(12) PATENT (11) Application No. AU 199718514 B2

(19) AUSTRALIAN PATENT OFFICE (10) Patent No. 734747
(54) Title
Improved method and apparatus for dynamically shifting between routing and switching

packets in a transmission network

(51)6 International Patent Classification(s)

GOBF ¢13/12 HO4L 4127407
GOoF 013/376 HO4L 012/56
HOAL 012/28 HO4L 012/66
21 Application No: 199718514 (22) Application Date: 1997 01 30

(87) WIPONo: wog7/28505
(30) Pricrity Data

(31) Number (32) Date (33) Country
08/597520 1996 01 31 s
60/024272 1996 11 22 s

(43) Publication Date : 1997 08 22

(43) Publication Journal Date - 1997 10 16

(44) Accepted Journal Date : 2001-_05-_21

71 Applicant(s)
Ipsilon Networks, Inc.

(72) Inventor(s)
Thomas Lyon: Peter HNewman: Greg Minshall: Robert Hinden: Fong Ching Liaw: Eric
Hoffman : Lawrence B. Huston: William A. Roberson

(74) Agent/Attorney
SPRUSON and FERGUSON,GPO Box 3898,SYDNEY NSW 2001

(56) Related Art
US 5444702
Us 5379297

, | CORRECTED
<" VERSION*

PCT péges 1/49-49/49, drawings, replaced by new pages 1/50-50/50 o
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

{51) International Patent Classification 6 : (11) International Publication Numt WO 97728505

GO6F 13/14, 13/376, HO4L 12128, 12/407, | Al) i
12/66, 12/56 (43) Internationsal Publication Date: 7 August 1997 (07.08.97)

(21) International Application Number: PCT/US97/01595 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
(22) International Filing Date: 30 January 1997 (30.01.97) HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL,
PT, RO, RU, 8D, $E, 5G, 8], SK, TJ, T™M, TR, TT, UA,

(30) Priority Data: UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, 5Z, UQ),
08/397,520 31 January 1996 (31.01.96) us Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, T}, TM),
60/024,272 22 November 1996 (22.11.96) US European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB,

GR, [E, IT, LU, MC, NL, PT, SE), OAFI patent (BF, BJ,

CF, CG, C], CM, GA, GN, ML, MR, NE, SN, TD, TG).

{71) Applicant: IPSILON NETWORKS, INC. [US/US]; 232 Java
Drive, Sunnyvale, CA 94089 (US).

Published
{72) Inventors: LYON, Thomas; 1400 Edgewood Drive, Palo Alio, With international search report,
CA 94301 (US). NEWMAN, Peter; Apartment 124, 750 Before the expiration of the time limit for amending the
North Shoreline Boulevard, Mountain View, CA 94043 claims and to be republished in the event of the receipt of i
(US). MINSHALL, Greg, 553 Tyndall Lane, Los Altos, antetdments. i

CA 94022 (US). HINDEN, Robert; 3217 Murray Way,
Palo Alto, CA 94303 (US). LIAW, Fong, Ching; 775 Ajax
Drive, Sunnyvale, CA 94086 (US). HOFFMAN, Eric; 740
- 6th Avenue, Redwood City, CA 94063 (US). HUSTON,
Lawrence, B.. Aparttnent 9, 237 Amiba Drive, Mountain
View, CA 94086 (US). ROBERSON, William, A.; 892 ,
Lockwood Lane, Scotis Valley, CA 95066 (US). ;

(74) Agents: KIM, Rosa, S. et al.; Townsend and Townsend and
Crew L.L.P., 8th floor, Two Embarcadero Center, San
Francisco, CA 94111-3834 (US).

(54) Title: IMPROVED METHOD AND APPARATUS FOR DYNAMICALLY SHIFTING BETWEEN ROUTING AND SWITCHING
PACKETS IN A TRANSMISSION NETWORK

(57) Abstract

A method and apparatus for dynamically shifting between switching and routing 155
packets efficiently to provide high throughput. The present invention provides a
methed for transmitting packets betwee an upstream node and a downstream node
in a network that utilizes flow classification and labelling to redirect flows. The
methed inchudes the steps of establishing default virtual channels between the upstream
node and the downstream node (1602), receiving packets at the downstream node,
performing flow classification at the downstream node on the packet to determine
whether the packet belongs 1o a specified flow that should be redirected in the upstream
node (170), selecting a free label at the downstream node (1668) and informing the
upstream node that future packets belonging to the specified flow should be sent with
the selected free label attached (1676). Other embodiments of the invention include
a basic switching unit (1, 3), a switch gateway unit {21), and a switching agent for
use in a system for transmitting packets in a network.

Is the

flow fobe |led

downstiream
7

defoult
chn;lnel

should
flow be
switched

Farward |~ 178

packet

182

wait for pockel
. te arrive

* (Referred to in PCT Gazette No. 47/1997, Section 1T)

5

10

15

20

25

30

WO 97/28505 PCT/US97/01595

IMPROVED METHOD AND APPARATUS FOR
DYNAMICALLY SHIFTING BETWEEN ROUTING AND
SWITCHING PACKETS IN A TRANSMISSION NETWORK

BACKGROUND OF THE INVENTION

The present invention relates to the field of retwork communications.
More particularly, in one embediment the present invention provides a method and
apparatus for dynamically shifting berween switching and routing packers efficiently
10 provide high packet throughput while maintaining complete Internet Protocol (IP}
routing functionatity. The present invention combines high speed, capacity,
multiservice traffic capability, with simplicity, scaleability, and robustness.

Due 1o the current popularity and continuat growth of the Internet,
which utilizes IP, IP has evolved into the dominant network-layer protocol in use
today. IP specifies protocol data unit (PDU) format and station-router and router-
router interaction. IP provides a connectionless data transfer service to TP users in
stations attached to networks of the Internet. The connectionless model on which IP
is based provides a robust and flexible basis on which to construct an integrated
services network. All major operating systems include an implementation of IP,
enabling IP and its companion transport-layer {Layer 4 of the OSI reference model)
pratocol, the Transmission Control Protocol (TCP), to be used universally across
virtually all hardware ptatforms. One of the major advantages of IP is its
tremendous scaieability, operating successfully in networks with enly a few users to
enterprise-size networks, including the global Internet.

' With the rapid growth of the Internet, conventional IP routers are
becoming inadequate in their ability to handle the traffic on the Internet. With
today's faster workstations, client-server computing, and higher bandwidth
requirement applications, networks are increasingly encountering traffic congestion

problems. Typical problems include for example highly variable network response

10

15

20

25

30

WO 97/28505 PCT/US97/01595

2

times, higher network failure rates, and the inability to support delay-sensitive
applications.

Local area netwark (LAN) switches offer a quick, relatively
inexpensive way to relieve congestion on shared-media LAN segments. Switching
technology is emerging as a more effective means of managing traffic and allocating
bandwidth within a LAN than shared-media hubs or simple bridges. LAN switches
operate as datalink layer (Layer 2 of the OSI reference model) packet-forwarding
hardware engines, dealing with media access control (MAC) addresses and
performing simple table look-up functions. Switch-based networks are able to offer
greater throughput, but they continue o suffer from problems such as broadcast
ftooding and poor security. Routers, which operate at the network-layer (Layer 3
of the OS] reference model), are still required to solve these types of problems.
However, fast switching technology is overwhelming the capabilities of current
routers, creating router bottlenecks. The traditional IP packet-forwarding device on
which the Internet is based, the IP router, is showing signs of inadequacy. Routers
are expensive, complex, and of limited throughput, as compared to emerging
switching technology. To support the increased traffic demand of large enterprise-
wide networks and the Internet, IP routers need to operate faster and cost less.

Additionally, quality of service (QOS) selection is needed in order to
support the increasing demand for real-time and multimedia applications, including
for example conferencing, Currently TCP/IP does not support QOS selection.
However, as advanced functionalities required by more types of traffic are enabled
in IP, traditional IP routers will not suffice as packet-forwarding devices.

Asynchronous transfer mode (ATM) is a high-speed, scaleable,
multiservice technology touted as the cornerstone of tomortow’s router-less
networks. ATM is a highly efficient packet-forwarding technology with very high
throughput, scaleability, and support for multiple types of traffic including voice
and video as well as data. However, ATM is a networking technology so different
from current networking architectures such as IP that there is no clear migration
path to it. ATM has difficulty in effectively supporting existing LAN traffi¢ due to
its connection-oriented architécture, which creates the need for an additional set of

very complex, untested multi-layer protocols. Problems with these protocols are

Z4 AP 2001 15:20 SPRUSON AND FERGUSON 61292615486 e (VR 11§ E S R

3
evidenced by unacceptably long swirched virtual cireui (SVC) connection sewp
times, Addirtionally, enabling TCP/IP ustrs to send and receive ATM waffic using
SVCs requires adopting even more new, unproven, and extremely complex
pratecols. These proiocols do not enable applications mnning o, TCP/IP protocols
to take advantage of the QOS feares of ATM , thereby imposing a tremendouns

amount of overhead for network managers without enabling one of the key benefits

L

of ATM. Also, many of these protocels duplicate the functionality of the well-
established TCP/IP protocol suite, and the need to learn these complex protocols
increases the costs of ownership of ATM devices for network managers who must

10 tronbleshoot problems in the network. The difficulties of moving to ATM are
especially pronounced in light of the time-tesred and debugged IP being solidly
entrenched with its huge and growing installed user base as evidenced by the
popularity of the Intemet,

In response to the inadequacies of current solutions to the problems,
15 vendors have developed a host of new distributed Touting networking architecrures,
However, these architectures are often complex, confusing, and duplicative of
functienalities provided by IP. These architectures also result jn. increasingly

complex preblems for network managers. For example, duplication of functionaiity

feet leads 1o increased sirain on the netwerk management function and can make

20 isolation of network problems very difficult. It is seeq thar a system for high speed
routing js needed to avoid bowlenecks and increased network management

. complexity. Further, provision of a networking architecture having compatibility

with IP without unnecessary duplication is needed.

25 . SUMMARY OF THE INVENTION
The present invention relates to the field of network communicatjons,
and in particular provides a method and apparatus for dynamically shifting berween
Switching and routing packets efficiently to provide high packe: throughput 10 sojve

e the problems discussed above.
eent . 30

24/04 "0l TUE 15:14 [TX/RX NO 9277]

24, APR. 2001 15:20 SPRUSON AND FERGUSON 51292617486 NO. 4611 P &

_4-

According to a first aspect of the invention, there is provided a method for
transmitting packets between an upstream node and a downstream node in a network, said
downstream node being downstream from said upstream node, said method comprising
the steps of: .

; establishing default virtual channels between said upstream node and said
downstream node;

receiving a packet at said downstream nod;

determining whether the packet arrived on one of sajd default virtual channels;

selectively performing a flow classification, at said downstream node, on said

1 packet;
selecting at said downstream node, a free label on said upstream node; and
informing said upsiream node that future packets belonging to said specified
: flow should be sent with said selected free label attached.

According to a second aspect of the invention, there is provided a method for

.5 . 15 transmitting packets between an upstream node and a downstreamn nods in 2 network, said
et downstream node being downstream from said upstream node, said method comprising
..::5 the steps of?

establishing default virtual channels between said upstream node and said
sgeeet downstream node;

20 receiving a packet at said downstream node;
performing a flow classification at said downstream node on said packet to
determine whether said packet belongs to a specified flow that should be redirected in the
upstrcam' node;

selecting a free label at said downstream nods;

2 informing said upstream node that future packets belonging to said specified
flow should be sent with said selected free label attached; and
wherein said netwark comprises a local area computer network, and wherein said
inforring step is performed by [FMP software that enables communication between said
upstream and dewnstream nodes.
k] According to a third aspect of the invention, there is provided a method for
‘e transmitting packets between an upstream node and a downstream node in a network, said
downstream nede being downstream flom said upstream node, said methed comprising
the steps of:
establishing default virtual chammels between said upstream node and said
downstream node;

(RAUIBQIES docems

24/04 '01L TUE 15:14 [TX/RX NO 92771

24, RER 2001 15121 SPRUSON AND FERGUSON 61292615486 NO. 4611 P 7

25

_5-

receiving a packet at said downstream node;

performing a flow classification at said downstresm node on said packet to
determine whether said packet belongs to a specified flow that should be redirected in the
upstream node;

selecting a free label at said downstream node;

informing said upstream node that future packets belonging to said specified
flow should be sent with said selected free label attached;

wherein said flow classification performing step includes looking at a flow
identifier of the packet to determine whether said packet belongs to a specified flow that
should be redirected in the upstream node, said flow identifier comprising spectfied
header fields from the packet; and

sending said future packets belonging lo the specified flow with said specified
header fields removed to provide security.

According to a fourth aspect of the invention, there is provided a method for
switching a flow at a first node, said first node having a downstream link to a second node
and an upstream link to a third node, said methed comprising the steps of:

performing a flow classification at said first node on a first packet to determine
whether said first packet belongs to a specified flow that should be redirected in the third
noede;

selecting a first free label at said first node;

informing said third nede that future packets belonging to said specified flow
should be sent with said selected first free label attached;

performing a flow classification at said secomd node on 2 second packet to
determine whether said second packet belongs to said specified flow that should be
redirected in the third node;

selecting a second free labe] at said second node;

informing said first node that future packets belonging to said specified flow
should be sent with said selected second frec label] attached; and

selectively switching said specified flow from said upstream link by said first
node to said downstream link; and

wherein said specified flow from said upstream link may be sent by said first
node to said downstream link.

According to a fifth aspect of the invention, there is provided a method for
switching a flow at a first node, said first node having a downstream link to a second node

and an upstream link to a third node, said method comprising the steps of:

[RALIBQ)ER5.00c'eaa

24/04 '01 TUE 15:14 [TX/RX NO 9277)

24. APR. 2001 15:21 SPRUSON AND FERGUSON 61292615486 o 4611 P8

-

-5a-
performing a flow classification at seid first node on a first packet 1o determine
whether said first packet belongs to a speeified flow that should be redirected in the third
node;
selecting a first free label at said first nods;
5 informing said third nods that future packets belonging to seid specified flow
should be sent with said selected first free label attached;
performing a flow classification at said second node on a second packet to
determine whether said second packet belongs to said specified flow that should be
redirected in the third node;
10 selecting a second free label at said second node;
informing said first node that future packets belonging to said specified flow
should be sent with said selected second free label attached,
wherein said specified flow from said upstream link may be switched by said
first node to said downstream link, said second packet is said first packet, and said
15 informing steps are performed by [FMP software that enables communication between

said nodes.

According ta & sixth aspect of the invention, there is provided a computer
program product that enables dynamic shifting between routing and switching in a
network having an upstream node and a downstream node downstream from said
R w0 upstream nods, said computer program product comprising:
computer readable code that performs a flow classification on a packet at said
e downstream tode to determine whether said packet belongs to a specified flow that
e’ should be redirected in ssid upstream node;

computer readable code that selects, at said downstream node, a first free label
25 on said upstream nodc;
computer readable ¢code that informs said upstream node that future packets
belanging to said specified flow should be sent with said selected first free label attached;
and
a tangible medium that stores the computer readable codes.

30 According to a seventh aspect of the invention, there is provided a method for
transmitting packets between an upsizeam node and a downstream node in a network
comprising the steps of:

receiving a packet from said upstteam node at said downstream node;

e performing a flow classification, at said downstream node, on said packet;

[RALIBQIEIS.doc €2

24/04 '01 TUE 15:14 [TX/RX NO 9277]

24, APR. 2001 15:21 SPRUSON AND FERGUSON 61202615466 NO. 4611 B9

20

30

.5b-

selectively assigning, at said downstream node, a free label on said upstream
node;

sending a message to said upstream node indicating said free label; and
selectively including said free 1abel in future packets from said upstream node.

According to an eighth aspect of the invention, there is provided 2 method for
forwarding packets from a first node to a second node in a network comprising the steps
of;

feceiving a first packet from said first node;

performing a flow classification on said first packst;

selectively assigning a free label to a flow associated with said first packet;

sending a message to said first node indicating said free label, and

forwarding future packets from said flow using & channel indicated by said free
label.

According to a ninth aspect of the invention, there is provided a method for

switching a flow at a first node comprising the steps of:

receiving a first packet of said flow from an upstream node;

performing a flow classification on said first packet!

selecting a first free label on said upstream node;

sending 2 message to said upstream node indicating said firat free label;

receiving a message from a downstrcam node indicating 2 second free label; and

selectively switching future packets of said flow from said upstream node to said
downstream node based on said first and second free Jabels.

According to a tenth aspect of the invention, there is provided 2 computer
prograrm product for transmitting packets between an upstream node and 2 downstream
node in 2 network ¢amprising:

code for receiving a packer from said upstream node at said downstream node;

code for performing a flow classification, at said downstream node, on said
packet;

code for selectively assigning, at said downstream node, a free label on said
upstream node,

code for sending a message to said upstream node indicating said free label; and

code for selectively including said free label in futere packets from said upstream

node.

TRALIBOJSYS doctcen

24/04 '01 TUE 15:14 [TX/RX NO 9277]

¢4 RPE ZUUL 1902L SPXUSUN AND FEXWUSUN blZ9201948b R T AT

-5¢-
According to an eleventh aspect of the invention, there is provided a computer
program product for forwarding packets from a first node to a second node in a network
comprising:
code for receiving a first packet from said first node;
5 code for performing a flow classification on said first packet;
code for selectively assigning a free label to a flow associated with said first
packet;
cade for sending a message to said first node indicating said free label; and
code for forwarding future packets from said flow using a channe! indicated by
1o said free label.
According to & twelfth aspect of the invention, there is provided a computer
program product for switching a flow at a first node comprising:
code for receiving a first packet of said flow from an upstream node;
cods for performing a flow classification on said first packet;
15 code for selecting a first free label on said upstream node;
code for sending a message to seid upstream node indicating said first frec label;

eode for receiving a message from 2 downstream node indicating a second free

labe]; and
code for selectively switching future packets of said flow from said upstream

0 node to said downstream node based on said first and second free labels.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1a s a simplified diagram of a basic switching unit of the system according

to an embodiment of the invention;
2 Fig. 1b is a simplified diagram of a switch gateway unit of the system according

to another embediment of the invention;
Fig. 1c is a simplified diagram of 2 switching agent of the system according to

stil] ancther embodiment of the invention.

TRILBQIES doceaa

24/04 '01 TUE 15:14 [TX/RX NO 8277]

10

15

20

25

30

WO 97/28505] PCTAUS97/01595

6

Figs. 2a-2c are simplifiéd diagrams of exemplary network
configurations according embodiments of the present invention;

Fig. 3 is a general system block diagram of an exetnplary computer
system used according to embodiments of the invention;

Fig. 4 is a general block diagram of an exemplary ATM switch
according to an embodiment of the invention:

Fig. 5a is a simplified diagrams generally illustrating the initialization
procedure in each system node according to an embodiment of the present
invention;

Fig. 5b is a simplified diagram that generally illustrates the operation
of a system node;

Fig. 5c is a simplified diagram generally illustrating the procedure at
a switching agent when a packet arrives on one of its interfaces after initialization;

Fig. 5d is a simplified diagram generally illustrating the procedure at
a switch controller (to which at least one switching agent may be attached via a
communication link, for example, using the switching engine of the switch
controller) when a packet arrives from a switching agent on one of its interfaces on
a default channel, after initialization;

Fig. 6a is a diagram generally illustrating the steps involved in
labelling a flow in a system node;

Fig. 6b is a diagram generally illustrating the steps involved in
switching a flow in a basic switching upit;

Fig. 6c is a diagram generally illustrating the steps involved in
forwarding a packet in a system node (or switching node); Fig. 6d is a diagram
generally illustrating the steps the performed in the switch controller in labelling a
flow for packets received from a source switching agent in three scenarios:

Fig. 6e is a diagram generally illustrating the steps performed in the
switch controller in labelling a flew for packets, which are received from an
attached switching node and intended for an interface on an attached switching
apent; -

Figs. 7a-7b illustrate the formats of flow identifiers for Flow Type 1
and Flow Type 2;

10

15

20

25

WO 97/28505 PCT/US97/01595

7

Fig. 8a illustrates the structure of a generic IFMP adjacency protocol
message, according to an embodiment of the present invention;

Fig. 8b illustrates a generic IP packet (in its current version IPv4)
with a variable length Data field into which an [FMP message may be encapsulated;

Fig. 8c is a simplified diagram iliustrating the operation of a system
node upon receiving a packet with an incoming IFMP adjacency protocol message;

Fig. 8d is a state diagram illustrating the operation of a sender system
node when the incoming IFMP adjacency protocol message is not an RSTACK
message;

Fig. 9a illustrates the structure of a generic IFMP redirection
protocol message, according to an embodiment of the present invention;

Fig. 9b is a general diagram describing the operaticn of a system
node upon receiving an IFMP redirection protocol message,

Figs. 9c-9g illustrate the structures for a REDIRECT message
element, RECLAIM message element, RECLAIM ACK message element, LABEL
RANGE message element, and ERROR message element in the Message Body 394
of the respective IFMP redirection protocol messages;

Fig. 10a illustrates the format of a Label field on an ATM data link,
according to an embodiment of the present invention;

Fig. 10b-10e respectively illustrate default, Flow Type 0, Flow Type
1, and Flow Type 2 encapsulated IP packets, according to embodiments of the
present invention;

Fig. 1la illustrates the format of an encapsulated GSMP packet;

Fig. 11b illustrates the format of a GSMP adjacency protocol
message;

Fig. 11c is a simplified diagram illustrating the operation of a sender
entity upon receiving a packet with an incoming GSMP adjacency protocol message;

Fig. 114 is a state diagram illustrating the operation of a sender entity
when the incoming IFMP adjacency protocol message is not an RSTACK message;

Fig. 12 illustrates the format of a generic GSMP Connection

Management message,;

10

15

20

25

30

WO 97/28505 ' PCTUS97/01595

8

Figs. 13a-13e are simpiified diagrams illustrating the operation of a
receiver entity upon receiving GSMP Connection Management Add Branch, Delete
Branch, Delete Tree, Verify Tree, and Delete All messages respectively;

Fig. 13f illustrates the format of a GSMP Connection Management
Move Root message;

Fig. 13g is a simplified diagram illustrating the operation of a sender
entity upon receiving a packet with an incorming GSMP Connection Management
Move Root message;

Fig. 13h illustrates the format of 2 GSMP Connection Management
Move Branch message;

Fig. 13i is a simplified diagram illustrating the operation of a sender
entity upon receiving a packet with an incoming GSMP Connection Management
Move Branch message;

Fig. 14 illustrates the format of a2 GSMP Port Management message;

Fig. 15a illustrates ah encapsulated IFMP-C packet 1000;

Fig. 15b illustrates the generic structure of a typical IFMP-C message
1012 that may be contained in IFMP-C Message field 1006 of the encapsulated
IFMP-C packet 1000 in Fig. 15a;

Fig. 16a illustrates the generic structure of an IFMP-C adjacency
protocol message 1040 that may be contained in IFMP-C Message field 1006 of the
encapsulated IFMP-C packet 1000 in Fig. 15a;

Fig. 16b is a state diagram illustrating the operation of a sender entity
(either an IFMP-C controller or an IFMP-agent) in the three possible states of the
IFMP-C adjacency protocol;

Figs. 17a and 17b illystrate the structure of IFMP-C Interface List
request and response messages, respectively;

Figs. 17c and 17d illustrate the structure of [IFMP-C Interface Query
request and response messages, respectively;

Fig. 17e illustrates the structure of an IFMP-C Interface
Configuration request message 1170;

Fig. 18a illustrates the message format 1200 of IFMP-C Add Branch

request messages and IFMP-C Delete Branch request messages;

10

15

20

25

30

WO 9728585) PCT/US97/01595

9

Fig. 18b illustrates the bata Transformation field 1240 for a
"Truncate packet” transformation type in an IFMP-C Add Branch request message
and IFMP-C Delete Branch request message of Fig. 18a;

Fig. 18¢ illustrates the message format 1250 of an IFMP-C Add
Branch response message and an IFMP-C Delete Branch response message:

Fig. 18d illustrates the structure of an IFMP-C Delete Tree request
message 1260;

Fig. 18e illustrates the structure of an IFMP-C Move Branch request
message 1300;

Fig. 19a illustrates the structure of an IFMP-C Get Tree Statistics
request message 1400;

Fig. 19b illustrates the Tree Data field structure 1406, which Tree
Data fields use;

Figs. 20a and 20b illustrate the structure of [FMP-C Read Branch

request message 1420 and IFMP-C Read Branch response messages 1430, respectively;

Fig. 21a illustrates the structure of IFMP-C Node Information request
message 1440;

Figs. 21b and 21c illustrate the structure of IFMP-C Interface
Statistics request message 1460 and IFMP‘-C Interface Statistics response message
1470, respectively;

Fig. 21d illustrates the structure of the Interface Statistics field 1480
in the IFMP-C Interface Statistics response message 1470 of Fig. 21c;

Fig. 21 illustrates the structure of the General Statistics fietd 1494
within the Interface Statistics field 1480 of the IFMP-C Interface Statistics response
message 1470 of Fig, 21c;

Fig. 21f illustrates the structure of the Specific Statistics field 1530°
(for an ATM interface) within the Interface Statistics field 1480 of the [FMP-C
Interface Statistics response message 1470 of Fig. 21c; and

Fig. 21g illustrates the structure of the Specific Statistics field 1540
(for an Ethernet interface) within the Interface Statistics field 1480 of the IFMP-C
Interface Statistics response message 1470 of Fig. 21c.

