» UK Patent Application .. GB 2395033 .. A

(43) Date of A Publication 12.05.2004

(21) Application No: 0321456.6 (61) INTCL:
GO6F 9/50
(22) Date of Filing: 12.09.2003
(52) UK CL (Edition W):
(30) Priority Data: G4A AFGN
(31) 10259534 (32) 27.09.2002 (33) US
(56) Documents Cited:
GB 2365288 A GB 2349256 A
(71) Applicant(s): GB 2274180 A US 6237081 B1
Agilent Technologies Inc US 5881315 A US 20020133653 A1
{Incorporated in USA - Delaware)
395 Page Mill Road, Palo Alto, (58) Field of Search:
California 94306, United States of America UK CL (Edition W) G4A
INT CL’ Go6F
(72) Inventor(s): Other: Online: EPODOC, WPI, JAPIO
Glenn Rosa Carcido
Robert Scott Fryman
Kevin William Lemay
Frank L Mantong
(74) Agent and/or Address for Service:
Williams Powell
Morley House, 26-30 Holborn Viaduct,
LONDON, EC1A 2BP, United Kingdom
(54) Abstract Title: Event management system
(57) An event management system 50 arranged to operate on a 46 ’/50
computer system having event producers 46 and event / PERFORMANCE FATH APl 54
consumers 48, the system comprising an initial event wal ———1 - 7T T T 148a
handler program 54 and an event queue 56. The initial event \.PH%VDEJ‘IJEH\ EVENT CONSUMERH
handler program retrieves a first event 60a from the event [EVENT CONSUMER
queue for event processing by an event consumer 48a, 45b\ Event | | | ‘!;"\}E'ﬁ'f W&
whereupon a first response is returned to the initial event PRODUCER HANDLER TEVEnT CONSUERT,
handler program. The initial event handler program then i ; 1480
manages the first event on the event queue based on the { '

! |
first response. The system preferably includes an event E }
processor pointer 62a in a pointer table 58, wherein the 46n\PR%VDEL5\gER |
initial event handler program is operable to lookupthe t—— 1| / 1~ pWR10 || T | 48n

PTRTO
event processor pointer from the pointer table. The system 602~ EVENT | | PROCESSORI-62a

_ 4] PTRTO
may also include an extended event handler program 52, G(e);l())c Ex::; PROCESSOR|[~62P

. o e . PTRTO L,
wherein the initial ever'wt handler program is operable to use 0d—EVENT | |PROCESSOR 62¢
an event processor pointer 62¢ to call the extended event
handler program for further event processing.

56-14 —62n

PTRTO
POSTED —PR‘§$§§§°R -
EVENT pROCESSOR
QUEUE * 'pOINTER
TABLE

Fig. 7

vV €E096EC 99

Original Printed on Recycled Paper

111

20

22 24 26
{) 1
STORAGE NETWORK
CPU DEVICES FACILITIES 8 3
38 [INPUT/OUTPUT
28 DEVICES
- /O
32
42 3)0
EVENT MANAGEMENT SYSTEM
INITIAL EXTENDED
OPERATING| 54 EVENT EVENT 490
SYSTEM HANDLER HANDLER
POSTED Extenoen| [T—*
56| EVENT POINTER 94
QUEUE TABLE
MEMORY

Fig. 1

2Mm

44

46 ¥ 50 48
462 EVENTMANAGEMENT/oYSTEM ¥ }
EVENT / EVENT I48
PRODUCER[™ ONSUMER[T**4
PERFORMANCE o OnBUMERH-48b
EVENT PATH |
PRODUCER API EVENT 1],
CONSUMER]" "**¢
l : |
l :
| | |
- o
EVENT | :
PRODUCER EVENT ||
0 CONSUMER] | *2"
] l
46n | | N\ ____ J
EXTENDED EVENT 480
52 EVENT ONSUMER
AP :
i
|
i
1
5
EVENT |-
ONSUMER| %

Fig. 2

311

50
;6 ¥ 54

PERFORMANCE PATH API

46a
AL el EVENT CONSUMER}
EVENT .CONSUMEF—llIM/Bb

480 | EvENT INITIAL EVENT CONSUMERH-,
EVENT
PRODUCER HANDLER ! [48¢

46n| EVENT // \\\\ _ :

\JPRODUCER EVENT CONSUMER
PTRTO |} ———=———— 48n
60a-+ evENT | | PROCESSORH-62a

60b—L] PTRTO L
EVENT | | procESSOR[[62°
60c14 EVENT PTRTO

60d—H EVENT | | PROCESSOR

56— PTRTO U —g2n
PROCESSOR
POSTED EVENT }-58
EVENT
GUEUE PROCESSOR
POINTER
TABLE

Fig. 3

411

64
(

PRODUCER EVENT |-60a
INDEX EVENT [—60b
_| CONSUMER |
66 INDEX EVENT [-60c
T EVENT |—60d
|56
POSTED
EVENT
. QUEUE
Fig. 4
68
70 ¥ 12 74
)) |
D SUB-EVENT DATA OR
CATEGORY | PTRTO DATA
Fig. 5
/80 84
31 30, 1/ 0,82
l__’o-SUCCEss
1-RETRY
N
(0-NOT MOVED
1-MOVED

Fig. 6

511

50

46 ¥
54
PERFORMANCE PATHAPI/
46a l48a
EVENT o
JEVENT CONSUMER}J/I
46b INITIAL :
PRODUCER HANDLER T
: EVENT CONSUMER
i : l48d
: : |
: / ! l
46n | EVENT / 3 :
\/PRODUCER EVENT CONSUMER|~
PTRTO |0 ———— | 48n
60a—+ EVENT | | PROCESSORK-62a
60b—. PTRTO |
THEVENT ! | proCESSOR|[~62P
60c EVENT PTRTO 62c
60d—H EVENT | |PROCESSOR
56 | [PTRTO |l
Soorop LPROCESSOR 62n
EVENT 58
EVENE PROCESSOR
QUEU POINTER
TABLE

Fig. 7

6/11

EXTENDED EVENT AP

EXTENDED
EVENT
HANDLER

90

~98a 10@

RETRY

HEAD

96n—RETRY

92~

RETRY

HEAD

RETRY

HEAD

RETRY

HEAD

HEAD

RETRY

HEAD

EXTENDED
EVENT
LOOKUP
TABLE

98b

L _100c-
ny

1q2a

EVENT CONSUMER

NEXT}--

Hoob|

EVENT CONSUMER

NEXT

~102b

EVENT CONSUMER

1

*

NEXT

EVENT CONSUMER

~102¢

NEXT L1024

EVENT CONSUMER

/]

NEXTI—+
1 |102e

EVENT CONSUMER

NEXTf—t102n

EXTENDED

POINTER TABLE

94

—4-106

Fig. 9

| (o-success

| 1-RETRY
(0-NOT MOVED

(1-MOVED
(0-PASS TO NEXT

1-EVENT
CONSUMED

7111

START
Y 200

EVENT PRODUCER
GENERATES EVENT

Y

OPERATING SYSTEM PASSES
EVENT TO INITIAL —202

EVENT HANDLER(IEH)

/208

IEH RETRIEVES
PTR TO EVENT
PROCESSOR

IEH CALLS
YES EVENT
PROCESSOR

206
] Y
IEH POSTS EVENT
TO
POSTED EVENT QUEUE

NEXT EVENT
> OR
MAIN LOOP

811

START

Y

300
[

MAIN LOOP
CALLS IEH

Y

302

IEH RETRIEVES
EVENT FROM QUEUE

304~

Y

IEH LOOKS UP PTR
TO EVENT P

ROCESSOR

Y

306—

IEH CALLS EVENT

PROCESSOR

Y

308

RESPONSE FROM EVENT

PROCESSOR

NO

310

318

SUCCES
?

