wo 2017/189027 A1 |00 0O T

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
02 November 2017 (02.11.2017)

(10) International Publication Number

WO 2017/189027 Al

WIPO I PCT

(51) International Patent Classification:
G060 20/00 (2012.01)

(21) International Application Number:
PCT/US2016/037253

(22) International Filing Date:
13 June 2016 (13.06.2016)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

62/329,888 29 April 2016 (29.04.2016) US

(71) Applicant: DIGITAL ASSET HOLDINGS [US/US]; 96
Spring Street, 8th Floor, New York, NY 10012 (US).

(72) Imventors: PEIKERT, Vincent, 96 Spring Street, 8th
Floor, New York, NY 10012 (US). VEPREK, Ratko;
96 Spring Street, 8th Floor, New York, NY 10012 (US).

SJODIN, Johan; 96 Spring Street, 8th Floor, New York,
NY 10012 (US). LITSIOS, James; 96 Spring Street, 8th
Floor, New York, NY 10012 (US). BERNAUER, Alexan-
der; 96 Spring Street, 8th Floor, New York, NY 10012
(US). PILAY, Darko; 96 Spring Street, 8th Floor, New
York, NY 10012 (US). KROM, Robin; 96 Spring Street,
8th Floor, New York, NY 10012 (US). MEIER, Simon; 96
Spring Street, 8th Floor, New York, NY 10012 (US). KFIR,
Shaul; 96 Spring Street, 8th Floor, New York, NY 10012
(US).

Agent: KAUFMAN, Marec, S.; Reed Smith LLP, 1301
K Street, N.W., Suite 1000, East Tower, Washington, DC
20005-3317 (US).

74

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN,CO,CR, CU,CZ,DE, DK, DM, DO, DZ,

EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR,

(54) Title: DIGITAL ASSET MODELING

> N Initiate ladger
— IS
1
I - NV
i1 | Private Shared Ledger | | Ledger Transaction Proposal cr
L T
‘_ Ledger Entry “fnput” “Cutput”
[M : 4 Ref. to ledger enfry + | {[edger Entry Proposal '!Authorization Visibility !
B Ledger Eniry interpratation p } harized itted)) | requi Consiraints|
[= thos jited) {e.g. cheice and arguments}| |
N e | i} Ledger Entry Proposal Authorization | | Visibility
[4 } Lediﬂe‘E”"YHafi“-: Raf. to ledger enfry + } I !l i Co y_ g
[} | g0zt COMMINeD; | interpretation ¢ | :
i Ledger Enty {e.g. choice and } Ledger Erfry Proposal ||Authorization Vigibilty !!
Ledger Enfiy Fash | " Y
{avthorzed, committed) | Siore ledger 2)

transaction

per party &

Commit storage
state

Autharizati ‘
utharizations, S-- GD

per enfry {when needed)

Cuoordinate ledger
transaction

Request authorizations
par party, possibly partial view

o[

L {Aiftzation per iy, 5o ey

Authorize ledger
fransaction

FIG. 41

(57) Abstract: A system (2000 - 3300, 4200 - 4300) and method (100, 3900, 4300) are provided for modeling and interpreting a
modeled digital asset and its evolution with respect to the rights of a plurality of parties, the method comprising: executing an await
function (1200, 4320) instance no more than once using one of at least one choice defined therein for disposition of the digital asset
with respect to the rights of at least one of the plurality of parties, said await function instance incorporated upon the consent of the
affected parties to fulfil a configured function instance associated with the at least one choice; executing an agree function (1300, 3900)
instance that requires the consent of at least one of the plurality of parties to execute; and storing (4100, 4370) the results of the executed

function instances in an append-only ledger (4000, 4312 - 4314).

[Continued on next page]

WO 201771890277 A1 { NI /0P 0 0 O R

HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA,
LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE,
PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE,
SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2017/189027 PCT/US2016/037253

DIGITAL ASSET MODELING

CROSS-REFERENCE
[0001] This application claims priority under 35 USC § 119 to U.S. Provisional Patent

Application No. 62/329,888 (Atty. Dkt. 16-30013-US-PV, Client Dkt. DAH-2016011P) entitled
Digital Asset Modelling Language Simulator, filed on April 29, 2016 in the United States Patent
and Trademark Office (USPTO), the contents of which are herein incorporated by reference in

their entirety.

TECHNICAL FIELD

[0002] The present disclosure relates to a digital asset modeling system and method for

modeling, tracking and settling digital assets, obligations, and transactions.

RELATED ART

[0003] Existing closed, centrally administered ledgers utilized for settling assets,
obligations, and transactions are considered opaque and error-prone. This makes oversight
cumbersome, requires many duplicative processes and ledgers, and allows the potential for fraud.
The first and currently largest alternative to the existing ledger architectures is represented by a
distributed digital ledger called Bitcoin, which uses a blockchain data structure. A fundamental
principle of Bitcoin’s operation is that the system is set up as a peer-to-peer transaction
mechanism that utilizes public-private key cryptography, has no central intermediary or central
repository, and allows all participants in the network to hold and validate the integrity of a full

copy of the ledger in real time. The Bitcoin blockchain was designed in order to create a

WO 2017/189027 PCT/US2016/037253

trustless native asset, bitcoin, which could be exchanged with pseudonymous parties across the
globe.

[0004] Current platforms built to support digital assets on top of Bitcoin-like or
blockchain-like systems are not generally structured to provide comprehensive protection to
financial institutions as may be required by law for many of their existing transaction businesses.
These platforms may not have contemplated the regulatory regime for financial institutions and
financial transactions in general. As a result, institutional investors have hesitated to enter the

digital assets market and have avoided the use of distributed ledgers for their existing businesses.

SUMMARY

[0005] The embodiments disclosed herein provide mechanisms for adding flexibility to
computer executed transactions of digital assets. The embodiments provide new data models and
functions to allow computer systems executing the transactions to operate in a new and
advantageous manner. Provided is an exemplary embodiment method of modeling a digital asset
and its evolution with respect to the rights of a plurality of parties, the method comprising:
providing an await function instance that executes no more than once using one of at least one
choice defined therein for disposition of the digital asset with respect to the rights of at least one
of the plurality of parties, said await function instance incorporated upon the consent of the
affected parties to fulfil a configured function instance associated with the at least one choice;
providing an agree function instance that requires the consent of at least one of the plurality of
parties to execute; and providing an append-only ledger for storing results of the executed
function instances.

[0006] The method may be provided wherein the at least one of the plurality of parties whose

respective rights are at stake is the same at least one of the plurality of parties whose consent is

WO 2017/189027 PCT/US2016/037253

required. The method may be provided further comprising providing a delete function that
requires the consent of the affected parties to invalidate an agree function or disable a non-
executed await function, wherein the append-only ledger stores the results of the executed await,
agree, and delete functions. The method may be provided wherein the digital asset comprises at
least one of cash and/or cash-valued payment, a fungible, equity, bond, commodity, future, right,
or good. The method may be provided wherein the at least one choice of the await function is
made by a delegate of the at least one of the plurality of parties. The method may be provided
wherein the at least one choice of the await function is made by respective delegates of at least
two of the plurality of parties. The method may be provided wherein the append-only ledger
comprises a blockchain. The method may be provided wherein the append-only ledger may be
queried for digital asset status based on pattern-matching. The method may be provided wherein
the append-only ledger may be queried for digital asset status of all models in the ledger using
queries based on top-level definitions. The method may be provided further comprising
providing a delete function to render an active model inactive and no longer available for future
transactions.

[0007] Provided is an exemplary embodiment method of interpreting a modeled digital asset and
its evolution with respect to the rights of a plurality of parties, the method comprising: executing
an await function instance no more than once using one of at least one choice defined therein for
disposition of the digital asset with respect to the rights of at least one of the plurality of parties,
said await function instance incorporated upon the consent of the affected parties to fulfil a
configured function instance associated with the at least one choice; executing an agree function
instance that requires the consent of at least one of the plurality of parties to execute; and storing

the results of the executed function instances in an append-only ledger.

WO 2017/189027 PCT/US2016/037253

[0008] The method may be provided wherein the at least one of the plurality of parties whose
respective rights are at stake is the same at least one of the plurality of parties whose consent is
required. The method may be provided further comprising executing a delete function that
requires the consent of the affected parties to invalidate an agree function or disable a non-
executed await function, and storing the results of the executed await, agree, and delete functions
in the append-only ledger. The method may be wherein the digital asset comprises at least one
of cash and/or cash-valued payment, a fungible, equity, bond, commodity, future, right, or good.
The method may be provided wherein the at least one choice of the await function is made by a
delegate of the at least one of the plurality of parties. The method may be provided wherein the
at least one choice of the await function is made by respective delegates of at least two of the
plurality of parties. The method may be provided wherein the append-only ledger comprises a
blockchain. The method may be provided wherein the append-only ledger may be queried for
digital asset status based on pattern-matching. The method may be provided wherein the
append-only ledger may be queried for digital asset status of all models in the ledger using
queries based on top-level definitions. The method may be provided further comprising
executing a delete function to render an active model inactive and no longer available for future
transactions.

[0009] Provided is an exemplary embodiment digital system configured to interpret a modeled
digital asset and its evolution with respect to the rights of a plurality of parties, the system
comprising: at least one processor configured to execute an await function instance no more than
once using one of at least one choice defined therein for disposition of the digital asset with
respect to the rights of at least one of the plurality of parties, said await function instance

incorporated upon the consent of the affected parties to fulfil a configured function instance

WO 2017/189027 PCT/US2016/037253

associated with the at least one choice, and configured to execute an agree function instance
within the at least one choice that requires the consent of at least one of the plurality of parties;
and at least one storage device configured to store an interpreted result of the executed function
instances in an append-only ledger.

[0010] The system may be provided wherein the at least one of the plurality of parties whose
respective rights are at stake is the same at least one of the plurality of parties whose consent is
required. The system may be provided with the processor further configured to execute a delete
function that requires the consent of the affected parties to invalidate an agree function or disable
a non-executed await function, and to store the execution results of the await, agree, and delete
functions in the append-only ledger. The system may be provided wherein the digital asset
comprises at least one of cash and/or cash-valued payment, a fungible, equity, bond, commodity,
future, right, or good. The system may be provided wherein the at least one choice of the await
function is made by a delegate of the at least one of the plurality of parties. The system may be
provided wherein the at least one choice of the await function is made by respective delegates of
at least two of the plurality of parties. The system may be provided wherein the append-only
ledger comprises a blockchain. The system may be provided wherein the append-only ledger
may be queried for digital asset status based on pattern-matching. The system may be provided
wherein the append-only ledger may be queried for digital asset status of all models in the ledger
using queries based on top-level definitions. The system may be provided with the processor
further configured to execute a delete function to render an active model inactive and no longer

available for future transactions.

WO 2017/189027 PCT/US2016/037253

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Illustrative, non-limiting exemplary embodiments may be more clearly understood from
the following detailed description, particularly when taken in conjunction with the accompanying
drawings, in which:

[0012] Figure 1 is a flowchart showing a language recognizer for the Digital Asset Modeling
Language (DAML™) in accordance with an exemplary embodiment of the present disclosure;
[0013] Figure 2 is a hybrid analogical diagram showing state changes relative to actions in
accordance with an exemplary embodiment of the present disclosure;

[0014] Figure 3 is a hybrid analogical diagram showing digitized states relative to the state
changes of Figure 2 in accordance with an exemplary embodiment of the present disclosure;
[0015] Figure 4 is a hybrid analogical diagram showing recordation of the states of Figure 3 to a
ledger in accordance with an exemplary embodiment of the present disclosure;

[0016] Figure 5 is a hybrid analogical diagram showing change of state, securing, and
authorization of the ledger of Figure 4 in accordance with an exemplary embodiment of the
present disclosure;

[0017] Figure 6 is a hybrid analogical diagram showing replication of the modifiable, secured
and authorized ledger of Figure 5 in accordance with an exemplary embodiment of the present
disclosure;

[0018] Figure 7 is a hybrid analogical diagram showing distributed consensus for the replicated
ledger of Figure 6 in accordance with an exemplary embodiment of the present disclosure;

[0019] Figure 8 is a hybrid analogical diagram showing unnoticed propagation of invalid or
inconsistent state within the distributed ledger of Figure 7 in contrast with an exemplary

embodiment of the present disclosure;

WO 2017/189027 PCT/US2016/037253

[0020] Figure 9 is a hybrid analogical diagram showing noticed propagation of invalid or
inconsistent state within the distributed ledger of Figure 8 in contrast with an exemplary
embodiment of the present disclosure;

[0021] Figure 10 is a hybrid analogical diagram showing entry validations and prevention of
invalid or inconsistent states within the ledger of Figures 8 and 9 in accordance with an
exemplary embodiment of the present disclosure;

[0022] Figure 11 is a hybrid analogical diagram showing dynamic strengthening and extension
of the wvalidation process for the ledger of Figure 10 in accordance with an exemplary
embodiment of the present disclosure;

[0023] Figure 12 is a hybrid diagram showing DAML™ code using the Await function with
defined actions for single party in accordance with an exemplary embodiment of the present
disclosure;

[0024] Figure 13 is a hybrid diagram showing DAML™ code using defined actions for real-
world agreement among multiple parties within a conditional in accordance with an exemplary
embodiment of the present disclosure;

[0025] Figure 14 is a hybrid diagram showing DAML™ code operating on native fungible
digital assets in accordance with an exemplary embodiment of the present disclosure;

[0026] Figure 15 is a hybrid diagram showing DAML™ code with alternating actions by two
parties versus the single party logic of Figure 12 in accordance with an exemplary embodiment
of the present disclosure;

[0027] Figure 16 is a hybrid diagram showing DAML™ code combining multiple steps in

accordance with an exemplary embodiment of the present disclosure;

WO 2017/189027 PCT/US2016/037253

[0028] Figure 17 is a hybrid diagram showing DAML™ code for an asset swap between two
parties in accordance with an exemplary embodiment of the present disclosure;

[0029] Figure 18 is a hybrid diagram showing DAML™ code choice in accordance with an
exemplary embodiment of the present disclosure;

[0030] Figure 19 is a hybrid diagram showing DAML™ code composition in accordance with
an exemplary embodiment of the present disclosure;

[0031] Figure 20 is a hybrid diagram showing DAML™ ordered ledger entries in accordance
with an exemplary embodiment of the present disclosure;

[0032] Figure 21 is a hybrid diagram showing a DAML-based ledger with ordered ledger entries
in accordance with an exemplary embodiment of the present disclosure;

[0033] Figure 22 is a hybrid diagram showing a DAML-based ledger with ordered and
timestamped ledger entries in accordance with an exemplary embodiment of the present
disclosure;

[0034] Figure 23 is a hybrid diagram showing two exemplary DAML™ storage and ledger logic
deployments across multiple parties in accordance with an exemplary embodiment of the present
disclosure;

[0035] Figure 24 is a hybrid diagram showing a DAML™ transaction with ledger entries in
accordance with an exemplary embodiment of the present disclosure;

[0036] Figure 25 is a hybrid diagram showing a DAML™ transaction with ledger entries and
secrecy in accordance with an exemplary embodiment of the present disclosure;

[0037] Figure 26 is a hybrid diagram showing a DAML-based ledger including multi-party
authorization of commitment of new ledger entry transactions in accordance with an exemplary

embodiment of the present disclosure;

WO 2017/189027 PCT/US2016/037253

[0038] Figure 27 is a hybrid diagram showing a DAML-based two-tiered ledger including hash
versus entry and details in accordance with an exemplary embodiment of the present disclosure;
[0039] Figure 28 is a hybrid diagram showing a DAML-based hash-centric public ledger tier or
public log in accordance with an exemplary embodiment of the present disclosure;

[0040] Figure 29 is a hybrid diagram showing a DAML-based private and sharable private
ledger in accordance with an exemplary embodiment of the present disclosure;

[0041] Figure 30 is a hybrid diagram showing a two tier DAML™ ledger with associated ledger
entry identification and ledger entry liveliness tracking in accordance with an exemplary
embodiment of the present disclosure;

[0042] Figure 31 is a hybrid diagram showing a two tier DAML™ ledger with block-oriented
logic, and with associated ledger entry identification and block-centric liveliness tracking in
accordance with an exemplary embodiment of the present disclosure;

[0043] Figure 32 is a hybrid diagram showing party to party sharing of certification or provable
properties of private ledger entry properties in accordance with an exemplary embodiment of the
present disclosure;

[0044] Figure 33 is a hybrid diagram showing hosted and non-hosted copies of a distributed
ledger in accordance with an exemplary embodiment of the present disclosure;

[0045] Figure 34 is a hybrid diagram showing DAML™ ledger entry types for Agree, Await,
and Delete commands in accordance with an exemplary embodiment of the present disclosure;
[0046] Figure 35 is a hybrid diagram showing usage of the DAML™ Agree command in
accordance with an exemplary embodiment of the present disclosure;

[0047] Figure 36 is a hybrid diagram showing ledger entries that are instantiated in accordance

with an exemplary embodiment of the present disclosure;

WO 2017/189027 PCT/US2016/037253

[0048] Figure 37 is a hybrid diagram showing DAML™ code of an agreement for external
notification within an equity model in accordance with an exemplary embodiment of the present
disclosure;

[0049] Figure 38 is a hybrid diagram showing DAML™ code using the Await command within
a cube model in accordance with an exemplary embodiment of the present disclosure;

[0050] Figure 39 is a hybrid diagram showing a DAML™ ledger with delete commands in
accordance with an exemplary embodiment of the present disclosure;

[0051] Figure 40 is a hybrid diagram showing a ledger algorithm with role-centric flows in
accordance with an exemplary embodiment of the present disclosure;

[0052] Figure 41 is a hybrid diagram showing a ledger algorithm with role-centric flows and
comments in accordance with an exemplary embodiment of the present disclosure;

[0053] Figure 42 is a hybrid diagram showing a party-centric ledger algorithm flow in
accordance with an exemplary embodiment of the present disclosure;

[0054] Figure 43 is a hybrid diagram showing a ledger-centric ledger algorithm in accordance
with an exemplary embodiment of the present disclosure; and

[0055] Figure 44 is a hybrid diagram showing a function to initiate a ledger transaction in

accordance with an exemplary embodiment of the present disclosure.

DETAILED DESCRIPTION

[0056] The present inventive concept will be described more fully with reference to the
accompanying drawings, in which exemplary embodiments are shown. The present inventive
concept may, however, be embodied in many different forms and should not be construed as
being limited to the embodiments set forth herein. Like reference numerals may refer to like

elements throughout this description. As used herein, the word “model” is defined as at least one

10

WO 2017/189027 PCT/US2016/037253

bundle of agreement(s) or potential transaction(s), which, under certain governing rules such as
may be provided by a Master Contract, for example, might or might not have the potential to
represent a digitally-represented agreement or a legally binding contract.

[0057] As shown in Figure 1, a language recognizer for the Digital Asset Modeling Language™
(DAML™) is indicated generally by the reference numeral 100. The language recognizer is a
routine executed under the control of a computer processor. DAML™ includes predefined
statements that can be stored as a computer readable data structure. The language recognizer
includes a start block 110, which passes the control to an input block 112. The input block 112
receives computer executable source code, such as from a memory or communications channel,
and passes control to a function block 116. The block 116 performs both lexical analysis and
syntax analysis on the received source code with the help of monadic parser combinator block
114 defined for the DAML™ language, and when successful produces an abstract syntax tree
118 of the parsed DAML™ language, which, in turn, passes control to an end block 120. The
abstract syntax tree 118 is stored as a data structure. The current exemplary embodiment of the
DAML™ processing logic takes DAML™ abstract syntax tree structures and transforms it to a
new DAML™ abstract syntax tree, and is based on each DAML™ ledger entry data structure
storing serialized DAML™ abstract syntax tree data as a data structure. Alternate embodiments
of the DAML™ processing logic can use alternative parser technologies to translate the
DAML™ source code to DAML™ abstract syntax trees, such as, for example, recursive decent.
Alternate embodiments of the DAML™ ledger entry can store data-centric representations of the
DAML™ language expressions, such as, for example, by compiling the DAML™ abstract

syntax trees further with the help of a type inference step and a defunctionalization step to

11

WO 2017/189027 PCT/US2016/037253

replace the higher order functional constructions of the DAML™ language with first-order
constructions.

