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Systems and Mcthods for Modeling Probability Distributions

CROSS-REFERENCE TO RELATED APPLICATIONS

[6601] The present application claims the benefit of and priority to U.S. Provisional Patent Ap-
plication No. 62/618,440 entitled *Systems and Methods for Modeling Probability Distributions®,
filed January 17, 2018, and U.5. Provisional Patent Application No. 62/792,648 entitled "Simulat-
ing Biological and Health Systems with Restricted Bolizmann Machines’ filed January 13, 2019,
The disclosure of U.S. Provisional Patent Application Serial Nos. 62/618,440 and 62/792,648 are

herein incorporated by reference in their entirety.

FIELD OF THE INVENTION
[6662] The present invention generally relates to modeling probability distributions and more
specifically relates to training and implementing a Boltzmann machine to accurately model com-

plex probability distributions.

BACKGROUND

16603] In a world of uncertainty, it is difficult to properly model probability distributions across
multiple dimensions based on diverse and heterogeneous sets of data. For example, in the health
industry, individual health ouicomes are never certain. The condition of one patient with a disease
may deteriorate rapidly, while another patient quickly recovers. The inherent stochasticity of indi-
vidual health outcomes implies that health informatics must aim to predict health risks rather than
deterministic outcomes. The ability to quantify and predict health risks has iraportant implications

for business models that depend on the health of a population.

SUMMARY OF THE INVENTION

16804] Systems and methods for modeling complex probability distributions in accordance with
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embodiments of the invention are illustrated. One embodiment includes a method for training a
restricted Boltzmann machine (RBM), wherein the method includes generating, from a first set
of visible values, a set of hidden values in a hidden layer of a RBM and generating a second set
of visible values in a visible layer of the RBM based on the generated set of hidden values. The
method also includes computing a set of likelithood gradients based on at least one of the first set
of visible values and the generated set of visible values, computing a set of adversarial gradients
using an adversarial model based on at least one of the set of hidden values and the set of visible
values and computing a set of compound gradients based on the set of likelithood gradients and the
set of adversarial gradients. The method includes updating the RBM based on the set of compound
gradients.

[6605] In a further embodiment, the visible layer of the RBM includes a compaosite layer com-
posed of a plurality of sub-layers for different data types.

[6606] In still another cmbodiment, the plurality of sub-layers inchudes at least one of a Bernoulli
layer, an Ising layer, a one-hot layer, a von Mises-Fisher layer, a Gaussian layer, a ReLU layer, a
clipped RelLU layer, a student-t laver, an ordinal layer, an exponential layer, and a cornposite layer.
[G007]  In a stll further embodiment, the RBM is a deep Boltzmann machine (DBM), wherein
the hidden layer is one of a plurality of hidden layers.

[G008]  In yet another embodiment, the RBM is a first RBM and the hidden layer is a first hidden
layer of the phirality of hidden layers. The method further includes sampling the hidden layer
from the first RBM, stacking the visible layer and the hidden layer from the first RBM into a vec-
tor, training a second RBM, and generating the DBM by copying weights from the first and second
RBEMs to the DBM. The vector is a visible layer of the second RBM.

[600%]  In a yet further embodiment, the method further includes steps for receiving a phenotype
vector for a patient, using the RBM to generate a time progression of a discase, and treating the
paticnt based on the generated time progression.

10616] Iv another additional embodiment, the visible layer and the hidden layer are for a first

time instance, wherein the hidden layer is forther connected to a second hidden layer that incorpo-

b
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rates data from a different second time instance.

{6011} In a further additional embodiment, the visible layer is a composite layer includes data
for a plurality of different time instances.

[6612] In another embodiment again, computing the sct of likelihood gradients includes per-
forming Gibbs sampling.

(00131 In a further embodiment again, the set of compound gradients are weighted averages of
the set of likelthood gradients and the set of adversarial gradients,

[0614] In sull yet another embodiment, the method further includes steps for training the adver-
sarial model by drawing data samples based on authentic data, drawing fantasy samples based from
the RBM, and training the adversarial model based on the adversarial model’s ability to distinguish
between the data samples and the fantasy samples.

[6615] 1In a sull yet further embodiment, training the adversarial model includes measuring a
probability that a particular sample is drawn from cither the authentic data or the RBM.

[6016] In still another additional embodiment, the adversarial model is one of a fully-connected
classifier, a logistic regression model. a nearest neighbor classifier, and a random forest.

[6017] In a still further additional embodiment, the method further includes steps for using the
RBM o generate a set of samples of a target population.

[G018] In still another embodiment again, computing a set of likelihood gradients includes com-
puting a convex combination of a Monte Carlo estimate and a mean field estimate.

[G019]  In a still further embodiment again, computing a set of hikelthood gradients includes ini-
tializing a plurality of samples and initializing an inverse temperature for each sample of the plural-
ity of samples. For each sample of the plurality of samples, computing a set of likelihood gradients
further includes updating the inverse terperature by sampling from an auntocorrelated Gamma dis-
tribution, and updating the sample using Gibbs sampling.

[6628] Additional embodiments and features are set forth in part in the description that follows,
and in part will become apparent to those skilled in the art upon exarmnation of the specification

or may be learned by the practice of the invention. A further understanding of the nature and
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advantages of the present invention may be realized by reference to the remaining portions of the

specification and the drawings, which forms a part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

{6828] The description and claims will be more fully understood with reference to the follow-
ing figures and data graphs, which are presented as exemplary embodiments of the invention and
should not be construed as a complete recitation of the scope of the invention.

[6622] Figure 1 illustrates a system that provides for the gathering and distribution of data for
modeling probability distributions in accordance with some embodiments of the invention.

(60231 Figure 2 illustrates a data processing clement for training and utilizing a stochastic model
[0024] Figure 3 illustrates a data processing application for training and utilizing a stochastic
model.

[6025] Figure 4 concepiually illustrates a process for preparing data {or analysis.

{80261 Figure 5 illustrates data structures for implementing a generalized Boltzmann Machine in
accordance with certain embodiments of the invention.

{06271 Figuare 6 illostrates a bimodal distribution and a smoothed, spread distribution that is
learned by a RBM distribution in accordance with several embodiments of the invention.

16628] Figure 7 illustrates an architecture for a generalized Restricted Boltzmann Machine in
accordance with some embodiments of the invention.

[602%] Figure 8 illustrates a schema for implementing a gencralized Boltzmann Machine in ac-
cordance with certain embodiments of the invention.

[6638] Figure 9 illastrates an architecture for a generalized Deep Boltzmann Machine in accor-
dance with certain exobodiments of the invention.

[6031] Figure 10 conceptually illustrates a process for reverse layerwise training in accordance
with an embodiment of the invention.

[G6032] Figure 11 illustrates an architecture for a generalized Deep Temporal Boltzmann Machine
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in accordance with many embodiments of the invention.

166331 Figure 12 conceptually illustrates a process for training a Boltzmann Encoded Adversar-
ial Machine in accordance with some embodiments of the invention.

[0034] Figure 13 illustrates resulting samples drawn from RBMs trained to maximize log likeli-
hood and from RBMs trained as BEAMs,

106351 Figure 14 illustrates results of training a BEAM on a 2D mixture of Gaussians in accor-
dance with a number of embodiments of the invention.

18836] Figure 15 illustrates an architecture for implementing a Boltzmann Encoded Adversarial
Machine in accordance with a number of embodiments of the invention.

16837] Figure 16 illustrates a comparison between samples drawn from a Boltzmann machine
with regular Gibbs sampling to those drawn using Temperature Driven Sampling.

16638] Figure 17 illustrates a a comparison between fantasy particles generated by GRBMs

trained on the MNIST dataset using regular Gibbs sampling to those using TDS.

DETAILED DESCRIPTION

[0639] Machine learning is one potential approach to modeling complex probability distribu-
tions. In the following description, many examples are described with reference to medical ap-
plications, but one skilled in the art will recognize that techniques described herein can be readily
applied in a variety of different fields including (but not limited to} health informatics, image/audio
processing, marketing, sociology, and lab research. One of the most pressing problems is that one
often has little, or no, labeled data that directly addresses a particular question of interest. Consider
the task of predicting how a patient will respond to an investigational therapeutic in a clinical trial.
In a supervised learning seiting. one would give the therapeutic to many patients and observe how
each patient responds. Then, ove would use this data to build a model that predicts how a new pa-
tient will respond to the therapeutic. For example, a nearest neighbor classifier would look through

the pool of previously treated patients to find a patient that 1s most similar to the new patient,
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then it would predict the new patient’s response based on the previously treated patient’s response.
However, supervised learning requires significant amounts of labeled data and, particularly where
sample sizes are small or labeled data is not readily available, unsupervised learning is critical to
the successful application of machine learning.

[6046] Many machine learning applications, such as computer vision, reqguire the use of homo-
geneous information (e.g., images of the same shape and resolution), which must be pre-processed
or otherwise manipulated to normalize the inpot and training data. However, in many applications
it is desirable to combine data of vartous types (e.g., images, numbers, categories, ranges, text sam-
ples, etc.} from many sources. For example, medical data can include a variety of different types of
information from a variety of different sources, including (but not limited to) demographic infor-
mation {e.g., a patient’s age, ethnicity, etc.), diagnoses (e.g., binary codes that describe whether or
not a patient has a particular disease), laboratory values (g.g., results from laboratory tests, such as
blood tests), doctor’s notes {¢.g., hand written notes taken by a physician or entered into a medical
records system), images (e.g.. x-rays, CT scans, MRIs, etc.), and “omics data (e.g., data from DNA
sequencing studies that describe a patient’s genetic background, the expression of his/her genes,
etc.). Some of these data are binary, some are continuous, and some are categorical. Integrating all
of these different types and sources of data is critical, but treating a variety of data types with tra-
ditional approaches to machine learning is quite challenging. Typically, the data have to be heavily
pre-processed so that all of the features used for machine learning are of the same type. Data pre-
processing steps can take up a large portion of an analyst’s time in training and implementing a
machine learning model.

