
(19) United States
US 2004O221295A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0221295 A1
Kawai et al. (43) Pub. Date: Nov. 4, 2004

(54) SYSTEM AND METHOD FOR EVALUATING
ASTRUCTURED MESSAGE STORE FOR
MESSAGE REDUNDANCY

(76) Inventors: Kenji Kawai, Seattle, WA (US); David
T. McDonald, Seattle, WA (US)

Correspondence Address:
PATRICK J S INOUYE PS
810 3RD AVENUE
SUTE 258
SEATTLE, WA 98104 (US)

(21) Appl. No.: 10/627,466

(22) Filed: Jul. 25, 2003

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/812,749,
filed on Mar. 19, 2001, now Pat. No. 6,745,197.

18 Storage

Message
Stores

y Application

Publication Classification

(51) Int. Cl." ... G06F 7700
(52) U.S. Cl. .. 71.9/313

(57) ABSTRACT

A System and method for evaluating a structured message
Store for message redundancy is described. A header and a
message body are extracted from each of a plurality of
messages maintained in a structured message Store. A Sub
Stantially unique hash code is calculated over at least part of
the header and over the message body of each message. The
messages are grouped by the hash codes. One Such message
is identified as a unique message within each group. In a
further embodiment, the messages are grouped by conver
sation thread. The message body for each message within
each conversation thread group is compared. At least one
Such message within each conversation thread group is
identified as a unique message.

Messaging
-y

34

Message
Processor Keyed Coll 35

Cross-Ref
Keyed Coll 36

03

US 2004/0221295 A1 Patent Application Publication Nov. 4, 2004 Sheet 1 of 22

| 2
8 ?

º ? aun61-I

US 2004/0221295 A1

| |

| 6u16essew \\

L

“Z 3 Infil

Patent Application Publication Nov. 4, 2004 Sheet 2 of 22

US 2004/0221295 A1 Patent Application Publication Nov. 4, 2004 Sheet 3 of 22

87

se6esseW enb?un

se6esseW enb?un

/1797

[]

- - - - - - - - - - -/

sæ6esseW enb?un

US 2004/0221295 A1

Patent Application Publication Nov. 4, 2004 Sheet 5 of 22 US 2004/0221295 A1

Figure 5.

From: User1 (User 1 Gaol.com)
Sent: Monday, January 22, 2001 8:33 PM
To: User3 Gaol.com
Subject: FW: Original Message - 83

81

82 < This message is a forwarded email message.

4 Original Message - - - - - - 1-84
From: User2 mailto: User2Gaol.com)

77 Sent: Monday, January 22, 2001 8:31 PM
TO: USer1 73
Subject: RE: Original Message - 79

78 { This message is a reply email message.
72

Original Message - - - - - - - - 80
From: User 1 mailto: User1 Gaol.com)

75 Sent: Monday, January 22, 2001 8:30 PM
To: User2Gaol.com 71
Subject: Original Message -- 76

74 < This message is an original email message.

Patent Application Publication Nov. 4, 2004 Sheet 6 of 22 US 2004/0221295 A1

Figure 6.

Load all Source message 101
StOreS

Create Shadow Store 102

Determine number of passes
n required to process Source 103

meSSage Stores

For i = 1 to n, do 104

O6

Close all message stores O7

Optionally reinsert duplicate 108
and near duplicate messages

Patent Application Publication Nov. 4, 2004 Sheet 7 of 22 US 2004/0221295 A1

Figure 7.

Create Shadow 120
Store

Set message counter to zero 121

For each Source message 122
store, do

Create folder corresponding to
each source message store in 123

the Shadow Store

For each folder in Current 124
Source message store, do

Increment message counter by
number of messages in folder 125
being examined in Current
Source message store

Create Corresponding folder in 126
Shadow Store

Create entry in keyed collection 127

End DO / folder/ 128

End Do /* Source message 129 Store/

Return
message Count 130

Patent Application Publication Nov. 4, 2004 Sheet 8 of 22 US 2004/0221295 A1

Figur 8.
Process Messages 140

For each message in 41
Selected folder, do

N
142

n
partition

i?

Extract topic, store ID
information, folder entry ID and
message entry D (metadata)

into Master Array

End DO / Selected
folder / 144

Sort messages by topic 45

Process Master Array 146

Patent Application Publication Nov. 4, 2004 Sheet 9 of 22 US 2004/0221295 A1

Figure 9. Process
16O Master Array

161 For each message, do

Compare topics for adjacent
162 messages

164

N Y

(O) 163
167

Mark first message
as beginning of

topic range
Extract message as
unique message

Extract each topically identical
message and transmission time into

topic array

Sort topic array by plain
text body

Process topic array

Patent Application Publication Nov. 4, 2004 Sheet 10 of 22 US 2004/0221295 A1

Figure 10A. 18O PrOCeSS
Topic Array

For each message in
181 topic array, do

Compare plain text body of
182 Current message to plain text

body of next message

Verify exact duplicate by
184 comparing sender, header

information and transmission time

Mark first message as exact
186 duplicate and save ID information

On first and second messages

Patent Application Publication Nov. 4, 2004 Sheet 11 of 22 US 2004/0221295 A1

Eliminate duplicate messages

Figure 10B.

188 from topic array

189 For each message in
topic array, do

Search for thread markers in
190

message

193

191 N Record Zero thread
markers

192 ReCOrd number of thread marker
OCCUre CeS

195 Sort topic array in order of
increasing thread markers m

For each message in 196 topic array, do

(B)

Patent Application Publication Nov. 4, 2004 Sheet 12 of 22 US 2004/0221295 A1

Figure 10C.

197 Select message

198 Select next message

Compare plain text
199 body of messages

Mark first message as near
duplicate and save ID
information On first and
second messages

Patent Application Publication Nov. 4, 2004 Sheet 13 of 22 US 2004/0221295 A1

Figure 11.

For each message in
master array, do 221

Skip message as near
duplicate or duplicate

message
222

Retrieve Copy of message from
Source message store and place in
corresponding message Store in

Shadow Store

223

Create log entry indicating Source
224 and ID information on message(s)

226

US 2004/0221295 A1

972

eseqeqeq

Jednp?O ?ôesseW

993

Nov. 4, 2004 Sheet 15 of 22

JOSS90OJ) ?ôesseW uO??OnpOJE

'CL aun61-I

Patent Application Publication

/92

US 2004/0221295 A1

se6esseW enb?un

SpJOO?H e6esseW

092

'# 1 eun61-I

Patent Application Publication Nov. 4, 2004 Sheet 16 of 22

Patent Application Publication Nov. 4, 2004 Sheet 18 of 22 US 2004/0221295 A1

Figure 16.

31 O

312 Extract Messages

313 De-Dup Matches

Figure 17A.

2O
Extract Messages

For each message store,
do

For each message, do

321

322

Extract message from archived
message store 323

Digest extracted message into
hash COde

324

Patent Application Publication Nov. 4, 2004 Sheet 19 of 22 US 2004/0221295 A1

Figure 17B. (c)

Parse metadata and message
properties and store into

database with hash Code as file 325
record indexed by unique

identifier

No
326 Attachments

2

Yes

For each attachment, do

Digest attachment into hash
Code

Next /* attachment /

Concatenate message hash
COce and each attachment hash
code into compound hash Code 33O

and store into database aS
compound document record

Next / message */ 331

Next / message store */ 332

Patent Application Publication Nov. 4, 2004 Sheet 20 of 22 US 2004/0221295 A1

Figure 18A.
De-Dup Matches

341 For each message, do

Retrieve file record from
342 database

345

Yes Get Compound
hash COce

343 Compound?

No

344 Get message hash code

346 Next / message */

347 Group messages by hash codes

348 For each group, do

Mark randomly selected 349
message in group as unique

Mark remaining messages in 350 group as exact duplicates

351 Next / group */

Patent Application Publication Nov. 4, 2004 Sheet 21 of 22 US 2004/0221295 A1

Figure 18B.

Group meSSages by
352 COnversation thread

353 Sort messages by body length

354 For each thread, do

355 For each message, do

For each Shorter
356 message, do

357 Compare message bodies

358 Contained?). No

Yes

359 Attachments? NO C
Yes

Compare attachment
360 hash Codes

Patent Application Publication Nov. 4, 2004 Sheet 22 of 22 US 2004/0221295 A1

Figure 18C.

