«» UK Patent Application

(19) GB (11) 2483907 (13)A

(43)Date of A Publication 28.03.2012
(21) Application No: 1016080.2 (51) INT CL:
GO6F 9/30 (2006.01) GO6F 11/36 (2006.01)
(22) Date of Filing: 24.09.2010 GO6F 21/00 (2006.01)
(56) Documents Cited:
(71) Applicant(s): WO 2008/061089 A2 WO 2004/015553 A1
ARM Limited US 7117352 B1 US 20060048099 A1

(Incorporated in the United Kingdom)
110 Fulbourn Road, Cherry Hinton, CAMBRIDGE,
CB1 9NJ, United Kingdom

(72) Inventor(s):
Michael John Williams
Richard Roy Grisenthwaite

(74) Agent and/or Address for Service:

D Young & Co LLP
120 Holborn, LONDON, EC1N 2DY, United Kingdom

US 20050289545 A1

(568) Field of Search:
INT CL GO6F
Other: ONLINE: EPODOC, WPI, XPI3E

(54) Title of the Invention: Debugging of a data processing apparatus
Abstract Title: Privilege level switching for data processing circuitry when in a debug mode

(57) A data processing apparatus and method for switching between different privilege levels or permissions for different
access rights to a memory and/or a set of registers is provided. It comprises a processing circuitry configurable to
operate at a plurality of privilege levels; instruction decoding circuitry responsive to program instructions, where
program instructions may comprise a debug privilege-level switching instruction; wherein if the processing circuitry
is in a debug mode it switches from a current privilege level to a target privilege level, and the processing circuitry
doesn't if it is in @ non-debug mode (when the instruction is undefined). The debug privilege-level switching
instruction may be either incrementing [Fig. 8] or decrementing [Fig. 9] where the target privilege level is higher or
lower than the current privilege level. There may also be a standard privilege-level switching instruction where the
processing circuitry switches privilege levels only if it is in a non-debug mode. The privilege levels may be an
application layer PLO, an operating system layer PL1, a hypervisor layer PL2 and a security monitoring layer PL3.

This may be implemented via a virtual machine.

Privilege level
410
o
(Application)
o
& &
w
PL1
(Guestos) | 420
o
[jw
S 9
w
PL2
(Hypervisor) |/~ 430
5 o
= g
@
PL3
(Secure Monifor) | ~440

Virtual to Physical address
translation and privilege checking

VA IPA PA
TIBRO_PL1, VTTBR_PL2
TTBR1_PL1

VA PA
TIBR_PL2

VA - PA
TTBR_PL3

*for calls from Non-secure state
into PL3, a security check is made

FIG. 4

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

vV L06E8¥¢ 99

110

L "OId

AYOWAN
.vv_\l diHO-440
008
AHOWIN
Zil 2| dHONO
mﬁ opLJ] MWW
w&
TUYMLA0S
1¥0d
¥399Ng3a aNN3did
251~ oONg3d D ZIET NOILNO3X3
ﬁi\
o5l Od1SOH vel 0L epl
wk.
IINAON
N E 0zL usds
001 | AYLINOYID ONISSTIOON YIVA

OFL O LC

2/10

¢ '9Old

(ug 9) 1009
(s) (g $9)
£1d Joyuouws aundeg
~ ainoeg
Ove 2INJ8S-UON
(g ¥9) (SN)
JosinedAn Zd
\l\
9ce
L 0ec
(S) SO 2ineg (g ¥9) (4a z¢) (SN)
L d Z SO 189n9 | SO 1s8h9 11
P ~
vez 222
(s) gdde | | | dde (g z¢) (g 19) (g z¢) (g zg) (SN)
07d | |einoag| [aundsg Z'¢ ddy }'g ddy Z'| ddy }'} day 01d
~ ~ ~ ~ ~ -7
ol 602 802 902 02 202

OFL O LC

271010

3/10

X

System registers
visible to PLO 340

System registers
visible to PL1

System registers
visible fo PL2

320

All system registers (visible to PL3)

FIG. 3

271010

DRET

DRET

DRET

4/10

Virtual to Physical address

Privilege level translation and privilege checking
410)
Lo |~
(Application)
S > WA - IPA ~ PA
w TTB RO_J; L1, VTTBR_PL2
PL1 TTBR1_PL1
(Guest08) |/~ 420
J
j)
S
o
w
PL2 ——
(Hypervisor) L/~ 430 VA TTBR_PL2 PA
o
S
U
@
PL3 R
(Secure Monitor) 440 VA TTBR_PL3 A

*for calls from Non-secure state
into PL3, a security check is made

FIG. 4

271010

Privilege level

.........

5/10

Modes
510"
ELO
o i
S i
MSR
520 - EL1h N g EL1t 522
'-—
LLl
= o
530" EL2h « MSR__ EL2t 532
'.....
2 o
(@] b
EL3h |7 ysR o P2
540 -] .

FIG. 5

6/10

9 '9OId

Sd0q ui Buipoous Jebiey, :9j0e

£1d L

21d 0l

d 10

g3aNId3ann 00

[ons| abajiaud 106.e} Jobuey,
Sd0a

by 10 0 0 paloub] L0 L{0O 0 L 0 L 0 L |
ojvizlelvlslolz]eTelo[ula]er]wlsr]or[zi]er]6r[0z]12]ez ez ve|sz)9z|Lz]sz]6z]oc]Le

OFL O LC

710

9.4 'Old

OL Ol

LS

b 1|0 0 0 (paioubi) pjet Jusuiwod 00 0j0C 0 L 0 L 0 L }{OWS
0 L|0 0 O (paJoufy) pjey jJuswwiod 0 0 0[O0 0O} 0} 0 L }|OAH
L 0]0 0 0 (patouBl) pjay Justuwod 0 0 0{0 0} 0V 0 } }|OAS
ofvizlelvlsolzTslelot]ule]er]ws]ar]or[z1]ar]6r[oz|iz]zz [z ve]se oe 2z sz |6z [og [e
g/ 9l
Jos uoioniisul 9y ‘Buipoous uogonlsul | 343
0000 0]} b bjo oo 00 o0fr bbb oo tlor vo Lo b b
ofvizlelv]slafzle]e]or]ule]es]v]sr]or]zi]er]6r[oz|1z]ze ez | ve]sz oz 2z ez 6z 08 [1e
V. 9ld
18s uononsul 8y ‘Buipoous uoonasul | 34a
0000 0/} L Lj0 0000 0(t 4 b b blbo o oot ot
olvizlelv]slolzTeTelor]ulzfet]vi]cr]or]zr 8610z] 122z ez vz|sz|9z]ze|ez]6z[oc]1e

271010

8/10

DCPS
instruction

810

N Undefined
in Debug mode? =1 instruction
812 exception
H
814
Y
818
Y
ﬂ N
N
Security check |~ 820 - Entsafiugtéon
l 8407 “Bls
‘ N
Security OK? 834
822 |y ! Already @ PL3? @
—® N
826 824 836
; Yy Y ~
Select PL3 Set ermor Select PL2 Select PL1
mode flag mode mode

Y

271010

DRET Instruction 910

9/10

Y

Read target
mode from 1 916

SPSR

Target
mode encoding is
valid?

 J
4

Targetis a
PL3 mode?

Undefined
Insiruction |~ 914
exception

Targetis a

Targetis
aPLo
mode

1]
Set illegal

state flag 1. 920

PL2 mode?
940
Targetis a
PL1 mode?
1 942
Already ™_ Y
below
PL2?
N
Y
Change fo

farget mode [\ 934

Py

Y
Complete

960

FIG. 9

271010

10/10

VM
implementation

Application 1000

I API (Virtual)

VM 1010
Host 0S 1020
Host Hardware S 1030

FIG. 10

10

15

20

25

DEBUGGING OF A DATA PROCESSING APPARATUS

The present invention relates to data processing. More particularly, the present

invention relates to debugging of a data processing apparatus.

It is known to perform debugging of a data processing apparatus in order to determine
defects in operation of data processing hardware and/or software. As processors become
more complex with more data processing elements on a single data processing integrated
circuit, perhaps including multiple processors configurable to run multiple operating systems,
the process of debugging is becoming more complex and challenging. However, debugging is

an important phase in software and system design to identify and eliminate defects.

- It is also known to provide a data processing apparatus capable of operating at a
plurality of processor operating states where the processing circuitry imposes on program
instructions different access permissions to at least one of a memory and set of registers at the
different privilege levels. For example, a user mode could be provided at which program
instructions have access permissions to a subset of control registers and a system mode could
be provided where the program instructions have access permission to a larger subset of
control registers. It is important that operation of the data processing apparatus in all of the

possible modes should be thoroughly debugged.

