
(12) United States Patent
Maity et al.

USO09529750B2

US 9,529,750 B2
*Dec. 27, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SERVICE PROCESSOR (SP) INITIATED
DATA TRANSACTION WITH BOS
UTILIZING INTERRUPT

(71) Applicant: AMERICAN MEGATRENDS, INC.,
Norcross, GA (US)

(72) Inventors: Sanjoy Maity, Snellville, GA (US);
Purandhar Nallagatla, Johns Creek,
GA (US); Harikrishna Doppalapudi,
Norcross, GA (US); Ramakoti Reddy
Bhimanadhuni, Suwanee, GA (US);
Satheesh Thomas, Norcross, GA (US);
Joseprabu Inbaraj, Suwanee, GA (US)

(73) Assignee: AMERICAN MEGATRENDS, INC.,
Norcross, GA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 305 days.
This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 14/330,161

(22) Filed: Jul. 14, 2014

(65) Prior Publication Data

US 2016/OO11880 A1 Jan. 14, 2016

(51) Int. Cl.
G06F I3/32 (2006.01)
G06F 9/44 (2006.01)

(52) U.S. Cl.
CPC G06F 13/32 (2013.01); G06F 9/4401

(2013.01)
(58) Field of Classification Search

CPC G06F 9/44; G06F 9/48; G06F 9/4812;
G06F 9/4806; G06F 9/441; G06F 13/32

See application file for complete search history.

s m m - r s m > -

BIOS Startup Code

(56) References Cited

U.S. PATENT DOCUMENTS

5,845,134 A * 12/1998 Arai G06F 9,4418
T12/43

2005/0086547 A1* 4/2005 Kobayashi G06F94812
T13/310

2006/0143209 A1* 6/2006 Zimmer GO6F 8.67
2007/0011507 A1 1/2007 Rothman GO6F 11.2736

T14f718
2008/0091962 A1* 4/2008 Cepulis G06F 1,3203

T13,320
2009/0049221 A1* 2/2009 Rangarajan G06F 13/24

T10/268

(Continued)

Primary Examiner — Jaweed A Abbaszadeh
Assistant Examiner — Brian J Corcoran
(74) Attorney, Agent, or Firm — Locke Lord LLP; Tim
Tingkang Xia, Esq.

(57) ABSTRACT

Certain aspects direct to systems and methods to perform
service processor (SP) initiated data transaction with a host
computer utilizing interrupts. In certain embodiments, the
system includes a SP, which includes a processor, a non
volatile memory and a communication interface. The SP
generates a first system management interface (SMI) mes
sage, and sends the first SMI message to the host computer
to initiate a data transaction. The OS, in response to the first
SMI message, execute a SMI handler in a system manage
ment random access memory (SMRAM) area at the CPU to
enter a system management mode (SMM). The SMI handler
then sends the notification to the SP via the communication
interface. In response to receiving the notification from the
SMI handler, the SP starts performing the data transaction
with the host computer.

15 Claims, 8 Drawing Sheets

File:

Sewics Processor

US 9,529,750 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2011 0138082 A1* 6, 2011 Khatri G06F 13/24
T10/8

2014/0173152 A1* 6/2014 Kegel G06F 13/24
T10/269

2014/0289436 A1* 9, 2014 Lewis G06F 13/24
T10,260

2014/0289570 A1* 9, 2014 Lewis G06F 11.3089
T14.f43

* cited by examiner

U.S. Patent

5.

Dec. 27, 2016 Sheet 1 of 8

BOS Startup Code

site
r

PWRC tie

interface interface

Py foie

wafe
- - - - - - - - - - -

Non-Volatile Memory

US 9,529,750 B2

O

8

16

3
2

14

7.

17

172

2

28

22.

12

U.S. Patent Dec. 27, 2016 Sheet 2 of 8 US 9,529,750 B2

8
7

BOS Chip

Memory

FIG. 2A

US 9,529,750 B2 Sheet 3 of 8 Dec. 27, 2016 U.S. Patent

US 9,529,750 B2 U.S. Patent

US 9,529,750 B2

SC

U.S. Patent

US 9,529,750 B2 Sheet 6 of 8 Dec. 27, 2016 U.S. Patent

U.S. Patent Dec. 27, 2016 Sheet 7 of 8 US 9,529,750 B2

s: GO c GD ser w
sus

3. GD s A
2.

SY g GD a. (- GED GO
G.)

s GS) wer D .
t

- LO

to (5
S is xk

yer uwa

E.

GD & sor

E. g.
5 is k

g E is
c news

crer

GD se

. GO
.

Y ii.
wr 6
3.

U.S. Patent Dec. 27, 2016 Sheet 8 of 8 US 9,529,750 B2

e
& - GD

3. GD GD s (i) ;
.

\ g G) (s GO
i g

G) GD ser

.
(...)

s
na CO
w

to (5 .
N 38

s
8.
s

t S
su. wer

. GD
(i.

3
3.

US 9,529,750 B2
1.

SERVICE PROCESSOR (SP) INITIATED
DATA TRANSACTION WITH BOS

UTILIZING INTERRUPT

FIELD

The present disclosure relates generally to data transac
tion between a basic input/output system (BIOS) of a host
computer and a service processor (SP), and particularly to
SP initiated data transaction with the BIOS of a host
computer utilizing interrupts.

BACKGROUND

The background description provided herein is for the
purpose of generally presenting the context of the disclo
sure. Work of the presently named inventors, to the extent it
is described in this background section, as well as aspects of
the description that may not otherwise qualify as prior art at
the time offiling, are neither expressly nor impliedly admit
ted as prior art against the present disclosure.

The Basic Input/Output System (BIOS) is one of the most
crucial components on a computer motherboard. The BIOS
software is preloaded into a memory (the BIOS memory) of
the BIOS, and typically is the first code run by a computer
when powered on. When the computer starts up, the first job
for the BIOS is the power-on self-test, which initializes and
identifies the system devices such as the CPU, RAM, video
display card, keyboard and mouse, hard disk drive, optical
disc drive and other hardware. The BIOS then locates a boot
loader Software held on a peripheral device (designated as a
“boot device'), such as a hard disk or a CD/DVD, and loads
and executes that Software, giving it control of the operating
system (OS). This process is known as booting, or booting
up, which is short for bootstrapping.

Generally, a service processor (SP) or a baseboard man
agement controller (BMC) refers to a specialized microcon
troller that manages the interface between system manage
ment software and platform hardware. The BMC can be
embedded on the motherboard of a computer, generally a
server. For example, different types of sensors can be built
into the computer system, and the BMC reads these sensors
to obtain parameters such as temperature, cooling fan
speeds, power status, operating system (OS) status, etc. The
BMC monitors the sensors and can send alerts to a system
administrator via the network if any of the parameters do not
stay within preset limits, indicating a potential failure of the
system. The administrator can also remotely communicate
with the BMC to take some corrective action such as
resetting or power cycling the system to get a hung OS
running again.

In a host computer provided with a SP, the SP can be
connected with the host computer via system interfaces,
Such as a standardized interface under an Intelligent Plat
form Management Interface (IPMI) standard, a universal
serial bus (USB) interface or any other interfaces. The BIOS
of the host computer, when needed, can initiate a commu
nication with the SP through the interfaces using the IPMI
original equipment manufacturer (OEM) commands. In
other words, the BIOS can initiate data transactions to
transfer data to the SP or to request data from the SP.
However, the SP has to wait for the BIOS to initiate such
data transactions to transfer data to the BIOS or to receive
data from the BIOS. There is a need for the SP to initiate data
transactions with the BIOS of the host computer.

10

15

25

30

40

45

50

55

60

65

2
Therefore, an unaddressed need exists in the art to address

the aforementioned deficiencies and inadequacies.

SUMMARY

Certain aspects of the present disclosure direct to a
system, which includes a service processor (SP). In certain
embodiments, the SP includes a processor, a non-volatile
memory and a communication interface. The non-volatile
memory stores computer executable code is configured to,
when executed at the processor, generate a first system
management interface (SMI) message, and send the first
SMI message to a host computer; receive, via the commu
nication interface, a notification from a SMI handler
executed under a system management mode (SMM) at a
central processing unit (CPU) of the host computer; and in
response to the notification, perform data transaction
between the SP and the host computer.

In certain embodiments, the communication interface is a
standardized interface under an Intelligent Platform Man
agement Interface (IPMI) standard, where the standardized
interface comprises a keyboard controller style (KCS) inter
face, a system management interface chip (SMIC) interface,
and a block transfer (BT) interface. In certain embodiments,
the communication interface is a universal serial bus (USB)
interface.

In certain embodiments, the SP is a baseboard manage
ment controller (BMC).