10

15

20

25

30

WO 97128505 PCTUS97/01595

10

DETAILED DESCRIPTIdN OF SPECIFIC EMBODIMENTS
CONTENTS
I. General

II. System Hardware
A. Controller Hardware
B. Switching Hardware
C. Exemplary Hardware

IIL. System Software Functionality
A. TFMP and Transmission of Flow Labelled Packets

- - B. GSMP

C. IFMP-C

IV. Conclusion

I. General

An improved method and apparatus for transmitting packets in a
network are disclosed herein. The method and apparatus will find particular utility
and is illustrated herein as it is applied in the high throughput transmission of [P
packets capable of carrying voice, video, and data signals over a local area network
(LAN), metropolitan area networks (MAN), wide area network (WAN}), Internet, or
the like, but the invéntion is not so limited. The invention will find use in a wide
variety of applications where it is desired to transmit packets over a network.

The system described herein is a dynamic switching and routing
system. The system is described generally as a "switching system," however it
should be recognized that the system dynamically provides both switching
functionality at the datalink layer 2 as wel] as routing and packet forwarding
functionality at the network layer 3. Additionally, the "basic switching unit" of the
system also dynamically provides both layer 2 switching functionality as well as
layer 3 routing and packet forwarding functionality. A "switch gateway unit" of the
system serves as an access device to enable connection of existing LAN and
backbone environments to a network of basic switching units. Similarly to the
switch gateway unit, a "switching agent" also serves as an access device to enable

connection of existing LAN and backbone environments to at least one basic

10

15

20

25

30

WO 97/28508 PCT/US97/01595

11

switching unit, Both the switch gateway unit and the basic switching unit have
independent flow redirect management capability, run routing protocols, and make
routing decisions independently in the absence of any flow redirects, as discussed
further below. A switch gateway unit and a basic switching unit are therefore
peers. In contrast, a switching agent, not having independent flow redirect
management capability, forwards packets based on instructions from the basic
switching unit acting as master to the slave switching agent. Operating under such
instructions from the basic switching unit, the switching agent can forward packets
received from the basic switching unit such that a large portion of the packets
forwarded by the basic switching unit can now be forwarded by the agent 1o existing
LAN and backbone environments on the agent’s interfaces. These environments
may include Ethernet, FastEthernet, FDDI, Gigabit Ethernet, or other types of
LANs. Since this packet forwarding is performed by the switching agent based on
packet forwarding instructions, the basic switching unit is allowed to have more
time to perform other tasks such as running routing protocols, as well as reducing
the latency for forwarded packets. Performance of packet forwarding by a
switching agent reduces the load on the switch controller of the basic switching unit.
Accordingly, in some simations where independent flow redirect management
capability is not required at a certain node or where the capabilities of the basic
switching unit can be better utilized, a switching agent may be suitable for use. A
switching agent also may be used as a lower cost substitute for a switch gateway
unit. The system is compatible with the Internet Protocol (IP) in its current version
(IPv4) as well as with future versions (e.g., IPv6). The system provides dynamic
shifting between switching and routing of packets over the network to provide
optimal high-speed packet throughput while avoiding router bottlenecks.

As shown in Fig. 1a, a basic switching unit 1 of the switching
system, according to an embodiment of the present invention, includes a switching
engine 3, a switch controller 5, and system software 7 instalied on switch controller
5. In particular, switching engine 3 utilizes conventional and currently available
asynchronous transfer mode (ATM) switching hardware. Of course, other -
switching technologies such as for example fast packet switching, frame relay,

Gigabit Ethernet technology or others may be used te provide the switching engine

10

15

20

25

30

WO 97728505 PCT/USY7/01595

12

3 of the present invention, depending 611 the application. In the present
embodiment, switching engine 3 is an ATM switch. Any of the software normally
associated with the ATM switch that is above the ATM Adaptation Layer type 5
(AAL-5) is completely removed. Thus, the signalling, any existing routing
protocol, and any LAN emulation server or address resolution servers, etc. are
removed. Switch controller 5 is a computer having an ATM network adapter or
network interface card (NIC} 9 connected to switching engine 3 via an ATM link
11. System software 7 is installed in basic switching unit 1, more particularly in
the computer serving as switch controller 5.

Switching engine 3 of basic switching unit | has multiple physical
ports 13; capable of being connected to a variety of devices, including for example
data terminal equipment (DTE), data communication equipment (DCE), servers,
switches, gateways, etc. Each of the physical ports 13, may be connectad via an
ATM link to a device equipped with an ATM adapter or NIC, or to a port of

" another basic switching unit, or to a port of a switch gateway unit, or to a port of a

switching agent. The ATM switching hardware providing the switching engine 3 of
the basic switching unit operates at the datalink layer (Layer 2 of the QSI reference
model).

Switching engine 3 serves to perform high-speed switching functions
when required by the basic switching uwnit, as determined by the system software 7.
The switching capability of the switching system is limited only by the hardware
used in the switching engine 3. Accordingly, the present embodiment of the
invention is able to take advantage of the high-speed, high capacity, high bandwidth
capabilities of ATM technology. Of course, other switching technologies such as
for example fast packet switching, frame relay, Gigabit Ethernet technology, or
others may be used to provide the switching engine 3 of the present invention,
depending on the application.

In an embodiment of the present invention, the switch controller 5 is
a computer connected to the ATM switch hardware 3 via an ATM link 9, and the
system software is installed on the computer. In addition to performing standard
connectionless IP routing functions at Layer 3, switch controller 5 also makes flow

classification decisions for packets on a local basis.

10

15

20

25

30

WO 9728505 PCT/US97/01595

13

As shown in-Fig. 1b, a switch gateway unit 21 of the switching
system, according to another embodiment of the present invention, includes a
gateway switch controller 23, and system software 25 installed on gateway switch
controller 23. Gateway switch controller 23 includes multiple network adaptors or
NICs 27, and an ATM NIC 29. Similar to switch controller 5 of the basic
switching umit 1, gateway switch controller 23 also is a computer equipped with an
ATM NIC 29 having system software 25 installed on the computer. As discussed
above, switch gateway unit 21 serves as an access device to enable connection of
existing LAN and backbone environments to a network of basic switching units,
Accordingly, NICs 27 may be of different types, such as for example 10BaseT
Ethernet NICs, 100BaseT Ethernet NICs, Fiber Distributed Data Interface (FDDI)
NICs, and others, or any combination of the preceding. Of course, the use of
particular types of NICs 27 depends on the types of existing LAN and backbone
environments to which switch gateway unit 21 provides access. It is recognized that
multiple LANs may be connected to a switch gateway unit 21, ATM NIC 29
allows switch gateway unit 21 to connect via an ATM link to a basic switching unit
1. Of course, a NIC 27 may also be an ATM NIC to provide a connection between
switch gateway unit 21 and another switch gateway unit as well,

) In addition to basic switching units and switch gateway units, the
Ppresent system may also include high performance host computers, workstations, or
servers that are appropriately equipped. In particular, a subset of the system
software can be installed on a host computer, workstation, or server equipped with
an.appropriatc ATM NIC to enabie a host to connect directly to a basic switching
unit.

As shown in Fig. 1c, a switching agent 901 according to yet another
embodiment of the present invention, is a computer equipped with multiple network
adaptors or NICs 903 for connection of existing LAN and backbone environments,
an ATM NIC 905 for connection to a basic switching unit 1, and appropriate system
software 907 that enables switching agent 901 to forward packets per instructions
from a basic switching unit 1. Switching agent 901 serves as an access device to
enable connection of existing LAN and backbone environments to at Jeast one basic

switching unit. Accordingly, NICs 903 may be of the same or different types, such

10

15

20

25

30

WO 9728505 PCT/US97/01595

14
as for exampte 10BaseT Ethernet NICs, 100BaseT Ethernet NICs, FDDI NICs, and

others, or any combination of the preceding. Of course, the use of particular types
of NICs 903 depends on the types of existing LAN and backbone environments to
which switching agent 901 provides access. It is recognized that multiple LANs
may be connected to switching agent 901. ATM NIC 905 allows switching agent
901 to connect via an ATM link to a basic switching unit 1. Of course, NIC 905 is
appropriately selected based on the specific switching engine technology. ATM in
the present specific embodiment, utilized in basic switching unit 1.

Basic switching units, switch gateway units, switching agents, and
system software allow users to build flexible IP network topologies targeted at the
workgroup, campus, and WAN environments for high performance, scaleable
solution to current campus backbone congestion problems. Using the present
system, various network configurations may be implemented to provide end-to-end
seamless IP traffic flow, with the network configurations featuring high bandwidth,
high throughput, and component interoperability. Figs. 2a-2c illustrate a few of the
many network configurations possible according to the present invention, Qf
course, Figs. 2a-2c are merely exemplary configurations and many alternate
configurations are possible.

Fig. 2a shows a simplified diagram of a campus LAN configuration
in which basic switching unit 1 serves as the centralized [P packet-forwarding
device for the entire campus network with several switch gateway units 21 enabling
connectivity to existing LANs. Basic switching unit 1 is connected to a server farm
which includes three servers 31, (where n = 1 to 3). Bach server 31, is equipped
with a subset of the system software and an ATM NIC to enable connection to basic
switching unit 1 via corresponding ATM links 33, (whete n = 1 to 3), which are
OC-3 (155 Mbps) links. Having the servers attached directly to basic switching unit
1 aver high speed ATM links operates to boost packet throughput for the frequently
accessed servers. Basic switching unit 1 also connects to three switch gateway units
21 via corresponding ATM links 33, (where n = 4 to 6), also OC-3 links. A first
switch gateway unit 21 connected to basic switching unit 1 via link 33, also
connects to a LAN backbone 35,, which may be some type of Ethernet or FDDI,
via an appropriate link 39,. LAN backbone 35, connects to PCs, terminals, or

10

15

20

25

30

WO 97/28505) PCTAUSY7/01595

15

workstations 41 via the appropriate NiCs 43. Similarly, second and third switch
gateway units 21, connected to basic switching unit 1 via links 33, and 33,
respectively, also connect to LAN backbones 35, and 35, respectively via Ethernet
or FDDI links 39, and 39;, The configuration of Fig. 2a therefore enables users
connected to different LANs to communicate using seamless IP traffic flow without
congestion in accordance with the present invention.

As another example, Fig. 2b shows a simplified diagram of a
workgroup configuration. Fig. 2b illustrates a high performance workgroup
environment in which several host computers 45 are connected via ATM links 33,
to multiple basic switching units 1, which connect to a switch gateway unit 21 that
connects to a LAN 35 with user devices 41. In this configuration, a first basic
switching unit 1 connects to a second basic switching unit 1 via ATM link 33, (155
Mbpsj. Multiple host computers 45 connect to the first basic switching unit 1 via
respective 155 Mbps ATM links 33, (where x = 2 to 5) through respective ATM
NICs 47. In addition, multiple host computers 45 connect to the second basic
switching unit 1 via respective 25 Mbps ATM links 33, (where y = 8 to 10)
through respective ATM NICs 49. As discussed above, host computers 45
equipped with ATM NICs are installed with 2 subset of the system software,
enabling the TCP/IP hosts to connect directly to a basic switching unit. The first
and second basic swilching units 1 connect to switch gate;way unit 21 via ATM links
33; (155 Mbps) and 33, (25 Mbps) réspectivcly. Connection of the first and second
basic switching units 1 to switch gateway unit 21 via an Ethernet or FDDI link 39
enmables users of host computers 45 to communicate with users devices 41 attached
to LAN 35, User devices 41 may be PCs, terminals, or workstations having
appropriate NICs 43 to connect to any Ethernet or FDDI LAN 35. The workgroup
of host computers is thereby seamlessly integrated with the rest of the campus
network.

As still another example, Fig. 2c shows a simplified diagram of a
simple configuration utilizing a basic switching unit 1; several switching agents 911,
913, and 915; and a system node 916 (¢.g., another basic switching unit, switch
gateway unit, or host). Of course, other configurations may involve additional

system nodes and other combinations as desired. Fig. 2c illustrates several

10

15

20

25

30

WO 97/28505 PCT/US97/01595

16

switching agents 911, 913, and 915, éach agent having respective interfaces to
various Ethernet LANs 917, (where n ranges from 1 to 6 in this specific example),
each having connected user devices (not shown), and each agent being connected via
ATM links 919, (where m ranges from 1 to 3 in this specific example) to basic
switching unit 1, which includes a switch controller 921 connected by an ATM link
923 to a switching engine 925. Of course, LANs 917, may be FDDI, 10BaseT or
100BaseT Ethernet, Gigabit Ethernet, other type of network, or any combination of
the types of networks. User devices connected to LANs 917, may be PCs,
terminals, printers, servers, workstations, etc. having appropriate NICs to congect
to LANs 917, System node 916 is attached to the switching engine 925 of basic
switching unit 1 via ATM link 919,.

In general, switch controller 921 in Fig. 2¢ controls the switching
agents by conditioning their respective interfaces (for the transmission and reception
of packets) and by directing the switching agents in how to handle packets received
in specific flows of specific flow types. The specific flow types, as well as the
specific flow, may be created by switch controller 921 via operation of the IFMP-C
protocol. As mentioned above, switch controller 921 is attached to a link layer
switch (such as ATM switch 925), which in turn may be attached to switching
agents (such as 911, 913, 915) and/9r to another system node 916. During
initialization, switch controller 921 sends IFMP-C packets to the switching agents,
allowing switch controller 921 to learn the specific configuration (in terms of
installed network interfaces, etc.) of each switching agent. Switch controller 921
then conditions one or more of the network interfaces 917, attached to the switc;hing
agents to start receiving packets. Switch controlier 921 also sets up the packet
processing in the switching agent to transmit certain received packets to switch
controlier 921 while other received packets may be dropred (e.g., if they are
received for protocols not being processed by switch cozroller 921), If switch
conroller 921 detects that a flow may be handled by a switching agent without
intervention by switch controtler 921, then switching controller 921 uses IFMP-C to
direct that switching agent to handle the packet (e.g., drop a packet, forward the
packet out one or more interfaces using one or more different output formats or

using different classes of service to forward packets locally). Associated with

10

15

20

25

30

WO 97/28505 PCT/US97/01595

17

forwarding a packet is a transformation to apply to the packet (e.g., decrementing
the Time to Live in the'packet, updating IP header checksums, header managing for
different flow type formats, etc.). Further details reparding the interoperation of
switching agents, the switching node and the switch controller (such as shown in the
configuration shown in Fig. 2¢) are described below.

According to the present invention, the system adds complete IP
routing functionality on top of ATM (or alternative technology in other
embodiments) switching hardware by using the system software, instead of any
existing ATM swiich control software, to control the ATM switch. Therefore, the
present system is capable of moving between network layer IP routing when needed
and datalink layer switching when possible in order to create high speed and
capacity packet transmission in an efficient manner without the problem of router
bottlenecks.

Using the Ipsilon Flow Management Protocol (IFMP), which is
described in further detail later, the system software enables a system node (such as
a basic switching unit, switch gateway unit, or host computer/server/workstation) to
classify IP packets as belonging to a "flow" of similar packets based on certain
common characteristics. A flow is a sequence of packets sent from a particular
source to a particular (unicast or multicast) destination that are related in terms of
their routing and any local bandling policy they may require. The present invention
efficiently permits different types of flows to be handled differently, depending on
the type of flow. Some types of flows may be handled by mapping them into
individual ATM connections using the ATM switching engine to perform high speed
switching of the packets. Flows such as for example those carrying real-time
wraffic, those with quality of service requirements, or those likely to have a long
holding time, may be configured to be switched whenever possible. Other types of
flows, such as for example short duration flows or database queries, are handled by
connectionless IP routing. A particular flow of packets may be associated with a
particular ATM label (i.e., an ATM virtual path identifier (VPI) and virtual channel
identifier (VCI)). It is assumed that virtual channels are unidirectional so an ATM
label of an incoming direction of each link is owned by the input port to which it is

connected. Each direction of transmission on a link is treated separately. Of

10

15

20

25

30

WO 97/28505 PCTAIS97/01595

18

course, flows travelling in each direciion are handled by the system separately but
in a similar manner.

Flow classification is a locai policy decision. When an Ip packet is
received by a system node, the system node transmits the IP packet via the defaylt
channel. The node also classifies the IP packet as belonging to a particular flow,
and accordingly decides whether future packets bélonging to the same flow should
preferably be switched directly in the ATM switching engine or continue to be
forwarded hop-by-hop by the router software in the node. If a decision to switch a
flow of packets is made, the flow must first be labelled. To label a flow, the node

selects for that flow an available label (VPI/VCI) of the input port on which the

packet was received. The node which has made the decision to label the flow then
stores the label, flow identifier, and a lifetime, and then sends an [FMP REDIRECT
message upstream to the previous node from which the packet came. The flow
identifier contains the set of header fields that characterize the flow. The lifetime
specifies the length of time for which the redirection is valid. Unless the flow state
is refreshed, the association between the flow and label is deleted upon the
expiration of the lifetime. Expiration of the lifetime before the flow state is
refreshed results in further packets belonging to the flow to be transmitted on the
default forwarding channel between the adjacent nodes. A flow state is refreshed by
sending upstream a REDIRECT message having the same label and flow identifier
as the original and having another lifetime. The REDIRECT message requests the
upstream node to transmit all further packets that have matching characteristics to
those identified in the flow identifier via the virtual channel specified by the label.
The redirection decision is also a local decision handled by the upstream node,
whereas the flow classification decision is a local decision handled by the
downstream node. Accordingly, even if a downstrea:ﬁ node requests redirection of
a particular flow of packets, the upstream node may decide to accept or ignore the
request for redirection. In addition, REDIRECT messages are not acknowledged.
Rather, the first packet arriving on the new virtual channet serves to indicate that
the redirection request has been accepted. -

The system software also uses different encapsulations for the
transmission of IP packets that belong to labelled flows on an ATM data link,

10

15

20

25

30

WO 97/28505) PCT/US97/01595

19

depending on the different flow type c;f the flows. In the present embodiment, four
types of encapsulations are used.

In addition to IFMP, the system software utilizes another protocol,
General Switch Management Protocol (GSMP), to establish communication over the
ATM link between the switch controtler and ATM hardware switching engine of a
basic switching unit of the system and thereby enable layer 2 switching when
possible and layer 3 IP routing and packet forwarding when necessary. In
particular, GSMP is a general purpose, asymmetric protocol to contro! an ATM
switch. That is, the switch controller acts as the master with the ATM switch as
the slave. GSMP runs on a virnual channel established at initialization across the
ATM link between the switch contreller and the ATM switch. A single switch
controller may use multiple instantiations of GSMP over separate virtual channels to
control multiple ATM switches. Also included in GSMP is a GSMP adjacency
protocol, which is used to synchronize state across the ATM link between the
switch controller and the ATM switch, to discover the identity of the entity at the
other end of the link, and to detect changes in the identity of that entity.

GSMP allows the switch controller to establish and release
connections across the ATM switch, add and delete leaves on a point-to-multipoint
connection, manage switch ports, request configuration information, and request
statistics. GSMP al;o allows the ATM switch to inform the switch controller of
évents such as a link going down.

A switch is assumed to contain multiple ports, where each port is a
combination of an .inpul port and an output port. ATM cells arrive at the ATM
switch from an external communication link on incoming virtual channels at an
input port, and depart from the ATM switch to an external communication link on
outgoing virtual channels from an output port. As mentioned earlier, virtual
channels on a port or link are referenced by their VPI/VCIL. A virtual channel
connection across an ATM switch is formed by connecting an incoming virtual
channel {or root) to one or more outgoing virtual channels (or branches). Virtual
channel connections are referenced by the input port on which they arrive and the

VPI/VCI of their incoming virtual channel. In the switch, each port has a hardware

WO 97728505 PCT/USY7/01595

10

15

20

25

30

20
look-up table indexed by the VPI/VCf of the incoming ATM cell, and entries ig the

tables are controlled by 2 local control processor in the switch.

For GSMP, each virtual channel connection may be established with
a certain quality of service (QOS), by assigning it a priority when it is established.
For virtual channel connections that share the same output port, an ATM cell on a
connection with a higher priority would be more likely to depart the switch than an
ATM cell on a connection with a lower priority, if they are both in the switch at the
same time. The number of priorities each port of the switch supports is obtained
from a port configuration message. It is recognized that different switches may
support multicast in different ways. For example, the switch may have limits on
numbers of branches for a multicast connection, limits on the number of multicast
connections supported, limits on the number of different VPI/VCI vﬁlues assignable
to output branches of a multicast connection, and/or support only a single branch of
a particular multicast connection on the same output port. Failure codes may be
specified accordingly as required.

The switch assigns 32-bit port numbers to describe the switch ports.
The port number may be structured into sub-fields relating to the physical structure
of the switch (e.g., shelf, slot, port). Each switch port also maintains a port session
number assigned by the switch. The port session number of a port remains the
s;u'ne while the port is continuously up. However, if a port returns to the up state
after it has been down or unavailable or after a power cycle, the port session

number of the port will change. Port session numbers are assigned using some

" form of random number, and allow the switch controlier to detect link failures and

keep state synchronized.

In addition to JFMP and GSMP, the system software in some
embodiments also utilizes another protocol, Ipsiion Flow Management Protocol for
Clients (IFMP-C), described in further detail below, to establish communication
over the link between the switch controller of a basic switching unit and a switching
agent to thereby distribute layer 3 packet forwarding to switching agents when
desired. In particular, IFMP-C is a general purpose, asymmetric protocol to control
a switching agent. That is, the switch controlier acts as the master with the
switching agent as the slave. With the use of [FMP-C, the interfaces on the

10

15

20

25

30

WO 97/28505 - PCT/US97/01595

21
switching agent look like interfaces locally aitached to the switch controller, so that
the switch controller/switching agent externally appears to be like a system node.

Generally, IFMP-C runs on a virtual channel established at initialization across the

- link between the switch controller and the switching agent. A single switch

controller may use multiple instantiations of IFMP-C over separate virtual channels
to contro} multiple switching agents. At system starrup, the switch controller starts
an IFMP-C listener on each ATM interface (the listener is attached the defauit VCI
of the ATM interface) attached to the switch controller, and the switching agent
begins sending period SYN messages on the default VCI. When the switch
controller receives the SYN message from the switching agent, the switch controller
starts the [FMP-C adjacency protocol, which is included in the IFMP-C protocol.
Used by each side of the link, the IFMP-C adjacency protocol is used to
synchronize state across the link between the switch controller and the switching
agent, to discover the identity of the entity at the other end of the link, and to detect
changes in the identity of that entity. When the IFMP-C adjacency protocol has
established each side of the link to synchronize with the other, each side of the link
has an instance number that identifies the other side of the link. .
Adfter completing synchronization, IFMP-C allows the switch
controller to determine what ports or interfaces (and their attributes) are available
on the switching agent, and to configure each interface so that it can be ~used to
forward packets. A switching agent is.assumed to contain multiple ports or
interfaces, where each interface or port is a combination of an input port and an
output poft, Once the interfaces are determined and configured, IFMP-C is used to
create, modify, and delete forwarding branches. Each forwarding branch consists
of input data and output data. In the switching agent, each interface has a hardware
look-up table indexed by the input data/output data of the incoming packet, and
entries in the tables are controlled by a local control processor in the switching
agent. The input data includes several pieces or components {such as input
interface, precedence, input flags, key data, and key mask, according to a specific
embodiment) of information, with each piece of information contributing to the
input information. If any components of the input data vary, then the paéket is

considered to have a different forwarding input entry. The output data includes

10

15

20

25

30

WO 97128505) ' PCTAISYT/01595

22

several picces or components (such as ontput interface, remove length, transform,
transform data, header data, quality of service type, and quality of service data,
according to a specific embodiment) that describe how packets having matching
input data should be forwarded. It is possible for an input entry to have more than
one output entry. When a packet arrives on an interface of the switching agent, the
switching agent searches through the input entries associated with the input
interface. The entries may be searched from the lowest precedence to the highest.
When a matching input entry is found, the information on the output branches is
used to forward the packet,

In IFMP-C, management of link level hardware (for example,
opening virtual channels and adding hardware address filters on Ethernet) is left to
the switching agent. If the input key mask includes bits of the Iink level address,
the switching agent should ensure that it will receive those addresses, If the mask
does not include link level addressing information, then the switching agent should
not adjust the filter. The switching agent may thus control the link level filtering in
the manner most efficient for its hardware, and the switch controller must include
enough link level information in the key to properly filter packets. The switch
controller manages the state of the switching agent for the promiscucus and
multicast promiscuous medes, so that the switching agent does not attempt to
inappropriately optimize the code path beyond the behavior desired.