It is known in the ARM v7 processor architecture to provide a special debug mode,
which the processor enters to process a debug event, such as a breakpoint or watchpoint
match. When in this debug mode the processor reads instructions from an instruction transfer
register, which is controlled by a debugger connected to the data processing apparatus via a
debug port. Depending on the choice of instruction, the debugger is able to view and modify
the contents of the processor registers and view and modify the contents of memories
connected to the processor. Thus the debugger is able to effectively debug software programs
and diagnose other defects such as defects in the design of the data processing apparatus

itself.

Accordingly, there is a requirement to provide a more efficient way of causing the data

processing apparatus to transition between different operating states.

10

15

20

25

30

2
According to a first aspect the present invention provides a data processing apparatus

comprising:
processing circuitry for processing data, said processing circuitry being configurable to
operate at a plurality of privilege levels wherein at different privilege levels said processing
circuitry imposes on program instructions different access permissions to at least one of a
memory and a set of registers;
instruction decoding circuitry responsive to program instructions to generate control
signals for controlling said processing circuitry to perform said data processing;
wherein said program instructions comprise a debug privilege-level switching
instruction, said instruction decoding circuitry being responsive to said debug privilege-level
switching instruction to perform the following:
(i) if said processing circuitry is in a debug mode to switch said processing circuitry from a
current privilege level to a target privilege level; and
(ii) if said processing circuitry is in a non-debug mode, to prevent execution of said debug

privilege-level switching instruction regardless of said current privilege level.

The present invention recognises that providing a dedicated privilege-level switching
instruction that, upon execution in a debug mode, switches the processing circuitry from a
current privilege level to a target privilege level and yet prevents execution of the privilege-
level switching instruction regardless of the current privilege level when the processing
circuitry is in a non-debug mode. This provides a useful way of enabling the processor to be
put into different operating states when in a debug mode without resorting to complicated
overloading of a non-debug mode instruction. The ability to change the processor to operate
at different privilege levels when in the debug mode is useful because when the processor is
operating at different privilege levels it has a different view of, for example, system registers
and memory and thus different privilege levels correspond to different processor operating

states, which it desirable to be able to access in a debug mode.

For example, in a data processing apparatus that implements virtualisation and thus
has a hypervisor mode, the hypervisor will operate at a different privilege level from a guest
operating system running on the data processing apparatus. Furthermore, provision of a
dedicated debug privilege-level switching instruction that is only defined in a debug mode

allows the instruction to perform switches between different privilege levels in a manner that

10

15

20

25

30

3
is ideally suited to the peculiarities of the debug mode. For example, the dedicated debug

privilege-level switching instruction can be implemented such that no branches are performed
in order to switch between different privilege levels because branches, whilst typically
implemented in a non-debug mode as part of a privilege-level switching instruction in order to
maintain correct separation between the privilege levels, are undesirable in a debug mode.
This is because whereas in a non-debug mode, program instructions are fetched from system
memory, in a debug mode typically debug instructions are fetched from a dedicated
instruction transfer register controlled by the debugging circuitry. A branch, in particular a
branch associated with a change in privilege level, typically operates by (a) generating a
branch target address, (b) writing this address to a program counter register, (c) flushing the
instruction pipeline, and (d) fetching instructions from the memory address written to the
program counter register. For example, in the case of privilege-level incrementing instructions
in non-debug mode, the branch target address is fixed, and in the case of privilege-level
decrementing instructions in non-debug mode, the branch target address is read from an

address link register.

Flushing the instruction pipeline and restarting instruction fetch from memory is
inappropriate in a debug mode, as all instructions are fetched from the instruction transfer
register. To avoid complicating the processor design by modifying the operation of branches
in a debug mode, it is preferable to avoid branches altogether. Thus the ability to provide
privilege level switching instruction tailored for execution in a debug mode rather than using
an overloaded instruction that has one function in a normal mode and a different function in a

debug mode simplifies processor design.

It will be appreciated that the debug privilege-level switching instruction could be
implemented in order to switch between different processor operating states at the same
privilege level such that the target privilege level is the same as the current privilege level.
For example, a switch could be performed between two different interrupt modes such as an
IRQ mode and an FIQ mode at the same privilege level. However, according to some
embodiments, the target privilege level is different from the current privilege level. This
enables switching in the debug mode between, for example, a mode in which the processor is
executing operating system instructions and a mode in which the processor is executing

program application instructions. This is useful because modern processors are configured to

10

15

20

25

30

4
frequently switch between different operating states executing different categories of program

instructions,

It will be appreciated that the target privilege level could be encoded in the debug
privilege-level switching instruction in a number of different ways, for example, by a field of
the privilege-level switching instruction specifying a memory location from which the target
privilege level can be read. However, in one embodiment, the target privilege level is directly
encoded within a field of the debug privilege-level switching instruction itself. This enables
the target privilege level to be derived in a straightforward manner so that the instruction can

be efficiently executed.

In an alternative embodiment, the data processing apparatus comprises at least one
dedicated target register providing an indication of the target privilege level. The debug
privilege-level switching instruction reads the target privilege level from the dedicated target
register. This is a convenient way to implement switching to a target privilege level. In some
such embodiments the data processing apparatus comprises a plurality of dedicated target
registers, each of the dedicated target registers storing a corresponding target privilege level
and the processing circuitry is configured to select one of the plurality of dedicated target
registers from which to read the target privilege level depending upon the current privilege
level. This is a convenient and efficient way of setting up switches between different ones of
a plurality of different privilege levels because it enables a number of switching options to be
defined once in advance and an appropriate one of those options to be selected as required

depending upon the current debug mode privilege level.

It will be appreciated that the privilege-level switching instruction could be arranged
to perform one or both of switching up from a lower privilege level to a higher privilege level
or switching down from a higher privilege level to a lower privilege level. In one
embodiment, the debug privilege-level switching instruction comprises a dedicated privilege-
incrementing instruction for which the target privilege level is required to correspond to a
higher privilege level than the current privilege level. Providing a dedicated instruction that
increments that privilege level is a convenient way of decoupling switching up between

privilege levels from switching down between privilege levels. In other embodiments, the

10

15

20

25

30

5
debug privilege-level switching instruction comprises a privilege-decrementing instruction

where the target privilege level is required to correspond to a lower privilege level than the
current privilege level. The privilege-incrementing instruction and privilege-decrementing
instruction can conveniently be used in a complementary manner for performing any desired
privilege-level switch when in the debug mode. Alternatively, these two different instructions
can be decoupled such that only one of the privilege-level incrementing instruction or the

privilege-level decrementing instruction can be provided in a given data processing apparatus.

In one embodiment, the program instructions comprise a first type of debug privilege-
level switching instruction corresponding to a privilege-level incrementing instruction in
which the target privilege level is required to correspond to a higher privilege level than the
current privilege level and a second type of debug privilege-level switching instruction
corresponding to a privilege-decrementing instruction for which the target privilege level is

required to correspond to the lower privilege level than the current privilege level.

In some embodiments the program instructions comprise a standard privilege-level
switching instruction and the instruction decoding circuitry is responsive to the standard
privilege-level switching instruction to perform a switch of the processing circuitry from the
current privilege level to the target privilege level if the processing circuitry is in 2 non-debug
mode. This conveniently decouples the task of privilege switching when the data processing
apparatus is in a non-debug mode from the task of privilege switching when the data
processing apparatus is in a debug mode. In some such embodiments, the debug privilege-
level switching instruction and the standard privilege-level switching instruction have

identical instruction bit-widths and isomorphic encodings.

The isomorphic encodings are implemented such that a first bit-set of the debug
privilege-level switching instruction and the standard privilege-level switching instruction
have substantially identical bit patterns whilst a second bit-set of the debug privilege-level
switching instruction and the standard privilege-level switching instruction has substantially
non-identical bit patterns and wherein the second bit-set is smaller than the first bit-set.
Arranging the standard mode privilege level switching instruction and the debug mode

privilege-level switching instruction such that the majority of bits in the respective instruction

10

15

20

25

30

6
encodings are identical provides a convenient way of implementing the two instructions and

the isomorphic encoding simplifies decoding these instructions and thus simplifies the data
processing circuitry. In some such embodiments having isomorphic encodings, the second bit
set comprises a single bit. Arranging that only a single bit in the entire instruction encoding
differs between the instructions having corresponding functions in the debug mode and the
non-debug mode provides a sufficiently close relationship between the instructions in the two
different modes to enable the decoding circuitry to readily identify the relationship between

the different instructions.