YES 3/12

MOXED YES

IEH UPDATES

CONSUMER INDEX

NO

314

NO

Y

DONE
?

YES

RETURN TO

—316

MAIN LOOP

Fig. 11

9/11

START |
400

Y ya
MAIN LOOP
CALLS IEH

, 402

IEH RETRIEVES
EVENT FROM QUEUE

Y yd

404

IEH LOOKS UP PTR TO
EXTENDED EVENT HANDLER(EEH)

Y 406
IEH CALLS EEH

®

Fig. 12

10/11

@ 500 :
[|

EEH RETRIEVES RETRY VECTOR

502 5?6
NO USE RETRY VECTOR |
504 YES [CLEAR RE
[TRY VECTOR]
[USE HEAD VECTOR] 508

510 \
EEH LOOKS UP CONSUMER PTR [

»{EEH CALLS EVENT CONSUMER]

Y

RESPONSE FROM EVENT
CONSUMER 14

526
YES
522
EEH LOOKS UP] NO
NEXT PTR
EEH SETS
RETRY VECTOR
I

YE
O 5 RETURNTOIEH J«— 528

!
524 520

Fig. 13

11/

9

6(}0

RETURN TO IEH FROM EEH

NO SuCCESS

Y

604

IEH UPDATES
CONSUMER INDEX

YES 6(138

610
]

IEH PROCESSES
NEXT EVENT
IN QUEUE

RETURN TO MAIN LOOP

Fig. 14

10

15

20

25

30

2395033

EVENT MANAGEMENT SYSTEM

The present invention generally relates to computer systems, and more

particularly, to an event management system and method which can operate

on a computer system having event producers and event consumers.

Background of the Invention

One type of conventional computer system, referred to as an event-based
system, relies on events to elicit actions. Event-based systems, include event
producers and event consumers. Event producers create events and
communicate these events to the system. Event consumers act on or process the
events.

Event-based systems can have a small or large number of event
producers and event consumers. A small event-based system may have only a
few event producers and a few event consumers. In such small event-based
systems, one event producer is often tied to one event consumer. In larger event-
based systems, many event producers create events, which are directed to many
event consumers. In such large event-based systems, one event is often sent to g
many event consumers.

Generally, events are requests for some action. General event types
include user-input events, system messaging events, and inter-application events.
User-input events are initialized by a system user and include events such as a
keystroke, a mouse click, and a disk file insertion. System messaging events are
messages between an operating system and an application program. Examples
of system messaging events include requests to create a new file, display a
window, and change the contents of a file. Inter-application events are requests
for action between application programs including connecting to a network and
communicating through a network. Each of these events is directed to at least

one event consumer for event processing.

10

15

20

25

30

Event management systems, which operate on event-based systems,
manage events. In small event-based systems, an event management system
handles a small number of events with a limited set of event consumers. In a
small event-based system, the event management system is often a series of
computer program instructions or statements, which compare event information
to selected criteria and direct the event to the appropriate event consumer. For
example, an event management system can include a switch statement with
multiple cases written in C language code or a series of if statements with jump
instructions written in another language. These decision-making statements are
typically stored in one or more source code files. Similarly, the event consumers
are also typically stored in one or more source code files. The decision-making
statements and event consumers are compiled together to create an executable
program.

In small event-based systems, new event consumers may be added to
increase functionality. For example, new event consumers are added to
accommodate expanded user needs or for debugging and testing purposes.
Adding a new event consumer typically involves changing the decision-making
code, adding the new event consumer to the source code, and recompiling to
create a new executable program. Assuming that the old executable program
was tested, adding a new event consumer destabilizes the event-based system
platform, which results in additional system testing. Adding a new event
consumer for debugging and testing not only changes the code under test, but
removing the debugging and testing code destabilizes the tested event-based
system platform. Although the new event consumer could be retained in the new
code after testing, the new code would take up more memory space, which is
often at a premium.

During operation, an event-based system receives an event from an event
producer. In a small event-based system, this event is passed to the decision-
making statements. The decision-making statements compare the event
information to selected criteria, one at a time, until the event information arrives
at the appropriate case or if statement. The executable program then calls the

selected event consumer and the event is processed. This event management

10

15

20

25

30

operation is time consuming, and it is possible that during this event
management operation, the event-based system will not be able to respond to
new events. Consequently, events can be dropped due to an overrun condition
resulting from limited resources. Also, other portions of the event-based system
are potentially starved for data while the system is processing events.

In larger event-based systems, the event management system handles a
large number of events using a large number of event consumers. Some larger,
more complex event management systems do not have the above problems
associated with small event management systems. Nevertheless, larger event
management systems typically employ operating system facilities to manage
events. For example, some large event management systems are implemented
with multi-tasking facilities of the operating system. In a multi-tasking
environment, system functionality is divided into small functional units, such
that a specific function is associated with a specific task. The operating system
switches between these tasks to complete processing in an operation referred to
as context switching. During context switching, copies of data being processed
are stored in memory, while other data are switched in for processing. Thus, the
multi-tasking environment adds overhead to the event-based system in the form
of processing time and memory requirements. The multi-tasking overhead can
significantly degrade system performance. In addition, in some systems the
multi-tasking memory requirements exceed the amount of available memory.

For reasons stated above and for other reasons presented in the
description of the preferred embodiments section of the present specification, an
improved event management system is desired which does not have the above
problems associated with small event management systems and which can be

implemented in a single-tasking environment.

One aspect of the present invention provides of an event management
system, operating on a computer system having event producers and event
consumers. The event management system includes an initial event handler

program and an event queue having a first event. The initial event handler

10

15

20

25

30

program retrieves the first event from the event queue for event processing. The
event processing returns a first response to the initial event handler program.
The initial event handler program manages the first event on the event queue
based on the first response.

An embodiment of the present invention is described below, by way
of example only, with reference to the accompanying drawings, in which:

Figure 1 is a block diagram illustrating one exemplary computer system
on which an exemplary embodiment of an event management system, according
to the present invention, is implemented.

| Figure 2 is a block diagram illustrating an exemplary embodiment of an
event management system, according to the present invention, in communication
with event producers and event consumers.

Figure 3 is a block diagram illustrating an exemplary embodiment of a
performance path application program interface (API), according to the present
invention.

Figure 4 is a block diagram illustrating an exemplary embodiment of a
method for posting and retrieving events from a posted event queue, according to
the present invention.

Figure 5 is a diagram illustrating an exemplary embodiment of an event
data structure for the events in a posted event queue.

Figure 6 is a diagram illustrating an exemplary embodiment of a first
response to an initial event handler.

Figure 7 is a block diagram illustrating an exemplary embodiment of a
performance path API configured to call an extended event APL

Figure 8 is a block diagram illustrating an exemplary embodiment of an
extended event AP

Figure 9 is a diagram illustrating an exemplary embodiment of a second
response passed from an event consumer to an extended event handler.