IFMP, GSMP, and- IFMP-C are described in further detail below, in

accordance with a specific embodiment of the present invention.

II. System Hardware
A, Controfier Hardware

Fig. 3 is a system block diagram of a typical computer system 51 that
may be used as switch controller 5 in a basic switching unit 1 (as shown in Fig. 1a)
to execute the system software of the present invention. Fig. 3 also illusirates an
example of the computer system that may be used as switch gateway controller 23
in a switch gateway unit 21 (as shown in Fig. 1b) to execute the system software of
the present invention, as well as serving as an example of a typical computer which

may be used as a host computer/server/workstation loaded with a subset of the

10

15

20

25

30

WO 97128505 PCT/US97/01595

23

system software. Of course, it is recognized that other elements such as a monitor,
screen, and keyboard are added for the host. As shown in Fig. 3, computer system
51 includes subsystems such as a central processor 69, system memory 71, I/O
controller 73, fixed disk 79, network interface 81, and read-only memory (ROM)
83. Of course, the computer system 51 optionally includes monitor 53, keyboard
59, display adapter 75, and removable disk 77, for the host. Arrows such as 85
represent the system bus architecture of computer system 51, However, these
arrows are illustrative of any interconnection scheme serving to link the subsystems.
For example, a local bus could be utilized to connect central processor 69 to system
memory 71 and ROM 83. Other computer systems suitable for use with the present
invention may include additional or fewer subsystems. For example, another
computer system could include more than one processor 69 (i.e., a multi-processor
system) or a cache memory.

In an embodiment of the invention, the computer used as the switch
controller is a standard Intel-based central processing unit (CPU) machine equipped
with a standard peripheral component interconnect (PCI) bus, as well as with an
ATM network adapter or network interface card (NIC). The computer is connected
to the ATM switch via a 155 Megabits per second (Mbps) ATM link using the
ATM NIC. In this embodiment, the system software is installed on fixed disk 79
which is the hard drive of the computer. As recognized by those of ordinary skill
in the art, the system software may be stored on a CD-RCM, floppy disk, tape, or
other tangible media that stores computer readable code.

Computer system 51 shown in Fig. 3 is but an example of a computer
system suitable for use (as the switch controller of a basic switching unit, as the
switch gateway controller of a switch gateway unit, or as a host
computer/server/workstation) with the present invention. Further, Fig. 3 illustrates
an example of a computer system installed with at least a subset of the system
software (to provide for IFMP-C operability) that may be used as a switching agent
901 (as shown in Fig. 1c). It should be recognized that system software for routing
protocols need not be installed on a computer system used as a switching agent 901,
and therefore this subset of the system software may be run on an embedded device.

Accordingly, fixed disk 79 may be omitted from a computer system used as a

10

15

20

25

30

35

‘WO 97/28505 PCT/USS7/01595

24

switching agent 901, thereby resulting in lower equipment costs for some networks
which might use switching agents 901 in lieu of switch gateway units. Other
configurations of subsystems suitable for use with the present invention will be
readily apparent to one of ordinary skill in the art. In addition, switch gateway unit
may be equipped with multiple other NICs to enable connection to various types of
LANs. Other NICs or alternative adaptors for different types of LAN backbones
may be utilized in switch gateway unit. For example, SMC 10M/100M Ethernet
NIC or FDDI NIC may be used.

Without in any way limiting the scope of the invention, Table 1
provides a list of commercially available components which are useful in operation
of the controller, according to the above embodiments. It will be apparent to those
of skill in the art that the components listed in Table 1 are merely representative of
those which may be used in association with the inventions herein and are provided
for the purpose of facilitating assembly of a device in accordance with one
particular embodiment of the invention. A wide variety of components readily
known to those of skill in the art could readily be substituted or functionality could

be combined or separated.

Table 1 ‘
Controller Components

Microprocessor Intel Pentium 133 MHz processor
System memory 16Mbyte RAM/256K cache memory
Motherboard Intel Endeavor motherboard

ATM NIC Zeitnet PCI ATM NIC (155 Mbps)
Fixed or Hard disk 500Mbyte IDE disk

Drives standard floppy, CD-ROM drive
Power supply standard power supply

Chassis standard chassis

B, Switching Hardware
As discussed above, the ATM switch hardware provides the switching

engine of a basic switching unit. The ATM switching engine utilizes vendor-

independent ATM switching hardware. However, the ATM switching engine

10

15

20

25

30

WO 97128505 PCT/US97/01595

25

according to the present invention doe-s not rely on any of its uswal connection-
oriented ATM routing and signaling software (SSCOP, Q.2931, UNI 3.0/3.1, and
P-NNI). Rather, any ATM protocols and software are completely divscarded, and a
basic switching unit relics on the system software to control the ATM switching
engine. The system software is described in detail later.

Separately available ATM components may be assembled into a
typical ATM switch architecture. For example, Fig. 5 is a general block diagram
of an architecture of an ATM switch 3 (the example shows a 16-port switch) that
may be used as the switching hardware engine of a basic switching unit according to
an embodiment of the present invention. However, commercially available ATM
switches also may operate as the switching engine of the basic switching unit
according to other embodiments of the present invention. The main functional
components of switching hardware 3 include a switch core, a2 microcontrolier
complex, and a iransceiver subassembly. Generally, the switch core performs the
layer 2 switching, the microcontroller complex provides the system contro! for the
ATM switch, and the transceiver subassembly provides for the interface and basic
transmission and reception of signals from the physical layer. In the present
example, the switch core is based on the MMC Networks ATMS 2000 ATM Switch
Chip Set which includes White chip 100, Grey chip 102, MBUF chips 104, Port
Interface Device (PIF) chips 106, and common data memory 108, The switch core
also may optionally include VC Activity Detector 110, and Early Packet Discard
function 112. Packet counters also are included but not shown. White chip 100
provides conﬁgufation control and status. In additién to communicating with White
chip 100 for status and control, Grey chip 102 is responsible for direct addressing
and data transfer with the switch tables. MBUF chips 104 are responsible for
movement of cell traffic between PIF chips 106 and the common data memory 108,
Common data memory 108 is used as cell buffering within the switch. PIF chips
106 manage transfer of data between the MBUF chips to and from the switch port
hardware. VC Activity Detector 110 which includes a2 memory element provides
information on every active virtual channel. Early Packet Discard 112 provides the
ability to discard certain ATM cells as needed. Packet counters provide the switch

with the ability to count all packets passing all input and output ports. Buses 114,

10

15

20

25

30

WO 97/28505 PCT/US97/015895

26

115, 116, 117, and 118 provide the interface between the various components of the
switch. The microcontroller complex includes a central processing unit (CPU) 130,
dynamic random access memory (DRAM) 132, read only memory (ROM) 134,
flash memory 136, DRAM controller 138, Dual Universal Asynchronous Receiver-
Transmitter (DUART) ports 140 and 142, and external timer 144, CPU 130 acts as
the microcontrofler, ROM 134 acts as the local boot ROM and includes the entire
switch code image, basic low-ievel operation system functionality, and diagnostics.
DRAM 132 provides conventional rando'm access memory functions, and DRAM
controler 138 (which may be implemented by a field programmable gate array
(FPGA) device or the like) provides refresh control for DRAM 132. Flash memory
136 is accessible by the microcontroller for hardware revision control, serial
number identification, and various control codes for manufacturability and tracking.
DUART Ports 140 and 142 are provided as interfaces to communications resources
for diagnostic, monitoring, and other purposes. External timer 144 interrupts CPU
130 as required. Transceiver subassembly includes physical interface devices 146,
located between PIF chips 106 and physical traﬁsceivers (not shown). Interface
devices 146 perform processing of the data stream, and implement the ATM
physical layer. Of course, the components of the switch may be on a printed circuit
board that may reside on a rack for mounting or for setting on a desktop, depending
on the chassis that may be used.

Without in any way limiting the scope of the invention, Table 2
provides a list of commercially available components which are useful in operation
of the switching engine, according to the above embodimeﬂts. It will be apparent to
those of skill in the art that the components listed in Table 2 are merely
representative of those which may be used in association with the inventions herein
and are provided for the purpose of facilitating assembly of a device in accordance
with a particular embodiment of the invention. A wide variety of components or
available switches readily known to those of skill in the art could readily be
substituted or functionality could be combined or separated. Of course, as
previously mentioned, switching engines utilizing technologies (such as frame relay,
fast packet switching, or Gigabit Ethernet) other than ATM would utilize

appropriate components.

10

15

20

25

30

35

WO 97128505) PCT/US97/01595

27
Table 2
Switch Components

SWITCH CORE
Core chip set MMC Networks ATMS 2000 ATM Switch
Chip Set (White chip, Grey chip, MBUF chips,
PIF chips)
Common data memory standard memory modules
Packet counters standard counters

MICROCONTROLLER COMPLEX

CPU Intel 960CA/CF/HX

DRAM standard DRAM modules
ROM standard ROM

Flash memory standard flash memory
DRAM controller standard FPGA, ASIC, etc.
DUART 16552 DUART

External timer standard timer

TRANSCEIVER SUBASSEMBLY

Physical interface PMC-Sierra PM5346

IT1. System Software Functionaiig
As generally described above, IFMP is a protocol for instructing an

adjacent node to attached a layer 2 "label” to a s;ieciﬁed "flow" of packets. A flow
is a sequence of packets sent from a particular source to a particular destination(s)
that are related in terms of their routing and logical handling policy required. The
labe] specifies a virtual channel and allows cached routing information for that flow
to be efficientty accessed. The label also allows further packets belonging to the
specified flow to be switched at layer 2 rather than routed at layer 3. That is, if
both upstream and downstream links redirect a flow at a particular node in the
network, that particular node tmay switch the flow at the datalink layer, rather than

route and forward the flow at the network layer.

10

15

20

25

30

WO 97/28505 . PCTIUS9T01595

28

Fig. 5a is a simplified (-iiagrams generally illustrating the initialization
procedure in each sysiem node according to an embodiment of the present
invention. Upon system startup at step 160, each system node establishes default
virtual channels on all ports in step 162. Then at step 164 each system node waits
for packets to arrive on any port.

Fig. 5b is a simplified diagram that generally illustrates the operation
of a system node dynamically shifting between layer 3 routing and layer 2 switching
according to the present invention. After initialization, a packet arrives on a port of
the system node at step 166. If the packet is received on a default virtual channel
(step 168), the system node performs a flow classification on the packet at step 170,
Flow classification involves determining whether the packet belongs to a type of
flow. At step 172, the system node determines whether that flow to which the
packet beiongs should preferably be switched. If the system node determines that
the flow should be switched, the system node fabels the flow in step 174 then
proceeds to forward the packet in step 176. After forwarding the packet, the
system node waits for a packet to arrive in step 182. Once a packet arrives, the
system node returns to step 166. If the system nede determines at step 168 that the
packet did not arrive on the default virtual channel, the system node does not
perform flow classification at step 170 on the packet. When a packet arrives on an
alternate virtual channel, the packet belongs to a flow that has already been labelled.
Accordingly; if the flow is also labelled downstream (step 178), the system node
switches the flow in step 180. Switching the flow involves making a comnection
within the switch between the label of the upstréam link and the label of the
downstream link. After switching the flow in step 180, the system node at step 176
forwards the packet downstream. If the flow is not labelled downstream (step 178),
the system node does not switch the flow but rather forwards the packet downstream
in step 176. Of course, it is recognized that only a system node that js a basic
switching unit performs step 180. Other system nodes (e.g., switch gateway umit or
host) operate as shown in Fig. 5b but do not perform step 180 since the result of
step }78 is no for a switch gateway unit or a host (as these types of system nodes

have no downstream link).

10

15

20

25

3¢

W0 97128508 PCT/USY7/01595

29

Fig. 5c and 5d are simplified diagrams that generally illustrate the
operation of a switch controller and a switching agent attached to the switch
controller via a communication link, respectively, according to the present
invention. It is noted that a switching agent generally follows the initialization
procedure illustrated by Fig. 5a. Fig. 5c generally illustrates the procedure at a
switching agent when a packet arrives (step 1600) on one of its interfaces after
initialization is completed. If the packet is not received on a default virtual channel
(determined in step 1602), then the switching agent accesses the tree bound to the
specified channel at step 1604. When a packet does not arrive on 2 default
channel, the packet belongs to a flow that has already been labelled and the flow
has been switched. The switching agent proceeds to forward the packet (step 1606)
accordingly and then waits for another packet to arrive (step 1608). However, if
the packet is received on the default virtual channel (determined in step 1602), then
the switching agent searches its branch table for a matching input branch in step
1610. If a matching input branch is not found (in step 1612), the switching agent
sends the packet to the switch controller in step 1614 and waits for another packet
(step 1616). If a matching input branch is found (in step 1612), the switching agent
forwards the packet as specified in stép 1618, Then the switching agent checks if
“fall through" mode is specified for the packet (step 1620). As discussed later, fall
through mode indicates that the switching agent should continue the search in the
branch table for a matching input branch at the next precedence level that matches
this input branch entry after the packet is transmitted. If the fall through mode is
not specified (step 1620), then the switching agent simply waits f(;r the next packet
1o arrive (step 1622). However, if the fall through mode is specified (step 1620),
then the switching agent continues to search in the branch table for a matching input
branch at the next precedence level (step 1624). From step 1624, the switching
agent determines whether the matching input branch at the next precedence level is
found (step 1626). If it is not found, then the switching agent waits for the arrival
of the next packet (step 1622). However, if it is found, then the switching agent
proceeds from step 1626 io forward the packet as specified (step 1618), where the

procedure continues from step 1620,

10

15

20

25

30

WO 97/28505 PCTIUS97/01595
30

Fig. 5d generally illustrates the procedure at a switch controller (to
which at least one switching agent may be attached via a communication link, for
example, using the switching engine of the switch controller) when a packet arrives
(step 1650) from a switching agent on one of its interfaces on a default channel,
after initialization is completed. That is, Fig. 5d illustrates the procedure at the
switch controller upon a packet being sent to the switch controller (step 1614 of
Fig. 5¢). After the packet arrives (step 1650) from the switching agent, the switch
controller performs a flow classification on the packet at step 1652, As mentioned
above, flow classification involves determining whether the packet belongs to a type
of flow. From step 1652, the switch controller determines in step 1654 whether the
flow to which the packet belongs should be switched. If the switch controller
determines in step 1654 that the flow should not be switched, the switch controller
does not switch the flow but simply forwards the packet (step 1656) and then waits
for the next packet (step 1658). If the switch controller delermines in step 1654
that the flow should preferably be switched, then the switch controlier labels the
flow in step 1660 and proceeds to forward the packet (step 1656) and wait for the
next packet (step 1658).

Fig. 6a is a diagram generally iltustrating the steps involved in
labelling a flow in the upstream link of a system node {or a switching node), such
as shown by label flow step 174 of Fig. 5b. For a systern node that is a switch
gateway unit or a host, the system node labels a flow as shown in- steps 190, 192,
200 and 202 of Fig. 6a. When the label flow step begins (step 190), the system
node selects a free label x on the upstream link in step 192. The system node then
sends an IFMP REDIRECT message on the upstream link in step 200 (as indicated
by dotted line 193). The system node then forwards the packet in step 202. For a
system node that is a basic switching unit, labelling-a flow is also illustrated by
steps 194, 196, and 198. When the label flow step begins (step 190), the basic
switching unit selects a free label X on the upstream link in step 192, The switch
controller of basic switching unit then selects a temporary label %’ on the control
port of the switch controller in step 194. At step 196, the switch controller then
sends to the hardware switching engine a GSMP message to map label x on the

upstream link to label x* on the control port. The switch controller then waits in

10

15

20

25

30

WO 97128505 PCT/US97/01595

31

step 198 until a GSMP acknowledge n-lessage is received from the hardware
switching engine that indicates that the mapping is successful. Upon receiving
acknowledgement, the basic switching unit sends an IFMP REDIRECT message on
the upstreatm link in step 200. After step 200, the system node returns to step 176
as shown in Fig. 56.

Fig. 6b is a diagram generally illustrating the steps involved in
switching a flow in a basic switching unit, such as shown by switch flow step 180
of Fig. 5b. As mentioned above, only system nodes that are basic switching units
may perform the switch flow step. When the switch flow procedure starts in step
210, the switch controller in the basic switching unit sends at step 212 a GSMP
message to map label x on the upstream link to the label y on the downstream link.
Label y is the label which the node downstream to the basic switching unit has
assigned to the flow. Of course, this downstream node has labelled the flow in the
manner specified by Figs. 5b and 6a, with the free label y being selected in step
192 After step 212, the switch controller in the basic switching unit waits in step ~
214 for a GSMP acknowledge message from a hardware switching engine in basic
switching unit to indicate that the mapping is successful. The flow is thereby
switched in layer 2 entirely within the hardware switching engine in the basic
switching unit. Then the basic switching unit proceeds to forward the packet in step
176.

Fig. 6c is a diagram generally illustrating the steps involved in

- forwarding a packet in a system node, such as shown by forward packet step 176 of

Fig. 5b. A system node at step 218 stans the forward packet procedure. If the
flow to which the packet belongs is not labelied on the downstream link (step 220),
then the system node sends the packet on the default virtual channel on the
downstream link in: step 222 and then goes to a wait stat¢ 224 to wait for arrival of
packets. However, if the flow to which the packet belongs is labelled on the
downstream link indicating that the system node previousiy received an IFMP
REDIRECT message to label that flow for a lifetime, then the system node checks
at step 226 if the lifetime for the redirection of that flow has expired. If the
lifetime has not expired, then the system node sends the packet on the labelled

virtual channel in the [FMP REDIRECT message at step 228 then goes to wait state

10

15

20

25

30

WO 97/28505 PCT/US97/01595

32

224. If the lifetime has expired, then ihc system node automatically deletes the
flow redirection at step 230. The system node then proceeds to send the packet on
the default channel (step 222) and returns to the wait state of step 182 as shown in
Fig. 5b.

As described above, Figs. 6a-6c generally relate to the interoperation
of system nodes (or switching nodes) without the involvement of switching agents.
Figs. 6d-6e relate to the interoperation of switching nodes when at least one
switching agent is attached to a basic switching unit, as described below.

Fig. 6d is a diagram generally iltustrating the steps performed in the
switch controller in labelling a flow for packets received from an attached source
switching agent, such as shown by label flow step 1660 of Fig. 5d. Three scenarios
are illustrated in Fig. 6d: when the flow of packets is desired to be sent to another
interface on the source switching agent; when the flow of packets is desired to be
sent to an interface on another attached switching agent, i.e., a destination switching
agent, and when the flow of packets is desired to be sent to an interface on another
attached system node (or switching nede, such as another basic switching unit, a
switch gateway unit, or a host).

As shown in Fig. 6d, if the flow of packets received from a source
switching agent is desired to be sent to another interface on the same switching
agent (as determined in step 1662), the switch controller (in step 1664) uses IFMP-
C to condition the source switching agent to forward fumre packets received for the
flow with the appropriate header and transformation out on the destination interface
of that switching agent.

If the flow of packets received from a source switching agent is not
desired to be sent to another interface on the same switching agent (as determined in
Step, 1662), then it is determined in step 1666 if the flow of packets received from a
source switching agent is-desired to be sent to an interface on a destination
switching agent. If so, the switch controller (in step 1668) selects a free label x on
the upstream link between the switch controller and the source switching agent, and
selects (in step 1670) a free label y on the downstream link between the switch
controller and the destination switching agent. Then the switch controller uses

GSMP to map x to y in step 1672. In step 1674, the switch controller uses IFMP-C

10

13

20

25

30

WO 97128505 PCT/US97/01595

33
to condition the destination switching agent to forward out on the destination
interface the future packets for the flow received on label y with the appropriate

header and transformation. Then the switch controller (in step 1676) uses IFMP-C

'to condition the source switching agent to forward future packets of the flow with

the appropriate header and transformation to label x.

If the flow of packets received from a source switching agent is not
desired to be sent to an interface on a destination switching agent (as determined in
step 1666), then the flow of packets received from the source switching agent is
desired to be sent to an interface on another attached system node (or “"switching

node", such as another basic switching unit, a switch gateway unit, or a host).

. Then, the switch controfier (in step 1680) selects a free label x on the upstream link

between the switch controller and the source switching agent. In step 1682, the
switch controller waits for a free label y on the downstream link to be chosen by the

switching node and communicated via IFMP. Then, the switch controller uses

" GSMP to map x t0 y in step 1684. In step 1686, the switch controller uses IFMP-C

to condition the source switching agent to forward future packets of the flow with
the appropriate header and transformation to label x.

Fig. 6e is a diagram generally illustrating the steps performed in the
switch controller in labelling a flow (starting from step 1700) for packets, which are
received from an attached switching node and intended for an interface on an
attached switching agent. When the flow of packets feceived from a source
switching nede is desired to be sent to an interface on a destination switching agent,
the switch controller {in step 1702) selects a free label x on the upstredm link
between the switch controller and the source switching node, and sefects (in step
1704) a free label y on the downstream link between the switch controller and the
destination switching agent. Then the switch controller uses GSMP to map x to y
in step 1706. In step 1708, the switch controlier uses IFMP-C to condition the
destination switching agent to forward out on the destination interface the future
packets for the flow received on label y with the appropriate header and
transformation. In step 1710, the switch controller uses IEMP 10 request the
upstream switching node to transmit future packets of the flow to label x.

Additional details of the general description above are described below.

10

15

20

25

30

WO 97/28505 . PCTMUS97/01595

34

A, IFMP & Flow Iabelled Transmission on ATM Data Links

1. IEMP

The system software uses the Ipsilon Flow Management Protocol
(IFMP) to enable a system node (such as a basic switching unit, switch fateway
unit, or host computer/server/workstation) to classify IP packets as belonging to a
flow of similar packets based on certain common characteristics. Flows are
specified by a "flow identifier." The flow identifier for a particutar flow gives the
contents or values of the set of fields from the packet header that define the flow.
The contents of the set of fields from the packet headers are the same in ali packets
belonging to that particular flow. Several "flow types” may be specified. Each
flow type specifies the set of fields from the packet header that are used to identify
the flow. For example, one flow type may specify the set of fields from the packet
header that identify the flow as having packets carrying data between applications
running on stations, while another flow type may specify the set of fields from the
packet header that identify the flow as having packets carrying data between the
stations.