It will be appreciated that the debug privilege-level switching instruction could be
used in any type of data processing apparatus in which it is desired to perform debugging,
including data processing apparatuses that do not make use of virtual memoty. However, in
some embodiments, the current privilege level corresponds to an operating state of the
processing circuitry that implements a first virtual memory address to physical memory
address translation scheme and the target privilege level corresponds at an operating state of
the processing circuitry that implements a second virtual memory address to physical memory
address translation scheme. The first virtual memory address to physical memory address
translation scheme is different from the second virtual memory address to physical memory
address translation scheme. Having different privilege levels implementing different virtual
to physical memory address translation schemes means that there is a clear requirement when
the data processing apparatus is in a debug mode to provide the capability of switching
between different privilege levels having different address translation schemes so that
operation of the data processing apparatus at each of the different privilege levels can be

efficiently debugged.

It will be appreciated that differences between the different privilege levels could
amount only to different access permissions to memory and not different access permissions
to any of the processor registers. However, in some embodiments the data processing
circuitry comprises a plurality of system registers and the current privilege level has a first set
of accessibility criteria associated with the plurality of system registers whilst the target
privilege level has a second different set of accessibility criteria associated with the plurality

of system registers. Similarly to the implementation of different virtual to physical address

10

15

20

25

30

7
translation schemes at the different privilege levels, the different views that the data

processing apparatus has of system registers when operating at different privilege levels
makes the importance of the capability to conveniently and efficiently switch between

different privilege levels when in a debug mode clear.

It will be appreciated that the debug privilege-level switching instruction could be
prevented from being executed by the processing circuitry when the data processing apparatus
is in a non-debug mode regardless of the current privilege level in any one of a number of
different ways provided that the debug privilege-level switching instruction is appropriately
defined and conveniently decouples privilege level switching in a non-debug mode from
privilege-level switching in a debug mode. However, in some embodiments, if the data
processing apparatus is in a non-debug mode the debug privilege-level switching instruction
is undefined and generates a software exception. This is a convenient way of ensuring that

the debug privilege-level switching instruction is only executed in the debug mode.

It will be appreciated that the plurality of privilege levels could correspond to any one
of a number of different types of operating state of the data processing apparatus. However in
some embodiments a first of the plurality of privilege levels corresponds to an application
Jayer and a second of the plurality of privilege levels corresponds to an operating system
layer. In some embodiments, one of the plurality of privilege levels corresponds to a
hypervisor layer. Furthermore in some embodiments one of the plurality of privilege levels
corresponds to a security monitoring layer. This conveniently enables switching in and out of
a security monitoring layer which is useful in a data processing apparatus capable of

implementing a secure mode of operation.

It will be appreciated that any one of a number of different combinations of the
plurality of privilege levels could be provided in the data processing apparatus. However, in
some embodiments in which a first of the plurality of privilege levels corresponds to an
application layer and a second of the plurality of privilege levels corresponds to an operating
system layer a third of the plurality of privilege levels corresponds to a security monitoring

layer, but a hypervisor layer is absent. This conveniently enables a secure mode to be

10

15

20

25

30

8
implemented without the potential compromise to security that a hypervisor layer may

present.

It will be appreciated that the debug privilege-level switching instruction could be
used indiscriminately to switch up between any two of the plurality of privilege levels or
down between any two of the plurality of privilege levels without any of the required switches
being prevented. However, in some embodiments the debug privilege-level switching
instruction is configured to trigger a check prior to implementing the switch between privilege
levels to determine whether the switch from the current privilege level to the target privilege
level should be permitted and to prevent the switch from the current privilege level to the
target privilege level when the check fails. This also enables the data processing circuitry to
conveniently check whether in the case of a dedicated privilege incrementing instruction that
it is possible to move up to a higher privilege level and the instruction is not being used to
move down between privilege levels and for a privilege-decrementing instruction that it is
possible to move down from the current privilege level to a lower privilege level and no

attempt is being made to increase the privilege level using the instruction.

In some such embodiments where the check of whether the switch from the current
privilege level to the target privilege level should be permitted the target privilege level
corresponds to a security-monitoring layer and the check is a security check. This provides an
efficient mechanism via which to implement a security check. In other embodiments that
implement the check prior to implementing the switch between different privilege levels, the
processing circuitry is configurable so that in a higher one of the plurality of privilege levels
the processing circuitry can define at least one lower one of the plurality of privilege levels to
be inaccessible and wherein the check is an accessibility check for permission to access the
target privilege level. This provides the flexibility of enabling only a subset of privilege
levels to be accessible to the data processing circuitry when the data processing apparatus is in

certain operating states such as a secure operating state.

According to a second aspect the present invention provides a data processing method
for performing on a data processing apparatus having processing circuitry being configurable to

operate at a plurality of privilege levels wherein at different privilege levels said processing

10

15

20

25

30

9
circuitry has different access permissions to at least one of a memory and a set of registers, said

data processing method comprising the steps of:

in response to program instructions including a debug privilege-level switching
instruction, generating control signals for controlling processing circuitry to process data;

in response to said debug privilege-level switching instruction, generating control signals
for controlling said processing circuitry to perform a privilege-level switching operation
comprising:

(i) if said processing circuitry is in a debug mode to switch said processing circuitry from
a current privilege level to a target privilege level; and

(ii) if said processing circuitry is in a non-debug mode, to prevent execution of said

debug privilege-level switching instruction regardless of said current privilege level.

According to a third aspect the present invention provides a data processing apparatus
comprising:

means for processing data, said means for processing data being configurable to operate
at a plurality of privilege levels wherein at different privilege levels said processing circuitry has
different access permissions to at least one of a memory and a set of registers;

means for decoding program instructions responsive to program instructions to generate
control signals for controlling said means for processing to perform said data processing;

wherein said program instructions comprise a debug privilege-level switching
instruction, said means for decoding program instructions being responsive to said debug
privilege-level switching instruction to perform the following:

(i) if said processing circuitry is in a debug mode to switch said processing circuitry from
a current privilege level to a target privilege level; and

(i) if said processing circuitry is in a non-debug mode, to prevent execution of said

debug privilege-level switching instruction regardless of said current privilege level.

Preferred embodiments of the present invention will now be described, by way of
example only, with reference to the accompanying drawings, in which:
Figure 1 schematically illustrates a data processing apparatus according to an

embodiment of the present invention;

10

15

20

23

30

10
Figure 2 schematically illustrates a plurality of different operating states of the data

processing apparatus of Figure 1 corresponding to a plurality of different privilege levels;

Figure 3 schematically illustrates how at different ones of the privilege levels PL1,
PL2 and PL3 of Figure 2, the data processing apparatus has different access permissions to
the set of system registers;

Figure 4 schematically illustrates how two different debug privilege-level switching
instructions according to the present technique are used to switch the data processing
apparatus between different ones of the four different privilege levels;

Figure 5 schematically illustrates a plurality of non-debug mode privilege level
shifting instructions that are used in the data processing apparatus of Figure 1 to complement
the debug mode privilege level switching instructions DCPS and DRET illustrated in Figure
4

Figure 6 schematically illustrates an instruction encoding for the DCPS instruction that
is used to increase the privilege level in the debug mode;

Figure 7A schematically illustrates an encoding for the privilege level decrementing
instruction DRET for the debug mode;

Figure 7B schematically illustrates an instruction encoding for the ERET instruction,
which is the non-debug mode privilege level decrementing instruction;

Figure 7C schematically illustrates instruction encodings for the SVC, HVC, and SMC
instructions, which are the non-debug mode privilege level incrementing instructions;

Figure 8 is a flow chart that schematically illustrates processing operations undertaken
by the data processing apparatus of Figure 1 upon execution of the DCPS debug mode
privilege level incrementing instruction;

Figure 9 is a flow chart that schematically illustrates data processing operations
performed in response to execution of the debug mode privilege level decrementing
instruction DRET; and

Figure 10 schematically illustrates an embodiment implemented on a virtual machine.

Figure 1 schematically illustrates a data processing apparatus according to an
embodiment of the present invention. The data processing apparatus comprises an integrated
circuit 100 comprising a number of processing components forming a “System-On-Chip”. In

particular, the integrated circuit 100 comprises an execution pipeline 110, a set of general

10

15

20

25

30

11
purpose registers 120, a debug module 130, a debug port 132, a memory management unit

140 and an on-chip memory 142. The data processing apparatus 100 also has access to an

off-chip memory 144.