(66411 In addition to processing many different types of data, the data used for an analysis is
often incomplete or irregular. In the exaraple of medical data, physicians often do not run the same
set of tests on cvery patient (though, clinical trials are an important exception). Instead. a doctor
will order a test if he/she has a specific concern about the patient. Therefore, medical records con-
tain many fields with missing observations. But, these observations may vot be missing at random.

Haodling these missing observations is an important part of any application of roachine learning in
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health care.

[6042] There are two implications of missing data for machine learning in healthcare. First, any
algorithm needs to be able to learn from data where there aare missing observations in the training
set. Second, the algorithm needs to be able to make predictions even when it is only presented with
a subset of input observations. That 1s, one needs to be able to express any conditional relationship
from the joint probability distribution.

[6043] One approach that has recently gained a lot of popularity 1s the use of Generative Adver-
sarial Networks {GANs). GANSs, in their traditional formulation, use a generator that transforms
random Gaussian noise into into a visible vector through a feed-forward neural network. Models
with this formulation can be trained using the standard back-propagation process. However, GAN
tfraining tends to be unstable — requiring a careful balance between training of the generator and
the discriminator {or critic). Moreover, it is not possible to generate samples from arbitrary condi-
tional distributions with GANs, and it can be very difficult to apply GANs to problems involving
heterogeneous datasets with different data types and missing observations.

10044] Many embodiments of the invention provide novel and innovative systems and methods
for the use of heterogencous, irregular, and unlabeled data to train and implement stochastic, un-

supervised machine learning models of complex probability distributions.

System for Modeling Probability Distributions

[6045] Tuming now to the drawings, a system that provides for the gathering and distribution of
data for modeling probability distributions in accordance with some embodiments of the invention
is shown in Figure 1. Network 100 includes a communications network 160. The communications
network 160 is a network such as the Internet that allows devices connected to the network 160
to communicate with other connected devices. Server systems 110, 140, and 170 are connected
to the network 160. Each of the server systems 110, 140, and 170 is a group of one or more
servers communicatively connected to one another via internal networks that execute processes

that provide cloud services to users over the network 160. For purposes of this discussion, cloud
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services are one or more applications that are executed by one or more server systems o provide
data and/or cxecutable applications to devices over a network. The server systerns 110, 140, and
170 are shown cach having three servers in the internal network. However, the server systems 110,
140 and 170 may mclude any number of servers and any additional number of server systems may
be connected to the network 160 to provide cloud services. In accordance with various embodi-
ments of this jovention, a network that uses systems and methods that model complex probability
distributions in accordance with an embodiment of the invention may be provided by a process
{or a set of processes) being executed on a single server system and/or a group of server systems
communicating over network 160,

16846] Users may use personal devices 180 and 120 that connect to the network 160 to perform
processes for providing and/or interaction with a network that uses systems and methods that model
complex probability distributions in accordance with various embodiments of the invention. In the
shown embodiment, the personal devices 180 are shown as desktop computers that arc connected
via a conventional “wired” connection to the network 160. However, the personal device 180 may
be a desktop computer, a laptop cornputer, a smart television, an entertainment gamiog console, or
any other device that connects to the network 160 via a “wired” connection. The mobile device
120 connects to network 160 using a wireless connection. A wireless connection is a connection
that uses Radio Frequency (RF) signals, Infrared signals, or any other form of wireless signaling
to connect to the network 160. In Figure 1, the mobile device 120 is a mobile telephone. However,
mobile device 120 may be a mobile phone, Personal Digital Assistant (PDA), a tablet, a smart-
phone, or any other type of device that connects to network 160 via wireless connection without
departing {from this invention.

[6047] A data processing element for training and utilizing a stochastic model in accordance
with a number of embodiments is illustrated in Figure 2. In various embodiments, data processing
element 200 is one or more of a server system and/or personal devices within a networked system
similar to the sytem described with reference to Figure 1. Data processing element 200 includes a

processor (or set of processors) 210, network interface 225, and memory 230. The network inter-
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face 225 is capable of sending and receiving data across a network over a network connection. In
a number of cmbodiments, the network interface 225 1s in communication with the memory 230.
In several embodiments, memory 230 is any form of storage configured to store a variety of data,
including, but not limited to, a data processing apphication 232, data files 234, and model parame-
ters 236, Data processing application 232 in accordance with some embodiments of the iovention
directs the processor 210 to perform a variety of processes, such as (but not Hmited to) using data
from data files 234 to update model parameters 236 10 order to model complex probability distri-
butions.

[6648] A data processing application in accordance with a number of embodiments of the in-
vention is illustrated in Figure 3. In this example, data processing element 300 includes a data
gathering engine 310, database 320, a model trainer 330, a generative model 340, a discriminator
model 350, and a simulator engine 345. Model trainer 330 includes a schema processor 332 and a
sampling engine 334. Data processing applications in accordance with many embodiments of the
invention process data to train stochastic models that can be used to model complex probability
distributions.

[6649] Data gathering eongines in accordance with many embodiments of the invention gather
data {rom various sources in various formats. The gathered data in accordance with many em-
bodiments of the invention include data that may be heterogeneous (e.g., data with various types,
ranges, and constraints) and/or incomplete. One skilled in the art will recognize that various types
and amounts of data can be utilized as appropriate to the requirements of specific applications in
accordance with embodiments of the invention. In some embodiments, data gathering engines are
further for pre-processing the data to facilitate the training of the model. However, unlike pre-
processing performed in other methods, pre-processing in accordance with some embodiments
of the invention is automatically performed based on a datatype and/or a schema associated with
cach data input. For cxample, in certain embodiments, bodies of unstructured text {e.g., typed
medical notes, diagnoses, free-form questionnaire responses, eic.) are processed in a variety of

ways, such as (but not limited to) vectorization {e.g., using word2vec), summarization, sentiment
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analysis, and/or keyword analysis. Other pre-processing steps can include (but are not limited o)
normalization, smoothing, fltering, and aggregation. In some embodiments, the pre-processing
is performed using various machine learning techniques, including (but not limited to) Restricted
Boltzmann machines, support vector machines, recurrent neural networks, and convolutional neu-
ral networks.

{00581 Databases in accordance with various embodiments of the invention store data for use by
data processing applications, including (but not limited to) input data, pre-processed data, model
parameters, schemas, output data, and simulated data. In some embodiments, databases are located
on separate machines (e.g., in cloud storage, server farms, networked databases, etc.} from a data
processing application.

[6051] Model trainers in accordance with a number of embodiments of the invention are used to
train generative and/or discriminator models. In many embodiments, model trainers utilize schema
processors to build the generator and/or discriminator models based on schemas that arc defined
for the various data available to the system. Schema processors in accordance with some embod-
iments of the invention build composite layers for a generative model (¢.g., restricted Bolizmann
machine) that are made up of several different layers for handling different types of data in dif-
ferent ways. In some embodiments, model trainers train the generative and discriminator models
by optimizing a compound objective function based on a log-likelihood and adversarial objectives.
Training generative models in accordance with certain embodiments of the invention utilizes sam-
pling engines to draw samples from the models to measure the probability distributions of the data
and/or the models. Various methods for sampling from such models to train and/or draw generated
samples from a model are described in greater detail below.

(6032 In many embodiments, gencrative models are trained to model complex probability dis-
tributions, which can be used to gencerate predictions/simulations of various probability distribu-
tions. Discriminator models discriminate between data-based samples and model-generated sam-
ples based on the visible and/or hidden states.

[G053] Simulator engines in accordance with several embodiments of the invention are used {o

10.
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generate simulations of complex probability distributions. In some embodiments, simulator en-
gines are used to simulate patient populations, discase progressions, and/or predicted responses to
various treatments. Simulator engines in accordance with several embodiments of the invention
use a sampling engine for drawing samples from the generative models that simulate the probabil-
ity distribution of the data.

10654] As described above, as a part of the data gathering process, the data in accordance with
several embodiments of the invention is pre-processed in order to simplify the data. Unlike other
pre-processing which is often highly manual and specific to the data, this can be performed auto-
matically based on the type of data, without additional input from another person.

16855] A process for preparing data for analysis in accordance with some embodiments of the
invention is conceptually illustrated in Figure 4. The process 400 processes (405) unstructured
data. Unstructored data in accordance with many embodiments of the invention can include var-
ious types of data that can be pre-processed in order to speed up processing and/or to reduce the
memory requirements for storing the relevant data. Examples of such data can include (but arc not
himited to) bodies of text, signal processing data, andio data, and image data. Processing unstruc-
tured data in accordance with many embodiments of the invention can inclade (but is not limited
to) feature identification, summarization, keyword detection, sentiment analysis, and signal analy-
SiS.

[0856] The process 400 reorders (410} the data based on a schema. In certain embodiments,
processes reorder the data based on the different data types defined in schemas by grouping sim-
ilar data types to allow for efficient processing of the data types. The process 400 in accordance
with some embodiments of the invention rescales (415} the data to prevent the overrepresentation
of certain data elements based purely on the scale of the measurements. Process 400 then routes
(420) the pre-processed data to the sublayers of a Boltzmann machine that are structured based on
data types identified in the schema. Examples of Boltzmann machine structures and architectures
are described in greater detail below. In some embodiments, the data is pre-processed into tempo-

rally sequenced data stractures for inputs to a deep temporal Boltzmann machine. Deep temporal

1t
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Boltzmann machines are described in further detail below.

[6657] Temporal data structures for inputs to a Boltzmann machine in accordance with a number
of embodiments of the invention are illustrated in Figure 5. The example of Figure 5 shows three
data structures 510, 520, and 530. Each of the data structures represents a sct of the data values
captured at a particular tivoe (1.e., imes {0, {1, and n). In this example. certain traits {e.g., gender,
ethnicity, birthdate, etc.) do not usually change over time, while other characteristics {e.g., test
results, medical scans, etc.) do change over time. The example forther shows that certain data may
be missing for some fields for certain times for certain individuals. In this example, each individuoal

is assigned a separate identification number in order to maintain patient confidential information.