Match or
SubSet? 361

Mark shorter message
e 362 as near duplicate

Next / shorter 363 message */

Next / message */ 364

Next / thread / 365

US 2004/0221295 A1

SYSTEMAND METHOD FOR EVALUATING A
STRUCTURED MESSAGE STORE FOR MESSAGE

REDUNDANCY

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This patent application is a continuation-in-part of
commonly-assigned U.S. patent application, Ser. No.
09/812,749, filed Mar. 19, 2001, pending, the priority date of
which is claimed and the disclosure of which is incorporated
by reference.

FIELD OF THE INVENTION

0002 The present invention relates in general to stored
message categorization and, in particular, to a System and
method for evaluating a structured message Store for mes
Sage redundancy.

BACKGROUND OF THE INVENTION

0.003 Presently, electronic messaging constitutes a major
form of interpersonal communications, complimentary to,
and, in Some respects, replacing, conventional Voice-based
communications. Electronic messaging includes traditional
electronic mail (e-mail) and has grown to encompass Sched
uling, tasking, contact and project management, and an
increasing number of automated workgroup activities. Elec
tronic messaging also includes the exchange of electronic
documents and multimedia content, often included as attach
ments. And, unlike Voice mail, electronic messaging can
easily be communicated to an audience ranging from a
Single user, a workgroup, a corporation, or even the World at
large, through pre-defined message address lists.
0004. The basic electronic messaging architecture
includes a message exchange Server communicating with a
plurality of individual Subscribers or clients. The message
eXchange Server acts as an electronic message custodian,
which maintains, receives and distributes electronic mes
Sages from the clients using one or more message databases.
Individual electronic messaging information is kept in mes
Sage Stores, referred to as folders or archives, identified by
user account within the message databases. Generally, by
policy, a corporation will archive the message databases as
historical data Storing during routine backup procedures.
0005 The information contained in archived electronic
messages can provide a potentially useful chronology of
historically Significant events. For instance, message con
Versation threads present a running dialogue which can
chronicle the decision making processes undertaken by
individuals during the execution of their corporate respon
Sibilities. AS well, individual message Store archives can
corroborate the receipt and acknowledgment of certain cor
porate communications both locally and in distributed loca
tions. And the archived electronic message databases create
useful audit trails for tracing information flow.
0006 Consequently, fact Seekers are increasingly turning
to archived electronic message Stores to locate crucial infor
mation and to gain insight into individual motivations and
behaviors. In particular, electronic message Stores are now
almost routinely produced during the discovery phase of
litigation to obtain evidence and materials useful to the
litigants and the court. Discovery involves document review

Nov. 4, 2004

during which all relevant materials are read and analyzed.
The document review process is time consuming and expen
Sive, as each document must ultimately be manually read.
Pre-analyzing documents to remove duplicative information
can Save significant time and expense by paring down the
review field, particularly when dealing with the large num
ber of individual messages Stored in each of the archived
electronic messages Stores for a community of users.
0007 Typically, electronic messages maintained in
archived electronic message Stores are physically Stored as
data objects containing text or other content. Many of these
objects are duplicates, at least in part, of other objects in the
message Store for the same user or for other users. For
example, electronic messages are often duplicated through
inclusion in a reply or forwarded message, or as an attach
ment. A chain of Such recursively-included messages con
Stitutes a conversation “thread.” In addition, broadcasting,
multitasking and bulk electronic message "mailings' cause
message duplication acroSS any number of individual elec
tronic messaging accounts.
0008 Although the goal of document pre-analysis is to
pare down the size of the review field, the simplistic removal
of wholly exact duplicate messages provides only a partial
Solution. On average, exactly duplicated messages constitute
a Small proportion of duplicated material. A much larger
proportion of duplicated electronic messages are part of
conversation threads that contain embedded information
generated through a reply, forwarding, or attachment. The
message containing the longest conversation thread is often
the most pertinent message Since each of the earlier mes
Sages is carried forward within the message itself. The
messages comprising a conversation thread are “near exact
duplicate messages, which can also be of interest in showing
temporal and Substantive relationships, as well as revealing
potentially duplicated information.
0009. In the prior art, electronic messaging applications
provide limited tools for processing electronic messages.
Electronic messaging clients, Such as the Outlook product,
licensed by Microsoft Corporation, Redmond, Washington,
or the cc-mail product, licensed by Lotus Corporation,
Cambridge, Massachusetts, provide rudimentary facilities
for Sorting and grouping Stored messages based on literal
data occurring in each message, Such as Sender, recipient,
Subject, Send date and So forth. Attachments are generally
treated as Separate objects and are not factored into Sorting
and grouping operations. However, these facilities are lim
ited to processing only those messages Stored in a Single user
account and are unable to handle multiple electronic mes
Sage Stores maintained by different message custodians. In
addition, the Systems only provide partial Sorting and group
ing capabilities and do not provide for culling out message
with duplicate attachments.
0010. Therefore, there is a need for an approach to
processing electronic messages maintained in multiple mes
Sage Stores for document pre-analysis. Preferably, Such an
approach would identify messages duplicative both in literal
content, as well as with respect to attachments, independent
of Source, and would “grade” the electronic messages into
categories that include unique, exact duplicate, and near
duplicate messages, as well as determine conversation
thread length.
0011. There is a further need for an approach to identi
fying unique messages and related duplicate and near dupli

US 2004/0221295 A1

cate messages maintained in multiple message Stores. Pref
erably, Such an approach would include an ability to Separate
unique messages and to later reaggregate Selected unique
messages with their related duplicate and near duplicate
meSSageS as neceSSary.

0012. There is a further need for an approach to process
ing electronic messages generated by Messaging Applica
tion Programming Interface (MAPI)-compliant applications.

SUMMARY OF THE INVENTION

0013 The present invention provides a system and
method for generating a shadow Store Storing messages
Selected from an aggregate collection of message Stores. The
Shadow Store can be used in a document review process. The
Shadow Store is created by extracting Selected information
about messages from each of the individual message Stores
into a master array. The master array is processed to identify
message topics, which occur only once in the individual
message Stores and to then identify the related messages as
unique. The remaining non-unique messages are processed
topic by topic in a topic array from which duplicate, near
duplicate and unique messages are identified. In addition,
thread counts are tallied. A log file indicating the nature and
location of each message and the relationship of each
message to other messages is generated. Substantially
unique messages are copied into the Shadow Store for use in
other processes, Such as a document review proceSS. Option
ally, Selected duplicate and near duplicate messages are also
copied into the Shadow Store or any other Store containing
the related unique message.
0.014. The present invention also provides a system and
method for identifying and categorizing messages extracted
from archived message Stores. Each individual message is
extracted from an archived message Store. A sequence of
alphanumeric characters representing the content, referred to
here as a hash code, is formed from at least part of the header
of each extracted message plus the message body, exclusive
of any attachments. In addition, a Sequence of alphanumeric
characters representing the content, also referred to here as
a hash code, is formed from at least part of each attachment.
The hash codes are preferably calculated using a one-way
function, Such as the MD5 digesting algorithm, to generate
a Substantially unique alphanumeric value, including a
purely numeric or alphabetic value, associated with the
content. Preferably, the hash code is generated with a fixed
length, independent of content length, as a Sequence of
alphanumeric characters representing the content, referred to
here as a digest. The individual fields of the extracted
messages are Stored as metadata into message records main
tained in a structured database along with the hash codes.
The hash codes for each extracted message are retrieved
from the database and Sorted into groups of matching hash
codes. The matching groups are analyzed by comparing the
content and the hash codes for each message and any
asSociated attachments to identify unique messages, exact
duplicate messages, and near duplicate messages. A hash
code appearing in a group having only one message corre
Sponds to a unique message. A hash code appearing in a
group having two or more messages corresponds to a set of
exact duplicate messages with either no attachments or with
identical attachments. The remaining non-duplicate mes
Sages belonging to a conversation thread are compared,
along with any associated attachments, to identify any

Nov. 4, 2004

further unique messages or near duplicate messages. Option
ally, the exact duplicate messages and near duplicate mes
Sages can be Stored in a shadow Store for data integrity and
auditing purposes.

0015. An embodiment is a system and method for evalu
ating a structured message Store for message redundancy. A
header and a message body are extracted from each of a
plurality of messages maintained in a structured message
Store. A Substantially unique hash code is calculated over at
least part of the header and over the message body of each
message. The messages are grouped by the hash codes. One
Such message is identified as a unique message within each
group. In a further embodiment, the messages are grouped
by conversation thread. The message body for each message
within each conversation thread group is compared. At least
one Such message within each conversation thread group is
identified as a unique message.