In an embodiment of the present invention, three flow types are
specified: Flow Type 0, Flow Type 1, and Flow Type 2. Of course, different or
additional flow types also may be specified. Flow Type 0 is used to change the
encapsulation of IP packets from the default encapsulation. The format of a flow
identifier for Flow Type 0 is null.and accordingly has a zero length. Flow Type 1
is.a flow type that specifies the set of fields from the packet header that identify the
flow as having packets carrying data between applications running on stations.
Flow Type 1 is useful for flows having packets for protocols such as UDP and TCP
in which the first four octets after the IP header specify a source port number and a
destination port number that are used to indicate applications. A flow identifier for
Flow Type 1 has a length of four 32-bit words. The format of a flow identifier for
Flow Type 1, indicated as reference number 240 shown in Fig. 7a, includes
(described in order of most significant bit (MSB) to least significant bit (LSB)) the
Version, Internet Header Length (IHL), Type of Service, and Time to Live, and
Protocol fields as the first word; the Source Address field as the second word; and
the Destination Address field as the third word. These fields in the flow identifier

10

15

20

25

30

WO 97/28505 PCT/USY7/101595

35

are from the header of the IP packet ot-' Flow Type 1. The flow identifier for Flow
Type 1 also includes the Source Port Number and the Destination Port Number
fields (the first four octets in the IP packet after the IP header) as the fourth word.
Flow Type 2 is a flow type that specifies the set of fields from the packet header
that identify the flow as having packets carrying data between stations without
specifying the applications running on the stations. A flow identifier for Flow Type
2 has a length of three 32-bit words. The format of a flow identifier for Fiow Type
2, indicated by reference number 250 shown in Fig. 7b, includes the Version,
Internet Header Length (IHL), Type of Service, Time to Live, Protocol, Source
Address, and Destination Address fields from the header of the IP packet. The
format of a flow identifier for Flow Type 2 is the same as that for Flow Type 1
without the fourth word. The hierarchical nature of the flow identifiers for the
various flow types allows a most specific match operation to be performed on an IP
packet to facilitate flow classification.

The present invention efficiently permits different types of flows to be
handied differently, depending on the type of flow., Flows such as for example
those carrying real-time traffic, those with quality of service requirements, or those
likely to have a long holding time, may be configured 1o be switched whenever
possible. Other types of flows, such as for example short duration flows or
database queries, are handled by connectionless IP packet forwarding. In addition,
each flow type also specifies an encapsulation that is to be used after this type of
flow is redirected. Encapsulations for each flow type may be specified for different
data link technologies. In the present embodiment, the system uses encapsulations
for ATM data links, described in further detail later.

A particular flow of packets may be associated with a particular ATM
Jabel. According to the present embodiment, a label is a virtual path identifier and
virtual channet identifier (VPI/VCI). A "range" of labels for a specific port is the
set of labels (VPIs/VCIs) available for use at that port. It is assumed that virtual
channels are unidirectional so a label of an incoming direction of each link is owned
by the input port to which it is connected. Of course, for embodiments using other

switching technologies such as frame relay, the data link connection identifier may

10

15

20

25

30

WO 97/28505 PCT/US97/01595
36

be used as the label. For embodiments using fast packet switching technology, the
data link channel multiplex identifier may be used as the tabel.

As discussed above, flow classification is a local policy decision.
When an IP packet is received by -a system node, the system node transmits the IP
packet via the default channel. The node also classifies the IP packet as belonging
to a particular flow, and accordingly decides whether future packets belonging to
the same flow should be switched directly in the ATM switching engine or continue
to be forwarded hop-by-hop by the router software in the node. If a decision to
switch a flow of packets is made, the node selects for that flow an available label
(VPI/VC]) of the input port on which the packet was received. The node which has
made the decision to switch the ﬂow then stores the label, flow identifier, and a
lifetime, and then sends an [FMP REDIRECT message upstream to the previous
node from which the packet came. As discussed above, the fiow identifier contains
the set of header fields that characterize the flow. The lifetime specifies the length
of time for which the redirection’is valid. Unless the flow state is refreshed, the
association between the flow and label should be deleted upon the expiration of the
lifetime. Expiration of the lifetime before the flow state is refreshed results in
further packets belonging to the flow to be transmitted on the default forwarding
channel between the adjacent nodes.

A flow state is refreshed by sending upstream a REDIRECT message
having the same labei and flow identifier as the original and having another lifetime.
The REDIRECT message requests the upsiream node to transmit all further packets
that have matching characteristics to those identified in the flow identifier via the
virtual channel specified by the label. The redirection decision is also a local
decision handled by the upstream node, whereas the flow classification decision is a
local decision handled by the downstream node. Accordingly, even if a downstream
node requests redirection of a particular flow of packets, the upstream node may
decide to accept or ignore the request for redirection. In addition, REDIRECT
messages are not acknowledged. Rather, the first packet arriving on the new virtual
channel serves to indicate that the redirection request has been accepted.

. In the present invention, IFMP of the system software includes an

IFMP adjacency protocol and an IFMP redirection protocol. The IFMP adjacency

10

15

20

25

30

WO 97/28505] PCT/US97/01595

37

protocol allows a system node (host, basic switching unit, or switch gateway unit) to
discover the identity of a system node at the other end of a link. Further, the IFMP
adjacency protocol is used to synchronize state across the link, to detect when a
system node at the other end of a link changes, and to exchange a list of IP
addresses assigned to a link. Using the IFMP redirection protocol, the system may
send REDIRECT messages across a link, only after the system has used the IFMP
adjacency protocol to identify other system nodes at the other end of a tink and to
achieve state synchronization across a link. Any REDIRECT message received
over a link that bas not currently achieved state synchronization must be discarded.
The IFMP adjacency protocol and IFMP redirection protocol are described in detail
after the following detailed description of the operation of the system.

A specific example describing the flow classification and redirection
of the present system, utilizing a LAN configuration such as that of Fig. 2a, is
useful in illustrating advantages presenied by the system. In particular, the example
focuses on the interaction between the first and second gateway switch units 21 and
basic switching unit 1 of Fig, 2a. At system startup, a default forwarding ATM
virtual channel is established between the system software running on the controllers
of basic switching unit 1 and of each of the neighboring nodes (in this example, first
and second switch gateway units 21). ‘When an IP packet is transmitted from LAN
backbone 35, over the network layer link 39,, the IP packet is received by the first
switch gateway mﬂt 21 via one of its appropriate LAN NICs. Then, the system
softwarg at first switch gateway unit 21 inspects the IP packet and then performs a
default encapsulation of the IP packet contents for transmission via link 33,
(established between the ATM NIC of switch gateway unit 21 and a selected port of
the ATM switching hardware in basic switching unit 1) to basic switching unit 1.
The ATM switching hardware then forwards the ATM cells to ATM NIC 9 ini
switch controlter 5 which then reassembles the packet and forwards the IP datagram
to the system software in switch controller for IP routing. The switch controller
forwards the packet in the normal manner across the default forwarding channel
initially established between basic switching unit 1 and second switch gateway unit
21 at startup. In addition, the switch controller in basic switching unit 1 performs a

flow classification on the packet to determine whether future packets belonging to

10

15

20

25

30

WO 97/28505 PCT/US97/01595
38

the same flow should be switched directly in the ATM hardware or continue to be
routed hop-by-hop by the system software. If the switch controller software decides
locally that the flow should be switched, it selects a free label (label x) from the
label space (label space is merely the range of VPI/VCI labels) of the input port
(port i) on which the packet was received. The switch controller also selects a free
label (label x’) o its control port (the real or virtual port by which the switch
controller is connected to the ATM switch). Using GSMP, the system software
instructs the ATM switch to map label x on input port i to label x’ on the control
port c. When the switch returns a GSMP acknowledgemens message to the switch
controller, the switch controller sends an IFMP REDIRECT message upstream to
the previous hop (in this example, the first switch gateway unit 21) from which the
packet came. The REDIRECT message is simply a request from basic switching
unit 1 to first switch gateway unit 21 to transmit all further packets with header
fields maiching those specified in the redirection message’s flow identifier on the
ATM virtual channel specified by the REDIRECT message’s label. Unless the flow
state is refreshed before the expiration of the REDIRECT message’s lifetime, the
association between the flow and the redirection message’s label should be deleted,
resulting in further packets in the flow being transmitted on the default forwarding
channel (initialily estfablished at startup) between the first switch gateway unit 21 and
basic switching unit 1.

» If the first switch gateway unit 21 accepts the request made in the
REDIRECT message sent by basic switching unit 1, the packets belonging to the
flow will arrivé at port ¢ of switch controller with the ATM VPI/VCI label x’. The
packets will continue to be reassembled and routed by the system software, but the
process is speeded up as a result of the previous routing decision for the flow being
cached and indexed by the label x’ in the system software. ‘Accordingly, it is seen
that a flow may be labelled but not necessarily switched.

One of the important benefits of switching becomes evident in
situations where the downstream node (in this example, the second swiich gateway
unit) alse is involved in redirection for the same flow. When basic switching unit 1
routes the initial packet belonging to the flow to the second switch gateway unit 21

via the default forwarding channel between them, the downstream node (in this part

10

15

20

25

30

WO 97/28505 PCT/US97/01595

39

of ﬂ)e example, ‘second switch gatewa); unit 21) reassembles the packet and
forwards it in the normal manner, For the packet received at its port j, second
switch gateway unit 21 aiso performs a flow classification and decides based upoa
its lacal policy expressed in a table whether to switch future packets belonging to
the flow or to continue packet forwarding in the controlier. If second switch
gateway unit 21 decides that the future packets of the flow should be switched, it
sends its own REDIRECT message (with a free label y on its port j, flow identifier,
and lifetime) upstream to basic switching unit 1. Basic switching unit 1 may of
course accept or ignore the request for redirection.. When basic switching unit 1
decides to switch the flow, the system software in switch controller of basic -
switching unit 1 maps label x on port i to label y on port j. Thus, the traffic is no
longer sent to the sWitch control processor but is switched directly to the required
output port of the ATM switch hardware. Accordingly, alt further traffic belonging
to the flow may be switched entirely within the ATM switching hardware of basic
switching unit 1. When a packet arrives from a port of the ATM switch of basic
switching unit 1, second switch gateway unit 21 using its ATM NIC receives the
packet over ATM link 33;. Second switch gateway unit 21 then reassembles and
sends the packet via one of its NICs over the link 39, to LAN 35,. The user device
41 for which packet is intended receives it from LAN 35, via the user device’s NIC
43,

When a system node (in this example, basic switching unit 1) accepts
a REDIRECT message, it also changes the encapsulation used for the redirected
flow. Rather than using the default encapsutation used for IP packets on the default
forwarding channel, the system node may use a different type of encapsulation
depending on the flow type. Basic switching unit 1 thus encapsulates the future
packets belonging to the flow and transmits them on the specified virtual channel
noted in label y. Some types of encapsulation may remove certain fields from the
IP packet. When these fields are removed, the system node that issued the
REDIRECT message stores the fields and associates the fields with the specified
ATM virtual channel. In the case of the present example, if basic switching unit 1
accepts the REDIRECT message sent by second switch gateway unit 21, then basic

switching unit 1 stores fields and associates the fields with the ATM virtual channel

10

15

20

25

30

WO 97/28505 PCTIUSY701595

40

spécified by label y. Similarly, if ﬁrsi switch gateway unit 21 accepts the
REDIRECT message sent by first switching unit 1, then first switch gateway unit 21
stores fields and associates the fields with the ATM virtual channel specified by
label x. A complete packet may be reconstructed using the incoming label to access
the stored fields. This approach provides a measure of security by for example
preventing a user from establishing a switched flow to a permitted destination or
service behind a fireball and then changing the IP packet header to gain access to a
prohibited destination.

Each system node maintains a background refresh timer. When the

-background refresh timer expires, the state of every flow is examined. If a flow

has received traffic since the last refresh period, the system node refreshes the state
of that flow by sending a REDIRECT message upstream with the same label and
flow identifier as the original REDIRECT message and a new lifetime, If the flow
has received no traffic since the last refresh period, the system node removes the
flow’s cached state. A system node removes the flow’s state by issuing an IFMP
RECLAIM message upstream to reclaim the label for reuse. However, until the
upstream node sends an IFMP RECLAIM ACK message which is received by the
node issuing the IFMP RECLAIM message, the flow state is not deleted and the
label may not be reused. An [FMP RECLAIM ACK message acknowledggs release
of the requested label. A system node determines if a flow has received traffic in
two different ways, depending on whether the flow is switched or not. For flows
that are labelled but not switched, the controller for the system node examines its
own state 10 sec whether the flow has received any teaffic in the previous refresh
period. For flows that are switched, the controller for the system node queries the
ATM switch hardware using a GSMP message to see whether a specific channel has
been active recently. Accordingly, in the present example, basic switching unit 1
monitors traffic for a flow if that particular flow is mapped from first switch
gateway unit 21 to the control port of basic switching unit 1 or is mapped from first
switch gateway unit 21 to second switch gateway unit 21 via the ATM switch in
basic switching unit 1. If that flow has no recent traffic in the previous refresh
period, basic switching unit will send the IFMP RECLATM message and remove the
flow state when an IFMP RECLAIM ACK. message is received. Also, second

10

15

20

25

30

WG 97/28505 PCT/U897/01595
41

sw-ritch gateway unit 21 monitors traffi;: for a flow if that particular flow is mapped
from the control port of basic switching unit 1 to second switch gateway unit 21.
Additionally, a host computer/server/workstation equipped with the appropriate
system software is also equipped with a background refresh timer. Monitoring
traffic for any flow mapped to it, the host can send an IFMP RECLAIM message
and remove a flow state upon receiving an IFMP RECLAIM ACK message.

As discussed above, the IFMP adjacency protocol is used to establish
state synchronization, as well as identifying adjacent system nodes and exchanging
IP addresses. For IFMP adjacency protocol purposes, a system node has three
possible states for a particular link: SYNSENT (synchronization message sent),
SYNRCVD (synchronization message received), ESTAB (syncitronization
established). State synchronization across a link (when a system node reaches the
ESTAB state for a link) is required before the system may send any redirection
messages using the IFMP redirection protocol.

Fig. 8a illustrates the structure of a generic IFMP adjacency protocol
message 300. All IFMP adjacency protocol messages are encapsulated within an IP
packet. Fig. 8b illustrates a generic IP packet (in its current version IPv4) with a
variable length Data field into which an IFMP adjacency protocol message may be
encapsulated. As an indication that the IP packet contains an IFMP message, the
Prou;col field in the IP header of the encapsulating [P packet must contain the
decimal value 101. The Time to Live field in the header of the IP packet
encapsulating the IFMP message is setto 1. Also, all IFMP adjacency protocol
messages are sent to the fimited broadcast IP Destination Address
(255.255.255.255), using the address in the Destination Address field of the IP
header. As seen in Fig. 8a, an IFMP adjacency protocol message 300 includes
(described in order of MSB to LSB) the following fields: an 8-bit Version (302}, an
8-bit Op Code (304), and a 16-bit Checksum (306) as the first 32-bit word; Sender
Instance (308) as the second 32-bit word; Peer Instance (310) as the third 32-bit
word; Peer Identity (312) as the fourth 32-bit word; Peer Next Sequence Number
(314) as the fifth 32-bit word; and Address List (316) which is a field of a variable

number of 32-bit words.

10

15

20

25

30

WO 97128505 PCT/US97/01595
42

In an IFMP adjacency protocol message, Version field 302 specifies
the version of the IFMP protocol which is currently in use (as other versions may
evolve). Op Code 304 specifies the function of the JFMP adjacency protocol
message. In the present embodiment, there are four possible Op Codes, ie.,
functions of IFMP adjacency protocol messages: SYN (synchronization message, Op
Code = 0), SYNACK (synchronization acknowledge message, Op Code = 1),
RSTACK (reset acknowledge message, Op Code = 2), and ACK (acknowledge
message, Op Code = 3). In each system node, a timer is required for the periodic
generation of SYN, SYNACK, and ACK messages. In the present embodiment, the
period of the timer is one second, but other periods may be specified. If the timer
expires and the system node is in the SYNSENT state, the system node resets the
timer and sends a SYN IFMP adjacency protocol message. If the timer expires and
the system node is in the SYNRCVD state, the system node resets the timer and
sends a SYNACK IFMP adjacency protocol message. If the timer expires and the
system node is in the ESTAB state, the system node resets the timer and sends an
ACK IFMP adjacency protocol message.

Checksum 306 is the 16-bit one’s complement of the one’s
complement sum of: the source address, destination address and protocol fields from
the IP packet encapsulating the IFMP adjacency protocol message, and the total
length of the IFMP adjacency protocdl message, Checksum 306 is used by the
system for error control purposes.

In discussing [FMP, a "sender” is the system no@e which sends the
IFMP message, and a "peer™ is the system node to which the sender sends the
IFEMP message for a link.

In SYN, SYNACK, and ACK IFMP adjacency protocol messages,
Sender Instance 308 is the sender’s "instance number" for the link. Indicating a
specific instance of a link, an instance number is a 32-bit non-zero number that is
guaranteed to be unique within the recent past, and to change when the link or
system node comes back afier going down. Accordingly, each link has its own
unique instance mumber. Sender Instance is used to detect when a link comes back
after going down, or when the identity of a peer at the other end of the link

changes. (Sender Instance 308 is used in 2 similar manner to the initial sequence

10

15

20

25

30

WO 97/28505 7 PCT/US97/01595

43
number (ISN) in TCP.) For-a RSTACK IFMP adjacency protocol message, Sender

Instance 308 is set to the value of the Peer Instance field 310 from the incoming
message that caused the RSTACK message to be generated.

In SYN, SYNACK, and ACK IFMP adjacency protocol messages,
Peer Instance field 310 is what the sender believes is the peer’s current instance
number for the link. If the sender does not know the peer’s current instance
number for the link, the Peer Instance field 310 will be set to zero. In an RSTACK
TFMP adjacency protocol message, Peer Instance field 310 is set to the value of the
Sender Instance field 308 from the incoming message that caused the RSTACK
message to be generated.

For SYN, SYNACK, and ACK IFMP adjacency protocol messages,
Peer Identity field 312 is the IP address of the peer that the sender of the message
believes is at the other end of the link. The sender takes the IP address that is in
the Source Address field of the IP header encapsulating the SYN or SYNACK
message received by the sender, and uses that IP address in the Peer Identity field
312 of an IFMP adjacency protocol message it is sending. When the sender does
not know the 1P address of the peer at the other end of the link, Peer Identity field
312 is set to zero. For an RSTACK message, Peer Identity field 312 is set to the
value of the TP address of the Source Address field from the IP header of the
incoming TFMP adjacency protocol message that caused the RSTACK message to be
generated. '

Peer Next Sequence Number field 314 gives the value of the peer’s
Sequence Number field that the sender expects to arrive in the next IFMP
redirection protocol message. If the value of the Peer Next Sequence Number 314
in an incoming IFMP adjacency protocel ACK message is greater than the value of
one plus the value of the Sequence Number (from the iast IFMP redirection
protocol message transmitted out of the port on which the incoming IFMP adjacency
protocol ACK message was received), then the link should be reset.

Address List field 316 is a list of one or more IP addresses that are
assigned to the link by the sender of the IFMP adjacency protocol message. The

list must have at least one entry which is identical to the Source Address of the IP

10

15

20

25

30

WO 97/28505) PCT/US97/01595
44 :

header of the IFMP adjacency protocoi message. The contents of the list are not
used by the IFMP but rather may be made available to the routing protocol.

Fig. 8¢ is a simplified diagram illustrating the operation of a system
node upon receiving a packet with an incoming IFMP adjacency protocol message.
After startup of the system, the system node receives a packet with an incoming
IFMP adjacency protocol message (step 320). At step 322, the system node
determines if the incoming IFMP adjacency protocol message is an RSTACK
message. If the incoming IFMP adjacency protocol message is not an RSTACK
message (e.g., a SYN, SYNACK, or ACK message), then the system node operates
in the manner illustrated in the state diagram of Fig. 8d. If the incoming IFMP
adjacency protocol message is an RSTACK message, then the system node checks at
step 324 whether the Sender Instance and Source IP Address in the incoming
RSTACK message matches the values stored from a previous message by the
Update Peer Verifier operation for the port on which the incoming RSTACK
message was received, For IFMP adjacency protocol, the Update Peer Verifier
operation is defined as storing the Sender Instance and Source IP Address from a
SYN or SYNACK message teceived from the peer on a particufar port. If the
values match from step 324, then the system node determines at step 326 whether
the Peer Instance and Peer Identity in the incoming RSTACK message matches the
values of Sender Instance and Source iP Address currently in use for all SYN,
SYNACK, and ACK messages transmitted out of the port on which the incoming
RSTACK message was received. If the values match from step 326, the system
node determines at step 328 if the system node is in the SYNSENT state. If the
system node is not in the SYNSENT state, the system node proceeds to reset the
link at step 330. If the values do not match from step 324, or the values do not
match from step 326, or the system node is in the SYNSENT state, then the system
node discards the incoming RSTACK message at step 332 and waits for another
packet to arrive. Accordingly when a RSTACK IFMP adjacency protocol message
arrives at a system node, the system node resets the link, as indicated by steps 334,
336, 338, 340, and 342. In step 334, the system node generates a new instance
number for the link. Then the system tode in step 336 deletes the Peer Verifier

(i.e., sets the stored values of Sender Instance and Source IP Address of the peer to

10

15

20

25

30

WO 97/28505 PCT/USY97/01595

45

zero). At step 338, the system node séts the Sequence Number and Peer Next
Sequence Number to zero. The system node then sends a SYN IFMP adjacency
protocol message in step 340, and enters the SYNSENT state in step 342. The
system node then receives another packet for processing.

Fig. 8d is a state diagram illustrating the operation of a sender system
node when the incoming IFMP adjacency protocol message is not an RSTACK
message. For the following description of Fig. 8d, condition "%B" is defined as:
Sender Instance and Source IP Address in the incoming message matches the values
stored from a previous message by the Update Peer Verifier operation for the port
on which the incoming IFMP adjacency protocol message was received. Condition
"%C" in Fig. 8d is defined as: the Peer Instance and Peer Identity in the incoming
message matches the values of Sender Instance and Source IP Address currently in
use for all SYN, SYNACK, and ACK messages transmitted out of the port on
which the incoming IFMP adjacency protocol message was received. In Fig, 8d,
condition "A" signifies that the sendet system node receives an incoming SYNACK
IFMP adjacency protocol message and that condition %C is met; condition "B*
signifies that the sender system node receives an incoming SYNACK IFMP
adjacency protocol message and that condition %C is not met; condition "C"
signifies that the sender system node receives an incoming ACK IFMP adjacency
protocol message and that conditions %B and %C are both met; and condition "D"
signifies that the sender system node receives an incoming ACK IFMP adjacency
protocol message and that conditions %B and %C are not both met.

If the sender is in the SYNSENT state 350 and receives an incoming
SYN IFMP adjacency protocol message from a peer on the other end of a link, the
sender performs an Update Peer Verifier operation and sends a SYNACK IFMP
adjacency protocol message Lo the peer (indicated as step 352). Then the sender
goes from SYNSENT state 350 to the SYNRCVD state 354. If the sender receives
an incoming SYN IFMP adjacency protocol message while in SYNRCVD state 354,
the sender in step 352 performs an Update Peer Verifier operation and sends a
SYNACK IFMP adjacency protocol message to the peer, but remains in the
SYNRCVD state 354. If the sender is in SYNRCVD state 354 and either condition
B or condition D is met, then the sender sends an RSTACK IFMP adjacency

10

15

20

25

30

WO 97128505 PCT/US97/01595
46

protocol message to the peer (indicated as step 356), and remains in SYNRCVD
state 354. If the sender is in the SYNRCVD state 354 and condition C is met, then
the sender sends an ACK IFMP adjacency protocol message to the peer (indicated
as step 358), and-moves to the ESTAB state 360. If the sender is in SYNRCVD
state 354 and condition A is met, then the sender performs an Update Peer
Identifier operation and sends an ACK IFMP adjacency protocol message to the
peer (indicated as step 362), and moves to ESTAB state 360. The sender is and
remains in ESTAB state 360, if the sender receives either a SYN or SYNACK
IFMP adjacency protocol message or if condition C is met. If condition D is met
while the sender is in ESTAB state 360, then the sender remains in ESTAB state
360 and sends a RSTACK IFMP adjacency protocol message (indicated as step
356). While in ‘SYNSENT state 350, if either the sender receives an ACK IFMP
adjacency protocol message or condition B is met, then the sender remains in
SYNSENT state 350 and sends a RSTACK IFMP adjacency protocol message (step
356). If condition A is met when the sender is in SYNSENT state 350, then the
sender performs an Update Peer Verifier operation and sends an ACK IFMP
adjacency protocol message {step 362) and enters ESTAB state 360.

As discussed above, the IFMP redirection protocol is used to send
redirection messages across a link, after the system has used the IFMP adjacency
protocol to identify other system nodes at the other end of a link and to achieve
state synchronization across a link. Any IFMP redirection message received over a
link that has not currently achieved state synchronization must be discarded.