[0058] In operation, a DAML™ recognizer, under the control of a computer processor, interprets
functions and syntax suitable for modeling digital assets. An exemplary embodiment DAML™
recognizer implements all DAML™ core language features.

DAML™ comments are supported using a Haskell style such as:
-- this is a line comment
{-
This is a multi-line comment. And comments {- can be -- nested -}

-y

[0059] The primitive types include the following: Bool is the two Boolean values True and
False. Text is sequences of Unicode characters. Integer is signed integers of arbitrary size.
Decimal is floating point decimal numbers. Party is unique identifiers for legal entities. Time is
absolute points in time with implementation-dependent precision. RelTime is nominal
differences between points in time (inheriting the same precision). Contractld is an identifier of
a concrete instance of a contract (the digital equivalent to the physical identity of the piece of
paper that a concrete contract is printed on).

[0060] There is a composed type for function types, which are built using the -> operator as in
Haskell. For example, "Integer -> Text" is for a function that takes one argument of type Integer
and returns a Text value.

[0061] DAML™ additionally supports the following special types: Record is a record of labeled
values whose access is checked at runtime. Choice is a choice offered to a party. In an
exemplary embodiment, each choice is made by a party. In an alternate embodiment, a model

contract can incorporate the notion of a party's delegate or and/or an authorization scheme such

12

WO 2017/189027 PCT/US2016/037253

as a public key infrastructure (PKI) such that a party's delegate may make such choice.
Agreement is an agreement about an off-ledger event that must happen. Contract covers the
terms of a model or potential contract. Update is a description of a ledger-update, which creates
and deactivates active models in the ledger. Scenario is a description of a contractual interaction
of multiple parties, which DAML™ embodiments may use for unit testing. Assertion is an
assertion that a certain Boolean condition evaluates to True. PureValue is a value wrapped such
that it can be used as a side-effect-free step both in a ledger-update or a scenario.

[0062] The following words are keywords of the language: await, at, named, if, chooses, then,
else, such, that, exercises, agree, agrees, with, on, let, in, create, commit, commits, scenario,
update.

[0063] Expressions over primitive types are built from literals, built-in functions, function
application, and lambda abstraction. The two Bool literals are True and False. Text literals are
written using double-quotes and use the same escaping rules as Haskell String literals (cf. section
2.6 of the Haskell Report 2010). An exemplary text literal is "Hello world" denoting the string
'Hello world'. Integer literals are written as base-10 numbers, with a possibly prefixed - for
negative numbers. Examples are 1024 and -1. A Decimal literal represents a floating point
decimal number. It is distinguished from an integer literal by having a decimal point. For
example, 1234.56789, 0.5 or 1.0. The general form of decimal literals is given by the regular
expression [0-9]+\.[0-9]+. Note that DAML™ ignores trailing zeros in Decimal literals; e.g., 1.5
== 1.50 == 1.5000. Party literals are written as sequences of alphanumeric characters between
single-quotes. Examples are 'CITI GROUP' and 'DA'. In an exemplary embodiment, it is

assumed that alphanumeric characters are enough to form the unique identifiers for legal entities.

13

WO 2017/189027 PCT/US2016/037253

In an alternate embodiment, a concrete standard (e.g., LEI) may be used for referencing legal
entities.

[0064] Time literals are always interpreted as UTC times and are written as literals according to
ISO-8061 and restricted to the subset that is accepted by the following regular expression: [0-
9]{4}-[0-9]{2}-[0-9]{2} T[0-9]{2}:[0-9]{2}(:[0-9]{2}(\.[0-9]H)?)?Z. For example, 2007-04-
05T14:30Z, 2007-04-05T14:30:00Z and 2007-04-05T14:30:00.0Z all denote the UTC time
14:30 on the Sth of April 2007. Time literals can have arbitrary sub-seconds precision. It is
however implementation-defined how much of that precision can actually be represented. A
RelTime literal represents the nominal differences between two absolute points in time. The
nominal difference between two timepoints is always the same, regardless of whether a leap
second has been or will be introduced. A relative time is represented as a fraction of seconds,
e.g., toRelTime (24.0 * 60.0 * 60.0) denotes the amount of seconds that constitute a day (see
below for an explanation of toRelTime). While RelTime literals can specify arbitrary fractions
of seconds, it is implementation-defined how much of that precision can actually be represented.
However, all implementations guarantee that RelTime and Time have the same precision. In
alternate embodiments, alternative literals such as '1d' may be used to denote the relative time
between the start and the end of a single day in the maximum precision of the implementation.
[0065] There is no fixed means for writing literals of type Contractld, as the form of Contractlds
depends on the execution model. Records are written using curly braces as in JavaScript. For
example, {"x": 1, "y": 2} is a Record with two fields labeled x and y whose values are 1 ::
Integer and 2 :: Integer. DAML™ embodiments currently do not track what fields are present in
the types. Moreover, you can only use literal strings for the labels. DAML™ embodiments use

{} for the empty record.

14

WO 2017/189027 PCT/US2016/037253

[0066] DAML™ embodiments support the standard Haskell operators ||, &&, not for Boolean
disjunction, conjunction, and negation (cf. Chapter 9 of the Haskell Report 2010). DAML™

embodiments support the standard arithmetic operators +, -, * | /, » for addition, subtraction,

multiplication, integer division, and exponentiation for Integers with the usual precedence. As in
Haskell, they can be written in parentheses to use them in prefix notation. For example, (+) 1 2
is another way of writing 1 + 2. In contrast to Haskell, DAML™ embodiments require infix
operators to be surrounded by space. This resolves the ambiguity of 2 - -2 to mean2 - (-2). See
below for overloaded versions of - and + when working with absolute and relative time.

[0067] DAML™ embodiments define the set of Decimals to be all rational numbers d for which
there exist integers n and k such that d == n / 10 ~ k. That is, Decimals are a small subset of
decimals, which include terminating, non-terminating, repeating, and non-repeating rational and
irrational numbers when written in decimal form. Decimals (with a capital "D") include only the
terminating subset of decimals. The following explains how DAML™ supports working with
Decimals. DAML™ embodiments overload the arithmetic operators +, -, * to perform addition,
subtraction and multiplication of Decimals. None of these operators perform any rounding, as the
set of Decimals is closed under addition, subtraction and multiplication.

[0068] DAML™ embodiments support rounding of Decimals to a given precision with the
function round :: Integer -> Decimal -> Decimal where round prec d rounds the Decimal d to the
nearest Decimal of the form n / 10 ~ prec and ties are resolved by rounding towards the Decimal
with an even n, which is the also known as the Banker's rounding mode. For example,

round 02.5==20 round 0 (-2.5)==-2.0
round 03.5==4.0 round 0 (-3.5) ==-4.0
round 03.2==3.0 round 0 (-3.2) ==-3.0
round 0 3.8 ==4.0 round 0 (-3.8) ==-4.0

15

WO 2017/189027 PCT/US2016/037253

[0069] There is no "right" rounding mode. DAML™ embodiments may add further rounding
modes on demand.

[0070] Note that the set of Decimals is not closed under division; e.g., dividing two Decimals
does not necessarily result in a Decimal. For example, 1.0 /3.0 == 0.3333... is a rational number,
but not a (terminating) Decimal. DAML™ embodiments therefore provide the function divD ::
Integer -> Decimal -> Decimal -> Decimal to compute the result of the rational division of two
decimals rounded to a given Integer precision. The rounding mode is the same as the one of
round. DAML™ embodiments provide access to the remainder of this division with the function
remD :: Integer -> Decimal -> Decimal -> Decimal. The relation between divD and remD is
such that the following laws hold: 1) forall prec x y. y * divD prec x y + remD prec x y ==x. 2)
forall prec x y. abs (remD prec x y) < abs y. 3) forall prec x y. sign (remD prec x y) = signy *
sign x.

[0071] DAML™ embodiments support the conversion of Decimals from and to Integer with the
functions fromlInteger :: Integer -> Decimal, and tolnteger :: Decimal -> Integer, where
tolnteger d converts the result of round 0 d. DAML™ embodiments assume that all execution
models internally represent RelTimes as Decimals at a fixed, but implementation-specific
precision. DAML™ embodiments therefore support converting Decimals from and to RelTime
with the functions fromRelTime :: RelTime -> Decimal, and toRelTime :: Decimal -> RelTime,
where fromRelTime provides a the Decimal number of seconds corresponding to the RelTime
and toRelTime d rounds the given number of d seconds to the implementation-specific precision
of RelTime. Note that this implies toRelTime (fromRelTime dt) == dt for all dt.

[0072] DAML™ embodiments support a total order for all primitive types as follows. Bool:

False < True. Text: implementation-defined. Integer: total ordering of integers. Decimal: total

16

WO 2017/189027 PCT/US2016/037253

ordering of decimals. Party: implementation-defined. Time: absolute time is ordered along a
linear axis of time. More formally, V t1, t2 :: Time. t1 < 12 & (tl - t2) < toRelTime O 1.
RelTime: relative time is ordered according to its Decimal representation. Contractld:
implementation-defined.

[0073] DAML™ embodiments support equality for all primitive types such that a == b < not (a
<bVb<a). DAML™ embodiments are using the same infix operators as Haskell does, e.g.,
DAML™ embodiments use ==, /=, <=, >=, <, > to denote equality, inequality, less-or-equal-
than, greater-or-equal-than, less-than, and greater-than, respectively (cf. Chapter 9 of the Haskell
Report 2010). Additionally DAML™ embodiments support the operator (~) :: Contractld ->
Contract -> Bool, where coid ~ co means that coid is a contract-id that refers to an active
contract in the ledger, and this active contract is an instance of co.

[0074] DAML™ embodiments support the concatenation of Text values using the (<>) :: Text -
> Text -> Text operator. DAML™ embodiments support an overloaded operation toText that
converts any value of primitive type to a textual value in an implementation-defined manner.
DAML™ embodiments also support a show operation that converts any value of any type to a
textual value in an implementation-defined manner. This is used for debugging during scenario
development.

[0075] DAML™ embodiments overload the + and - operators such that (+) :: Time -> RelTime -
> Time denotes shifting of a point in time by a relative time and (-) :: Time -> Time -> RelTime
denotes the computation of the time difference between the first and the second argument. The
relation between these operators is such that t1 + (12 - t1) ==t2 for all t1, t2 :: Time.

[0076] Record access is written using brackets as in JavaScript. For example, the expression

r["x"] tries to access the field labeled "x" in the record r. Record values are constructed using

17

WO 2017/189027 PCT/US2016/037253

curly braces and literal strings as in JavaScript. For example, {"x": 1, "y": 2} is a record with two
fields "x" and "y".

[0077] DAML™ embodiments use lambda abstractions as in Haskell, but always annotated with
types; e.g., \(a :: Integer) (b :: Integer) (¢ :: Text) -> toText (a +b) <> ¢. Function application is
written as in Haskell using juxtaposition. It is left-associative and binds stronger than all infix
operators.

[0078] DAML™ embodiments use non-recursive let-bindings as in Haskell, but multiple
bindings have to be separated by a semicolon; e.g., letx =4; y =5; in x + y. The formal syntax
is given by: let varl = exprl; var2 = expr2; ... varN = exprN; in expression. Recursive let-
bindings are not allowed.

[0079] DAML™ embodiments use lazily evaluated if-then-else branching expressions as in
Haskell. The formal syntax is: if condition then expressionl else expression2. For example, if
owner =='ACME' then "sell" else "buy".

[0080] The DAML™ is based on the assumption that the main purpose of models is to describe
what agreements come into effect when and under what constraints. These agreements form the
connection of models in the ledger with effects in the real world. The meaning of agreements
may be determined by human interpretation and optionally in the context of an applicable legal
system, as it is done for paper-based contracts.

[0081] An introductory DAML™ embodiment includes agreements, choices and models. The
formal syntax and semantics of choices, ledger-updates, and models are provided. Alternate
DAML™ embodiments provide further examples to help deepen the understanding of this

modeling language.

18

WO 2017/189027 PCT/US2016/037253

[0082] In an exemplary embodiment, DAML™ embodiments specify agreements using the
agree keyword, whose syntax is partyl, ..., partyN agree textOfAgreement. For example: 'UBS',
'Alice' agree ""UBS' deposits 100 CHF on account 'CH42 1234 5'." is meant to denote the
agreement between 'UBS' and 'Alice' that 'UBS' must deposit the 100 Swiss Francs (CHF) on the
account 'CH42 1234 5' at the point in time when this agreement comes into effect.

[0083] DAML™ embodiments convert such agreements to templates of agreements using
lambda abstraction. For example, the definition deposit = \(obligor :: Party) (owner :: Party)
(amount :: Integer) (account :: Text) -> obligor, owner agree toText obligor <> " deposits " <>
toText amount <> " CHF on "' <> account <> "."; allows one to write the above agreement as:
deposit 'UBS' 'Alice' 100 "CH42 1234 5".

[0084] It is up to the writer of models to make sure that the textual description of an agreement is
precise in the context of the legal system in which the models are interpreted. From the
perspective of the model language, DAML™ embodiments do not interpret the legal text of
agreements, but consider every agreement between parties to be an obligation of these parties.
[0085] DAML™ embodiments model permissions of parties by giving them choices. For
example, the choice 'Alice’ chooses account :: Text then deposit 'UBS' 'Alice' 100 account means
that 'Alice' can choose an account on which 'UBS' must deposit 100 CHF. Models are groups of
choices which are simultaneously available to (possibly multiple) parties. For example,
iouSellSettle = \(obligor :: Party) (owner :: Party) (amount :: Integer) -> await { "settle": owner
chooses account :: Text then deposit obligor owner amount account, "sell": owner chooses
newOwner :: Party then iouSellSettle obligor newOwner amount }; is a template for an I-owe-
you model (IOU) in CHF that can be settled or sold. The model iou 'Alice' 'UBS' 100 denotes a

concrete IOU modeling that "UBS' owes 'Alice' 100 CHF.

19

WO 2017/189027 PCT/US2016/037253

[0086] The previous iouSellSettle example provides intuition on how models are specified. In
the following, DAML™ embodiments will give precise definitions for both the syntax and the
semantics of choices and models. These definitions are non-trivial to explain because they are
mutually recursive via a third concept, which DAML™ embodiments call a ledger-update.
Intuitively, these three concepts are related as follows. 1. A model is a group of mutually
exclusive choices. 2. A choice is a permission given to a specific party to perform a specific
kind of ledger-update at a specific time. 3. A ledger-update is a description of how to update the
ledger by creating new agreements and models, exercising choices on existing models, deleting
existing models, or asserting statements about the ledger's state at specific times.

[0087] In the following, DAML™ embodiments first give and explain the syntax of models,
choices, and ledger-updates. Then, DAML™ embodiments explain how the state of the ledger is
represented and how DAML™ embodiments transition between states using ledger-updates.
DAML™ embodiments specify models using the following syntax. await identified as

contractldBinder named contractNameExpr { "choiceNamel": choicel , ... , "choiceNameN":

choiceN }. Such an expression specifies a model that provides N choices labeled choiceNamel
to choiceNameN to the controlling parties of these choices. The variable contractldBinder is of
type Contractld and can be used to refer to the identity of the concrete model instance in the
definition of the choices 1 to N as well as in the contractNameExpr expression.
ThecontractldBinder is useful to relate multiple choices by giving them the unique contract-id as
an argument. The variablecontractName is of type Text and is an arbitrary name for the model to

facilitate debugging. The named contractName and the identified as contractldBinder parts can

be left out in case they are not needed.

20

WO 2017/189027 PCT/US2016/037253

[0088] DAML™ embodiments specify choices using the following syntax.
controllingPartyExpr chooses valueBinderl :: Typel, .., valueBinderL :: TypelL at
choiceTimeBinder such that booleanChoiceCondExpr then updateExpr. Such a Choice
expression specifies that a choice is given to the party denoted by controllingPartyExpr to choose
values of the required types at some time in the future, and if these values and the time at which
they were chosen satisfy the booleanChoiceCondExpr, then ledger-update denoted by
updateExpr is executed. The choice only succeeds if this ledger-update executes successfully.
[0089] Ledger-updates reflect transactions, are stored as a data structure and are constructed
using one of the following built-in functions or using an update-block. create
ContractOrAgreement -> Update. delete :: Contractld -> Contract -> Update. exercises ::
Party -> Label -> Any -> -> Any -> Contractld -> Update. assert :: Bool -> Update. pure
. Any -> Update. Intuitively, DAML™ embodiments use create to create models or agreements,
delete to deactivate active models, exercises to force parties to execute choices on active models,
assert to assert statements about the current state of the ledger, and pure to construct ledger
updates that just return a value but do not change the ledger.

[0090] An update-block allows one to execute multiple consecutive ledger-updates as one
atomic ledger-update. Update-blocks are specified using the following syntax. update [
updateStatement] ~> binderl , ... , updateStatementN ~> binderN , lastUpdateStatement].
DAML™ embodiments use the squiggly arrows ~> to name the results of the execution of
individual update-statements. These names can then be used in later update-statements to refer to
these results.

[0091] Models can be recursive, as shown in the previous iouSellSettle example. The way to

specify such recursion is via the use of named top-level definitions, as explained later in the

21

WO 2017/189027 PCT/US2016/037253

Section "DAML™ Programs". DAML™ embodiments reduce the syntactic overhead of
specifying models using syntactic sugar. DAML™ embodiments allow for models and
agreements to be used as updates, and DAML™ embodiments allow for records of updates to be
used as updates.

[0092] When using a model ¢ as an update, it's effect is the same as the one of create c.
DAML™ embodiments add this feature as creating models is the most common update action.
When using a record {"11": updl, ..., "IN": updN} as an update, then it's effect is the same one of
update [updl ~>v1 , ..., updN ~> VN, pure {"I1": v1, ..., "IN": vN}]. DAML™ embodiments
add this feature as DAML™ embodiments often need to return results of many intermediate
update actions.

[0093] DAML™ embodiments explain the semantics of models, choices, and ledger-updates as
a transition system. The state of this transition system is a ledger, which is a finite map from
Contractlds to models and a log of agreements that are in effect. The transitions are given by the
interpretation of ledger-updates. Note that DAML™ embodiments specify for each interpretation
both how the ledger is changed and what result value is returned by the ledger-update. DAML™
embodiments require these results when interpreting update-blocks, where later ledger-updates
can refer to the results of earlier ledger-updates.

[0094] DAML™ embodiments interpret an expression create agreementExpr by evaluating
agreementExpr, checking that it is indeed an agreement of the form partyl, ..., partyN agree
legalText, and then recording that this agreement is now in effect. The result of this ledger-
update is the agreement itself.

[0095] DAML™ embodiments interpret an expression create contractExpr by evaluating

contractExpr. Provided this evaluation succeeds with a model co, DAML™ embodiments store

22

WO 2017/189027 PCT/US2016/037253

this model co under a freshly allocated contract-id coid. The result of this ledger-update is the
contract-id coid.

[0096] DAML™ embodiments interpret an expression delete contractldExpr contractExpr by
first evaluating both contractldExpr andcontractExpr. Provided this evaluation success with a
literal contract-id coid and a model co, DAML™ embodiments then check thatcoid identifies an
active model equal to the model co. Provided that is the case, DAML™ embodiments remove
coid from the ledger. Note that DAML™ embodiments require the model co to be specified as
part of the delete to enable the static analysis of which parties are affected by this delete. The
result of a delete is the empty record {}.

[0097] DAML™ embodiments interpret a ledger-update of the form partyExpr exercises
"choiceLabel" with choiceValuel, ... choiceValueN on coid as follows. DAML™ embodiments
first evaluate partyExpr. Provided this results in a literal party name actor, DAML™
embodiments lookup the active model associated with coid. Provided coid identifies an active
model co, DAML™ embodiments mark it as inactive. Then, DAML™ embodiments lookup the
choice identified by "choiceLabel" in co. Provided the actor is equal to the choice's controller,
DAML™ embodiments exercise this choice; e.g., DAML™ embodiments first instantiate both
the choice's condition and its follow-up ledger-update with the given choiceValues and the
current time. Then, DAML™ embodiments check the choice's condition and, provided that
succeeds, then interpret the choice's follow-up. The result of a ledger-update built using exercises
is the result of the choice's follow-up. Note that this interpretation is potentially recursive, but it

is guaranteed to terminate.

