Since there is
only a single path between the processor and memory,
the overflow and underflow operations must stall in
struction fetches, and consequently, instruction execu
tion. During these stalls, the processor is not making

5

10

15

20

25

30

35

40

45

SO

55

4.
key to the present invention was to design a cache man
agement hardware which reduced this overhead.
The most intuitive step to reduce cache overhead

would be to transfer a block of data (containing several
register values) from the on-chip buffer to the external
overflow buffer during the same overflow cycle; and,
similarly, to transfer a block (containing several register
values) back to the buffer stack during underflow.
However, that intuitive assumption proved to be totally
wrong. The inventors discovered that transferring only
one register value during overflow (or underflow) actu
ally resulted in reduced cache overhead.
The result of simulation runs demonstrating this dis

covery is shown in FIG. 3. A collection of the follow
ing Forth language programs were used:

flower A graphics program drawing a
complex geometric figure.

neta The (meta) compilation of a new
Forth system.

neural A back propagation neural network
simulation of learning.

traps A 50 rule expert system for
spacecraft trajectory
preprocessing.

huff Huffman encode a text file.
fib Recursively compute the 24th

Fibonacci number.
acker Recursive Ackerman's function.

To generate FIG. 3, the first one million primitives of
each program were traced except for "acker" and
"flower" which were shorter programs. Each of these
simulations were rerun several times, each time with a
different number of items initially on the stacks. FIG. 3
is graph of each simulation with the worst case over
head value shown on the abscissa and the number of
registers transferred on overflow (or underflow) on the
ordinate. FIG.3 surprisingly shows that for a hardware
cache manager the best number of registers to write out
on overflow is one.

FIG. 4 shows a block diagram of the cache stack
management hardware. Although the diagram shows a
single stack buffer, it is to be understood that two or
more stack buffers could be resident on the same chip
and still communicate with the external buffer through
a single address bus. As seen in FIG. 4, a push 20 or pop
22 command sent by the processor to the on-board stack
Imanagement hardware 24, activates an up/down
counter 26 which increments or decrements the stack
pointer. The stack pointer value is then input to two
compare circuits 28, 30. If the stack pointer equals the
overflow pointer compare circuit 28 would provide an
overflow indication 32. If the stack pointer equals the
underflow pointer compare circuit 30 would generate
an underflow indication 33,

If the overflow indication 32 is indicated, the adder/
subtracter 34 selects the element to the be written, the
up/down counter 36 increments the overflow pointer
and adder 38 calculates the underflow pointer and also
keeps the underflow pointer a set number of stack ele
ments from the overflow pointer (a constant equal to
the number of stack elements guaranteed to be on the
stack is stored in memory 40), and updown counter 42
is decremented and a single element stored in the stack

any progress on the program it is trying to run. The 65 buffer 44 is written into the external overflow buffer
overhead for managing a stack cache is the number of
processor cycles spent overflowing and underflowing
divided by the total number of processor cycles. The

(not shown). If, however, the underflow indication 33 is
indicated, the adder/subtracter 34 selects the stack loca
tion number to be written, up/down counter 36 decre

5,107,457
5

ments the overflow pointer and adder 38 calculates a
new underflow pointer and keeps the underflow pointer
a certain number of stack elements from the overflow
pointer and updown counter 42 is incremented and a
single element stored in the external overflow buffer is
transferred for storage into the stack buffer 44.
FIG. 5 illustrates the operation of the stack cache

during an overflow condition. In FG. 5a, the value
"16' has been pushed onto the stack and the stack
pointer now equals the overflow pointer. The cache
management hardware (shown in FIG. 4) inserts two
cycles to handle the overflow as shown in FIGS. 5b and
5c, respectively. On the first overflow cycle (shown in
FIG. 5b), the external overflow buffer pointer 46 is
decremented and the overflow and underflow pointers
are rotated one register clockwise. On the second cycle
(shown in FIG. Sc), the element one register past the
stack pointer is written into the external overflow
buffer. The processor is now able to continue program
execution.