Fig. 9a illustrates the srtmcture of a generic IFMP redireétion
protocol message 380. Like all IFMP adjacency protocol messages, all IFMP
redirection protocol messages are encapsulated within an IP packet. Fig. 8b
illustrates a generic IP packet (in its current version IPv4) with a variable length
Data field into which an IFMP redirection protocol message may be encapsulated.
As an indication that the IP packet contzins an IFMP message, the Protocol field in
the IP header of the encapsulating IP packet must contain the decimal value 101,
and the Time to Live ficld in the header of the IP packet encapsulating the-IFMP
message is set to 1. An IFMP redirection protocol message is sent to the IP address
of the peer at the other end of the link (the IP address being obtained from the

10

15

20

25

30

WO 9728505 i PCT/US97/01595

47

TFMP adjacency protocol), using the If’ address in the Destination Address field of
the IP header. As seen in Fig. 9a, an IFMP redirection protocol message 380
includes (described in order of MSB to L.SB) the following fields: an 8-bit Version
(382), an 8-bit Op Code (384), and a 16-bit Checksum (386) as the first 32-bit
word; Sender Instance (388) as the second 32-bit word; Peer Instance (390) as the
third 32-bit word; Sequence Number (392) as the fourth 32-bit word; and a Message
Body (394) which is a field of a variable number of 32-bit words.

In an IFMP redirection protocol message, Version field 382 specifies
the version of the IFMP protocol which is currently in use (as other versions may
evolve). Op Code 384 specifies the function of the IFMP redirection protoco!
message. In the present embodiment, there are five possible Op Codes, i.c.,
functions of IFMP redirection protocol messages: REDIRECT (redirect flow
message, Op Code = 4), RECLAIM (reclaim label message, Op Code = 5),
RECLAIM ACK (reclaim label acknowledge message, Op Code = 6), LABEL
RANGE (label range message, Op Code = 7), and ERROR (error message, Op
Code = §).

Checksum 386 is the 16-bit one’s complement of the one’s
complement sum of: the source address, destination address and protocol fields from
the TP packet encapsulating the IFMP redirection protocol message, and the total
length of the IFMP re(iirection protocol message. Checksum 386 is used by the
syétcm for error control purposes.

In IFMP redirection protocol messages, Sender Instance 388 is the
sender’s instance number for the link, as obtained from the IFMP adjacency
protocol. In IFMP redirection protocol messages, Peer Instance field 390 is what
the sender believes is the peer’s current instance number for the link, as obtained
from the IFMP adjacency protocol.

Sequence Number field 392 allows the system node receiving the
IFMP redirection protocol message to process IFMP redirection protocol messages
in order. Sequence Number 392 is incremented by one, modula 2%, for every
IFMP redirection protccol message sent across a link. The IFMP adjacency

protocol sets the Sequence Number to zero when the link is reset,

10

15

20

25

30

WO 97/28505 PCTIS97/01595

48
Message Body field 316 contains a list of one or more IEMP

redirection protocol message elements. All of the message elements in the list have
the same message type because Op Code field 384 applies to the entire IFMP
redirection protocol message. The number of message elements included in a single
packet must not cause the total size of the IFMP redirection protocol message to
exceed the maximum transmission unit (MTU) size of the underlying data link. For
Label Range or Error IFMP redirection protocol messages, a single message
element is used.

Fig. Ob is a general diagram describing the operation of a system
node upon receiving an IFMP redirection protocol message. After startup, the
system node receives a packet encapsulating an IFMP redirection protocol message
at step 400. In step 402, the system node checks if the IFMP adjacency protacol
has currently achieved state synchronization for the link. If state synchronization is
not achieved, the system node discards the packet encapsulating the received IFMP
redirection protocol message (indicated by step 404). If state synchronization is
achieved, the system node in step 406 checks the Source TP Address from the IP
header, the Sender Instance 388, and the Peer Instance 390 of the JEMP redirection
protocol message packet. If the system node at step 408 determines that the Sender
Instance 388 and Source IP Address fields of the incoming IFMP redirection
pr(;tocol message do not match the values stored by the Update Peer Verifier
operation of the IFMP adjacency protocol for the port on which the incoming IFMP
redirection protocol message is received, the system node discards the incoming
IFMP redirection protocol message packet (step 404), If the values match in step
408, then the system node determines in step 410 whether the Peer Instance field
390 matches the current value for the Sender Instance of the IFMP adjacency
protocol. If the values do not match in step 408, then the system node discards the
packet (step 404). However, if the values do match in step 408, then the system
node continues (step 412) to process the received IFMP redirection protocol
Message as necessary.

As discussed generally above, an IFMP redirection protocol message
may be a REDIRECT message, which is used to instruct an adjacent node to attach

one or more labels to packets belonging to one or more specified flows each for a

10

15

20

25

30

WO 97/28503 PCT/US97/01595

49

specified period of time. The system node receiving a REDIRECT message from a
downstream node decides whether or not to accept the redirection request made by
the REDIRECT message and redirect a flow. The REDIRECT message is not
acknowledged in a formal manner. Rather, the actual redirection of packets having
attached labels for specified flows indicates the system node’s acceptance of the
rédirection request made by the REDIRECT message. Each REDIRECT message
element in the Message Body 394 of the REDIRECT message has the structure
shown in Fig. 9c. Described from MSB to LSB, REDIRECT message element 420
includes 8-bit Flow Type ficld 422, 8-bit Flow ID Length ficld 424, and 16-bit
Lifetime field 426 in a first 32-bit word; 32-bit Label field 428 as the second 32-bit
word; and Flow Identifier 430 which is field of integer multiples of 32-bit words.
Flow Type field 422 specifies the flow type of the flow identifier contained in Flow
Identifier field 430, and Flow ID Length field 424 specifies the length of the Flow
Identifier field 430 in integer multiples of 32-bit words. The Lifetime field 426
specifies the length of time (seconds) for which the redirection is valid, As
described generally above, afier the expiration of the time period specified in the
Lifetime field 426, the association of flow identifier and label should be discarded.
The Label field 428 contains the label for the specified flow, with the format of the
label depending on the type of physical link across which the IFMP redirection
protocol message is sent. The Flow Identifier field 430 identifies the flow with
which the specified label in the Label field 428 should be associated.

In IFMP redirection protocol message elements, Flow Type 0 has
Flow Type = 0 and Flow ID Length = 0; Flow Type 1 has Flow Typelh: 1 and
Flow ID Length = 4; and Flow Type 2 has Flow Type = 2 and Flow ID Length =
3.

The general operation of REDIRECT messages by sender and peer
nodes has been discussed in detail 2bove. In addition, other features of the
REDIRECT message element include label management and error control. If the
label in Label field 428 of REDIRECT message element 420 is outside the range
that can be handled across the relevant link, a LABEL RANGE message may be
returned to the sender of the REDIRECT message element. The LABEL RANGE

message informs the sender of the range of labels that may be sent across the link.

10

15

20

25

30

WO 97/28505] PCT/US97/01595

50

If a system node receives 2 REDIRECT message element specifying a flow that is
already redirected, the system node checks the Label field in the received
REDIRECT message element against the label stored for the redirected flow. If the
labels match, then the system node resets the lifetime of the redirected flow to that
contained in Lifetime field 426 of the received REDIRECT message element. If
the labels do not match, then the system node ignores the received REDIREC'T
message ¢lement and the flow is returned to the default state, If the system node
detects an error in any of the fields in REDIRECT message element, that particular
errored REDIRECT message element is discarded. However, any other error-free
REDIRECT message elements that may be in the same IFMP REDIRECT Message
Body are not discarded or affected in any way. The system node returns an
ERROR message to the adjacent node that sent the errored REDIRECT message
element if the system node does not understand the version of the [FMP protocol in
the reccived IFMP message. Also, if the system node does not understand a Flow
Type in any of the REDIRECT message elements in the received IEMP message,
the system node sends an ERROR message for each Flow Type that is not
understood to the adjacent node that sent each particular REDIRECT message
element.

As discussed generally above, an IFMP redirection protocol message
may be a RECLAIM message, which is vsed to instruct an adjacent node to unbind
or disassociate one or more flows from the labels to which they may be currently
bound, and to release the labels for reuse. The system node receiving a RECLAIM
message eleinent from a downstream node therefore releases the label and sends to
the downstream node 2 RECLAIM ACK message element as formal
acknowledgement of the RECLAIM message. Each RECLAIM message element in
the Message Body 394 of a RECLAIM message has the structure shown in Fig. 9d.
Described from MSB to LSB, RECLAIM message element 432 includes 8-bit Flow
Type field 434, 8-bit Flow ID Length field 436, and 16-bit Reserved field 438 in a
first 32-bit word; 32-bit Label field 440 as the second 32-bit word; and Flow
Identifier 442 which is field of integer-multiples of 32-bit words. Flow Type field
434 specifies the flow type of the flow identifier contained in Flow Identifier field
442, and Flow ID Length field 436 specifies the length of the Fiow Identifier field

10

15

20

25

30

WO 97128505 PCT/US97/01595
31

442 in integer multiples of 32-bit word-s. In the present embodiment, the Reserved
field 438 is unused and set to zero by the system node sending the RECLAIM
message element, and is ignored by the system node receiving the RECLAIM
message element. The Label field 440 contains the label to be released. The Flow
Identifier field 442 identifies the flow with which the specified label in the Labe]
field 440 should be unbound. Each RECLAIM message element applies to a single
flow and a single label. After a system node receives a RECLAIM message
element, unbinds a flow from a label, returns the flow to the default forwarding
state, and releases the label, the system node must issue a RECLAIM ACK message
element. RECLAIM ACK message elements may be grouped together into one or
more RECLAIM ACK messages and returned to the sender as acknowledgement of
the completion of the reclaim operation.

In addition, other features of the RECLAIM message element include
label management and error control. If a system node receives a RECLAIM
message element specifying an unknown flow, then the system node returns a
RECLAIM ACK message element with the same Label 440 and Flow Identifier 442
fields to the sender of the RECLAIM message element. If the system node receives
a2 RECLAIM message element that indicates a known flow but a label in Label field
44(that is not currently bound to that flow, then the system node unbinds that flow
and returns that flow to a default forwarding state, as well as issuing a RECLAIM
ACK message element containing the actual label to which the flow was previously
bound to the sender of the RECLAIM message element. If the system node detects
an error in any of the fields in the RECLAIM message element, that particular
errored RECLAIM message element is discarded. However, any other error-free
RECLAIM message elements that may be in the same IFMP RECLAIM Message
Body are not discarded or affected in any way. The system node returns an
ERROR message to the adjacent node that sent the errored RECLAIM message
element if the system node does not understand the version of the IFMP protocol in
the received IFMP message. Also, if the system node does not understand a Flow
Type in any of the RECLAIM message elements in the received IFMP message, the
system node sends an- ERROR message for each Flow Type that is not understood

to the adjacent node that sent each particular RECLAIM message element.

10

15

20

25

30

WO 97/28505 PCT/US97/01595
52

As mentioned-above, an IFMP redirection protocol message may be a
RECLAIM ACK message, which is used to acknowledge the successful release of
one or more reclaimed labels. After a system node receiving a RECLAIM message
element from a downstream node releases the label, 2a RECLAIM ACK message
element is sent to the node that sent the RECLAIM message element. If possible,
each RECLAIM ACK message element should not be sent until all data queued for
transmission on the link, using the label specified for release, has been sent. Each
RECLAIM ACK message ¢lement in the Message Body 394 of a RECLAIM ACK
message has the structure shown in Fig. 9e. Described from MSB to LSB,
RECLAIM ACK message element 444 includes 8-bit Flow Type field 446, 8-bit
Flow ID Length field 448, and 16-bit Reserved field 450 in a first 32-bit word; 32-
bit Label field 452 as the second 32-bit word; and Flow Identifier 454 which is field
of integer multiples of 32-bit words. Flow Type field 446 specifies the flow type of
the flow identifier contained in Flow Identifier field 454, and Flow ID Length field
448 specifies the length of the Flow Identifier field 454 in integer multiples of 32-
bit words. In the present embodiment, the Reserved field 450 is unused and set to
zero by the system node sending the RECLAIM ACK message ¢lement, and is
ignored by the system node receiving the RECLAIM ACK message element. The
Label field 452 contains the label released from the flow specified by the Flow
Identifier field 454. The Flow Identifier field 454 contains the Flow Identifier from
the RECLAIM message element that requested release of the label specified in the
Label field 452,

Other features of the RECLLAIM ACK message elerﬁcnt include label
management and error control. If a system node receives a RECLAIM ACK
message element specifying a flow for which no RECLAIM message element was
issued, that RECLAIM ACK message element is ignored. If a system node
receives a RECLAIM ACK message element specifying a different label from the
label sent in the RECLLAIM message for that flow, the system node handles the
received RECLAIM ACK message element as if the reclaim operation for the label
sent in the RECLAIM message were successful. If the systzm node detects an error
in any of the fields in the RECLAIM ACK message element, that particular errored
RECLAIM ACK message element is discarded. However, any other error-free

10

15

20

25

30

WO 97/28505 i PCT/US97/01595

53
RECLAIM ACK message elements that may be in the same IFMP RECLAIM ACK

Message Body are not discarded or affected in any way. The systemn node remyrns
an ERROR message to the adjacent node that sent the errored RECLAIM ACK
message element if the system node does not understand the version of the IFMP
protocol in the received IFMP message. Also, if the system nede does not
understand a Flow Type in any of the RECLAIM ACK message elements in the
teceived IFMP message, the system node sends an ERROR message for each Flow
Type that is not understood to the adjacent node that sent each particniar RECLAIM
ACK message element.

As discussed above, an IFMP redirection protocol message may be a
LABEL RANGE message, which is used in response to a REDIRECT message if
the labet requested in one or more of the REDIRECT message elements is cutside
the range that the system node receiving the REDIRECT message can handle. The
LABEL RANGE message informs the sender of the REDIRECT message of the
label range that can be handled on that link, A single LABEL RANGE message
element is used in a LABEL RANGE message. The LABEL RANGE message
element in the Message Body 394 of a LABEL RANGE message has the structure
shown in Fig. 9f. LABEL RANGE message element 456 includes Minimum Label
field 458 as a first 32-bit word, anq Maximum Label field 460 as a second 32-bit
word. Minimum Label field 458 and Maximum Label field 460, respectively, are
the minimum and maximum value of label that can be specified in an IFMP
redirection protocol message across a particular link. Only those values of labels
within'the range from Minimum Labef to Maximum Label (inclusive) may be
specified in the IFMP redirection protocol message across the link.

As described above, an IFMP reditection protocol message may also
be an ERROR message, which may be sent in response to any IFMP redirection
protocol message. A single ERROR message element is used in an ERROR
message. The ERROR message element in the Message Body 394 of an ERROR
message has the structure shown in Fig. 9g. Described from MSB to LSB, ERROR
message element 462 includes 8-bit Etror Code field 464 and 24-bit Parameter field
466 as a 32-bit word. Frror Code field 464 specifies what type of error has

occurred. Each ERROR message may specify a single Parameter. If a system node

10

15

20

25

30

WO 97/28505 PCT/US97/01595
' 54

detects an error in any of the fields in an IFMP redirection protocol message
element, that particular errored message element is discarded and an ERROR
message is issued. If the system node cannot process or does not understand the
particular vetsicn of the IFMP protocol in the received IFMP message, the system -
node sends an ERROR message with Error Code 464 set to the value 1 and with
Parameter 466 providing the most recent version of IFMP protocol that the sender
is able to understand or process. Also, if the system node does not understand a
Flow Type in any of the received IFMP redirect protocol message elements that
caused the error, the system node sends an ERROR message with Error Code 464

- set to the value 2 and with Parameter 466 providing the Flow Type that caused the

€rror.

2. Flow Labelled Transmission on ATM Data Links

The present invention uses ATM data links to transmit IP packets
between system nodes. Packets transmitted on the ATM data links are flow labelled
and are encapsulated differently depending on the type of flow, as mentioned above.
Using flow classification, the present invention efficiently permits different types of
flows to be handled differently (tayer 2 routing or layer 3 switching), depending on
the type of flow. In addition, each flow type also specifies an encapsulation that is
to be used after this type of flow is redirected. In the present embodiment, the
system uses encapsulations for ATM data Iinks, as described in detail herein. Of
course, encapsulations for each flow type may be specified for different data link
technologies fbr the different hardware switching engines that may be used with the
present invention.

A particular flow of packets may be associated with a particular ATM
label. Fig. 10a illustrates the format of the 32-bit Label field for ATM labels in the
present system. As discussed previously, a label is a virtual path identifier and
virtual channel identifier (VPI/VCI), assuming unidirectional virmal channels.
Described from MSB to LSB, ATM Label field 470 shown in Fig. 10a includes 4-
-bit Reserved ficld 472, 12-bit VPI field 474, and 16 bit VCI field 476. In the
present embodiment, Reserved field 472 is set to zero by the sender system node

and ignored by the system node receiving the ATM label, For a link that does not

10

15

20

25

30

WO 97/28505 7 PCT/US97/01595
55
support a full 12-bit VPI, the unused b.its in the VPI field 474 are the MSBs in the
field 474 and are set to zero. Also, for a link that does not support a full 16-bit
VCI, the unused bits in the VCI field 476 are the MSBs in the field 476 and are set
to Zero.

For any packets in a ﬂoﬁ that is not redirected, a system node uses a
default encapsulation for the IP packets. If a system node decides that a particular
flow type will be redirected, the system node uses an encapsulation particular to
each flow type. Upon redirecting a flow, a system node changes the encapsulation
used for the redirected flow from the default encapsulation normally used, Rather
than using the default encapsulation used for IP packets on the default forwarding
channel, the system node uses a different type of encapsulation depending on the
flow type that is redirected. It is recognized that an ATM encapsulated IP packet
may be an IP packet that is itself encapsulating an IFMP message to and/or from a
host computer/server/workstation running a subset of the system software, a basic
switching unit, or a switch gateway unit.

As discussed above, in an embodiment of the present invention, three
flow types are specified: Flow Type O, Flow Type 1, and Flow Type 2. Flow Type
0 is used to change the encapsulation of IP packets from the defaulr encapsulation.
Flow Type 1 is used for packets carrying data between applications running on
stations. Flow Type 2 is used for packets carry.ing data between stations without
identifying the applications that may be running on the stations.

In the present invention, the default encapsulation for IP packets on
ATM data links is the Logical Link Control/SubNetwork Attachment Point
(LLC/SNAP) encapsulation shown in Fig. 10b. Fig. 10b illustrates a default
encapsulated IP packet 480. Basically, the default encapsulation prefixes an

-LLC/SNAP header to the IP packet which is encapsulated within the payload of an
ATM Adaptation Layer type 5 Common Part Convergence Sublayer Protocol Data
Unit (AAL-5 CPCS-PDU). Described from MSB to LSB, default encapsulated IP
packet 480 includes an LLC/SNAP header (24-bit LLC field 482 followed by an 8-
bit portion of SNAP header 484 in the first 32-bit word, and the remaining 32-bit
word portion of SNAP header 484), IP packet 486 (which has a length of an integer
multiple of 32-bit words), Pad_ﬁéld 488, and AAL-5 CPCS-PDU Trailer field 490.

10

15

20

25

30

WO 97/28505 PCT/US97/01595
' 56

Pagi field 488 may range from O to 47 -octcts, and Trailer field 490 is 8 octets (four
32-bit words). The MOTU of the IP packet 486 using default encapsulation is 1500
octets. The packets using default encapsulation are sent to a predefined VPI/VCI
(VPI = 0, VCI = 15, which is the default VPI/VCI according to a specific
embodiment (i.e., the packets are forwarded on default virtual channel).

Flow Type 0 encapsulation is used to change the encapsulation of [P
packets from the default encapsulation. Fig. 10c illustrates a Flow Type 0
encapsulated 1P packet 492. IP packets using Flow Type 0 are encapsulated directly
in:the payload of an AAL-5 CPCS-PDU without a prefixed LLC/SNAP header.
Described from MSB to LSB, Flow Type 0 encapsulated IP packet 492 includes IP
packet 494 (which has a length of an integer multiple of 32-bit words), Pad field
496, and AAL-5 CPCS-PDU Trailer field 498. Pad field 496 may range from 0 to
47 octets, and Trailer field 498 is 8 octets (four 32-bit words). The MOTU of the
IP packet 494 using Flow Type 0 encapsulation is 1500 octets. The packets
belonging to the flow redirected from the default virtual channel use Flow Type 0
encapsulation and are sent to the VPI/VCI specified in the Label field of the [FMP
REDIRECT message clement encapsulated in IP packet 494 (the IFMP REDIRECT
message element encapsulated in IP packet 494 is sent in Flow Type 0
encapsulation).

Default and Flow Type 0 exicapsulations do not involve removal of
any. fields from the IP packet being encapsulated, However, Flow Type 1 and Flow
Type 2 "encapsulations” involve removal of certain fields from the IP packet.

When these fields are removed, the system node that issued the REDIRECT
message stores the removed fields and associates the fields with the ATM virtual
channel specified in the ATM Iabel. Accordingly, a complete IP packet may be
reconstructed at a destination using the incoming ATM label to access the stored -
fields,

Flow Type 1 is used for packets carrying data between applications
running on stations. Fig. 10d illustrates a Flow Type 1 encapsulated IP packet. IP
packets using Flow Type_1 encapsulation are essentially disassembied and selected
portions of the disassembled IP packet are encapsulated directly in the payload of an
AAL-5 CPCS-PDU, without a prefixed LLC/SNAP header. Described from MSB

10

15

20

25

30

WO 97/28505 PCTUSHTN01595

57

to LSB, Flow Type 1 encapsulated IP packet 500 includes 16-bit Total Length field
502 and 16-bit Identification field 504 from the IP header of the disassembled IP
packet, as a first 32-bit word. The value of the Total Length field 502 is not
changed, but remains the total length of the IP packet before disassembly. Flow
Type 1 encapsulated IP packet 500 also includes the 8-bit Flags field 506, 12-bit
Fragment Offset field 508, and 16-bit Checksum field 510 from the IP header of the
disassembled IP packet, as a second 32-bit word. The transmitted value of
Checksum field 510 is the checksum value that would have been computed for the
entire IP header if the TTL field had been set to zero. The Version, IHL, TOS,
TTL, Protocol, Source Address, and Destination Address fields in the IP header are
not transmitted as part of the Flow Type 1 encapsulated IP packet 500. In addition,
the first four octets immediately following the IP header (as determined by the THL)
are not transmitted as part of the Flow Type I encapsulated IP packet 500. These
first four octets correspond to the source port and destination port for TCP and
UDP datagrams, as an example. The soarce port and destination port fields identify
the applications running on the stations. Further, Flow Type 1 encapsulated IP
packet 500 includes Data 512. Data field 512 is followed by Pad field 514 and
AAL-5 CPCS-PDU Trailer field 516. Pad field 514 may range from 0 to 47 octets,
and Trailer field 516 is 8 octets (four 32-bit words). The MOTU of the IP packet
using Flow Type | encapsulation is 1484 octets. The packets belonging to the flow
redirected using Flow Type 1 encapsulation are sent to the VPI/VCI specified in the
Label field of the corresponding Flow Type 1 IFMP REDIRECT message element
encapsulated in the disassembled IP packet (the Label field ﬁnay be configured to
correspond to the source and destination port fields in the TCP or UDP messages).
Flow Type 2 is used for packets carrying data between stations
without regard to what applications are running on the stations. Fig. 10e illustrates
a Flow Type 2 encapsulated IP packet. IP packets using Flow Type 2 encapsulation
are essentially disassembled and selected portions of the disassembled IP packet are
encapsulated directly in the payload of an AAL-5 CPCS-PDU, without a prefixed
LLC/SNAP header. Described from MSB to LSB, Flow Type 2 encapsulated IP
packet 520 includes 16-bit Total Length field 522 and 16-bit Identification field 524
from the IP header of the disassembled IP packet, as a first 32-bit word. The value

1G

15

20

25

30

WO 5728505 PCT/US97101595
58

of the Total Length field 522 is not chénged, but remains the total length of the IP
packet before disassembly. Flow Type 2 encapsulated IP packet 520 also includes
the 8-bit Flags fieid 526, 12-bit Fragment Offset field 528, and 16-bit Checksum
field 530 from the IP header of the disassembled IP packet, as a second 32-bit
word. The transmitted value of Checksum field 530 is the checksum valye that
would have been computed for the entire IP header if the TTL field had been set to
zero. The Version, [HL, TOS, TTL, Protocol, Source Address, and Destination
Address fields in the IP header are not transmitted as part of the Flow Type 2
encapsulated IP packet 520. Unlike Flow Type 1 encapsulation, the first four octets
immediately following the IP header (as determined by the IHL) are transmitted as
part of the Flow Type 2 encapsulated IP packet 520. Further, Flow Type 2
encapsulated IP packet 520 includes Data 532. Data ﬁeld 532 is followed by Pad
field 534 and AAL-5 CPCS-PDU Trailer field 536. Pad field 534 may range from
0 to 47 octets, and Trailer field 536 is 8 octets (four 32-bit words). The MOTU of
the IP packet using Flow Type 2 encapsulation is 1488 octets. The packets
belonging to the flow redirected using Flow Type 2 encapsulation are sent to the
VPI/VCI specified in the Label field of the corresponding Flow Type 2 IFMP
REDIRECT message element encapsulated in the disassembled IP packet.
For Flow Type 0, Flow Type 1, and Flow Type 2 encapsulations, the
system node that accepts an IFMP REDIRECT message sent by 2 downstream node
- stores the removed fields and associates the fields with the ATM virtual channel
specificd by ATM label to enable cached access information for redirected packets,

as discussed above.