23

WO 2017/189027 PCT/US2016/037253

[0098] DAML™ embodiments interpret an expression assert booleanExpr by evaluating the
booleanExpr, and then checking whether the result isTrue. If this is the case, then interpretation
succeeds. Otherwise, it fails. The result of an assert ledger-update is the empty record {}.

[0099] DAML™ embodiments interpret an expression pure x by evaluating x and returning it as
the result of this ledger-update. DAML™ embodiments can therefore use pure to construct side-
effect free ledger-updates that return a specific result.

[00100] DAML™ embodiments interpret an update-block update [updateStatementl ~>
binderl , .. , updateStatementN ~> binderN , lastUpdateStatement | by interpreting the
updateStatements one after the other after substituting the results of the previous
updateStatements for the binders. The result of an update-block is the result of the
lastUpdateStatement. The interpretation of the update-block fails if any of its statements fails;
and all effects on the ledger are only applied, if the update-block succeeds. Update-blocks allow
therefore to build atomic composite ledger-updates.

[00101] One can also define model templates that combine other model templates. For
example, the definition option =\ (controller :: Party) (tlb :: Time) (tub :: Time) (next :: Contract)
-> await { "exercise": controller chooses at t such that tlb <=t && t <= tub then next }; provides
a combinator called option, which allows a party to enter a model during a specific time-interval.
[00102] In all previous examples, choices just lead to the creation of zero to many new
models. The following example of an IOU that can be split and merged shows how to use an
update-block in the "merge" choice to atomically delete (deactivate) the model merged-in and
create the new IOU model over the larger amount. iouChf =\ (obligor :: Party) (owner :: Party)
(amount :: Integer) -> await { "settle": owner chooses account :: Text then deposit obligor owner

amount account , "sell": owner chooses newOwner :: Party then iouChf obligor newOwner

24

WO 2017/189027 PCT/US2016/037253

amount , "split": owner chooses newAmount :: Integer such that 0 < newAmount &&
newAmount < amount then { "ioul": iouChf obligor owner newAmount , "iou2": iouChf obligor
owner (amount - newAmount) } , "merge": owner chooses otherlou :: Contractld, otherAmount
.. Integer then update [delete otherlou (iouChf obligor owner otherAmount) , iouChf obligor
owner (amount + otherAmount)] };.

[00103] DAML™ embodiments can also use models to coordinate changes on other
models by using choices that require specific parties to execute decisions. For example, the
template below can be used to require a payer to transfer ownership of a payment until a certain
time.

-- A template for a breach-of-contract that has to be negotiated between two
-- parties in front of Swiss court.
contractBreachedBy =
\(defendant :: Party) (plaintift :: Party) ->
defendant, plaintiff agree
toText defendant <> " has breached the contract, and " <>
toText plaintiff <> " can sue " <> toText defendant <>
" in any court of Switzerland according to Swiss law."
-- A template for a model requiring payment within a certain time via a
-- transfer of ownership of an IOU as defined above.
mustPaylouUntil =
\ (payer :: Party)
(payee :: Party)
(payment :: Contract)
(maxPayTime :: Time)
>

await

{ Hpayll:

25

WO 2017/189027 PCT/US2016/037253

payer chooses paymentld :: Contractld
such that
-- a check that '‘paymentld' refers to an active 'payment' model
paymentld ~ payment
then payer exercises "sell" with payee on paymentld
-- punitive clause/choice becomes available to the payee after the
-- time that was given to the payer to pay.
, "breach":
payee chooses at tbreached
such that
maxPayTime <= tbreached
then contractBreachedBy payer payee
5
A combinator that uses iouChf payments could then defined as follows.
payInChfUntil =
\ (payer :: Party)
(payee :: Party)
(obligor :: Party)
(amount :: Integer)
(maxPayTime :: Time)
>
mustPaylouUntil payer payee (iouChf obligor payer amount) maxPayTime;

[00104] DAML™ embodiments call a group of top-level definitions a DAML™ program.
DAML™ embodiments currently separate these definitions using semi-colons due to the
following local parsing ambiguity: a=b ¢ = d would be parsed as a = b ¢ with a parse failure
for the following = d. DAML™ embodiments therefore use a trailing semi-colon for each top-

level definition as follows. a = b; ¢ = d to obviate the need for semi-colons.

26

WO 2017/189027 PCT/US2016/037253

[00105] Scenarios are descriptions of how multiple parties interact via a model or models
stored in a ledger. DAML™ embodiments include a special notation for scenarios in the
language because they serve as vital documentation and test-cases for model templates.

Here is an example scenario for the IOU definition in the previous section.
days = \(x :: Integer) -> toRelTime (fromInteger (x * 24 * 60 * 60));
createAndSettlelou =
scenario

[commit (iouSellSettle 'UBS' 'UBS' 100) ~> ubslou

, 'UBS' commits 'UBS' exercises "sell" with 'Alice' on ubslou ~> alicelou

, assert (alicelou ~ iouSellSettle "UBS' 'Alice' 100)

, pass (days 10) ~> now

, 'Alice' commits 'Alice' exercises "settle" with "CH42 1234 5" on alicelou ~> settled

, assert (settled == (

'UBS', 'Alice' agree ""UBS' deposits 100 CHF on 'CH42 1234 5'."))

[00106] As for update-blocks, DAML™ embodiments use squiggly arrows to bind the
results of the scenario actions; and the result of a scenario is the result of its last step. The types
of the bound variables in the above example are the following. ubslou :: Contractld; alicelou ::
Record; now :: Time; settled :: Record;. Note that the form of the alicelou record will be {"iou":
contractld} and the one of the settled record will be {"settle": agreement}. This is determined
from the labeling of the follow-ups in the "sell" and "settle" choices in the iou definition above.

[00107] DAML™ embodiments can pattern match into the records of the results of the
scenario steps. For example 'Alice' exercises "settle" with "CH42 1234 5" on alicelou["iou"] ~>
{"settle" : agreement}. This binds the "settle" entry of the result record of the step to the variable
name agreement. DAML™ embodiments can pattern match records to arbitrary depth, e.g., this

is a valid pattern: {"foo" : {"bar" : {"baz" : varName}}}.

27

WO 2017/189027 PCT/US2016/037253

[00108] Patterns do not need to be complete; that is, labels that are present in the result
record can be omitted in the pattern. A pattern match against a label that is not present in the
result record will cause an error (e.g., a runtime error if interpreted). Shadowing of variable
names is determined by the order of their label keys. In the previous example the label key of the
variable varName is ["foo", "bar", "baz"]. This variable would shadow one with a label key of
["foo", "bar"]. In the example {"a" : varName, "b" : varName} varName binds the entry accessed
by ["b"], because the key ["b"] comes after the key ["a"].

[00109] The default interpretation of a scenario is as follows. Starting with an empty
ledger the steps of a scenario are executed in order.

[00110] Committing ledger-updates. An expression of the form partyl, ..., partyN commit
updateExpr denotes that the parties partyl, ..., partyN jointly agree that they want to commit the
ledger-update denoted byupdateExpr. This succeeds if the updateExpr can successfully be
interpreted as a state transition on the current ledger. DAML™ embodiments require an explicit
specification of the parties that agree to the commit, as these are the only parties that are allowed
to be obligable in the interpreted ledger-update. Alternate embodiments may specify the concept
of obligable parties.

[00111] Controlling Time. A pass relTimeExpr ~> newTimeBinder step advances the
current scenario time by relTimeExpr and binds the new scenario time to newTimeBinder. One
can use this feature to determine the initial time of the scenario as follows: pass (toRelTime 1.0)
~> NOW.

[00112] Expressing Expectations. A assert booleanExpr step evaluates the Boolean
expression and fails the scenario if that expression is false. It has no effect otherwise. The

mustFail keyword can decorate a scenario step to indicate that it is supposed to fail. Such a step

28

WO 2017/189027 PCT/US2016/037253

fails if the inner step does not, and vice versa. For example, it makes sense to state that a model

cannot be settled twice.

mustFailExample = scenario
['UBS' commits (iouSellSettle 'UBS' 'Alice' 100) ~> iould
, 'Alice' commits 'Alice' exercises "settle" with "CH12 345 6" on iould

, mustFail ("Alice' exercises "settle" with "CH12 345 6"on iould)
]

2

[00113] Debugging. The trace textExpr step evaluates the Text expression and creates a
scenario step that does not change the ledgers in any way, but contains the evaluated text in the
description of the step, so this can be used for debugging a scenario and looking into values
using the toText function. Example: trace ("gergely's trace" <> toText (42 + 123)).

[00114] One can annotate any expression with a textual expression using description
annotations. These are written using the following syntax. {@ DESC textExpr @}
someOtherExpression andItsArguments. Description annotations bind as far right as possible,
and you'll have to use parentheses if you only want to annotate a function itself, e.g.,

\(f :: Integer -> Integer) (arg :: Integer) ->
({@ DESC "the function's description" @} f)
({@ DESC "the argument's description" (@} arg)

[00115] DAML™ embodiments use this method as this requires fewer parentheses in the
common case of annotating whole models or choices. Note that in the case of multiple
annotations on the same expression, the inner-most annotation is kept and the other ones are
ignored. In particular, DAML™ embodiments use description annotations to abbreviate models
using non-legally-binding human-readable text for GUI purposes. For example, DAML™

embodiments can introduce named iou models as follows.

29

WO 2017/189027 PCT/US2016/037253

iou =
\ (obligor :: Party) (owner :: Party) (amount :: Integer)
>
{@ DESC
toText obligor <>" --(" <> toText amount <> ")-->" <> toText owner
@}
await

{ "sell": owner chooses newOwner :: Party then {"iou": iou obligor newOwner

amount }
, "settle":
owner chooses account :: Text
then deposit obligor owner amount account
}
traceExample =
scenario

[Bank' commits (iou 'Bank' 'Alice' 1) ~> alice
, 'Bank' commits (iou 'Bank' 'Bob' 2) ~>bob
, trace ("Bob's contract: " <> toText bob)

]

[00116] Description annotations on await keywords are remembered by the interpreter and
used when printing the final ledger. For example, when finishing with a scenario, DAML™
embodiments can have this output.

final ledger:
[contract Oc created at 1970-01-01T00:00:00Z 'Bank' --(1)--> 'Alice’'
["sell":
'Alice’
chooses newOwner5 :: Party

then { "iou": iou newOwner5 'Bank' 1 }

30

WO 2017/189027 PCT/US2016/037253

]
, contract 1c¢ created at 1970-01-01T00:00:00Z 'Bank' --(2)--> 'Bob'

["sell":
'Bob'
chooses newOwnero6 :: Party

then { "iou": iou newOwner6 'Bank' 2 }

]

[00117] Here DAML™ embodiments can see the short description of the IOU, that shows
that the Bank owns Alice $1 and to Bob $2.

[00118] Many models require choices by multiple parties, but are indifferent to the order
in which these choices are made. Such models can be specified with the language features
described up to here. However, the size of these specifications is exponential in the number of
parties that must make a choice, as DAML™ embodiments must enumerate all possible
orderings of choices. To avoid such an exponential blowup, DAML™ embodiments introduce
explicit support for parallel choices by multiple parties.

[00119] DAML™ embodiments explain the support for parallel choices as follows.
DAML™ embodiments first provide an introductory example. DAML™ embodiments then
specify the formal syntax both for parallel choices and decisions on individual parallel choices.
Finally, DAML™ embodiments explain the semantics of parallel choices.

[00120] The following example contract models a proposal for an option to swap two
sellable contracts between two parties.

optional Swap =
\ (alice :: Party)
(aliceGood :: Contract)
(bob .. Party)

31

WO 2017/189027 PCT/US2016/037253

(bobGood :: Contract)

>
await
{ "swap":
{| "alice": alice chooses ca :: Contractld such that ca ~ aliceGood
, "bob" :bob chooses cb :: Contractld such that cb ~ bobGood
1}
then
{ "bob's": alice exercises "sell" with bob on ca
, "alice's": bob exercises "sell" with alice on cb
}
, "alice cancels": alice chooses then {}
, "bob cancels": bob chooses then {}
5
[00121] In contrast to previous examples, the await choice's follow-up is guarded by two

parallel choice-steps. The first step models alice's choice to pre-commit her good and the second
step models bobs choice to pre-commit his good. These two steps are only pre-commits, as both
alice and bob could still exercise a choice on their individual goods as long as the second party
has not provided his good. As it is only an option to swap, DAML™ embodiments provide both
alice and bob with a choice to cancel the swap. Both of these choices remain available as long as
only alice or bob exercised their part of the "swap" choice. Note that the actual swapping of
goods happens atomically once the second party has made its pre-commit choice.

The formal syntax of choices with parallel choice-steps is the following.
{| "choiceStep1":
controllingPartyExpr1
chooses
valueBinderl 1 :: Typel 1, .., valueBinderl L :: Typel L

at choiceStepTimeBinderl

32

WO 2017/189027 PCT/US2016/037253

such that
booleanChoiceStepCondExpr1
then followUpResultBinder1 <- followUpExprl

, "choiceStepN":
controllingPartyExprN
chooses
valueBinderN 1 :: TypeN 1, ..., valueBinderN M :: TypeN M
at choiceStepTimeBinderN
such that
booleanChoiceStepCondExprN
then followUpResultBinderN <- followUpExprN

3

such that
booleanChoiceCondExpr
then followUpExpr

[00122] The scope of the value binders is such that the per-choice-step bound values can
be referenced in the corresponding per-choice-step Boolean conditions; and all bound values can
be referenced in the choice's Boolean condition and all the choice's follow-ups. Note that the
group of choice-steps must be non-empty and all the steps must be labeled differently. DAML™
embodiments chose to use a different kind of parentheses, the {| and |} variants, to ensure that
records and parallel choices are clearly distinguishable. DAML™ embodiments thereby keep the
syntax unencumbered for later generalizations of records.

[00123] DAML™ embodiments extend the formal syntax of decisions such that one can
not only reference the choice's label, but also the choice-steps' label. This allows specifying the
decision of a party to execute one of its choice steps. The concrete syntax is the following.

partyExpr exercises "choiceLabel" ‘"choiceStepLabel" with choiceStepValuel, ..,

33

WO 2017/189027 PCT/US2016/037253

choiceStepValueN on contractldExpr. For example, the following scenario creates a
optional Swap of ious and exercises it.

optional SwapTest =
scenario
['UBS' commits (iouSellSettle 'UBS' 'Alice' 100) ~> aliceloul
,'CS' commits (iouSellSettle 'CS' 'Bob' 160) ~> bobloul
, commit
(optional Swap 'Alice' (iouSellSettle 'UBS' 'Alice' 100)
Bob' (iouSellSettle 'CS' 'Bob' 160)
) ~> optSwapld1
, 'Bob' commits 'Bob' exercises "swap" "bob" with bobloul
on optSwapld1 ~> optSwapld2
, 'Alice' commits 'Alice' exercises "swap" "alice" with aliceloul
on optSwapld2 ~> { "alice's": alicelou2
, "bob's": boblou2
}
, assert (alicelou2 ~ iouSellSettle 'CS' 'Alice' 160)
, assert (boblou2 ~ iouSellSettle 'UBS' 'Bob' 100)
I;

[00124] The semantics of exercising parallel choices is the following. A choice ¢ guarded
by a single choice-step behaves the same way as a normal choice whose condition is the
conjunction of the choice-step's condition and the condition of ¢. For choices guarded with more
than one choice-step, exercising a decision actor exercises "choiceLabel" "step 1" with v1, ..., vN
at time now on "step 1" of a choice ¢ guarded by N choice-steps

{|"step_1": step 1,

, "step_1":

ctrl chooses x1 :: typel, ..., xN :: typeN at t such that choiceStepCond

34

WO 2017/189027 PCT/US2016/037253

, "step N":step N
1}

such that
choiceCond
then followUps
[00125] This works as follows. DAML™ embodiments first check whether actor controls

step_i, then DAML™ embodiments check types of the values v1, ..., vN match the expected
types, and finally DAML™ embodiments check whether the choice-step condition of step i is
satisfied. If all of these checks succeed, then DAML™ embodiments delete the current model,
and create a new model, which records the decision for choice-step step i.

[00126] More concretely, let's assume that the model c¢ is the one pointed to by
optSwapld1 in the above optional SwapTestscenario. Then, the step 'Bob' exercises "swap" "bob"
with bobloul on optSwapldl ~> optSwapld2 executed at time t will mark optSwapldl as
inactive, and introduce a new contract-id optSwapld2 pointing to ¢ after [exercising "swap"
"bob" at t with bobloul] where after is a special keyword marking a list of pending decisions that
must be applied to a model.

[00127] Alternate DAML™ embodiments will allow the specification of pending
decisions in the input-syntax of DAML. These features are fully specified and implemented in
the reference semantics. However, they are not necessarily supported in all execution models.
DAML™ embodiments therefore state for each feature in what execution models it is supported.
[00128] For example, HyperLedger with stakeholder ratification does not currently
support the DAML™ features of Point-Wise Observables or Tabular Contract Query Language.
Financial contracts often depend on external, public measurements like the closing price of a
share, or the announcement of a dividend payment. DAML™ embodiments call such external,

public measurements observable data. There are many models for formalizing observable data.

35

WO 2017/189027 PCT/US2016/037253

DAML™ embodiments explore several of them in the daml-design-considerations.md
document. Here, in this section, DAML™ embodiments explain the support for a simple model
where 1. each party can publish their own named data-feeds of timestamped immutable data
values, and 2. the models can depend on pointwise observations of these data-feeds.

[00129] DAML™ embodiments do not mandate that these data-values are published on
the ledger. Instead, DAML™ embodiments assume that there is some means that allows parties
to communicate values of data-feeds and to prove that a data-feed attained a certain value at a
certain timepoint. Conceptually, the state of a data-feed corresponds at any time to a partially-
defined, piecewise-constant function. As the state of a data-feed evolves the corresponding
function becomes more and more defined, but never changes the value at an already defined
timepoint. More formally, DAML™ embodiments can represent the state of a data-feed of
values of type a as a non-empty list of type type Feed a = [(Time, a)] where the timepoints are
strictly monotonic. Let feed = [(t 0, v 0), (t 1, v_1), ..., (t n, v_n)] be a non-empty list of type
Feed. Then the corresponding partially-defined, piecewise-constant function is the function that
maps the timepoint t to

1. v_1if there exists a consecutive pair of timed values (t i, v_1) and (t_(i+1),

v_(i+1))in feed such thatt 1 <=t <t (i+1),

2. v nift n==t, and
3. undefined, if none of the above two conditions is satisfied.
[00130] Note that this definition implies that (t_n, v_n), the last timed value in feed, only

defines the value of the corresponding function for t ==t n. For all t > t_n, the corresponding
function is undefined.
[00131] As stated before, DAML™ embodiments do not fix a publication scheme for

data-feeds to be used in a distributed ledger setting. However, one of the reasons for choosing the

36

WO 2017/189027 PCT/US2016/037253

above definition is that it allows for a straightforward publication scheme. Namely, a publishing
party can publish new values to a data-feed by signing them together with a hash-based link to
the previous publication. For example, the following definitions exemplify publishing a data-
feed at two consecutive timepoints tO and t1 > t0.

hash 0 =hash(t 0, v _0);

feed 0 = sign('PublisherPk’, ("feedName", hash 0))
hash 1 =hash(hash O, (t 1,v_1));

feed 1 = sign('PublisherPk’, ("feedName", hash 1))

[00132] The example assumes that the bytestrings corresponding to the hashes hash 0 and
hash 1 are either inlined in the published messages or distributed via a content-addressable
filesystem like IPFS. Obviously, there are many ways to improve the efficiency of such a
publication scheme (e.g., building blocks of timed values, or using authenticated stream-
broadcast protocols like TESLA, or the like). DAML™ embodiments expect the majority of
these efficiency improvements to be compatible with the assumptions on the definedness and
immutability of data-feeds. Therefore, DAML™ embodiments do not further pursue the details
of these publication schemes for data-feeds in this document.