Figure 10 is a flow chart illustrating an exemplary embodiment of new
event processing, including immediately processing the new event and posting

the new event.

10

15

20

25

30

Figure 11 is a flow chart illustrating an exemplary embodiment of event
processing from a posted event queue in one exemplary embodiment of a
performance path APL

Figure 12 is a flow chart illustrating the beginning of event processing
through an exemplary embodiment of an extended event APL.

Figure 13 is a flow chart illustrating continued event processing through

an exemplary embodiment of an extended event APL

Figure 14 is a flow chart illustrating event processing through an
exemplary embodiment of a performance path AP] after returning from an

exemplary embodiment of an extended event APL.

In the following detailed description of the preferred embodiments,
reference is made to the accompanying drawings, which form a part hereof, and
in which is shown by way of illustration specific embodiments in which the
invention may be practiced. It is to be understood that other embodiments may

be utilized and structural or logical changes may be made without departing

from the scope of the present invention. The following detailed description,
therefore, is not to be taken in a limiting sense, and the scope of the present
invention is defined by the appended claims.

Figure 1 is a block diagram illustrating one exemplary computer system
20 on which an exemplary embodiment of an event management system
according to the present invention is implemented. Computer system 20 is an
event-based system and includes a central processing unit (CPU) 22, storage
devices 24, network facilities 26, an input/output (IVO) controller 28, and a
memory 30, all electrically coupled to one another via a system bus 32. VO
controller 28 is also electrically coupled to input/output (/O) devices 34 via line
38. It is understood that different components could be substituted for the
example illustrated components of the computer system 20 and components
could be added or removed, without altering the present invention. It is also

understood that an exemplary embodiment of the present invention could be

10

15

20

25

30

implemented in other event-based systems, such as a security system, a network
switch, or a network server.

In one embodiment of computer system 20, the CPU 22 is a single
microprocessor. However, other event-based systems embodying the present
invention, include other types of processing units, such as a mainframe
processor, multiple processors, or a micro-controller.

In one embodiment, storage devices 24 includes a disk drive and an
external storage device, such as a back up tape drive. One embodiment of,
network facilities 26 includes a network card and a connection to a network,
such as a local area network (LAN) or the Internet. 1/O controller 28 is suitably
a controller card or an integrated controller for handling multiple input devices
34 and output devices 36. /O devices 34 and 36 can include a keyboard, a
video monitor, a mouse, and other /O devices such as sensors or RF interfaces.
The above-described components of the computer system 20 are event
producers.

Memory 30 stores software for controlling computer system 20.
Memory 30 typically includes volatile memory, such as RAM, and non-volatile
memory, such as ROM, EEPROM, and Flash memory. The software stored
memory 30 includes an operating system 42, such as DOS, UNIX, Windows, a
proprietary operating system, and/or other suitable operating systems. The
software stored in memory 30 also includes an event management system 44.
CPU 22 executes operating system 42 and event management system 44 to
contro} the 6peration of computer system 20.

During operation, CPU 22 retrieves and executes instructions from
memory 30. Operating system 42 includes a main loop and CPU 22 executes the
main loop and calls other programs as needed for processing. Events from event
producers are received by operating system 42, which calls event management
system 44. CPU 22 proceeds to execute event management system 44 to process
the received events. The received events include user-input events, system
messaging events, and inter-application events.

Example user-input events include keyboard presses and mouse clicks,

which are retrieved by 1/O controller 28. The user-input events are then

10

15

20

25

30

retrieved from /O controller 28 by operating system 42, executing on the CPU
22. Operating system 42 calls event management system 44 to process the user-
input events.

System messaging events include messages between operating system 42
and other programs, for example, programs employed to control storage devices
24. The system messaging events are retrieved from storage devices 24 over
system bus 32 by operating system 42, executing on the CPU 22. Operating
system 42 calls event management system 44 to process the system messaging
events.

Inter-application events are requests for actions between application
programs, such as, for example, the requests for actions between an Internet
browser application program and an application program residing on the Internet
network. In this example situation, messages between the browser application
program, executing on CPU 22, and the network application program pass
through system bus 32 and network facilities 26. Operating system 42 interacts
with the browser application program, to receive events and call event
management system 44 to process the inter-application events.

Event management system 44 processes events from event producers by
calling one or more event consumers. These event consumers are often

programs residing in memory 30 of computer system 20. The event consumers

pass information to the components of computer system 20.

One exemplary embodiment of event management system 44 described
herein includes an initial event handler 54 and a posted event queue 56 for
storing event information. Initial event handler 54 stores incoming events at the
end of posted event queue 56 and retrieves events from the beginning of posted
event queue 56. This event queuing operation buffers the incoming events,
which can prevent overrun conditions. Also, with an event posted to posted
event queue 56, memory associated with the processing of the event can be freed
for use in other parts of computer system 20.

One exemplary embodiment of event management system 44 also
includes an extended event handler 90 for managing multiple event consumers

associated with the processing of one event. Extended event handler 90 is

10

15

20

25

30

accessed via an extended pointer table 94 having a pointer to extended event
handler 90 in place of a pointer to a default event consumer. Initial event
handler 54 calls extended event handler 90 to process events through multiple
event consumers, which may or may not include the supplanted default event
consumer. In one embodiment, extended event handler 90 calls one event
consumer at a time, in serial fashion, going from one event consumer to the next
until processing is complete. Retry information is stored and passed to initial
event handler 54, which maintains the event on posted event queue 56 if
processing was not completed. Extended event handler 90 allows multiple event
consumers to be added without altering the default event consumer code or call
routines. In this manner, processing is accomplished in an orderly fashion
without taking an extraordinary amount of computer system 20 processing time
Of MEMmOTY IeSOUICES.

Figure 2 is a block diagram illustrating an exemplary embodiment of
event management system 44 according to the present invention in
communication with event producers 46 and event consumers 48. Event
producers 46 can be any of the components of the computer system 20. Event
consumers 48 are programs, which process or handle the events. Event
management system 44 is called by operating system 42 to process events from
event producers 46. In turn, event management system 44 calls event consumers
48. Operating system 42 and event management system 44 are executed on CPU
22. Similarly, event consumers 48 are also executed on CPU 22. |

Event management system 44 includes a performance path application
program interface (API) 50 and an extended event AP1 52. Performance path
API 50 is in communication with all event producers 46a-46n. The number of
event producers 46a-46n in computer system 20 can be expanded to
accommodate the needs of the user. Performance path API 50 is in
communication with a subset of the event consumers 48, including event
consumers 48a-48n, which are tightly coupled to performance path AP150. The
number of event consumers 48a-48n can also be expanded to accommodate the

needs of the user.

10

15

20

25

30

Extended event API 52 can access all event consumers 48a-48z. Event
consumers 480-48z are consumers added to accommodate the needs of the user.
These additional event consumers 480-48z can add increased functionality to
computer system 20, such as debugging and testing functions. The number of
event consumers 480-48z can also be expanded to accommodate the needs of the
user.