The debug pott 132 of the data processing apparatus 100 is connected to a host
personal computer 150 configured to run debugger software 152 to assist in debugging of the
data processing circuitry 100. The data processing circuitry 100 further comprises a saved
program status register (SPSR) 143 that is used by a subset of the debug privilege-level
switching instructions according to the present technique in order to store a target privilege
level that the data processing apparatus should switch to from a current privilege level. The
saved program status register 143 is banked according to privilege level such that there is a
specific register that will be read for each of a plurality of different privilege levels in which
the data processing circuitry 100 is capable of operating. The target privilege level will be
read from one of the plurality of saved program status registers 143 according to the current
privilege level at the point at which the debug privilege-level switching instruction is actually
executed. The saved program status registers 143 provide an indication of the target privilege
level. In this embodiment, the target privilege level is encoded within the relevant one of the
saved program status registers 143 as a mode number. However, in alternative embodiments,
the target privilege level is directly represented in the saved program status registers 143, In
this particular embodiment there are four different privilege levels, but this will be explained

in more detail with reference to Figure 2.

The debug module 130 comprises an instruction transfer register 134, When the data
processing circuitry 100 is in a non-debug mode then instructions are read from either on-chip
memory 142 or off-chip memory 144 and supplied to the execution pipeline 110. However,
when the data processing apparatus is in a debug mode the instructions are not read from
cither of the memories 142, 144, but instead instructions are stored in the instruction transfer
register 134 and supplied from there to the execution pipeline 110. The debugger software
152 on the host PC 150 controls the instruction transfer register 134 via the debug port 132 to

load appropriate debug instructions into the instruction transfer register 134.

10

15

20

25

30

12
The data processing apparatus 100 of this embodiment has a RISC (Reduced

Instruction Set Computing) architecture, which is a load-store architecture in which
instructions that process data operate only on registers and are separate from instructions that
access memory. The data processing apparatus 100 is a pipelined data processing apparatus
and the execution pipeline 110 comprises a fetch stage, a decode stage and an execute stage
(not shown). The set of general purpose registers 120 is used to store operands for and results
of instructions executed by the execution pipeline 110. The data processing apparatus 100 is
configured to execute a plurality of different instruction types. In particular, the data
processing circuitry 100 can execute both instructions operating on 32-bit wide data, referred
to as 32-bit program instructions, and instructions operating on 64-bit wide data, referred to as
64-bit program instructions. Furthermore, different types of 32-bit program instructions can
be executed. A first type of 32-bit program instructions is an “A32” instruction set whilst a
second type of 32-bit program instructions is a “T32” instruction set comprising a more
compact version of the A32 instruction set. Despite the fact that many of the T32 instructions
are 16-bit wide instructions, they operate on 32-bit data and so are 32-bit program
instructions. A third type of 32-bit instruction is a “T32EE” instruction set which, similarly to
the T32 instruction set, is a compact set of instructions, but this set of instructions has
extensions to enable conversion between Java bytecodes and T32 instructions and thus
supports execution of virtual machines by the data processing circuitry 100. Although in this
embodiment only a single 64-bit instruction set can be executed, it will be appreciated that in

alternative embodiments a plurality of 64-bit instruction sets could be provided.

To support execution of both 32-bit and 64-bit program instructions the general
purpose registers 120 are variable-width registers configured such that when the data
processing circuitry 100 is operating in a 32-bit mode, that is executing 32-bit program
instructions then the registers 120 are viewed by the data processing apparatus as a set of 32-
bit registers. On the other hand when the data processing apparatus 100 is executing in a 64-
bit mode and executing 64-bit program instructions, the data processing apparatus 100 is
configured such that the registers 120 are viewed as 64-bit registers and use their full 64-bit
width. The memory management unit 140 controls access to on-chip memory 140 and off-
chip memory 142 according to the current operating state of the data processing apparatus

100, such that in a user mode a smaller subset of memory locations are accessible to the data

10

15

20

25

30

13
processing circuitry 100 than are accessible in a system mode. In a secure mode of the data

processing apparatus all of the memory locations that are available in the user mode and the
system mode are available and in addition a special set of secure memory locations is
accessible to the data processing circuitry 100. The memory management unit 140 is
responsible for handling all access requests to memory by the execution pipeline 100 and its
functions include the translation of virtual memory addresses to physical memory addresses,

memory protection, cache control and bus arbitration,

In the embodiment of Figure 1, the host personal computer 150 that operates as a
debugger unit is situated off-chip relative to the data processing circuitry 100. However, in
alternative embodiments the functionality of the host personal computer 150 of running the
debugger software 152 is provided in debug processing circuitry that is located on the same
System-on-Chip as the data processing circuitry 100 of Figure 1 such that the data processing

circuitry 100 does not form the entire System-on-Chip.

Figure 2 schematically illustrates a plurality of different operating states of the data
processing apparatus 100 of Figure 1 corresponding to a plurality of different privilege levels.
Respective privilege levels correspond to respective different hierarchical layers of software

executing on the data processing apparatus 100.

There are four distinct privilege levels in the arrangement of Figure 2 i.e. PLO, PL1,
PL2 and PL3, with PLO being the lowermost privilege level and PL3 being the uppermost
privilege level. Privilege level PLO corresponds to an application layer of the software
hierarchy and six different program applications are illustrated corresponding to PLO, each of
which can be run on the data processing apparatus 100. The next highest privilege level PL1
corresponds to an operating system software hierarchical layer and in this case three different
operating systems are illustrated: a first guest operating system 222 that is a 32-bit operating
system; a second guest operating system 224 that is a 64-bit operating system; and a third
secure operating system 226 that has special security features. The next privilege level PL2
corresponds to a hypervisor software layer. A hypervisor software application 230 provided,

which in this case is a 64-bit program that is used allow both a first guest operating system

10

15

20

25

30

14
222 and a second guest operating system 224 both have access to the non-secure data

processing resources.

The hypervisor 230 is part of a virtualisation system, which allows the first guest
operating system 222 and the second guest operating system 224 to concurrently execute on
the same data processing apparatus, with each operating system having no knowledge that the
other operating system is concurrently executing there. The hypervisor 230 controls
implementation of a Virtual Translation Table Base Register (VTTBR) that controls how
virtual to physical address translation is performed in both the application system layer
corresponding to the lowermost privilege level PLO and the operating system layer
corresponding to the next highest privilege level PL1. Since bugs in operating of the data
processing apparatus could potentially exist at any layer of the software hierarchy, the ability
to switch between the four different privilege levels when the data processing apparatus is in a

debug mode is important for proper debugging of the data processing circuitry.

The uppermost privilege level PL3 corresponds to a secure monitor 240 comprising
64-bit program code. Note that when the data processing apparatus 100 is operating in a
secure mode the secure equivalent of the hypervisor 230 is absent. Thus, effectively there are
only three privilege levels in a secure mode: PLO, PL1 and PL3. The hypervisor 230 is not
required when operating in a secure mode and only the secure operating system 226 can be
run in the secure mode. At the lowermost privilege level PLO a first 32-bit program
application 202 and a second 32-bit program application 204 both execute on top of the 32-bit
first guest operating system 222. A third program application 206 which is a 64-bit
application and a fourth program application 208, which is a 32-bit program application both

execute on the 64-bit second guest operating system 224,

Figure 3 schematically illustrates how at different ones of the privilege levels PL1,
PL2 and PL3 of Figure 2, the data processing apparatus 100 has different access permissions
to the set of system registers. Note that at different privilege levels the processing circuitry
will also likely have different access permissions to the full éet of on-chip and off-chip

memory locations 142, 144 although this is not illustrated in Figure 3.

10

15

20

25

30

15
Referring to Figure 3, a full set of system registers is visible to the data processing

apparatus at the highest privilege level PL3 corresponding to the secure monitor. A first
subset of system registers are visible to the data processing apparatus at privilege level PL2
corresponding to the hypervisor layer whilst a second subset of system registers 330, itself
forming a subset of the system registers visible to PL2 is visible to the data processing
apparatus 100. A third, even smaller subset 330 of system registers is visible to the data
processing apparatus at the privilege level PLI corresponding to the operating system
software hierarchical layer. Thus it can be seen that different privilege levels correspond to
different levels of accessibility to the system registers. Finally, a fourth, smallest, subset 340
of system registers visible to the data processing apparatus at the privilege level PLO
corresponding to the application software hierarchical layer. It will be appreciated that in

some implementations, this set may be the empty set.