[00133] In the reference implementation of the model language, DAML™ embodiments
provide the following two functions to manage the querying of data-feeds and the publication of
new timed values to party-specific data-feeds.

observeFeedAt :: Party -> Text -> Time -> Any
publishToFeed :: Party -> Text -> Any -> Scenario Unit
[00134] DAML™ embodiments use the expression observeFeedAt publisher feedName t

to query the value that the data-feed feedName published by publisher has at time t. If the feed's

37

WO 2017/189027 PCT/US2016/037253

value is not defined at t, then the evaluation of this expression fails. This will be the case if t is
before the first published data-point of the feed feedName or after the last published data-point.
[00135] DAML™ embodiments use the expression publishToFeed publisher feedName
expr to denote a scenario step that publishes the value ofexpr to the feed feedName of the
publisher. The timestamp of this published value is the current scenario time, which implies that
one cannot publish data into the future.

[00136] The following example demonstrates the interplay between observeFeedAt and
publishToFeed.

seconds = \(t :: Integer) -> toRelTime (fromInteger t);
observeSixSmi = observeFeedAt 'SIX' "SMI";
publishToSixSmi = \(value :: Integer) ->
scenario
[pass (seconds 0) ~> now
, publishToFeed 'SIX' "SMI" value
, pure now
I;
publicationAndObservationTest =
scenario
[publishToSixSmi 7000 ~> t0
, assert (observeSixSmi t0 == 7000)
, mustFail (assert (observeSixSmi (tO - seconds 1) == 7000))
-- M fails as the "SMI" feed of 'SIX' is undefined before 't0'
, mustFail (assert (observeSixSmi (t0 + seconds 1) == 7000))
-- M fails as the "SMI" feed of 'SIX' is not defined after the current
-- scenario time, which is at this point equal to 't0'
, pass (seconds 1) ~>t1
, mustFail (assert (observeSixSmi (t0 + seconds 1) == 7000))
-- N Fails as the last published value in the "SMI" feed of 'SIX' is

38

WO 2017/189027 PCT/US2016/037253

-- at timestamp 't0'.

publishToSixSmi 8000

assert (observeSixSmi t1 == 8000)

-- Now this succeeds as the value of the "SMI" feed of 'SIX' has been fixed

2

2

- at the current scenario time. DAML™ embodiments require this explicit fixing, as
-- otherwise the observed value at a specific timepoint could change

-- non-deterministically. With the current solution, DAML™ embodiments avoid this
-- non-determinism as undefined values cannot be observed in

-- choices of models.
I;
[00137] The restriction that every feed must be published explicitly at every time is

inspired from a distributed ledger standpoint, where every extension of the signed hash-chain
must be published explicitly. However, with the above primitives this might prove to be a bit
cumbersome in test scenarios. DAML™ embodiments therefore envision that alternate DAML™
embodiments could introduce a function fixAllFeeds :: Scenario Unit that publishes the last
value of all feeds as the value timestamped with the current scenario time, if such a function is
necessary.

[00138] Model templates can be parameterized over data-feeds. The support for data-
feeds described above is minimal. DAML™ embodiments nevertheless expect that it provides
significant expressivity for formulating model templates with choices that depend on these
external data-feeds. The key idea for formulating such model templates is to represent time-
dependent rates as functions of type Time -> Decimal and time-dependent conditions as
functions of type Time -> Bool. The caller of such a template can then use the given time value
to inspect a data-feed.

[00139] Note that this decision means that functions in the language are not completely

pure. They do depend on the state of the ledger (due to the ~ function), and on the state of the

39

WO 2017/189027 PCT/US2016/037253

data-feeds (due to the observeFeedAt function). This is acceptable as DAML™ embodiments
have a strict evaluation semantics, which ensures that it is always clear when DAML™
embodiments evaluate an expression. Evaluation semantics for alternate DAML™ embodiments
may eagerly evaluate applications and arguments and stop once they encounter an unsaturated
application, an await, or a choice.

[00140] Tabular Contract Query Language provides support for querying a contract-based
ledger. The querying is based on syntactic pattern-matching of data structures, which DAML™
embodiments contemplate to play a central role in reading from a contract-based ledger. The
language features described in this section serve as a basis with respect to how pattern-matching
behaves in the context. This understanding may be used in the development of GUIs and the
development of contract-specific automation for choice execution.

[00141] An execution environment, embodied on a computer system, stores models
specified in DAML™ in a ledger. DAML™ embodiments want to provide the means to query
such a database for contracts active in the ledger and their parameters. For example, a DAML™
embodiment could query the ledger for how many active "IOU" contracts it currently contains.
Or how many "IOU" contracts there are, where the obligor is named 'UBS'. A GUI might want to

present the results of a query for all active "IOU"s in the ledger in tabular form as follows.

Contractld CreatedAt Amount Obligor Owner
Oxffeeafa 2007-04-05T14:30Z 23 UBS Bob
0xal23001 2016-03-02T12:00Z 1000 CS Alice

[00142] Since contracts are not stored using fixed data schemas, but as data structures

representing abstract syntax trees (ASTs), such a table cannot be provided by the underlying
database implementation of the ledger. DAML™ embodiments provide the facility to query the

ledger for active models with given parameters by means of syntactic pattern-matching of the

40

WO 2017/189027 PCT/US2016/037253

AST representations of the active models in the ledger. This concept is probably best understood
by looking at an example.

testQuery =
scenario

[Bank1' commits (iouSellSettle 'Bank1' 'Alice' 100) ~>ioul

, 'Bank1' commits (iouSellSettle Bank1' 'Bob' 20) ~>iou2

, 'Bank2' commits (iouSellSettle 'Bank2' 'Bob' 40) ~>iou3

, traceMatchingContracts (iouSellSettle ?obligor owner 7amount)
-- This will output the following trace, where <iouN> refers to the
-- value of the 'iouN' variable.
-- Found 3 matching contracts:
-- 1. contract <ioul> with
-- { "obligor": Bank1'
-- , "owner": Alice
-- , "amount": 100
~
-- 2. contract <iou2> with
-- { "obligor": Bank1'
-- , "owner": Bob
-- , "amount": 20
~
-- 3. contract <iou3> with
-- { "obligor": 'Bank2'
-- , "owner": Bob
-- , "amount": 40
~
-- DAML™ embodiments can also fix some values and thereby filter by equality.
traceMatchingContracts (iouSellSettle ?obligor 'Alice' 7amount)
-- This will output the following trace.

-- Found 1 matching contracts:

41

WO 2017/189027 PCT/US2016/037253

-- 1. contract <ioul> with
-- { "obligor": Bank1'
-- ,"owner": Alice

-- , "amount": 100

-}

[00143] DAML™ embodiments provide the function traceMatchingContracts with the
syntax, traceMatchingContracts contractPatternExpr to run a query against the interpreter ledger
in a scenario. A contractPatternExpr is an expression containing pattern variables. A pattern
variable is distinguished from a normal variable by a leading '?' character. A simple example of a
pattern is ?a + 2. This pattern would syntactically match 3 + 2 for ?7a = 3, but this pattern would

not match 3 + 9. The following table gives further examples:

Pattern Expression ~ Match
(?a+7b) (1+2) {"a": 1, "b": 2}
(7a+7a) (1+2) U
(?7a+days 7b) (1 +days2) {"a": 1, "b":2}
(\a->a+?b) (\x>x+2) {"b": 2}
(\a->a+"?a) (\x >x+2) {"a":2}
[00144] DAML™ embodiments can create patterns by calling functions with pattern

variable arguments. For example, iouSellSettle ?obligor ?owner ?amount is a pattern that
matches models created using the iouSellSettle model template.

[00145] As the above example shows, the traceMatchingContracts accepts an expression
of type Contract with pattern-variables. The resulting contract pattern is then matched against all
active models and the results are reported as part of the interpretation. DAML™ embodiments
do not yet expose the results in the Scenario result, as DAML™ embodiments cannot yet

represent a list of results.

42

WO 2017/189027 PCT/US2016/037253

[00146] The two pattern variables ?Contractld, ?ChoiceTime are reserved pattern variable
names and cannot be used in a model pattern. They match the contractldBinder of a model and
the choiceTimeBinder in a choice, respectively. If a model is parameterized by either of the two
variables their values will be reported by the interpreter in the same way as a normal pattern
variable.

[00147] Can all models in a ledger be pattern-matched? Given a concrete ledger one
might ask whether all of its active models can be retrieved using a pattern-matching query. This
is certainly true, as one can always query for each model itself using the model's AST without
any variables as the query. So, one may reformulate the question: given a concrete DAML™ file
defining the template for all models with which a company is interested in dealing, can all
models that affect this company be pattern-matched using queries based on top-level definitions
from this DAML™ file? This does not hold in general, as there can be nested await statements
yielding active models for which there is no corresponding top-level definition. However, if
DAML™ embodiments require that all awaits only occur in top-level definitions structured as
follows, then all of the resulting models can be matched.

contractTemplateDef = \(param1 :: ty1) ... (paramN :: tyN) ->
let abbrevl = body1;

abbrevM = bodyM;

in await
{..
}
[00148] This restriction does not limit expressivity. Alternate DAML™ embodiments

may therefore investigate automatic translations of nested awaits into this form. Once DAML™

embodiments have this translation, DAML™ embodiments can always use pattern-matching to

43

WO 2017/189027 PCT/US2016/037253

switch between a per-contract-template-tabular representation of models, and the native AST-
based representation.

[00149] Alternate embodiment Proposed Language Extensions. The following section
contain fully specified extensions not currently implemented in an exemplary execution model.
[00150] Must-choose obligations examples are parsed and executed. Many models
require parties to make certain choices within a given time-bound. DAML™ embodiments can
represent such obligations with the model language described up to here by using punitive
clauses as shown in the 'mustPaylouWithin' example above. Adding all these punitive clauses
becomes however rather cumbersome, which is why DAML™ embodiments add explicit
syntactic and semantic support for must-choose obligations.

[00151] DAML™ embodiments explain the support for must-choose obligations in three
steps. DAML™ embodiments first give an introductory example. Then, DAML™ embodiments
specify the formal syntax of must-choose obligations; and finally DAML™ embodiments
present their semantics. The following contract models the obligation to execute the "sell"
choice on another model until a certain maximal time.

mustPayUntil =
\ (seller :: Party)
(buyer :: Party)
(good :: Contract)
(maxSellTime :: Time)
>
await
{ "pay":
seller must choose cid :: Contractld until maxSellTime
such that

cid ~ good

44

WO 2017/189027 PCT/US2016/037253

then

{ "payment": seller exercises "sell" with buyer on cid

}

-- DAML™ embodiments allow the buyer to forfeit a payment to illustrate in a later
-- example that breached 'must choose' obligations lead to freezing
-- the whole contract.

, "forfeit": buyer chooses then {}

}

[00152] These language elements are the must choose obligation and the until time-bound
on the fulfillment of this obligation. The following scenario illustrates the use of the
mustPayUntil contract template.

testSuccessfulSale =
let iouFor = \(owner :: Party) -> iouSellSettle 'Bank' owner 100;
aliceMustPayBobUntil = mustPayUntil 'Alice' 'Bob' (iouFor 'Alice');
in
scenario
[-- create IOU's and payment obligations for 'Alice’
pass (days 0) ~> t0

'Bank' commits create (iouFor 'Alice') ~> alicelou

“

'Alice' commits create (aliceMustPayBobUntil (tO + days 2)) ~> mustPay

“

-- Alice is not obligable because she can choose the contract.
-- However, the only kind of contracts she can choose are contracts, in
-- which she becomes obligable. That makes her de facto obligable.
-- demonstrate a successful fulfillment of a payment obligation
-- after one day.
, pass (days 1)
, 'Alice' commits 'Alice' exercises "pay" with alicelou on mustPay ~> {"payment":
boblou}

45

WO 2017/189027 PCT/US2016/037253

, assert (boblou ~ iouFor 'Bob')
]

[00153] The formal syntax for choice-steps with support for both optional choices and
must-choose obligations is:

controllingPartyExpr1
[chooses | must choose]
valueBinderl 1 :: Typel 1, .., valueBinderl L :: Typel L
at choiceStepTimeBinder1
after tO
until t1
such that
booleanChoiceStepCondExprl
where t0 and t1 are expressions of type Time that do not reference any of the choice's
bound values, and [chooses | must choose] means that one of the two keyword(s) on either side
of the | must be used. Both the after tO and theuntil t1 constraints are optional for optional
choices. For must-choose obligations only the after tO constraint is optional.

[00154] DAML™ embodiments explain the semantics of the extended choice-steps in two
parts. After tO until t1 time constraints are evaluated. Then this embodiment defines when a 'must
choose' obligation is breached and what the consequences of such a breach are.

[00155] Any choice or must-choose-obligation with an after tMin constraint can only be
taken at a time t >= tMin. Any choice or must-choose-obligation ch with an until tMax constraint
can only be taken at a time t < tMax. DAML™ embodiments call tMax the horizon of ch.
DAML™ embodiments decided to interpret after tMin until tMax as a time-interval of the form {
t | tMin <=t < tMax }to ensure that the intervals associated to two constraints of the form after tO
until t1 and after tl until t2 are guaranteed to be disjoint. Thereby DAML™ embodiments

simplify avoiding corner-cases where two choices are available at the same time. DAML™

46

WO 2017/189027 PCT/US2016/037253

embodiments decided to make the interval closed for its minimum time to ensure that a choice ch
constrained by after O has the same behavior as the choice ch without the after O constraint.
[00156] A must-choose-obligation ch is breached at time t iff t is larger or equal to the
horizon of ch. A model instance containing must-choose-obligations is breached at time t iff one
of its must-choose-obligations is breached at time t. DAML™ embodiments freeze breached
models by disabling all choices for all parties.

[00157] The motivation for completely freezing breached models is the following.
DAML™ embodiments designed must-choose-obligations to be used in models where there is
no default behavior for resolving breaches. If there was a default behavior, DAML™
embodiments could and would encode it by giving optional choices for handling the breach to
the counter-parties. DAML™ embodiments expect that breaches of must-choose obligations in a
model c¢ are resolved by proposing a resolution model that asks all stakeholders of the model ¢
for approval and then deletes model ¢ jointly with creating other models to compensate for the
damages caused by the breach. The following example illustrates such a must-choose-obligation
breach and its resolution.

testMustChooseObligationBreachResolution =
let iouFor = \(owner :: Party) -> iouSellSettle 'Bank' owner 100;
aliceMustPayBobUntil = mustPayUntil 'Alice' 'Bob' (iouFor 'Alice');
in
scenario
[-- create IOU's and payment obligations for 'Alice’
pass (days 0) ~> t0
, 'Bank' commits create (iouFor 'Alice") ~> alicelould
, 'Alice' commits create (aliceMustPayBobUntil (t0 + days 2)) ~> mustPayld
-- demonstrate that contracts are frozen as soon as one of their

-- 'must choose' obligations is breached

47

WO 2017/189027 PCT/US2016/037253

, pass (days 2)
--'Alice' is too late with her payment.

mustFail ('Alice' exercises "pay" with alicelould on mustPayld)

“

-- contracts with breached 'must choose' obligations are frozen
mustFail ('Bob' exercises "forfeit" on mustPayld)

2

-- Demonstrate resolution of breached contract
-- Let's assume that 'Alice' and 'Bob' agreed out of ledger that
--'Alice' can resolve the breached mustPayld contract by paying both
-- the original payment and a 100% fine in two days after 'Bob's
-- acceptance of the reparation proposal.
, 'Alice' commits create (
await
{ "accept": 'Bob' chooses at t then
{ "deleted": delete mustPayld (aliceMustPayBobUntil (t0 + days 2))
, "payment1": aliceMustPayBobUntil (t + days 2)
, "payment2": aliceMustPayBobUntil (t + days 2)
}

, "bob rejects": 'Bob' chooses then {}

}

) ~> proposedResolution
, 'Bob' commits 'Bob' exercises "accept" on proposedResolution
~>{ "paymentl": paymentl, "payment2": payment2 }
-- Alice immediately pays the first installment.

, 'Alice' commits 'Alice' exercises "pay" with alicelould on paymentl

]

[00158] Alternate DAML™ embodiments include extensions of the model language that
DAML™ embodiments might want to add in alternate execution environments. They may

include Descriptive Literals for Relative Time like '1d' to denote one day in relative time.

48

WO 2017/189027 PCT/US2016/037253

Analogously, for other common units of measuring relative time. Mustache Templates for Legal
Agreements: The explicit syntax for describing legal text is quite verbose. Provided is a
lightweight alternative in the style ofMustache templates. For example, DAML™ embodiments
may use an agreement as follows.

seller, buyer agree
"{{seller} has mown the lawn of {{buyer}} between {{tbought}}
and {{tbought + 1d}}, and if this was not the case, then {{buyer}} can sue
{{seller}} according to the Swiss OR."
[00159] Public Choices explain the whenever some partyMakingChoiceBinder at

choiceTimeBinder prefix for choices. DAML™ embodiments allow the definition of newtypes
with a light-weight syntax that defines explicit conversion functions, and introduces lifted
versions of all functions on the representation type. These newtypes are intended to reduce the
number of opportunities for confusion in the positional calling convention.

newtype Amount = Integer
fromAmount :: Amount -> Integer
toAmount :: Integer -> Amount
newtype Account = Text
fromAccount :: Account -> Text
toAccount :: Text -> Account

[00160] Type + Operator Extensions include a group of extensions that DAML™
embodiments envision to be useful, which can all be described as an additional set of types and
functions using these types. DAML™ embodiments currently envision the following ones.
Banking Calendar Support since banking models may depend heavily on trade-location-specific
calendar conventions. DAML™ embodiments may want to provide custom operators with a
well-defined semantics to capture these conventions. Times are usually in local exchange

timezone. Many options / futures expire on things like 3rd Friday of month at 08:30. special

49

WO 2017/189027 PCT/US2016/037253

treatment is required during business holidays where dates usually move before the holiday.
Using an observable of something like businessDayOrBefore(t, "Europe/Zurich") might thus be
useful.

[00161] Simple Observables are usable since many models need access to market data and
other observable values of the physical reality where there is an objective definition of how they
are measured. If the models are executed between participants sharing a common definition of
observable values then an operator of the form obs :: Text -> Time -> Integer would be useful
and sufficient to look up the values of the observable at specific times. Note that that this lookup
would fail for times lying in the future. In case the model parties want to delegate the
publication of observable values to third-parties, then DAML™ embodiments may use
cryptographic receipts as described in the next section.

[00162] Cryptographic Receipts may be used to support binding of model evolution with
oft-ledger cryptographic statements; e.g., for certified market-data. Simple Key-based Receipts
use signatures directly in the choice conditions. Policy-based Receipts are based on Proof-
Carrying Authorization, and allow for elaborate policies to be used to check receipts provided in
choice conditions.

[00163] Turning to Figure 2, a rotatable 2x2x2 multi-faced puzzle cube is indicated
generally by the reference numeral 200. For ease of description, this cube is offered as an
example somewhat analogous to a smart model to represent the potential states of the model.
The state of the cube is defined as the ordered colors of the four blocks showing on each of three
visible faces. In an initial state, all four sections of each respective one of the cube’s six faces

are a respective one of six colors such as Red (R), White (W), Blue (B), Yellow (Y), Green (G),

50

WO 2017/189027 PCT/US2016/037253

and Black (B). A first transaction transitions the cube through a top 90-degree clockwise
rotation. A second transaction transitions the cube through a right 90- degree clockwise rotation.
[00164] Turning now to Figure 3, an example of representation of the states to be recorded
for the cube of Figure 2 are indicated generally by the reference numeral 300. The initial state is
{B,B,B,B, R, R, R R, Y, Y, Y, Y, .. } the state after the top 90-degree clockwise rotation is
{R, R, B,B, G, G, R R Y, Y, Y, Y, ...} and the state after the right 90- degree clockwise
rotationis {R, W, B, W . R, G,R, G, Y, B, Y,R, ... }.

