02/080026 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

0 OO0 OO

(10) International Publication Number

10 October 2002 (10.10.2002) PCT WO 02/080026 Al

(51) International Patent Classification’: GO6F 17/30 (74) Agent: ROBINSON, Simon, Benjamin; BT Group Legal
Services, Intellectual Property Department, 8th floor, Hol-

(21) International Application Number: PCT/GB02/01209 born Centre, 120 Holborn, London ECIN 2TE (GB).

(22) International Filing Date: 14 March 2002 (14.03.2002) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(25) Filing Language: English CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

(26) Publication Language: English LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(30) Priority Data:
0108077.9 30 March 2001 (30.03.2001) GB
(71) Applicant (for all designated States except US): BRITISH
TELECOMMUNICATIONS PUBLIC LIMITED
COMPANY [GB/GB]; 81 Newgate Street, London EC1A

7AJ (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JONES, Dean,
Michael [GB/GB]; 17A Stoke Street, Ipswich, Suffolk
IP2 8BX (GB). CUIL, Zhan [CN/GB]; 7 Squirrels Field,
Colchester, Essex CO4 5YA (GB).

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,

VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title: GLOBAL DATABASE MANAGEMENT SYSTEM INTEGRATING HETEROGENEOUS DATA RESOURCES

l retrieve query from query uble‘l"'"go
I

, identify resource wrapper and query.}—z—gz

i
[ranslate query inio resource onbology |_94

s

anlaﬁe to resource query Janguage l\ 08
1
lgtrieve result l—-/lllll
|
[retumluult o query engine ‘I/mz
, 104
— 1
IE“P through nodes in graph J 106

I
identify arcs and nodes

.
|seml query to wrapper

l convert io query ondology

108

connected
[

I uo

litrimre linking atirihute V

: . 112
compile all reixieved attribuies
B

l:etum result to source

(57) Abstract: A database management systems is disclosed for solving distributed queries across a range of resources. In known
systems, database retrieval from multiple sources suffers from problems of reconciliation of data between resources and resource or
data incompatibility. The invention allows full database integration even in the case where a database includes a plurality of disparate
database resources having differing ontologies (data structures). The system has a complex query analysis system that is arranged
to identify sub-queries and to dealing with each sub-query in turn or in parallel and then to integrate the sub-query results into a full

solution.

w0 02/080026 A1 IR0 000 0 N A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

WO 02/080026 PCT/GB02/01209

GLOBAL DATABASE MANAGEMENT SYSTEM INTERGRATING HETEROGENEOUS DATA RESOURCES

The invention relates to a database management system, in particular such a

system for solving distributed queries across a range of resources.

In known systems, database retrieval from multiple sources suffers from problems

of reconciliation of data between resources and resource or data incompatibility.

Aspects of the invention are set out in the attached claims.

The invention provides various advantages. In one aspect, the invention allows full
database integration even in the case where a database includes a plurality of
disparate database resources having differing ontologies.

In another aspect, the invention allows an integrated solution by finding and
linking all database resources having the required elements for a specific database

query.
In yet a further aspect, the invention allows a structured and efficient approach to

solving a query by identifying sub-queries and dealing with each sub-query in turn
or in parallel for integrating the sub-query results.

Embodiments of the invention will now be described, by way of example, with
reference to the drawings, of which:
Fig. 1 is a block diagram of a network according to the present invention;

Fig. 2 is a block diagram of database resource schemas according to the present
invention;

Fig. 3 is a block diagram of resource ontologies according to the present invention;

Fig. 4 is a block diagram of an application ontology according to the present
invention;

10

15

20

25

30

35

WO 02/080026 PCT/GB02/01209

Fig. 5 is a block diagram of a resource ontology-resource schema mapping
according to the present invention;

Fig. 6 is a block diagram of an application ontology-resource ontology mapping
according to the present invention;

Fig. 7 is a further block diagram of a network according to the present invention,

Fig. 8 is a flow diagram showing an initialisation sequence according to the
present invention;

Fig. 9 is a node-arc representation of a concept identity graph according to the
present invention;

Fig. 10 is a node-arc representation of a solution graph according to the present
invention;

Fig. 11 is a node-arc diagram of an alternative solution graph according to the
present invention; and

Fig. 12 is a flow diagram representing integration of data retrieved according to
the present invention.

In overview, the invention provides a distributed query solution for a network
having a plurality of database resources. In the preferred embodiment, the
network used is a DOME network but it will be appreciated that any appropriate
network can be used. The DOME network helps users to ask queries which
retrieve and join data from more than one resource, such as an SQL or XML

database.