Figure 4 schematically illustrates how two different debug privilege-level switching
instructions according to the present technique are used to switch the data processing
apparatus between different ones of the four different privilege levels. Figure 4 comprises: an
application layer 410 corresponding to the lowermost privilege level PLO; a guest operating
system layer 420 corresponding to the next privilege level PL1; a hypervisor layer 430
corresponding to PL2; and a secure monitor layer 440 corresponding to the uppermost
privilege level PL3. As shown in Figure 4, each of the privilege levels PLO, PL1, PL2 and
PL3 implement different virtual to physical address translation schemes. In particular, at
privilege levels PLO and PL1, the virtual to physical address translation is a two-stage
translation that involves reference to both (i) a pair of banked Translation Table Base
Registers (ITBRO_PL1 and TTBR1_PL1; TTBRO_PL1 being a pointer to a hierarchy of page
tables used for translating low virtual addresses, and TTBR1_PL1 being a pointer to a
hierarchy of page tables used for translating high virtual addresses). In Figure 4, PLO and
PL1 are in the non-secure mode, and hence this translation produces an intermediate physical
address (IPA) from the incoming virtual address (VA) and (ii) reference to a Virtual
Translation Table Base Register (VITBR_PL2) to convert the intermediate physical address
to the final physical address (PA). The virtual translation table base register is provided by
the hypervisor 430, and allows the hypervisor to hide each guest operating system from other

guest operating systems.

10

15

20

25

30

16

Since the hypervisor 430 at privilege level PL2 controls the virtual translation table
base register, when the data processing apparatus is executing program instructions
corresponding to the hypervisor privilege level PL2, the virtual to physical address translation
involves a direct translation from the virtual address to the physical address without
generating an intermediate physical address. Thus the virtual to physical address translation
at the hypervisor privilege level PL2 involves a separate banked translation table base
register, TTBR_PL2, and not the virtual translation table base register. This allows the

hypervisor to hide itself from all guest operating systems.

The secure monitor 440 at privilege level PL3 has access to special secure physical
addresses which are not accessible to PL2, or to PL1 and PLO when operating in the non-
secure mode. The secure monitor is not subject to the control of the hypervisor, as it operates
at a higher privilege level to it. Thus the virtual to physical address translation at secure
monitor privilege level PL3 involves a separate banked translation table base register,

TTBR_PL3, and not the virtual translation table base register.

In the secure mode, where the hypervisor 430 is not present, the address translation at
PLO and PL1 uses TTBRO PL1 and TTBR1 PL1 to directly translate virtual addresses to
physical addresses without generating intermediate physical addresses, and hence without
using the virtual translation table base register. These physical addresses can also be secure

physical addresses.

As shown in Figure 4 a dedicated “DRET” instruction corresponding to a debug
privilege-decrementing instruction is used to enable the data processing apparatus 100 of
Figure 1 to make a transition between a current higher privilege level to a target lower
privilege level. For example if the data processing apparatus is currently in executing
instructions from the secure monitor 440 at privilege level PL3 then execution of the DRET
instruction can be used to transition the system down to the hypervisor layer 430
corresponding to PL2. If the system is currently at the hypervisor level 430 corresponding to
P12 then execution of the DRET instruction can be used to transition the system down to the

privilege level PL1 corresponding to the guest operating system 420. If the system is

10

15

20

25

30

17
currently at the guest operating system level 420 corresponding to PL1 then execution of the

DRET instruction can be used to transition down to the application layer 410 corresponding to
PLO. Although Figure 4 shows that the DRET instruction involves transitions from a current
higher privilege level PL3 down one privilege level to the next highest privilege level, the
present invention is in no way limited to this and the target privilege level for the DRET
instruction can comprise the same or any lower privilege level and not just the next lowest

privilege level.

The DRET instruction takes the target privilege level from an appropriate one of the
saved program status registers 143, which are banked according to the privilege level. Thus if
the data processing apparatus is currently at PL3 when the DRET instruction is executed,
SPSR _PL3 is read to determine the appropriate target privilege level. When the data
processing apparatus is currenily at the hypervisor privilege level PL2 then the saved program
status register SPSR_PL2 is read to determine the appropriate target privilege level. Similarly
when the data processing apparatus is currently at the guest operating system privilege level
PL1, then the target privilege level is read from SPSR_PL1. When the data processing
apparatus is currently at the privilege level PLO corresponding to the lowest privilege level
and the application layer 410 there is no lower privilege level and thus execution of the
instruction DRET when at the lowermost privilege level PLO will not be permitted. A check
will be performed during execution of DRET to check that the data processing apparatus is
not currently at the lowest privilege level PLO, since there is no permissible target privilege
level below PLO.

Also shown in Figure 4 is a privilege level incrementing instruction “DCPS”. This
instruction, instead of using the saved program status register SPSR 143 of Figure 1 takes the
desired target privilege level from an immediate field within the encoding of the instruction
itself, As shown in Figure 4, the DCPS instruction can be used to make a transition from PLO
to PL1 or a transition from PL1 to PL2 or a transition from PL2 to PL3. There is no well-
defined target privilege level if the DCPS instruction is executed when the data processing
apparatus is already at the highest privilege level PL3 and a check is performed to make sure
that there is indeed a higher privilege level to which to transition when executing the DCPS

instruction. The DCPS instruction can be used to jump from a current privilege level to any

10

15

20

25

30

18
higher privilege level e.g. from PLO directly to PL3 or to PL2 such that more than one

privilege level can be jumped by a single execution of the DCPS instruction. The fact that
there are different virtual to physical address translations at different privilege levels means it
is important that the data processing apparatus should be able to switch between privilege
levels when in a debug mode to ensure that the appropriate virtual to physical address

translation scheme is applied when executing debug instructions.

Note that the privilege-level incrementing instruction DCPS and the privilege-level
decrementing instruction DRET are only executed when the data processing apparatus is in a
debug mode and both of these instructions are undefined in a non-debug mode. Attempting
execution of these two instructions whilst in a non-debug mode gives rise to a software

exception.

Figure 5 schematically illustrates a plurality of different operating modes of the data
processing apparatus 100 that can be entered at the four different privilege levels PLO, PLI,
PL2 and PL3. Figure 5 also illustrates a plurality of non-debug mode privilege level shifting
instructions that are used in the data processing apparatus of Figure 1 to complement the
debug mode privilege level switching instructions DCPS and DRET illustrated in Figure 4. In
the non-debug mode (or “normal” mode) the data processing apparatus can operate in one of
four different privilege levels similarly to the situation in the debug mode. At the lowest
privilege level PLO the data processing apparatus operates in the unprivileged ELO mode 510.
At the next highest privilege level PL1 the data processing apparatus can operate in one of
two different processing modes i.e. an EL1h exception handling mode 520 and an EL1t thread
mode 522. Similarly, at the next privilege levels PL2 there is the choice of the EL2h
exception handling mode 530 and the EL2t thread mode 532; and at the PL3 privilege level,
the EL3h exception handling mode 540 and the EL3t thread mode 542.

Figure 5 shows four different privilege level changing instructions that can be used in
the non-debug mode. The instructions “SVC”, “HVC” and “SMC” are all non-debug mode
privilege-level incrementing instructions. The SVC instruction has a target of the privilege
level PL1, the HVC instruction has a target of PL2, whilst the SMC instruction has a target
privilege level of PL3. Thus the privilege level transitions performed by each of these three

10

15

20

25

30

19
instructions are defined according to the target privilege levels. The SVC, HVC and SMC

instructions perform transitions between different privilege Jevels in a non-debug mode by
performing a branch to an exception vector address. Thus they are system call instructions
that allow a controlled eniry into a higher privilege level. If the instruction is executed at the
target privilege level, or a higher privilege level, then the instruction does not change
privilege level. The use of such branch instructions is undesirable when the data processing
apparatus is in a debug mode because the debug instructions are fetched from the Instruction
Transfer Register 134 of Figure 1 when the data processing apparatus is in a debug mode.
The SVC, HVC and SMC non-debug mode privilege level incrementing instructions can be
executed when the data processing apparatus is operating in both a 64-bit mode and a 32-bit
mode. The SVC, HVC and SMC instructions have similar encodings in the 64-bit A64
instruction set and they differ only by an immediate field in the encoding which specifies the

target exception level.

The instruction “ERET” which is shown in Figure 5 is a privilege level decrementing
instruction used to move down from a privilege level to a target lower privilege level and can
be used, for example, to effect a transition from the ELZh mode 530 to the EL1t mode 522.
The ERET instruction takes its target privilege level from a saved program status register 143
which is banked according to privilege level and branches to an address in a system register
ELR (not shown in Figure 1), which is also banked. That is, ERET is also a branch
instruction. In 64-bit mode ERET is available at each of the privilege levels PL1, PL2 and
PL3, although in 32-bit mode, ERET is only available at P12, and different privilege-

decrementing instructions must be used in 32-bit modes.