Boltzmann Encoded Adversarial Machines

(00381 Models trained to minimire forward KL divergence, Dxp {(pawal|pe). tend to spread the
model distribution out to cover the support of the data distribution. An example of a spread dis-
tribution is illustrated in Figure 6. Specifically, Figure 6 illustrates a bimodal distribution 610 and
the preity good, smoothed, spread distribution that is learned by a RBM distribution 620. While
RBMs are able to generate such good approximations, they can struggle when faced with finer,
more complex distributions.

[G6059] To overcome the problems with traditional Boltzmann machines, several embodiments
of the 1nvention implement a {ramework for training Boltzmann machines against an adversary,
referred to herein as a Boltzmann Encoded Adversarial Machine (BEAM). A BEAM minimizes
a loss function that is a combination of the negative log-likelthood and an adversarial loss. The
adversarial component ensures that BEAM training performs a simultaneous minimization of both
the forward and reverse KL divergences, which prevents the oversmoothing problem observed with

regular RBMs.

Boltzmann Machine Archilectures

[6668] With many traditional machine learning techniques, sopervised learning is used to train
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a model on a large set of labeled data to make predictions and classifications. However, in many
cases, it 1s not feasible or possible to gather such large samples of labeled data. In many cases, the
data cannot be readily labeled or there are simply not enough samples of an event to meaningfully
train a supervised learning model. For example, clinical trials often face difficulties in gathering
such labeled data. A clinical trial typically proceeds through three main phases. In phase I, the
therapeutic is given (o healthy volunteers to assess i's safety. In phase I, the therapeutic 1s given
o approximately 100 patients to obtain initial estimates for safety and efficacy. Finally, in phase
11, the therapeutic 1s given to a few hundred to a few thousand patients to rigorously investigate the
efficacy of the drug. Before phase 11, there is no in-human data on the effect of the investigational
drug for the desired indication, making supervised learning impossible. After phase I, there is
some in-human data on the effect of the investigational drug, but the sample size is guite limited,
rendering supervised learning techniques ineffective. For comparison, a phase I clinical trial may
have 100-200 patients, whereas a typical apphication of machine learning in computer vision may
use millions of labeled images. As with many situations with limited data, the lack of large labeled
datasets for many imporiant problems imphlies that health informatics must heavily rely on methods

for unsupervised learning.

Restricted Boltzmann Machines (RBMs)

{0861] One machine learning model (or method) that uses unsupervised learning is a Restricted
Bolizmann Machine (RBM). RBMs are bidirectional neural networks, where the neurons {(also
called units) are divided into two layers, a visible layer and a hidden layer. The visible layer v
describes the observed data. The hidden layer b consists of a set of unobserved latent variables
that capture the interactions between the visible units. The model describes the joint probability

distribution of v and h using an exponential form,

\ ol _F{v R .
pv,h) =z T BV, (1)
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Here, £(v,h) is called the energy function, and Z = [ dvdhe © (V1) is called the partition function.
In many embodiments, processes use the integral operator, [ dx, to denote both standard integration
or a sum over all of the elements in a discrete set.

[6062] In a traditional RBM, both the visible and hidden units are binary. Each can only take on

the values 0 or 1. The energy function can be writien as,

E(vR) = = § awi =} bl =} Wiyl @
i u HT
or, in vector notation, E{v,h) = —a’v —b"h — v/ Wh. Notice that visibic units interact with

the hidden units through the weights, W. However, there are no visible-visible or hidden-hidden
interactons,

(06631 A key feature of an RBM is that it is easy to compute the conditional probabilities,

e (‘7/1"*' Z‘u W’i,uh/.l‘)“’i

/ .
plvin) H 14 AL Wigh (3)
i
and,
(byt¥ Wik
s AR (
1{; (i‘k ‘V} foed H """"""""""""""""""""""""" . (‘4)

1 + eb,u X W’,u‘/z

i

Similarly, it is easy to compute the conditional moments,

i
/RN - E ,
WVip(vn) = {4 e (atWh) (5)
and,
i
E Y o ;
() )y = (6)

Lo bWy’

However, 1t 1s generally very difficult to corapute statistics from the joint distribution. As a result,
statistics from the joint distribution have to be estimated using random sampling processes such as
Markov Chain Monte Carlo (MCMC).

[6064] RBMs can be trained by maximizing the log-likelihood £ 1= (dog p(V))gure = (og [ dBp(v.h)) sua-
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Here, {)gu, denotes an average over all of the observed samples. The derivative of the log-

likelihood with respect to some parameter of the model 8 is:

(—),E f} A / 3
.é.g e <-§-é~10g/ dh{)'\v7h)}’da3a
3 N d
ﬂ\ &8 g J dara &g g
= /f dhe”'E(\V,h)’(___ f}; ) o f dwghg"'ﬁ(vvh?’( %‘%\
\ f Jhe—ER) /aata f dvdhe £(v.B)
OF oF . '
= (=5)ptvm) \(E/p@w)}dam (7

In the standard formmidation of an RBM, there are three parameters a, 5, and W. The derivatives

are.

a'j‘: o A
Ja \Vip(vp) — (Y)dara
3L
_____ /By [N

‘éfg - \h/)p(vh - \<h/’p(h v)/data
a3l T T

’ __/.Z\ /‘y‘{\\ A\ {
M&VV ----- \Vi} /p(Vﬂh) - \(\"h /'p(\hlv)}dala (8)

[6665] Computing expectations from the joint distribution 13 generally computationally intractable.
Therefore, the dertvatives have fo be computed using samples {rom the meodel drawn with an

MCMC process. Samples can be drawn from an RBM using alternating Gibbs sampling.
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Input: Initial configuration (v, h).
A number of Monte Carlo steps, k.
An RBM.

Qutput: A new configuration (v/,h').

draw by ~ p(hlvi_1);
draw v; ~ p(vih);
end
return (v, i)
[0066] In theory, Gibbs sampling produces uncorrelated random samples from p(v,h) in the limit
that # — co. Of course, infinity is a long time. Therefore, the derivatives of the log-likelihood of an
RBM are usually approximated using one of two processes: Contrastive Divergence (CD), or Per-
sistent Contrastive Divergence (PCD). K-step CD is very simple: Grab a batch of data. Compute
an approximate batch of samples from the model by running k-steps of Gibbs sampling starting
from the data. Compute the gradients of the log-likelihood and update the model parameters. Im-
portantly, the samples from the model are re-initialized using the batch of observed data for each
gradient update. K-step PCD is similar: First, samples from the model are initialized using a batch
of data. The samples are updated for k steps, the gradients are computed, and the parameters are
updated. In contrast to CD, the samples from the model are never re-imitialized. Many architectares
of Boltzmann machines in accordance with several embodiments of the invention utilize sampling
to compute derivatives for training the Boltzmann machines. Various methods for sampling in ac-

cordance with several embodiments of the invention are described in greater detail below.

Generalized RBMs
(6667} One challenge that arises in the use of traditional Boltzmann machines is that many RBMs

use binary units, while much of the data that 1s to be processed can come in a variety of different

16.



CA 03088204 2020-07-09

WO 2019/143737 PCT/US2019/013870

forms. To overcome this limitation, some embodiments of the invention use a generalized RBM.
A generalized RBM in accordance with a number of embodiments of the invention is illustrated
in Figure 7. The cxample of Figure 7 shows a generalized RBM 700 with a visible layer 710
and a hidden layer 720. The visible layer 710 is a composite laver comprised of several nodes
of various types (i.e., conlinuous, categorical, and binary). The nodes of visible layer 710 are
connected to nodes of hidden laver 720, Hidden layers of generalized RBMs in accordance with
several embodiments of the invention operate as a low dimensional representation of individuals
{(e.g., patients in a clinical trial) based on the compiled inputs to a composite visible layer.

[6068] Generalized RBMs in accordance with a number of embodiments of the invention are

trained with an energy function,
E(v,h) = —a(v) —b(h) —va,-—m-:h )

where a(-) and b(-) are arbitrary functions, and ¢ > 0 and £ > 0 are scale parameters of the visible
and hidden layers, respectively. Different functions (called layer types) are used to represent dif-
ferent types of data. Examples of layer types used for modeling various types of data are described
below.

(606691 Bernoulli Layer: A Bernoulli layer is used to represent binary data v; € {0,1}. The bias
function is a(v) = a’ v and the scale parameters are set to 6; = 1.

{60701 Ising Layer: Anlsing layeris a symumetrized Bernouolli layer for visible units v; € {—1,+1}.
The bias function is a(v) = ¢’ v and the scale parameters are set to ¢; =

[6671] One-hot Layer: A one-hot layer represents data where v; € {0,1} and ¥, v; = 1. That is,
one of the units is turned on and all of the other units are turned off. One-hot layers are commonly

used to represent categorical variables. The bias function is a(v) = o’ v and the scale parameters

[0072] von Mises-Fisher Layer: A von Mises-Fisher layer represents data where v; € [0, 1] and

3.ivi = 1. That is, the units are confined to the surface of an n-dimensional sphere. This layer is
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particularly useful for modeling fractional data where x; € [0,1] and },x; = 1 because v; = /X;
satsifies the spherical property. The bias function is ¢(v) = a’ v and the scale parameters are set to
o;=1.

(60731 Gaussian Layer: A Gaussian layer represents data where v; € R, The bias function is

. (vi—:)2 ) . - ;

a(v) = — iS5 Both the location, V;, and scale, «;, paramelers of the layer are generally
trainable. In practice, it helps to parameterize the model in terms of log &; to ensure that the scale
parameter stays positive.

[0074] Rell) Layer: A Rectified Linear Unit (RellLl} layer represents data where v; € R with

law

v; > vi™. In the context of a Boltzmann machine, a ReLU layer is essentially a one-sided trun-

cated Ganssian layer. The bias function is a(v) = — ¥, lomi? over the domain v; ZW . Both the

location, V;, and scale, &;, parameters of the layer are generally trainable whereas ‘vl”

is typically
specified before training. In practice, it helps to parameterize the model in terms of log 6, to ensure
that the scale parameter stays positive.