0016 A further embodiment is a system and method for
culling duplicative messages maintained in a structured
message Store. A plurality of messages maintained in a
Structured message Store are retrieved. Each message
includes a header and a message body. A Substantially
unique hash code is calculated over at least part of the header
and over the message body. The hash codes are compared for
each message within each group. Each message having an
hash code matching the hash code for at least one other
message within the group is culled. One Such non-culled
message is retained as a unique message. In a further
embodiment, each Such non-culled message is retained as a
potential unique message. The potential unique messages
are grouped by conversation thread. The message body for
each potential unique message within each conversation
thread group is compared. Each potential unique message
having a message body contained within at least one other
message within each group is culled and one Such non
culled message is retained as a unique message.

0017 Still other embodiments of the present invention
will become readily apparent to those skilled in the art from
the following detailed description, wherein is described
embodiments of the invention by way of illustrating the best
mode contemplated for carrying out the invention. AS will be
realized, the invention is capable of other and different
embodiments and its Several details are capable of modifi
cations in various obvious respects, all without departing
from the Spirit and the Scope of the present invention.
Accordingly, the drawings and detailed description are to be
regarded as illustrative in nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

0018 FIG. 1 is a functional block diagram showing a
distributed computing environment, including a System for
efficiently processing messages Stored in multiple message
Stores, in accordance with the present invention.
0019 FIG. 2 is a block diagram showing the system for
efficiently processing messages of FIG. 1.

0020 FIG. 3 is a data flow diagram showing the elec
tronic message processing followed by the System of FIG.
2.

0021 FIG. 4 is a block diagram showing the software
modules of the system of FIG. 2.

US 2004/0221295 A1

0022 FIG. 5 shows, by way of example, an annotated
electronic message.
0023 FIG. 6 is a flow diagram showing a method for
efficiently processing messages Stored in multiple message
Stores, in accordance with the present invention.
0024 FIG. 7 is a flow diagram showing the routine for
creating a shadow store for use in the method of FIG. 6.
0.025 FIG. 8 is a flow diagram showing the routine for
processing messages for use in the method of FIG. 6.
0.026 FIG. 9 is a flow diagram showing the routine for
processing the master array for use in the routine of FIG. 8.
0.027 FIGS. 10A-C are flow diagrams showing the rou
tine for processing a topic array for use in the routine of
FIG 9.

0028 FIG. 11 is a flow diagram showing the routine for
processing a log for use in the routine of FIG. 8.
0029 FIG. 12 is a functional block diagram showing a
distributed computing environment, including a System for
evaluating a structured message Store for message redun
dancy, in accordance with a further embodiment of the
present invention.
0030 FIG. 13 is a block diagram showing the software
modules of the production server of FIG. 12.
0.031 FIG. 14 is a data flow diagram showing the elec
tronic message processing followed by the production server
of FIG. 13.

0.032 FIG. 15 shows, by way of example, a database
schema used by the production server of FIG. 13.
0.033 FIG. 16 is a flow diagram showing a method for
evaluating a structured message Store for message redun
dancy, in accordance with a further embodiment of the
present invention.
0034 FIGS. 17A-B are flow diagrams showing the rou
tine for extracting messages for use in the method of FIG.
16.

0035 FIGS. 18A-C are flow diagrams showing the rou
tine for de-duping messages for use in the method of FIG.
16.

DETAILED DESCRIPTION

0.036 FIG. 1 is a functional block diagram showing a
distributed computing environment 10, including a System
for efficiently processing messages Stored in multiple mes
Sage Stores, in accordance with the present invention. The
distributed computing environment 10 includes an internet
work 16, including the Internet, and an intranetwork 13. The
internetwork 16 and intranetwork 13 are interconnected via
a router 17 or Similar interconnection device, as is known in
the art. Other network topologies, configurations, and com
ponents are feasible, as would be recognized by one skilled
in the art.

0037 Electronic messages, particularly electronic mail
(email), are exchanged between the various Systems inter
connected via the distributed computing environment 10.
Throughout this document, the terms "electronic message”
and “message” are used interchangeably with the same
intended meaning. In addition, message types encompass

Nov. 4, 2004

electronic mail, Voice mail, images, Scheduling, tasking,
contact management, project management, Workgroup
activities, multimedia content, and other forms of electroni
cally communicable objects, as would be recognized by one
skilled in the art. These systems include a server 11 provid
ing a message eXchange Service to a plurality of clients 12a,
12b interconnected via the intranetwork 13. The clients 12a,
12b can also Subscribe to a remote message exchange
Service provided by a remote Server 14 interconnected via
the internetwork 16. Similarly, a remote client 15 can
Subscribe to either or both of the message exchange Services
from the server 11 and the remote server 14 via the inter
network 16.

0038 Each of the systems is coupled to a storage device.
The server 11, clients 12a, 12b, and remote client 15 each
maintain Stored data in a local Storage device 18. The remote
Server 14 maintains Stored data in a local storage device (not
shown) and can also maintain Stored data for remote Systems
in a remote Storage device 19, that is, a Storage device
situated remotely relative to the server 11, clients 12a, 12b,
and remote client 15. The Storage devices include conven
tional hard drives, removable and fixed media, CD ROM
and DVD drives, and all other forms of volatile and non
Volatile Storage devices.
0039 Each of the systems also maintains a message
Store, either on the local Storage device or remote Storage
device, in which electronic messages are Stored or archived.
Each message Store constitutes an identifiable repository
within which electronic messages are kept and can include
an integral or separate archive message Store for off-line
Storage. Internally, each message Store can contain one or
more message folders (not shown) containing groups of
related messages, Such as an “Inbox’ message folder for
incoming messages, an "Outbox’ message folder for out
going messages, and the like. For clarity of discussion,
individual message folders will be treated alike, although
one skilled in the art would recognize that contextually
related message folders might be separately processed.
0040. In a workgroup-computing environment, the server
11 collectively maintains the message Stores as a workgroup
message store (WMS) 22 for each subscribing client 12a,
12b and remote client 15. In a distributed computing envi
ronment, each client 12a, 12b and remote client 15 might
maintain an individual message Store 21 either in lieu of or
in addition to a workgroup message Store 21. Similarly, the
remote Server 14 could maintain a workgroup message Store
22 for remote clients.

0041. Over time, each of the message stores unavoidably
accumulates duplicates, at least in part, of other electronic
messages Stored in the message Store for the same user or for
other users. These duplicate and near duplicate electronic
messages should be identified and removed during docu
ment pre-analysis. Thus, the Server 11 includes a message
processor 20 for efficiently processing the electronic mes
Sages Stored in the various message Stores 21, 22 as further
described below beginning with reference to FIG. 2.
Optionally, an individual client 12a could also include the
message processor 20. The actual homing of the message
processor 20 is only limited by physical resource availability
required to Store and process individual message Stores 21
and workgroup message Stores 22.
0042. The electronic messages are retrieved directly from
the individual message Stores 21, the workgroup message

US 2004/0221295 A1

Stores 22, or consolidated from these message Stores into a
combined message Store. For document pre-analysis, the
message Stores can include both active "on-line' messages
and archived "off-line' messages maintained in a local
storage device 18 or remote storage device 19.
0043. The individual computer systems including the
server 11, clients 12, remote server 14, and remote client 15,
are general purpose, programmed digital computing devices
consisting of a central processing unit (CPU), random access
memory (RAM), non-volatile Secondary Storage, Such as a
hard drive, CD ROM or DVD drive, network interfaces, and
peripheral devices, including user interfacing means, Such as
a keyboard and display. Program code, including Software
programs, and data are loaded into the RAM for execution
and processing by the CPU and results are generated for
display, output, transmittal, or Storage.
0044 FIG. 2 is a block diagram showing the system for
efficiently processing messages of FIG. 1. The system 30
includes the Server 11, Storage device 18, and one or more
message Stores 32. The message Stores 32 could include
individual message Stores 21 and workgroup message Stores
22 (shown in FIG. 1). Alternatively, the system 30 could
include a client 12a (not shown) instead of the server 11.
004.5 The server 11 includes the messages processor 20
and optionally operates a messaging application 31. The
messaging application 31 provides Services with respect to
electronic message exchange and information Storage to
individual clients 12a, 12b, remote servers 14, and remote
clients 15 (shown in FIG. 1). On an application side, these
Services include providing electronic mail, Scheduling, task
ing, contact and project management, and related automated
Workgroup activities Support. On a System Side, these Ser
Vices include message addressing Storage and eXchange, and
interfacing to low-level electronic messaging Subsystems.
An example of a message exchange Server 31 is the
Exchange Server product, licensed by Microsoft Corpora
tion, Redmond, Wash. Preferably, the message exchange
Server 31 incorporates a MeSSaging Application Program
ming Interface (MAPI)-compliant architecture, Such as
described in R. Orfali et al., “Client/Server Survival Guide,”
Ch. 19, John Wiley & Sons, Inc. (1999 3d ed.), the disclo
Sure of which is incorporated by reference. The messaging
application is not a part of the present invention, but is
shown to illustrate a Suitable environment in which the
invention may operate.
0046) The message processor 20 processes the message
stores 32 (shown in FIG. 1) to efficiently pre-analyze the
electronic messages, as further described below with refer
ence to FIG. 3. The message stores 32 are processed to
create one or more constructs Stored into a “shadow Store
33. A point-to-point keyed collection 35 stores cross-refer
ences between the identifier of the original message Store 32
or folder in the original message Store and the identifier of
the newly created corresponding folder or Subfolder in the
Shadow Store 33. During processing, the electronic messages
are "graded’ into duplicate, near duplicate and unique
categories and tagged by longest conversation thread.
0047 The results of message processing are chronicled
into a log 34 to identify unique messages 44 and to create a
processing audit trail for allowing the Source and ultimate
disposition of any given message to be readily traced. AS
well, a croSS-reference keyed collection 36 allows unique