There may be other privilege incrementing and decrementing instructions, for
example, a privilege-decrementing instruction that reads the target privilege level and address
from memory rather than registers. In order to ensure correct operation of the system in non-
debug mode, it is advantageous for such instructions to be branches. The branch allows the

change in privilege level to be synchronized across the system.

A further instruction is provided for use only in 64-bit operation of a non-debug mode

of the data processing apparatus. This instruction is “MSR SPSel”, shown in Figure 5 as just

10

15

20

25

30

20
“MSR”. This instruction allows software to switch between different modes within the same

privilege level. For example, from the EL1h mode 520 to the EL1t mode 522. As this does
not require a change in privilege level, these instructions are not required to be synchronised
actoss the system and therefore can omit the costly branch operation. In 64-bit operation this

instruction cannot be used to change privilege level.

Similar instructions, “MSR CPSR” and “CPS” are provided in 32-bit operation to
move between modes at the same privilege level. However, in 32-bit operation, these
instructions can also be used to move down between privilege levels but never to increase the
privilege level, for example, to decrement the privilege level by changing from a privileged
32-bit mode operating at privilege level PL1 420 to the lower privilege of a 32-bit user mode
operating at privilege level PLO 410 (see Figure 4). However, by decrementing privilege
level in this way may lead to a software malfunction as the change will not be propetly
synchronized across the system. If the MSR CPSR or CPS instructions are fetched for
execution when the data processing system is in the user mode operating at privilege level

PLO 410 (lowest privilege level) then these instructions will simply be ignored.

It is known in the ARM v7 microprocessor architecture to use the MSR CPSR
instruction, intended primarily for use in the 32-bit operation of the non-debug mode, as an
ovetloaded instruction that when executed in the debug mode can be used to make any change
between privilege levels, including an increase in privilege level e.g. from the user mode 510
at PLO to the SVC mode 522 corresponding to PL1. In the non-debug mode such changes are
not synchronized, and increasing privilege would not be allowed. Hence, by overloading this
operation, complications arise in the processor implementation as the change must be
synchronized and the normal permission and security checks must be overridden in the debug

mode.

Figure 6 schematically illustrates an instruction encoding for the DCPS instruction that
is used to increase the privilege level when the data processing apparatus is in the debug
mode. As shown in Figure 6, the instruction encoding is a 32-bit wide instruction encoding
belonging to the A64 instruction set (i.e. instructions that operate on 64-bit data), in which the

target privilege level is defined as an immediate field in bits DCPS[1:0] of the instruction the

10

15

20

25

30

21

various different values of the two bit fields according to this particular embodiment are
defined in the table of Figure 6. Thus a bit value of DCPS[1:0] = 0b01 results in a shift to
PL1, a target bit field of DCPS[1:0] = 0b10 results in a target privilege level PL2 and a bit
value of DCPS[1:0] = 0b11 results in a shift to PL3. This instruction cannot be used to
decrease the privilege level from the current privilege level. Note that bits [21:5] of the DCPS

instruction are ignored by the data processing circuitry during execution of the instruction.

Figure 7A schematically illustrates an encoding for the privilege level decrementing
instruction DRET used in the debug mode. This DRET instruction encoding is a 32-bit wide

instruction encoding belonging to the A64 instruction set.

Figure 7B schematically illustrates an instruction encoding for the ERET instruction,
which is the non-debug mode privilege level decrementing instruction. By comparison of the
encodings of the DRET instruction encoding of Figure 7A and the ERET instruction encoding
of Figure 7B, it can be seen that the DRET instruction and the ERET instruction have
isomorphic encodings which means that the instruction encodings have corresponding or
similar forms and relations. In particular, bits [23:21] of these two instructions are the only
bits that differ between the two instruction encodings. Thus in this particular embodiment,
only a single bit, bit [21], out of the total 32-bits of the instruction encoding differs between
the debug mode DRET and non-debug mode ERET encodings. It will be appreciated that for
isomorphic instruction encodings a larger subset of corresponding bits of the full instruction
encoding are identical in their bit values whereas a smaller subset of corresponding bits are
non identical in their bit values. Typically as in the case of Figure 7A and Figure 7B, the non
identical bit portions will be considerably smaller than the identical bit portions. In some
embodiments the non-identical bit set of the two isomorphic instruction encodings has a bit
set comprising a number of bits of less than one tenth of the bit set corresponding to the
identical portion of the instruction encodings. In some embodiments the bit set corresponding
to the non-identical portions of the instruction encodings is a single bit, with the bit set
corresponding to the identical bits being one less than the full bit-width of the instruction.
Note that, as is the case in Figure 7A and Figure 7B, the identical bit-width need not be a

contiguous bit-width since the identical bit-widths in the instructions of Figure 7A and Figure

10

15

20

25

30

22
7B correspond to bit portions [31:24] and [20:0]. To the instruction decoder circuitry (not

shown) the order of the bits is immaterial.

Figure 7C schematically illustrates instructing encodings for the non-debug mode
privilege level incrementing instructions SVC, HVC and SMC. These instruction encodings
are each 32-bit wide instruction encodings belonging to the A64 instruction set. The first row
encoding corresponds to the SVC instruction, the middle row corresponds to the HVC
instruction encoding whilst the bottom tow corresponds to the SMC instruction encoding.
Each of these instructions comprises a comment field that is ignored when decoding the
instruction and this comments field corresponds to bits [20:5] of the instructions. Bits [31:21]
and [4:2] of these three instructions are identical whilst the Jowermost two bits are non-
identical. In fact, the lower-most two bits are an immediate field in the encoding that
specifies the target exception level. Recall from Figure 5 that the SVC instruction has a target
of privilege level PL1, the HVC instruction has a target privilege level of PL2 whilst the SMC
instruction has a target of the highest privilege level PL3. It can be seen by comparison with
the DCPS instruction encoding of Figure 6 and the SVC, HVC and SMC encodings of Figure
7C that the DCPS instruction has an encoding that is isomorphic to the base encoding of the
SVC, HVC and SMC instructions, in that they differ only in two bits [23] and [21]. That is,
DCPS with a target of PL1 is isomorphic to SVC, DCPS with a target of PL2 is isomorphic to
HVC, and DCPS with a target of P13 is isomorphic to SMC.

Figure 8 is a flow chart that schematically illustrates processing operations undertaken
by the data processing apparatus of Figure 1 upon execution of the DCPS debug mode
privilege-level incrementing instruction. The processing begins at stage 810 where the DCPS
instruction is executed. The process proceeds to stage 812 where the processor determines
whether or not it is in a debug mode. If the processor is not in a debug mode i.e. is in a non-
debug mode, then the process proceeds to stage 814, where an undefined instruction exception
is thrown. If on the other hand it is determined at stage 812 that the processor is in fact in a
debug mode, then the process proceeds to stage 816 where it is determined whether the
instruction has a target of privilege level PL3. If the target is not the highest privilege level
PL3 then the process proceeds to stage 830, whereas if the instruction does in fact target the

highest privilege level PL3 then the process proceeds to stage 818.

10

15

20

25

30

At stage 818 it is determined if the current privilege level is PLO, i.e. the processor is
at the lowest privilege level. The DCPS operation targeting privilege PL3 is not permitted at
PLO, and therefore if at stage 818 it is determined that the current privilege level is PLO, then
the process proceeds to stage 824 whereupon an error flag is set and then the process proceeds
to completion at stage 850. If on the other hand at stage 818 it is determined that the current

privilege level is not privilege level PLO then the process proceeds to stage 820.

At stage 820 a security check is performed to determine if the requested transition
should be permitted and the process then proceeds to stage 822 where the resulis of the
security check are analysed. Because PL3 relates to the highest privilege level, and the route
between the non-secure and secure operating states of the data processing apparatus, a
security check is performed to ensure that the debugger issuing the DCPS operation is
permitted to access the secure operating state. Typically this security check involves checking
the state of a configuration input to the debug module 130. If the configuration input is
asserted the security check passes, otherwise it fails. This configuration input may be driven
in a number of ways, although preferably it is driven by another component within the data
processing circuitry 100 so that it cannot be easily tampered with. The component driving the
configuration input is responsible for checking the authenticity of the user of the debugger, for
example by use of well-known means such as a secret password or challenge-response

mechanism.