When a query is received by the DOME query engine, it is treated as a request to
retrieve values for a given set of attributes for all “individuals” that are instances
of a given “concept” which also satisfy the given conditions. An “individual” is a
specific field in a specific resource which may be duplicated, in another form, in

another resource (e.g. in the specific example discussed below, two separate

10

15

20

25

WO 02/080026 PCT/GB02/01209

database resources may have fields, under differing names, for a common entity
such as a product name). A “concept” is in effect the query strategy — the query
concept may be to retrieve all relevant product names for products satisfying given
criteria, in which case the individuals are the fields in the resources carrying that
information. The attributes are then the values (e.g. product names) associated
with the relevant fields or individuals. The query engine constructs a set of sub-
queries to send to the relevant resources in order to solve the uset’s query. Before
the sub-queries are sent, the query engine will translate them into the vocabulary
or “ontology” of the relevant resource. After the sub-queries are translated into
the query language of the relevant resource (e.g. SQL) the results are passed back
to the query engine. Once the query engine has received the results to all sub-

queries, it will integrate them and pass the final results to the user client.

The subsequent discussion uses as an example a network 10 having three database
resources 12, 14, 16, as illustrated in Fig. 1 comprising a “products” database 12, a
“product prices” database 14 and a “product sales” database 16. The starting point
for a DOME network is this set of resources. Although in principal any resource
containing structured data can be included, here we discuss only relational
databases. Examples of SQL resource schema for each of the resources in our
running example are given in Fig 2, in which the schema for the products database
is shown at 12a, for the product prices database at 14a and for the product sales

database at 16a.

In setting up the network, first, a resource ontology is specified for each resource,
which gives formal definitions of the terminology of each resource, ie database 12,
14, 16 connected to the network. Example resource ontologies are given in Fig. 3

for each of the products database 12b, products prices database 14b and product

10

15

20

25

WO 02/080026 PCT/GB02/01209

sales database 16b. If the ontology of a resource is not available, it is constructed
in order to make the meaning of the vocabulary of the resource explicit. For a
database, for example, the ontology will define the meaning of the vocabulary of
the conceptual schema. This ontology ensures that commonality between the
different resources and the originating query will be available by defining the type
of variable represented by each attribute in the schema. In addition, as shown in
Fig. 4, an application ontology 18 is defined, providing equivalent information for
the attributes required for a specific, pre-defined application, in the present case an

application entitled “Product Analysis”.

Having, by means of the ontology, effectively specified the data-type of each field
or attribute in each of the distributed resources, a mapping is then specified
between the resource ontology 12b, 14b, 16b and - in the case of a database - the
resource schema 12a, 14a, 16a. This is shown in Fig. 5, for each of the products,
product prices and product sales databases mappings 12¢c, 14c, 16¢c. Although it
would be possible to define a mapping directly between an application ontology
and the database schema, it is preferred to construct resource ontologies since the
mapping between a resource ontology and a resource schema can then be utilised
by different user groups using different application ontologies. This requires that
relationships are also specified between an application ontology and a resource
ontology before the query engine can utilise that resource in solving a query posed

in that application ontology, as shown by mapping 18a in Fig. 6.

Fig. 7 shows the basic blocks of the network including the components described
above. The resource ontologies 12b, 14b, 16b are stored in an ontology server 20,
the resource ontology-application ontology mappings 18a are stored in a mapping

server 22 and the resource schema-resource ontology mappings 12c, 14c, 16¢ are

10

15

20

25

WO 02/080026 PCT/GB02/01209

stored in the relevant wrapper 24, 26, 28, which is an intermediary between the
query engine 30 and a resource 12, 14, 16. A wrapper is responsible for translating
queries sent by the query engine to the query language of the resource. In addition
the network includes a query table 31, wrapper directory 32 and block 34 for the

application ontology 18 as discussed in more detail below.

Once the various elements of the network have been started, the initialisation
sequence begins as shown in Fig. 8. At step 40 each of the wrappers 24, 26, 28
registers with the directory 32 and lets it know at step 42 about the kinds of
information that its respective resource 12,14,16 stores. In order to describe the
information that is available in a resource 12, 14,16, a wrapper 24, 26, 28 needs to
advertise the content of its associated resource with the directory 32. This is done
in the terminology of the resource ontology 12b, 14b, 16b. This involves sending a
translation into the resource ontology 12b, 14b, 16b of all possible parts of the
resource schema 12a, 14a, 16a (i.e. those elements for which a resource ontology-

resource schema mapping 12c, 14c, 16¢ has been defined.)

When the directory 32 receives an advertisement for an attribute of a resource 12,
14, 16, at step 46 it asks the ontology server if the role is an identity attribute for
the concept (ie is the attribute listed in the application ontology 18) and the role is
marked accordingly in the directory 32 database. Once each wrapper 24, 26, 28
has been initialised, the directory 32 is then aware of all resources 12, 14, 16 that
are available and all of the information that they can provide. When a resource 12,
14 16 becomes unavailable (for whatever reason), at step 48 the wrapper 24, 26,
28 will communicate this to the directory 32 which updates at step 50 such that the
information stored in the resource 24, 26, 28 will no longer be used by the query

engine 30 in query solving.

10

15

20

25

WO 02/080026 PCT/GB02/01209

A detailed description of the ontology translation techniques used in DOME is not
necessary as the relevant approach will be well known or apparent to the skilled
person. However an outline is provided that is sufficient for giving the detail of
how a query plan is formed. In order to allow the translation of expressions from
the vocabulary of one ontology to that of another, a set of correspondences are
specified between the vocabularies of two ontologies. A correspondence between
two concepts contains principally: the name of the source and target ontology and
the source and target concept names. In some cases the correspondence also
contains any pre- and post-conditions for the translation which are important for
ensuring that the translation of an expression into the vocabulary of a target
ontology has the same meaning as the original expression in the vocabulary of the

source ontology. However this last aspect is not relevant to the present example.