One exemplary embodiment of performance path API 50 calls one of
event consumers 482a-48n or, in the alternative, extended event API 52.
Extended event API 52 calls selected ones of event consumers 48a-48z serially,
to process an event. The event consumers 48a-48z can be called in any order by
extended event API 52. After processing, extended event API 52 passes control
back to performance path API 50 and operating system 42.

In operation, operating system 42 receives an event from an event
producer 46 and calls event management system 44, Operating system 42 passes
the event information to performance path API 50, which receives the event for
subsequent event processing. To process the event, performance path API 50
calls either a particular one of event consumers 48a-48n or extended event API
52. The chosen one of event consumers 48a-48n or extended event API 52
attempts to process the event and passes a first response back to performance
path API 50. In one embodiment, the first response indicates that the event was
successfully processed, a retry is in order, or the event was moved and stored in-
memory 30.

If called, extended event API 52 calls one of event consumers 48a-48z
from a series of selected event consumers 48a-48z. The called one of event
consumers 48a-z attempts to process the event and if successful passes this
information to extended event API 52 in a second response. Extended event API
52 determines if any more event consumers 482-48z need to be called. If the
series of selected event consumers 48a-48z is complete, extended event AP1 52
passes a successful response to performance path API 50. Alternatively, if the
event is successfully processed and the series of selected event consumers 48a-
48z is not complete, extended event AP 52 calls the next event consumer 48 in

the series.

10

15

20

25

30

10

Unsuccessful processing of an event results in a retry response passed to
extended event API 52 and performance path API 50. This same event is
processed by the same unsuccessful one of event consumers 48a-48z when event
management system 44 is next called by operating system 42. A moved
response received in the second response is passed on to performance path AP1
50.

Performance path API acts based on the first response from either one of
event consumers 482-48n or extended event API 52. If processing ié successful,
performance path API 50 either processes the next event or passes control back
to operating system 42. If processing is not successful, a retry is performed. To
initiate the retry, performance path API 50 passes control to operating system 42.
In this situation, event management system 44 attempts to process the same
event when next called by operating system 42. If the event is moved,
performance path API 50 either processes the next event or passes control to
operating system 42. A moved event will not be processed the next time event
management system 44 is called by operating system 42.

Figure 3 is a block diagram illustrating an exemplary embodiment of
performance path API 50 according to the present invention. Performance path
API 50 includes an initial event handler 54, a posted event queue 56, and an
event processor pointer table 58. Initial event handler 54 is in communication
with event producers 46a-46n and event consumers 48a-48n. Initial event
handler 54 has numerous functions. For example, initial event handler 54
controls posted event queue 56 and accesses event processor pointer table 58.
Initial event handler 54 receives events from event producers 46a-46n and posts
events to posted event queue 56. Initial event handler 54 also retrieves events
from posted event queue 56, uses event information to access event processor
pointer table 58 and calls event consumers 48a-48n. In another configuration,
initial event handler 54 is in communication with and calls extended event API
52, instead of one or more of event consumers 48a-48n.

Posted event queue 56 holds event information in event elements 60a-
60d. In one example embodiment, posted event queue 56 is a circular queue

with up to 256 elements in memory 30. However, posted event queue 56 can be

10

15

20

25

30

11

other suitable sizes and can be adjusted to accommodate user needs. Also, other
embodiments of posted event queue 56 are not implemented as circular queues.
For example, other embodiments of posted event queue 56 include a linked list
queue and an array. Each event element 60a-60d contains information about an
event from one of the event producers 46a-46n.

Event processor pointer table 58 includes pointers to processors 62a-62n
for handling events. These processors for handling events are either event
consumers 48a-48n or extended event API 52. In one configuration, wherein
performance path API 50 does not call extended event API 52, the pointers 62a-
62n correspond directly, on a one to one basis, with the event consumers 48a-
48n (i.e., pointer 62a points to event consumer 48a, pointer 62b points to event
consumer 48b, and pointer 62n points to event consumer 48n). In this
configuration, each pointer 62 points to only one event processor.

Figure 4 is a block diagram illustrating one exemplary embodiment of a
method for posting and retrieving events from posted event queue 56. Initial
event handler 54 posts events to posted event queue 56 at a producer index 64
and retrieves events from posted event queue 56 at a consumer index 66.
Producer index 64 points to the next available space in posted event queue 56
(i.e., the element or space following event element 60d). After an event has been
posted, initial event handler 54 increments producer index 64 to point to the next
available space. Consumer index 66 points to the next event to be processed
(i.e., event element 60a). Initial event handler 54 increments consumer index 66
to remove one of event 60a-60d from posted event queue 56. With posted event
queue 56 implemented as a circular queue, events removed by incrementing
consumer index 66 are over-written by new events posted to posted event queue
56.

Figure 5 is a diagram illustrating one exemplary embodiment of an event
data structure 68 for the event elements 60a-60d in posted event queue 56.

Event data structure 68 includes an identification (ID) section 70, a sub-event
category section 72, and a data section 74. 1D section 70 is an index into event
processor pointer table 58. Accordingly, initial event handler 54 uses ID section

70 (i.e., the index) to select an appropriate one of pointers 62a-62n. Sub-event

10

15

20

25

30

12

category section 72 contains information that categorizes the event into a
particular group. With group information, an event processor can handle all
events in a particular group in the same manner. Data section 74 includes
relevant event data or a pointer to relevant event data in memory 30. Event data
structure 68 is passed along for event processing.

Figure 6 is a diagram illustrating one exemplary embodiment of a first
response 80 to initial event handler 54. First response 80 is passed back to initial
event handler 54 from either one of event consumers 48a-48n or extended event
API 52. In one embodiment, first response 80 includes bit zero indicated at 82,
which indicates success with a zero and retry with a one. In one embodiment,
first response 80 also includes bit one indicated at 84, which indicates not moved
with a zero and moved with a one.

In operation, operating system 42 calls event management system 44 to
process new events and continue processing posted events 60a-60d. Initial event
handler 54 configures each new event into an event data structure 68 having an
ID section 70, a sub-event category section 72, and a data section 74. Initial
event handler 54 also checks each new event and, based on preprogrammed
criteria, either attempts processing the new event immediately or posts the new
event to posted event queue 56. To immediately process the new event, initial
event handler 54 calls an event processor, either one of the event consumers 48a-

48n or the extended event API 52. Initial event handler 54 passes event data

structure 68 to the event processor during the call operation. If the new event is

successfully processed or moved, the new event is never posted to posted event
queue 56. However, if a retry is indicated, initial event handler 54 posts the new
event to posted event queue 56. New events are posted to posted event queue 56
by placing the event data structure 68 in posted event queue 56 at the producer
index 64, which in one embodiment is the next available space in posted event
queue 56. In one embodiment, initial event handler 54 posts all new events to
posted event queue 56.

Initial event handler 54 uses consumer index 66 to process posted events
60a-60d from posted event queue 56. Initial event handler 54 retrieves one of

the events 60a-60d at the consumer index 66. Initial event handler 54 employs

10

15

20

25

30

13

the ID section 70 from the retrieved event 60 as an index into event processor
pointer table 58 to thereby retrieve a selected pointer to a processor 62 from
event processor pointer table 58. Next, initial event handler 54 calls the event
processor pointed to by the selected pointer to the processor 62. This event
processor is either one of the event consumers 48a-48n or the extended event
API 52.