B. GSMP
The system software also utilizes the GSMP protocol to establish
communication over the ATM link between the switch controller and ATM
hardware switching engine of a basic switching unit of the system and thereby
enable layer 2 switching when possible and layer 3 IP routing when necessary. In
particular, GSMP, a general purpose asymmetric protocol to control an ATM -
switch, runs on a virtual channel established at initialization across the ATM link

between the switch controller and the ATM switch. A single switch controller may

10

15

20

25

30

WO 9728505 PCT/US97/01595
59 :

useimultiple instantiations of GSMP over separate virtual channels to control
multiple ATM switches. GSMP also includes a GSMP adjacency protocol. The
GSMP adjacency protocol is used to synchronize state across the ATM link between
the switch controller and the ATM switch, to discover the identity of the entity at
the other end of the link, and to detect changes in the identity of that entity.

GSMP allows the switch controller to establish and release
connections across the ATM switch, add and delete leaves on a point-to-multipoint
connection, manage switch ports, request configuration information, and request
statistics. GSMP also allows the ATM switch to inform the switch controller of
events such as a link going down.

As stated earlier, GSMP is a master-slave protocol. The switch
controller issues request messages to the switch. Each request message indicates
whether a response from the switch is required and contains a transaction identifier
to enable the response to be associated with the particular request. The switch
replies with a response message indicating success or failure. In the present
embodiment, GSMP has five classes of messages: Connection Management, Port
Management, Statistics, Configuration, and Event. Except for the Event message
class, the other four classes are request-response message classes, each having a
format for the request message and a format for the success response. Unless
otherwise indicated, a failure response message is the same as the request message
that caused the failure except that the Code field indicates the nature of the failure.
In addition to the four request-response message classes, GSMP includes an Event
message class, that enables the switch to generate asynchronous Event messagés to
inform the switch controller of asynchronous events. As Event messages are not
acknowledged by the switch controller, Event messages have a single format, In
the present embodiment, there are many different message types, i.e., functions of
GSMP messages. Each of the five GSMP message classes, except for Port
Management, has a number of different message types.

Also, GSMP includes the GSMP adjacency protocol message, which
is allocated a particular message type. The GSMP adjacency protocal is used to
establish synchronization across the ATM link and maintain a handshake. Except

for GSMP adjacency protocol messages, no other GSMP messages may be sent

10

15

20

25

30

W0 97128505 PCT/US97/01595

60

ac;oss the ATM link until the GSMP ;!djacency protocol has achieved state
synchronization. All GSMP messages received on the ATM link that does not
currently have state synchronization are discarded,

In the present invention, GSMP packets are variable length and
encapsulated directly in an AAL-5 CPCS-PDU with a prefixed LLC/SNAP header,
in a similar manner as the default encapsulation for [P packets on ATM data links
described above in relation to Fig. 10b. Fig. 11a illustrates an encapsulated GSMP
packet 540. Basically, the default encapsulation prefixes an LLC/SNAP header to

- the GSMP packet which is encapsulated within the payload of an AAL-5 CPCS-

PDU. Described from MSB to LSB, default encapsulated GSMP packet 540
includes an LLC/SNAP header (24-bit LLC field 542 followed by an 8-bit portion
of SNAP header 544 in the first 32-bit word, and the remaining 32-bit word portion
of SNAP header 544), GSMP message 546 (which has a length of an integer
multiple of 32-bit words), Pad field 548, and AAL-5 CPCS-PDU Trailer field 550,
Pad field 548 may range from 0'to 47 octets, and Trailer field 550 is 8 octets (four
32-bit words), The MOTU of the GSMP message 546 using default encapsulation
is 1500 octets. The packets using default encapsulation are sent to the default
VPI/VC], i.e., the default virtual channel.

Fig. 11b illustrates the structure of a GSMP adjacency protocol
message 352 that may be contained in GSMP Message field 546 of the encapsulated
GSMP packet 540 in Fig. 11a. As seen in Fig. 11b, a GSMP adjacency protocol
message 352 includes (described in order of MSB to LSB) the following fields: an
8-bit Version field 554, an 8-bit Message Type field 556, an 8-bit Result field 558,
and an 8-bit Code field 560 as a first 32-bit word; Sender Instance field 562 as a
second 32-bit word; Sender Port field 564 as a third 32-bit word; Sender Name
field 566 as the next 48 bits; Receiver Name field 568 as the next 48 bits; Receiver
Port field 570 as the next 32 bits; and Receiver Instance field 572 as the next 32
bits. In discussing GSMP messages, a "sender” is the entity which sends the GSMP
message, and a “peer” is the entity to which the sender sends the GSMP message
over the ATM link. An entity may be a switch controller or ATM switch.

In a GSMP adjacency protocol message 552, Version field 554

specifies the version of the GSMP protocol which is currently in use (as other

WO 97/28505] PCT/US97101595

10

15

20

25

30

61

versions may evolve). Message Type field 554 is set to a particular value {Message ‘
Type = 96) to specify the GSMP message as being a2 GSMP adjacency protocoi
message. Not used for GSMP adjacency protocol messages, Result field 556 is set
to zero by a sender entity and ignored by the entity receiving the GSMP adjacency
protocol message.

Code field 560 for GSMP adjacency protocol messages specifies the
function of the message. In the present embodiment, there are four possible values
for Code field 560, i.e., functions of GSMP adjacency protocol messages: SYN
(synchronization message, Code = 0), SYNACK (synchronization acknowledge
message, Code = 1), RSTACK (reset acknowledge message, Code = 2), and ACK
(acknowledge message, Code = 3). In each entity, a timer is required for the
periodic generation of SYN, SYNACK, and ACK GSMP messages. For GSMP
adjacency protocol purposes, an entity has three possible states for a particular link;
SYNSENT (synchronization message sent), SYNRCVD (synchronization message
received), ESTAB (synchronization established). State synchronization across a link
(when an entity reaches the ESTAB state for a link) is required before the entities
may send GSMP messages that are not GSMP adjacency protocol messages, In the
present embodiment, the period of the timer is one second, but other periods may
be specified. If the timer expires and the sender entity is in the SYNSENT state,
the sender entity resets the timer and sends a SYN GSMP adjacency protocol
message. If the timer expires and the sender entity is in the SYNRCVD state, the
sender entity resets the timer and sends a SYNACK GSMP adjacency protocol
message. If the t‘imer expires and the sender entity ‘is in the ESTAB state, the
sender entity resets the timer and sends an ACK GSMP adjacency protocol
message.

In SYN, SYNACK, and ACK GSMP adjacency protocol messages,
Sender Instance 562 is the sender entity’s instance number for the link. Indicating a
specific instance of a link, an instance number is a 32-bit non-zero number that is
guaranteed to be unique within the recent past, and to change when the link comes
back after going down or when the identity of the entity at the other end of the link
changes. Accordingly, each link has its own unique instance number. Sender

Instance 562 is used to detect when a link comes back after going down, or when

10

15

20

25

30

WO 9728505 PCTIUS97/01595

62
the identity of an entity at the other end of the ATM link changes. For a RSTACK

GSMP adjacency protocol message, Sender Instance 562 is set to the value of the
Receiver Instance field 572 from the incoming GSMP adjacency protocol message
that caused the RSTACK message 1o be generated,

In SYN, SYNACK, and ACK GSMP adjacency protocol messages,
Sender Port field 564 is the local port number of the link across which the GSMP
message is being sent. As discussed above, port numbers are locally assigned 32-
bit values. For RSTACK GSMP adjacency protocol messages, Sender Port field
564 is set to the value of the Receiver Port field 570 from the incoming GSMP
adjacency protocol message that caused the RSTACK message to be generated.

For SYN, SYNACK, and ACK GSMP adjacency protocol messages,
Sender Name field 566 is the name of the sender entity. The 48-bit Sender Name
566 is unique within the operational context of the basic switching unit. For
example, an IEEE 802 MAC address may be used for the Sender Name field. For
a8 RSTACK GSMP adjacency protocol message, the Sender Name field 566 is set to
the value of the Receiver Name field 566 from the incoming GSMP adjacency
protocol message that caused the RSTACK message to be generated.

For SYN, SYNACK, and ACK GSMP adjacency protocol messages,

Receiver Name field 568 is the name of the entity that the sender entity believes is

on the other end of the ATM link. If the sender entity does not know the name of

that entity, Receiver Name field 568 is set to zero, For a RSTACK GSMP

adjacency protocol message, the Receiver Name field 568 is set to the value of the

Sender Name field 566 from the incoming GSMP adjacency protocol message that
caused the RSTACK message to be generated.

In SYN, SYNACK, and ACK GSMP adjacency protocol messages,
Receiver Port field 570 is what the sender entity believes is the local port number
for the link that has been allocated by the entity at the other end of the link. If the
sender entity does not know the port number of that entity, Receiver Port field 570

s set to zero. For RSTACK GSMP adjacency protocol messages, Receiver Port

field 570 is set to the value of the Sender Port field 564 from the incoming GSMP

adjacency protocol message that caused the RSTACK miessage to be generated.

10

15

20

25

30

WO 97/28505 PCT/US97/01595

63
In SYN, SYNACK, and ACK GSMP adjacency protocol messages,

Receiver Instance 572 is what the sender entity believes is the current instance
number for the link that has been allocated by the entity at the other end of the link,
If the sender entity does not know the current instance number at the other end of
the link, Receiver Instance field 572 is set to zero. For a RSTACK GSMP
adjacency protocol message, Receiver Instance 572 is set to the value of the Sender
Instance field 562 from the incoming GSMP adjacency protocol message that caused
the RSTACK message to be generated.

Fig. 11c is a simplified diagram illustrating the operation of a sender
entity upon receiving an incoming GSMP adjacency protocol message. After
startup, the sender entity receives a GSMP adjacency protocol packet at step 582.
At step 584, the sender entity determines if the incoming GSMP adjacency protocol
message is a RSTACK message. If the incoming GSMP adjacency protocol
message is not a RSTACK message (e.g., a SYN, SYNACK, or ACK message),
then the sender entity operates in the manner illustrated in the state diagram of Fig,
11d. If the incoming GSMF adjacency protocol message is a RSTACK message,
then the sender entity checks at siep 584 whether the Sender Instance, Sender Port,
and Sender Name fields in the incoming message match the values stored from a
previous message by the Update Peer Verifier operation. For the GSMP adjacency
protocol, the Update Peer Verifier operation is defined as: storing the values of the
Sender Instance, Sender Port, and Sender Name fields from a SYN or SYNACK
message received from the entity at the other end of the link. If the values match
from step 584, then the sender entity determines at step 586 whether the Receiver
Instance, Receiver Port, and Receiver Name fields in the incoming RSTACK
message match the values of Sender Instance, Sender Port, and Sender Name fields
currently sent in outgoing SYN, SYNACK, and ACK messages for that the port on
which the incoming RSTACK message was received. If the values match from step
386, the sender entity determines at step 588 if the sender entity is in the
SYNSENT state. If the sender entity is not in the SYNSENT state, the sender
entity proceeds to reset the link at step 590. If the values do not match from-step
584, or the values do not match from step 586, or the sender entity is in the

SYNSENT state, then the sender entity discards the incoming RSTACK message at

10

15

20

25

30

WO 97/28505 PCT/US97/01595
64

step 592 and waits for another packet to arrive. Accordingly when a RSTACK
GSMP adjacency protocot message arrives at a sender entity, the sender entity
resets the [ink, as indicated by steps 594, 596, 598, and 600. In step 594, the
sender entity generates a new instance number for the link. Then the sender entity
in step 596 deletes (i.e., sets to zero) the stored values of Sender Instance, Sender
Port, and Sender Name previously stored by the Update Peer Verifier operation. At
step 598, the sender entity then sends a SYN GSMP adjacency protocol message,
and enters the SYNSENT state in step 600. The sender emtity then receives another
packet for processing,

Fig. 11d is a state diagram illustrating the operation of a sender entity

. when the incoming GSMP adjacency protocol message is not a RSTACK message.
For the following description of Fig. 11d, condition "%B" is defined as: Sender
Instance, Sender Port, and Sender Name fields in the incoming message match the
values stored from a previous message by the Update Peer Verifier operation.

“Condition "%C" in Fig. 11d is defined as: the Receiver Instance, Receiver Port,
and Receiver Name in the incoming message match the values of Sender Instance,
Sender Port, and Sender Name currently sent in outgoing SYN, SYNACK, and
ACK messages. In Fig. 11d, condition "A" signifies that the sender entity receives
an incoming SYNACK GSMP adjacency protocol message and that condition %C is
met; condition "B" signifies that the sender entity receives an incoming SYNACK
GSMP adjacency protocol message and that condition %C is not met; condition "C"
signifies that the sender entity receives an incoming ACK GSMP adjacency protocol
message and that conditions %B and %C are both met; and condition "D" signifies
that the sender entity receives an incoming ACK GSMP adjacency protocol message
and that conditions %B and %C are not both met,

If the sender entity is in the SYNSENT state 602 and receives an
incoming SYN GSMP adjacency protocol message from a peer on the other end of
a link, the sender entity performs an Update Peer Verifier operation and sends a
SYNACK GSMP adjacency protoccl message to the peer (indicated as step 604),
Then the sender goes from SYNSENT state 602 to the SYNRCVD state 606. If the
sender receives an incoming SYN GSMP adjacency protocol message while in
SYNRCVD state 606, the sender in step 604 performs an Update Peer Verifier

10

15

20

25

30

WO 97/28505 PCT/US97/01595

65

operation and sends a SYNACK GSMI; adjacency protocol message to the peer, but
remains in the SYNRCVD state 606. If the sender is in SYNRCVD state 606 and
either condition B or condition D is met, then the sender sends an RSTACK GSMP
adjacency protocol message to the peer (indicated as step 608), and remains in
SYNRCVD state 606. If the sender is in the SYNRCVD state 606 and condition ¢
is met, then the sender sends an ACK GSMP adjacency protocol message to the
peer (indicated as step 610), and moves to the ESTAB state 612. If the sender is in
SYNRCVD state 606 and condition A is met, then the sender performs'an Update
Peer Identifier operation and sends an ACK GSMP adjacency protocol message to
the peer (indicated as step 614), and moves to ESTAB state 612. The sender is and
remains in ESTAB state 612, if the sender receives either 2 SYN or SYNACK
GSMP adjacency protocol message or if condition C is met. If condition D is met
while the sender is in ESTAB state 612, then the sender remains in ESTAR state
612 and sends a RSTACK GSMP adjacency protocol message (indicated as step
608). While in SYNSENT state 602, if either the sender receives an ACK GSMP
adjacency protocol message or condition B is met, then the sender remains in
SYNSENT state 602 and sends a RSTACK GSMP adjacency protocol message (step
608). If condition A is met when the sender is in SYNSENT state 602, then the
sender performs an Update Peer Verifier operation and sends an ACK GSMP
adjacency protocol message (step 614) and enters ESTAB state 612.

In addition to GSMP adjacency protocol messages, other types of
GSMP messages 546 include GSMP Connection Management (CM) messages,
which are request-response messages. In a basic switching unit, switch controller
uses GSMP CM messages to establish, delete, modify, and verify virtual channel
connections across the ATM switch, GSMP CM messages may be issued regardless
of the status of the switch port, and connections may be established or deleted when
a switch port is up, down or otherwise unavailable. Connection Management
messages include: Add Branch, Delete Branch, Delete Tree, Verify Tree, Delete
All, Move Root, and Move Branch. As mentioned earlier, a virtual channel
connection is unidirectional and includes an input virtual channel and at least one
output virtal channel or branch. That is, a unicast virtual connection has one

output branch, and a multicast virtual connection has two or more output branches.

10

15

20

25

30

WO 97/28505 PCTUS97/01595

66
The Add Branch message is 2 GSMP CM message used to establish a

virtual channel connection or to add an additional branch to an existing virtuat
channel connection. In present embodiment, no distinction is made between unicast
and multicast connections. A first Add Branch message for a particular Input Port,
Input VPI, and Input VCI establishes a unicast connection. A second Add Branch
message with the same Input Port, Input VPI, and Input VCI establishes converts
the unicast connection to a multicast connection by adding another output branch.
Other output branches may be added in the same manner with further Add Branch
messages. Also, an Add Branch message may be used to check the connection state
stored in the ATM switch. The Delete Branch message is 2 GSMP CM message
used to delete a single branch ofa virtual channel connection. For example, use of
Delete Branch message on a multicast virtual channel connection with two branches
removes a branch converting the multicast connection into a unicast connection.
The Delete Branch message may also be used to delete a connection by deleting the
last branch in a virtual channel connection. Another GSMP CM message, the
Delete Tree message is used to delete an entire virtual connection by deleting all
remaining branches of the connection. The Verify Tree message is a GSMP CM
message used to verify the number of branches on a virtual channel connection.
The Delete All message is a GSMP CM message that s used to delete all
connections on a switch input port. The Move Root message is 2 GSMP CM
message used to move an entire virtual connection tree from its current Input Port,
Input VPI, and Input VCI, to a new Input Port, Input VPI and Input VCI. Another
GSMP CM message, 'the Move Branch message is used to move a single output
branch of a virtual channel connection from its current Output Port, Qutput VPI,
and output VCI, to a new Output Port, Output VPI, and Output VCI on the same
virtual channel connection.

Fig. 12 illustrates the structure for generic GSMP CM message 620,
used as both request and response for Add Branch, Delete Branch, Delete Tree,
Verify Tree, and Delete All messages. Generic GSMP CM message 620 may be
contained in GSMP Message field 546 of the encapsulated GSMP packet 540 in Fig.
1ia. As seen in Fig. 12, generic GSMP CM message 620 includes (described in
order of MSB to LSB) the following fields: an 8-bit Version field 622, an 8-bit

10

15

20

25

30

WO 97/28505 . PCT/US97/01595
67

Message Type field 624, an 8-bit Result field 626, and an 8-bit Code field 628 32-
bit word Transaction Identifier field 630; 32-bit word Port Session Number field
632; 32-bit word Input Port field 634; 32-bit word Input Label field that includes 4-
bit word 636 set to zero, 12-bit Input VPI field 638, and 16-bit Input VCI field 640;
32-bit word Output Port field 642; 32-bit word Output Label field 644 that includes
8-bit word 644 set to zero, 12-bit Output VPI field 646, and 16-bit Output VCI field
648; 16-bit Number of Branches field 650; 8-bit Reserved field 652; and 8-bit
Priority field 654.

Except for GSMP adjacency protocol messages, all GSMP messages
include the Version field 622, Message Type field 624, Result field 626, Code field
628, and Transaction Identifier field 630, which are used generally in the same
manner. For example, Version field 622 in a GSMP message specifies the version
of the GSMP protocol which is currently in use (as other versions may evolve),
Message Type field 624 is set to a particular value to specify the GSMP message
type. For example, a GSMP CM Add Branch message is assigned a specific value
for Message Type field 624, and other types of messages are assigned other specific
values.

For a GSMP message that is a request message, Result field 626
indicates whether a response is required to the request message when the outcome is
successful. Result field 626 in a request message may contain values for
NoSuccessAck (indicating no response réquired if outcome successful) or AckAll
(indicating response required if outcome successful). For some types of GSMP
request messages, AckAll is tﬁe default and a NoSuccessAck va[ue in Result field
626 is ignored. For a GSMP message that is a response message, Result field 626
may contain values for Success (indicating that the request was successful) or
Failyre (indicating that the request was not successful), A GSMP success response
message is not sent until the request has been successfully completed. A GSMP
success response message is a copy of the corresponding GSMP request message
returned with a Result ficld 626 indicating Success, For a GSMP request message
that does not have a successful outcome, 2 GSMP failure response message is
generated. A GSMP failure response message is a copy of the corresponding

GSMP request message returned with Result field 626 indicating Failure. A switch

10

15

20

25

30

WO 97128505 . PCT/US97/01595
68

issuing a GSMP failure response messa;ge in response to the failed outcome of a
GSMP request message does not modify the connection state within the switch,

In a GSMP response message, Code field 628 provides further
information concerning the result. For example, the Code field 628 in a GSMP
failure response message may contain an error code specifying the type of error
causing the failure. It is recognized that a variety of different codes, failure or
other types, may be defined for use in Code field 628. Examples of failure codes
that may be defined inchude: failure specific to the particular message type,
unspecified reason not covered by other failure codes, invalid request message,
specified request message not implemented on this switch, invalid port session
number, at least one specified port does not exist, at Jeast one specified port is
down, at least one specified VPI/VCI is out of range on at least one specified port,
the specified connection does not exist, the specified output branch does not exist,
specified output branch atready established for the specified multicast connection on
the specified output port, reached the maximum limit of multicast connections
supported by switch, reached the maximum limit of branches that the specified
multicast connection ¢an support, or general problem relating to multicast capability
supported by switch. Of course, other codes may be provided. In addition, Code
field 628 may provide further information in a successful response message or an
Event message. Code field 628 is not used in GSMP request messages and is set to
10, -

Transaction Identifier field 630 is used to associate a GSMP request
message with its GSMP response meséaige. In a2 GSMP request message, the switch
controller selects any transaction identifier value for field 630. In a GSMP response
message, the value of Transaction Identifier field 630 is set to the value of the
transaction identifier from the GSMP request message to which the GSMP resporise
message is responding. Since a GSMP Event message does not require a response,
Transaction Identifier field 630 is set to zero.

It is recognized that the above general description of Version,
Message Type, Result, Code, and Transaction Identifier fields applies to all GSMP
messages, except GSMP adjacency protocol messages. Differences from the

general description are described when appropriate.

10

15

20

25

30

WO 97/28505 PCT/USS7/01895

69
For GSMP CM messages, Port Session Number field 632 provides

the session number of the input port. In particular, the value in Port Session
Number field 632 gives the port session number of the switch input port indicated in
Input Port field 634. Each switch port maintains a port session number that is
assigned by the switch. The port session number remains unchanged while the port
is continuously up. However, a new and different port session number is generated
after a port is up after being down or unavailable, It is preferred that the new port
session number be randomly selected. If the switch controlier sends a GSMP CM
request message that has an invalid value in Port Session Number field 632, then
the switch rejects the GSMP CM request message by sending a GSMP CM failure
response message with Code field 628 indicating an invalid port session number
causing the failure. A current port session number may be obtained using a GSMP
Configuration message.

In a GSMP CM message, Input Port field 634 indicates a switch
input port using a 32-bit value assigned by the switch. Input VPI field 638
identifies an ATM virtual path arriving at the switch input port indicated in the
Input Port field 634, and Input VCI field 640 identifies an ATM virtual channel
arriving on that virtual path identified in Input VPI field 638.

In a GSMP CM message, Output Port field 642 indicates a switch
output port using a 32-bit value assigned by the switch. Output VPI field 646
identifies an ATM virtual path departing from the switch output port indicated in the
Output Port field 642, and Output VCI field 648 identifies an ATM virtual channel
departing on that virtual path identified in Output VPI field 646.

For a GSMP CM message, Number of Branches field 650 gives the
number of output branches cn a virtual channel connection. Field 650 is used in a
GSMP CM Verify Tree message. For all other GSMP CM messages, field 650 is
set to zero by the sender entity and ignored by the receiver entity. In the present
embaodiment, Reserved field 652 which is not used for GSMP CM messages is set
to zero by the sender entity and ignored by the receiver entity.