The next step is to specify the elements that will be used when the query engine
processes queries. In the preferred embodiment an object-oriented framework is

used and so the methods associated with each element are also outlined.

A query that is passed to the query engine 30 has the following components: the

ontology in which the terms used in the query are defined; a concept name; a set of
names of attributes of the query concept for which values should be returned to the
user client; a set of attribute conditions; and a set of role conditions. An attribute
condition is a triple {an, op, val) where an is the name of an attribute of the query
concept, op is an operator supported by the query language (e.g. ‘<’, >’, ‘=" and
so on) and val is a permissible value for the given attribute or operator. In the
specific example described herein are the names of the attributes in each of the

conditions is relevant. Each of the role conditions is also a triple {rn, op, sq)

10

15

20

25

WO 02/080026 PCT/GB02/01209

where rn is the name of a role, op is an operator (e.g. ‘all’, ‘some’) and sq is a sub-
query. The sub-query itself largely conforms to the above guidelines for queries
but does not specify the name of the ontology, since this will be the same (it being
a sub-set of the main query), or the names of attributes for which values should be
returned, since these will be determined automatically. In the specific example

discussed herein the operators in role conditions are not relevant.

In the specific example scenario, the user wants to find the name and code of all
products which are made by companies with more than 100 employees and which
have sold more than 10,000 units. We can represent this query more formally as:
(Product-Analysis-Ontology, Product,

{Product .product-name, Product . product-code}

{Product .product-sales}

{Product .manufacturer, (Manufacturer, {Manufacturer.emplo
vees}, {})

)

where the application concept is “Product Analysis”, the attributes or individuals
in the application are product name, code and sales and manufacturer employees

and the resources are the product, product prices and product sales databases 12,

14, 16.

When describing the algorithms used in query processing, it is assumed objects

exist that belong to the following classes (with associated methods):

Query - represents a query sent to the query engine

10

15

20

25

WO 02/080026 PCT/GB02/01209

Query(c, o) - a constructor method which takes a concept name and an
ontology name as arguments
getOntology() - returns the name of the ontology in which the query is
framed
getConcept() - returns the name of the query concept
getRequiredAttributes() - returns the set of required attributes
getAttributeConditions() - returns the set of attribute conditions
getRoleConditions() - returns the set of role conditions
addRequiredAttribute(a) - adds a to the set of required attributes
addAttributeCondition(ac) - adds ac to the set of attribute conditions

addRoleCondition(rc) - adds rc to the set of role conditions

RoleCondition

getRole() - returns the role in the condition

getSubQuery() - returns the condition’s sub-query

setSubQuery() - sets the value of the sub-query part (note that during processing,
this can be set to the results to the sub-query)

AttributeCondition

getAttribute() - returns the attribute in the condition

QueryEngine
askQuery(q) - the response to a query will be a table of values where each

column corresponds to the values for an attribute and each row

corresponds to the values for an individual

10

15

20

25

WO 02/080026 PCT/GB02/01209

Directory

knows(c, o) - returns the set of wrappers that know about the concept ¢ defined in
ontology o

knows(a, ¢, o) - returns the set of wrappers that know about the attribute a of the

concept ¢ defined in ontology o

Wrapper
askQuery(q) - retrieve the results to the query q from the wrapper’s
associated resource
knows(c, o) - returns true if the wrapper knows about the concept ¢
defined in the ontology o
knows(a, ¢, o) - returns true if the wrapper knows about the attribute a of
the concept c defined in the ontology o
getPrimaryKey(c, o) - retrieve the key attribute(s) for concept ¢ in

ontology o

Accordingly commands are defined allowing operation of the query engine as

discussed below.

When the query engine receives a query, a plan is constructed to solve the query
given the available information resources and the algorithm for constructing such
a plan is discussed below. Queries are solved recursively. The query engine first
tries to solve each member of the set of sub-queries. Any of these that do not
themselves have complex sub-queries can be solved directly (if the required

information is available).

10

15

20

25

WO 02/080026 PCT/GB02/01209

10

A number of different data structures are utilised in the following description. In
order to keep the description as generic as possible, it is assumed that these data
structures are implemented as objects, referring to the following objects and

methods:

Graph - represents a graph consisting of a set of nodes and a set of arcs
addNode(n) - add node n to the graph

addArc(m, n, [) - add an arc between nodes n and m with the label
removeNode(n) - remove the node n from the graph

connected() - return true if the graph is connected

getNodes() - returns the set of nodes

getSubGraphs() - return the set of connected sub-graphs of the graph

Hashtable - a table of keys and associated values

put(k, v) - associate the key k with the value v in the table

get(k) - returns the value associated with the key k

hasKey(k) - returns true if the hashtable contains an entry with the key &

Accordingly the relevant structures are defined for subsequent processing of the

query.