In certain embodiments, the host computer includes: the
CPU; a volatile memory, comprising a system management
random access memory (SMRAM) area; a BIOS chip stor
ing a basic input/output system (BIOS) and the SMI handler;
and a storage device storing an operating system (OS). The
BIOS, when executed at the CPU, is configured to load the
SMI handler into the SMRAM area; and load the OS into the
volatile memory, and execute the OS at the CPU. The CPU,
when executing the OS, is configured to receive an SMI
message, wherein the SMI message is the first SMI message
for the data transaction purpose from the SP or a second SMI
message for a non-data transaction purpose; and in response
to receiving the SMI message, execute the SMI handler in
the SMRAM area at the CPU to enter the SMM. The SMI
handler, when executed at the CPU, is configured to generate
the notification, and send the notification to the SP via the
communication interface; receive, from the SP via the
communication interface, a response to the notification,
wherein the response indicates whether the SP issued the
first SMI message; and in response to the response indicat
ing that the SP issued the first SMI message, perform the
data transaction between the SP and the host computer.

In certain embodiments, the second SMI message is
generated by the OS executed at the CPU.

In certain embodiments, the CPU of the host computer has
a SMI pin connected to the SP through a communication link
different from the communication interface, wherein the
CPU is configured to receive the first SMI message from the
SP through the communication link.

In certain embodiments, the host computer further com
prises a platform controller hub (PCH) hardware, wherein
the SP is connected to the PCH hardware through a com
munication link different from the communication interface.
In certain embodiment, the PCH hardware is configured to
receive the first SMI message through the communication
link, and in response to the first SMI message, generate a
hardware SMI and send the hardware SMI to the CPU as the
SMI message.

US 9,529,750 B2
3

In certain embodiments, the notification is a first IPMI
OEM message.

In certain embodiments, the code is configured to perform
the data transaction by: in response to the first IPMI OEM
message, retrieving specific data stored in the SP, and
generating a second IPMI OEM message as a response to the
notification, wherein the response comprises the specific
data; and sending, via the communication interface, the
second IPMI OEM message to the SMI handler executed
under the SMM at the CPU of the host computer. In certain
embodiments, the SMI handler, when executed at the CPU,
is configured to perform the data transaction by: receiving,
via the communication interface, the second IPMI OEM
message from the SP; and retrieving the specific data from
the second IPMI OEM message.

In certain embodiments, the code is further configured to
perform the data transaction by: in response to the first IPMI
OEM message, generating a response to the notification, and
sending, via the communication interface, the response to
the BIOS executed under the SMM at the CPU of the host
computer, wherein the response comprises a data transaction
request; and receiving, via the communication interface, a
data collection to the data transaction request from the SMI
handler executed under the SMM at the CPU of the host
computer, wherein the data collection comprises specific
data requested by the data transaction request. In certain
embodiments, the SMI handler, when executed at the CPU,
is configured to perform the data transaction by: receiving,
via the communication interface, the response from the SP;
retrieving the data transaction request from the response;
retrieving the specific data based on the data transaction
request, and generate the data collection with the specific
data; and sending, via the communication interface, the data
collection to the SP. In certain embodiments, the data
transaction request is a third IPMI OEM message, and the
data collection is a fourth IPMI OEM message comprising
the specific data.

Certain aspects of the present disclosure direct to a
method of performing data transaction between a service
processor (SP) and a host computer, including: generating,
by the SP, a first system management interrupt (SMI)
message, and sending the first SMI message to the host
computer, receiving, at the SP via the communication inter
face, a notification from a SMI handler executed under a
system management mode (SMM) at a central processing
unit (CPU) of the host computer; and in response to the
notification, performing, by the SP, the data transaction with
the host computer.

In certain embodiments, the method further includes:
loading, at the host computer, a basic input/output system
(BIOS) from a BIOS chip of the host computer, and execut
ing the BIOS at the CPU; loading, by the BIOS executed at
the CPU, the SMI handler from the BIOS chip into a system
management random access memory (SMRAM) area into a
volatile memory of the host computer; loading, by the BIOS
executed at the CPU, the OS into the volatile memory, and
execute the OS at the CPU; when the OS is executed at the
CPU, receiving, by the CPU, the first SMI message or a
second SMI message; in response to receiving the first SMI
message or the second SMI message, executing, at the CPU,
the SMI handler in the SMRAM area at the CPU to enter the
SMM; generating, by the SMI handler executed at the CPU,
the notification, and sending the notification to the SP via the
communication interface; receiving, by the SMI handler
executed at the CPU from the SP via the communication
interface, a response to the notification, wherein the
response indicates whether the SP issued the first SMI

10

15

25

30

35

40

45

50

55

60

65

4
message; and in response to the response indicating that the
SP issued the first SMI message, performing, by the SMI
handler executed at the CPU, the data transaction between
the SP and the host computer.

Certain aspects of the present disclosure direct to a
non-transitory computer readable medium storing computer
executable code. The code, when executed at a processor of
a service processor (SP), is configured to generate, at the SP,
a first system management interface (SMI) message, and
send the first SMI message to the host computer; receive, at
the SP via the communication interface, a notification from
a SMI handler executed under a system management mode
(SMM) at a central processing unit (CPU) of the host
computer, and in response to the notification, perform, by
the SP, the data transaction with the host computer.

In certain embodiments, the host computer includes: the
CPU; a volatile memory, comprising a system management
random access memory (SMRAM) area; a BIOS chip stor
ing a basic input/output system (BIOS) and the SMI handler;
and a storage device storing an operating system (OS). The
BIOS, when executed at the CPU, is configured to load the
SMI handler into the SMRAM area; and load the OS into the
volatile memory, and execute the OS at the CPU. The CPU,
when executing the OS, is configured to receive the first SMI
message or a second SMI message; and in response to
receiving the first SMI message or the second SMI message,
execute the SMI handler in the SMRAM area at the CPU to
enter the SMM. The SMI handler, when executed at the
CPU, is configured to generate the notification, and send the
notification to the SP via the communication interface;
receive a response to the notification, wherein the response
indicates whether the SP issued the first SMI message; and
in response to the response indicating that the SP issued the
first SMI message, perform the data transaction between the
SP and the host computer.

In certain embodiments, the CPU of the host computer has
a SMI pin connected to the SP through a communication link
different from the communication interface, wherein the
CPU is configured to receive the first SMI message from the
SP through the communication link.

In certain embodiments, the host computer further com
prises a platform controller hub (PCH) hardware, wherein
the SP is connected to the PCH hardware through a com
munication link different from the communication interface.
In certain embodiment, the PCH hardware is configured to
receive the first SMI message through the communication
link, and in response to the first SMI message, generate a
hardware SMI and send the hardware SMI to the CPU as the
SMI message.

These and other aspects of the present disclosure will
become apparent from the following description of the
preferred embodiment taken in conjunction with the follow
ing drawings and their captions, although variations and
modifications therein may be affected without departing
from the spirit and scope of the novel concepts of the
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will become more fully understood
from the detailed description and the accompanying draw
ings, wherein:

FIG. 1 schematically depicts a computer system accord
ing to certain embodiments of the present disclosure;

FIG. 2A schematically shows execution of the host com
puter in a system management mode (SMM) according to
certain embodiments of the present disclosure;

US 9,529,750 B2
5

FIG. 2B schematically depicts an IPMI message accord
ing to certain embodiments of the present disclosure;

FIG. 3 schematically depicts the booting process of the
host computer according to certain embodiments of the
present disclosure;

FIGS. 4A and 4B schematically depict the SP initiating
data transaction from the BIOS of the host computer to the
SP according to certain embodiments of the present disclo
Sure;

FIG. 5 schematically depicts the SP initiating data trans
action from the SP to the BIOS of the host computer
according to certain embodiments of the present disclosure;
and

FIG. 6 schematically depicts the host computer entering
SMM when the SP does not initiate data transaction accord
ing to certain embodiments of the present disclosure.

DETAILED DESCRIPTION

The present disclosure is more particularly described in
the following examples that are intended as illustrative only
since numerous modifications and variations therein will be
apparent to those skilled in the art. Various embodiments of
the disclosure are now described in detail. Referring to the
drawings, like numbers, if any, indicate like components
throughout the views. As used in the description herein and
throughout the claims that follow, the meaning of “a”, “an',
and “the includes plural reference unless the context clearly
dictates otherwise. Also, as used in the description herein
and throughout the claims that follow, the meaning of “in”
includes “in” and “on” unless the context clearly dictates
otherwise. Moreover, titles or subtitles may be used in the
specification for the convenience of a reader, which shall
have no influence on the scope of the present disclosure.
Additionally, Some terms used in this specification are more
specifically defined below.
The terms used in this specification generally have their

ordinary meanings in the art, within the context of the
disclosure, and in the specific context where each term is
used. Certain terms that are used to describe the disclosure
are discussed below, or elsewhere in the specification, to
provide additional guidance to the practitioner regarding the
description of the disclosure. For convenience, certain terms
may be highlighted, for example using italics and/or quota
tion marks. The use of highlighting has no influence on the
Scope and meaning of a term; the scope and meaning of a
term is the same, in the same context, whether or not it is
highlighted. It will be appreciated that same thing can be
said in more than one way. Consequently, alternative lan
guage and synonyms may be used for any one or more of the
terms discussed herein, nor is any special significance to be
placed upon whether or not a term is elaborated or discussed
herein. Synonyms for certain terms are provided. A recital of
one or more synonyms does not exclude the use of other
synonyms. The use of examples anywhere in this specifica
tion including examples of any terms discussed herein is
illustrative only, and in no way limits the scope and meaning
of the disclosure or of any exemplified term. Likewise, the
disclosure is not limited to various embodiments given in
this specification.