FIG. 6 illustrates the operation of the stack cache
during an underflow condition. (It will be noted that the
underflow pointer) is located four elements from the
overflow pointer. The cache management hardware in
this specific embodiment guarantees that at least the top
four elements are always present in the register. This is
accomplished by locating the pointers at appropriate
distances, as noted in FIG. 6. Separation between over
flow and underflow pointers is set to determine how
much useful data is always on the chip cache. A sepa
rate circuit not shown, allows the processor to read
from these four locations within the chip cache. It will,
of course, be understood that this space could be
changed to accommodate different software languages

5

O

15

20

25

30

and the four spaces described above was only by way of 35
example.) In FIG. 6a, the stack cache has underflowed
causing the stack pointer to equal the underflow
pointer. The cache management hardware (shown in
FIG. 4), inserts two cycles to handle the underflow
condition as shown in FIGS. 6b and 6C, respectively.
On the first underflow cycle (see FIG. 6b), the value of
the top of the external overflow buffer (the 2) is read
into the stack cache four registers below the stack
pointer. The overflow and underflow pointers are also
rotated one register counter-clockwise. On the second
underflow cycle (shown in FIG. 6c), the external over
flow buffer pointer 46 is incremented and the processor
is now able to continue program execution. The flow
chart illustrated in FIG.7 may be better understood by
recognizing that in the chart as shown N is the size of
the stack buffer; k is the number of values guaranteed to
present in the stack cache at all times; stack buffer (0. .
. N-1) is the stack cache; external stack is the exter
nal stack, stack-pointer indicates the top of the stack in
the stack cache, overflow indicates the stack cache's
overflow mark, overflow-area address is the address
of the top of the stack in the external memory, and
overflow-area address is the contents of external
memory location overflow-area address.
Although the present invention has been described in

terms of a specific embodiment with pointers moving in
clockwise direction, it is to be understood that this was
merely a convenience for description purposes. For
instance, we described an embodiment where a push of

40

45

SO

6
decrement the stack pointer. The invention naturally
would work equally well with a push of data onto the
stack buffer decrementing the stack pointer and a pop of
data from the stack buffer in incrementing the stack
pointer. In addition, any number of stack caches could
be used by a processor. Obviously, many such modifica
tions and variations of the present invention are possible
in light of the above teachings. It is, therefore, to be
understood that within the scope of the appended
claims, the invention may be practiced otherwise than is
specifically described.
What is claimed is:
1. An information storage device, comprising:
a stack buffer having a plurality of locations ad

dressed by a stack pointer;
an external overflow buffer having a plurality of

locations addressed by an external overflow buffer
pointer;

a counter means for incrementing or decrementing
the stack pointer, wherein a push of data on the
stack buffer will rotate the stack pointer in one
direction and a pop of data from the stack buffer
will rotate the stack pointer in the other direction;
and,

a stack management hardware means for: (1) compar
ing the stack pointer with an overflow pointer and
an underflow pointer to determine if underflow or
overflow has occurred; (2) incrementing the over
flow and underflow pointers by one, and writing
into the external overflow buffer a single element
stored in the stack buffer one location past the
location addressed by the stack pointer, if overflow
has occurred; (3) writing an element stored at the
top of the external overflow buffer into the stack
buffer at a location a set number of locations below
the stack pointer, decrementing the overflow and
underflow pointer one location and incrementing
the external overflow buffer pointer, if underflow
has occurred. -

2. The device of claim 1, wherein said stack manage
ment hardware means, comprises:
a means for comparing the stack pointer with the

overflow and underflow pointers to determine if an
overflow or underflow has occurred;

a first counter means for incrementing the overflow
pointer one location if an overflow has occurred
and for decrementing the overflow pointer by one
location if an underflow occurs;

a second counter means for incrementing the external
overflow buffer pointer by one location if an over
flow has occurred and decrementing the external
overflow buffer pointer by one location if the un
derflow has occurred;

an adder means for adjusting the underflow pointer a
set number of locations from the overflow pointers;
and,

an adder/subtracter means for calculating a stack
location from the stack position to be read or writ
ten in overflow/underflow.

3. A device of claim 1, further comprising an inte
grated circuit chip on which a processor and said stack
buffer are located, wherein a single address/data bus
connects said chip to said overflow stack, and wherein

data onto the stack buffer will increment the stack 65 the overflow stack is external to said chip.
pointer and a pop of data from the stack buffer will it