The next stage is to construct a “Concept Identity Graph” designated generally 60
as shown in Fig. 9, a directory and resources with wrappers having been
established. The concept identity graph 60 represents, by linking them, the
resources (ie databases 12, 14,16) via the respective wrappers 24, 26, 28 that have
the same primary key attribute (or attributes for composite keys) for a concept.

Given some query ¢, a concept identity graph for the query concept defined in

10

15

20

25

WO 02/080026 PCT/GB02/01209

11

some ontology is constructed using the following algorithm, based on the

commands and data structures discussed above:

Inputs: query - the query
Output: graph - the concept identity graph for query

initialise graph
o = query.getOntology()
¢ = query.getConcept()
wrappers|] = directory.knows(c, o)
for i =0...|wrappers|-1
graph.addNode(wrappers|i])
primaryKey = wrappers[i].getPrimaryKey(c, 0)
forj=0...i-1
if primaryKey = wrappers[j).getPrimaryKey(c, o) then
g.addArc(w(i], wlj], primaryKey)

return g

In solving the top-level query in our example, the graph 60 in Fig. 9 is constructed.
The wrappers related to resources having the relevant fields or attributes are
identified and created as nodes. An arc 62 between nodes is created when the
nodes so linked share a key attribute, ie, an attribute demanded by the query.
Where there is an arc 62 between a pair of wrappers 24, 26, 28 in the graph 60, we
can directly integrate information about the query concept that is retrieved from
the resources 12, 14, 16 associated with those wrappers. In the example,
information about products which is retrieved from the Product-Price resource 14

can be integrated with information about products retrieved from either the

10

15

20

25

WO 02/080026 PCT/GB02/01209

12

Products resource 12 or the Product-Sales resource 16, but information about
products retrieved from the Products and Product-Sales resource cannot directly be
integrated as there is no linking arc 62. For this reason, in order to ensure that
information from two resources can be integrated, they must at least be in the
same sub-graph of the concept identity graph 60, where a sub-graph may be the
only graph or one set up to accommodate a sub-query forming part of an overall
query (how information retrieved from two resources that are not neighbours in

the concept identity graph may be integrated indirectly is discussed below).

The next stage is to construct queries to send to resources. The user query can be
solved if it is ensured that:

(a) each condition and each user-specified required attribute is allocated to at least
one resource query and

(b) the results to the resource queries can be integrated.

In other words, all the information required is available from one or other of the
resources, and the resources are not themselves incompatible such the that

information cannot be collated.

Starting with requireinent (a), attribute conditions and required attributes can be
allocated simply to resource queries by identifying resources that contain the
relevant attributes. A slight complication is that, as outlined above, those resources
must be in the same connected sub-graph of the concept identity graph 62, which

is ensured by selecting one sub-graph at a time.

In the top-level query, the user specifies the attributes for which values should be
returned. For sub-queries embedded in role conditions, this is not the case. There,

the attributes for which values from the resource must be retrieved (e.g. for a

10

15

20

25

30

35

WO 02/080026 PCT/GB02/01209

13

query to an SQL database, which fields are named between ‘SELECT’ and
‘FROM”) must be determined. This is done by first finding a resource that answers
the role condition and using this to determine the values that need to be retrieved.
The system loops through the relevant resources until one can be found which
allows the sub-query to i)e solved. The results to the sub-query are retrieved by
issuing a query against the query engine (demonstrating again how queries are
solved recursively) and the sub-query in the role condition is then replaced with

these results.

The following algorithm demonstrates how required attributes and conditions are

allocated to resource queries.

Inputs: q - the user query
g - the concept identity graph for the query concept
Output: resourceQueryHashtable - mapping of wrappers to

resource queries
subGraph - the component of the concept identity
graph that enabled all parts of the query to be allocated

subGraphs[] = g.getSubGraphs()
o = q.getOntology()
¢ = q.getConcepl()
requiredAttributes|] = q.getRequiredAttributes()
attributeConditions[] = q.getAttributeConditions()
roleConditions[] = q.getRoleConditions()
allAllocated = false
for i =0...|subGraphs|
subGraphNodes[] = subGraphs.getNodes()
// allocate the user-specified required attributes
for j = 0...|requiredAttributes|-1
for k=0...|subGraphNodes|-1
if subGraphNodes|[k].knows(requiredAttributes(j], c, o) then
if resourceQueryHashtable.hasKey(subGraphNodes[k])
resourceQuery =
resourceQueryHashtable.get(subGraphNodes([k))