Unless otherwise defined, all technical and scientific
terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which this
disclosure pertains. In the case of conflict, the present
document, including definitions will control.
As used herein, “around”, “about' or “approximately

shall generally mean within 20 percent, preferably within 10

10

15

25

30

35

40

45

50

55

60

65

6
percent, and more preferably within 5 percent of a given
value or range. Numerical quantities given herein are
approximate, meaning that the term “around”, “about' or
“approximately” can be inferred if not expressly stated.
As used herein, "plurality” means two or more.
As used herein, the terms "comprising.” “including.”

“carrying,” “having,” “containing,” “involving,” and the
like are to be understood to be open-ended, i.e., to mean
including but not limited to.
As used herein, the phrase at least one of A, B, and C

should be construed to mean a logical (A or B or C), using
a non-exclusive logical OR. It should be understood that one
or more steps within a method may be executed in different
order (or concurrently) without altering the principles of the
present disclosure.
As used herein, the term “module' may refer to, be part

of or include an Application Specific Integrated Circuit
(ASIC); an electronic circuit; a combinational logic circuit;
a field programmable gate array (FPGA); a processor
(shared, dedicated, or group) that executes code; other
suitable hardware components that provide the described
functionality; or a combination of some or all of the above,
Such as in a system-on-chip. The term module may include
memory (shared, dedicated, or group) that stores code
executed by the processor.
The term “code', as used herein, may include software,

firmware, and/or microcode, and may refer to programs,
routines, functions, classes, and/or objects. The term shared,
as used above, means that some or all code from multiple
modules may be executed using a single (shared) processor.
In addition, Some or all code from multiple modules may be
stored by a single (shared) memory. The term group, as used
above, means that some or all code from a single module
may be executed using a group of processors. In addition,
Some or all code from a single module may be stored using
a group of memories.
As used herein, the term “headless system” or “headless

machine' generally refers to the computer system or
machine that has been configured to operate without a
monitor (the missing "head'), keyboard, and mouse.
The term “interface', as used herein, generally refers to a

communication tool or means at a point of interaction
between components for performing data communication
between the components. Generally, an interface may be
applicable at the level of both hardware and software, and
may be uni-directional or bi-directional interface. Examples
of physical hardware interface may include electrical con
nectors, buses, ports, cables, terminals, and other I/O
devices or components. The components in communication
with the interface may be, for example, multiple components
or peripheral devices of a computer system.
The terms “chip” or “computer chip', as used herein,

generally refer to a hardware electronic component, and may
refer to or include a small electronic circuit unit, also known
as an integrated circuit (IC), or a combination of electronic
circuits or ICs.
The present disclosure relates to computer systems. As

depicted in the drawings, computer components may include
physical hardware components, which are shown as Solid
line blocks, and virtual Software components, which are
shown as dashed line blocks. One of ordinary skill in the art
would appreciate that, unless otherwise indicated, these
computer components may be implemented in, but not
limited to, the forms of software, firmware or hardware
components, or a combination thereof.
The apparatuses and methods described herein may be

implemented by one or more computer programs executed

US 9,529,750 B2
7

by one or more processors. The computer programs include
processor-executable instructions that are stored on a non
transitory tangible computer readable medium. The com
puter programs may also include stored data. Non-limiting
examples of the non-transitory tangible computer readable
medium are nonvolatile memory, magnetic storage, and
optical storage.

FIG. 1 schematically depicts a computer system accord
ing to certain embodiments of the present disclosure. As
shown in FIG. 1, the computer system 100 includes a host
computer 110 and a service processor (SP) 120. The SP 120
is connected to the host computer 110 via at least one
communication interface, such as a keyboard controller style
(KCS) interface 130 and a universal serial bus (USB)
interface 140.

In certain embodiments, the SP 120 may be connected to
the host computer 110 via only one of the KCS interface 130
and the USB interface 140 as the communication interface.
For example, the SP 120 may be connected to the host
computer 110 via only the KCS interface 130, or via only the
USB interface 140.

In certain embodiments, the SP 120 may be connected to
the host computer 110 via one or more communication
interfaces replacing or in addition to the KCS interface 130
and the USB interface 140. For example, the SP 120 may be
connected to the host computer 110 via other typical stan
dardized IPMI system interfaces, such as a system manage
ment interface chip (SMIC) interface or a block transfer
(BT) interface. In certain embodiments, the SMIC interface
and/or the BT interface can be used to replace one or both
of the KCS interface 130 and the USB interface 140. In
certain embodiments, data transfer between the host com
puter 110 and the SP 120 is in the format of IPMI OEM
messages, and goes through one of the KCS interface 130
and the USB interface 140.

Further, in certain embodiments, the SP 120 may be
connected to certain components of the host computer 110
directly through interfaces in addition to the KCS interface
130 and the USB interface 140. For example, the SP 120
may be connected to the CPU 112 of the host computer 110
via a communication link 150. In certain embodiments, the
communication link 150 can be a connecting wire. Such as
a general-purpose input/output (GPIO) wire.
The host computer 110 may be a computing device. Such

as a general purpose computer or a headless computer.
Generally, the host computer 110 includes a baseboard or the
“motherboard (not shown). The baseboard is a printed
circuit board to which a multitude of components or devices
may be connected by way of a system bus or other electrical
communication paths. Although not explicitly shown in
FIG. 1, the components on the baseboard are interconnected,
and the layout of the components on the baseboard and the
manner of the interconnection between the components on
the baseboard is herein referred to as the configuration of the
baseboard. One of ordinary skill in the art would appreciate
that the configuration of the baseboard may be adjusted or
changed according to the necessary design or manufacturing
requirements.
The components on the baseboard of the host computer

110 include, but not limited to, a central processing unit
(CPU) 112, a memory 114, a BIOS chip 116, a platform
controller hub (PCH) hardware 117, and other required
memory and Input/Output (I/O) modules (not shown). In
certain embodiments, the SP 120 may also be a component
on the baseboard. In certain embodiments, the CPU 112, the
memory 114, and the BIOS chip 116 may be embedded on
the baseboard, or may be connected to the baseboard

10

15

25

30

35

40

45

50

55

60

65

8
through at least one interface. In certain embodiments, the
interface may be physical hardware interface Such as elec
trical connectors, buses, ports, cables, terminals, or other I/O
devices.

Further, the host computer 110 includes a storage device
118, which stores a plurality of software applications,
including an operating system (OS) 160. In certain embodi
ments, the host computer 110 may include at least one I/O
device (not shown) for generating and controlling input and
output signals of the host computer 110. Examples of the I/O
device include keyboards, touch pads, mouse, microphones,
display Screens, touch screens, or other I/O devices appli
cable for the host computer 110. Some I/O devices, such as
touch screens, are provided for the dual input/output pur
poses.
The CPU 112 is a host processor which is configured to

control operation of the host computer 110. The host pro
cessor can execute the OS 150 or other applications of the
host computer 110. In certain embodiments, the host com
puter 110 may run on or more than one CPU as the host
processor, such as two CPUs, four CPUs, eight CPUs, or any
Suitable number of CPUs.

In certain embodiments, the CPU 112 is configured to
receive an interrupt, which is an asynchronous signal indi
cating the need for attention or a synchronous event in
Software indicating the need for a change in execution.
Interrupts are a commonly used technique for computer
multitasking, especially in real-time computing. Generally,
an interrupt can be either a hardware interrupt or a software
interrupt. The hardware interrupt causes the CPU 112 to save
its state of execution in the memory 114 and begin execution
of an interrupt handler. The software interrupt is usually
implemented as an instruction in an instruction set, which
cause a context Switch to an interrupt handler similar to a
hardware interrupt.
Commonly used hardware interrupts can be categorized

into, but not limited to, a maskable interrupt, a non-maskable
interrupt (NMI), an inter-processor interrupt (IPI), and a
spurious interrupt. The maskable interrupt, sometimes
referred to as an interrupt request (IRQ), is a hardware
interrupt that may be ignored by setting a bit in an interrupt
mask register's (IMR) bit-mask. The NMI is a hardware
interrupt that lacks an associated bit-mask, so that it can
never be ignored. The IPI is a special case of interrupt that
is generated by one processor to interrupt another processor
in a multiprocessor system. The spurious interrupt is a
hardware interrupt that is unwanted, and is typically gener
ated by System conditions such as electrical interference on
an interrupt line or through incorrectly designed hardware.
One of the hardware interrupts is the system management

interrupts (SMIs). The SMI is used for system management
tasks, or for offering extended functionality, such as legacy
hardware device emulation. The SMI is similar to the NMI
in that they both use a special electrical signaling line
directly into the CPU 112, and are generally not able to be
masked.