The following example operation is provided for better understanding of
event management system 44. Assume for this example that ID secﬁon 70 from
event 60a indexes the pointer to processor 62¢ in event processor pointer table
58. Assume further, that pointer to processor 62¢ points to event consumer 48c,
as illustrated in Figure 3. To begin, initial event handler 54 retrieves event 60a
from posted event queue 56 at the consumer index 66. Initial event handler 54
takes the ID section 70 from event 60a for an index. Since, for this example, ID
section 70 indexes pointer to processor 62c, initial event handler 54 retrieves
pointer to processor 62¢ from event processor pointer table 58. Next, initial
event handler 54 calls the event consumer 48c pointed to by pointer to processor

62c. As with immediate processing of a new event, initial event handler 54

passes the event data structure 68 to the event consumer 48¢ during the call
operation.

To continue the example, event consumer 48c attempts to process the
event 60a and passes first response 80 back to initial event handler 54. First
response 80 indicates success, retry, or moved. Where success is indicated,
initial event handler 54 increments the consumer index 66 to remove the
successfully processed event 60a from posted event queue 56. Initial event
handler 54 proceeds to either process the next event 60b or pass control back to
operating system 42. One reason control is passed back to operating system 42
is to limit the number of events that can be processed by event management
system 44 during any one call. Thus, in one embodiment, if a defined number of
events have already been processed by event management system 44 during the
current call, processing is returned to operating system 42.

When first response 80 indicates retry, initial event handler 54 does not

increment consumer index 66 and immediately passes control to operating

10

15

20

25

30

14

system 42. In each of these situations, success and retry, memory 30 associated
with processing the event 60a is freed or released to the computer system 20
after first response 80 is received by initial event handler 54. In this manner,
event management system 44 keeps memory 30 free for use in computer system
20.

When first response 80 indicates moved, initial event handler 54
increments consumer index 66 to remove the event 60a from posted event queue
56. Initial event handler 54 proceeds to process the next event 60b or pass
control back to operating system 42. A moved response indicates that the event
60a has been moved to another queve. In one scenario, this is because the
resources needed for processing the event 60a are not available. Thus, posted
event queue 56 is not blocked by the moved event. Memory 30 associated with
a moved event is not freed.

Figure 7 is a block diagram illustrating an exemplary embodiment of
performance path API 50 configured to call extended event API 52.

Performance path API 50 includes initial event handler 54, posted event queue
56, and event processor pointer table 58. Initial event handler 54 is in
communication with event producers 46a-46n, event consumers 48a, 48b, 48d-
48n, and extended event API 52. In the configuration illustrated in Figure 7,
initial event handler 54 is not in direct communication with event consumer 48c,
because extended event handler 52 has taken the position previously occupied by
event consumer 48c. In other performance path API 50 configurations, extended
event handler 52 takes the place of any one, all or none of the event consumers
48a-48n.

Initial event handler 54 has numerous functions. For example, initial
event handler 54 controls posted event queue 56 and accesses event processor
pointer table 58. Initial event handler 54 receives events from event producers
46a-46n and posts events to posted event queue 56. Initial event handler 54 also
retrieves events from posted event queue 56, uses event information to access
event processor pointer table 58 and calls event consumers 48a, 48b, 48d-48n or

the extended event API 52.

10

15

20

25

30

15

Posted event queue 56 holds event information in event elements 60a-
60d. In one example embodiment, posted event queue 56 is a circular queue with
up to 256 elements in memory 30. However, posted event queue 56 can be other
suitable sizes and can be adjusted to accommodate user needs. Also, other
embodiments of posted event queue 56 are not implemented as circular queues.
For example, other embodiments of posted event queue 56 include a linked list
queue and an array. Each event element 60a-60d contains information about an
event from one of the event producers 46a-46n.

Event processor pointer table 58 includes pointer to processor elements
62a-62n for handling events. In the configuration illustrated in Figure 7, the
processors for handling events are event consumers 48a, 48b, 48d-48n and the
extended event API 52. In this configuration, performance path API 50 calls the
extended event API 52 instead of event consumer 48c. For example, pointer 62a
points to event consumer 48a, pointer 62b points to event consumer 48D, pointer
62c points to the extended event API 52, pointer 62d points to event consumer
48d,...,and pointer 62n points to event consumer 48n.

Figure 8 is a block diagram illustrating one exemplary embodiment of
extended event API 52. Extended event API 52 includes an extended event
handler 90, an extended event lookup table 92, and an extended pointer table 94.
Extended event handler 90 has numerous functions. For example a call to
extended event API 52 is actually call to extended event handler 90. Extended ‘.
event handler 90 manages and retrieves entries from extended event lookup table
92. Extended event handler 90 retrieves pointers from extended pointer table 94.
Also, extended event handler 90 uses the retrieved pointers to call event
consumers 48a-48z.

Extended event lookup table 92 includes event entries that extended
event API 52 can process. These event entries include retry vectors 96a-96n and
head vectors 98a-98n. The retry vectors 96a-96b and head vectors 98a-n are
indexes into extended pointer table 94.

Extended pointer table 94 includes entries, which point to selected events
consumers 48a-48z. Each entry in extended pointer table 94 contains one of

event consumer pointers 100a-100n and a corresponding next pointer 102a-102n.

10

15

20

25

30

16

Each one of event consumer pointers 100a-100n points to a corresponding one of
event consumers 48a-48z. Each one of next pointers 102a-102n points to one of
the entries in extended pointer table 94 to link one of event consumer pointers
100a-100n to another one of event consumer pointers 100a-100n. Event
management system 44 employs extended pointer table 94 to execute multiple
event consumers 48a-48z in a series for processing a single event.

Figure 9 is a diagram illustrating one embodiment of a second response
104 passed from one of event consumers 48a-482 to extended event handler 90.
Second response 104 includes a bit zero indicated at 106, a bit one indicated at
108, and a bit two indicated at 110. In one embodiment, bit zero indicated at 106
indicates success with a zero and retry with a one. In one embodiment, bit one
indicated at 108 indicates not moved with a zero and moved with a one. In one
embodiment, bit two indicated at 110 indicates pass to next with a zero and event
consumed with a one. Extended event handler 90 directs processing to the next
selected one of event consumers 48a-48z or back to initial event handler 54
using second response 104.

In operation, the operating system 42 calls the event management system
44 10 process new events and continue processing posted events 60a-60d. The
initial event handler 54 configures each new event into an event data structure 68
having an ID section 70, a sub-event category section 72, and a data section 74.
Initial event handler 54 also checks each new event and, based on
preprogrammed criteria, either atterpts processing the new event immediately
or posts the new event to posted event queue 56. To immediately process the
new event, initial event handler 54 calls an event processor, either one of the
event consumers 48a-48n or the extended event API 52. Initial event handler 54
passes event data structure 68 to the event processor during this call operation.
If the new event is successfully processed or moved, the new event is never
posted to posted event queue 56. However, if a retry is indicated, initial event
handler 54 posts the new event to posted event queue 56. New events are posted
to posted event queue 56 by placing the event data structure 68 in posted event

queue 56 at the producer index 64, which in one embodiment is the next

10

15

20

25

30

17

available space in posted event queue 56. In one embodiment, initial event
handler 54 posts all new events to posted event queue 56.