[00165] As shown in Figure 4, the states of the cube as recorded to an append-only ledger
in chronological order are indicated generally by the reference numeral 400. Here, the initial
state of {B, B, B, B,R,R, R, R, Y, Y, Y, Y, ...} is appended first; the second state of {R, R, B,
B,G, G, R R Y, Y, Y, Y, .. }isappended next; and the third state of {R, W, B, W, R, G, R, G,
Y, B, Y,R, ...} is appended last.

[00166] Turning to Figure 5, change semantics, security and authorization, measures for
the append-only ledger are indicated generally by the reference numeral 500. Such measures
may include marking a previously recorded state of the smart model as superseded, creating a
cryptographic hash and/or signature tied to each new state of the smart model; and using a
Merkle tree or block-chain to ensure that each ledger committed to the ledger is built from a
provable origin of references to previous ledger entries, follows verifiable commitments to
previously defined validations rules, enables later sharing of hidden provable properties, and is
tamper-proof.

[00167] Turning now to Figure 6 replicated copies of the ledger are indicated generally by
the reference numeral 600. The replicated copies may be used to make the ledger robust to

localized failures.

51

WO 2017/189027 PCT/US2016/037253

[00168] As shown in Figure 7, a ledger with approval and consensus distribution among
the replicated copies of the ledger 600 is indicated generally by the reference numeral 700.
Consensus facilitates maintenance of a single version of the distributed ledger.

[00169] Turning to Figure 8, the ledger 700 with the latest approved entry appended is
indicated generally by the reference numeral 800. As shown, the ledger 800 includes apparent
unoticed errors for the front face of the cube. This is not an acceptable state, and yet is not
excluded without additional algorithms that validate the semantic correctness of the ledger
entries. Such situations of error or inconsistent states inclusion in the ledger is not a current
exemplary embodiment of the DAML™ ledger storage.

[00170] Turning now to Figure 9, the ledger with errors is indicated generally by the
reference numeral 900. Here, the same error state, which was apparently noticed and committed,
had become the distributed consensus on all nodes. This is not an acceptable state, and yet is not
excluded without additional algorithms that validate the semantic correctness of the ledger
entries. Such situations of error or inconsistent states inclusion in the ledger is not a current
exemplary embodiment of the DAML™ ledger storage.

[00171] As shown in Figure 10, a ledger with validation of semantic correctness of ledger
entries to avoid the entry of incorrect ledger entries indicated generally by the reference numeral
1000. Here, the validation against the higher rule or master model yielded an invalidity
conclusion, and one or more parties blocks the ledger entries from entering the ledger because of
this failed validation. In case of correct validation, the ledger entries can be committed with the
inclusion of the “validating logic” within the ledgers log. The current exemplary embodiment of
the DAML™ storage and ledger logic has one or more parties rejecting erroneous or

semantically incorrect proposed ledger entry transaction. The current exemplary embodiment of

52

WO 2017/189027 PCT/US2016/037253

the DAML™ storage and ledger logic has parties maintaining hash trees basic logic in the form
of a blockchain allowing the full history of validation of each ledger transaction to be revisited
and rechecked for auditing purpose.

[00172] Turning to Figure 11, a ledger where validation algorithms are define within the
ledger, strengthening and extending the capabilities of the validation of ledger entries, is
indicated generally by the reference numeral 1100. Here, a validation algorithm applied to each
instance of the distributed ledger may depend on algorithms defined within previous ledger
entries, and the resulting action and validation are applied. This makes validation stronger and
extensible. The current exemplary embodiment of the DAML™ storage uses the formal property
of the DAML™ to validate the later execution of DAML™ functions, uses previously stored
DAML™ digital asset based ledger entries as a basis to validate DAML™ execution logic, and
validate the include of new DAML-based ledger entries.

[00173] Turning now to Figure 12, an instance of DAML™ code is indicated generally by
the reference numeral 1200. This DAML™ code defines variables of type color (an example
party define defined type) for each of the four sections of each of the six faces (24 total), which
will indicate one of the six colors for each section. This code further includes a DAML™
“await” function, which awaits a party’s choice of rotating either a top side or a right side, for
example. Here, each choice produces a new "cube" while consuming an older one, and the
definition of cube?2 includes its validation rules.

[00174] As shown in Figure 13, an instance of DAML™ code is indicated generally by
the reference numeral 1300. This code includes a DAML™ “await” function that awaits

party1’s choice (“chooses”) “such that” if each side is a single color, “then” the parties “agree”

53

WO 2017/189027 PCT/US2016/037253

that the “Cube is solved”. Here, DAML™ allows parties to agree on statements and their
interpretations external to the ledger.

[00175] Turning to Figure 14, an instance of DAML™ code is indicated generally by the
reference numeral 1400. This code includes a DAML™ “await” function that awaits party1’s
choice (“chooses”) “such that” if each side is a single color, “then” the parties “agree” that the
“Cube is solved” and a prize is transferred (“transferAsset”) from party2 to partyl. Thus,
DAML ™ allows parties to operate on native fungible digital assets (e.g., assets in HyperLedger).
[00176] Turning now to Figure 15, an instance of DAML™ permitting alternating moves
by two parties is indicated generally by the reference numeral 1500. This DAML™ two-party
alternating moves example is different than that of Figure 12, in which only one party could
choose one of the two shown moves.

[00177] As shown in Figure 16, an instance of DAML™ code combining multiple steps is
indicated generally by the reference numeral 1600. This is a multiple-moves example with a
“such that” condition that must be met in order for the validation to be accepted and allow the
update to take place.

[00178] Turning to Figure 17, exemplary DAML™ code for an asset swap between two
parties is indicated generally by the reference numeral 1700. This may be extended via recursion
to a swap of cubes between multiple parties.

[00179] Thus, DAML™ ledger entry may be agreements, "await" (active models) waiting
for parties to make one or more choices, and/or operations on native fungible assets. DAML™
agreements tie parties to "real world" data or “real world” activity and/or promises. DAML™
active models and operations on digital assets are both data and algorithmic in that they "contain"

agreements that are data centric, and they allow active model exercise and asset operations that

54

WO 2017/189027 PCT/US2016/037253

are algorithmic. Validation rules for an active model exercise are defined "within" each active
model where they are like blockchain scripts, but in effect with a more sophisticated language,
and new active models may create new validation rules.

[00180] Turning now to Figure 18, exemplary DAML™ code entry types are indicated
generally by the reference numeral 1800. An active model, once exercised, always becomes an
inactive model. That is, only one choice can be taken within a choice selection, and once taken
the choice selection is no longer available.

[00181] As shown in Figure 19, exemplary DAML™ code choice is indicated generally
by the reference numeral 1900. Composition allows each model step to be as sophisticated as
desired. Here, in addition to the multiple moves await for "Top 180" of FIG. 16, another await
for "Swap cubes" is presented. An update section swaps two cubes by creating active swapped
cubes and deleting the previous cubes by making them inactive.

[00182] Turning to Figure 20, an exemplary DAML-based ledger with ordered ledger
entries is indicated generally by the reference numeral 2000. A ledger is an ordered set of ledger
entries shown here as X, Y, Z. The current exemplary embodiment of the DAML™ ledger
storage 1s append-only sequential ordering where a strict "one dimensional" order is maintained.
Alternate embodiment of the DAML™ storage can be used to achieve better scaling by using a
less strict and yet still logically correct sorting of ledger entries (e.g. through the use of direct
acyclic graphs).

[00183] Turning now to Figure 21, another exemplary DAML-based ledger with ordered
ledger entries is indicated generally by the reference numeral 2100. While the strict one-

dimensional ordering of Figure 20 is sequential, local versus global ordering allows for other

55

WO 2017/189027 PCT/US2016/037253

sequential ordering possibilities. Here, topological sorting or a direct acyclic graph (DAG)
technique may be utilized for scaling to larger scenarios and more complex possibilities.

[00184] Turning to Figure 22, an exemplary DAML-based ledger with ordered and
timestamped ledger entries is indicated generally by reference numeral 2200. This ledger
contains an ordered and timestamped set of ledger entries shown here as X, Y, Z. The current
exemplary embodiment of the DAML™ ledger storage is an append-only ledger where temporal
information is maintained with each monotonically increasing timestamped ledger entry.

[00185] Tuming to Figure 23, two exemplary DAML™ storage and ledger logic
deployments across multiple parties are indicated generally by the reference numeral 2300.
Here, one (right) has centralized logic as in Figure 22, but the other (left) has distributed logic.
The centralized embodiment of the DAML™ storage and ledger logic is centralized around a key
business party (e.g., an exchange), where parties can still maintain their own version of
DAML™ storage and ledger logic. The distributed embodiment of a DAML™ storage and
ledger logic deployment is distributed to support business processes that are not centralized
around a key business party. This and like embodiments of the DAML™ storage can be used to
achieve larger scaling by using weakly increasing timestamps (e.g., where unrelated ledger
entries have no temporal dependencies).

[00186] Tuming now to Figure 24, an exemplary DAML™ transaction with ledger
entries, stored as data structures, and secrecy is indicated generally by the reference numeral
2400. Both centralized (left) and distributed (right) ledger embodiments are shown. Here,
parties C and D cannot see certain ledger entries, while parties A and B can. The ledger visible
to a party may be effectively masked, using known cryptographic techniques, for example, such

that the ledger transaction shows ledger entries visible only to authorized parties, such as to

56

WO 2017/189027 PCT/US2016/037253

support secrecy. Here, a ledger transaction may include multiple ledger entries added as a
"group" where transaction logic ensures "all or nothing" execution logic for the group. Secrecy
and partial visibility are provided since not all parties involved in a transaction need or are
authorized to see all ledger entries of that transaction, as a transaction may include ledger entries
that are private to a subset of transaction participants. Transaction and entry insert/append
authorization is supported where multiple parties need to authorize the transaction for it to be
entered or committed.

[00187] Turning now to Figure 25, an exemplary DAML™ transaction with ledger entries
and secrecy is indicated generally by the reference numeral 2500. Here, party B cannot see
certain ledger entries, while party A can. The ledger visible to a party may be effectively
masked such that the ledger transaction shows ledger entries visible only to authorized parties,
such as to support secrecy. Here, a ledger transaction may include multiple ledger entries added
as a "group" where transaction logic ensures "all or nothing" execution logic for the group.
Secrecy and partial visibility are provided since not all parties involved in a transaction need or
are authorized to see all ledger entries of that transaction, as a transaction may include ledger
entries that are private to a subset of transaction participants. Transaction and entry
insert/append authorization is supported where multiple parties need to authorize the transaction
for it to be entered or committed.

[00188] As shown in Figure 26 an exemplary DAML-based ledger including multi-party
authorization of commitment of new ledger entry transactions is indicated generally by the
reference numeral 2600. Here, authorization is provided by the validating an affected party.
Authorization from one or more validating party may guarantee that all new ledger entries

committed to the ledger meet proper and previously agreed upon ledger logic. Authorization

57

WO 2017/189027 PCT/US2016/037253

from the affected parties may be to commit to agree to future business variants and scenarios
defined within ledger entries. That is, one or more parties consents to immediate and possible
future ledger execution impacts of the proposed DAML-based ledger transaction. Likewise, one
or more partiesies consents to immediate and possible future impact on cross-party relations of
the proposed DAML-based ledger transaction. The current exemplary embodiment of the
DAML™ ledger has one or more parties consenting to DAML™ ledger execution logic, and has
one or more parties consenting to changes to legal rights and obligations between two or more
parties following the interpretation of the proposed DAML™ ledger transaction within the
context of previously agreed external legal agreements. Alternate embodiments of the DAML™
ledger may have the authorization certified by legal authorities to allow a DAML™ ledger
transaction to define legally binding relations between two or more parties without the necessity
to work within a previously external agreement framework. Alternate embodiments of the
DAML™ ledger may have the authorization certified by multiple legal authorities to allow a
DAML™ ledger transaction to define legally binding relations between two or more parties
across two or more legal jurisdictions. The current exemplary embodiment of the DAML™
ledger has one or more parties validating the correctness of the DAML ™ ledger execution logic.

[00189] As shown in Figure 27, an exemplary DAML-based two-tiered ledger including
hash versus entry and details is indicated generally by the reference numeral 2700. Here, all
parties have the anonymized transactions and hash values, but party B does not have some details
that party A has. The hash keys are tied to ledger entries. A hash is associated with each ledger
entry, but the hashes do not reveal ledger entry details. Hashes help to provide proof of ledger

entry details without revealing them. A two-tiered ledger includes a ledger or log of hash data,

58

WO 2017/189027 PCT/US2016/037253

and a ledger of ledger entries. Both ledger tiers include a transaction structure and/or an optional
block structure.

[00190] As shown in Figure 28, an exemplary DAML-based hash centric public ledger tier
or public log is indicated generally by the reference numeral 2800. Here, the public ledge
provides provably authorized references. This public ledger is a ledger of "hashes" that hides
ledger entry data. The hash of each ledger entry is the anonymized reference to that ledger entry.
This provides the transaction commitment status, where the parties authorize the transaction
based on their private ledger, but the transaction commit is in the public ledger. The private
ledger commit depends on the public ledger commit. This particular embodiment implements
only hashes, and has no finite life cycle nor cross-entry dependencies. That is, yhe public ledger
is a log where the entries are hash values associated with detailed ledger entries stored in private
ledgers, and the public ledger entries are anonymized references to the detailed private entries.
A ledger transaction commitment is authorized by one or more parties within the public ledger,
and this public ledger commitment status determines the commitment status of the transactions
of the private ledger. The current exemplary embodiment of the DAML™ ledger does not
include any life cycle of its entries (the hash values), nor cross-entry dependencies, and can
therefore be seen as a log. Alternate embodiments of the DAML™ ledger may include
additional logic, such as homomorphic encryption of certain ledger details, and implement
further ledger logic.

[00191] As shown in Figure 29, an exemplary DAML-based private and sharable private
ledger tier is indicated generally by the reference numeral 2900. Here, the private ledger includes
an authorized private and sharable private ledger. The ledger entry data may be shared on a

"need to know basis." Privacy is maintained since parties do not receive, nor see, nor store

59

WO 2017/189027 PCT/US2016/037253

ledger entries to which they are not "participants". The private and public ledgers are linked
through a hash of ledger entries. Authorization and transaction commitment apply to both,
including "Merkle tree based proofs" on Merkle trees that are built and shared by a party (e.g.
validating party), securely distributed, and encrypted; where the need to know basis may be used
by a party with a partial view of the private ledger.

[00192] The private ledger provides certifications or “proofs of correctness” of properties
associable to the public ledger to other parties on a need-to-know basis based on the relation of
the requesting party to the requested private ledger properties. The current exemplary
embodiment of the certification and proof scheme of public ledger entries through private data
properties is based on a Merkle signature scheme. Alternative embodiments of the certification
and proof scheme are possible, for example based on PKI and a proof carrying scheme.

[00193] As shown in Figure 30, an exemplary two tier DAML™ ledger with
associated ledger entry identification and ledger entry liveliness tracking is indicated generally
by the reference numeral 3000. The current exemplary embodiment of these two ledger entry
properties are built upon the hash structures that reside within the private ledger tier, where the
hash tree/graph is used to associate unique and relevant cryptographic hash values with ledger
entries while capturing the acyclic dependency between the DAML™ (and possible non-DAML)
based private ledger entries, while incrementally updating a Merkle tree structure is used to track
the liveliness (active versus inactive status) of each ledger entry. Alternative embodiments of the
ledger entry identification and ledger entry liveliness tracking may target scalability by
addressing the non-uniform nature of ledger entry data via capturing properties of the physical
partitioning model within the hash value assignment logic and within the liveliness tracking

structure.

60

WO 2017/189027 PCT/US2016/037253

[00194] As shown in Figure 31, an exemplary two tier DAML™ ledger with
block-oriented logic, and with associated ledger entry identification and block-centric liveliness
tracking is indicated generally by the reference numeral 3100. The current exemplary
embodiment to track ledger entry liveliness is to regroup ledger transactions as blocks of
multiple transactions, and incrementally update the private ledger Merkle tree with each new
block of transactions. Alternative embodiments of block-oriented ledger entry liveliness tracking
may target scalability by addressing the non-uniform nature of ledger entry data via capturing
properties of the physical partitioning model within the hash value assignment logic and within
the block-oriented liveliness tracking structure.

[00195] As shown in Figure 32, an exemplary party to party sharing of
certification or provable properties of private ledger entry properties is indicated generally by the
reference numeral 3200. The current exemplary embodiment to share certification or provable
properties of private ledger entry properties is to provide on a need to know basis Merkle
signature scheme based certification of specific ledger entries, optionally supported by partial
deeper private ledger data tied to the ledger entry hash value. Here, authorization of ledger
liveliness is based on a "Merkle signature."

[00196] Turning to Figure 33, hosted and non-hosted copies of a distributed ledger are
indicated generally by the reference numeral 3300. Here, public versions are in the left column
and private versions are in the right column. Hosted copies of both the public and private
versions are in the top row for parties Al, A2, etc., while non-hosted copies are in the bottom
two rows for party B and party C, respectively. That is, party ledgers may be hosted, or they

may be managed by the respective parties.

61

WO 2017/189027 PCT/US2016/037253

[00197] Turning now to Figure 34, exemplary DAML™ ledger entry types for Agree,
Await, and Delete commands are indicated generally by the reference numeral 3400. There are
the three main types of DAML™ ledger entries. Here, Agree generally means that one or more
parties agree on a real world change, or a real world promise among specified parties. Await
generally means that execution awaits a permit or promise later or in the future of a "predefined"
change to the ledger. Delete generally means that a previously entered active model is
inactivated (such as deactivate/annihilate/invalidate). Ledger entries may also include native
cryptographic assets defined by the supporting ledger. These are separate ledger entries which
can be both referenced and created by DAML™ ledger entries of type await (see Figure 14). In
operation, an Await may act as an offer, while a Chooses and/or Agree may act as an acceptance.
[00198] As shown in Figure 35, exemplary usage of the DAML™ Agree command is
indicated generally by the reference numeral 3500. Here, the syntax and semantics are fully up
to the parties to agree "off ledger", but all parties to an agreement need to authorize it. In greater
detail, Agree means that one or more parties agree on a real world change. The syntax, etc. is
fully up to the parties to agree "off ledger". All parties to an agreement need to authorize it.
Under some circumstances, such agreement or active model may embody a legal court-
enforceable contract if the authorization had legal standing and other lawful requirements were
met. For example, a master contract may be used to give such an agreement legal status.
Otherwise, master contracts may impart other features to agreements. An agreement or active
model history cannot actually be deleted, yet an agreement may supersede a previous one and
thereby inactivate the previous one. Thus, the function Delete makes a model inactive, but need
not remove its history. "Ledger logic" does not automatically know the scope of real world

effects.

62

WO 2017/189027 PCT/US2016/037253

[00199] Turning to Figure 36, ledger entries are "instantiated" entries indicated generally
by the reference numeral 3600. Here, the code in the left column represents a non-instantiated
model template for a cube, the middle column represents data values to be instantiated into the
template, and the right column represents an instantiated active model including the data values.
[00200] Turning now to Figure 37, exemplary DAML™ code of an agreement for external
notification within an equity model, where the parties agree that they are making and receiving
notification of an event in the format for that event, is indicated generally by the reference
numeral 3700. In alternate embodiments, agreement may be used in many other DAML™
applications.

[00201] As shown in Figure 38, exemplary DAML™ code using the Await command
within a cube model is indicated generally by the reference numeral 3800. Here, Await waits for
a permit or promise of a later/future "predefined and pre-authorized" change to the ledger. These
are the logic "choices" that are offered by an await entry. Each choice produces a new "cube" or
active model while consuming an older one making that an inactive model. In this example, the
definition of the cube2 model is also its validation ruleset.