[6075] Clipped Relu Layer: A Clipped Rectified Lincar Unit (ReLU) layer represents data where

v; € R with v} <y > vl"“ In the countext of a Boltzmann machine, a Chipped Rel.U layer 15

2

Li il aver the

J./

;-

essentially a two-sided truncated Gaussian layer. The bias function is a{v) = Z,

v
A
l

-

. high
domain v; By >y “‘“ . Both the location, V;, and scale, ©;, parameters of the nyu are generally

high

low

trainable whereas v;°" and v;”" are typically specified before training. In practice, it helps to pa-
rameterize the model in terms of logo; to ensure that the scale parameter stays positive.

[6076] Student-t Layer: A Student-t distribution 1s similar to a Gaussian distribution, but has {at-
ter tatls. In a variety of embodiments, implementation of a Student-t layer is implicit. The layer has
three parameters, a location parameter ¥; that controls the mean, a scale parameter v; that controls
the variance, and a degrees of freedom parameter d; that controls the thickness of the tails. The

layer is defined by drawing a variance (5“ ~ InverseGamma( f',’.a T
-

V):—Zi:'

{86771 Ordinal Laver: An Ordinal layer 1s a generalization of a Bernoulli layer that is uvsed to

L} and then taking the energy as

represent integer valued data v; € {0,N;}. The bias function is a(v) = a’ v and the scale parameters
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are set to ©; = 1. The upper value /; is specified ahead of time.
[6078] Gaussian-Ordinal Layer: A Gaussian-ordinal layer is a gencralization of an ordinal layer
that is used to represent integer valued data v; € {0, N, } with a more flexible distribution. The bias
functionis a{v) = — 3 % The upper value N; is specified ahead of time.

26,
[6079] Exponential Layer: An exponential layer represents data where v; € R, The bias func-
tion is a(v) = ¢’ v and the scale parameters are set to ¢; = 1. Note, exponential layers have some
constraints becawse a; + }; Wiify, > O tor all values of the connected hidden vnits. Typically, this
limits the types of layers that can be connected to an exponential layer, and requires ensuring that
all of the weights are positive.
16680] Composite Layer: A composite layer 15 not a mathematical object per se as was the case
for the previously described layer types. Instead, a composite layer is a software implementation
for combining multiple sub-layers of different types to create a meta-layer that can model hetero-
gencous data.
[6081] Specific examples of layers for modeling data in accordance with embodiments of the
invention are described above; however, one skilled in the art will recognize that any number of
processes can be utilized as appropriate to the requirernents of specific applications in accordance

with embodiments of the mvention.

Schema

[G082] A schema in accordance with several embodiments of the invention is conceptually il-
lustrated in Figure 8. A schema with descriptions of different layers of a generalized RBM is
illustrated in Figure 8. A schema allows for a model to be tuned to handle particular types of data,
without requiring burdensome pre-processing by a person. The ditferent layers allow {or hetero-
gencous data of different types that may be incomplete and/or irregular.

[6083] Specific examples of a schema for building models in accordance with embodiments of
the invention are described above; however, one skilled in the art will recognize that any number of

processes can be utilized as appropriate to the requirernents of specific applications in accordance
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with embodiments of the invention.

Generalized Deep Boltzmann Machines (DBMs)

1606841 Deep learning refers to an approach to machine learning where the model processes the
data through a series of transformations. The goal is {0 enable the model {o learn o construct
appropriate features rather than requiring the researcher to craft features using prior knowledge.
[G085] A generalized Deep Boltzmann Machine (IDBM) 15 essentially a stack of RBMs. A gener-
alized DBM 1 accordance with some embodiments of the invention 1s tlustrated in Figure 9. The
generalized DBM 900 shows a visible layer 910 connected to a hidden layer 920. Hidden layer
920 1s further connected to another hidden layer 930. The visible layer 910 is encoded to hidden
layer 920, which then operates like a visible layer {or the next hidden layer 930.

16886] Consider a DBM with £ hidden layers by for I = 1,...,L. The energy function of the

DBM is:
E(v,hy,... hy) = —a(v) lgz (R " !:zihT AT (10)
v, 8y,..., 0y ) = —alv) — AR U Rl ey Ty Ry A e TR {
' =1 (oe])? oy e 1)? {

[6087] A DBM can, in principle, be trained in the same way as an RBM. However, in practice,
DBMs are often trained using a greedy layer-wise process. Examples of greedy laver-wise process
are described in R. Salakhutdinov and G. Binton, in Arvificial Intelligence and Statistics (2009) pp.
448-455, which 1s incorporated by reference herein. In essence, forward layerwise training of a

DBM proceeds by training a sequence of RBMs with energy functions:

1974

E(v.hy) = —a(v) ~bi(hy) ~ v ¥ h,

(oe{)?

E{hy,h) = ~by(B)) — by(hs) — h! -

ey et L1
/ Eegel )2 -

~ ) N o / i Y T H/L
E(bg b)) =~ (b o)~ by —hy 70— E;r\,z hy
A\~ i/
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where the outputs of the previous RBM are used as the inputs of the next RBM. It can be difficult
to get information from the data distribution to propagate into the deep layers of the model when
training a DBM in this forward layerwisc way. As a result, it is generally difficult to train DBMs
with more than a couple of hidden layers.

[G088] To overcome the limitations with forward layerwise training of DBMs, methods in accor-
dance with many embodiments of the invention train DBMs 1o reverse — starting with the deepest
hidden layer by, and working backwards towards v. This ensures that the deepest hidden layer
must contain as much information about the visible layer as possible. The reverse layerwise train-

ing procedure makes use of the fact that a three layer DBM with connectivity v — Iy

i

—hy is the
same as a two layer RBM with connectivity [v, by — h;. allowing RBMs with Composite Layers
to talk backwards down the connectivity graph of the DBM.

[6889] A process for reverse layerwise training in accordance with an embodiment of the inven-
tion is conceptually illustrated in Figure 10. Process 1000 trains (1005) a first RBM with con-

nectivity v — hy. Process 1000 samples (1010) hy, ~ plhg

v} from the trained RBM. The process
then stacks (1015) v and by into a vector [v, by | and trains (1020) a second RBM with connectivity
(v, hy| — by ;. Process 1000 then determines (1025) whether [v, hp] — by has been reached. When
it has not been reached, process 1000 returns to step 1005, When process 1100 determines that
v, ho| — hy has been reached, the process copies (1030) the weights from each of these intermedi-
ate RBMs into their respective positions in the DBM. In some embodiments, DBMs can then be

fine-tuned by regular end-to-end training.

Boltzmann Machines for Time Series

[6099] Many problems (e.g., modeling patient {rajectories) require the ability to generate time
series. That is, to generate a sequence of states {v(¢)}_,. Two approaches in accordance with
numerons embodiments of the invention are described below.

(00911  An Auntoregressive Boltzmann Machine (ADBM) is a DBM where the hidden layers have

undirected edges connecting neighboring time points.  As a result, an ADBM relates nodes (o
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their previous timepoints. A generalized ADBM in accordance with some embodiments of the
invention 1s illustrated in Figure 11. The generalized ADBM 1100 shows a visible layer 1110 at
titne t connected to a hidden layer 1120, also at time t. Hidden layer 1120 is turther connected to
another hidden layer 1130 that incorporates data that is offset from time t by ¢

[6092]  Asaresult, an ADBM s a model for entire sequences that describes the joint probability
distribution p{(v{(0),...,v{t}). Specifically, et x(¢) = [v(¢),h;{¢),...,hy(¢}] devote the state of all

of the layers at time 7. Moreover, let Epgy(x(¢)) be the energy of a DBM given by

J=L 1
\ Wy
vohy,. b)) = —alv) — ¥ by(hy) hT -ty (11)
' ?;1 (\ Z (g tHl) o
The energy {unction of the ADBM is:
A i T g)
E({x{t)} o) = ZEDEM EhL (\t)m——m?—\—;hyi -1} (12)
=1 (erer )

For simplicity, this has been tllustrated with a single antoregressive connection connecting the last
hidden layer with its previouns value. However, one skilled in the art will recognize that this model
can be extended to include multiple time delays or inter-temporal connections between layers.

{00931 ADBMs, as described in the previous section, are able to capture correlations through
time, but they are often unable to represent non-stationary distributions or distributions with drift.
For example, most patients with a degenerative disease will tend to worsen over time - an ef-
fect that the ADBM cannot capture. To capture this cffect, many embodiments of the inven-
tion implement a Generalized Conditional Boltzmann Machine (GCBM). Consider a time se-

ries of visible units {v(¢)};_,. The joint probability distribution can be factorized into a prod-

uct p(vir),...,v{1)) = po(v(IN TT . p(¥(6)|v(r — 1}). In several embodiments, this model can be
constructed from two DBMs. First, a non-time dependent DBM, py. can be trained on all of the
data. Next, a fime dependent DBM can be trained on a Composite Layer created by joiming all

of the neighboring time points [v{7),v(r — ). In this example, the second DBM describes the

joint distribution p(v(7),v{t — 1)), which makes it possible to compute both p(v{(t)iv(r — 1}) and
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p(v(t — 1}|¥(r)} allowing for both forward and backwards prediction.

[6094] Although this cxample is described using a single time lag, one skilled in the art will
recognize that processes in accordance with many embodiments of the invention can be adjusted
to consider longer and/or multiple time lags. For example, the second DBM can be trained on
a Composite Layer that can be readily extended to include multiple time lags, e.g.. [v{r),v{r —
1), vt —n)).

Y

Training RBMs

[6695] There are multiple pathways for improving the performance of RBMs. These include
new approaches to regularization, novel optimization algorithms, alternative objective functions,
and improved gradient estimators. Systems and methods in accordance with several embodiments

of the invention implement alternative objective functions and improved gradient estimators.