Priority field 654 in a GSMP CM message gives the priority of the
connection. The highest priority is numbered zero and the lowest priority is

numbered g-1, where q = number of priorities that the switch output port can

10

15

20

25

30

WO 97/28505 PCT/US97/01595
70

support. The q for each switch output _port may be obtained from the GSMP Port
Configuration message. Each virtual channel connection may be established with 2
certain quality of service (QOS), by assigning it a priority when it is established.
For virtual channel connections that share the same output port, an ATM cel] on a
connection with a higher priority would be more likely to depart the switch than an
ATM cell on a connection with a lower priority, if they are both in the switch at the
same time. Priority field 654 is used in GSMP CM Add Branch and Move Branch
messages. If a GSMP CM request message (for cither Add Branch or Move
Branch) has a value in Priority field 654 that the switch does not support, the switch
instead assigns the closest priority that it is capable of supporting. In the other
GSMP CM messages, Priority field 654 is set to zero by the sender entity and
ignored by the receiver entity.

The Add Branch message is a GSMP CM message used to establish a
virtual channel connection or to add an additiona! branch to an existing virtual
channel connection.” The connection is specified by Input Port field 634, Input VPI
field 638, and Input VCI field 640, and the output branch is specified by Output
Port field 642, Output VP! field 646, and Output VCI field 648, with the priority of
the connection specified by Priority field 654. Also, an Add Branch message may
be used to check the connection state stored in the ATM switch. Fig. 13a is a
general diagram illustrating the operation of the ATM switch that receives a GSMP
Add Branch request message from switch controller. At step 660, switch éontrolier
sends a GSMP Add Branch request message that is received by the ATM switch.
The ATM swiich determines whether the virtual channel connection, as specified in
Input Port field 634, Input VPI field 638, and Input VCI field 640 of the received
Add Branch request message, exists in the switch, at a step 662. I the switch
determines at step 662 that the virtual channel connection does not exist, the ATM
switch at step 664 proceeds to establish the connection as specified in the Add
Branch request message. If the switch determines at step 662 that the virtual
channel connection does exist, then the switch determines at step 666 whether the
output branch, as specified by Output Port field 642, Qutput VPI field 646, and
Output VCI field 648 of the received Add Branch request message, exists in the
switch. If it is determined that the output branch does not exist, then the ATM

10

15

20

25

30

WO 97/28505 i PCTS97/01595
71

swi-tch proceeds to add a new- output br;mch as specified in the Add Branch request
message in step 668. After either steps 664 or 668, the switch determines at step
670 whether the operation was successful. If the operation was not successful, the
ATM switch at step 672 sends to the switch controller an Add Branch response
message that is a copy of the received Add Branch request message with Result
field 626 indicating Failure. The Add Branch response message also may specify
the type of failure with the appropriate failure code in its Code field 628. If the
operation is determined at step 670 to be successfully completed, the ATM switch at
step 674 checks Result field 626 of the Add Branch request message to determine
whether-a response is required when the request is successful. If the Result field of
the request message indicates AckAll, the ATM switch sends a success response to
the switch controller in step 676. The Add Branch success response message is a
copy of the received Add Branch request message with Result field 626 indicating
Success. If the switch determines at step 666 that the output branch specified in the
Add Branch request message already exists, then the switch checks in step 630
whether the priority specified in Priority field 654 of the request message is
different from the current priority of the output branch. If the switch determines
that the requested priority is different than the current priority, the switch changes
the priority of the output branch to that specified by the Add Branch request
message in step 682. If the priorities are the same, the switch does not change the
priority (indicated by 684).

The Delete Branch message is a.GSMP CM message used to delete a
single branch of a virtual channel conﬁection, or in the case of the last branch to
delete the connection. The connection is specified by Input Port field 634, Input
VPI field 638, and Input VCI ficld 640, and the output branch is specified by
Output Port field 642, Qutput VPI field 646, and Output VCI field 648, Fig. 13b is
a general diagram illustrating the operation of the ATM switch that receives a
GSMP Delete Branch request message from switch controller. At step 690, switch
controtler sends a GSMP Delete Branch request message that is received by the
ATM switch. The ATM switch determines whether the virtual channel connection,
as specified in Input Port field 634, Input VPI field 638, and Input VCI field 640 of

the received Delete Branch request message, exists in the switch, at a step 692. If

10

15

20

25

30

WO 97/28505 PCT/US97/01595

72

the switch determines at step-692 that the virtual channe! connection does exist, the
switch at step 694 determines whether the output branch, as specified by Output
Port field 642, Output VPI field 646, and Output VCI field 648 of the received
Deiete Branch request message, exists in the switch. If it is determined that the
output branch does exist, then the switch proceeds to delete the output branch as
specified in the Delete Branch request message in step 696, After step 696, the
switch determines at step 698 whether the deletion operation was successful. If the
deletion is determined to be successfully completed, the switch at step 700
determines from Result field 626 of the Delete Branch request message whether a
response is required when the request is successful. If the Result field of the
request message indicates AckAll (success response required), the switch sends a
Delete Branch success response message to the switch controller in step 702. The
Delete Branch success response message is 2 copy of the received Delete Branch
request message with Result field 626 indicating Success. If it is determined at step
700 that a success response is not required, then the switch provides no response
(indicated as 704). If the switch determines at step 692 that the connection
specified in the Delete Branch request message does not exist, or if the switch
determines at step 694 that the output branch specified in the Delete Branch request
message does not exist, or if the switch determines at step 698 that the deletion
operation is unsuccessful, then the switch at step 706 sends a Delete Branch failure
response message to the switch controller with the appropriate failure code. A
Delete Branch failure response message is 2 copy of the received Delete Branch
request message with Result field 626 indica:::g Failure and with the type of failure
indicated by the appropriate failure code in its Code field 628,

The Delete Tree message is used to delete an entire virtual channel
connection by deleting all remaining branches of the connection. The connection is
specified by Input Port field 634, Input VPI field 638, and Input VCI field 640.
Qutput Port field 642, Output VPI field 646, and Output VCI field 648 in a Delete
Tree message are not used, and are set to zero by the switch controller and ignored
by the switch. Fig. 13c is a general diagram illustrating the operation of an ATM
switch that receives a GSMP Delete Tree request message from switch controller.

At step 710, switch controller sends 2 GSMP Delete Tree request message that is

10

15

20

25

30

WO 97/28505 PCT/USHTI01595

73

received by the ATM switch. The ATM switch determines whether the virtual
channel connection, as specified in Input Port field 634, Input VPI field 638, and
Input VCI field 640 of the received Delete Tree request message, exists in the
switch, at a step 712. If the switch determines at step 712 that the virtual channel
connection does exist, then the switch proceeds to delete the connection (and
thereby the entire tree) as specified in the Delete Tree request message in step 714.
After step 714, the switch determines at step 716 whether the deletion operation was
successful. If the deletion is determined te be successfully completed, the switch at
step 718 determines from Result field 626 of the Delete Tree request message
whether a response is required when the request is successful. If the Result field of
the request message indicates AckAll (suceess response required), the switch sends
a Delete Tree success response message to the switch controller in step 720. The
Delete Tree success response message is a copy of the received Delete Tree request
message with Result field 626 indicating Success. If it is determined at step 716
that a success response is not required, then the switch has no response (indicated as
722). If the switch determines at step 712 that the connection specified in the
Delete Tree request message does not exist, or if the switch determines at step 716
that the deletion operation is unsuccessful, then the switch at step 724 sends a
Delete Tree failure response message to the switch controller with the appropriate
failure code. A Delete Tree failure respense message is a copy of the received
Delete Tree request message with Result field 626 indicafing Failure and with the
type of failure indicated by the appropriate failure code in its Code field 628.

The Verify Tree message is a GSMP CM message used to vbrify the
number of branches on a virtual channel connection. The connection is specified by
Input Port field 634, Input VPI field 638, and Input VCI field 640. Output Port
field.642, Output VPI field 646, and Output VCI field 648 in a Verify Tree
message are not used, and are set to zero by the switch controller and ignored by
the switch. The number of branches that the switch believes the specified virtual
channel connection should contain is given by Number of Branches field 650 in the
Verify Tree request message. Fig. 13d is a general diagram illustrating the
operation of an ATM switch that receives a GSMP Verify Tree request message
from switch controller. At step 730, switch controller sends a GSMP Verify Tree

10

15

20

25

30

WO 97/28565) PCTUS97/01595
74

request message that is received by the ATM switch. The ATM switch determines
whether the virtual channel connection, as specified in Input Port field 634, Input
VPI field 638, and Input VCI field 640 of the received Verify Tree request
message, exists in the switch, at a step 732, If the switch determines at step 732
that the virtual channel connection does exist, then the switch at step 734 checks the
actual number of branches for the specified connection and compares the actual
number with that in Number of Branches field 650 of the received Verify Tree
request message. If the switch determines at step 736 that the numbers match then
the verification operation was successful. If the verification is determined to be
successfully completed, the switch at step 738 determines from Result field 626 of
the Verify Tree request message whether a response is required when the request is
successful. If the Result field of the request message indicates AckAll (success
response required), the switch sends a Verify Tree success response message to the
switch controller in step 740, The Verify Tree success Tesponse message is a copy
of the received Verify Tree request message with Result field 626 indicating
Success. If it is determined at step 738 that a success response is not required, then
the switch has no response (indicated as 742). If the switch determines at step 732
that the connection specified in the Verify Tree request message does not exist, then
the switch at step 744 sends a Verify Tree failure response message to the switch
controller with the appropriate failure code. A Verify Tree failure response
message is a copy of the received Verify Tiee request message with Result field 626
indicating Failure and with the type of failure indicated by the approprlatc failure
code in its Code field 628. If the sthch determines at step 736 that the verification
operation is unsuccessful, then the swiich at step 746 sets the actual number of
branches into the Number of Branches field 650 of the Verify Tree failure response
message and sends it to the switch controller with the Code field 628 set 1o zero.,
The Delete All message is a GSMP CM message that is used to
delete all connections on a switch input port. The switch input port is specified by
Input Port field 634. In a Delete All message, Input VPI field 638, and Input VCI
field 640, Output Port field 642, Output VPI field 646, and Output VCI field 648
are not used, and are set to zero by the switch controller and ignored by the switch.

Fig. 13e is a general diagram illustrating the operation of an ATM switch that

10

15

20

25

30

WO 97/28505 PCT/US97/01595

75

receives a GSMP Delete All request méssage from switch controller. At step 750,
switch controller sends a GSMP Delete All request message that is received by the
ATM switch. In step 752, the ATM swiich determines whether any connections
exist on the switch input port specified in Input Port field 634 of the received Delete
All request message. If the switch determines at step 752 that connections do exist,
then the switch at step 754 proceeds to delete all connections for the switch input
port specified in the received Delete All request message. Then the switch
determines at step 756 that the complete deletion operation was successful. [If the
operation is determined to be successfully completed, the switch at step 758
determines from Result field 626 of the Dekte All request message whether a
response is required when the request is successful. If the Result field of the
request message indicates AckAll (success response required), the switch sends a
Delete All success response message to the switch controller in step 760. The
Delete All success response message is a copy of the received Delete All request
message with Result field 626 indicating Success. If it is'determined at step 758
that a success response is not required, then the switch has no response (indicated as
762). If the switch determines at step 752 that no connections exist an the switch
input port specified in the Delete All request message, then the switch at step 764
sends a Delete All failure response message to the switch controller with the
appropriate failure code. A Delete All failure response message is a copy of the
received Delete All request message with Result field 626 indicating Failure and
with the type of failure indicated by the appropriate failure code in its Code field
628.

The Move Root message is a GSMP CM message used to move an
entire virtual connection tree from its current Input Port, Input VPI, and Input VCI,
to a new Input Port, Input VPI and Input VCI. Fig. 13f illustrates the structure for
GSMP CM Move Root message 770, used as both request and response. GSMP
CM Move Root message 770 includes (described in order of MSB to LSB) the
following fields: an 8-bit Version field 622, an 8-bit Message Type field 624, an 8-
bit Result field 626, and an 8-bit Code field 628; 32-bit word Transaction Identifier
field 630; 32-bit word Port Session Number field 632; 32-bit Old Input Port field
772, 4-bit word 774 set to zero, 12-bit Old Input VP1I field 776, and 16-bit Old

10

15

20

25

30

WO 97/28505 PCT/US97/01595
76

Input VCI field 778; 32-bit New Input Port field 780; 8-bit word 782 set to zero,
12-bit New Input VPI field 784, and 16-bit New Input VCI field 786; and 32-bijt
Reserved field 788. Version field 622, Message Type field 624, Result field 626,
Code field 628, Transaction Identifier field 630, and Port Session Number 632 are
used generally in the same manner as for other GSMP CM messages, as discussed
earlier. Reserved field 788 is unused and set to zero by the sender and ignored by
the receiver. In a Move Root message, the current virtual channel connection is
specified by Old Input Port field 772, Ol¢ Input VP! field 776, and Old Input VCI
field 778, and the new virtual channel connection is specified by New Input Port
field 780, New Input VPI field 784, and New Input VCI field 786. Fig. 13g is a
general diagram illustrating the operation of the ATM switch that receives a GSMP
Move Root request message from switch controfier. At step 790, switch controller
sends a GSMP Move Root request message that is received by the switch. The
switch determines whether the virtual channel connection, as specified in Old Input
Port field 772, Old Input VPI fietd 776, and Old Input VCI field 778 of the
received Move Root request message, exists in the switch, at a step 792. If the
switch determines at step 792 that the virtual channel connection does exist, the
switch at step 794 determines whether the virtual channel connection, as specified
by New Input Port field 780, New Input VPI field 784, and New Input VCI field
786 of the received Move Root request message, is unassigned. If it is determined
atstep 794 that the virtual channel connection is unassigned, then the switch
proceeds to move each cuiput branch of the existing virtual channel connection to
establish the new virtual channel connection as speciﬁéd in the Move Root request
message in step 796. After step 796, the switch determines at step 798 whether the
move operation was successful. If the operation is determined to be successfully
completed, the switch at step 800 determines from Result field 626 of the Move
Root request message whether a response is required when the request is successful.
If the Result field of the request message indicates AckAll {success response
required), the switch sends a Move Root success response message to the switch
controller in step 802. The Move Root success response message is a copy of the
received Move Root request message with Result field 626 indicating Success. If it

is determined at step 800 that a success response is not required, then the switch

10

15

20

25

. 30

WO 97128505) PCT/US97101595
77

provides no response (indicated as 804): If the switch determines at step 792 that
the old connection specified in the Move Root request message does not exist, then
the switch at step 806 sends a Move Root failure response message to the switch
controller with the appropriate failure code. A Move Root failure response message
is a copy of the received Move Root request message with Result ficld 626
indicating Failure and with the type of failure indicated by the appropriate failure
code in its Code field 628. If the switch determines at step 794 that the new virtual
channel connection specified in the Move Root tequest message is assigned, then the
switch makes no modifications to the existing connections and sets Code field 628 1o
zero in the Move Root failure response message (indicated at step 808) before
sending it to switch controller at step 806.

Another GSMP CM message, the Move Branch message is used to
move a single output branch of a virtual channel connection from its current Output
Port, Qutput VPI, and output VCI, to a new Output Port, Output VPI, and Output
VCI on the same virtual channel connection, Fig. 13h illustrates the structure for
GSMP CM Move Branch message 820, used as both request and response. GSMP
CM Move Branch message 820 includes (described in order of MSB to LSB) the
following fields: an 8-bit Version field 622, an 8-bit Message Type field 624, an 8-
bit Result field 626, and an 8-bit Code fielq 628; 32-bit word Transaction Identifier
field 630; 32-bit word Port Session Number field 632, 32-bit Input Port field 634;
4-bit word 636 set to zéro, 12-bit Input VPI field 638, and 16-bit Input VCI field
640; 32-bit Old Output Port field 822; 8-bit ward 824 set to zero, 12-bit Old Output
VPI field 826, and 16-bit Old Output VCI field 828; 32-bit New Output Port field
830; 8-bit word 832 set to zero, 12-bit New Output VPI field 834, and 16-bit New
Output VCI field 836; 24-bit Reserved field 838; and Priority ficld 940. Version
field 622, Message Type field 624, Result field 626, Code field 628, Transaction
Identifier field 630, and Port Session Number 632 are used generally in the same
manner as for other GSMP CM messages, as discussed earlier. Reserved field 838
is unused and set to zero by the sender and ignored by the receiver. Priority field
940 is used in a similar manner as discussed above for Priority field 654 of a
GSMP CM message. In a Move Branch message, the virtual channel connection is
specified by Input Port field 634, Input VPI field 638, and Input VCI field 640.

10

15

20

25

. 30

WO 97128505) . PCT/US97/01595
78

The old branch of the virtual channel c&nnection is specified by Old Qutput Port
field 822, Old Output VPI field 826, and Old Output VCI field 828. The new
branch of the virtual channel connection is specified by New Output Port field 830,
New Output VP] field 834, and New Output VCI field 836. Fig. 13i is a general
diagram illustrating the operation of the ATM switch that receives a GSMP Move
Branch request message from switch controller. At step 842, switch controller
sends a GSMP Move Branch request message that is received by the switch. The
switch determines whether the virtual channel connection, as specified in Input Port
field 634, Input VPI field 638, and Input VCI field 640 of the received Move
Branch request message, exists in the switch, at a step 844. If the switch
determines at step 844 that the virtual channel connection does exist, the switch at
step 846 determines whether the old output branch, as specified by Old Output Port
field 822, Old Output VPI field 826, and OId Qutput VCI field 828 of the received
Move Branch request message, exists on that virtual channel connection. If it is
determined at step 846 that the old output branch exists, then the switch praceeds to
add the new output branch as specified by New Cutput Port field 830, New Output
VPI field 834, and New Output VCI field 836 in the Move Branch request message
and delete the old output branch as specified in the Move Branch request message in
step B48. After step 84?, the switch determines at step 850 whether the move
operation was successful. If the operation is determined to be successfuliy
comj:letcd, the switch at step 852 determines from Result field 626 of the Move
Branch request message whether a response is required when the request is
successful. If the Result field of the reqﬁest message indicates AckAll (success
respohse required), the switch sends a Move Branch success response message to
the switch controlier in step 854. The Move Branch success response message is a
copy .of the received Move Branch request message with Result field 626 indicating
Success. If it is determined at step 852 that a success response is not required, then
the switch provides no response (indicated as 856). If the switch determines at step
844 that the virtual channel connection specified in the Move Branch request
message does not exist, or if the switch determines at step 846 that the old branch
specified in the Move Branch request message does not exist on the virtual channel

connection, or if the switch determines at step 850 that the move branch operation

10

15

20

25

30

WO 97/28505 PCT/US97/01595
79

waé unsuccessful, then the switch at stép 858 does not modify any connection states
and sends at step 860 a Move Branch failure response message to the switch
controller with the appropriate failure code. A Move Branch failure response
message is a copy of the received Move Branch request message with Result field
626 indicating Failure and with the type of failure indicated by the appropriate
failure code in its Code field 628.

Providing switch port management, the GSMP Port Management
(PM) message allows a port to be brought into service, taken out of service, looped
back, or reset. Fig. 14 illustrates the structure for a GSMP PM message 870, used
as both request and response messages. - GSMP PM message 870 may be contained
in GSMP Message field 546 of the encapsulated GSMP packet 540 in Fig. 11a. As
seen in Fig. 14, GSMP PM message 870 includes (described in order of MSB to
LSB) the following fields: an 8-bit Version field 622, an 8-bit Message Type field
624, an 8-bit Result field 626, and an 8-bit Code field 628; 32-bit word Transaction
Identifier field 630; 32-bit word Port field 872; 32-bit word Port Session Number
field 874; 32-bit Event Sequence Number field 874; 8-bit Events Flag field 878; 8-
bit Duration field 880; and 16-bit Function field 882. Version field 622, Message
Type field 624, Result field 626, Code field 628, Transaction Identifier field 630,
and Pott Session Number 874 are used generally in the same manner as for other
GSMP messages, as discussed earlier. Port field 872 gives the port number of the
port to which the GSMP PM message applies. A GSMP PM message has a A
particular Message Type field and various possible functions that may be specified
in Function field 882. Some of the functions of GSMP PM messages include: a
Bring Up function, a Take Down function, an Internal Loopback function, an
External Loopback function, a Bothway Loopback function, a Reset Input Port
function, and a Reset Event Flags function. Each switch port maintains an Event .
Sequence Number and a set of Event Flags (one Event Flag for each type of Event
Message). The Event Sequence Number is set to zero when the port is initialized
and is incremented each time an asynchronous event reportable by an Event
message is detected on that port, regardless of whether the Event message is sent or
not. When a switch port scnds an Event message, it scts the corresponding Event

Flag on that port. The port is not permitted to send another Event message of the

10

15

20

25

30

WO 97/28505 PCTUS97/01595

80

same type until the corresponding Event Flag is reset by a Reset Event Flags
function of a GSMP PM message. The use of the Event Flags provides simple flow
control to prevent the switch from flooding the switch controller with Event
messages. In a GSMP PM request message, Event Sequence Number field 876 is
not used and is set to zero by the switch controller and ignored by the switch, In a
GSMP PM success response message, Event Sequence Number field 876 gives the
current value of the Event Sequence Number of the switch port specified in the
received GSMP PM request message. In a GSMP PM request message with the
Function field 882 specifying Reset Event Flags, particular bits in the Event Flags
field 878 may be used to reset the corresponding Event Flags in the switch port
specified by the Port field 872. Ina GSMP PM success response message with the
Function field 882 specifying Reset Event Flags, the bits in Event Flags field 878
are set to the current values of the corresponding Event Flags for the specified port,
after the Event Flags specified in the request message have been reset. By setting
the Event Flags field to all zeros in 2 GSMP PM message with 2 Reset Event Flags
function, the switch controller is able to obtain the current state of the Event Flags
and the current Event Sequence Number of the specified port without changing the
state of the Event Flags. In other GSMP PM messages with a different Function
ficld 882 specified, the Event Flags field 878 is not used and is set to zero by the
switch controller and ignored by the switch, Duration field 880 is used only in
GSMP PM messages with the Function field 882 speciﬁed as Internal Loopback,
External Loopback, or Bothway Loopback. Duration field 880 provides the length
of time (in seconds) that any of the loopback states remains in operation. When the
duration expires, the port which was in loopback automatically returns to service,
In GSMP PM messages with a different Function field 882 specified, Duration field
880 is not used and is set to zero by the switch controller and ignored by the
switch. In GSMP PM messages, Function field 882 specifies the action to be taken
(the specified action is taken regardless of the current status of the port). The Bring
Up function brings the port into service, and the Take Down function takes the port
out of service. The Internal Loopback function performs an-internal loopback
(ATM cells arriving at the output port from the switch fabric ate looped through to
the input port back to the switch fabric). The External Loopback function performs

10

15

20

23

30

WO 97/28508 PCT/US97/01595

81

an ;:xtcmal loopback (ATM cells arriviﬁg at the input port from the external
communications link are ooped back 1o the communications tink at the physical
layer without entering the input port). The Bothway Loopback function performs
both internal and external loopback. The Reset Input Port function resets the input
port (all connections arriving at the specified input port are deleted and the input
and output port hardware are reinitialized so that all VPI/VCI values for the
specified input port in the connection table are empty). The Reset Event Flags
function resets the Event Flags as discussed above.

GSMP Statistics messages allow the switch controller to request
values of various hardware counters associated with the switch input and output
ports, and virtual channels. Two classes of statistics messages are provided: VC
Activity messages, and Port and VC Statistics messages. The VC Activity message
is used to determine whether one or more specific virual channels have recently
been carrying traffic. A VC Activity message contains one or more VC Activity
Records. Each VC Activity Record is used to request and return activity
information concerning a single specified virmal connection. If a switch supports
traffic accounting per virtual connection, the current value of the traffic counter for
each specified virtual connection is returned in the VC Traffic Count field of the
VC Activity Record. The current vaive of the traffic count is compared to previous
values‘ for each of the specified virtual connections to determine whether each
virtual connection has been active in the intervening period. If a switch supports
traffic detecting per virtual connection.in some other way besides traffic accounting,
the result may be indicated for the virtual connection using a Flag field in the VC
Activity Record. The Port and VC Statistics messages are used to query the various
port and VC specific traffic and error counters. A Port Statistics message is used to
get the statistics of the switch port specified in the Port field of the message, and a
VC Statistics message is used to get the statistics for the virual channe] (specified
in the VPI/VCI fields of the message) on the switch input port specified in the Port
field of the message.