Nov. 4, 2004

message identifiers to be Submitted and the Source location
information of those messages that are duplicates or near
duplicates of the unique message to be retrieved. The
retrieval information allows the optional reaggregation of
Selected unique messages and the related duplicate and near
duplicates messages at a later time, Such as by inclusion into
the shadow store 33 at the end of the document review
process. Optionally, the duplicate and near duplicate mes
Sages can be rejoined with their related unique messages for
completeness. The log 34 records not only the disposition of
each message, but, in the case of duplicate and near dupli
cate messages, indicates the unique message with which
each duplicate and near duplicate message is associated,
thereby permitting Specific duplicate and near duplicate
messages to be located and optionally reaggregated with
Selected unique messages at a later time. In the described
embodiment, the cross-reference keyed collection 36 is
maintained as part of the log 34, but is separately identified
for purposes of clarity. The unique messages 44 are copied
into the shadow store 33 for forwarding to the next stage of
document review.

0048 FIG. 3 is a data flow diagram 40 showing the
electronic message processing cycle followed by the System
30 of FIG. 2. First, the various message stores 41 are opened
for access. Metadata consisting of message identification
information, including message Source location information,
and message topics (or Subjects), is extracted into a “master”
array 42. The master array 42 is a logical collection of the
topics and identification information, in the form of meta
data, for all of the messages in the various message Stores
41. The metadata is manipulated in the various data Struc
tures described herein, including the master array 42, topic
array 43, and arrays for unique messages 44, near duplicate
messages 45, thread lengths 46, and exact duplicate mes
Sages 47. However, except as noted otherwise, the messages
are described as being directly manipulated during proceSS
ing, although one skilled in the art would recognize that
metadata, messages, or any combination thereof could be
used.

0049. The messages in the master array 42 are sorted by
topic to identify unique messages and conversation threads,
as reflected by ranges of multiple occurrences of the same
topic. The identification information (metadata) for those
messages having identical topics is extracted into a topic
array 43 as each new topic is encountered within the master
array 42.
0050. The topic array 43 functions as a working array
within which topically identical messages are processed.
The identification information extracted from the master
array 42 is used to copy into the topic array further infor
mation from messages Sharing a common topic, including
their plaintext. At any point in processing, the topic array 43
contains only those messages Sharing a common topic.
These topically identical messages are Sorted by plaintext
body and analyzed. Exact duplicate messages 47, containing
Substantially duplicated content, are removed from the topic
array 43. The remaining non-exact duplicate messages in the
topic array 43 are Searched for thread markers indicating
recursively-included content and conversation thread
lengths 46 are tallied. The messages in the topic array 43 are
compared and near duplicate messages 45 are identified. The
unique messages 45 are marked for transfer into the Shadow
store 48.

US 2004/0221295 A1

0051 FIG. 4 is a block diagram showing the software
modules 60 of the system 30 of FIG. 2. Each module is a
computer program, procedure or module written as Source
code in a conventional programming language, Such as the
Visual Basic programming language, and is presented for
execution by the CPU as object or byte code, as is known in
the art. The various implementations of the Source code and
object and byte codes can be held on a computer-readable
Storage medium or embodied on a transmission medium in
a carrier wave. The message processor 20 operates in
accordance with a Sequence of process Steps, as further
described below beginning with reference to FIG. 6.
0.052 The message processor 20 includes four primary
modules: exact duplicate message Selector 61, thread length
Selector 62, near duplicate message Selector 63, and unique
message Selector 64. Prior to processing, the message Stores
41 are logically consolidated into the master array 42. At
each stage of message processing, a log entry is created (or
an existing entry modified) in a log 34 to track messages and
record message identification information. The exact dupli
cate message Selector 61 identifies and removes those exact
duplicate messages 47 containing Substantially duplicative
content from the topic array 43. The thread length selector
62 tallies the conversation thread lengths 46 and maintains
an ordering of thread lengths, preferably from Shortest to
longest conversation thread length. The near duplicate mes
Sage Selector 63 designates as near duplicate messages 45
those whose content is recursively-included in other mes
Sages, Such as those messages generated through a reply or
forwarding Sequence, or as an attachment. The unique
message Selector 64 designates as unique messages 45 those
messages that have been extracted out of the master array 42
as not being topically identical and those messages remain
ing after the exact duplicate messages 48 and near duplicate
messages 46 have been identified. The unique messages 45
are forwarded to the shadow store 48 for use in Subsequent
document review. The unique, near duplicate, and exact
duplicate messages, as well as thread counts, are regularly
recorded into the log 34, as the nature of each message is
determined. AS well, the location information permitting
Subsequent retrieval of each near duplicate message 45 and
exact duplicate message 47 is regularly inserted into the
cross-reference keyed collection 36 relating the message to
a unique message as the relationship is determined.

0.053 FIG. 5 shows, by way of example, an annotated
electronic message 70. Often the message having the longest
conversation thread length 47 is the most useful message to
review. Each preceding message is recursively included
within the message having the longest conversation thread
length and therefore these near duplicate messages can be
skipped in an efficient review process.

0.054 The example message 70 includes two recursively
included messages: an original e-mail message 71 and a
reply e-mail message 72. The original e-mail message 71
was sent from a first user, user1(G) aol.com, to a Second user,
user2O) aol.com. In reply to the original e-mail message 71,
the Second user, user2O) aol.com, generated the reply e-mail
message 72, Sent back to the first user, uSer1(G) aol.com.
Finally, the first user, user1(G) aol.com, forwarded the reply
e-mail message 72, which also included the original e-mail
message 71, as a forwarded e-mail message 73, to a third
user, user3G) aol.com.

Nov. 4, 2004

0055) Each of the e-mail messages 71,72, 73 respectively
includes a message body (recursively-included) 74, 78, 82
and a message header 75, 77, 81. The original e-mail
message 71 and the reply e-mail message 72 are recursively
included messages. The original e-mail message 71 is recur
Sively included in both the reply e-mail message 72 and
forwarded e-mail message 73 while the reply e-mail mes
Sage 72 is recursively included only in the forwarded e-mail
message 73.
0056. Each successive reply, forwarding or similar opera
tion increases the conversation thread length 47 of the
message. Thread lengths 47 are indicated within the mes
Sages themselves by Some form of delimiter. In the example
shown, the inclusion of the original e-mail message 71 in the
reply e-mail message 72 is delimited by both a separator 80
and a “RE: indicator in the subject line 79. Likewise, the
inclusion of the reply e-mail message 72 is delimited by a
separator 84 and a “FW:” indicator in the subject line 83.
The message separators 80, 84 and subject line indicators
79, 83 constitute thread “markers' that can be searched,
identified and analyzed by the message processor 20 in
determining thread lengths 47 and near duplicate messages
46.