Initial event handler 54 uses consumer index 66 to process posted events
60a-60d from posted event queue 56. Initial event handler 54 retrieves one of
the events 60a-60d at the consumer index 66. Initial event handler 54 employs
the ID section 70 from the retrieved event as an index into event processor
pointer table 58 to thereby retrieve a selected pointer to a processor 62 from the
event processor pointer table 58. Next, initial event handler 54 calls the event
processor pointed to by the selected pointer to the processor 62. This event
processor is either one of the event consumers 48a-48n or the extended event
API 52.

The following example operation includes a call to extended event API
52 and is provided for a better understanding of event management system 44.
Assume for this example that ID section 70 from event 60a indexes the pointer
to processor 62¢ in event processor pointer table 58. In addition, in the present
example assume further, that pointer to processor 62c points to extended event
API 52, as illustrated in Figure 7, not event consumer 48c. To begin, initial
event handler 54 retrieves event 60a from posted event queue 56 at the consumer
index 66. Initial event handler 54 takes the ID section 70 from event 60a for an
index. Since, for this example, ID section 70 indexes pointer to processor 62c,
initial event handler 54 retrieves the pointer to processor 62c¢ from event
processor pointer table 58. Next, initial event handler 54 calls extended event
API 52, instead of event consumer 48c. As with immediate processing of a new
event, initial event handler 54 passes the event data structure 68 to extended
event API 52 during the call operation. Processing continues with extended
event API 52.

A call to extended event API 52 is actually a call to extended event
handler 90, which continues processing by retrieving the ID section 70 from
event 60a. ID section 70 is used as an index into extended event lookup table
92. Extended event handler 90 retrieves the retry vector 96¢ from extended
event lookup table 92, as illustrated in Figure 8 by the dashed line and arrow

from extended event handler 90 to extended event lookup table 92. Initial event

10

15

20

25

30

18

handler 90 determines if the retry vector 96¢ is null. If the retry vector 96¢ is not
null, extended event handler 90 uses the retry vector 96¢ to access extended
pointer table 94. However, if the retry vector 96¢ is null, extended event handler
90 retrieves the head vector 98c to access extended pointer table 94.

In the present example, the retry vector 96¢ is null and the head vector
98¢ is used to retrieve event consumer pointer 100a, as illustrated in Figure & by
the dashed line and arrow from the head vector 98c to event consumer pointer
100a. Event consumer pointer 100a points to any one of the event consumers
48a2-48z. Extended event handler 90 calls the selected one of event consumers
48a-48z for processing event 60a.

The one of event consumers 48a-48z called by extended event handler 90
passes a second response 104 to extended event handler 90. The second
response 104 indicates success or retry; not moved or moved; and pass to next or
event consumed. If second response 104 indicates success and event consumed,
extended event handler 90 passes a first response 80 indicating success to initial
event handler 54 and nothing is placed into the retry vector 96¢. Initial event
handler 54 increments the consumer index 66 to remove event 60a from posted
event queue 56 and either processes the next event 60b or passes control back to
operating system 42.

When the second response 104 indicates success and pass to next,
extended event handler 90 retrieves the next pointer 102a and accesses extended
pointer table 94 to retrieve event consumer pointer 100b. Event consumer |
pointer 100b is used by extended event handler 90 to call one of the event
consumers 48a-48z. Processing continues in the selected one of event
consumers 48a-48z, which passes another second response 104 to extended
event handler 90.

When the second response 104 indicates retry, extended event handler 90
sets the retry vector 96¢ to index event consumer pointer 100a. Next, extended
event handler 90 passes a first response 80 indicating retry back to initial event
handler 54. Initial event handler 54 does not increment the consumer index 66
and immediately passes control back to operating system 42. The next time

operating system 42 calls event management system 44, processing from posted

10

15

20

25

30

19

event queue 56 continues with event 60a. Extended event API 52 is called and
the retry vector 96¢ is used to index event consumer pointer 100a. Extended
event handler 90 calls the same one of event consumers 48a-48z to resume
processing.

When the second response 104 indicates moved, extended event handler
90 does not set the retry vector 96¢ and passes a first response 80 indicating
moved to initial event handler 54. Initial event handler 54 increments the
consumer index 66 to remove event 60a from posted event queue 56. Initial
event handler 54 proceeds with processing the next event 60b or passes control
back to operating system 42.

As before, when the first response 80 indicates success or retry, memory
30 associated with processing event 60a is freed for use in computer system 20.
However, where the first response 80 indicates moved, memory 30 is not freed.

Figure 10 is a flow chart illustrating new event processing, including
immediately processing the new event and posting the new event, according to
one embodiment of the present invention. To start, as indicated at 200, an event
producer 46 generates a new event in computer system 20. Operating system 42
retrieves and stores the new event for the next time operating system 42 calls
event management systermn 44. At this time, as indicated at 202, operating
system 42 passes the new event information to performance path API 50 and
initial event handler (IEH) 54. Initial event handler 54 configures the event
information into an event data structure 68 and decides, at 204, whether to post
the new event. At 206, if the new event is posted, initial event handler 54 places
the event data structure 68 in posted event queue 56 at the producer index 64. At
214, initial event handler 54 then continues to process the next event in posted
event queue 56 or passes control to operating system 42. In one scenario,
however, initial event handler 54 has instructions to immediately process the
new event before posting the new event.

At 208, when the new event is processed before posting, initial event
handler 54 obtains the index and retrieves the pointer to a selected event
processor. At 210, initial event handler 54 then calls the event processor using

this pointer. This event processor can be cither one of the event consumers 48a-

10

15

20

25

30

20

48n or the extended event API 52. In either situation, the event processor
attempts to process the new event and passes the first response 80 back to initial
event handler 54, which determines, at 212, if the first response 80 indicates
success or moved, as opposed to retry. If processing was successful or the new
event was moved, initial event handler 54 passes control back to operating
system 42 or proceeds to process the next event, as indicated at 214. On the
other hand, if the first response 80 indicates retry, initial event handier 54 posts
the event, at 206, by placing the new event data structure 68 into posted event
queue 56 at the producer index 64. From 206, initial event handler 54 processes
the next event or passes control to operating system 42, as indicated at 214.

Figure 11 is a flow chart illustrating event processing from posted event
queue 56 in one exemplary embodiment of performance path API 50, according
to one embodiment of the present invention. At 300, event processing begins
with operating system 42 calling performance path API 50 and initial event
handler 54 from the main loop of the operating system. After processing new
events and to continue processing posted events, initial event handler 54, at 302,
retrieves an event from posted event queue 56 at the consumer index 66. At 304,
initial event handler 54 employs the index from the selected event and looks up
the pointer to the corresponding event processor. Initial event handler 54 then
calls the event processor, at 306, which returns the first response 80 to initial
event handler 54, at 308. This first response 80 contains success, retry, and
moved indicators.

At 310, initial event handler 54 checks the success indicator. If event
processing was successful, initial event handler 54 updates the consumer index
66, at 312, to remove the event from posted event queue 56. Initial event
handler 54 then determines, at 314, if event processing is complete or the limit
has been reached. If processing is not complete, initial event handler 54, at 302,
retrieves the next event from posted event queue 56 and continues event
processing. However, if processing is complete or the limit has been reached,
initial event handler 54 passes control back to operating system 42, as indicated

at 316.