[00202] Turning to Figure 39, a DAML™ ledger with delete commands is indicated
generally by the reference numeral 3900. The delete command is used to transform an active
model into an inactive model such as by applying deactivate/annihilate/invalidate to any previous
active entry. Here, the earlier (upper) delete references an await, while the later (lower) delete
references an agree.

[00203] A bundle or block of transactions is executed as a single step, all or nothing,
including the following three parts.

1. Transactions within a bundle are created, defined or derived to contain:

a. A set of one or more of:

63

WO 2017/189027 PCT/US2016/037253

i. Deactivation of previous ledger entries;
ii. Transient entries that are created and deactivated within the same
transaction; and/or
iii. Creation of new ledger entries.
b. For each entry:
i. Which parties need to authorize it (affected parties);
ii. Which parties see this entry (to which party is the entry visible); and/or
iii. Justification/proof of reasoning for b(i) and b(ii) as needed to support
the soundness of each party's validation checking.
2. Get authorization from affected parties for content.
3. Commit transaction to ledger with authorizations.

[00204] In the first part, a transaction and/or ledger entry may be proposed and/or created
by a single party, or jointly proposed and/or created by multiple parties. A transaction may be
communicated as a data-centric set of transaction entries, or as a DAML™ script that generates
transaction entries with optional supporting salt codes. Each transaction entry can be
independent of the past and unrelated to previous ledger entries, or it can be dependent on one or
more previous ledger entries. Proposing parties provide the basis of the validation of their
proposed ledger transaction if this was not previously visible to affected parties. For example,
entries having no dependency on the past do not require reference to prior entries for
justification.

[00205] Turning now to Figures 40 and 41, a ledger algorithm with role-centric flows is
indicated generally by the reference numerals 4000 and 4100. The ledger algorithm is
distributed and repeats the following operational steps, in sequence or optionally in parallel.
[002006] At step and/or node 1, a ledger transaction is initiated. The ledger transaction
proposal is created, or optionally derived from interpreting existing ledger entries. A party

creates a "ledger entry update" that specifies the expected transaction. Optionally, more than one

64

WO 2017/189027 PCT/US2016/037253

party can agree together on creating a ledger entry update. The impact on the ledger caused by
the ledger entry update, which may also be referred to as the "Core Transaction", is computed by
the party's DAML™ engine system.

[00207] At step and/or node 2, the proposed transaction may include outputs, inputs,
authorizations, and proofs/justification. The outputs may include a set of one or more new
ledger entries. There may be any number of types of ledger entries, but the principal ones are
destruction of ledger entries (DAML™ delete), and creation of new ledger entries such as
DAML™ agreements or DAML™ awaits with choice logic. The inputs may include a set of
zero or more references to existing active ledger entries. For each transaction ledger entry,
authorization information may include which parties need to authorize it within this transactions
(affected or validating parties), which parties see this entry (to which party is the entry visible),
optionally which parties are needed to authorize the derived action, and supporting Merkle
signatures tied to ledger entries needed to justify the transaction.

[00208] At step and/or node 3, the ledger transaction is authorized. Here, requests for
authorization are created and sent to concerned parties. The requests are created and only sent to
parties from whom authorization is needed, and each request contains a copy of transaction
ledger entries, excluding those for which the party has no visibility.

[00209] At step and/or node 4, the ledger transaction is coordinated. Digital signatures
from the authorization parties are provided. These are generated per ledger transaction or per
Merkle signature tied to ledger entries within a Merkle tree of the ledger transaction or possibly
within the Merkle tree of a block of transactions. Each party checks correctness of the

transaction, ledger entries and visible Merkle tree hashes before providing their authorization.

65

WO 2017/189027 PCT/US2016/037253

[00210] At step and/or node 5, the ledger transaction is stored. Each party involved in
transactions stores new ledger entries in the private tier of their ledger, but without yet
committing these to private storage.

[00211] At step and/or node 6, the ledger transaction is committed. The shared public tier
of the ledger with a distributed consensus algorithm (e.g., HyperLedger) stores and commits the
new transaction with its Merkle tree hashes and authorizations but without transaction entry
details.

[00212] At step and/or node 7, the ledger transaction is committed to private tier of the
ledger storage. Each party involved in a new transaction can commit its previously stored
transaction entry details in the public tier of the ledger.

[00213] The current exemplary embodiment of the DAML™ ledger has a dedicated party
that validates each new DAML™ ledger entry transaction proposal (e.g., an exchange entity).
The current exemplary embodiment of the DAML™ ledger has a new DAML™ ledger entry
transaction being proposed by one party and has the proposing party and an additional dedicated
party consenting to the impact of the new transaction on the ledger and on relations with other
parties. Multi-party consent is done by successive entry of DAML™ ledger transactions by
different parties in such a manner as to build DAML™ logic combining the multiple parties'
consents. Alternate embodiments of the DAML™ ledger can allow any number of parties to
consent to the impact of a new DAML™ transaction on the ledger and on relations with other
parties.

[00214] Turning to Figure 42, a party-centric ledger algorithm flow is indicated generally
by the reference numeral 4200. Here, function block 4210 initiates the ledger, including a

private shared tier 4212 of the ledger and a public tier 4214 of the ledger, and passes control to

66

WO 2017/189027 PCT/US2016/037253

decision block 4220. Decision block 4220 waits for party action, and then passes control to
function blocks 4230 and/or 4240. Function block 4230 initiates a ledger transaction on the
private shared ledger 4212, and passes control back to the decision block 4220 to await further
party action. Function block 4240 authorizes the ledger transaction on the public ledger 4214,
and passes control back to the decision block 4220 to await further party action.

[00215] Turning now to Figure 43, a ledger-centric ledger algorithm is indicated generally
by the reference numeral 4300. Here, function block 4310 initiates the ledger, including a
private shared tier 4312 of the ledger and a public tier 4314 of the ledger, and passes control to a
decision block 4320. The decision block 4320 passes control to one or more of function blocks
4330, 4340, 4350, 4360, and/or 4370 based on the ledger event, which each implement their
particular function and pass control back to the decision block 4320 to await the next ledger
event. Here, the function block 4330 authorizes the ledger transaction; the function block 4340
coordinates the ledger transaction; the function block 4350 stores the ledger in the private shared
ledger 4312; the function block 4360 commits the ledger transaction to the public tier 4314 of
parties ledger; and/or the function block 4370 commits the storage state to the private tier of the
parties ledger.

[00216] As shown in Figure 44, an exemplary function to initiate a ledger transaction is
indicated generally by the reference numeral 4400. At input block 4410, a party initiates a new
DAML™ update expression based on a business intent message (BIT), and passes control to a
function block 4420. The function block 4420 uses the DAML™ engine to compute the impact
of the proposed DAML™ update on the ledger in the form of a core transaction (CT) 4412, and
passes control to a function block 4430. The function block 4430 initiates and coordinates the

core transaction on the ledger. The core transaction 4412 enumerates expected changes, and

67

WO 2017/189027 PCT/US2016/037253

provides hooks to digitally sign ledger entries. The basic proposed transaction details may
include new ledger entries (outputs that will become active models), and ledger entries to be
removed (inputs that will become inactive models). In addition, each transaction specifies which
party must authorize each ledger entry, and which party can "see" each ledger entry (to which
party are the ledger entries visible), as well as justification in the form of a cryptographic hash of
the BIT, and supporting Merkle proofs.

[00217] A DAML™ engine may further include a DAML™ simulator that provides the
ability to observe and interact with DAML™ Modeling activities. DAML™ is a new type of
contract specification language (CSL). Users may inspect the developed DAML™ code by
running the scenarios and observing how the DAML™ models are used to progress in a scenario.
They may use this visibility to observe how their input is absorbed into the DAML-based ledger,
for example.

[00218] The DAML™ simulator may be deployed together with the DAML™ engine
onto a host accessible to the user. The DAML™ simulator may be deployed as a binary, with
the DAML™ Modeling code as source code. This source code may be visible in the simulator.
Thus, a user may view the Modeling of their business processes within DAML, but may not
modify this installation. The DAML™ simulator includes a User Interface (UI) portion. Access
to the UI may be limited via HTTP, HTTPS, or the like.

[00219] In operation, the DAML-based ledger properties assure process continuity
between successive ledger operations. They are defined as fixed, and pre-agreed upon among
the parties, but they can also be managed incrementally. In the current exemplary embodiment
they are implemented with a "ledger of core primitives", and is then evolved as with a version

management by one or more key parties (e.g, an exchange entity), allowing backwards

68

WO 2017/189027 PCT/US2016/037253

compatibility of ledger semantics. Although variable semantics are contemplated, exemplary
embodiments use fixed semantics for existing ledger entries because new versions of these rules
might impose on parties the onus to migrate ledger entries from a previous version to a new
version. New version function semantics can be introduced for future ledger entries as long as
they maintain existing semantics of older ledger entries. Such new version functions may be
tracked by version or date, for example. Note, however, that exemplary embodiments may
depend on external legal agreements that may be subject to change, and should therefore be
tracked by revision date.

[00220] Parties agree on ledger entries and their representation as data. Ledger entries
define what parties can agree through the media of the ledger. These are defined with lexical,
grammar, binary, and other representations. Exemplary embodiments of DAML™ may use
agree, await, delete, transfer and other HyperLedger ™ -compatible digital asset ledger primitives.
Semantics of previous and future ledger entry interpretation, and real world agreements. Ledger
entry interpretation semantics define a deterministic way to algorithmically interpret or evaluate
a ledger entry. Semantics of a ledger entry may affect previous and future ledger entries.

[00221] In DAML, the "delete" entry invalidates or deactivates previous ledger entries in
DAML, but the auditable history remains. Interpretation of the execution of an “await choice”
provides the "rights" to delete the "chosen await entry", and the right to create zero or more new
ledger entries that meet the constraints supporting a ledger entry update.

[00222] In agreements, semantics of ledger entry may affect future ledger entries. In
DAML, an "await" ledger entry authorizes a later “choice” to create ledger entries that match

given properties. Future interpretation may depend on future ledger entry data. In DAML, await

69

WO 2017/189027 PCT/US2016/037253

choice selection configurations may include templates that optionally depend upon zero or more
parameters to be provided in one or more future ledger entries.

[00223] The semantics of a ledger entry may affect the physical world. In DAML, an
"agree" ledger entry ties multiple parties to a "real world" agreement. Semantics of ledger entry
update declaration define a deterministic way to algorithmically create new ledger entries from a
ledger entry update declaration. In DAML, an update statement and generalized follow-up have
such semantics.

[00224] Authorization rules may be used in an algorithm that computes which parties need
to agree to the creation of a new ledger entry. These take into account effects of a ledger entry
being derived from the interpretation of one or more existing ledger entries, or whether the
ledger entry is created independently of the past. This takes into account that continuity in the
face of secrecy" can be assured by designating trusted parties as validating authorization parties
and the use of Merkle signatures on Merkle trees of active ledger entries..

[00225] Semantics of validating parties are enforced. Ledger entry interpretation
semantics can define validating parties with the purpose of assuring "no double trade" by
assuring that the correctness of ledger logic and the "continuity" of the Merkle tree based logic.
A central concept is that validating parties may be defined within DAML. In an exemplary
embodiment, that also means that if party were to become a validating party, while not having
been previously, and if this party were not to have enough ledger details to assure validation, it
would need to be receiving the additional ledger details from another party, and be able to show
the consistency of its new view on the ledger within the instituted secrecy rule, or it would not be

permitted to authorize the proposed transaction.

70

WO 2017/189027 PCT/US2016/037253

[00226] Semantics and rules of secrecy are used in an algorithm that computes which
parties may see a new ledger entry. This takes into account authorization needs of ledger entry.
Moreover, salt and Merkle tree implementation rules define a deterministic way to compute one
or more hash keys of a ledger entry or of a ledger entry update. These rules will produce the
same hash given the same ledger entry and salt value, and the same sequence of hashes given the
same ledger entry update and same sequence of salt values. One hash per ledger entry is defined
by the update.

[00227] Hashes with cryptographic properties do not allow the hashes to be used to derive
information on the ledger entries that they derive from. For example, DAML™ engine
implementation is not compromised by hashes usable only for confirmation of validity.

[00228] In a transaction, ledger entries are added as a "group" with "all succeed" or "all
fail" atomicity properties. That is the notion of DAML™ ledger transaction. Multiple parties
need to authorize the transaction for it to be entered (committed), but not all parties involved in a
transaction need to see all all ledger entries of the transaction. This is because a transaction may
include ledger entries that are private to a subset of transaction participants. While parties are
agreeing on transactions, they are technically authorizing ledger entries within the transaction.
Thus, their digital signatures are tied to individual ledger entries. The "transaction" logic further
ensures "all or nothing" execution logic.

[00229] Using DAML, there are three types of ledger entries. The delete type can be said
to deactivate/annihilate/invalidate a previous entry by transitioning it to an inactive model. The
await type embodies a permit or promise for later or future "predefined" change(s) to the ledger.
The agree type requires that multiple parties each agree to one or more steps, conditions, or

results.

71

WO 2017/189027 PCT/US2016/037253

[00230] An await entry offers the "choices" that the authorizing parties "bind themselves
to allow consequences to the choices of the await." An agree entry requires that one or more
parties agree on a real world change, and although its result can be deactivated, the agreement
itself cannot be deleted. "Ledger logic" does not know scope, and therefore it would be
indeterminable if such scope could be "deleted".

[00231] By default, all parties to an agreement need to authorize it. The agreement might
supersede a previous one. An agreement is typically "eventful", but is not required to be. The
syntax and the interpretation of an agreement is left entirely up to the parties to agree "off
ledger". An exemplary embodiment ledger records such off ledger agreements, but does not
attempt to interpret them. Under particular circumstances, such an agreement leading to an
active model may meet the requirements of a legally enforceable contract in a given jurisdiction
if that was the intention of the parties and their respective authorizations had legal standing. In
general, the ledger does not care whether a given agreement is legally enforceable, and an
exemplary embodiment makes no distinction between a general agreement and one meeting the
standards of a legally enforceable contract. Where desired, the present inventive concept
envisions that a master contract may be used to give DAML™ agreements legal status as
contracts in particular jurisdictions.

[00232] All ledger entries, code, declarative statements, data structures and the like
discussed above can be stored in a non-transient computer readable storage media. Functional
steps described herein can be accomplished by computer code executed on a processor. The
various data manipulations described above can be accomplished on stored data structures to
create transformed data structures that are processed by a computer processor in a different

manner. The various functions, such as the await function, of the embodiments allow a

72

WO 2017/189027 PCT/US2016/037253

computing system to operate in a new manner to accomplish transactions and provide
adviantages not found in the prior art. The various flow chart steps can be accomplished by
software modules executed on a computer processor. The cylinders illustrated in the drawing can
represent data structures, such as databases storing records, which are manipulated in the
described manner to allow a computing system to operate on the data and transform the data.

[00233] While the inventive concept has been described by way of example with respect
to non-limiting exemplary embodiments; other alternatives, modifications, and variations will be
apparent to those of ordinary skill in the pertinent art based on the teachings disclosed herein.
Accordingly, the scope of the appended claims is intended to include all such alternatives,
modifications and variations on the exemplary embodiments set forth herein, as well as

equivalents thereof that fall within the scope and spirit of the present disclosure.

73

WO 2017/189027 PCT/US2016/037253

CLAIMS

What is claimed is:

1. A computer implemented method (3900) of manipulating data structures to model

a digital asset and its evolution with respect to the rights of a plurality of parties, the method
comprising:

providing an await function (1200) instance that executes no more than once
using one of at least one choice defined therein for disposition of the digital asset with respect to
the rights of at least one of the plurality of parties, said await function instance incorporated upon
the consent of the affected parties to fulfil a configured function instance associated with the at
least one choice;

providing an agree function (1300) instance that requires the consent of at least
one of the plurality of parties to execute; and

providing access to an append-only ledger (4000) for storing results of the

executed function instances.

2. The method of Claim 1 wherein the at least one of the plurality of parties whose
respective rights are at stake is the same at least one of the plurality of parties whose consent is

required.

3. The method of Claim 1, further comprising providing a delete function that
requires the consent of the affected parties to invalidate an agree function or disable a non-
executed await function, wherein the append-only ledger stores the results of the executed await,

agree, and delete functions.

4. The method of Claim 1 wherein the digital asset comprises at least one of cash

and/or cash-valued payment, a fungible, equity, bond, commodity, future, right, or good.

5. The method of Claim 1 wherein the at least one choice of the await function is

made by a delegate of the at least one of the plurality of parties.

74

WO 2017/189027 PCT/US2016/037253

6. The method of Claim 1 wherein the at least one choice of the await function is

made by respective delegates of at least two of the plurality of parties.

7. The method of Claim 1 wherein the append-only ledger comprises a blockchain.

8. The method of Claim 1 wherein the append-only ledger may be queried for digital

asset status based on pattern-matching.

9. The method of Claim 1 wherein the append-only ledger may be queried for digital

asset status of all models in the ledger using queries based on top-level definitions.

10. The method of Claim 1, further comprising providing a delete function to render

an active model inactive and no longer available for future transactions.

11. A method of interpreting (100) a modeled digital asset and its evolution with

respect to the rights of a plurality of parties, the method comprising:

executing an await function (1200) instance no more than once using one of at
least one choice defined therein for disposition of the digital asset with respect to the rights of at
least one of the plurality of parties, said await function instance incorporated upon the consent of
the affected parties to fulfil a configured function instance associated with the at least one
choice;

executing an agree function (1300) instance that requires the consent of at least
one of the plurality of parties to execute; and

causing results of the executed function instances to be stored in an append-only

ledger (4000).
12. The method of Claim 11 wherein the at least one of the plurality of parties whose

respective rights are at stake is the same at least one of the plurality of parties whose consent is

required.

75

WO 2017/189027 PCT/US2016/037253

13. The method of Claim 11, further comprising executing a delete function that
requires the consent of the affected parties to invalidate an agree function or disable a non-
executed await function, and storing the results of the executed await, agree, and delete functions

in the append-only ledger.

14. The method of Claim 11 wherein the digital asset comprises at least one of cash

and/or cash-valued payment, a fungible, equity, bond, commodity, future, right, or good.

15. The method of Claim 11 wherein the at least one choice of the await function is

made by a delegate of the at least one of the plurality of parties.

16. The method of Claim 11 wherein the at least one choice of the await function is

made by respective delegates of at least two of the plurality of parties.

17. The method of Claim 11 wherein the append-only ledger comprises a blockchain.

18. The method of Claim 11 wherein the append-only ledger may be queried for

digital asset status based on pattern-matching.

19. The method of Claim 11 wherein the append-only ledger may be queried for

digital asset status of all models in the ledger using queries based on top-level definitions.

20. The method of Claim 11, further comprising executing a delete function to render

an active model inactive and no longer available for future transactions.

21. A digital system (2000 - 3300, 4200 - 4300) configured to interpret a modeled
digital asset and its evolution with respect to the rights of a plurality of parties, the system
comprising:

at least one processor configured to execute an await function (1200) instance no
more than once using one of at least one choice defined therein for disposition of the digital asset

with respect to the rights of at least one of the plurality of parties, said await function instance

76

WO 2017/189027 PCT/US2016/037253

incorporated upon the consent of the affected parties to fulfil a configured function instance
associated with the at least one choice, and configured to execute an agree function (1300)
instance within the at least one choice that requires the consent of at least one of the plurality of
parties; and

at least one storage device (4000) configured to cause interpreted results of the

executed function instances to be stored in an append-only ledger.

22. The system of Claim 21 wherein the at least one of the plurality of parties whose
respective rights are at stake is the same at least one of the plurality of parties whose consent is

required.

23. The system of Claim 21, the processor further configured to execute a delete
function that requires the consent of the affected parties to invalidate an agree function or disable
a non-executed await function, and to store the execution results of the await, agree, and delete

functions in the append-only ledger.

24, The system of Claim 21 wherein the digital asset comprises at least one of cash

and/or cash-valued payment, a fungible, equity, bond, commodity, future, right, or good.

25. The system of Claim 21 wherein the at least one choice of the await function is

made by a delegate of the at least one of the plurality of parties.