WO 02/080026 PCT/GB02/01209

14

resourceQuery.addRequiredAttribute(requiredAttributes[j])
else
resourceQuery = new Query(c, o)
resourceQuery.addRequiredAttribute(requiredAttributes[j])
resourceQueryHashtable.put(subGraphNodes(k], resourceQuery)
// allocate the attribute conditions
for j = 0... |attributeConditions|-1
for k=0 ... |subGraphNodes|-1
if subGraphNodes[k].knows(attributeConditions[j].getAttribute(), c, o) then
if resourceQueryHashtable.hasKey(subGraphNodes[k])
resourceQuery =
resourceQueryHashtable.get(subGraphNodes[k))
resourceQuery.addAttributeCondontion(attributeConditions[j])
else
resourceQuery = new Query(c, o)
resourceQuery.addAttributeCondition(attributeConditions[j])
resourceQueryHashtable put(subGraphNodes| k), resourceQuery)
// allocate the role conditions
for j = 0...|roleConditions|-1
subQuery = roleConditions|j).getSubQuery()
for k= 0...|subGraphNodes|-1
if subGraphNodes|k].knows(roleConditions[j].getRole(), c, o) then
primaryKey = resources[k].getPrimaryKey(subQueryConcept, o)
subQuery.addRequiredAttribute(primaryKey)
subQueryResults = queryEngine.askQuery(subQuery)
roleConditions[j].setSubQuery(subQueryResults)
if resourceQueryHashtable.hasKey(subGraphNodes[k])
resourceQuery =
resourceQueryHashtable.get(subGraphNodes[k))
resourceQuery.addRoleCondition(roleConditions|j))
else
resourceQuery = new Query(c, o)
resourceQuery.addRoleCondition(roleConditions[j])
resourceQueryHashtable put(subGraphNodes| k), resourceQuery)
if allAllocated = true
return resourceQueryHashtable and subGraph|i]

Accordingly the algorithm allocates attributes, attribute conditions and role

conditions by assessing the contents of the subgraph node resources. If some user-

10

15

20

25

WO 02/080026 PCT/GB02/01209

15

specified required attribute or condition cannot be allocated to a resource query,
the user query cannot be solved by the current set of resources connected to the

network and the user is informed.

Having shown how conditions and required attributes are allocated to resource
queries, the next stage is ensuring that the results to these resource queries can be
integrated. The connected sub-graph for which all of the required attributes and
conditions can be allocated to a resource query is termed the solution graph 70 in
Fig. 10. If some part of the user query has been allocated to a resource 12, 14, 16,
we say that the resource is active in relation to a given query. The next stage is to
ensure that it will be possible to integrate the results to each of the resource
queries. In order to be able to integrate the results from two active resources
(designated in the figure by the respective wrapper 24, 26, 28) which are
neighbours in the solution graph 70, we need to retrieve values for an identity
attribute 72a,b which labels the arc 62 joining the resources. It follows that if all of
the active resources are neighbours in the solution graph 72, that is to say, they are
linked by an arc 62 designating a shared attribute, provided we retrieve values for
the correct attributes, we can integrate the results to all of the resource queries. For
example, if there is a solution graph as shown in Fig. 10 with the active resources
24, 26 being shown as solid nodes, in order to integrate results to the two resource

queries, it is necessary to retrieve the data for ‘product-name’ from each resource.

However, if an active resource does not have any active neighbours in the solution
graph, it will not be possible to integrate the results from the corresponding
resource query without some additional information. The solution adopted to this
problem is to construct a set of one or more intermediate queries which are sent to

the resources to retrieve data that is then used to integrate the results of the

10

15

20

25

WO 02/080026 PCT/GB02/01209

16

resource queries. An intermediate query 6b must be sent to each resource that lies
on the path between (a) the active resource without any active neighbours, and (b)
the nearest active resource to it. For example, consider the solution graph shown in
Fig. 11. In order to integrate data from the active resources product and product
sales 12, 16 represented by solid nodes an intermediate query 80 is sent to the
‘Product-Price’ resource 14 which retrieves information on the ‘product-name’
and the ‘product-code’ attributes. If we the ‘product-name’ data is retrieved from
the ‘Products’ resource 12 and the ‘product-code’ data from the Product-Sales
resource 16, the results can be used at the intermediate query 80 to integrate the
result from the two resource queries. It may be that in order to make a path
between two nodes that are active in a query, multiple intermediate queries are

required dependent on the complexity of the query.

The algorithm to determine whether any intermediate queries are required is
shown below and is based on determining whether the sub-graph that contains the
active nodes is connected. If so, a solution has been found. If not, additional nodes
are added until the graph is connected. Nodes are added by generating a

" combinations of inactive nodes, adding these to the graph and then determining
whether the resulting graph is connected. Combinations of increasing length are
generated i.e. if there are n inactive nodes in the graph, combinations are generated
in order combinations of lengths 1 up to #n. Combinations can be generated using
an implementation of one of the many known algorithms generating combinations,
for example Kurtzberg’s Algorithm (Kurtzberg, J. (1962) “ACM Algorithm 94:
Combination”, Communications of the ACM 5(6), 344).

This algorithm is implemented as below, taking the implementation as the function

Combination(n, i) where n is the cardinality of the set of numbers to choose from

10

15

20

25

WO 02/080026 PCT/GB02/01209

17

and i is the length of the combinations to generate. This function returns a set of

all possible combinations of length i.