0057 FIG. 6 is a flow diagram showing a method 100 for
efficiently processing messages Stored in multiple message
Stores, in accordance with the present invention. The method
100 operates in two phases: initialization (blocks 101-103)
and processing (blocks 104-107).
0.058 During initialization, the message stores 41 (shown
in FIG. 3) are opened for access by the message processor
20 (block 101) and the shadow store 48 is created (block
102), as further described below with reference to FIG. 7. In
the described embodiment, the message processor 20 has a
finite program capacity presenting an upper bound on the
maximum number of electronic messages to be processed
during a single run. Consequently, multiple processing
passes may be required to proceSS all of the messages Stored
in the aggregate of the message Stores 41.
0059. In the described embodiment, assuming that the
aggregate number of messages exceeds the program bounds,
the processing is broken down into a Series of passes n,
during each of which a portion of the aggregate message
Stores 41 is processed. The number of passes in required to
process the Source message stores 41 is determined (block
103) by an appropriate equation, Such as the following
equation:

= ceil TotNumMessages
it C8: ProglMax

0060 where n equals the total number of iterative passes,
TotNumMessages is the total number of messages in the
aggregate of the message Stores 41, and ProgMax is the
maximum program message processing capacity.

0061. In the described embodiment, the aggregate selec
tion of messages from the message Stores 41 is processed by
overlapping partition i, preferably labeled by dividing the
alphabet into partitions corresponding to the number of
passes n. For example, if two passes n are required, the
partitions would be “less than M' and “greater than L.”

US 2004/0221295 A1

Similarly, if 52 passes n were required, the partitions would
be “less than Am” and “greater than Al and less than Ba.”
0.062. During operation, the partitions, if required, are
processed in an iterative processing loop (blocks 104-106).
During each pass n (block 104) the messages are processed
(block 105), as further described below beginning with
reference to FIG. 8. Upon the completion of the processing
(block 106), the message stores 41 are closed (block 107).
AS an optional operation, the exact duplicate messages 47
and the near duplicates messages 45 are reinserted into the
shadow store 48 (block 108). The method terminates upon
the completion of processing.
0063 FIG. 7 is a flow diagram showing the routine 120
for creating a shadow store for use in the method 100 of
FIG. 6. The purpose of this routine is to create a holding
area, called the shadow store 48 (shown in FIG.3) in which
unique messages 45 are Stored for the next Stage in docu
ment review. A message counter is maintained to count the
messages in the aggregate of all message Stores 41. The
message counter is initially set to Zero (block 121). Each of
the Source message Stores 41 is then processed in a pair of
nested iterative processing loops (blocks 122-128 and 124
129), as follows.
0064. During the outer processing loop (blocks 122-129),
a folder corresponding to each Source message Store 41 is
created in the shadow store 48(block 123). Next, each of the
folders in the current Selected Source message Store 41 is
iteratively processed in the inner processing loop (blocks
124-128) as follows. First, the message counter is incre
mented by the number of messages in the folder being
examined in the Source message store 41 (block 125) and a
corresponding folder in the shadow store 48 is created
(block 126). An entry is made in a point-to-point keyed
collection 35 (block 127) that constitutes a cross-reference
between a pointer to the original message Store 41 or folder
in the original message Store and a pointer to the newly
created corresponding folder or Subfolder in the Shadow
Store 48. When unique messages are later copied into the
shadow store 48, this keyed file allows the copying to
proceed "point-to-point, rather than requiring that the fold
ers in the shadow store 48 be iteratively searched to find the
correct one. Processing of each folder in the current Source
message Store 41 continues (block 128) for each remaining
folder in the Source message Store. Similarly, processing of
each of the Source message Stores themselves 41 continues
(block 129) for each remaining Source message Store 41,
after which the routine returns (block 130), providing a
count of all the messages in all the Source message Stores So
that the number of passes required can be determined.
0065 FIG. 8 is a flow diagram showing the routine 140
for processing messages for use in the method 100 of FIG.
6. The purpose of this routine is to preprocess the messages
Stored in the message Stores 41. Note at each Stage of
message processing, a log entry is implicitly entered into the
log 34 (shown in FIG. 3) to record the categorization and
disposition of each message.
0.066 The messages are processed in a processing loop
(blocks 141-144). During each iteration (block 141), each
message in the Selected folder is checked for membership in
the current partition i of the Source message Stores 41 (block
142). If the message is in the current partition i (block 142),
the message is logically transferred into the master array 42

Nov. 4, 2004

(block 143) by extracting the topic and location information,
including message identification information and pointers to
the Source message Store 41, the Source message folder, and
to the individual message (metadata). Using metadata, rather
than copying entire messages, conserves Storage and
memory Space and facilitates faster processing. Processing
continues for each message in the Selected folder (block
144).
0067. When all folders have been processed and the
metadata for those messages found to be within the partition
has been transferred into the master array, message proceSS
ing begins. The messages are Sorted by topic (block 145) and
the master array 42 is processed (block 146), as further
described below with reference to FIG. 9. Last, the log 49
is processed (block 147), after which the routine returns.
0068 FIG. 9 is a flow diagram showing the routine 160
for processing the master array 42 for use in the routine 140
of FIG.8. The purpose of this routine is to identify unique
messages 44 and to process topically identical messages
using the topic array 43. The routine processes the messages
to identify unique and topically similar messages using an
iterative processing loop (blocks 161-171). During each
iteration (block 161), the topic (or subject line) of the each
message in the master array 42 is compared to that of the
next message in the master array 42 (block 162). If the topics
match (block 163), the messages may be from the same
conversation thread. If the message is the first message with
the current topic to match the following message (block
164), this first message in the potential thread is marked as
the beginning of a topic range (block 165) and processing
continues with the next message (block 171). Otherwise, if
the message is not the first message in the conversation
thread (block 164), the message is skipped and processing
continues with the next message (block 171).
0069. If the topics do not match (block 163), the preced
ing topic range is ending and a new topic range is starting.
If the current message was not the first message with that
topic (block 166), the range of messages with the same topic
(which began with the message marked at block 165) is
processed (block 168). If the current message is the first
message with the matching topic (block 166), the message
is extracted as a unique message 45 (block 167) and pro
cessing continues with the next message (block 171). If the
topic range has ended (block 166), each topically identical
message, plus message transmission time, is logically
extracted into the topic array 43 (block 168). In the
described embodiment, the messages are not physically
copied into the topic array 43; rather, each message is
logically “transferred” using metadata into the topic array 43
to provide message Source location information, which is
used to add a copy of the plaintext body of the message into
the topic array. The topic array 43 is sorted by plaintextbody
(block 169) and processed (block 170), as further described
below with reference to FIGS. 10A-C. Processing continues
with the next message (block 171). The routine returns upon
the processing of the last message in the master array 42.

0070 FIGS. 10A-C are flow diagrams showing the rou
tine 180 for processing a topic array for use in the routine
160 of FIG. 9. The purpose of this routine is to complete the
processing of the messages, including identifying duplicate,
near duplicate and unique messages, and counting thread
lengths. The routine cycles through the topic array 43

US 2004/0221295 A1

(shown in FIG.3) in three iterative processing loops (blocks
181-187, 189-194 and 196-203) as follows.
0071. During the first processing loop (blocks 181-187)
each message in the topic array 43 is examined. The plain
textbody of the current message is compared to the plaintext
body of the next message (block 182). If the plaintext bodies
match (block 183), an exact duplicate message possibly
exists, pending Verification. The candidate exact duplicate is
verified by comparing the header information 75, 77, 81
(shown in FIG. 5), the sender of the message (block 184),
and the transmission times of each message. If the match is
verified (block 185), the first message is marked as an exact
duplicate of the Second message and the identification
information for the first and Second messages and their
relationship is saved into the log 49 (block 186) and cross
reference keyed collection 36 (shown in FIG. 2). The
processing of each Subsequent message in the topic array 43
(block 187) continues for the remaining messages.
0.072 Next, the messages marked as exact duplicate
messages are removed from the topic array 43 (block 188)
and the remaining non-exact duplicate messages in the topic
array 43 are processed in the Second processing loop (blocks
189-194) as follows. First, each message is searched for
thread markers, including separators 80, 84 and subject line
indicators 79-83 (shown in FIG. 5) (block 190). If thread
markers are found (block 191), the number of thread marker
occurrences m is counted and recorded (block 192). Other
Wise, the message is recorded as having Zero thread markers
(block 193). In the described embodiment, the data entries
having Zero thread markers are included in the Sorting
operations. These messages have message content, but do
not include other messages. Recording Zero thread markers
allows these “first-in-time” messages to be compared against
messages which do have included messages. Processing
continues for each of the remaining messages (block 194),
until all remaining messages in the topic array 43 have been
processed.