In certain embodiments, the CPU 112 can operate in a
protected mode or a real mode, which is a native operating
mode of the processor, or in a system management mode
(SMM). SMM is a special purpose operating mode provided
for handling system-wide functions like power management,
system hardware control, or proprietary OEM-designed
code. The SMM is intended for use only by system firm
ware, not by applications Software or general-purpose sys
tems software. The main benefit of SMM is that it offers a
distinct and easily isolated processor environment that oper
ates transparently to the operating system or executive and

US 9,529,750 B2

software applications. In certain embodiments, the CPU 112
can switch from the protected mode to the SMM by receiv
ing an SMI.

In certain embodiments, the CPU 112 has an SMI pin 113.
The SMI pin 113, sometimes referred to as an SMIi, is a
system hardware pin connected to the lines of the CPU 112
to trigger the CPU 112 to enter the SMM. When the SMI pin
113 receives an SMI, the SMI pin 113 triggers the CPU 112
to enter the SMM. In certain embodiments, the SMI may be
a hardware SMI, which is generated by hardware compo
nents of the host computer 110. For example, the hardware
SMI may be generated as described above by sending a
signal through the special electrical signaling line to the
CPU 112. In certain embodiments, a hardware SMI can be
generated through the PCH hardware 117. In certain
embodiments, the SMI may be a software SMI, which is
generated by software code. For example, the CPU 112 may
have a SMM register, and by writing certain values to the
SMM register of the CPU 112, the CPU 112 may generate
a software SMI.

In SMM, the CPU 112 switches to a separate address
space of the memory 114 while saving the context of the
currently running program or task. The SMM-specific code
may then be executed transparently. Upon returning from the
SMM to the protected mode, the CPU 112 is placed back
into its state prior to the SMM. Details of the SMM will be
discussed later.
The memory 114 can be a volatile memory, such as the

random-access memory (RAM), for storing the data and
information during the operation of the host computer 110.
In certain embodiments, the memory 114 is in communica
tion with the CPU 112 through a system bus (not shown).

The PCH hardware 117 controls certain data paths and
support functions used in conjunction with the CPU 112. For
example, when the value of a specific register in the PCH
hardware 117 is changed to a predetermined value, the PCH
hardware 117 can send a signal through the special electrical
signaling line connected to the SMI pin 113 of the CPU 112
to generate a hardware SMI. In certain embodiments, the
communication link 150 may be connected to the PCH
hardware 117, as shown in the solid line, or may be
connected to the SMI pin 113 of the CPU 112, as shown in
the double-dash line. When the communication link 150 is
connected to the PCH hardware 117, the SP 120 can send a
signal to the PCH hardware 117 to change the value of a
specific register in the PCH hardware 117 to the predeter
mined value, and the PCH hardware 117 correspondingly
sends the signal through the special electrical signaling line
connected to the SMI pin 113 of the CPU 112 to generate a
hardware SMI,

In certain embodiments, the host computer 110 may
further include a multiplexer (MUX). The MUX is a device
that selects one of several analog or digital input signals and
forwards the selected input into a single line. For example,
the MUX can have two inputs and one output. One input of
the MUX 119 is connected to a communication link, which
is connected to component (e.g. the PCH hardware 117) of
the host computer 110 that may generate an interrupt. The
other input of the MUX 119 is connected to the communi
cation link 150, which is connected to the SP 120. The
output of the MUX is connected to another communication
link, which is connected to the SMI pin 113 of the CPU 112.
Either one of the component of the host computer 110 (e.g.
the PCH hardware 117) and the SP 120 can send a signal to
the MUX, and the MUX can forward the received signal to
the SMI pin 113 to generate a hardware SMI.

10

15

25

30

35

40

45

50

55

60

65

10
The BIOS chip 116 is one of the most crucial components

in the host computer 110 or any computer system. In certain
embodiments, the BIOS chip 116 is a non-volatile memory,
Such as a flash memory chip, an electrically erasable pro
grammable read-only memory (EEPROM) chip or a
complementary metal oxide semiconductor (CMOS)
memory. As shown in FIG. 1, the BIOS chip 116 stores
BIOS code 170 (hereinafter the BIOS 170). In certain
embodiments, the BIOS 170 includes a BIOS startup code
171, an SMI handler 172, and an IPMI routine 175.
The BIOS startup code 171 is configured to perform the

startup functions, or the booting functions, for the host
computer 110. Examples of the booting functions include,
but are not limited to, the initiation and power-on self-test,
identifying the system devices, locating the boot loader
Software on the boot device, loading and executing the boot
loader software and giving it control of the OS 160 in the
protected mode.

In certain embodiments, some or all of the components of
the BIOS 170 includes functionalities required in the SMM.
When the CPU 112 of the host computer 110 is triggered to
enter the SMM, these components of the BIOS 170 will be
loaded to a particular region of the memory 114 reserved for
the SMM to perform the functionalities required in the
SMM.

For example, the SMI handler 172 is an interrupt handler
program executed when the CPU 112 enters SMM. In
certain embodiments, the SMI handler 172 can be stored in
the BIOS chip 116 as a part of the BIOS 170 code. In certain
embodiments, the SMI handler 172 can be stored in the
storage device 118, or in any other storage media of the host
computer 110, as a program independent and separated from
the BIOS 17O.

FIG. 2A schematically shows execution of the host com
puter in the SMM according to certain embodiments of the
present disclosure. As shown in FIG. 2A, the CPU 112 is in
communication with the memory 114 through a system bus.
The memory 114 includes a system management RAM
(SMRAM) area 174, and a CPU context area 179.
The SMRAM area 174 is a particular region of the

memory 114 reserved for the SMM. In certain embodiments,
the BIOS 170 can set up the SMRAM area 174 for the CPU
112 during the booting process, such that the SMRAM area
174 contains a copy of the SMI handler 178.

During the booting process, the CPU 112 reads the BIOS
startup code 171 from the BIOS chip 116, and loads the
BIOS startup code 171 into a BIOS area (which is not in the
SMRAM area 174) of the memory 114. The CPU 112
executes the BIOS startup code 171 in the memory 114 to
start performing the booting operations. The BIOS startup
code 171, which is executed at the CPU 112, then reads the
SMI handler 172 from the BIOS chip 116, and loads the SMI
handler 178 into the SMRAM area 174 of the memory 114.
Thus, the SMI handler 178 may be available in the memory
114 for later use.
The IPMI routine 175 is a computer routine that generates

and processes IPMI messages. In certain embodiments, the
IPMI routine 175 may receive data from the SMI handler
178 executed in the SMM, and converts the received data to
generate corresponding IPMI messages. For example, when
the SMI handler 178 is running under the SMM, which is
triggered by an interrupt, the SMI handler 178 may generate
a notification to be sent to the SP 120, and send data of the
notification to the IPMI routine 175. Upon receiving the data
of the notification, the IPMI routine 175 converts the data to
an IPMI OEM message representing the notification, and
sends the IPMI OEM message to the SP 120 through the

US 9,529,750 B2
11

communication interface (the KCS interface 130 or the USB
interface 140). When the IPMI routine 175 receives IPMI
OEM messages from the SP 120 or any other peripheral
devices, the IPMI routine 175 processes the IPMI OEM
messages to generate data recognizable by the SMI handler
178, and then sends the data back to the SMI handler 178 for
further process.

In certain embodiments, the IPMI routine 175 can be
separated from the BIOS 170 as an independent program. In

5

certain embodiments, the IPMI routine 175 can be a part of 10
the BIOS 17O.
The IPMI messages can be transmitted, translated,

bussed, and wrapped in a variety of fashions. Generally, an
IPMI message can be a request message (generally labeled
as “rq) or a response message (generally labeled as “rs’),
and has a plurality of fields, including the network function
(NetFn) field, the logical unit number (LUN) field, the
sequence number (Seqi) field, the command (CMD) field,
and the data field.
The NetFn field is a six-bit field that describes the network

function of the IPMI message. The IPMI Specification
defines certain predefined categories for the NetFn field, and
there are reserved codes for OEM expansion. For a request
message, the NetFn field is an odd number, and for a
response message, the NetFn field is an even number.
The LUN field is a two-digit logical unit number for

Subaddressing purposes. For low-end integrity servers and
computers, the LUN field is always Zero.
The Seqi field defines a sequence number in the response

message to identify the response message in response to a
certain request message. In certain embodiments, the value
stored in the Seqi field is the same number as the sequence
number appeared in the CMD field of the request message
to which the response message is in response. As discussed
above, the Seqi field must be provided when the NetFn field
is an even number to indicate the IPMI message as a
response message.
The CMD field includes the commands of the IPMI

message. When the IPMI message is a request message, the
CMD field includes a sequence number such that a response
message to the request message may include the same
sequence number in the Seqi field.
The data field includes all data transferred by the IPMI

message. In certain embodiments, the data field of an IPMI
message can be 0 bytes. In other words, an IPMI message
may contain no data field.