Inputs: subGraph - the component of the concept identity graph that
enabled all parts of the query to be allocated
resourceHashtable - the mapping of wrappers to resource

queries

// determine which nodes are active
solutionGraph = subGraph
solutionGraph[] = subGraph.getNodes()
for i = 0...|subGraphNodes|-1
if not resourceGraph.hasKey(subGraphNodesl[i])
inactiveNodes[].add(subGraphNodes[i])
subGraph.removeNode(subGraphNodes[i])
if not subGraph.connected() then
foundSolution = false
i=0
while i <= |inactiveNodes| and not foundSolution

allCombinations[] = Combination(inactiveNodes, i)

for j = 0...|allCombinations|-1
combination[] = allCombinations|[j]
for k= 0...|combination|-1
subGraph.addNode(combination[k])

// also need to add the arcs

10

15

20

25

WO 02/080026 PCT/GB02/01209

18

add each resource in the combination as a node in the solution graph
add the required arcs to the solution graph

if (solutionGraph.isConnected
foundSolution := true;

else

remove nodes and arcs from the graph.

The final stage is to retrieve and integrate the data, and the system is illustrated
with reference to Figs. 7 and 12. In order to send the resource queries, at step 90
the system loops through the resourceQueryTable 31 and retrieves at step 92 each
entry in turn, which will consist of the identity of a resource wrapper and the query
to be sent to it. It is then necessary to translate each query into the ontology of the
resource 12, 14, 16 (step 94) and send this version to the wrapper 24, 26, 28 (step
96). On receiving a query, at step 98 the wrapper 24, 26, 28 translates it into the
query language of the resource 12, 14, 16 retrieves the results of the query (step
100) and sends these results back to the query engine 30 (step 102). Each of the
individual results then needs to be converted into the ontology of the query at step
104 before they can be integrated to give the results of the query as a whole. Once
results to all of the sub-queries have been received and converted to the query
ontology at step 104, the integration of those results begins. At step 106 each
unexplored node in a solution graph is looped through. At step 108, each arc on
the node is identified and the attached node retrieved, and at step 110 the linking
attribute is retrieved. Once this is completed, as the graph has been compiled to
provide an integrated solution to the query, this technique will ensure that all
attributes and attribute conditions are retrieved, in effect by replacing each node
with the result retrieved by the wrapper. The query engine can then compile the
attributes in the appropriate format at step 112 and return this result to the query

10

WO 02/080026 PCT/GB02/01209

19

source at step 114. An algorithm for dealing with this final step can be compiled

in the manner adopted for the other stages discussed above.

It will be appreciated that variations of the system can be contemplated. Any
number of resources of any database type or structure can be supported with the
compilation of appropriate ontologies. Similarly any level of data or query
structure, and network configuration or type can be used to implement the system,

and the specific examples given in the description above are illustrative only.

10

15

20

25

WO 02/080026 PCT/GB02/01209

20

Claims

1. A database management system comprising a database manager and
at least one database resource, in which the manager includes a query manager
arranged to parse an incoming query for sub-queries, establish a sub-result for
each sub-query from the at least one resource and integrate the sub-results to

obtain an overall query result.

2. A system as claimed in claim 1 comprising a plurality of database
resources, in which the query engine is arranged to establish the sub- result

distributed across the resources.

3. A system as claimed in claim 1 or 2 in which the query engine
contains a resource ontology for each database resource and the sub-result is

established via the resource ontologies.

4. A system as claimed in any preceding claim in which the query
engine is arranged to parse a query to identify the elements required for a sub-
query sub-result, construct a node and link representation of database resources
including as nodes resources containing the required element and as links elements
common to individual nodes and compile an integrated sub-result from the

representation.

5. A method of managing a database comprising a database manager
and at least one database resource comprising the steps of parsing an incoming
query for sub-queries, establishing a sub-result for each sub-query from the at least

one resource and integrating the sub-results to obtain an overall query result.

10

15

WO 02/080026 PCT/GB02/01209

21

6. A method as claimed in claim 5 in which the database includes a
plurality of database resources further including the step of establishing the sub-

result distributed across the resources.

7. A method as claimed in claim 6 in which the query engine contains a
resource ontology for each database resource and in which the step of establishing

the sub-result is carried out via the resource ontologies.

8. A method as claimed in any of claims 5 to 7 further including the
steps of parsing a query to identify the elements required for a sub-query sub-
result, constructing a node and link representation of database resources including
as nodes resources containing the required element and as links elements common

to individual nodes and compiling an integrated sub-result from the representation.

9. A computer readable medium comprising instructions for
implementing a system as claimed in any of claims 1 to 4 and/or a method as

claimed in any of claims 5 to 8.