26. The system of Claim 21 wherein the at least one choice of the await function is

made by respective delegates of at least two of the plurality of parties.

27. The system of Claim 21 wherein the append-only ledger comprises a blockchain.

28. The system of Claim 21 wherein the append-only ledger may be queried for

digital asset status based on pattern-matching.

77

WO 2017/189027 PCT/US2016/037253

29. The system of Claim 21 wherein the append-only ledger may be queried for

digital asset status of all models in the ledger using queries based on top-level definitions.

30. The system of Claim 21, the processor further configured to execute a delete

function to render an active model inactive and no longer available for future transactions.

78

PCT/US2016/037253

WO 2017/189027

1/44

4

aNZ

28] Xewids
RSy

/

1 1 S

sishjpue
XEJUAS pue |EoIST

/

Nww\/\

SPO0 B0IN0S
BAIBDTY

/

gk

Py

(11]7

1HVIS

/

JOJBUIGWIOD
18sed DIPBRUOH

["DId

143

SUBSTITUTE SHEET (RULE 26)

WO 2017/189027 PCT/US2016/037253

2144

Right 80°
Clockwise

200

FIG. 2

Top 90°
Clockwise

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

3/44

¢ DId

ﬂ.u.mmm%mmm\/“mummww“mm}}mmm)}mmw mu:m\f,m\m/m}m%nmmmmwmwmmnmhmnmv

(—

FSII0ID
o086 Wby

g0e

(—

BSIMRID0ID)
006 doy

—

ﬂu.uh\wn}m%m}mmmmmmmmnmmmmmmmv

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

4/44

Y AFAOY DY MWE M

J

—

BSIMNDCID
o 06 Wb

v DId

{ANAAYY DO EENY ANy g ggal

=

FSIMA00ID
Jadoy

—~

Gov

ﬁ.:,m“%..ma\mramunm“wmmﬁgnma}}.nMW

A.u.N.M/Mw/"}n%rmmnmnmumm.mhmwmhmw

{AANAAY Y'Y aag

SUBSTITUTE SHEET (RULE 26)

WO 2017/189027 PCT/US2016/037253

b/44

(

(RWBWRGRG,
Y.BYR,.}

Right 90°
Clockwise

RRBB,GGRR,
YYYY,

Top 80°
Clockwise

500

/

BBBBRRRR,
YYXY,..)

FIG. 5

ameubis pue ysey oiddin >

UIBUOYO0|T | 804 SpUaly >

| poeiep wew, ‘Auo pusddy >

N AN Y
Lo
> 2
> <
- > o
e > W ¢

. o o

RN =
S R
e el
o ", Pty
) m !
e o =
I
N

SUBSTITUTE SHEET (RULE 26)

WO 2017/189027 PCT/US2016/037253

6/44

| aumeubis pue ysey c;d:ij3>

| U0l [88)) agxg.zew>
| ainpeubdss pue ysey egd&.&g>
[ipgaegap siew, ‘Ao puaddv>
| URUYOIG / B8l amzaw> <
| pajjep wew, ‘Ao puaddv> ; ; g
N >0 =
' B R I
"EERREEHHEHEE
e Rl S =
<l el = ==
N R} <y B B @) s
e 2 S e @ oo)
[m?é: S| e) Nl 0 Bl
o o =
ay foea i = AN -
S
R - '%;
% 1)
““c?é | aunjeubs pue ysey a;dﬁjg>
%
@ | uiByoyo0)g / 0ay epgmw>
s s~ ‘
2 Lpeieiep yew, ‘Ao puecﬁd\f>
e
—
= -

5
2
2

BBBERRRRYYYY,.}

RRBBCGGRRY.YYY,.)
RWBWRGRGYBYR..)

SUBSTITUTE SHEET (RULE 26)

WO 2017/189027

7144

PCT/US2016/037253

| ameubis pue ysey ojdhin
| UBuOwO0|q / 9as apg.zaw>
| ainjeubls pue ysey ojdiiy
E_!Lpa;szep yieu, ‘Ajuo pueddv>
| uBUOR0IG /884 ewaw>
Pa e
| paisiep yew, ‘Ajuo puedd%@ \)%] o B
RS >0 T el
AN O° oa® < el s
- L ('}3{\ n ol Y
S > e e ot o
P > W . e | A
o D= — : o =} E&
> = =l el =
o o > oy ffood i =
=HEHEN=ERIEL
o o e
gﬁ g—% Z‘ﬁ: " /\ i3 Bpo
m el = \S B 23
el el 5% 2 5
2 £ 2
- 128 &8
é\\/
Y | am@ubis pue ysey ojdhio
;%,fj | ueyoyoojg / 884 agxsay\g>
L,_pe;e;e;z e, ‘Ao pueddv>
> > o
. = 5 — o
=HHHBE .
o 0 3
- o o) o I
BIEHEE
M &, o, g
Ode<< -

SUBSTITUTE SHEET (RULE 26)

WO 2017/189027 PCT/US2016/037253

8/44

Val
B RS

& s
>
| aimeubis pue ysey egd;ﬁg>
| ainjeubls pue ysey ojdiiy [Ueiopon e QHHW>
e ei)i,:aw> LeIieD Yeu, Ao pugddv>
- /}_ NN N
| poterep sew, ‘Ao pu:;dd‘irg/m&a@g Tl e €
d - - S >
N <l Bl BN RS
! ' N <l <) I =
s n -l =y ECW)
AHE R =R HE =
S ¥ 1B IR E
<3 By B NS E|E
BRI e e i oo B = O ooe
O:] =N 5| < w il £l &£ |l =
=l ol = N
e |l |l o - -
= Bz
25 j==h [==1 -
2 3
y N
| aunjeubis pue ysey 0ng3>
% ;{ Y agxsay\g>
L,_pe;e;e;z e, ‘Ao pueddv>
.
>R > i s e
i B R R BN N
el 2lzls =2
o (&) o x
587G] o | ol E =
W Sz 2
N g il el m i B
O< =

SUBSTITUTE SHEET (RULE 26)

WO 2017/189027

800

PCT/US2016/037253

9/44

| aimeubis pue ysey ojddin
e Y
| UBUY0Iq / 99d] amsaw>
qmd&z)>
E | posiap yiew, ‘Ao puaddv>
UIBLON00IG] 834 ewaw>
: N NN
| Doliep yeul, ‘Ao pusddy =3 Bl Ny
<l el N
\ > > o ol
- 1k Bl Y
: LS ﬂﬂ_ om0 gx; ni... (D,., (.9_. | mmmfocn-
> <l S - o O e |l &
<) ey B =g =E|=
=3 =Y = Il g
_EaEE 2l 2 2|8 —
= RSN =
N s o
e o2 i = 2 5
< 1 = = &
i ©
2 g
s
£ O
N
R | aunjeubis pue ysey 0ng3>
2
P
% Y away\g>
%83
& e T3 p
28c L,_pe;e;e;z sei, ‘Auo pueddv>
£ E &
e o)
P > iy = ‘
SHEBEE O
- - > -
gl z} U): q pposud
Hzlz2180 =
& = i o il O
el Gl =
} sl gnzg % =
o |l el = fife
f2a)) =4 2§ || mmmenn
SR

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

e o k=) w ONIELR .
B > SN
®
= % "]
8% ®lwS
N 5
S
Y
5 ‘\V/ -
¥ | fojlonepien
g | ainjeubis pue ysey oidiin >
AN Z a Vv
E By UO!EEPEEW\}' | UIBYDYoOI / B8] BpUR >
|_ainyeubs pue ysey ojdhin > LDoiiep yrew, ‘Ajuo pusddy >
| URUDDOG [BB ApUel /}_ NN
LPS1Biap yeu, ‘Auo pusddy > q&@@“% el e
Mé{é‘g YAl R B B
AN MO F <) ey I
' & = =3 B
SEERAEH =
H oo e o]
S > »o Al «. ol
> > ey [n'd &2 -
=HHHB=ARHEE
el o || T @ of i od
o S AN{ TN | | —
o, & =
=4 \“’R @»- =
e o2 Il = % 2 3
el B 5 5 2
2 % = 3
3 O B 5
\& Y]
)] i N
7~ |~/ Bojuonepiep >
| ameubis pue ysey Q}di‘l}ﬁ‘> \
| uleypolq /88 am.;awm> \ %
N =
| PRJBIep JRu, “Ajuo pusddy >
- y
2
7 = =
=2 INiA B “THOTTH o -
o b & > > iy
> | <% ;" - zg: o]
== g: z;: z"} 3 @
] 2 4 o |
\. -8 Q:_, = =R e @,
ool of &) -
8 & = e)l = |
ol o2l &
o

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

11/44

oo
gen

—
-
O
o

Mg

SnsuUasuns

paINgUIsIC

A I—

e, 20> PIBA
obiy| 0
e [PHEA

NI TAVATAY
wyobe\| |/ |2 || 1S
2. {752 o= Per)
uoiepiea vw, SHEIRED
w ﬂﬁmwmﬁumm}. m mlwuuwn. m m %n:_m_%»»m“%_mummm"mmgnmm%b_mw
ﬁomum\ k=] = = == P
PIA SHBE B aaaavyoggayy
ey | =i e =
Eﬂwﬁemmm \\ wund Loy By By Ay phn phe g iy wlpndpnef ol \
10N Lolepiea [“AANAAYYY Y EEad ﬂ
L i
WRRLOBIE \ | ™, NN 7N N\
uonepen \I &S F| |8
guoepien 18 B 5|8
§ =" [l (e by nf p Seomb 5 fomein 38 om by 3f Epm i §:
uoR/ IS HIB (&) gl || yaeAoyoyMEmy]
SEiT {0 & i
= w m...n i Cp b by gy phy ghomtompptemtn i
NI EEIRE RAAAYY OO eY Y || |
i |9 {Fl = w
wc Emhomm Ep b gbgfopdy yiy sly siy 2k ol onlah
N A LonpiBn ARy e e T e
.

WO 2017/189027

SHDYME MY

HODEEY Y

e

uyjoBle g Boj uoepiieA

UIRLDN00|G / 983 SpUal }

| PajBIep eu, ‘Ajuo pusddv}

ANAAYYYY e geg

[ainyeubis pue sey ojdkin

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

12/44

S8iM UCHEDHEA SI OS[E 848 SI Z80ND JO UORILYSD 8
‘{au0 Jopio us BUUNSUOD BliyMm) i .
L30N0, MBU B seonposd 800U Use N M @Mww
{ 7 11 3qI [IgN 9T [0 X Zagn0 [,aqn0 mou,, §
TSyl
4 Py N 53S00UD | Aued —
e [g WISIMNIOT)) 506 ST, ﬂ I
~ { 207 192 Bq 1q IGJ [QF I [ZoqN0 © ogna M, |
e N [r=laq]
. sesooyo [Aued WOHYUMEMNY
. g LLIBLAAN0TD) 506 GO L,
N } WAYYoDIeYY
~ jivAsE
ﬁ 2160} 801043, EMmE %\\\\.\\@\l < CUYYNE e
{(xofo 1 na)
{10100 1L
{0503 ;- .ﬁ@v
{Jofoy ¢ 1 19%)
100D 808} 7 B (zo0[073 11 my)
(gojo3 TN
= 7Rqno
PN W/ uogepifen
8ozl

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

13/44

JobBps} sy episino,, uonegsidisiul isy) pue .
‘SJURWIBIETS UC 2aibe 0] saied SMOIE TNYQ m 1 @M H
}
{ .peajos st ognny, sude ghAued ¢ jAued [, 0gn0 Moy, } oy
S I
:ﬁuﬁ: R A :Mvu.m: === ﬁ.w Ry :uﬁmm: = hﬁw R :mﬂwmz === mhm vy :oﬂwmm: = .wa R :uﬂﬁmz == mﬁ
ey gons
5280000 [Ared AWM ENY
* UONDIOS YiEm P,
} AAYYD DRI
T
<= AAYYeeea
{(Jopoy o ona)
(ro[op 1ipn
{F0503 : ”E@
{Fopos ::yap)
(40j0 11 np)
(J0107 111N
= 7Rqns
uoHepheA

GoeEl

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

14/44

m

{(JeBpauediy w Ba) siosse jeubip siqibung ey
Uo 81Riedo O SeRd SMO|E THAYD

}
{ 1Aued 7Aued Asuow (pudip, 0ssyiorsgen | oz,
(Poajos staqny, ocade zAued ¢ [Aued ¢ ogno mou }
sé=lis]
T uPRY == B RR PON, = M R S0, me MY Y SNY,, == [BY Y, == 1Y BR CNY, == B
18t} yons
5980040 [ALed
-, BOTNOS YIEM P,
¥
T
A!..

{(Joj03 ©:na)
{Jojo3 1)
{xojo3 @ L I

(Fo[00 11 1a3)

(10103 14y

(qor03 IR
= 7Rqnd

Pl DId

n

AOHYUME MY

AAYYDDEe Yy

AAYYEYeded

ool

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

15/44

deis yors M 80I0UD SAOL,
10 s1yBu speweyE

{1Aued zayed o 113 367 M [QX QN G On [owed7ogno [, 5gno 40N, }
[ti=114]
sasooys 1 Ayred

LLOSLANO0T]) 506 BT,

Gl

DI

{ 1Aued gAued - 301 161 04 139 193 197 1 33 owreSzoqno |, oqn0 Mau,, |

n

ii<i1i]
sesooyo [Aued

L OSIMN00]]) 506 dOL,

¥ AOHYUME MY

HEME

ejdwexy

< AAYYDDEe Yy

{(Aaeg : 1 gAaed)

agno sy} eAowW {(Aueg © : 1Aured) WAwYywaees
ueo seiued Youa

(o100 nn
(Jojo -y
(fofo3 @ 1 1Y)
(401033 : 1 19D

(qojo 1 ny)
(o193 IR
= omegzsqno

gasi

[

eacidde ..

PN W/ uogepifen

uoioR A .

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

16/44

008, 81 dsis yses i Ajuo piieA
sdais 10U Sidi N SUIGLIOD {

91

DI

n

[
{701 ,881000]) 081 dog, }omd

79 <= 19,5000 506 o, sos1010% phjaed ¢

[<— PISGRO 281990])) 506 dO,, ses1ou0xs [Kired] AOHYUME MY
b ompdn vy pm—
Aued pAazed - [T IG) Q) 1 [Swed7eqno ~ piagno AAYYO DT
jeq) gons
{1 sosooys gAired : 7Ayed, SNy eTE

seiyedoid sjepieA pue ‘sosoons TAped 1Aumd, |}

DIOBALOY 0] pai 10B4uss aimden L ASIAI0]) 081 doL,

)
TeME
Aul

! (prioesiuopy : ppaqno)

SIDBJIUOD 0] BOUSISION W\kw\\\\w\\l‘\\v {(Aeg 1 7Aured)

{Aregy o pAzred)

= (g1dogagno

PN W/ uogepifen

[

eacidde |

]2

uoioR A .

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

17/44

sagno snowaid
Buinowsi uo 98iby

! saiued peddems va

A Sa0ng aeandn
| Ui saqno epeoy mﬁ

pUR PROBALOT O PSY 10RAUCD aumden

(pAued ghuaed = zax 713 23 ZIGQ) 24 719 sweBzaqno) gaqno sefep ¢
(zArved 1Aazed - [TQE 13GT 1791 19y 11U SUEREZeqns) [2qnd S19[3p ©

zAed [Ared o 7RI 7R 73T 71GT 73U 719 owed7ogno opearn ¢
phared ¢hursd 0 I 1M TIQT 119 PY 11y ewelzegno sweo |

syepdn UsYy;
pAred gAired Z0d 7RI 2IGF 197 OOF TTY SwESzaqno ~ 7oquo 7

seiuadoid spepiea

ZAued 1Aured - 101 {1 [IQF 1199 1) (1 oweSzeqno ~ Jequs
1B Yous

{| sssooyo pAued : piired,

‘sesoors ghured ¢ chred,

‘sasooys 7Aed @, zAwed,,
‘sasooyo jAued jAred, |}
Seqno demg,

LT DId

n

AOHYUME MY

AAYYDDEe Yy

AAYYEYeded

oLl

PN N

}
Heme
N {(pnivenuo) o Nw@ﬁuv/
SIOBIUCD O} acusialay M}ztszaztizl (proenuo]) 1 [PqRO)
(Areg = phased)
eAcidde /
(Areg 0 ghued) ‘vogoe Y
(fyreg = pAred) . A
= demgsuensgns -)
uonepifen ..

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

18/44

{ 1Aued zAwed | Asuows (RuSIp, — 10sSyISpSUEY | 07ud,
+DaAtOS 81 agnyy, saude zAued ¢ 1Aued oqno mou,, }
[1ia1s5]

1eY) gons
sosooys [Aued
-, UOTINIOS HHm Pay,

aouo 1sni eme

{zop03 1L
(0 1 py
(0§00 1 :
{I0]03 : :
(rojo o
(0§03 -

SOUC UaME]l, 8g AJUC UBD UCHDSISS oIy e
{syepgiuue) DeIBAIIDRUL, SABMIE S 1DBAUOD DESIDISXS UY

81 DId

n

AOHYUME MY

AAYYDDEe Yy

AAYYEYeded

eacidde ..

oasi

‘usioe A .

uogepiieA
N y,

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

19/44

[
{pAured chured 7108 711 23 1GF 7Y 719 SwESZoqnY) 7aquo ejep ¢
(ghred (e T 1 [IG) {190 T4 T Sued7agqno) [oqno oppep ¢

ghred [Aped zox Ziu ZigF 7107 70 1Y swedzagno sear ¢

phyred gAued T [IE 1IGE TIQ) [y 1 sweBzagno ajpad |

syepdn uag

phyred ghured ~ gns 7y IG) 719 7Y 711 SwreSzaquo ~ zeqno 9
ZAwed Ayred P 1TV 1I6F TG 1 1T owreSzagno ~ [agno
Fi7 (RIS
{1 sssoouo pAued 1 phied,
‘sesooqo gAued @ cAued,
‘sasooys zAued 1, 7Aumd,
‘sasooys jAued : thmd, |}
. Soqua demg,

neme

A‘.’. v

;

{
[
{75: 5081 doy, } aund©
90[3 506 dog, sesmioxs zired ©
301 506 dog, sosmioxs jAued |
orepdn oy
9 119 149 11 Zoqno ~ sured joquo
Te] yons
{| sosooyo ghued : 7hred,
‘sasoonp 1Aued 1 1 Aued, |}
L ASIAY0L) 5081 dO,
}
neMe
e
{Pricenmo]) 1 plagns)
(Aareg 12 7hyed)
(freq o pAyed),
=g idoreqns

popaeu se poleonsiudos se og o deis DB Yors Smoje uoisoduion

61

DI

n

AOHYUME MY

nmr.}»m»mnmn

Oy

n»m\ﬂmhmwm

we'gad

[

eacidde |

o~

goeil

W/ LOREPIRA

uoioR A .