10

15

20

25

30

21

When the first response 80 does not indicate success, initial event handler
54 determines, at 318, if the event was moved. If the event was not moved, retry
is indicated and control is passed to operating system 42, as indicated at 316. If
the event was moved, initial event handler 54 updates the consumer index 66, at
312, to remove the event from posted event queue 56. Event processing
continues as if the event had been successful.

Figures 12, 13, and 14 are flow charts illustrating event processing
through an exemplary embodiment of extended event API 52, according to one
embodiment of the present invention. At 400 in Figure 12, event processing
begins with operating system 42 calling performance path API 50 and initial
event handler 54 from the main loop of the operating system. By way of
example, assume that initial event handler 54 immediately begins processing
events from posted event queue 56. In another example, initial event handler 54
calls extended event API 52 while immediately processing a new event. At 402,
initial event handler 54 retrieves an event from posted event queue at the
consumer index 66. Initial event handler 42 employs the ID section 70 from the
retrieved event to use as an index into event processor pointer table 58. At 404,
initial event handler 54 looks up the pointer to an event processor, which in this
example is a pointer to extended event API 52 and thereby is actually a pointer
to extended event handler 90 in the extended event API. At 406, initial event
handler 54 uses the selected pointer to call extended event handler 90 for event:
processing. Event processing continues in extended event API 52 with extended
event handler 90.

Figure 13 is a flow chart illustrating event processing through the
exemplary embodiment of extended event API 52, according to one embodiment
of the present invention. Extended event handler 90 receives event data in the
call instruction from initial event handler 54. At 500, extended event handler 90,
employing the event ID section 70 as an index, retrieves a retry vector 96 from
extended event lookup table 92. At 502, extended event handler 90 checks the
retry vector 96 for a null condition. If the retry vector 96 is null, extended event

handler 90 uses a corresponding head vector 98, as indicated at 504.

10

15

20

25

30

22

Alternatively, if the retry vector 96 is not null, extended event handler 90 uses \
the retry vector 96, as indicated at 506.

In one embodiment, extended event handler 90 makes a working copy of
the retry vector 96, and uses the copy of the retry vector 96. The retry vector 96
in extended event lookup table 92 is then cleared, at 508. Processing continues
with extended event handler 90 looking up the event consumer pointer from
extended pointer table 94, as indicated at 510, using the head vector 98 or the
retry vector 98. Extended event handler 90 calls the event consumer 48, at 512,
and the event consumer 48 responds to extended event handler 90 with a second
response 104, at 514. This second response 104 contains indicators for success
or retry; moved or not moved; and pass to next or event consumed.

At 516, extended event handler 90 checks the second response 104.
When the second response 104 indicates success, extended event handler 90, at
518, continues to check whether the event was consumed. If the event was
successfully processed and consumed, extended event handler 90 passes control
back to initial event handler 54, as indicated at 520. In this situation, extended

event handler 90 passes a first response 80 indicating success back to initial

event handler 54.

When the event was successfully processed but not consumed, extended
event handler 90, at 522, looks up the pointer to the next event consumer. At
524, extended event handler 90 checks the next pointer. If the next pointer is
null, processing is passed to initial event handler 54, at 520, with success
indicated. If the next pointer is not null, processing continues, at 510, with the
extended event handler 90 looking up the next event consumer pointer for
processing.

When the second response 104 indicates the event was not processed
successfully, at 516, the second response is further checked, at 526, to determine
if the event was moved. If the event was moved, processing is returned to initial
event handler 54, at 520, with moved indicated. However, if the event was not
moved a retry is indicated and extended event handler 90, at 528, sets the retry
vector 96 in extended event look up table 92. Processing is then returned to

initial event handler 54 with the retry indicator set, at 520. Thus, event

10

15

20

25

30

23

processing is eventually returned from extended event handler 90 to initial event
handler 54.

Figure 14 is a flow chart illustrating event processing through the
exemplary embodiment of performance path API 50 after returning from
extended event API 52, according to one embodiment of the present invention.
At 600, processing returns to initial event handler 54 from extended event
handler 90 with the first response 80. Initial event handler 54 checks the first
response 80, at 602, to determine if event processing was successful. If event
processing was successful, initial event handler 54 updates the consumer index
66, at 604, to remove the event from posted event queue 56. At 606, initial event
handler 54 checks to determine if event processing is completed or if the limit
has been reached. If event processing is complete, initial event handler 54
passes control back to the main loop of operating system 42, as indicated at 608.

If event processing is not complete, initial event handler 54 processes the next

event in posted event queue 56, as indicated at 610.

When the first response 80, passed from extended event handler 90,
indicates event processing was not successful, initial event handler 54 checks, at
612, to determine if the event was moved. If the event was not moved, a retry is
indicated and initial event handler 54 returns processing to the main loop of
operating system 42, at 608. However, if the event was moved, processing
continues at 604 where initial event handler 54 updates the consumer index 66 to
remove the event from posted event queue 56. Initial event handler 54 then
checks to determine if processing is complete, at 606. If processing is complete,
control is passed to the main loop of operating system 42, at 608. If processing
is not complete, processing continues with the next event in posted event queue
56, as indicated at 610.

Although specific embodiments have been illustrated and described
herein for purposes of description of the preferred embodiment, it will be
appreciated by those of ordinary skill in the art that a wide variety of alternate
and/or equivalent implementations calculated to achieve the same purposes may
be substituted for the specific embodiments shown and described without

departing from the scope of the present invention. Those with skill in the

24

chemical, mechanical, electro-mechanical, electrical, and computer arts will
readily appreciate that the present invention may be implemented in a very wide
variety of embodiments. This application is intended to cover any adaptations or
variations of the preferred embodiments discussed herein. Therefore, it is
manifestly intended that this invention be limited only by the claims and the

equivalents thereof.

The disclosures in United States patent application No.10/259,534
from which this application claims priority, and in the abstract accompanying

this application are incorporated herein by reference.

25

CLAIMS

1. An event management system, arranged to operate on a computer
system having event producers and event consumers, the event management
system including:

an initial event handler program; and

an event queue having a first event, wherein the initial event handler
program is operable to retrieve the first event from the event queue for event
processing that returns a first response to the initial event handler program,
wherein the initial event handler program is operable to manage the first

event on the event queue based on the first response.

2. A system as in claim 1, including an event processor pointer in a
pointer table, wherein the initial event handler program is operable to use the

first event to look up the event processor pointer from the pointer table.

3. A system as in claim 2, wherein the first event includes an index into
the pointer table, wherein the initial event handler program is operable to use

the index to look up the event processor pointer.

4. A system as in claim 2, wherein the event processor pointer points to
one of the event consumers, wherein the initial event handler program is

operable to use the event processor pointer to call the event consumer.

5. A system as in claim 2 or 3, including an extended event handler
program wherein the event processor pointer points to the extended event
handler program, wherein the initial event handler program is operable to use
the event processor pointer to call the extended event handler program for

further event processing.

26

6. A system as in claim 5, including an extended event in an extended
event lookup table, wherein the extended event handler program is operable

to retrieve the extended event for further event processing.

7. The event management system of claim 6, including extended points
in an extended pointer table, wherein the extended event handler program is
operable to use the extended event to look up one extended pointer from the

extended pointer table.