Adversarial objectives for RBMs

100961 A machine learning model is generative if it learns to draw new samples from an unknown
probability distribution. Geuverative models can be used to learn useful representations of data
and/or to enable simulations of systems with unknown, or very complicated, mechanistic laws.
A generative model defined by some model parameters 8 describes the probability of observing
some variable v. Therefore, training a generative model involves minimizing a distance between
the distribution of the data, p,(v), and the distribution defined by the model, pg(v}. The traditional
method for training a Boltzmann machine maximizes the log-likelthood, which is equivalent to

minimizing the forward Kullback-Liebler (KL} divergence:

A k JARRN d(v‘/\"‘ .
Dx(pal pe) = /dv,vda.‘%’)iﬁg (p ‘ \.)~ (13)

o

(00971 The forward KL divergence, Dxp (pa| po), accumulates differences between the data and

model distributions weighted by the probability under the data distribution. The reverse KL diver-
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gence, Dxy.(pe || pg). accumulates differences between the data and model distributions weighted
by the probability under the model distribution. As a result, the forward KL divergence strongly
punishes models that underestimate the probability of the data, whereas the reverse KL divergence
strongly punishes models that overestimate the probability of the data.

(098] There are a variety of sources of stochasticity that enter inlo the training of an RBM.
The stochasticity implies that different models may become statistically indistinguishable if the
differences in their log-likelihoods are smaller than the errors in estimating them. This creates
an entropic force becaunse there will be many more models with a small Dyy (pg |l pe) than there
are models with both a small Dy (pg|| pe) and D (pe !l pe). As a result, training an RBM us-
ing a standard approach with PCD decreases Dy (py || pg) (as it should) but tends to increase
Dy {pell pa). This leads to distributions with spurious modes and/or to distributions that are over-
smoothed.

(60991 One can imagine overcoming the limitations of maximum hikelthood training of RBMs by
minimizing a combination of the forward and reverse KL divergences. Unfortunately, computing
the reverse KL divergence requires knowledge of p,y, which is uoknown. In many embodiments,
rather than the reverse KL divergence, RBMs can be frained using a novel type of [~divergence as

a discriminator divergence:

Bp(paips) =~ / dv pg(v)log <-—~1—§—(—Y—)~——~)> . (14)

palv)+ palv

s/

[G106] Notice that the optimal discriminator between py and pg will assign a posterior probabil-
ity

pldasaly) = —L00 (15)
Py i

that the sample v was drawn from the data distribution. Therefore, the discriminator divergence
can be written as
Dplpgll pg) = ~log2 — / dv pe(v)log (pldatalv)) (16)

to show that it measures the probability that the optimal discriminator will incorrectly classify a
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sample drawn from the model distribution as coming from the data distribution.
[6101] The discriminator divergence belongs to the class of f-divergences defined as Dy(p|lq) =

Tdxg{x) f(p(x)/gi{x}). The function that defines the discriminator divergence is

T
flt) =log ( ------------ ) (7
L y

which is convex with f(1) = 0, as required. It can be shown that the discriminator divergence

upper bounds the reverse KL divergence:

> Dxipelipa)-

[6102] Itisoften difficult to access py(v) directly or to compute the reverse KL divergence. How-
ever, methods in accordance with numerous embodiments of the invention can train a discriminator
to approximate Eguation 15 and, therefore, can approximate the discriminator divergence.

[6103] A generator that is able to trick the discriminator so that p{daialv) = 1 for all samples
drawn from pg will have a low discriminator divergence. The discriminator divergence closely
mirrors the reverse KL divergence and strongly punishes models that overestimate the probability
of the data.

10104] Methods in accordance with nomerouns embodiments of the vention implement a Boltz-
mann Encoded Adversarial Machine (BEAM) for training an RBM against an adversary. A BEAM
in accordance with a number of embodiments of the invention minimizes a loss function that is a
combination of the negative log-likelthood and an adversarial loss. The adversarial component en-
sures that BEAM training performs a simultaneous minimization of both the forward and reverse
KL divergences, which prevents the oversmoothing problem observed with regular RBMs.

161065] A method for training a BEAM in accordance with many embodiments of the invention

1s described below:
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Input:

» = number of epochs;

m = number of fantasy particles;

k = number of Gibbs sampling steps;

o = weight of the likelihood and adversarial gradients
Initialize:

sample F ~ pg(v) using k-steps of Gibbs sampling;

while True do
V & minibatch:

if len(V) == 0 then
I break;

enel

sample F ~ pg(v) using k-steps of Gibbs sampling;
compute the log-likelihood gradient g (V, #,8);
encode V = {E,, (nfv) B] fvev and F={ B vy ] bver:
train discriminator on V and &

compuie the adversarial gradient gy (F,0);

compute the full gradient g = age + {1 — gy

update the model parameters using the gradient;

engd

eng

16106] A process for training an adversarial model in accordance with some embodiments of the
invention is conceptually illustrated in Figure 12. The process 1200 draws (1205} samples from a
model, such as (but not limited to) Boltzmann machines such as those described above. Samples
can be drawn from a model according to a variety of methods, including (but not limited to) k-steps
Gibbs sampling and TDS. The process 1200 then computes (1210} gradients based on the drawn

samples. Process 1200 tramns (12135) a discriminator based on the drawn samples and computes
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an adversarial gradient based on the classification of the samples, as either drawn from the model
or drawn from the data. In many embodiments, the process 1200 then computes (1220) a full
compound gradient and updates (1225) the modcl parameters using the full gradient.

[6107] Figure 13 presents some comparisons between Boltzmann machines trained to maximize
log likelihood and those trained as BEAMSs. The examples of this tigore iHustrate three multimodal
data distributions: a bimodal mixiure of Gaussians in 1-dimension (1310}, a mixture of 8 Gaussians
arranged in a circle in 2-dimensions (1320), and a mixtore of 25 Gaussians arranged in a grid
in 2-dimensions (1330). Problems similar to the 2-dimensional mixture of Gaussians examples
are commonly used f{or testing GANs. In each case, the regular Boltzmann machine learns a
mode! with a pretty good likelihood by spreading the probability over the support of the data
distribution. In contrast, the Boltzmann machines trained using as BEAMSs learn to reproduce the
data distributions very accurately.

[6108] An cxample of results of training a BEAM on a 2D mixture of Gaussians is illustrated in
Figure 14. The first pancl 14053 illustrates estimates of the forward KL divergence, Dgr{pslpe).
and the reverse KL divergence, Dgy(pell pa), per training epoch. The first panel 1405 illustrates
that training an RBM as a BEAM decreases both the {orward and reverse KL divergences. The
second panel 1410 illostrates distributions of {antasy particles at various epochs during training.
In the early stages of training, the BEAM {antasy particles are spread out across the support of
the data distribution capturing the modes near the edge of the grid. These early epochs resemble
the distributions obtained with GANs, which also concenirate deunsity in the modes near the edge
of the grid. As training progresses, the BEAM progressively learns to capture the modes near the
center of the grid.

[010%] An architecture of a Boltzmann Encoded Adversarial Machine (BEAM) in accordance
with some embodiments of the invention is illustrated in Figure 15. The illustrated example shows
two steps of the BEAM architecture. In the first stage 1510, a generator (e.g.. an RBM) with a
visible layer (circles) and a hidden layer (diamonds). Generators in accordance with a mumber of

embodiments of the invention are trained to encode input data by passing the input data through
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the visible layer to be encoded in a set of nodes of a hidden layer. Generators in accordance with
several embodiments of the invention are trained with an objective to gencrate realistic samples
from a complex distribution. In many embodiments, objective functions for training generators
can include a contribution from an adversarial loss generated by a critic {or discriminator),

[6119]  In the second stage 1520, the hidden layer of the generator {eeds info a discriroinator (or
critic) that evaluates the hidden layers to distinguish samples drawn {rom the data {rom samples
drawn from the model using tied weights learned by the generator. The discrirninator (or adversary)
is constructed by encoding the visible units using a single forward pass through the layers of
the generator and then applying a classifier (e.g., logistic regression, nearest neighbor classifiers,
and random forest) trained to discriminate between samples from the data and samples from the
model. By refining the discriminator, processes in accordance with many embodiments of the
invention allow for an improved model of complex probability distributions. Although shown
in separate stages, the BEAM in accordance with many embodiments of the invention is trained
with a compound objective that trains both the critic and the generator simultancously. In certain
embodiments, the discriminator is a simple classifier that requires very litthe fraining.

[G111] The objective function 1o accordance with a number of embodiments of the invention is
€= 9L~ (1 - YA, (18)

which includes a contribution from adversarial term, A, from a critic. Adversarial terms in accor-

dance with a number of embodiments of the invention can be defined as
A = / dvdh po(v.B) T (v.h). (19)

where T{v h) is a critic function. In some embodiments, the adversary uses the same architecture
and weighis as the RBM, and encodes visible units into hidden unit activations. These hidden unit
activations, computed for both the data and fantasy particles sampled from the RBM, are ased by

a critic to estimate the distance between the data and model distributions.
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16112] To compute the derivatives for training the generator, methods in accordance with some

embodiments of the invention use the stochastic derivative trick:

_ / dvahT(v, h)’”( h) o

p(v,h)
DEC

i
= / dvdh¥{v,k)p(v h)dglogp{v.h)

N
R—
o

\

= (" h}'pg vl \""&Gﬁﬁ‘/"'vh»ve (v,h} + <T(‘V?h}(----5953(iv?h

' pa{v.h)

= COVpy v T(v,h), —~dgEg({v,h)]|. 20

where dglog pg(v,h) = —<—&9£9(V3h:\}>pe<v7h) — dgf{v, ) is used for an RBM.

[6113] In principle, the critic can be any {function of the visible and hidden units. However, based
on the discriminator divergence, methods in accordance with several embodiments of the invention
use a critic that is monotonically related to p{daraiv). Although the discriminator divergence

suggests that one could use log p(data|v), methods in accordance with certain embodiments of

the invention use a linear function 7'(v) = 2 % p(datalv) — 1. Typically, the optimal discriminator
can be approximated as a function of the hidden units activations p(data(v) = g({h) pynyv))- The
function g{-) could be implemented by a neural network, as in most GANs, or using a simpler
algorithm such as a random forest or nearcst neighbor classifier. In a number of embodiments,
a simple approximation to the optimal discriminator can be sufficient because the classifier can
operate on the hidden unit activities of the RBM generator rather than the visible units. Therefore,
the optimal critic can be approximated using nearest neighbor methods.