FIG. 2B schematically depicts an IPMI message accord
ing to certain embodiments of the present disclosure. As
shown in FIG. 2B, each block of the IPMI message 210
refers to a field, which may have a different length. The IPMI
message 210 includes a plurality of fields, such as the rs
slave address (rsSA) field 211, the NetFn field 212, the rq
slave address (rqSA) field 214, the rq Seqi (rqSeq)/rqLUN
field 215, the command field 216, and the data field 217.
Further, a plurality of checksum fields 213 and 218 are
included for checksum verification purposes. As discussed
above, the data field 217 may contain 0 bytes of data (i.e. no
data field) or more than one byte of data.

In certain embodiments, IPMI OEM messages are used
for data transaction purposes between the BIOS 170 and the
SP 120. When the IPMI routine 175 processes data to be
transferred to the SP 120 to generate an IPMI OEM message,
the data can be stored in the data field 217 of the IPMI OEM
message as shown in FIG. 2B.
The storage device 118 is a non-volatile data storage

media for storing the OS 160, and other applications of the
host computer 110. Examples of the storage device 118 may

15

25

30

35

40

45

50

55

60

65

12
include flash memory, memory cards, USB drives, hard
drives, floppy disks, optical drives, or any other types of data
storage devices.
The OS 160 can be collective management software

managing the operation of the host computer 110. For
example, the OS 160 can include a set of functional pro
grams that control and manage operations of the devices
connected to the host computer 110. The set of application
programs provide certain utility Software for the user to
manage the host computer 110. In certain embodiments, the
OS 160 is operable to multitask, i.e., execute computing
tasks in multiple threads, and thus may be any of the
following: MICROSOFT CORPORATION’s “WINDOWS
95, “WINDOWS CE, “WINDOWS 98.” “WINDOWS
2000 or “WINDOWS NT, “WINDOWS Vista,”, “WIN
DOWS 7,” and “WINDOWS 8, operating systems, IBM's
OS/2 WARP APPLE's MACINTOSH OSX operating sys
tem, LINUX, UNIX, etc. In certain embodiments, the OS
160 is compatible to the IPMI architecture for generating
IPMI messages in order to communicate with the SP 120.

FIG. 3 schematically depicts the booting process of the
host computer according to certain embodiments of the
present disclosure. When the host computer 110 starts boot
ing, at procedure 305, the CPU 112 reads the BIOS startup
code 171 from the BIOS chip 116, and at procedure 310, the
CPU 112 loads the BIOS startup code 171 into a BIOS area
of the memory 114. It should be noted that the BIOS 170
during booting is not stored in the SMRAM area 174. At
procedure 315, the CPU 112 executes the BIOS startup code
171 in the memory 114 to start performing the booting
operations. The BIOS startup code 171, which is executed at
the CPU 112, then, at procedure 320, reads the SMI handler
172 from the BIOS chip 116. At procedure 330, the BIOS
startup code 171 loads the SMI handler 178 into the
SMRAM area 174. Thus, the SMI handler 178 may be
available in the memory 114 whenever needed. At procedure
340, the BIOS startup code 171, which is executed at the
CPU 112, reads the OS 160 from the storage device 118, and
at procedure 350, loads the OS 160 into the memory 114,
and gives control of the CPU 112 to the executed OS 160.

In certain embodiments, when the OS 160 is executed at
the CPU 112, the SP 120 is configured to send a signal
(hereinafter a “SMI message') to the SMI pin 113 of the
CPU 112 to trigger the SMM. In response to the SMI
message, the CPU 112 executes the SMI handler 178 in the
SMRAM area 174 to enter the SMM. In the SMM, the SMI
handler 178 may perform certain operations for the data
transaction with the SP 120. When the data transaction is
complete, the SMI handler 178 returns control back to the
OS 160.
The SP 120 is a specialized microcontroller that manages

the interface between system management Software and
platform hardware. In certain embodiments, the SP 120 may
be a baseboard management controller (BMC). Different
types of sensors can be built into the host computer 110, and
the SP 120 reads these sensors to obtain parameters such as
temperature, cooling fan speeds, power status, OS status,
etc.
The SP 120 monitors the sensors and can send out-of

band (OOB) alerts to a system administrator of the host
computer 110 if any of the parameters do not stay within
preset limits, indicating a potential failure of the host com
puter 110. In certain embodiments, the administrator can
also remotely communicate with the SP 120 from a remote
management computer via a network to take remote action
to the host computer. For example, the administrator may
reset the host computer 110 from the remote management

US 9,529,750 B2
13

computer through the SP 120, and may obtain system
information of the host computer 110 OOB without inter
rupting the operation of the host computer 110.
As shown in FIG. 1, the SP 120 includes a processor 121,

a memory 122 and a non-volatile memory 124. In certain
embodiments, the SP 120 is also connected to the CPU 112
of the host computer 110 through a hard wire. In certain
embodiments, the SP 120 may include other components,
such as at least one I/O device (not shown).
The processor 121 controls operation of the SP 120. The

processor 121 can execute the firmware 126 or other code
stored in the SP 120. In certain embodiments, the SP 120
may run on or more than one processor.
The memory 122 can be a volatile memory, such as the

RAM, for storing the data and information during the
operation of the SP 120.
The non-volatile memory 124 stores the firmware 126 of

the SP 120. The firmware 126 of the SP 120 includes
computer executable code for performing the operation of
the SP 120. As shown in FIG. 1, the firmware 126 of the SP
120 includes, among other things, an interrupt module 180
and an IPMI module 190. In certain embodiments, the
firmware 126 may include a web connection module (not
shown) for communication with the network such that the
administrator of the computer system may connect to the SP
120 remotely from the remote management computer via the
network.
The interrupt module 180 is a program configured to

generate SMI messages for the purpose of initiating data
transactions between the BIOS 170 and the SP 120. In
certain embodiments, the SMI message generated by the
interrupt module 180 can be any designated interrupt other
than the SMI. In certain embodiments, when the SP 120
intends to initiate a data transaction with the BIOS 170 of the
host computer 110, the firmware 126 may instruct the
interrupt module 180 to generate an SMI message, and sends
the SMI message to the SMI pin 113 of the CPU 112 through
the communication link 150.

The IPMI module 190 is a program of the SP 120 to
generate and process IPMI messages. In certain embodi
ments, when the firmware 126 of the SP 120 generates data
to be transferred to the host computer 110 under the IPMI
architecture, the firmware 126 sends the data to the IPMI
module 190. Upon receiving the data, the IPMI module 190
converts the data to corresponding IPMI OEM messages,
and sends the IPMI OEM messages back to the host com
puter 110 through the communication interface, such as the
KCS interface 130 or the USB interface 140. When the IPMI
module 190 receives IPMI OEM messages from the host
computer 110 or any other IPMI compatible devices, the
IPMI module 190 processes the IPMI OEM messages to
generate data recognizable by the firmware 126, and then
sends the data back to the firmware 126 for further process.
In certain embodiments, the IPMI module 190 can be a
similar program to the IPMI routine 175 at the host computer
110.

Currently, almost all firmware of SP's or BMC's available
in the market supports the IPMI architecture, and provide a
variety of IPMI modules 190. In certain embodiments, the
IPMI module 190 can be a part of the firmware 126, which
is compatible to the IPMI architecture for generating IPMI
messages. In certain embodiments, the IPMI module 190 is
separated from the firmware 126 as an independent program.

In certain embodiments, IPMI OEM messages are used
for data transaction purposes between the BIOS 170 and the
SP 120. When the IPMI module 190 processes data to be
transferred to the host computer 110 to generate an IPMI

5

10

15

25

30

35

40

45

50

55

60

65

14
OEM message, the data can be stored in the data field 217
of the IPMI OEM message as shown in FIG. 2B.
The KCS interface 130 is a standardized interface often

used between a SP and a payload processor in the IPMI
architecture. IPMI is an industry standard for system moni
toring and event recovery. The IPMI specification provides
a common message-based interface for accessing all of the
manageable features in a compatible computer. IPMI
includes a rich set of predefined commands for reading
temperature, Voltage, fan speed, chassis intrusion, and other
parameters. System event logs, hardware watchdogs, and
power control can also be accessed through IPMI. In this
manner, IPMI defines protocols for accessing the various
parameters collected by a SP through an operating system or
through an external connection, such as through a network
or serial connection. Additional details regarding IPMI can
be found in the IPMI Specification (Version 2.0), which is
publicly available from INTEL CORPORATION, and
which is incorporated herein by reference.