WO 02/080026

1/6
12
16
14
10
Fig. 1
12a \ ld4a -ﬁ
table prod table products
*prod_code : varchar(10) *name : varchar(20)
prod_name : varchar(20) price : integer
manufacturer : manf
itable manf
name : varchar(10)
empl : integer
table prod
16a *code : varchar(10)

Fig. 2

units_sold : integer

PCT/GB02/01209

WO 02/080026 PCT/GB02/01209

2/6
oniology Product-Ontology ontology Product-Prices-Oniology
class Product class Product
attribute product-code : Siring atiribute product-name : String
atiribute product-name : String atiribute product-price : Integer
atiribute manufacturer : Manufacturer
class Manufacturer 14b
atiribute name : String
atirihuie employees : Integer

12h_of)

oniology Product-Sales-Ontology

class Product
attribute product-code : String)
attribute product-sales : Integer 16b

Fig3

oniology Product-Analysis- Ontology
class Product

attribute code : String

attribute name : Siring

attribute price : Integer 18
attribute manufacturer : Manufacturer

atiribute units-sold : Integer

class Manufacturer

attribute name : String
attribute number-of-employees : Integer

Fig. 4

WO 02/080026

12b 12a

Product <3 prod 12¢

Productproduct-code <> prod.prod_code

Productproduct-name <> prodprod_name

Manufacturer <= manf

Manufacturer.name <. manfname

Manufacturer.employees <> manfempl

Fig.5

14 l4a 14c

Product <> producis

Productproduct-name <> producis.name

Productproduct-price <= products.price

16b 16a

16¢

Product <> prod

Productproduct-code <> prod.code

Productproduct-sales <> prod.units_sold
13 12b
Product <> Product
Productcode <> Productproduci-code
Produci.name <-» Productproduct-name
Product. manufacturer <-» Productproduct-manufacturer
Manufacturer <> Manufacturer
Manufacturer.name <-» Manufacturer.name
Manufacturer.employees <-> Manufacturer.number-of-employees
18 14b
Product <> Product
Productprice <> Productproduct-price

6

18 16
Product <> Product
Product.code <> Productpreduci-code
Productuniis-sold <-> Productproduct-sales

PCT/GB02/01209

18a

Fig. 6

WO 02/080026

PCT/GB02/01209

4/6
20 22
[126] [a] [asn | J 18a J
0____~ 18 3
Fig. 7)
Z 28
32 24—
L | 12¢ (14¢ 16¢
12 26 16
\ {-.
14

I wrapper registers with directory |f~\ 40

for each wrapper

send translation of

resource ontology
1

directory asks oniology sexver if
identity attribute

provide details of resource \-’)2
information

44
resource schema into _M_/ Fig. 8

46

| I
update direciory

has wrapper become
unavailshle? |~

48

30

WO 02/080026 PCT/GB02/01209

5/6

26

60 Product-Price

24

Products

Product-Sales

62

Fig. 9

Fig. 10
18 70

26
Product-Frice

Praducts \ / Product-Sales

WO 02/080026

12

Fig. 11

| retrieve query from query iable l“"’gu

I identify resource wrapper and quzry.l—-gz

[ranslate query into resource ontology |_94

|Eml query to wi’apyer Lgﬁ

lmmlate to resource query language r\ 08

|reiricw: result l,-r‘llll]
[

Imtum result to i |/102
query engine

I convert to query ontology l/ 104
I

lloop through nodes in graph I/ 106

identify arcs and nodes 108
connected L

product-nam

Products

PCT/GB02/01209

6/6

14

Product-Price

roduct-code

16

Product-Sales

]
imtricvelixﬂ:ingatu'ibum l/uo

compile all reirieved atiributes l,/llz

B

lmtum result to source

Fig. 12

Intem‘ al Application No

INTERNATIONAL SEARCH REPORT PCT/GB 02/01209

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F17/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with inchcation, where appropriate, of the relevani passages Relevant to claim No.

X MENA, E. ET AL: T"OBSERVER: An Approach 1-9
for Query Processing in Global Information
Systems based on Interoperation across
Pre-existing Ontologies”

INTERNATIONAL JOURNAL ON DISTRIBUTED AND
PARALLEL DATABASES (PAPD), KLUWER ACADEMIC
PUBLISHERS,

vol. 8, no. 2, April 2000 (2000-04), pages
1-50, XP002201997

Boston, USA

Figures 4-6, sections 4,5

the whole document

Further documents are listed in the conlinuation of box C. Patent family members are listed in annex.

° Special categories of cited documents : X . | !

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"A* document defining the general state of the art which is not
considered to be of particular relevance

'E* earlier document but published on or after the international *X* document of particular relevance; the clamed invention
filing date cannot be considered novel or cannot be considered to
L document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
"‘f{“f.h IS C"E';g 10 estaplllsh the pubhcauonﬁga&e of another *Y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to @ person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed *&* document member of the same patent family
Date of the actual completion of the international search Date of malling of the international search report
13 June 2002 22/07/2002
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, s

Fax: (+31-70) 340-3016 Jaedicke, M

Fom PCT/ISA/210 (second shest) (July 1992)

INTERNATIONAL SEARCH REPORT

Interr al Application No

PCT/GB 02/01209

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

X MENA E ET AL: "Observer: an approach for
query processing in global information
systems based on interoperation across
pre-existing ontologies"
COOPERATIVE INFORMATION SYSTEMS, 1996.
PROCEEDINGS., FIRST IFCIS INTERNATIONAL
CONFERENCE ON BRUSSELS, BELGIUM 19-21 JUNE
1996, LOS ALAMITOS, CA, USA,IEEE COMPUT.
soc P, US,

19 June 1996 (1996-06-19), pages 14-25,
XP010200745

ISBN: 0-8186-7505-5
page 16, left-hand column, paragraph 2.1
-page 22, right-hand column, paragraph 4