If the security check is passed at stage 822 and the data processing apparatus is
permitted to make a transition from a current privilege level o the PL3 mode then the process
proceeds to stage 826 and the PL3 mode of operation of the data processing apparatus is
selected whereupon the process proceeds to completion at stage 850. If on the other hand at
stage 822 the security check fails indicating that access to the highest privilege level PL3 is
not permitted, then the process proceeds to stage 824 whereupon an error flag is set and then

the process proceeds to completion at stage 850.

Returning to stage 816, if it is determined at this stage that the instruction does not

target the highest privilege level PL3, then the process proceeds from stage 816 to stage 830.

10

15

20

25

30

24
At stage 830 it is determined whether or not the instruction targets the privilege level PL2. If

the instruction does in fact target privilege level PL2 then the process proceeds to stage 832.

At stage 832 it is determined if the current privilege level is PLO, i.e. the processor is
at the lowest privilege level. The operation targeting privilege PL2 is not permitted at PL0,
and therefore if at stage 832 it is determined that the current privilege level is PLO, then the
process proceeds to stage 824 whereupon an error flag is set and then the process proceeds to
completion at stage 850. If on the other hand at stage 832 it is determined that the current

privilege level is not privilege level PLO then the process proceeds to stage 834.

At stage 834 it is determined whether the current privilege level is PL3 ie. the
processor is already at the highest privilege level. If the processor is at PL3 then a target of
PL2 would amount to decreasing the privilege level, which cannot be effected using the
privilege-level incrementing DCPS instruction. If the processor is already at privilege level
PL3 then the process proceeds via the circle Jabelled “A” in Figure 8 to stage 826 and the PL3
mode of operation of the data processing apparatus is selected whereupon the process
proceeds to completion at stage 850. If on the other hand it is determined that the processor is
not at the highest privilege level PL3 at stage 834 then the process proceeds to stage 836

whereupon the PL2 mode is selected. The process then proceeds to completion at stage 850.

If on the other hand it is determined at stage 830 that the instruction does not target
privilege level PL2 then the process proceeds to stage 840 where it is deduced that the
instruction targets the privilege level PL1. The process then proceeds to stage 842 where it is
determined if the processor is at privilege level PL3 which would mean that a transition down
to a privilege level PL1 would not be possible. Accordingly, in this case the process would
proceed via the circle labelled “A” in Figure 8 to stage 826 and the PL3 mode of operation of
the data processing apparatus is selected whereupon the process proceeds to completion at
stage 850. Ifit is determined at stage 842 that the data processing apparatus is not at PL3 then
the process proceeds to stage 844, where it is determined if the processor is at privilege level
PL2. If the processor is at PL2 then a target of PL1 would also amount to decreasing the
privilege level. Accordingly, in this case the process proceeds to stage 836 whereupon the

PL2 mode is selected and then proceeds to completion at stage 850.

10

15

20

25

30

25

Returning to stage 844, if it is determined that the data processing apparatus is not at
privilege level PL2, then the process proceeds to stage 846, where the PL1 mode is selected
and the process then completes at stage 850. Note that at stage 832, stage 842 and stage 844
no error flag is set if the data processing apparatus is already at the target privilege level, but
executing the respective instruction in this state would simply mean that there would be no
change in privilege level. It may, though, result in a change of mode since there may be

multiple modes at each privilege level.

Figure 9 is a flow chart that schematically illustrates data processing operations
performed in response to execution of the debug mode privilege level decrementing
instruction DRET. The process begins at stage 910 where the DRET instruction is executed
by the pipeline of Figure 1. The process then proceeds to stage 912 where it is determined
whether or not the processor is in the debug mode. If it is determined that the processor is not
in the debug mode at stage 912 then the process proceeds to stage 914, where an undefined
instruction exception is thrown. This is because the DRET instruction can be only executed
in the debug mode and throws a software exception in a non-debug mode. If on the other
hand at stage 912 it is determined that the processor is in the debug mode, then the process
proceeds to stage 916 where the target privilege level is read from the appropriate banked
saved program status register 143 of Figure 1. The process then proceeds to stage 918 where

it is determined whether or not the target mode encoding is valid.

If the target mode encoding obtained from the saved program status register 143 is not
valid then the process proceeds to stage 920 where an illegal state flag is set and then the
process completes at stage 960. Note that the illegal state flag of Figure 9 is different from
the error flag of Figure 8. If on the other hand it is determined at stage 918 that the target
mode encoding is in fact valid, then the process proceeds to stage 930 where it is determined
whether the privilege level of the target mode is the highest privilege level PL3. If the target
mode is determined to be a mode of the highest privilege level PL3 then the process proceeds
to stage 932 where it is determined whether the current privilege level is already below PL3.

If at stage 932 it is determined that the current privilege level is below PL3 then the process

10

15

20

25

30

26
proceeds to stage 920, where the illegal state flag is set and then completes at stage 960.

Recall that the DRET instruction cannot be used to increase the privilege level.

If at stage 932 it is determined that the current privilege level is not already below PL3
then the process proceeds to stage 934 where a transition is made to the target PL3 mode.
Effectively in this case the system will already be at the privilege level PL3 at stage 932 and
the change to the target mode at stage 934 effects no actual change in the current privilege
level but results in remaining at the current privilege level. It may, though, result in a change

of mode since there may be multiple modes at each privilege level.

If at stage 930 it is determined that the target mode is not a PL3 mode then the process
proceeds to stage 940 where it is determined whether the target mode is a PL2 mode. If the
target mode is in fact a PL2 mode then the process proceeds to stage 942 where it is
determined if the data processing apparatus is currently already below privilege level PL2. If
the data processing apparatus is already currently below privilege level PL2 then this will be
an invalid transition because it would result in increasing the privilege level and accordingly
the process proceeds to the stage 920 via the circle labelled “A” in Figure 9, where an illegal

state flag is set and then completes at stage 960.

At stage 942 if it is determined that the current privilege level is not alteady below
privilege level PL2 then the system must be at PL2 or PL3 and so the process proceeds to
stage 934 where a change is made to the target mode and the system will switch to privilege

level PL2 as required and the system completes at stage 960.

Returning to stage 940, if instead of determining that the target mode is a PL2 mode at
stage 940, it is determined that the target is not a PL.2 mode then the process proceeds to stage
950 where it is determined if the target mode is a PL1 mode. If the target mode is found to be
a PL1 mode then the process proceeds to stage 952 where it is determined if the current
privilege level is in fact already below PL1. If the current privilege level is already below
PL1 then this will be an illegal transition since it cannot involve increasing the privilege level
and so the process proceeds via the circle labelled “A” whereupon an illegal state flag is set at

stage 920 and the process completes at stage 960. If on the other hand it is determined at

10

15

20

25

27
stage 952 that the current privilege level is not already below privilege level PL1, then the

current privilege level must be one of PL3, PL2, or PL1 and the process proceeds to stage 934
where a change to the target PL1 mode i.c. a change to privilege level PL1 is effected as

required and the process completes at stage 960.

Returning to stage 950, if it is determined that the target mode is not a PL1 mode then
the process proceeds to stage 954 where the target mode is established to be a PLO mode and
then proceeds to stage 934 where a change to the target PLO mode i.e. a change to privilege

level PLO is effected as required and the processor completes at stage 960.

Figure 10 illustrates a virtual machine implementation that may be used. Whilst the
earlier described embodiments implement the present invention in terms of apparatus and
methods for operating specific processing hardware supporting the techniques concerned, it is
also possible to provide so-called virtual machine implementations of hardware devices.
These virtual machine implementations run on a host processor 1030 running a host operating
system 1020 supporting a virtual machine program 1010. Typically, large powerful
processors are required to provide virtual machine implementations which execute at a
reasonable speed, but such an approach may be justified in certain circumstances, such as
when there is a desire to run code native to another processor for compatibility or re-use
reasons. The virtual machine program 1010 provides an application program interface to an
application program 1000 which is the same as the application program interface which would
be provided by the real hardware which is the device being modeled by the virtual machine
program 1010, Thus, the program instructions, including the control of memory accesses
described above, may be executed from within the application program 1000 using the virtual

machine program 1010 to model their interaction with the virtual machine hardware.

10

15

20

25

30

28

CLAIMS

1. A data processing apparatus comprising:
processing circuitry for processing data, said processing circuitry being configurable to
operate at a plurality of privilege levels wherein at different privilege levels said processing
circuitry imposes on program instructions different access permissions to at least one of a
memory and a set of registers;
instruction decoding circuitry responsive to program instructions to generate control
signals for controlling said processing circuitry to perform said data processing;
wherein said program instructions comprise a debug privilege-level switching
instruction, said instruction decoding circuitry being responsive to said debug privilege-level
switching instruction to perform the following:
(i) if said processing circuitry is in a debug mode to switch said processing circuitry from a
current privilege level to a target privilege level; and
(ii) if said processing circuitry is in a non-debug mode, to prevent execution of said debug

privilege-level switching instruction regardless of said current privilege level.