In certain embodiments, in addition to the standard pre
defined commands and parameters, IPMI allows original
equipment manufacturer (OEM) extensions for the manu
facturers and users to define OEM specific commands. A
user may use IPMI OEM messages to control data trans
mission via the KCS interface 130. The IPMI OEM mes
sages may be used for the data transaction between the host
computer 110 and the SP 120. In certain embodiments, the
IPMI OEM messages may include the specific data to be
transferred, or the request for the specific data.
The USB interface 140 is an industry standardized inter

face under the USB industry standard that defines the cables,
connectors and communications protocols used in a bus for
connection, communication, and power Supply between
computers and electronic devices. In certain embodiments,
the USB interface 140 is a USB port.
USB has effectively replaced a variety of earlier inter

faces, such as serial and parallel ports, as well as separate
power chargers for portable devices. Currently, USB allows
bi-directional communications between the host computer
110 and the SP 120, as USB 3.0 allows for device-initiated
communications towards the host.

In certain embodiments, the USB interface 140 may be
used to transfer IPMI OEM messages between the host
computer 110 and the SP 120. In certain embodiments, when
the SP 120 is connected to the host computer 110 via the
USB interface 140, the OS 160 may request and receive a
plurality of USB descriptors from the SP 120 through the
USB interface 130. Based on information of the USB
descriptors, the OS 160 may recognize the SP 120 as the
specific USB human interface device (HID) device, and
recognize a predefined format of a USB HID report for
transferring data to the specific HID device (i.e. the SP 120).
In certain embodiments, the USB HID report is in the
predefined format based on the information of the USB
descriptors with the IPMI OEM messages embedded
therein. Thus, the IPMI OEM messages can be transferred
between the host computer 110 and the SP 120 through the
USB interface 140 by transferring the USB HID reports with
the IPMI OEM messages embedded therein.

In certain embodiments, the SP 120 can initiate a data
transaction with the BIOS 170 of the host computer 110
utilizing interrupts (i.e. the SMI message) generated by the
interrupt module 180. In certain embodiments, the data
transaction initiated by the SP 120 can be bi-directional
between the BIOS 170 and the SP 120. For example, the
BIOS 170 may have certain setting data stored in the BIOS
chip 116 that can be configured by a user of the host

US 9,529,750 B2
15

computer 110 or by an administrator through the SP 120. In
certain embodiments, for a system having a plurality of host
computers 110 with similar BIOS settings, an administrator
may intend to copy the setting data of the BIOS 170 from
one of the host computers 110 to other computers of the
system. In certain embodiments, the administrator may,
through the SP 120, initiate a data transaction for a copy of
the setting data of the BIOS 170. When the SMI handler 178
executed in the SMM receives such request, the SMI handler
178 may retrieve the setting data, and sends a copy of the
setting data to the SP 120 such that the setting data is
available at the SP 120 to be replicated to other computers
in the system. In certain embodiments, the administrator
may, through the SP 120, initiate a data transaction for
sending the setting data from the SP 120 to the host
computer 110. When the SMI handler 178 executed in the
SMM receives such request, the SMI handler 178 may
receive a copy of the setting data from the SP 120, and
replace the setting data in the BIOS chip 116 with the
received setting data.

In certain embodiments, the SP 120 can initiate a data
transaction between the BIOS 170 and the SP 120 by
causing the host computer 110 to enter the SMM, such that
the host computer 110 performs the data transaction under
the SMM. Specifically, the SP 120 may instruct the interrupt
module 180 to generate an SMI message, and sends the
interrupt to the host computer 110 through the communica
tion link 150. In response to the interrupt, the host computer
110 then performs operation to enter the SMM.

FIGS. 4A and 4B schematically depict the SP initiating
data transaction from the BIOS of the host computer to the
SP according to certain embodiments of the present disclo
Sure. In certain embodiments, the data being transferred
from the SMI handler 178 to the SP 120 is the setting data
of the BIOS 170 stored in the BIOS chip 116.

Referring to FIG. 4A, when the SP 120 intends to request
certain data from the BIOS 170 of the host computer 110, the
SP 120 may initiate the data transaction from the host
computer 110 to the SP 120. At procedure 405, the firmware
126 instructs the interrupt module 180 to generate an SMI
message for a data transaction purpose. At procedure 410.
the interrupt module 180 of the SP 120, upon the instruction
by the firmware 126, sends an SMI message to the host
computer 110 through the communication link 150.

At the host computer 110, the OS 160 is executed at the
CPU 112 and has the control of the CPU 112. When the SMI
pin 113 of the CPU 112 receives the SMI message from the
SP 120, at procedure 415, the CPU 112 generates a hardware
SMI, and saves the contexts when running the OS 160 under
the protected mode into the CPU context area 179 of the
memory 114. At procedure 420, the CPU 112 enters the
SMM, and calls the SMI handler 178, which is pre-stored in
the SMRAM area 174 during the booting process.

At procedure 430, the SMI handler 178 generates a
notification for the SP 120. The notification may contain
information notifying the SP 120 that the host computer 110
is now in the SMM, and asking whether the SP 120 intends
to initiate the data transaction. At procedure 432, the SMI
handler 178 sends the data of the notification to the IPMI
routine 175 for processing. Upon receiving the data of the
notification, the IPMI routine 175 converts the data of the
notification to generate the IPMI OEM message, and at
procedure 435, the IPMI routine 175 sends the IPMI OEM
message representing the notification to the SP 120 through
the KCS interface 130. It should be appreciated that the
IPMI OEM message can be sent to the SP 120 through the
USB interface 140 or any other communication interfaces.

10

15

25

30

35

40

45

50

55

60

65

16
In certain embodiments, the IPMI OEM message requests a
response from the SP 120 to indicate whether it was the SP
120 that issued the interrupt.
At procedure 438, the IPMI module 190 receives the IPMI

OEM message representing the notification, converts the
IPMI OEM message to generate the notification, which is
recognizable by the firmware 126, and sends the notification
to the firmware 126.
At procedure 440, in response to the notification, the

firmware 126 generates a response to indicate that it was the
SP 120 that issued the interrupt. At procedure 442, the
firmware 126 sends the response to the IPMI module 190 for
processing. Upon receiving the data transaction request, at
procedure 445, the IPMI module 190 converts the data
transaction request to generate another IPMI OEM message,
and sends the IPMI OEM message representing the data
transaction request to the host computer 110 through the
KCS interface 130. It should be appreciated that the IPMI
OEM message can be sent to the SP 120 through the USB
interface 140 or any other communication interfaces.

Referring to FIG. 4B, at procedure 448, the IPMI routine
175 receives the IPMI OEM message representing the
response, extracts the response from the IPMI OEM mes
sage. The SMI handler 178 can then determine whether it
was the SP 120 that issued the interrupt based on the
response.

Optionally, in response to a determination that it was the
SP 120 that issued the interrupt based on the response, at
procedure 450, the SMI handler 178, through the IPMI
routine 175, may generate a request to inquire the SP 120
that whether the SP 120 wishes to receive certain data from
the host computer 110. In response to this request, the
firmware 126 can, through the IPMI module 190, construct
one or more IPMI OEM responses having a data transaction
request for the specific data (e.g., the setting data of the
BIOS 170), and send the IPMI OEM responses back to the
one or more host computer 110 of the SP 120, and then, at
procedure 455, send the one or more IPMI OEM responses
to the host computer 110.
Upon receiving the data transaction request, the SMI

handler 178 determines that the SP 120 intends to initiate the
data transaction. At procedure 460, the SMI handler 178
retrieves the requested data (e.g., the setting data of the
BIOS 170 from the BIOS chip 116) in response to the data
transaction request. At procedure 462, the SMI handler 178
sends the requested data to the IPMI routine 175 for pro
cessing. Upon receiving the requested data, the IPMI routine
175 converts the requested data to generate the IPMI OEM
message, and at procedure 465, the IPMI routine 175 sends
the IPMI OEM message representing the requested data to
the SP 120 through the KCS interface 130. It should be
appreciated that the IPMI OEM message can be sent to the
SP 120 through the USB interface 140 or any other com
munication interfaces.
At the SP 120, at procedure 468, the IPMI module 190

receives the IPMI OEM message representing the requested
data, converts the IPMI OEM message to generate the
requested data, which is recognizable by the firmware 126,
and sends the requested data to the firmware 126. At
procedure 470, the firmware 126 processes the requested
data.

Meanwhile, at the host computer 110, after sending out
the requested data, the SMI handler 178 exits the SMM.
Since the OS 160 was in control of the CPU 112 before the
SMM, at procedure 470, the control of the CPU 112 is now
back to the OS 160. At procedure 480, the OS 160 continues
the operating process.

US 9,529,750 B2
17

FIG. 5 schematically depicts the SP initiating data trans
action from the SP to the BIOS of the host computer
according to certain embodiments of the present disclosure.
In certain embodiments, the data to be transferred from the
SP 120 to the SMI handler 178 is the setting data of the BIOS
170 for updating the BIOS chip 116.

Referring to FIG. 5, when the SP 120 intends to transfer
certain data to the BIOS 170 of the host computer 110, the
SP 120 may initiate the data transaction from the SP 120 to
the host computer 110. At procedure 505, the firmware 126
instructs the interrupt module 180 to generate an SMI
message for a data transaction purpose. At procedure 510,
the interrupt module 180 of the SP 120, upon the instruction
by the firmware 126, sends an SMI message to the host
computer 110 through the communication link 150.