SUBSTITUTE SHEET (RULE 26)

WO 2017/189027 PCT/US2016/037253

20/44

sousnbss

[e e ey

FIG. 20

2000

SUBSTITUTE SHEET (RULE 26)

WO 2017/189027 PCT/US2016/037253

21/44

aouenbes

/ aousnbas \\\
|

e TR) e
) == [T

J

r‘""""""‘i

:
I
\N\//T

W

FIG. 21

SUBSTITUTE SHEET (RULE 26)

WO 2017/189027 PCT/US2016/037253

22/44

Bl

sousnbas

s[slojonininto

FI1G. 22

2200

SUBSTITUTE SHEET (RULE 26)

WO 2017/189027 PCT/US2016/037253

23/44

Ul

|

gouanbas

SIS1010

g

;

€

U

X
Y.
Z

/ 8w § eausnbas \\

gouanbes - —\ souanbas
LEHHI%} 3 auig

siun g sousnbes

?iiiﬂﬂ@m
- N
[

2300

FIG. 23

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

24/44

R Ao |

i S{Elep 7 |
L Alduig |

aouenbes

SERp 7]
EEEN

sousnbas

panqLysig

v< DI

souanbes

i Adue |

gouanbas

| 536D 7 |
| Aldwa |
[Sie.h X |

a fued

aouanbes

R

m
EEva

Sjielsp A
[SpERp Y|

¥ Aued

aouonbes

B

[SIE1eD A |
[Sieep X |

g Aued

aove

gauenbas

| SIEERp /7 |
LAl |
[SiErep X |

7 Aued

aouanbes

sjielep 7

[EEEYN
sjetap X

v Alled

pazijeiiusn

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

25/44

m

JUSWHLILLOD UoHoBSUBS |
0} pai} SUOHBZUOLINY

gousnbes

\

| SHEISp £ |

i AGWS |

[sielep (]

g Aued

gouenbes

ued v Aued sium ‘'souus oBps)
uRHas 888 Jouues g Aued Be

oiBo; Buipou Jo e
ainsus oiBo; puonoesuel]

$¢ D4

fose

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

26/44

gousnbes

SjiEleh X

#

g Aued

9C "DId

mmEsmhmmwmmmgoﬁmmcmﬁogsmmwm@mwcm&a&
1 SHUILOS uopezucyine s,oum ‘Aued pepeye ue sig Be

-

mg.amummamm |
| pezuoyiny

oY

Uojez

aouenbes

S{iEion 7
[SiEep A |

{siielep X |

Vs

v Aued

@mmg%mﬂmmamﬁmmmmcﬁg%
SolepiieA UonezLoUIne soum ‘Aued Bunepieae siy Ba

\\\\w

N

H1 T4

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

27144

sousnbes

sousnbes

[Sjiglep 7 |
Raus |
iSlielep X |

g Aued

”V i
ﬁ SUOIIDBSUR] POZLOUINY MU
e

gousnbes

| Siielep /7 |

[SIEISP A]
istiejep X |

gousnbaes

Y Al

\

siebps) a1eALY 1afipe} ouand

!

BN

sey v Aued
1L S|IEISD WIS BABY
jou ssop g Aued Be

LT DId

SN

sanjea ysey pue
UOHOBSURS PEZIUAUCUE
sy} oaey saped |y

0642

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

28/44

sausnbes

| SHiEIRP 7 |

Raus |

[SjiElop X |

sousnbes

Il

[(Zsey]

L {(AJYSel |

[1Xusey |

SSNjeA YsBY pus
suonoBsUB) peZILAUCUE
1 aney saiued jy

SUONOBSURY pozUOYINY

)

6 8¢ DId

aouanbes

| Siielep /7 |

[SIEISP A]

istiejep X |

aausnbes

L ALSSEY |
[LAJused |
| usey |

¥ Aued

RN

008¢

5196p8] 818ALd

BojiiaBpai aijgnd

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

29/44

gousnbes

[Sjiglep 7 |
Raus |
iSlielep X |

MO 0} PaaN

R
HUIWios | b - =
uonoBsuBLL _ il
.. o | (s
& | [[@FG,
=
5| | [k
[5| | O
E@,
.NWNNMO@%&T
/J\x Vu m
SUOLOBSURI) POZUOUINY

aousnbes

v Aued

Siooud peseg

5196p8] 818ALd

sau] opop, |

&

JHULICD 2

uonIesuRl | &

. 8

&

[S7ep 2 || "

BN ° [Asey |
SIE8p X — LOOUEEY |

BojiiaBpai aijgnd

g Aued o3 pepiaocud
‘sperep seyuny Ajgissod
pue ‘7 10 uonezuoyiny Be

6C DId

L1 T4

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

30/44

| e g sEp 0 | SIEI9p
sy o g 2 | g ajelep
N xR X eiep
< D gy
Y
YsBY Wiim siielep d sielep g
SBL i SHEOP ¥ S{IEI8p v
usey ym siielep 7 S|ejep 7
A I e s
Usey sk sjiglep X sieIsp ¥
ydeif/eas ysey
LliM SOUSBY S04 OPUBY UC DOSE(
uoneoyguep! Anus JabpaT ssauljaal Aljus JaBps- sioBpe; o18ALd

{Dlusey

{g s18i8plusey
(X @1elepiusey

Bojusbpe; olgnd

N

600

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

3144

Feo e |
i
[

USELY YliM SIIRISp O

| PR o
| 56U LR G990 |

| NN -
// | USBY LM X 319ep |

i
A

SHERP D

Y b

Y
YSEY Ulm SHEISp g

YSBL yiim SiEleD Y

4SEY Ulim SiiEloD 7

sjielsp g

sjielepl v

sjierep 7

A

YSBL L S|iEIRD A

/.

YSey i sjiegep X

siieieh A
speisp X

qUEItToEITUSEY
Uiim saysey
ushiesynuspl Anus Jabipar

SQ4] ODLIBIN U DBSE(
sssulsAl Anus Jabpan

sioBpe} e18Ald

{Dlusey

{g s18i8plusey

(X @1elepiusey

Bojusbpe; olgnd

N

00LE

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

32/44

WO 2017/189027

| sl L SIBRp 3 | Sifelsp 3 (o)usey
P
.................... e e
| USEY Yh g ﬁmmmﬂ g 21epp (g eropRplusey
/ | USey LM X S3oIp | {3001 X S0P (X s10p)usey
AN A— e I -
YSBY i SpEiap g AN NI SHElEp g {g)usey
YSBUY UM SIS ¥ sjesp v (viysey
ISEY UM SliEjep 7 “_wmww%mm
\ % - 113
USEL LM STRleD A \\ \ SHRIOP A (AJusey
Yeey Upm sjielep SHBIeD X {(3lusey
ydeibiess ysey
Ulim ssusey 8841 8PS U0 Paseq
uopesyjuap; Aue Jebpet ssauljaal] Ajus lebpa siaBpe| siAld | | BoyseBps| onand
002¢

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

33/44

1

\w Aued yses Ag pabeusiu

8y ueo siebpe; %mmw

" - - "] 7 A
=2 AU 2 paISOU-UCN
& SIEISD 7 < [ZJUSE]
DAEd|] ® AjowS & NDEER
LSUEISP X | Y USEL ”
e
i R
o I I T I g Aued
2 .m pPBS0U-UON
2 sjielap 7 ® LZjysey
3 8P A & (AJgsey |
g Aued SIEIE0 X ESIED
S0 T PN I B A O SR Ly Aed
s aca
£ 8 PEISOH | o fuimd
% §[E’p 2 3 {Z1Usey pejsoH | - Aued
@ SHEJED A & T UAJUSEY] DEISOH
Sli=Iep X |_iXJusey
1S0H - _
| s.ebpej elpAug | iebpea| oijgnd

¢t DId

g0ee

peIsoy 8q uen
siabpe; Aued

SUBSTITUTE SHEET (RULE 26)

WO 2017/189027 PCT/US2016/037253

34/44

agree
FI1G. 34

3400

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

35/44

g0se

¢ DId

:. ﬁﬂumz

i SZUOUINE Of pesu jusweelbe ug oy seed Iy e

- JoBpet yo, eaibe oy seued sy o) dn Ajny I SORUBLISS pUR YBIUAS }
mo.n : DPQNM.M&ME
JPeAjOs sT ogny, 5038w zAwed © (Aued ¢ oqno moy, }
usy;
A4} WY O, == [Q FY S0, = Y BY o0, — 1
WY} yons

ses00ys [Aued
- UOUN 08 YA DU,

}

eMmE

AI..

{Fofoy ::xnx)

(oo Py

{xofo © :aqy)

{(ropo © 1 1q3)

(003 :: 1)

C2/ Lo N 1))
= 7aqno

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

36/44

9¢ DI

wﬂ:. : ﬂ@NMcMﬁMK
:Ww@}@&% mwm, M@Mwumw vam.m‘mw ;ﬁ.w@muwm ‘ m_uum..mw‘...; ” mmuﬁmﬂ.u guﬂop W

‘w,.u..u : mm@NwﬂMﬂMﬁ

(Paatos st oqony, aexde zAued ¢ 1Aed : aqno mau, }

808t

usHh

12Ys gons
sasooyo [Apred
- UOLTOS Tais U,

}

AM.!.

(Aaeg 1 ghyed)
(Aaeg o 1Lred)
(30[0p 1@ n3)
{0703 1 po)
{ao1073 1 aq3)
(20700 1 1 qg)

ﬁmmmcb g)
(20100 1A
= Suredzogno

Nmum.mﬁm < :ﬂbmz
M%ﬁmm <= :mwﬂ.&w:
WS :ﬁmm»_
mﬁ <= :@MMM:
M < SNYH,
mew < :uﬁ.mm:
.m%: < :Gﬁmm:
m.,.m < :mﬁmmwz

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

37/44

Le DId

1088U0 Ainbs ue unum ustuessbe B3

{
SuipueisinGamou (Junowe oSUsg)IUNOWIE} UBIPOISHD
{1 + UOISI0A) SSE[DOIBYSMAT ANSIdos Jonsst ppunocase Aymbo @ Aynbo,, ¢
HOSBIL < > ,,03 30P,, < > ,, Honoe gsiedies,, aoade uripoisns ‘AnsiSsa ¢, usnuaygnen,, }
uoy}
3FO0YD] => JANOIYS BY
SAIOSIIO BOSEAX
Fupueisinmou sse] IRy M o5usy)unouie TOISIOA SSB]oreys
ANSIZol 39088 UonoyaieicdioAIoiepuRtl

~ prit

1B yons

ISO0YD] 18
SUIY I SALDOYIC
¥oy TWOSBSI

‘Ia8oruy o1 SWIPUEISINMIY
XS 1 SSB[DRIBYSMOU
‘o] < 108oyp o aSueyyUMOWIR
‘ppoRUC] & pru
sosooyo Ansigar

LT A

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

38/44

S8 UCHEPIEA S) OS[E 8J8 S1 7o0n7 JO UORIULSD s

‘{au0 Jopio us BUUNSUOD BliyMm) }
L,2an3, Mmau & saonposd s3oUD Yoe

{ 11 1T 1 {1 2qN TF 140 [ZqND ¢ ,,0Q00 MU,
usyl

sascoy [Aued

{7 3GY (98 09 (9 3GY [GF 3 [78gR0 [, 5qno mau,,

Oty

o Q - OSLANDOTD) 506 MENLL,
~

s3800Ys [Aed
1 IBLANS0T) 506 90L,

}

jlzAE

ﬁ a1Boj 801040, JEME w\\\.\\\\n <

{(rop073 o ona)
{xop0 : o
{xoj07y 1 XqY)
(F0j00 11 ap)
{(fojo 1 ny)
(I0]0D TN
= 7AqNs

gase

8¢ DIA

SUBSTITUTE SHEET (RULE 26)

WO 2017/189027 PCT/US2016/037253

39/44

agree ...

await ...

agree
FIG. 39

39200

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

40/44

Ov "DId

{papasu usym) Aqus Jad

p Aued Jad @) |
_ N ‘SUOHEBZLIoYINY : : “

Aius Jad fyed sod uogezuoun . ¥ (oo sy ‘pezuoyn " DSZLOYE)

m mm Ay Rezuouny . 3 Boe) ﬁmﬂy - b

Fop oo eme o o memn e e - B {
" WAM_EES usiy “EN.%%&M w A%% Crlehi
wain eed Aigissod ‘Aued Jed m/w m : : — 13 iafpa
suogezUone jsenbay @ @ {payiuwes ‘pezuoyine) @ @ {pew0n ‘pazucyne)
Anuz ssfpa wll sy Anug sebpat
@ TEMEEQ g%%m: J_ {papuLo ‘pazucyne)
| | e Az sbpe) | 1L usey Aqu3 sebpen
sjulelisuony | | siuswiinbal | {pemuiuooun pezuoyneun) M {psyiuwos ‘pezuoyme} | 1 {penuwos ‘pezuoigne}
Agigisia | | uonezuoyiny [esodoid Aoz 3eBps]| | H(sjuewnfie pue soioys B'e) A3 JoBpe . sey Aqu3 1obps
'L sispswered uogeeidia o ebdpelyeiiy B ,
_ . ANIUILICD ‘DOZLOYINE 00 ‘paziouy
SJIRASUOT | | Siusweanbal | {(peiliooun pezuounEun) w + Aue 10Bps; 0 jo)y m %Mw%aﬁmhwmm% i = @ﬁwweau%mwm Mﬁ&
Aigisia | | uonezuoyny {esodold Anug sebpsill | Iy R e b ol W - YSEH AJuZ 1803
w {suatunbie pue aoiouo B9} {peniwion ‘penoyine} | L {pOILWOD ‘PAZUCENE)
SjuRAsusy | | sjusliennbal | Kpewwooun pazuoyneun)| | | siejewesed uojeeidia; Ajug JafipeT @ . tsey Anus efpat
AWIGISIA | | UOnBZUOUYINY jesodold Anug Jefips m + Ajus Jebipa) 0} 'joy TDemULE00 DETOuTE) RIS DazIoe)
SN0, Ny, Aquy sofipa) M u yseH Aqu3 Jobpat
15 A esodosd uonosesuerly Jolipe 188paT] paleys sjeaud J_ Jafips oignd
! . N
| /M
P
O, ge 000y

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

41/44

uoioesues|
. 1eBpe) s1ruIpIonD |

21815 | uonoBsuR. |
abriols pUILIOD m

<@J

v " DId

U,

uogoesues] |

seBpaj szuouiny | {papasu cmﬂ@ Aqus sed

WO 2017/189027

TN v Aved jod * :
> e Jad ‘Rued ad vonezuoyn (¥ , (oo usy ‘pezuoyn //w%%%mv
m) m Ay Rezol) «JljJ. SUOHEZLOUINY s A Jofiper] e ﬁmﬂy - b
Fop oo eme o o memn e e - B {
M | (Huwitino sy ‘pazioine) | %ﬁx@%ﬁ@
man jeied Agissod *Aued ted m/w . m . _ o uz Jafper
N : 3
suofEzLayine jsentey ¢ @ @ {peguwiy ‘pezioyine) P\ {peyuwes ‘pazucye)
m UoHoBRSUBR gy 3 s
o @ m 1oBpa| sI01g (pepiuos ‘pazucuyine)
i _ yeey Anus 1obpat
sjulelisuony | | siuswiinbal | {pemuiuooun pezuoyneun) M {psyiuwos ‘pezuoyne} | 1 {penuwos ‘pezuoigne}
AiqisiA | | uonezuouyiny jesodotd Anuy Jefipsy w (syuswnbie pue soioa 68) Kz je6pe @ i e A3 o1
SJUBASUSD | | Siuswiainbal | |{poniuliooun pazuouneun) w mhﬁw&m“wm memmm thm Tmﬁmgamu ﬁﬁwﬁ%mﬂ. : {pepuwes ‘pazuoyne)
Amasia | | vonezuoyny esodoiq Anug eBpsl| | | _WSEH AT ROpE | L ey Anug Jofiper
w (spuewnbie pue 2oious §e) {peyuiwon ‘pezoyine) | L {penuwos ‘pezioyne)
SjuRAsusy | | sjusliennbal | Kpewwooun pazuoyneun)| | | siejewesed uojeeidia; Ajug JafipeT @ . tsey Anus efpat
AWIGISIA | | UOnBZUOUYINY jesodold Anug Jefips m + Ajus Jebipa) 0} 'joy [DeTLIO PoTHONTE) e
SN0, Ny, Aquy sofipa) M u yseH Aqu3 Jobpat
15 A esodosd uonosesuerly Jolipe 188paT] paleys sjeaud J_ Jafips oignd
! . N
uonoesus “ P /W
iebpe| ayeniu) \\.A“ 0oLy

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

42/44

Jap sabps
J4and

o

ian sebps)
posRysS
BIBAl

Jabpe

\\..\..\1\..\.!}!
fliin’iﬁfiu

11144

v 'DId

avey

uoloBsUR
18Bps) szuoyiny

UoloBsURh
sabps| ayegiul

ey

" uonoe fyed

uo Y
pEEy

Jebpa
Sjeii

BLzy

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

43/44

A% 4

aieis abeiois
BUIOT

UOROBSURH
sebps| puwon

g9ty

uooesuRy
Jebpst auoig

osep

LIOOBSUES

1ebpai sjpuipIoon?)

1] 4%

Jobpe; szuouiny

UOOBSURH

L% 4

\

/

1

/

I

‘@ﬁmmumm
JHand

|

Joi sobpeay
DaJBLsS
1Bl

JabBps

wone sobps;
1XBU U0 A

0ZEY

isbipsy
sl

gLEY

0oEY

¢y 'DId

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/037253

WO 2017/189027

44/44

vy "DId

uonnesuel jefps) S1BWPICCD SiBMY|
1% 44

susiezLouyng Suoddns 4+
118 o1 ysey oydesfodin +

a1y} sepinoid puy
{s1qisia
saujus BBps) ae st Aued udium o)
Anus sebperuoes eas, ueo Aued udiupy
Anus
1o08ps) uoes szucyIng 1nW Aued YU @
'S8y neds uonoBSUB] YoBS ‘LUONIPDE Y|
{sindut} pasoiial aq ssijus Jobpe ®
{sndino) seujue sebps) man &
‘ade sjiejep uonoesuay pesodoid oisey "salus
iaBps) ubis Aneubip o1 oo, sapiaoid pue
‘safurys peioadxe SelRISIUNUS UCROBSURS 8107
{ 11} uonoesuel]
2407y 8y} uuo} au W JeBpa) uo siepdn TV
pasodod jo wedu ssindwos sulbuz JAVG

(444

sjuiensuosy | | spusweanbal | {{pepiuwicoun pezuoyIneurn) M
Aqsia | | uoneZLOYINY esodoid Az seBpell | Hsuswnbie pue aoioyn Ba)
M sigjetupied uopeiaidiaiu
SHIBASUOD mwmmgmhmmumh AﬁwEEEDQan wumNm,aﬁmemmw | 4 Ewﬁm hwmwmw 0} 1oy
Amasia | | uonezuoyiny jesodoid Anug ebpe|i |
M {syuswnbie pue o0y ‘B'e)
Sulensucs | | slueiuaanbad | pepwiwonun pazuoyineun) | 1 sisiewesed uoesidiop
AHGISIA | | UonBZUoyINY jesodoid Az sebpan m + Aqus safipa; o oy
andino, Andu,
i Sivb jesodolg uoioesues | Jebps
o

{119} uoissaidxs sjepdn
TNV MU B selRiiu Aued

8ivb

Af}.’nlnl!’

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 16/37253

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - G06Q 20/00 (2016.01)
CPC - G06Q 20/0855, G06Q 20/12, GO6Q 20/382

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8) - GOBQ 20/00 (2018.01)
CPC - G06Q 20/0855, GO6Q 20/12, GO6Q 20/382

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
IPC(8) - GO6Q 20/00 (2016.01) (text search); USPC - 705/78, 705/64, 705/30 (text search)

CPC - G06Q 20/0855, G06Q 20/12, GO6Q 20/382, GO6Q 20/401, GO6Q 20/04 (text search)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PatBase, Google Patents, Google Scholar; Search terms used: model digital asset consent await agree append ledger right delete cash
bond fund delegate proxy parties blockchain pattern-matching top-level definition

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2014/0279540 A1 (JACKSON) 18 September 2014 (18.09.2014), entire document, 1-5, 7-9, 11-15, 17-19, 21
—_ especially Fig. 2A; para [0033], [0180}, [0187], [0189], [0234], [0245), [0247], [0332], [0339], -25, 27-29
Y [0392], [0527)] B
6, 10, 16, 20, 26, 30

Y US 2004/0083159 A1 (CROSBY et al.) 29 April 2004 (29.04.2004), entire document, especially | 6, 16, 26

para [0014]
Y US 2010/0076824 A1 (WALLMAN) 25 March 2010 (25.03.2010), entire document, especially 10, 20, 30

Fig. 3F; para [0042]

US 2016/0092988 A1 (LETOURNEAU) 31 March 2016 (31.03.2016), entire document 1-30

US 2014/0164251 A1 (LOH) 12 June 2014 (12.06.2014), entire document 1-30

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“Q” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

18 August 2016

Date of mailing of the international search report

09 SEP 2014

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - wo-search-report