[¢134] Suppose X = {x,...,xn} are identically and independently distributed samples from
an unknown probability distribution with pdf p{x) in R". In a variety of embodiments, p(x) is

estimated at an arbitrary point x based on a k-nearest-neighbor estimate. Specifically, methods in
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accordance with some embodiments of the invention fix some positive integer & and compute the &
nearest neighbors to x in X. Then, d; 1s defined to be the distance between x and the furthest of the
nearest-neighbors and the density p(x) is estimated to be the density of the uniform distribution on

a ball of radius 4. That is,

[

4 N 1
e . 21)
%) b

=1

p<X>%k<E\<# /I

]

[6115] Now denote by pg(v) and py(v) the unknown pdfs of the model and data distributions, re-

spectively, and define the distance between two vectors v and v/ as the Euclidean distance between

their hidden unit activations, d{v,v') = | . This distance may uo longer sai-

<h>p9(hiv) - <h>pg(h§v")
isfy all of the properties of a proper metric. Let X = {v;,...,von} be a collection of samples
where exactly half are drawn from pg and half from py. Fix some & and compute the & nearest
neighbors in X, denoting by dy. the distance to the furthest. Then the denominator 1s estimated as
described above. Let j be the number of nearest neighbors which come from p, as opposed to
po. The numerator then can be estimated as uniform on the same size ball with only j/k of the
density of the denominator, allowing the nearest-neighbor critic to be defined Tyy(v) = j/k. In
many cmbodiments, the nearest neighbors can be computed from a cached minibatch of samples
from the model combined with a minibaich of samples from the training dataset.

[6116] The distance-weighted nearest-neighbor crific 15 a generalization which adds some con-
tinuity to the nearest-neighbor critic by applying an inverse distance weighting to the ratio count.
Specifically, let {dh,... ,d;} be the distances of the k-nearest neighbors, with {dy,...,d;} the dis-
tances for the neighbors originating from the data samples and {d;,,...,d;} the distances for
the neighbors originating from the model samples. In many embodiments, the distance-weighted
nearest-neighbor critic can be defined as:

Y7

-~k 1 7
i=1 d;+€

Tonn(v) =

where € is a small parameter that regularizes the inverse distance.

[6117] In the context of most formulations of GANSs, which use feed-forward neural networks
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for both the generator and the discriminator, one couid say that BEAMSs use the RBM as both the
gencrator and as a feature extractor for the adversary. In various cmbodiments, this double-usage
allows the reusc of a single set of fantasy particles for multiple steps of the training algorithm.
Specifically, a single set of M persistent fantasy particles are updated & times per gradient evalua-
tion. In many embodiments, the same set of fantasy particles are used to compute the log-likelithood
derivative and the adversarial derivative . Then, these {antasy particles can replace the fantasy par-
ticles from the previous gradient evaluation in the nearest neighbor estimates of the critic value.
Reusing the fantasy particles for each step means that BEAM training has roughly the same com-

putational cost as training an RBM with PCD.

Improved gradient estimates

i6118] The gradients of the log-likelihood and the adversarial term both involve expectation
values with respect to the model distribution. Unfortunately, these expectation values cannot be
computed exactly. As a result, the expectation values can be approximated using Monte Carlo
methods or other approximations. The accuracy of these approximate gradicnts can have a signifi-
cant effect on the utility of the resulting model. Different approaches to improving the accuracy of
the approximate gradients in accordance with certain embodiments of the invention are described

beljow.

Mean-field approximations and shrinkage estimates

16119] Monte Carlo estimates of the gradients have the advantage of being unbiased. That is,
L vy — (F(v,h) ) po(v.i) 8 N —> eo. However, the estimates may have a high variance
when N is small. On the other hand, mean field estimates such as those derived from the Thouless-
Andersen-Palmer (TAP) expansion are analytic and have zero variance, but have a bias that can
be difficult to control. Let f(®) = ©fyc + {1 — ®) firr be an estimate created from a convex
combination of a Monte Carlo estimate fyo and a mean feld estimate fyyp. It 15 easy to show

that Bias®[f] = (1 — @) Bias?[fyr| and Var{l] = @*Var{fye] so that the mean squared error of f
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is MSE[f] = Bias”|f] + Var[f] = {1 — ©)*Bias® [fyr] + @ Var[fuc]. Therefore, one can generally

choose a value of ® to minimize the mean squared error of the combined cstimator.

Tempered sampling

[6126] Drawing samples from a probability distribution is an important component of many pro-
cesses for training models in accordance with roany emoboditnents of the inveotion. This can often
be done with a sirople function call for many 1-dimeunsional distributions. However, random sam-
pling from Boltzmann machines is much more complicated.

[G121] Sampling {from a Boltzmann machine is usually performed using Gibbs sampling. Gibbs
sampling is a local sampling process, which means that successive samples are correlated. Draw-
ing uncorrelated samples requires one to make many Gibbs sampling steps for each successive
sample. As a result, drawing a batch of uncorrelated random samples from a Boltzmann machine
can take a long time. A batch of randor samples is required for cach gradient update — if it takes a
long time to generate each batch, it can make training a Boltzmann machine take such a long time
that it becomes impractical. Therefore, methods that decrease the correlation between successive
samples from a Boltzmann machine can greatly accelerate the learning process.

101221 Many methods for accelerated sampling from Boltzmann machines rely on an analogy
with temperature from statistical physics. To do this, methods in accordance with a number of em-
bodiments of the invention introduce a fictional inverse temperatare § into a Boltzmann machine
by defining the probability distribution as:

~1,-BE(v)) (23)

The original distribution of the Boltzmann machine is recovered by setting = 1.
[6123] The fictional temperature is useful because raising the temperatare (i.e., decreasing )
decreases the autocorrelation between samples. {Consider a situation with starting configuration

{v,h) and ending at configuration (v',h'). The initial cnergy is £(v,h}. As one moves from the
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initial to the final configuration, the intermediate configurations will have varying energies. If the
maximal energy from these intermediate configurations is £, then the time to travel from (v, h)
to (v/,h') roughly scales as:

A Elv i) )
T ~ eb\gmax E\“V?h)/ (24)

Thercfore, decreasing § will decrease the number of Gibbs sampling steps required to move be-
tween distant configurations.

101241 Although raising the temperature will decrease the mixing time, it also changes the result-
ing probability distribution. Therefore, siroply sampling from a model with a B < 1 during training
will not allow a model to learn correctly. Processes in accordance with certain embodiments of the
invention use a process called parallel tempering (in the machine learning and statistics literature}
or replica exchange (in the physics community). In parallel tempering in accordance with a vari-
ety of embodiments of the invention, multiple Gibbs sampling chains are run in parallel, each at
a different temperature. Periodically, one attempts to swap the configurations of two chains. In
several embodiments, the swap can be accepted or rejected based on a criterion {(¢.g., the Metropo-
lis criterion) to ensure that entire systemn stays at equilibrivm. After a long time, a configuration
that started ount at B = 1 will travel to a chain with a lower temperature (where it can cross cnergy
barriers more easily) and back to the chain running at i = 1. This ¢nsures that the chain running at
3 = 1 has a faster mixing time while still sampling from the correct probability distribution. There
is a compuiational cost, however, because many Gibbs sampling chains have to be run in parallel.
[6125] In some embodiments of the invention, the process uses Temperature Driven Sampling
(TS}, which greatly improves the ability to train Boltzmann machines without incurring signif-
icant additional computational cost. TDS is a variant of a sequential Monte Carlo sampler. A
collection of m samples are evolved independently using Gibbs sampling updates from the model.
Note that this is not the same as running multiple chains for a parallel tempering process because
cach of the m samples in the sequential Monte Carlo sarapler will be used compute statistics, as
opposed to just the samples from the § = 1 chain during parallel tempering. Each of these samples

has an inverse temperature that is drawn from a distribution with mean () = 1 and a variance
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Var[f}] < 1. In several embodiments, the inverse temperatures of each sample can be independently
updated once for every Gibbs sampling iteration of the model. In a variety of embodiments, the
updates are autocorrelated across time so that the inverse temperatures are slowly varying. As are-
sult, the collection of samples are drawn from a distribution that is close to the model distribution,
but with fatter tails. This allows for rouch faster mixing, while ensuring that the model averages
{computed over the collection of m samples) remain close approximations to averages computed
from the model with §§ = 1. An example of sampling from an autocorrelated Gamma distribution

18 described below.

Input:

Autocorrelation coefficient 0 < ¢ < 1.

Variance of the distribution Var[B] < 1.

Current value of B.

Set: v = 1/Var[B] and ¢ = {1 — ¢)Var[B].

Draw z ~ Poisson{B ¢ /c).

Draw i/ ~ Gamma(v +z,¢).

return
{81261 'TDS includes a standard Gibbs sampling based sequential Monte Carlo sampler in the
it that Var[B] — 0. The samples drawn with TDS are not samples from the equilibrium distri-
bution of the Bolizmann machine. In certain embodiments, the drawn samples are re-weighted to

correct for the bias due to the varying temperature.
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Input:

Number of samples m.

Number of update steps k.

Autocorrelation coefficient for the inverse temperature 0 < ¢ < 1.
Variance of the inverse temperature Var[3] < L.

Initialize:

Randomly initialize m samples {(v;, by} 7.

Randowly initialize m inverse temperatures B; ~ Gamma( 1/ Var{B|, Var[B]).

forir=1{ ... kdo

fori=/{ ..., mdo
Update B; using a driven gamma sampler.