At the host computer 110, the OS 160 is executed at the
CPU 112 and has the control of the CPU 112. When the SMI
pin 113 of the CPU 112 receives the SMI message from the
SP 120, at procedure 515, the CPU 112 generates a hardware
SMI, and saves the contexts when running the OS 160 under
the protected mode into the CPU context area 179 of the
memory 114. At procedure 520, the CPU 112 executes the
SMI handler 178, which is pre-stored in the SMRAM area
174 during the booting process, and the SMI handler 178
takes over control of the CPU 112 from the OS 160.
Once taking over control of the CPU 112, at procedure

530, the SMI handler 178 generates a notification for the SP
120. The notification may contain information notifying the
SP 120 that the host computer 110 is now in the SMM, and
asking whether the SP 120 intends to initiate the data
transaction. At procedure 532, the SMI handler 178 sends
the data of the notification to the IPMI routine 175 for
processing. Upon receiving the data of the notification, the
IPMI routine 175 converts the data of the notification to
generate the IPMI OEM message, and at procedure 535, the
IPMI routine 175 sends the IPMI OEM message represent
ing the notification to the SP 120 through the KCS interface
130. It should be appreciated that the IPMI OEM message
can be sent to the SP 120 through the USB interface 140 or
any other communication interfaces. In certain embodi
ments, the IPMI OEM message requests a response from the
SP 120 to indicate whether it was the SP 120 that issued an
interrupt.

At procedure 538, the IPMI module 190 receives the IPMI
OEM message representing the notification, converts the
IPMI OEM message to generate the notification, which is
recognizable by the firmware 126, and sends the notification
to the firmware 126.

At procedure 540, in response to the notification, the
firmware 126 generates a response to indicate whether it was
the SP 120 that issued the interrupt. The firmware 126 also
retrieves the data to be transferred (e.g., the setting data of
the BIOS 170) to be a part of the response. At procedure 542,
the firmware 126 sends the response, which contains the data
to be transferred, to the IPMI module 190 for processing.
Upon receiving the response, at procedure 545, the IPMI
module 190 converts response to generate another IPMI
OEM message, and sends the IPMI OEM message repre
senting the response to the host computer 110 through the
KCS interface 130. It should be appreciated that the IPMI
OEM message can be sent to the SP 120 through the USB
interface 140 or any other communication interfaces.

At procedure 548, the IPMI routine 175 receives the IPMI
OEM message representing the response, converts the IPMI
OEM message to generate the response, which contains the
data to be transferred and is recognizable by the SMI handler
178, and sends the response to the SMI handler 178.

10

15

25

30

35

40

45

50

55

60

65

18
Upon receiving the response, the SMI handler 178 deter

mines that the SP 120 intends to initiate the data transaction.
At procedure 550, the SMI handler 178 processes with the
received data (e.g., updating the setting data of the BIOS 170
by saving the data into the BIOS chip 116) contained in the
response. After processing with the data, the SMI handler
178 exits the SMM. Since the OS 160 was in control of the
CPU 112 before the SMM, at procedure 560, the control of
the CPU 112 is now back to the OS 160. At procedure 570,
the OS 160 continues the operating process.
As discussed above, when the SMI handler 178 is

executed under the SMM, the SMI handler 178 does not
recognize whether the SMM was triggered by the SP 120 for
the purpose of initiating a data transaction, or by the OS 160
for other purposes. When the SMI handler 178 sends the
notification to the SP 120, the SP 120 may send the response
back to indicate whether it was the SP 120 that triggered the
SMM or not. If the SP 120 sends a response indicating that
it was not the SP 120 that triggered the SMM, the SMI
handler 178 may recognize that the SP 120 does not intend
to initiate a data transaction. In this situation, the SMI
handler 178 can terminate and wait for the CPU 112 to exit
SMM. Alternatively, the SMI handler 178 may contain other
pre-set routines such as those implementing Advanced
Power Management (APM) features, and the SMI handler
178 may enter and execute one or more of the other pre-set
routines.

FIG. 6 schematically depicts the host computer entering
SMM when the SP does not initiate data transaction accord
ing to certain embodiments of the present disclosure. In
certain embodiments, software SMI is used to trigger the
SMI handler 178.
As shown in FIG. 6, the OS 160 is executed at the CPU

112 and has the control of the CPU 112. At procedure 610,
the OS 160 controls the CPU 112 to enter the SMM, and the
CPU 112 saves the contexts when running the OS 160 under
the protected mode into the CPU context area 179 of the
memory 114. At procedure 620, the CPU 112 executes the
SMI handler 178, which is pre-stored in the SMRAM area
174 during the booting process, and the SMI handler 178
takes over control of the CPU 112 from the OS 160.
Once taking over control of the CPU 112, at procedure

630, the SMI handler 178 generates a notification for the SP
120. The notification may contain information notifying the
SP 120 that the host computer 110 is now in the SMM, and
asking whether the SP 120 intends to initiate the data
transaction. At procedure 635, the SMI handler 178 sends
the data of the notification to the IPMI routine 175 for
processing. Upon receiving the data of the notification, the
IPMI routine 175 converts the data of the notification to
generate the IPMI OEM message, and at procedure 540, the
IPMI routine 175 sends the IPMI OEM message represent
ing the notification to the SP 120 through the KCS interface
130. It should be appreciated that the IPMI OEM message
can be sent to the SP 120 through the USB interface 140 or
any other communication interfaces.
At the SP 120, when the IPMI module 190 receives the

IPMI OEM message representing the notification, the IPMI
module 190 converts the IPMI OEM message to generate
the notification, which is recognizable by the firmware 126,
and sends the notification to the firmware 126. Since the
firmware 126 does not intend to initiate the data transaction,
at procedure 650. However, the firmware 126, through the
IPMI module 190, generates a response indicating that it was
not the SP 120 that triggered the SMM, and sends the
response back to the host computer 110.

US 9,529,750 B2
19

At the host computer 110, the SMI handler 178 receives
the response from the SP 120, and recognizes that the SP 120
does not intend to initiate a data transaction. At procedure
660, the SMI handler 178 can terminate and wait for the
CPU 112 to exit SMM. Alternatively, the SMI handler 178
may contain other pre-set routines Such as those implement
ing Advanced Power Management (APM) features, and the
SMI handler 178 may enter and execute one or more of the
other pre-set routines. Since the OS 160 was in control of the
CPU 112 before the SMM, at procedure 670, the control of
the CPU 112 is now back to the OS 160. At procedure 680,
the OS 160 continues the operating process.

The method as described in the embodiments of the
present disclosure can be used in the field of, but not limited
to, SP initiated data transaction between the BIOS and the
SP utilizing the interrupts. When the SP intends to initiate a
data transaction with the BIOS, the SP issues an interrupt to
the CPU of the host computer. The OS, in response to the
interrupt, enters the SMM, and the SMI handler may issue
a notification to the SP such that the SP may perform data
transaction in response to the notification.

The foregoing description of the exemplary embodiments
of the disclosure has been presented only for the purposes of
illustration and description and is not intended to be exhaus
tive or to limit the disclosure to the precise forms disclosed.
Many modifications and variations are possible in light of
the above teaching.

The embodiments were chosen and described in order to
explain the principles of the disclosure and their practical
application so as to enable others skilled in the art to utilize
the disclosure and various embodiments and with various
modifications as are Suited to the particular use contem
plated. Alternative embodiments will become apparent to
those skilled in the art to which the present disclosure
pertains without departing from its spirit and scope. Accord
ingly, the scope of the present disclosure is defined by the
appended claims rather than the foregoing description and
the exemplary embodiments described therein.

What is claimed is:
1. A system, comprising:
a service processor (SP), comprising a processor, a non

Volatile memory, and a communication interface,
wherein the non-volatile memory stores computer
executable code configured to, when executed at the
processor,
generate a first system management interrupt (SMI)

message, and send the first SMI message to a host
computer;

receive, via the communication interface, a first Intel
ligent Platform Management Interface (IPMI) origi
nal equipment manufacturer (OEM) message from a
SMI handler executed under a system management
mode (SMM) at a central processing unit (CPU) of
the host computer; and

in response to the first IPMI OEM message, perform
data transaction between the SP and the host com
puter by:
in response to the first IPMI OEM message, retriev

ing specific data stored in the SP and generating
a second IPMI OEM message comprising the
specific data; and

sending, via the communication interface, the second
IPMI OEM message to the SMI handler executed
under the SMM at the CPU of the host computer,

10

15

25

30

35

40

45

50

55

60

65

20
wherein the host computer comprises:

the CPU:
a volatile memory, comprising a system management
random access memory (SMRAM) area;

a BIOS chip storing a basic input/output system (BIOS)
and the SMI handler; and

a storage device storing an operating system (OS);
wherein the BIOS, when executed at the CPU is

configured to
load the SMI handler into the SMRAM area;
load the OS into the volatile memory, and execute

the OS at the CPU:
wherein the CPU, when executing the OS, is configured

tO

receive the first SMI message or a second SMI
message; and

in response to receiving the first SMI message or the
second SMI message, execute the SMI handler in
the SMRAM area at the CPU to enter the SMM;
and

wherein the SMI handler, when executed at the CPU, is
configured to
generate the first IPMI OEM message, and send the

first IPMI OEM message to the SP via the com
munication interface;

receive, from the SP via the communication inter
face, the second IPMI OEM message, wherein the
second IPMI OEM message indicates whether the
SP issued the first SMI message; and

in response to the second IPMI OEM message indi
cating that the SP issued the first SMI message,
perform the data transaction between the SP and
the host computer.