0073. The topic array is next sorted in order of increasing
thread markers m (block 195) and the messages remaining
in the topic array 43 are iteratively processed in the third
processing loop (block 196-203). During each processing
loop (block 196), the first and Subsequent messages are
selected (blocks 197, 198) and the plaintext body of the
messages compared (block 199). In the described embodi
ment, a text comparison function is utilized to allow large
text blocks to be efficiently compared. If the plaintext body
of the first Selected message is included in the plaintextbody
of the second selected message (block 200), the first mes
Sage is marked as a near duplicate of the Second message and
identification information on the first and Second messages
and their relationship is saved into the log 49 and cross
reference keyed collection 36 (shown in FIG. 2) (block
201). If the plaintext body of the first selected message is not
included in the plaintext body of the Second Selected mes
Sage and additional messages occur Subsequent to the Sec
ond message in the topic array 43 (block 202), the next
message is selected and compared as before (blocks 198
202). Each Subsequent message in the topic array is pro
cessed (block 203) until all remaining messages have been
processed, after which the routine returns.
0074 FIG. 11 is a flow diagram showing the routine 220
for processing a log for use in the routine 140 of FIG.8. The

Nov. 4, 2004

purpose of this routine is to finalize the log 34 for use in the
review proceSS. Processing occurs in an iterative processing
loop (block 221-226) as follows. Each message in the master
array 42 is processed during each loop (block 221). If the
Selected message is a unique message 45 (block 222), a copy
of the message is retrieved from the Source folder in the
source message store 41 (shown in FIG. 3) and placed into
the corresponding folder in the corresponding message Store
in the shadow store 48 (block 223) (using the cross-refer
ence keyed collection 36 created at the time of creating the
Shadow Store 34), plus an entry with message Source loca
tion information and identification information is created in
the log 34 (block 224). Otherwise, the message is skipped as
a near duplicate message 45 or exact duplicate message 47
(block 225) that is not forwarded into the next phase of the
document review proceSS. Processing of each Subsequent
message in the master array 42 continues (block 226) for all
remaining messages, after which the routine returns.

0075 FIG. 12 is a functional block diagram showing a
distributed computing environment 230, including a System
for evaluating a structured message Store for message redun
dancy, in accordance with a further embodiment of the
present invention. In addition to the message processor 20
executing on the Server 11, a production Server 231 includes
a workbench application 232 for providing a framework for
acquiring, logging, culling, and preparing documents for
automated review and analysis. The Workbench application
232 includes a production message processor (Prod MP) 233
for efficiently processing the electronic messages Stored in
the individual message Stores 21 and the workgroup mes
Sage Stores 22, as further described below beginning with
reference to FIG. 13.

0076. The production server 231 maintains an archived
message store (AMS) 236 on a storage device 234 and a
database 235. The production server 231 preferably func
tions as an off-line message processing facility, which
receives individual message Stores 21 and workgroup mes
Sage Stores 22 for document review processing as the
archived message stores 236. The database 235 abstracts the
contents of individual messages extracted from the archived
message Stores 236 into Structured message records as a
form of Standardized representation for efficient processing
and identification of duplicative content, including attach
ments, as further described below with reference to FIG. 15.

0.077 FIG. 13 is a block diagram showing the software
modules of the production server 231 of FIG. 12. The
Workbench application 232 executes on the production
Server 231, preferably as a Stand-alone application for pro
cessing messages consolidated from the individual message
Stores 21 and the workgroup message Stores 22 into the
consolidated message Store 236. The Workbench application
232 includes the production message processor 233 for
identifying unique messages and culling out duplicate and
near duplicate messages.

0078. The production message server 233 includes five
primary modules: message extractor 241, message de-duper
242, parser 243, digester 244, and comparer 245. Prior to
processing, the production message processor 233 logically
assembles the archived message Stores 236 by first import
ing each individual message Store 21 and workgroup mes
Sage Store 22 from the physical Storage media upon which
the message Store 21, 22 is maintained. The archived mes

US 2004/0221295 A1

Sage Stores 236 provide a normalized electronic Storage
Structure independent of physical Storage media. Conse
quently, importing each individual message 21 and work
group message Store 22 can include converting the message
Store from a compressed or archival Storage format into a
Standardized “working' message Store format for message
access and retrieval. In the described embodiment, the
formats used for individual messages and message Stores as
used in the Outlook family of messaging applications,
licensed by Microsoft Corporation, Redmond, Wash., and
cc.mail family of messaging applications, licensed by Lotus
Corporation, Cambridge, Mass., are Supported, and other
messaging application formats could likewise be Supported,
as would be recognized by one skilled in the art. At each
Stage of message processing, a log entry can be created (or
an existing log entry modified) in a log 247 for tracking
messages and recording message identification information.

0079 The message extractor 241 retrieves each indi
vidual message from the archived message Stores 236. The
parser 243 parses individual fields from each extracted
message and identifies message routing, identification infor
mation and literal content within each field. The parsed
metadata and message body are then Stored in message
records 248 maintained in the database 235, as further
described below with reference to FIG. 15. Each message
record 248 includes a hash code 249 associated with the
message, which is calculated by the digester 244, exclusive
of any attachments. Each attachment also includes a sepa
rately calculated attachment hash code 249. Each hash code
249 is a Sequence of alphanumeric characters representing
the content, also referred to as a digest.
0080. The hash codes 249 are calculated using a one-way
function to generate a Substantially unique alphanumeric
value, including a purely numeric or alphabetic value,
asSociated with the message or attachment. The hash codes
249 are calculated over at least part of each message header,
plus the complete message body. If the message includes
attachments, Separate attachment hash codes 249 are calcu
lated over at least part of each attachment. For each message,
the hash code 249 can be calculated over at least part of the
header, plus the complete message body. In addition, the
demarcation between the data constituting a header and the
data constituting a message body can vary and other logical
grouping of data into headers, message bodies, or other
Structures or groupings are possible, as would be recognized
by one skilled in the art.
0081. In the described embodiment, the MD5 hashing
algorithm, which stands for “Message Digest No. 5,” is
utilized and converts an arbitrary Sequence of bytes having
any length into a finite 128-bit digest, Such as described in
D. Gourley and B. Totty, “HTTP, the Definitive Guide,” pp.
288-299, O'Reilly and Assocs., Sebastopol, Calif. (2002),
the disclosure of which is incorporated by reference. Other
forms of cryptographic check Summing, one-way hash func
tions, and fingerprinting functions are possible, including
the Secure Hash Algorithm (SHA), and other related
approaches, as would be recognized by one skilled in the art.

0082 Once the message records 248 in the database 235
have been populated with the extracted messages, the mes
Sage de-duper 242 identifies unique messages, exact dupli
cate messages, and near duplicate messages, as further
described below with reference to FIG. 18. The messages

Nov. 4, 2004

are grouped by message hash codes 249 and each group of
matching hash codes 249 is analyzed by comparing the
content and the hash codes 249 for each message and any
asSociated attachments to identify unique messages, exact
duplicate messages, and near duplicate messages. A hash
code appearing in a group having only one message corre
Sponds to a unique message. A hash code appearing in a
group having two or more messages corresponds to a set of
exact duplicate messages with either no attachments or with
identical attachments. Optionally, the exact duplicate mes
Sages and near duplicate messages can be maintained in a
Shadow Store 246 for data integrity and auditing purposes.

0083 FIG. 14 is a data flow diagram showing the elec
tronic message processing 260 followed by the production
server 231 of FIG. 13. First, the various archived message
Stores 236 are first opened for access. For each message in
each of the archived message Stores 236, metadata consist
ing of message routing, identification information and literal
content are extracted. The metadata and message body,
exclusive of any attachments, are calculated into a message
hash code 261. In tandem, any attachments 262 are calcu
lated into attachment hash codes 263. The metadata, mes
sage body, hash code 261, and hash codes 263 for any
attachments are Stored into the database 235 as message
records 264. Each of the message records 264 is uniquely
identified, as further described below with reference to FIG.
15. Finally, the message records 264 are retrieved from the
database 235 and processed to identify unique messages
265, exact duplicate messages 266, and near duplicate
messages 267, as further described below with reference to
FIG. 18.

0084 FIG. 15 shows, by way of example, a database
schema 270 used by the production server 231 of FIG. 13.
The message records 248 in the database 235 are preferably
Structured in a hierarchical organization consisting of tables
for individual message files 271, mail properties (MailProp
erties) 272, compound documents (Compound Docs) 273,
and compound members (CompoundMembers) 274,
although other forms of hierarchical and non-hierarchical
organization are feasible, as would be recognized by one
skilled in the art.

0085. The files table 271 stores one record for each
individual message extracted from the archived message
stores 236. Each record in the files table 271 shares a
one-to-one relationship with an extracted message. Each
record is assigned a unique, monotonically increasing iden
tification number (id)275. The files table 271 includes fields
for Storing the extracted message name 276, type 277, type
confirmation 278, path 279, length 280, modified date 281,
created date 282, description 283, owner key 284, and Bates
tag 286. In addition, the hash code 261 for the extracted
message, exclusive of any attachments, is Stored in a hash
code field 285.