2. The data processing apparatus according to claim 1, wherein said target privilege level is

different from said current privilege level.

3. The data processing apparatus according to claim 1, wherein said target privilege level is

encoded within a field of said debug privilege-level switching instruction.

4, The data processing apparatus according to claim 1, comprising at least one dedicated
target register providing an indication of said target privilege level and wherein said debug
privilege-level switching instruction reads said indication of said target privilege level from said

dedicated target register.

5. The data processing apparatus according to claim 4, comprising a plurality of said
dedicated target registers, each of said dedicated target registers storing a corresponding target

privilege level and wherein said processing circuitry is configured to select one of said plurality

10

15

20

25

30

29
of dedicated target registers from which to read said target privilege level depending upon said

current privilege level.

6. The data processing apparatus according to any one of the preceding claims, wherein said
debug privilege-level switching instruction comprises a privilege-incrementing instruction and
wherein said target privilege level is required to correspond to a higher privilege level than said

current privilege level.

7. The data processing apparatus according to any one of claims 1 to 6, wherein said debug
privilege-level switching instruction comprises a privilege-decrementing instruction and wherein
said target privilege level is required to correspond to a lower privilege level than said current

privilege level.

8. The data processing apparatus according to any one of claims 1 to 5, wherein said
program instructions comprise a first type of debug privilege-level switching instruction
corresponding to a privilege-incrementing instruction for which said target privilege level is
required to correspond to a higher privilege level than said current privilege level and a second
type of debug privilege-level switching instruction corresponding to a privilege-decrementing
instruction for which said target privilege level is required to correspond to a lower privilege

level than said current privilege level.

9. The data processing apparatus according to any one of claims 1 to 5, wherein said
program instructions comprise a standard privilege-level switching instruction, said instruction
decoding circuitry being responsive to said standard privilege-level switching instruction to
perform the following:

(i) if said processing circuitry is in a non-debug mode to switch said processing circuitry

from said current privilege level to said target privilege level.

10. The data processing apparatus according to claim 9, wherein said debug privilege-level
switching instruction and said standard privilege-level switching instruction have identical
instruction bit-widths and isomorphic encodings and wherein said isomorphic encodings are

implemented such that a first bit-set of said debug privilege-level switching instruction and said

10

15

20

25

30

30
standard privilege-level switching instruction have substantially identical bit patterns whilst a

second bit-set of said debug privilege-level switching instruction and said standard privilege-
level switching instruction have substantially non-identical bit patterns and wherein said second

bit-set is less than said first bit set.

11. The data processing apparatus according to claim 10, wherein said second bit-set

comprises a single bit.

12. The data processing apparatus according to any one of the preceding claims, wherein said
current privilege level corresponds to an operating state of said processing circuitry that
implements a first virtual memory address to physical memory address translation scheme and
said target privilege level corresponds to an operating state of said processing circuitry that
implements a second virtual memory address to physical memory address translation scheme and
wherein said first virtual memory address to physical memory address translation scheme is
different from said second virtual memory address to physical memory address translation

scheme,

13. The data processing apparatus according to any one of the preceding claims, wherein said
data processing circuitry comprises a plurality of system registers and wherein at said current
privilege level a first set of accessibility criteria is associated with said plurality of system
registers, whilst at said target privilege level a second set of accessibility criteria is associated
with said plurality of system registers and wherein said second set of accessibility criteria is

different from said first set of accessibility criteria.

14. The data processing apparatus according to any one of the preceding claims, wherein if
said data processing circuitry is in said non-debug mode, said debug privilege-level switching

instruction is undefined and generates a software exception.

15. The data processing apparatus according to any one of the preceding claims, wherein a
first of said plurality of privilege levels corresponds to an application layer and a second of said

plurality of privilege levels corresponds to an operating system layer.

10

15

20

25

30

31
16. The data processing apparatus according to any one of the preceding claims, wherein one

of said plurality of privilege levels corresponds to a hypervisor layer.

17. The data processing apparatus according to any one of the preceding claims, wherein one

of said plurality of privilege levels corresponds to a security monitoring layer.

18. The data processing apparatus according to claim 15, wherein a third one of said
privilege levels corresponds to a security monitoring layer and wherein a hypervisor layer is

absent,

19. The data processing apparatus according to any one of the preceding claims and, wherein
said debug privilege-level switching instruction is configured to trigger a check prior to
implementing said switch to determine whether said switch from said current privilege level to
said target privilege level should be permitted and to prevent said switch from said current

privilege level to said target privilege level when said check fails.

20. The data processing apparatus according to claim 19, wherein said target privilege level

corresponds to a security-monitoring layer and wherein said check is a security check.

21. The data processing apparatus according to claim 19, wherein said processing circuitry is
configurable such that in a higher one of said plurality of privilege levels, said processing
circuitry can define at least one lower one of said plurality of privilege levels to be inaccessible
and wherein said check is an accessibility check for permitted accessibility to said target

privilege level.
22. A virtual machine provided by a computfer program executing upon a data processing
apparatus, said virtual machine providing an instruction execution environment according to the

data processing apparatus as claimed in any one of claims 1 to 17.

23. A data processing apparatus comprising:

10

15

20

25

30

32
means for processing data, said means for processing data being configurable to operate

at a plurality of privilege levels wherein at different privilege levels said means for processing
data has different access permissions to at least one of a memory and a set of registers;

means for decoding program instructions responsive to program instructions to generate
contro] signals for controlling said means for processing to perform said data processing;

wherein said program instructions comprise a debug privilege-level switching
instruction, said means for decoding program instructions being responsive to said debug
privilege-level switching instruction to perform the following:

(i) if said means for processing data is in a debug mode to switch said means for
processing data from a current privilege level to a target privilege level; and

(i) if said means for processing data is in a non-debug mode, to prevent execution of said

debug privilege-level switching instruction regardless of said current privilege level.

24. A data processing method for performing on a data processing apparatus having
processing circuitry being configurable to operate at a plurality of privilege levels wherein at
different privilege levels said processing circuitry has different access permissions to at least one
of a memory and a set of registers, said data processing method comprising the steps of:

in response to program instructions including a debug privilege-level switching
instruction, generating control signals for controlling processing circuitry to process data;

in response to said debug privilege-level switching instruction, generating control signals
for controlling said processing circuitry to perform a privilege-level switching operation
comprising:

(i) if said processing circuitry is in a debug mode switching said processing circuitry
from a current privilege level to a target privilege level; and

(ii) if said processing circuitry is in a non-debug mode, preventing execution of said

debug privilege-level switching instruction regardless of said current privilege level.

25. A computer program product storing program instructions for implementing the method of

claim 24,

26. A data processing apparatus substantially as herein described with reference to the

accompanying drawings.

33

27. A data processing method as herein described with reference to the accompanying

drawings

28. A virtual machine substantially as herein described with reference to the accompanying

drawings.

INTELLECTUAL

PROPERTY OFFICE

Application No: GB1016080.2 Examiner: Mr Peter Doenhoff
Claims searched: 1-28 Date of search: 10 December 2010

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
A - WO 2004/015553 Al
(NOKIA) See abstract
A - US 7117352 Bl
(GILES et al.) See abstract
A - WO 2008/061089 A2
(QUALCOMM) See abstract
A ; US 2006/0048099 Al
(TEMPLIN et al.) See paras. 6, 7
A ; US 2005/0289545 Al
(BLINICK et al.) See abstract
Categories:
X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent family E Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKC™ :

-

Worldwide search of patent documents classified in the following areas of the IPC

| GO6F

The following online and other databases have been used in the preparation of this search report

| EPODOC, WPI, XPI3E

Intellectual Property Office is an operating name of the Patent Office

Www.ipo.gov.uk

s’ INTELLECTUAL

eeee® PROPERTY OFFICE

35

International Classification:

Subclass Subgroup Valid From
GO6F 0009/30 01/01/2006
GO6F 0011/36 01/01/2006
GO6F 0021/00 01/01/2006

Intellectual Property Office is an operating name of the Patent Office

Www.ipo.gov.uk

	BIBLIOGRAPHY
	DRAWINGS
	DESCRIPTION
	CLAIMS
	SEARCH_REPORT