Update {v;,h;) using Gibbs sampling.

end

end

(6127} Temperature Driven Sampling (TDS) improves sampling from a Boltzmann machine. A
direct comparison between samples drawn {rom a Boltzmann machine with regular Gibbs sam-
pling to those drawn using TDS is illustrated in Figure 16, GMM (gray) refers to samples {rom
a Gaussian mixtore model. GRBM (blue) refers to samples from the equivalent Boltzmann ma-
chine drawn using 10 steps of Gibbs sampling. TDS (red) refers to samples from the equivalent
Boltzmann machine drawn wsing TDS with 10 steps of Gibbs sampling. This example shows a
Gaussian mixture model with three modes at (—1,0, +1) with various standard deviations and us-
ing a simple construction {o create an equivalent Boltzmann machine with a Gaussian visible layer
and a Une-hot hidden layer with 3 hidden units. The autocorrelation coefficient and the standard
deviation of the inverse temperature were set to (.9 and (.95, respectively. All starting samples
were initialized from the middle mode. Starting from the middie mode, regular Gibbs sampling is
unable to sample from the neighboring modes after 10 steps when the modes are well separated
TDS, by contrast, has fatter tails allowing {or better sampling of the neighboring modes.

(61281 Using TDS at train time can have a pretly dramatic effect on the resulting model. In Fig-
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ure 17, two identical Gaussian-Bernoulli REMs were trained on grayscale images of handwritten
digits from the MNIST dataset. Images are from models with identical architectures trained with
identical hyperparameters, except that one used regular Gibbs sampling (1710} whereas the other
used TDS (1720}, or (a) is trained with Var[f}] = 0 and (b) is trained with Var[B] = 0.9. Both
models are Gaussian-Bernoulli RBMs with 256 hidden units, trained for 100 epochs of persistent
contrastive divergence using the ADAM optimizer with a learoing rate of 0.0005 and baich size
of 100. Temperature Driven Sampling (TDS) improves learning for a model of the MNIST hand-
written digits (grayscale). Both models achieve a low reconstruction error (data not shown), but
the GRBM trained with the regular Gibbs sampler {ails to generate realistic fantasy particles. The
GRBM trained with TDS, by contrast, generates fantasy particles that look like realistic handwrit-
ten digits.

16129] Specific processes for drawing samples from a probability distribution in accordance with
embodiments of the invention are described above; however, one skilled in the art will recognize
that any number of processes can be utilized as appropriate to the requirements of specific appli-

cations in accordance with embodiments of the tnvention.

Applications

[G138] 'That is, even though it may only be possible to predict the probability of a health outcome
for an individual patient, this ability makes it possible to precisely predict the number of patients
with that health outcome in a large population. For example, predicting health risks makes it pos-
sible to accurately estimate the cost of insuring a population. Similarly, predicting the likelihood
that a patient will respond to a particular therapeutic makes it possible to estimate the probability

of a positive outcome in a clinical trial.

Simulating Patient Trajectories
{01311 Developing the ability to accurately predict patients’ prognoses 18 a necessary step to-

wards precision medicine. A patient can be represented as a collection of information that de-
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scribes their symptoms, their genetic information, results from diagnostic tests, any medical treat-
ments they are receiving, and other information that may be relevant for characterizing their health,
A vector containing this information about a patient is sometimes called a phenotype vector. A
method for prognostic prediction in accordance with many embodiments of the invention uses past
and current health information about a paticut to predict a health outcome at a future ime.

101321 A patient trajectory refers to a time series that describes a patient’s detailed health status
{e.g., a patient’s phenotype vectlor) at various points in time. o several embodiments, prognostic
prediction takes in a patient’s trajectory (i.e., their past and current health information) and makes
a prediction about a specific future health outcome {e.g., the hikelihood they will have a heart attack
within the next 2 years). By contrast, predicting a patient’s future trajectory involves predicting all
of the information that characterizes the state of their health at all future times.

[0133] o frame this mathematically, let v(#) be a phenotype vector containing all of the informa-
tion characterizing the health of a patient at time 1. Therefore, a patient trajectory is a set {v{r) }T 0
Many of the examples arc described with discrete time steps (¢.g., one month), but one skilled in
the art will recognize that this 1S not necessary and that various other time steps can be employed
in accordance with various embodiments of the jnvention. In some embodiroents of the invention,
models for simulating paticnt trajectories use discrele time steps (e.g.. one month). The length of
the time step in accordance with a number of embodiments of the invention will be selected to
approximately match the frequency of treatment. A model for patient trajectories in accordance
with many embodiments of the invention describes the joint probability distribution of all points
along the trajectory, p{vg,....v7 ). Such a model can be used for prediction by sampling from the
conditional probability distribution p(v¢,...,v7|¥g,...,¥¢—1). In many embodiments, the model is
a Boltzmann machine, as they make it casy to cxpress conditional distributions and can be adapted
to heterogeneous datasets, but one skilled in the art will recognize that many of the processes de-

scribed herein can be applied to other architectures as well.

Clinical Decision Support Systems

|98
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16134} Clinical decision support systems provide information to patients, physicians, or other
caregivers to help guide choices about patient care. Simulated patient trajectories provide insights
into a patient’s future health that can inform choices of care. For example, consider a patient with
mild cognitive impairment. A physician or caregiver would benefit from knowing the risks that
the patient’s condition progresses to Alzheimer’s disease, or that he or she begins to exhibit other
cognitive or psychological systems. In certain embodiments, systems based on stmulated paticnt
trajectories can forecast these risks to guide care choices. Aggregating such predictions over a
population of patients can also help estimate population level risks, enabling long-term planning
by organizations, such as elder care facilities, that act as caregivers to large groups of patients.

[6135] In some embodiments, a set of patient trajectories is collected from electronic medical
records {also known as real world data), from natural history databases, or clinical trials. The pa-
tient trajectories in accordance with many embodiments of the invention can be normalized and
used to train a ime-dependent Boltzmann machine. To use the model, the medical history for a pa-
tient can be input in the form of a trajectory {v(f) }_, where #o is the current time and usc the Boltz-
mann machine to simulate trajectories from the probability distribution p(Vig1,..., V7 |V0, .-, Vs )
Then, these simulated trajectories can be analyzed {o understand the visks associated with specific
outcomnes (e.g., Alzheimer’s diagnosis) at various {uture timnes. In some cases, models that are
trained on data with treatment information would contain variables that describe treatment choices.
Such a model could be used to assess how different treatment choices would change the patient’s
future risks by comparing simulated outcome risks conditioned on different treatments. In many
embodiments, a caretaker or physician can treat a patient based on the treatment choices and/or the

stimulated trajectories.

Simulating Control Arms for Chinical Trials
[6136] Randomized Chinical Trials (RCTs) arc the gold-standard for evidence in assessing thera-
peutic efficacy. In an RCT, each patient is randomly assigned to one of two study arms: a treatment

arm where the patients are freated with an experimental therapy, and a placebo arm where the pa-
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tients receive a dummy treatment and/or the current standard of care. At the end of the trial, a
statistical analysis is performed to determine if patients in the treatment arm were more likely
to respond positively to the new therapy than patients in the placebo arm were to respond to the
dummy therapy.

[6137] In order to have enoungh statistical power to accurately assess the efficacy of the experi-
mental therapy, RCTs need to include a large number of patients. For example, it is not uncommon
for Phase HI clinical trials to include thousands of patients. Recruiting the large number of patients
necessary to achieve sufficient power is challenging, and many clinical trials never meet their re-
cruitment goals. Although there is, almost by definition, little-to-no data about an experimental
therapy there is likely a lot of data about the efficacy of the current standard of care. Therefore,
one way to reduce the number of patients needed for clinical trials is to replace the control arm
with a synthetic control arm that contains virtual patients simulated from a Bolizmann machine
trained to model the current standard of care.

[0138] Methods in accordance with several embodiments of the invention use simulations to cre-
ate a synthetic, or virtual, control arm for a clinical trial by training a Boltzmann machine using
data {rom the confrol arms of previous clinical trials. To many embodiments, data sets can be con-
structed by aggregating data from the control arms of multiple clinical trials for a chosen disease.
Then, Boltzmann machines can be trained to simulate patients with that disease under the carrent
standard of care. This model can then be used to simulate a population of patients with particular
characteristics {e.g., age, cthunicity, medical history) to create a cohort of simulated patients that
match the inclusion criteria of new irial. In some embodiments, each patient in the experimental
arm can be matched 0 a simulated patient with the same baseline measurements by simulating
from the appropriate conditional distribution of the Boltzmann machine. This can provide a type
of counterfactual (i.c., what would have happened to this patient if they had been given a placebo
rather than the experimental therapy). In cither case, data from simulated patients can be used to
supplement, or in place of, data {rom a concurrent placebo arm wsing standard statistical methods

in accordance with many embodiments of the invention.
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Simulating Head-to-Head Clinical Trials

[613%] Traditionally, health carc in the United States has been provided on a fee-for-service ba-
sis. However, there is an ongoing shift towards value based care. In the context of pharmaceuticals,
value based care means that the cost of a drug will be based on how effective it is, rather than a
simple cost per pill. As a result, governments and other payers need to be able to compare the
effectiveness of aliernative therapies.

{81461 Consider two drugs A and B with the same indication. There are two standard ways to
compare the efficacy of A and B. First, one can use electronic health records and insurance claims
data to observe how well the drugs are working in the context of real world clinical practice. Al-
ternatively, one can run an RCT to perform a head-to-head comparison of the drugs. Both of these
methods take years of additional observation and/or experimentation to arrive at a conclusion about
the comparative effectiveness of A and B.

[G141] Simulations in accordance with many embodiments of the invention provide an alterna-
tive approach for performing head-to-head trials. In some embodiments, detailed 1ndividual level
data from clinical trals of each drug can be included 1o the training data for a Boltzmann machine.
In some embodiments, samples generated with a Boltzmann machine, such as a BEAM, can be
used to simulate a head-to-head clinical trial between A and B. However, individual level data are
not usually released for the experimental arms of clinical trials. In the absence of these data, ag-
gregate level data from the experimental arms in accordance with a number of embodiments of the

invention can be used to adjust a model that was trained on conirol arm data.