0086 The mail properties table 272 contains the message
routing, identification information and literal content asso
ciated with each extracted message. Each record in the mail
properties table 272 shares a one-to-one relationship with an
associated record in the files table 271. Each record in the
mail properties table 272 is identified by a file identifier
(FileId) 287. The mail properties table 272 includes fields
for storing message unique ID 288, sent from 289, sent to
290, sent cc 291, sent bcc 292, sent date 293, subject 294,

US 2004/0221295 A1

thread subject 295, and message 296. The hash code 261 is
calculated by the digester 244 using select fields 302 of each
record, which include all of the fields except the file iden
tifier 287 and message unique ID 288 fields, although one
skilled in the art would recognize that other combinations
and Selections of fields could also be used to calculate the
hash code 261.

0087. The compound documents table 273 and com
pound members table 274 share a one-to-many relationship
with each other. The records in the compound documents
table 273 and compound members table 274 store any
attachments associated with a given extracted message
stored in a record in the file table 271. Each record in the
compound documents table 273 contains a root file identifier
(routeFileld) 297. The compound documents table 273
includes fields for storing marked category 299 and the hash
code 263 is stored in a hash code field 298. Each record in
the compound documents table 273 shares a one-to-many
relationship with each attachment associated with an
extracted message. Similarly, each record in the compound
members 274 is uniquely identified by a file ID (FileId) 300
field and a compound document key field 301.
0088 FIG. 16 is a flow diagram showing a method 310
for evaluating a structured message Store for message redun
dancy, in accordance with a further embodiment of the
present invention. The method 310 operates in three phases.
During the first phase, the individual message Stores 21 and
workgroup message Stores 22 are obtained and consolidated
into the archived message stores 236 (block 311). The
individual message Stores 21 and workgroup message Stores
22 can be in physically disparate Storage formats, Such as on
archival tapes or other forms of on-line or off-line archival
media, and could constitute compressed data. Consequently,
each of the individual message Stores 21 and workgroup
message Stores 22 are converted into a Standardized on-line
format for message identity processing.

0089. During the second phase, individual messages are
extracted from the archived message stores 236 (block 213),
as further described below with reference to FIG. 17.
Briefly, individual messages are extracted from the archived
message Stores 236, digested into hash codes 261 and 263,
and stored as message records 248 in the database 235.
0090. During the third phase, the extracted messages, as
stored in message records 248 in the database 235, are
"de-dupped,” that is, processed to identify unique messages
265, exact duplicate messages 266, and near duplicate
messages 267 (block 313). Finally, the routine terminates.
0091 FIGS. 17A-B are flow diagrams showing the rou
tine 320 for extracting messages for use in the method 310
of FIG. 16. The purpose of this routine is to iteratively
proceSS each of the extracted message Stores 236 and
individual messages to populate the message records 239
stored in the database 235.

0092. The messages in each of the archived message
Stores 236 are iteratively processed in a pair of nested
processing loops (blocks 321-333 and blocks 322-332,
respectively). Each of the archived message Stores 236 is
processed during an iteration of the Outer processing loop
(block 321). Each message Stored in an archived message
Store 236 is processed during an iteration of the inner
processing loop (block 322). Each message is extracted from

Nov. 4, 2004

an archived message store 236 (block 322) and each
extracted message is digested into a hash code 261 over at
least part of the header, plus the complete message body,
exclusive of any attachments (block 324). Each hash code is
a Sequence of alphanumeric characters representing the
content, also referred to as a digest. The hash codes are
calculated using a one-way function to generate a Substan
tially unique alphanumeric value, including a purely
numeric or alphabetic value, associated with message or
attachment. In the described embodiment, the MD5 hashing
algorithm is used to form a fixed-length 128-bit digest of
each extracted message and routing information. Next, the
metadata for each extracted message is parsed and Stored
into records in the files table 271 and mail properties table
272 along with the hash code 261 and indexed by a unique
identifier 275 (block 325).
0093. If the extracted message contains one or more
attachments (block 326), each attachment is iteratively pro
cessed (blocks 327-329) as follows. At least part of each
attachment is digested by the digester 244 into a hash code
263 (block 328). Each remaining attachment is iteratively
processed (block 329). The message hash code 261 and each
attachment hash code 263 are concatenated into a compound
hash code and are Stored as a compound document record in
the compound documents table 273 and the compound
members table 274 (block 330). Note the message hash code
261 and each attachment hash code 263 could also be
logically concatenated and stored separately, as would be
recognized by one skilled in the art. Each message in the
archived message Store 236 is iteratively processed (block
331) and each archived message store 236 is iteratively
processed (block 332), after which the routine returns.
0094 FIGS. 18A-C are flow diagrams showing the rou
tine 340 for de-duping messages for use in the method 310
of FIG. 16. The purpose of this routine is to identify unique
messages 265, exact duplicate messages 266, and near
duplicate messages 267 (“de-dup”) through a process known
as “culling.” The messages Stored in records in the database
235 are iteratively processed in a processing loop (blocks
341-346). Each message is processed during an iteration of
the processing loop (block 341). First, the file record 271
corresponding to each message is retrieved from the data
base 235 (block 342). If the message is not a compound
message, that is, the message does not contain attachments
(block 343), the message hash code 261 is obtained (block
344) and processing continues with the next message (block
346). Otherwise, if the message is a compound message
(block 343), the compound hash code is obtained (block
345) and processing continues with the next message (block
346).
0095 Next, the messages are grouped by matching hash
codes (block 347) and each group of matching hash codes is
iteratively processed in a processing loop (blocks 348-351).
Any groups with more than one message are processed to
identify exact duplicates based on matching hash codes. A
randomly Selected message in the group is marked as a
unique message (block 349) and the remaining messages in
the group are culled, that is, marked as exact duplicates
messages (block 350). Other methodologies for selecting the
unique message can be used, as would be recognized by one
skilled in the art. Processing continues with the next group
(block 351).

US 2004/0221295 A1

0096) Next, all non-exact duplicate messages are now
iteratively processed for near-duplicates. The messages are
grouped by conversation thread (block 352). In the
described embodiment, the messages are Sorted in descend
ing order of message body length (block 353), although the
messages could alternatively be Sorted in ascending order, as
would be recognized by one skilled in the art. The threads,
messages, and “shorter” messages are then iteratively pro
cessed in a series of nested processing loops (blocks 354
365, 355-364, and 356-363, respectively). Each thread is
processed during an iteration of the Outer processing loop
(block 354). Each message within the thread is processed
during an iteration of an inner processing loop (block 355)
and each message within the thread having an equal or
Shorter length, that is, each shorter message, is processed
during an iteration of an innermost processing loop (block
356). The message bodies of the first message and the
Shorter message are compared (block 357). If the message
bodies are not contained within each other (block 358), the
Shorter message is left marked as a unique message and the
processing continues with the next shorter message (block
363).
0097. Otherwise, if the message body of the shorter
message is contained within the message body of the first
message (block 358), the attachment hash codes 263 are
compared (block 359) to identify unique messages 265 and
near duplicate messages 267, as follows. First, if the mes
Sage does not include any attachments, the shorter message
is culled, that is, marked as a near duplicate of the first
message (block 362). If the message includes attachments
(block 359), the individual attachment hash codes 263 are
compared to identify a matching or Subset relationship
(block 360). If the attachment hash codes 263 indicate a
matching or Subset relationship between the first message
and the shorter message (block 361), the shorter message is
culled, that is, marked as a near duplicate message 267 of the
first message (block 362). Otherwise, the shorter message is
left marked as a unique message 265. Processing continues
with the next shorter message in the thread (block 363).
After all shorter messages have been processed (block 363),
processing continues with the next message (block 364) and
next thread (block 365), respectively. The routine then
returns.

0098) While the invention has been particularly shown
and described as referenced to the embodiments thereof,
those skilled in the art will understand that the foregoing and
other changes in form and detail may be made therein
without departing from the Spirit and Scope of the invention.

What is claimed is:
1. A System for evaluating a structured message Store for

message redundancy, comprising:

a parser extracting a header and a message body from
each of a plurality of messages maintained in a struc
tured message Store,

a digester calculating a Substantially unique hash code
over at least part of the header and over the message
body of each message; and

a message deduper grouping the messages by the hash
codes and identifying one Such message as a unique
message within each group.