2. The system as claimed in claim 1, wherein the com
munication interface is a standardized interface under IPMI
standard, wherein the standardized interface comprises a
keyboard controller style (KCS) interface, a system man
agement interface chip (SMIC) interface, and a block trans
fer (BT) interface.

3. The system as claimed in claim 1, wherein the SP is a
baseboard management controller (BMC).

4. The system as claimed in claim 1, wherein the second
SMI message is generated by the OS executed at the CPU.

5. The system as claimed in claim 1, wherein the CPU of
the host computer has a SMI pin connected to the SP through
a communication link different from the communication
interface, wherein the CPU is configured to receive the first
SMI message from the SP through the communication link.

6. The system as claimed in claim 1, wherein the host
computer further comprises a platform controller hub (PCH)
hardware, wherein the SP is connected to the PCH hardware
through a communication link different from the communi
cation interface.

7. The system as claimed in claim 6, wherein the PCH
hardware is configured to

receive the first SMI message through the communication
link, and

in response to the first SMI message, generate a hardware
SMI and send the hardware SMI to the CPU as the SMI
message.

8. The system as claimed in claim 1, wherein the SMI
handler, when executed at the CPU, is configured to perform
the data transaction by:

receiving, via the communication interface, the second
IPMI OEM message from the SP; and

retrieving the specific data from the second IPMI OEM
message.

US 9,529,750 B2
21

9. A system, comprising:
a service processor (SP), comprising a processor, a non

Volatile memory, and a communication interface,
wherein the non-volatile memory stores computer
executable code configured to, when executed at the
processor,
generate a first system management interrupt (SMI)

message, and send the first SMI message to a host
computer;

receive, via the communication interface, a first Intel
ligent Platform Management Interface (IPMI) origi
nal equipment manufacturer (OEM) message from a
SMI handler executed under a system management
mode (SMM) at a central processing unit (CPU) of
the host computer; and

in response to the first IPMI OEM message, perform
data transaction between the SP and the host com
puter by:
in response to the first IPMI OEM message, gener

ating a response, and sending, via the communi
cation interface, the response to the BIOS
executed under the SMM at the CPU of the host
computer, wherein the response comprises a data
transaction request; and

receiving, via the communication interface, a data
collection to the data transaction request from the
SMI handler executed under the SMM at the CPU
of the host computer, wherein the data collection
comprises specific data requested by the data
transaction request,

wherein the host computer comprises:
the CPU:
a volatile memory, comprising a system management
random access memory (SMRAM) area;

a BIOS chip storing a basic input/output system (BIOS)
and the SMI handler; and

a storage device storing an operating system (OS);
wherein the BIOS, when executed at the CPU is

configured to
load the SMI handler into the SMRAM area;
load the OS into the volatile memory, and execute

the OS at the CPU:
wherein the CPU, when executing the OS, is configured

tO

receive the first SMI message or a second SMI
message; and

in response to receiving the first SMI message or the
second SMI message, execute the SMI handler in
the SMRAM area at the CPU to enter the SMM;
and

wherein the SMI handler, when executed at the CPU, is
configured to
generate the first IPMI OEM message, and send the

first IPMI OEM message to the SP via the com
munication interface;

receive, from the SP via the communication inter
face, a response to the first IPMI OEM message,
wherein the response indicates whether the SP
issued the first SMI message; and

in response to the response indicating that the SP
issued the first SMI message, perform the data
transaction between the SP and the host computer.

10. The system as claimed in claim 9, wherein the SMI
handler, when executed at the CPU, is configured to perform
the data transaction by:

receiving, via the communication interface, the response
from the SP;

10

15

25

30

35

40

45

50

55

60

65

22
retrieving the data transaction request from the response;
retrieving the specific data based on the data transaction

request, and generate the data collection with the spe
cific data; and

sending, via the communication interface, the data col
lection to the SP.

11. The system as claimed in claim 10, wherein the
response is a second IPMI OEM message, and the data
collection is a third IPMI OEM message comprising the
specific data.

12. A method of performing data transaction between a
service processor (SP) and a host computer, comprising:

generating, by the SP, a first system management interrupt
(SMI) message, and sending the first SMI message to
the host computer,

loading, at the host computer, a basic input/output system
(BIOS) from a BIOS chip of the host computer, and
executing the BIOS at the CPU:

loading, by the BIOS executed at the CPU, a SMI handler
from the BIOS chip into a system management random
access memory (SMRAM) area into a volatile memory
of the host computer;

loading, by the BIOS executed at the CPU, the OS into the
volatile memory, and execute the OS at the CPU:

when the OS is executed at the CPU, receiving, by the
CPU, the first SMI message or a second SMI message;

in response to receiving the first SMI message or the
second SMI message, executing, at the CPU, the SMI
handler in the SMRAM area at the CPU to enter the
SMI;

generating, by the SMI handler executed at the CPU, a
first Intelligent Platform Management Interface (IPMI)
original equipment manufacturer (OEM) message, and
sending the first IPMI OEM message to the SP via the
communication interface;

receiving, at the SP via the communication interface, the
first IPMI OEM message;

in response to receiving the first IPMI OEM message,
retrieving specific data stored in the SP, and generating
a second IPMI OEM message, wherein the second
IPMI OEM message comprises the specific data;

sending the second IPMI OEM message to the SMI
handler by the SP via the communication interface;

receiving, by the SMI handler executed at the CPU from
the SP via the communication interface, the second
IPMI OEM message, wherein the second IPMI OEM
message indicates whether the SP issued the first SMI
message;

in response to the second IPMI OEM message indicating
that the SP issued the first SMI message, performing,
by the SMI handler executed at the CPU, data trans
action between the SP and the host computer.

13. A non-transitory computer readable medium storing
computer executable code, wherein the computer executable
code, when executed at a processor of a service processor
(SP), is configured to

generate, at the SP, a first system management interrupt
(SMI) message, and send the first SMI message to the
host computer;

receive, at the SP via the communication interface, a first
Intelligent Platform Management Interface (IPMI)
original equipment manufacturer (OEM) message from
a system management interface (SMI) handler
executed under a system management mode (SMM) at
a central processing unit (CPU) of the host computer;
and

US 9,529,750 B2
23

in response to the first IPMI OEM message, perform, by
the SP data transaction with the host computer by:
in response to the first IPMI OEM message, retrieving

specific data stored in the SP and generating a
second IPMI OEM message, wherein the second 5
IPMI OEM message comprises the specific data and

sending, via the communication interface, the second
IPMI OEM message to the SMI handler executed
under the SMM at the CPU of the host computer,

wherein the host computer comprises:
the CPU:
a Volatile memory, comprising a system management
random access memory (SMRAM) area:

a BIOS chip storing a basic input/output system (BIOS)
and the SMI handler; and

a storage device storing an operating system (OS);
wherein the BIOS, when executed at the CPU is

configured to
load the SMI handler into the SMRAM area;
load the OS into the volatile memory, and execute

the OS at the CPU:
wherein the CPU, when executing the OS, is configured

tO

receive the first SMI message or a second SMI
message; and

in response to receiving the first SMI message or the
second SMI message, execute the SMI handler in
the SMRAM area at the CPU to enter the SMM;

wherein the SMI handler, when executed at the CPU, is
configured to

10

15

24
generate the first IPMI OEM message, and send the

first IPMI OEM message to the SP via the com
munication interface;

receive, from the SP via the communication inter
face, the second IPMI OEM message, wherein the
second IPMI OEM message indicates whether the
SP issued the first SMI message; and

in response to the second IPMI OEM message indi
cating that the SP issued the first SMI message,
perform the data transaction between the SP and
the host computer.

14. The non-transitory computer readable medium as
claimed in claim 13, wherein the CPU of the host computer
has a SMI pin connected to the SP through a communication
link different from the communication interface, wherein the
CPU is configured to receive the first SMI message from the
SP through the communication link.

15. The non-transitory computer readable medium as
claimed in claim 13, wherein the host computer further
comprises a platform controller hub (PCH) hardware,
wherein the SP is connected to the PCH hardware through
a communication link different from the communication
interface, wherein the PCH hardware is configured to

receive the first SMI message through the communication
link, and

in response to the first SMI message, generate a hardware
SMI and send the hardware SMI to the CPU as the SMI
message.