Learning Unsupervised Genomic Features

{6142} The human genome encodes for more than 20 thousands genes that engage in an incred-
ibly complex network of interactions. This network of genetic interactions is so complex that it is
intractable to develop a mechanistic model linking genotype to phenotype. Therefore, studies that

aim o predict a phenotype from genomic information have to use machine learning methods.
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16143] A common goal of a genomic study in the clinical setting is predicting whether or not
a patient will respond to a given therapeutic. For cxample, data describing gene expression {e.g.,
from messenger RNA sequencing experiments) may be collected at the beginning of a phase-II
clinical trial. The response of each patient to the therapeutic is recorded at the end of the trial, and
a mathematical model {e.g., linear or logistic regression) 1s trained to predict the response of each
patient {rom their baseline gene expression data. Success{ul prediction of patient response would
enable the sponsor of the clinical trial to use a genomic test to narrow the study population to a
subset of patients where the drug s most likely to be successful. This improves the likelihood of
success 10 a subsequent phase-1I1 trial, while also tmproving patient oulcomes through precision
medicine.

[6144] Unfortunately, phase-II clinical trials tend to be small { 200 people). Moreover, sequenc-
ing experiments used to measure gene expression are still fairly expensive. As a result, even non-
clinical gene expression studies are limited in size. Therclore, the standard task involves training
a regression model with up to 20 thousand features (i.e., the expression of the genes) using less
than 200 rocasurements. In general, a linear regression model 1s underdetermined if the nuraber
of features is greater than the number of measurements. Although there are technigues to mitigate
this problem, the situation in most “omics stadies 1s so lopsided that standard approaches fail.
[G145] In many embodiments, raw gene expression values are combined into a smaller number
of composite features. For example, individaal genes interact as parts of biochemical pathways, so
one approach is to use known biochemical information to derive scores that describe the activation
of pathways. Then, pathway activation scores can be used as features instead of raw expression
values. However, due to the complexity of biochemical networks, it can be unclear how to con-
struct pathway activation scores in the first place.

[6146] In certain embodiments, Decp Boltzmann Machines (DBMs) are implemented as a tool
for unsupervised feature learning that may be useful for omics studics. Let v be a vector containing
gene expression values determined from an experiment. A DBM describes the distribution of gene

Jhy,) where the
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layers of hidden units hy describe progressive transformations of the gene expression values into
higher level features. The model in accordance with many embodiments of the invention can be
trained without labels; thercfore, in some embodiments, a large data sct can be compiled by com-
bining many different studies. In a number of embodiments, the pre-trained DBM can be used

to transform a vector of raw gene expression values inlo a Jower dirnensional vector of {eatures

dance with certain embodiments of the invention can then be used as input to a simpler supervised

learning algorithm to construct a predictor of drug response for a given therapeutic.

Predicting Transcriptomic Responses

[6147] Predicting the effect that a change in the activity, or expression, of a gene will have in-
human is important for both drug design and drug development. For example, if one could predict
the effect that a compound will have in-human then one could perform high-throughput computa-
tional screens for drug discovery. Similarly, if one could predict the effect that an investigational
drug will have on different types of paticnts then one could optimize patient selection for phase U
chinical trials even though there is no direct data on the action of the drug in-human.

[6148] There 1sn’t an obvions way to use supervised learning methods to develop a predictor of
transcriptomic response. In many embodiments, transcriptomic respounses are predicted using a
generative model of gene expression. Let v be a vector of raw gene expression values and let pg(v)
be a model of the distribution of gene expression valnes that is parameterized by 8. Moreover,
suppose that the model is parameterized such that 8; is related to the mean value of v;, such that
increasing (or decreasing) 8; leads to an increase (or decrease) in (v;). In many embodiments, the
effect of a drug that decreases the activity of gene 7 is simulated by decreasing 8; and computing
the change in {(v). In a number of embodiments, when the change is small, then this involves com-
puting the derivative dg, (v) = dg, [ dvvpa(v).

10149] The utility of generative models in accordance with several embodiments of the invention

rebies on the ability of the model to implicitly learn inleractions between geoe expression values.
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That is, the model must know that decreasing the activity of gene { using a therapeutic will - via
a complex network of interactions — lead to a decrease in the expression of some other gene j. In
numerous embodiments, DBMs as described in previous sections of this application are used as
a generative model that implicitly (1.e., without {rying to construct a mechanistic understanding
of biochemical pathways or other methods of direct gene interaction) learns interaction between
genes.

[6156] In many embodiments, DBMs trained on gene expression data in a fully unsupervised
manner do not have a notion of an individual patient. Instead, the vector of observations v can be
broken into two pieces: the vector of gene expression values X and a vector of metadata y. The
metadata in accordance with some embodiments of the invention may describe characteristics of
the sample such as (but not limited to) which tissue it came from, the health status of the patient,
or other information. Then, in a number of embodiments, predictions can be made from the con-
ditional distributions dg, (X)y = dg, [ dxxpe(xly).

[615%] Finally, predictions for individual patients in accordance with several embodiments of

define the energy x given y. In a DBM, this also involves integrating over all of the hidden layers.
In certain embodiments, local measures of gene interactions can be computed from the derivatives
of 5 evalnated at x.

[6152] Although the present invention has been described in certain specific aspects, many ad-
ditional modifications and variations would be apparent to those skilled in the art. It is therefore
to be understood that the present invention may be practiced otherwise than specifically described.
Thus, embodiments of the present invention should be considered in all respects as illustrative and

not restrictive.,
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What is claimed is:

I. A method for training a restricted Boltzmann machine (RBM), wherein the method
COMpPrises:

generating, from a first set of visible values, a set of hidden values in a hidden layer of a
RBM;

gencrating a second set of visible values in a visible layer of the RBM based on the
generated sct of hidden values;

computing a sct of likelihood gradients based on at least one of the first set of visible values
and the generated set of visible values;

computing a set of adversarial gradients using an adversarial model based on at least one of
the set of hidden values and the set of visible values;

computing a set of compound gradients based on the set of likelthood gradients and the set
of adversarial gradients; and

updating the RBM based on the set of compound gradients.

2. The method of claim 1, wherein the visible layer of the RBM comprises a composite layer

composed of a plurality of sub-layers for different data types.

3. The method of claim 1, wherein the plurality of sub-layers comprises at least one of a
Bernoulli layer, an Ising layer, a one-hot layer, a von Mises-Fisher layer, a Gaussian layer, a
Rel.U layer, a clipped Rel.U layer, a studeni-t layer, an ordinal layer, an exponential layer, and a

composite layer.

4., The method of claim 1, wherein the RBM is a deep Boltzmann machine (DBM), wherein the

hidden layer is one of a plurality of hidden layers.

5. The method of claim 4, wherein the RBM is a first RBM and the hidden layer is a first hidden
layer of the plurality of hidden layers, wherein the method further comprises:

sampling the hidden layer from the first RBM;

44,



CA 03088204 2020-07-09

WO 2019/143737 PCT/US2019/013870

stacking the visible layer and the hidden layer from the first RBM into a vector;
training a second RBM, wherein the vector is a visible layer of the second RBM; and

generating the DBM by copying weights from the first and second RBMs to the DBM.

6. The method of claim 1 further comprising:
receiving a phenotype vector for a patient;
using the RBM to generate a time progression of a disease; and

treating the patient based on the generated time progression.

7. The method of claim 1, wherein the visible layer and the hidden layer are {or a first time
instance, wherein the hidden layer is further connected to a second hidden layer that incorporates

data from a different second time instance.

8. The method of claim 1, wherein the visible layer is a composite layer comprising data for a

plarality of different time instances.

8, The method of claim 1, wherein computing the set of likelihood gradients comprises

performing Gibbs sampling.

16. The method of claim 1. wherein the set of compound gradients are weighted averages of the

set of likelthood gradients and the set of adversarial gradients.

11. The method of claim 1 further comprising training the adversarial model by:
drawing data sampies based on authentic data;
drawing fantasy samples based from the RBM; and
training the adversarial model based on the adversarial model’s ability to distinguish

between the data samples and the fantasy samples.

12. The method of claim 1, wherein training the adversarial model comprises measuring a

probability that a particular sample is drawn from either the authentic data or the RBM.
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13. The method of claim 1, wherein the adversarial model is one of a fully-connected classifier,

a logistic regression model, a nearest neighbor classifier, and a random forest.

14. The method of claim 1 further comprising using the RBM to generate a set of samples of a

target population.

15, The method of claim 1, wherein computing a set of likelihood gradients comprises

computing a convex combination of a Monte Carlo estimate and a mean field estimate.

16. The method of claim 1, wherein computing a set of likelithood gradients comprises:
inttializing a plurality of samples;
initializing an inverse temperature for each sample of the plurality of samples;
for each sample of the plurality of samples:
updating the inverse temperature by sampling from an antocorrelated Gamma
distribution; and

updating the sample using Gibbs sampling.

17. A non-transitory machine readable medium containing processor instructions for training a
restricted Boltzmann machine (RBM), wherein execution of the instructions by a processor
causes the processor to perform a process that comprises:

generating, from a first set of visible values, a set of hidden values in a hidden layer of a
RBM;

generating a second set of visible values in a visible layer of the RBM based on the
generated set of hidden valoes;

computing a set of likelihood gradients based on at least one of the first set of visible values
and the generated set of visible values;

computing a set of adversarial gradients using an adversarial model based on at least one of

the set of hidden values and the set of visible values;

46.



CA 03088204 2020-07-09

WO 2019/143737 PCT/US2019/013870

computing a set of compound gradients based on the set of hikelthood gradients and the set
of adversarial gradients; and

updating the RBM based on the set of compound gradients.

18. The non-transitory machine readable medium of claim 17, wherein the visible layer of the

RBM comprises a composite layer composed of a plurality of sub-layers for different data types.

19, The non-transitory machine readable medium of claim 17, wherein the RBM is a deep

Boltzmann machine (DBM), wherein the hidden laver is one of a plurality of hidden layers.

26, The non-transitory machine readable medinm of claim 19, wherein the RBM is a first RBM
and the hidden layer is a first hidden layer of the plurality ol hidden lavers, wherein the process
further comprises:

sampling the hidden layer from the first RBM;

stacking the visible layer and the hidden layer from the first RBM into a vector;

training a second RBM, wherein the vector is a visible layer of the second RBM; and

generating the DBM by copying weights from the first and second RBMs to the DEM.
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