X VISSER, P.R.S. ET AL: "Resolving
Ontological Heterogeneity in the KRAFT
Project”

PROCEEDINGS DATABASE AND EXPERT SYSTEMS
APPLICATIONS, 10TH INTERNATIONAL
CONFERENCE, DEXA-99 |,

30 August 1999 (1999-08-30)

- 3 September 1999 (1999-09-03), pages
668-677, XP002201998

Florence, Italy
the whole document

A GRAY P M D ET AL: "KRAFT: knowledge
fusion from distributed databases and
knowledge bases"
DATABASE AND EXPERT SYSTEMS APPLICATIONS,
1997. PROCEEDINGS., EIGHTH INTERNATIONAL
WORKSHOP ON TOULOUSE, FRANCE 1-2 SEPT.
1997, LOS ALAMITOS, CA, USA,IEEE COMPUT.
soc, Us,

1 September 1997 (1997-09-01), pages
682-691, XP010243362

ISBN: 0-8186-8147-0
the whole document
X TAMER 0ZSU, M., VALDURIEZ, P.:
"Principles of Distributed Database
Systems"

1991 , PRENTICE-HALL INTERNATIONAL , USA
XP002201999
page 74, line 1 -page 93, line 7

- .

1-9

1-9

1-9

1-9

Fom PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Intern

Ial Application No

PCT/GB 02/01209

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication where appropriate, of the relevant passages

Relevant to claim No.

X

CAREY M J ET AL: "Towards heterogeneous
multimedia information systems: the Garlic
approach”

RESEARCH ISSUES IN DATA ENGINEERING, 1995:
DISTRIBUTED OBJECT MANAGEMENT,
PROCEEDINGS. RICE-DOM ’95. FIFTH
INTERNATIONAL WORKSHOP ON TAIPEI, TAIWAN
6-7 MARCH 1995, LOS ALAMITOS, CA, USA,IEEE
COMPUT. SOC,

6 March 1995 (1995-03-06), pages 124-131,
XP010129045

ISBN: 0-8186-7056-8

page 126, left-hand column, last paragraph
-page 130, right-hand column, last
paragraph; figure 1

ROTH M T ET AL: "DON’T SCRAP IT WRAP IT:
A WRAPPER ARCHITECTURE FOR LEGACY DATA
SOURCES"
PROCEEDINGS OF THE INTERNATIONAL
CONFERENCE ON VERY LARGE DATA BASES
(VLDB97),

26 August 1997 (1997-08-26), pages
266-275, XP000940797
the whole document

BAYARDO JR R J ET AL: "INFOSLEUTH:
AGENT-BASED SEMANTIC INTEGRATION OF
INFORMATION IN OPEN AND DYNAMIC
ENVIRONMENTS"
SIGMOD RECORD, ASSOCIATION FOR COMPUTING
MACHINERY, NEW YORK, US,

vol. 26, no. 2, 1 June 1997 (1997-06-01),
pages 195-206, XP000730507
the whole document
NODINE M ET AL: "Semantic brokering over
dynamic heterogeneous data sources in
InfoSleuth”
DATA ENGINEERING, 1999. PROCEEDINGS., 15TH
INTERNATIONAL CONFERENCE ON SYDNEY, NSW,
AUSTRALIA 23-26 MARCH 1999, LOS ALAMITOS,
CA, USA,IEEE COMPUT. SOC, US,

23 March 1999 (1999-03-23), pages
358-365, XP010326167

ISBN: 0-7695-0071-4
the whole document

WO 00 65486 A (WONG BENSON T; KENDALL
ELISA F (US); LAI ERIC (US); WONG JAMES S
() 2 November 2000 (2000-11-02)

abstract; figures 4-11

-/—

1-9

1-9

Form PCT/SA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

intern Il Application No

PCT/GB 02/01209

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriale, of the relevant passages

Relevant to claim No.

US 5 634 053 A (NOBLE WILLIAM B ET AL)
27 May 1997 (1997-05-27)
the whole document

US 5 970 490 A (MORGENSTERN MATTHEW)
19 October 1999 (1999-10-19)

the whole document

EP 0 829 811 A (NIPPON TELEGRAPH &
TELEPHONE) 18 March 1998 (1998-03-18)
the whole document

US 5 590 319 A (COHEN GERALD D ET AL)
31 December 1996 (1996-12-31)
the whole document

1-9

1-9

1-9

Form PCT/ISA/210 (continuation of second shest) (July 1892)

INTERNATIONAL SEARCH REPORT

Information on patent family members

intern! 1 Application No

PCT/GB 02/01209

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 0065486 A 02-11-2000 AU 6334000 A 10-11-2000
Wo 0065486 A2 02-11-2000

US 5634053 A 27-05-1997 NONE

US 5970490 A 19-10-1999 NONE

EP 0829811 A 18-03-1998 EP 0829811 Al 18-03-1998
JP 10143539 A 29-05-1998
Us 6233578 Bl 15-05-2001

US 5590319 A 31-12-1996 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