8. A system as in claim 7, wherein the extended event includes a retry
vector and a head vector indexing extended pointers in the extended pointer
table, wherein the extended event handler program is operabie to use the retry
vector to look up a first extended pointer unless the retry vector is null,
wherein the head vector is used to look up a second extended pointer where

the retry vector is null.

9. A system as in claim 6, wherein the extended event includes a retry
vector and a head vector, wherein the head vector relates to the beginning of
a chain of event consumers and the retry vector relates to where processing

left off in the chain of event consumers.

10. A system as in any one of claims 5 to 9, wherein the extended event
handler program is operable to receive a second response, which includes

event processing result indicators.

11. A system as in claim 10, including an extended pointer table having
extended pointers including an event consumer pointer and a next event
consumer pointer, wherein the extended event handler program is operable to
use the next event consumer pointer for further event processing where the

second response indicates success and pass to next.

27

12. A system as in claim 10 or 11, wherein the second response indicates
success and consumed, and the extended event handler program is operable to

return success in the first response to the initial event handler program.

13. A system as in claim 10 or 11, wherein the second response includes
retry, wherein the extended event handler program is operable to.return retry

in the first response to the initial event handler program.

14. A system as in any preceding claim, wherein when the first response
indicates retry the initial event handler program is operable to leave the first
event in the event queue; and/or when the first response is success or moved
the initial event handler program is operable to remove the first event from
the event queue; and/or when the first response is success or retry the initial
event handler program is operable to free memory associated with the first

event.

15. A system as in any preceding claim, wherein a second event is
received by the initial event handler program from the event producers,
wherein the initial event handler program is operable to post the second event

to the end of the event queue.

16. A system as in claim 15, wherein the initial event handler program is
operable to post the second event to the event queue in an event data structure

having an ID section, a sub-category section and a data section.

17. A method of managing events in a computer system having event
producers and event consumers, including the steps of:
retrieving an event from an event queue, wherein the event queue has

at least one event from one of the event producers;

28

calling an event processor for processing the retrieved event and
returning a first response;

receiving the first response from the event processor, wherein the
first response indicates a result of processing the retrieved event; and

managing the retrieved event on the event queue based on the first

response.

18. A method as in claim 17, wherein calling an event processor

comprises calling one of the event consumers.

19. A method as in claim 17, wherein calling an event processor
comprises:

calling an extended event handler program; and

executing the extended event handler program, wherein executing the

extended event handler program includes calling a chain of event consumers.

20. A method as in claim 19, including the steps of:
looking up an extended event from an extended event lookup table;
analyzing the extended event for an indexing vector; and
looking up an extended pointer using the indexing vector, wherein

calling the chain of event consumers includes using the extended pointer.

21. A method as in claim 22, wherein analyzing the extended event for an
indexing vector includes:
determining if a retry vector is null, wherein the retry vector indicates
which event consumer in the chain of event consumers processing left off at;
retrieving the retry vector where the retry vector is not null; and
retrieving a head vector where the retry vector is null, wherein the

head vector indicates the beginning of the chain of event consumers.

29

22, A method as in claim 19, 20 or 21, including receiving a second
response from one of the event consumers in the chain of event consumers,

wherein the second response indicates the results of event processing.

23. A method as in claim 22, including:

looking up an extended pointer entry having an event consumer
pointer and a next event consumer pointer; and

using the next event consumer pointer where the second response

indicates success and pass to next.

24, A method as in any one of claims 17 to 23, wherein managing the
retrieved event includes leaving the retrieved event on the queue or removing

the retrieved event from the queue based on the first response.

25. A method as in any one of claims 17 to 24, wherein retrieving an
event includes retrieving a consumer index that points to the event in the

event queue and indexing the event in the event queue using the consumer

index.

26. A method as in any one of claims 17 to 25, including:
receiving an event from one of the event producers;
organizing the event into an event data structure; and
posting the event data structure to the event queue.

27. A computer system, including:

memory storing an initial event handler program and an event queue,
wherein the initial event handler program has instructions including event
queue posting instructions, event queue retrieving instructions and event

queue management instructions; and

30

a processor operable to execute the initial event handler program,
wherein the processor is operable to execute the event queue posting
instructions to post a new event to the event queue and wherein the processor
is operable to execute the event queue retrieving instructions to retrieve a
posted event from the event queue for event processing that returns a first
response to the processor, wherein the processor is operable to execute the
event queue management instructions to manage the retrieved event on the

event queue based on the first response.

28. A computer system as in claim 27, wherein the memory includes a
pointer to event processing in a pointer table and the processor is operable to
execute the initial event handler program to analyze the retrieved event and

look up the pointer to event processing.

29. A system as in claim 27 or 28, wherein when the first response is
retry the processor is operable to execute the even queue management

instructions to leave the retrieved event on the event queue.

30. A system as in claim 27, 28 or 29, wherein when the first response is
success or moved and the processor is operable to execute the event queue

management instructions to remove the retrieved event from the event queue.

31. A system as in any one of claims 27 to 30, wherein when the first
response is success or retry the processor is operable to execute the initial

event handler program to free memory associated with the retrieved event.

32. A system as in any one of claims 27 to 31, wherein the memory
includes an extended event handler program and the processor is operable to
execute the initial event handler program to call the extended event handler

program, which returns the first response.

31

33, A system as in claim 34, wherein the processor is operable to execute

the extended event handler program to call more than one event consumer.

34. An event management system substantially as hereinbefore described

with reference to and as illustrated in the accompanying drawings.

35. A method of managing events in a computer system substantially as
hereinbefore described with reference to and as illustrated in the

accompanying drawings.

A “’«S'/(

e b -
s »dtg’,lll, _ S {
Oflice E

\\()) e

Yikks o

N

" -.
f N
7 [e 1R W

Application No: GB 0321456.6 Examiner: Dr Mark Shawcross
Claims searched: 1-33 Date of search: 27 February 2004

Patents Act 1977 : Search Report under Section 17

Documents considered to be relevant:

Category | Relevant | Identity of document and passage or figure of particular relevance

to claims
X 1-6,14, | GB 2274180 A (HANOVER); page 5 lines 13-16, page 5 line 28
17'1382’ o to page 6 line 19 & fig.2
X 11-;*,1184-21:, GB 2365288 A (SAMSUNG); page 2 line 8 to page 3 line 26 &
2631 fig1
X 1,14-18, | US 2002/0133653 (REILLY); paras [0010-0011], [0022], [0036] &
24, 26-27 Al [0045]
& 29-31
X 1‘7, 1]‘;'1 254: US 6237081 B1 (LE et al.); col.2 lines 19-39 & fig.6
27,29 &
31
X 1,17 &27 | GB 2349256 A (HEWLETT-PACKARD); page 4 lines 13-28 &
at lcast ﬁgl
X 1, 171 & 27| US 5881315 A (COHEN); col.2 line 35 to col.3 line & fig.7
at least
Categories:
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date but before the
with one or more other documents of same category. filing date of this invention.
& Member of the same patent family E

Patent document published on or after, but with priority date earlier
than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCY:
G4A

_Worldwide search of patent documents classified in the following areas of the IPC’:

GO6F

Online: EPODOC, WPI, JAPIO

An Executive Agency of the Department of “Trade and Industry

INVESTOR IN PEOPLE