Nov. 4, 2004

2. A System according to claim 1, further comprising:
a comparer grouping the messages by conversation

thread, comparing the message body for each message
within each conversation thread group, and identifying
at least one Such message within each conversation
thread group as a unique message.

3. A System according to claim 2, further comprising:
a Sorter Sorting the messages in each conversation thread

group by length, and identifying one Such message
having a longest length as the unique message.

4. A System according to claim 1, wherein a plurality of
the messages each further comprise at least one attachment,
for each Such message, further comprising:

an attachment digester calculating a Substantially unique
hash code over at least part of the at least one attach
ment for each Such message;

a comparer, comprising:
a concatenator logically concatenating the hash code

for the message and the hash code for the at least one
attachment; and

an attachment deduper grouping the messages by the
logically concatenated hash codes, comparing the
logically concatenated hash codes for each message
within each group, and identifying each message
with a matching logically concatenated hash code as
an exact duplicate message.

5. A System according to claim 4, further comprising:
the comparer identifying each message with one or more

hash codes for the at least one attachment comprising
a Subset of the hash codes for the at least one attach
ment for at least one other message within each group
as a near duplicate message.

6. A System according to claim 5, further comprising:
the comparer identifying each message without Such a

Subset of the hash codes as a unique message.
7. A System according to claim 1, further comprising:
a structured database Storing the messages with each

message maintained in a separate indexed record in
accordance with a database Schema.

8. A System according to claim 1, further comprising:
a shadow Store Storing the non-unique messages.
9. A System according to claim 1, further comprising:
a log tracking message processing.
10. A System according to claim 1, wherein each message

header further compriseS routing data comprising one or
more data fields Selected from the group comprising recipi
ent, Sender, copy-to, blind-copy-to, and Subject.

11. A System according to claim 1, wherein each hash
code is calculated using a one-way function and comprises
alphanumeric, numeric, and alphabetic character Strings.

12. A System according to claim 11, wherein the one-way
function is Selected from the group comprising at least one
of the MD5 and secure hashing algorithms.

13. A method for evaluating a structured message Store for
message redundancy, comprising:

extracting a header and a message body from each of a
plurality of messages maintained in a structured mes
Sage Store,

US 2004/0221295 A1

calculating a Substantially unique hash code over at least
part of the header and over the message body of each
message, and

grouping the messages by the hash codes and identifying
one Such message as a unique message within each
grOup.

14. A method according to claim 13, further comprising:
grouping the messages by conversation thread;
comparing the message body for each message within

each conversation thread group; and
identifying at least one Such message within each con

Versation thread group as a unique message.
15. A method according to claim 14, further comprising:
Sorting the messages in each conversation thread group by

length, and identifying one Such message having a
longest length as the unique message.

16. A method according to claim 13, wherein a plurality
of the messages each further comprise at least one attach
ment, for each Such message, further comprising:

calculating a Substantially unique hash code over at least
part of the at least one attachment for each Such
meSSage,

logically concatenating the hash code for the message and
the hash code for the at least one attachment;

grouping the messages by the logically concatenated hash
codes;

comparing the logically concatenated hash codes for each
message within each group; and

identifying each message with a matching logically con
catenated hash code as an exact duplicate message.

17. A method according to claim 16, further comprising:
identifying each message with one or more hash codes for

the at least one attachment comprising a Subset of the
hash codes for the at least one attachment for at least
one other message within each group as a near dupli
cate meSSage.

18. A method according to claim 17, further comprising:
identifying each message without Such a Subset of the

hash codes as a unique message.
19. A method according to claim 13, further comprising:
maintaining a structured database Storing the messages

with each message maintained in a separate indexed
record in accordance with a database Schema.

20. A method according to claim 13, further comprising:
maintaining a shadow Store Storing the non-unique mes

SageS.
21. A method according to claim 13, further comprising:
maintaining a log tracking message processing.
22. A method according to claim 13, wherein each mes

Sage header further comprises routing data comprising one
or more data fields Selected from the group comprising
recipient, Sender, copy-to, blind-copy-to, and Subject.

23. A method according to claim 13, wherein each hash
code is calculated using a one-way function and comprises
alphanumeric, numeric, and alphabetic character Strings.

11
Nov. 4, 2004

24. A method according to claim 23, wherein the one-way
function is Selected from the group comprising at least one
of the MD5 and secure hashing algorithms.

25. A computer-readable Storage medium holding code
for performing the method of claim 13.

26. An apparatus for evaluating a structured message Store
for message redundancy, comprising:

means for extracting a header and a message body from
each of a plurality of messages maintained in a struc
tured message Store;

means for calculating a Substantially unique hash code
Over at least part of the header and over the message
body of each message, and

means for grouping the messages by the hash codes and
identifying one Such message as a unique message
within each group.

27. A System for culling duplicative messages maintained
in a structured message Store, comprising:

a message extractor retrieving a plurality of messages
maintained in a structured message Store with each
message comprising a header and a message body;

a digester calculating a Substantially unique hash code
Over at least part of the header and over the message
body;

a meSSage deduper, comprising:

a comparer comparing the hash codes for each message
within each group; and

a culling module culling each message having an hash
code matching the hash code for at least one other
message within the group and retaining one Such
non-culled message as a unique message.

28. A System according to claim 27, wherein each Such
non-culled message is retained as a potential unique mes
Sage, further comprising:

a comparer grouping the potential unique messages by
conversation thread and comparing the message body
for each potential unique message within each conver
sation thread group; and

a culling module culling each potential unique message
having a message body contained within at least one
other message within each group and retaining one
Such non-culled message as a unique message.

29. A System according to claim 27, further comprising:

a Sorter Sorting the potential unique messages within each
group by conversation thread.

30. A system according to claim 27, wherein a plurality of
the messages each further comprise at least one attachment,
further comprising:

the digester calculating a Substantially unique hash code
Over at least part of the at least one attachment for each
message, combining the hash code for each message
and the hash code for the at least one attachment, and
grouping the messages by the combined hash codes,

the comparer comparing the combined hash codes for
each message within each group; and

US 2004/0221295 A1

the culling module culling each message with a matching
combined hash codes and retaining one Such non-culled
message as a unique message.

31. A System according to claim 30, further comprising:
the comparer identifying each message with one or more

hash codes for the at least one attachment comprising
a Subset of the hash codes for the at least one attach
ment for at least one other message within each group;
and

the culling module culling each message with Such a
Subset of the hash codes and retaining one Such non
culled message as a unique message.

32. A method for culling duplicative messages maintained
in a structured message Store, comprising:

retrieving a plurality of messages maintained in a struc
tured message Store with each message comprising a
header and a message body;

calculating a Substantially unique hash code over at least
part of the header and over the message body;

comparing the hash codes for each message within each
group, and

culling each message having an hash code matching the
hash code for at least one other message within the
group, and

retaining one Such non-culled message as a unique mes
Sage.

33. A method according to claim 32, wherein each Such
non-culled message is retained as a potential unique mes
Sage, further comprising:

grouping the potential unique messages by conversation
thread;

comparing the message body for each potential unique
message within each conversation thread group; and

culling each potential unique message having a message
body contained within at least one other message
within each group and retaining one Such non-culled
message as a unique message.

34. A method according to claim 32, further comprising:
Sorting the potential unique messages within each group
by conversation thread.

Nov. 4, 2004

35. A method according to claim 32, wherein a plurality
of the messages each further comprise at least one attach
ment, further comprising:

calculating a Substantially unique hash code over at least
part of the at least one attachment for each message;

combining the hash code for each message and the hash
code for the at least one attachment;

grouping the messages by the combined hash codes;
comparing the combined hash codes for each message

within each group;
culling each message with a matching combined hash

codes, and
retaining one Such non-culled message as a unique mes

Sage.
36. A method according to claim 35, further comprising:
identifying each message with one or more hash codes for

the at least one attachment comprising a Subset of the
hash codes for the at least one attachment for at least
one other message within each group; and

culling each message with Such a Subset of the hash codes
and retaining one Such non-culled message as a unique
meSSage.

37. A computer-readable Storage medium holding code
for performing the method of claim 32.

38. An apparatus for culling duplicative messages main
tained in a structured message store, comprising:
means for retrieving a plurality of messages maintained in

a structured message Store with each message compris
ing a header and a message body;

means for calculating a Substantially unique hash code
Over at least part of the header and over the message
body;

means for comparing the hash codes for each message
within each group; and

means for culling each message having an hash code
matching the hash code for at least one other message
within the group; and

means for retaining one Such non-culled message as a
unique message.