GSMP Configuration messages permit the switch controller to
determine the capabilities of the ATM switch in basic switching unit. Three

message types for GSMP Configuration messages are defined: Switch

10

15

20

23

30

WO 97/28505 PCT/US97/01595
82

Configuration, Port Configuration, andkAll Ports Configuration. GSMP
Configuration messages use different formats for the request message and the
response message, since they contain different information in their fields. Sent by
switch controller to an ATM switch, a Switch Configuration request message,
indicated by a particular Message Type field, asks the ATM switch for its global
configuration. Then the switch returns to the switch controller a Switch
Configuration response message that includes fields for the switch type and switch
name of the ATM switch, as well as the version of the switch control firmware
installed. The switch type is a allocated by a manufacturer of the switch to identify
the switch product, and the switch name may be a 48-bit IEEE 802 MAC address or
other quantity that is unique within the operational context of the switch. A Port
Configuration request message has its own particular Message Type field and is sent
by switch controller to an ATM switch. The Port Configuration request message
asks the switch for configuration information of a single switch port that is specified
in the Port field of a Port Configuration request message. The switch sends to the
switch controller a Port Configuration success response message that includes
configuration information for both the input and output sides of the specified port.
The configuration information in a Port' Configuration success response message
includes: the current Port Session Number of the port, the minimum value of VPI
that the connection table on the input port that can be supported by GSMP, the
maximum value of VPI that the connection table on the input port that can be
supported by GSMP, the minimum value of VCI that the connection table on the
input port that can be supported by GSMP, and the maximum value of VCI that the
connection table on the input port that can be supported by GSMP. The
configuration information also includes: the cell rate (rate of ATM cells per second)
of the port, the current status (i.e., down, up, unavailable, internal loopback,
external loopback, or bothway loopback) of the port; the port type (the type of
physical transmission interface of the port, e.g., unknown, SONET STS-3c at
155.52 Mbps, DS3 at 44.736 Mbps, 4B/5B encoding at 100 Mbps, 8B/10B
encoding at 155.52 Mbps, 25 Mbps ATM Forum physical layer, or 51 Mbps ATM
Forum physical layer); and the number of priorities that the output port can assign

to virtual channel connections. The configuration information provided is referred

10

15

20

25

. 30

WO 97128505) PCT/US97/01595
83

to as the Port Record for a port. The s;vitch controller sends an All Ports
Configuration request message, which has its own particular Message Type field, to
the ATM swilch to ask for the configuration information for all of the switch ports.
Thus, the All Ports Configuration request message does not specify a particular
port. The switch sends an All Ports Configuration success response message that
provides: the number of Port Records contained by the response message, the byte
length of each Port Record, and the Port Records for each port. The Port Record
for each port is the same configuration information discussed for the Port
Configuration success response message. Of course, if the number of Port Records
exceeds a specified maximum amount sei for the All Ports Configuration success
response message, then the Port Records may be sent in multiple success response
messages that each do not exceed the specified maximum amount.

GSMP Event messages allow the ATM switch to inform the switch
controller of certain asynchronous events. As mentioned earlier, Event messages
are not acknowledged. Event messages may have different Message Types,
depending on the asynchronous event. Different Event messages include a Port Up
Event message, a Port Down Event message, an Invalid VPI/VCI Event message, a
New Port Event message, and a Dead Port Event message. Each swiich port
maintains an Event Sequence Number and a set of Event Flz}gs (one Event Flag for
¢ach type of Event Message). When a switch port sends an Event message, it sets
the corresponding Event Flag on that poﬁ. The port is not permitted to send
another Event message of the same type-until the corresponding Event Flag is reset
by a Reset Event Flags function of a GSMP Port Manageinént message. The use of
the Event Flags provides simple flow control to prevent the switch from flooding
the switch controller with Event messages. The Event Sequence Number is set to
zero when the port is initialized and i$ incremented each time an asynchronous
event reportable by an Event message is detected on that port, regardless of whether
the Event message is sent or not. The current Event Sequence Number is included
in Event messages to inform the switch controller of asynchronous events that have
occurred on the port, but that have not been reported via an Event message due to
the action of the simple flow control mechanism. A Port Up Event message

informs the switch controller that the specified port has changed from the down

10

15

20

25

30

WO 9728503 _ PCT/US97/01595
84 ‘

state to the up state. When a port coﬁes up, all connections on its input port are
deleted (the input port’s connection tables are empty) and 2 new Port Session
Number is assigned by the switch. A Port Down Event message informs the switch
controller that the specified port has changed from the up state to the down state. If
a switch is capable of detecting link failure, the switch sends a Port Down Event
message to report link failure to the switch controller. When one or more ATM
cells arrive at an input port with a VPI/VCI that is not currently allocated to a
virtual channel connection, the switch sends an Invalid VPI/VCI Event message {o
the switch controller. The Invalid VPI/'VCI Event message specifies the input port
and the VPI/VCI in the Port and VPI/VCI fields respectively. A New Port Event
message specifying the number of a new port informs the switch controlier that the
new port has been added to the switch. The Dead Port Event message informs the
switch controller that a port has been removed from the switch. The Dead Port
Event message specifies the number of the removed port and the Port Session
Number that was valid before the port was removed in its Port and Port Session

Number fields respectively.

C. IEMP-C

According to some embodiments, the system software also may

utilize the IFMP-C protocol to establish communication over the link between a
basic switching unit’s switch controller (referred herein as the IFMP-C controller)
and a switching agent (referred herein as the IFMP-C agent) and thereby distribute
layer 3 packet forwarding when desiréd.l In particular, IFMP-C, a general purpose
asymmetric protocol to control an IFMP-C agent, runs on a virtual channel
established at initialization across the link between the IFMP-C controller and the
IFMP-C agent. A single IFMP-C controller may use multiple instantiations of
IFMP-C over separate virtual channels to control multiple IFMP-C agents. IFMP-C
aiso includes an [FMP-C adjacency protocol, which is used to synchronize state
across the link between the IFMP-C controller and the IFMP-C agent, to discover
the identity of the entity at the other end of the link, and to detect changes in the
identity of that entity.

10

15

20

25

30

‘WO 97/28505 PCT/USY7/01595

85
IFMP-C allows the IFMP-C controller to establish and release

connections across the ATM switch, add and delete leaves on a point-to-multipoint
connection, manage IFMP-C interfaces, request interface configuration information,
and request statistics, IFMP-C also allows the IFMP-C agent to inform the IFMP-C
controller of events such as a link going down.

As stated earlier, IFMP-C is a master-slave protocol. The IFMP-C
controller issues request messages to the IFMP-C agent. Each request messape
indicates whether a response from the IFMP-C agent is required and contains a
Transaction Identifier to enable the response to be associated with the particular
request. The IFMP-C agent replies with a response .message indicating success or
failure.

IFMP-C includes an IFMP-C adjacency protocol, which is allocated a
set of particular message types. The IFMP-C adjacency protocol is used to
establish synchronization across the link and to maintain a handshake between the
IFMP-C controller and the IFMP-C agent. Except for IFMP-C adjacency protocol
messages, no other [FMP-C messages may be sent across the link until the IEMP-C
adjacency protocol has achieved state synchronization. All othet IFMP-C messages
received on the link that does not currently have state synchronization are discarded.
In the present embodiment, IFMP-C has four other classes of messages: Interface,
Branch, Control, and Management. These four classes are request-response
message classes, each having a format for the request message and a format for the
success response message. Unless otherwise indicated, a failure response message
is the same as the réquest message that caused the failure except that the Code field
indicates the natre of the failure. In the present embodiment, there are many
different message types, i.e., functions of IFMP-C messages. Each of the IFMP-C
message classes has a number of different message types, in a specific embodiment.

In the present invention, IFMP-C packets are variable length and
encapsulated directly in an AAL-5 CPCS-PDU with a prefixed LLC/SNAP header,
in a similar mamner as the default encapsulation for IP packets on ATM data links
described above in relation to Fig. 10b. Fig. 15a illustrates an encapsulated IFMP-
C packet 1000, Basically, the default encapsulation prefixes an LLC/SNAP header
to the [FMP-C packet which is encapsulated within the payload of an AAL-5 CPCS-

10

15

20

25

. 30

WO 97/28505 PCT/US97/01595
86

PDU. Desctibed from MSB (transmitted first) to LSB, default encapsulated IFMP-
C packet 1000 includes an LLC/SNAP header (24-bit LLC field 1002 followed by
an 8-bit portion of SNAP header 1004 in the first 32-bit word, and the remaining
32-bit word portion of SNAP header 1004), IFMP-C message 1006 (which has a
length of an integer multiple of 32-bit words), Pad field 1008, and AAL-5 CPCS-
PDU Trailer field 1010. Pad field 1008 may range from 0 to 47 octets, and Trailer
field 550 is 8 octets (four 32-bit words). The MOTU of the IFMP-C message 1006
using default encapsulation is 1500 octets. The packets using default encapsulation
are sent to VPI = O, VCI = 15 (default virtual channel), in a specific embodiment.

Fig. 15b illustrates the generic structure of a typical IFMP-C message
1012 that may be contained in IFMP-C Message field 1006 of the encapsulated
IFMP-C packet 1000 in Fig. 15a. As seen in Fig. 15b, the generic IFMP-C
message 1012 includes (described in order of MSB to LSB) the following fields: an
&-bit Version field 1014, an 8-bit Message Type field 1016, an 8-bit Code field
1018, and an 8-bit Flags field 1020 as a first 32-bit word; a 16-bit Transaction
Identifier field 1022, and a 16-bit Message Length field 1024 as a second 32-bit
word; a Senders Sync Instance field 1026 as a third 32-bit word; a Peer Sync
Instance field 1028 as a fourth 32-bit word: and a Message Body field 1030. In
discussing IFMP-C messages, a "sender” is the entity which sends the IFMP-C
message, and a "peer” is the entity to which the sender sends the IFMP-C message
over the link. An entity may be an IFMP-C controller or IFMP-C ageht. The
generic IFMP-C message 1012 discussed above has some differences (discussed
below) in relation to IFMP-C adjacency protocol messages. '

When sending 2 message, the sender sets the Version ficld 1014 to
correspond to the version number of the IFMP-C protocol currently being used (as
other IFMP-C protocol versions evolve). Message Type field 1016 identifies the
type and format of Message Body field 1030. Each particular message has a unique
message type in the specific embodiment. Code field 1018 is used to indicate the
success or failure of an operation, and Flag field 1020 is used to indicate how the
packet should be handled and what kind of response is required. Flag field 1020
may be set as an acknowledge-complete (PLEASE ACK) flag when the sender

requires notification from the receiver that the operation has completed. When the

10

15

20

25

30

WO 9728505 PCT/US97/01595
87

sen;ier requires notification only if the t:)pera[i()n failed, the sender may set Flag
field 1020 as an acknowledge-negative (PLEASE NACK). If the operation is
successful and the request message had a PLEASE ACK flag in Flag field 1020,
Flag field 1020 should be set as an acknowledge (ACK) flag and Code field 1018
should be set to a predetermined value, such as 0 in the specific embodiment, in the
response message. However, if the operation failed and the request message had a
PLEASE NACK flag in Flag field 1020, Flag field 1020 of the response message
should be set as a negative-acknowledgement (NACK) flag and Code field 1018
should indicate the specific cause of the failure. A complete list of failures for use
in-Code field 1018 is discussed later. Transaction Identifier field 1022 uniquely
identifies each message. When a message requires a response, the response
message has the same value in Transaction Identifier field 1022, thereby allowing
messages o be correlated. Message Length field 1024 gives the length (including
the IFMP-C header but not including any SNAP/LLC encapsulation) of the message
in octets, according to a specific embodiment. Senders Sync Instance field 1026
contains the value identifying the sender’s current synchronization instance. This
value is exchanged during the IFMP-C adjacency protocol, as described below.
Upon receiving 2 message from a sender, the value in Senders Sync Instance field
1026 is compared with the value of the local peer instance at the receiver from the
IFMP-C adjacency f)rotocol. If the instances do not match, then the packet is
ignored by the receiver. Peer Sync Instance field 1028 contains the value
identifying what the sender believes to be the current synchronization instance of its
peer. This value is exchanged during the IFMP-C adjacency protocol. Upon
receiving a message from the sender, the value in Peer Sync Instance filed 1028 is
compared with the local instance at the receiver from the IFMP-C adjacency
protocol, If the instances do not match, then the receiver ignores the packet.
Message Body field 1030 contains any message-specific data, as described in more
detail below for the various message class types.

Fig. 16a illustrates the generic structure of an IFMP-C adjacency
protocol message 1040 that may be contained in IFMP-C Message field 1006 of the
encapsulated [EMP-C packet 1000 in Fig. 15a. As seen in Fig. 16a, IFMP-C
adjacency protocol message 1040 includes (described in order of MSB to LSB):

10

15

20

25

30

WO 97/28505 PCT/US$7/01595

88

Version field 1014; Message Type ﬁelci 1015; Code field 1018; Flags field 1020;
Transaction Identifier field 1022; Message Length field 1024: a 32-bit Sender
Instance field 1042; a 32-bit Peer Instance field 1044; a 16-bit Sender Type field
1046 and a 16-bit ACK Interval field 1048; a Sender Name field 1050 as the next
48 bits; and a Peer Name field 1052 as the next 48 bits. In discussing IFMP-C
adjacency protocol messages, a "sender" is the entity which sends the IFMP-C
adjacency protocol message, and a "peer” is the entity to which the sender sends the.
IFMP-C adjacency protocol message over the link. An entity may be an IFMP-C
controller or an IFMP-C agent.

In IFMP-C adjacency protocol message 1040, Version field 1014,
Message Type field 1016, Flags field 1020, Transaction Identifier field 1022, and
Message Length field 1024 are used as discussed above for generic IFMP-C
message 1012 in Fib. 15b. Message Type field 1016 of IFMP-C adjacency protocol
message 1040 is set to a particular value to specify the particular type of IFMP-C
adjacency protocol message. In the‘preseut embodiment, there are four possible
values for Messagé Type field 1016 in IFMP-C adjacency protocol messages: SYN
(synchronization message), SYNACK (synchronization acknowledge message),
RSTA_CK (reset acknowledge message), and ACK (acknowledge message). Sender

Instance field 1042 is set to the sender’s current instance number for the link. The

instance number is used to detect when one side of the link has restarted. The
instance number for a link should be unique in the recent past and should be unique
when a node restarts. Peer Instance field 1044 is set to what the sender believes is
the current instance number of the remote side of the link. A predetermined value,
such as 0 in a specific embodiment, is used in Peer Instance field 1044 to indicate
when the sender does not know the remote instance. This predetermined value may
be reserved for this purpose and is not be used as a valid instance number for use in
Sender Instance field 1642, Sender Type field 1046 indicates the type of IFMP-C
entity (defined types are IFMP-C controller and IFMP-C agent) sending the
message. When an entity receives any IFMP-C adjacency message, the receiver
compares the Sender Type field 1046 in the received message with the receiver’s
type in order to prevent an IFMP-C.controlier from forming adjacency with another
IFMP-C controller or an IFMP-C agent from forming adjacency with another

10

15°

20

25

.30

WO 97/28505 _ PCT/US97/01595
89

IFMP-C agent. If the types are the same or undefined, then the message is ignored.
If the types are complementary (one is an IFMP-C controller and one is an IFMP-C
agent), then the synchronization proceeds. ACK Interval field 1048 is set by the
IFMP-C controller to indicate its preferred acknowledgement (ACK) interval, The
IFMP-C agent uses the ACK interval as the timeout interval for running the
adjacency protocol. When sending IFMP-C adjacency protocol messages, the
IFMP-C agent sets ACK Interval field 1048 to a predetermined value, such as 0 in
a specific embodiment, which is ignored by the IFMP-C controller. Sender Name
field 1050 is a value unique within the operational context of the device (such as a
Media Access Controller (MAC) address if available) that identifies the sender.,
Peer Name field 1052 is set by the sender to what it believes is the name of the
peer on the remote side of the link. The sender sets Peer Name field 1052 to a
predetermined value, such as 0 in a specific embodiment, to indicate when the peer
name is unknown.

As discussed above, the IFMP-C adjacency protocol is used to
establish state synchronization across a link connecting an IFMP-C controller and an
IFMP-C agent, as well as identifying link state changes and the other side of the
link restarting. Each side of the link runs the JFMP-C adjacency protocol. For
IFMP-C adjacency protocol purposes, three possible states for a particular link
exist: SYNSENT (synchronization méssage sent), SYNRCVD (synchronization
message received), ESTAB (synchronization established). State synchronization
across a link (when an adjacency is established, the -inferfaces will be in the ESTAB
state) is rlequired before the IFMP-C controiler and the IFMP-C agent may send
IFMP-C messages.

In the IFMP-C adjacency protocol, there are two types of events that
can cause state changes: timer-driven events and packet arrivals. These state
changes are illustrated in Fig. 16b, which is a state diagram illustrating the
operation of a sender entity (éithcr an IFMP-C controller or an IFMP-agent) in the
three possible states of the IFMP-C adjacency protocol. The IFMP-C controller
sets the timer interval on the [FMP-C agent by setting-ACK Interval field 1048 to a
specific value, such as 1 second in a specific embodiment. Of course, other values

for the timer interval may be used in other embodiments. In each entity, a timer is

10

15

20

25

30

WO 9728505 _ PCT/USO7/01595
20

required for the periodic generation of SYN, SYNACK, and ACK IFMP-C
adjacency protocol messages, as discussed below,

Timer-driven events for the IFMP-C adjacency protocol are discussed
berein. As shown in Fig. 16b, if the timer expires (indicated by t) and the sender
entity is in the SYNSENT state 1060, the sender entity resets the timer and sends a
SYN IFMP-C adjacency protocol message (indicated by 1062). This action
(indicated by dotted line} is performed only by the IFMP-C agent, who has the

responsibility of initiating synchronization by sending the SYN packet, according to

- a-specific embodiment. If the timer expires and the sender entity is an TFMP-C

controller, the entity merely resets the timer without sending a SYN packet. If the
timer expires and the sender entity is in the SYNRCVD state 1064, the sender entity
resets the timer and sends a SYNACK IFMP-C adjacency protocol message
(indicated by 1066). If the timer expires and the sender entity is in the ESTAB
state 1068, the sender entity resets the timer and sends an ACK IEMP-C adjacency
protocol message (indicated by 1070). To time out the IFMP-C adjacency protocol,
both sides of the links should reset the link and enter the SYNSENT state if they go
through a predetermined number (for example, three) of timeout periods without
receiving an ACK packet from the other side of the link. When the IFMP-C agent
times out, it should restore the ACK Interval to its Qefault value.

In addition to timer-driven transitions discussed above, state
transitions in the [FMP-C protodol also are caused by IFMP-C adjacency packet
-arrival, as discussed herem When an IFMP-C adjacency mcssage arrives at an
entity, an action is taken based on the current state of the entity, the message
contents, and the message type. The following operations are performed during the
IFMP-C adjacency protocol: an Update Peer operation and a Reset Link operation.
Each instance of the IFMP-C adjacency protocol keeps state that defines the peer
instance and the peer name (i.e. the instance and name of the peer entity on the
remote side of the link). The Update Peer operation sets the local peer state to
match the sender state from the most recently received IFMP-C adjacency message.
Taken when restarting the synchronization, the Reset Link operation generates a
new instance number for the local side of the link and deletes all peer state by

setting the peer instance and peer name to zero.

10

15

20

25

30

WO 97/28505 PCT/US97/01595
91

For the following dcscripiion in Fig. 16b, condition "%X" is defined
as: Peer Instance and Peer Name fields in the incoming message match the local
values of instance and name associated with the link. Condition "%Y" in Fig. 16b
is defined as: the Sender Instance and Sender Name fields in the incoming message
match the values of Sender Instance and Sender Name stored for the peer instance
and peer name. In Fig. 16b, condition "A" signifies that the sender entity receives
an incoming SYNACK IFMP-C adjacency protocol message and that condition %X
is met; condition "B" signifies that the sender entity receives an incoming SYNACK
IFMP-C adjacency protocol message and that condition %X is not met; condition
"C" signifies that the sender entity receives an incoming ACK IFMP-C adjacency
protoco] message and that conditions %X and %Y are both met; condition "D"
signifies that the sender entity receives an incoming ACK IFMP-C adjacency
protocol message and that conditions %X and %Y are not both met; condition "E"
signifies that the sender entity receives an incoming RSTACK IFMP-C adjacency
protocol message and that conditions %X and %Y are both met; condition "F"
signifies that the sender entity receives an incoming RSTACK IFMP-C adjacency
protocol message and that conditions %X and %Y are not both met; condition "G"
signifies that the sender entity receives either a SYN or SYNACK IFMP-C
adjacency protocol message and that condition %X is met; and condition "H"
signifies that the sender entity receives either a SYN or SYNACK IFMP-C
adjacency protocol message and that condition %X is not met.

Many possible transitions are possible when an entity is in SYNSENT
state 1060, as described herein. As seen in Fig. 16b, if the sender entity is in the
SYNSENT state 1060 and receives an incoming SYN IFMP-C adjacency protocol
message from a peer on the other end of a link, the sender entity performs an
Update Peer operation and sends a SYNACK IFMP-C adjacency protocol message
to the peer (indicated as step 1072). Then the sender goes from SYNSENT state
1060 to the SYNRCVD state 1064. If the sender receives an incoming RSTACK
IFMP-C adjacency protocol message while in SYNSENT state 1060, the sender
entity remains in SYNSENT state 1060 but drops the message (indicated by 1074).
If the sender either receives an incoming ACK IFMP-C adjacency protocol message

or condition B is met, then the sender entity remains in SYNSENT state 1060 but

10

15

20

25

30

WO 97128505 PCT/US97/01595
92

sends an RSTACK IFMP-C adjacency protocol message (indicated by 1076). If
condition A is met when in SYNSENT state 1060, the sender entity performs an
Update Peer operation and sends an ACK IFMP-C adjacency protocol message
(indicated by 1078) and transitions to ESTAB state 1068.

When an entity is in SYNRCVD state 1064, many possible transitions
are possible, as described herein. As seen in Fig. 16b, if the sender entity is in the
SYNRCVD state 1064 and receives an incoming SYN IFMP-C adjacency protocol
message from a peer on the other end of a link, the sender entity performs an
Update Peer operation and sends a SYNACK IFMP-C adjacency protocol message
to'the peer (indicated as step 1072) while remaining in SYNRCVD state 1064. If -
condition B or I is met while in SYNRCVD state 1064, the sender entity remains
in SYNRCVD state 1064 and sends an RSTACK IFMP-C adjacency protocol
message (indicated by 1078). If condition F is met while the entity is in
SYNRCVD state 1064, the entity remains in SYNRCVD state 1064 but drops the
message (indicated by 1080). If condition E is met while in SYNRCVD state 1064,
the sender entity performs a Reset Link operation and sends a SYN IFMP-C
adjacency protocol message (indicated by 1082), and transitions from SYNRCVD
state 1064 to SYNSENT state 1060. If condition A is met while in SYNRCVD
state 1064, the sender entity performs an Update Peer operation and sends an ACK
IFMP-C adjacency protocol message (indicated by 1078), and transitions from
SYNRCVD state 1064 to ESTAB state 1068. If condition C is met while in
SYNRCVD state 1064, the sender entity sends an ACK IFMP-C adjacency protocol
message (indicated by 1084), and transitions from SYNRCVD state 1064 to ESTAB
state 1068,

When an entity is in ESTAB state 1068, many possible transitions are
possible, as described herein. As seen in Fig. 16b, if condition D or H is met
while in ESTAB state 1068, the sender entity remains in ESTAB state 1068 and
sends an RSTACK IFMP-C adjacency protocol message (indicated by 1088). If
condition F is met while the entity is in ESTAB state 1068, the entity remains in
ESTAB state 1068 but drops the message (indicated by 1080). If condition E is met
while in ESTAB state 1068, the sender entity performs a Reset Link operation and
sends a SYN IFMP-C adjacency protocol message (indicated by 1086), and

10

15

20

25

.30

WO 97128505 FCT/US97/01595
93

tran-sitions from ESTAB state 1068 to S.YNSENT state 1060. If condition C or G is
met while in ESTAB state 1068, the sender entity sends an ACK IFMP-C adjacency
protocol message (indicated by 1090) and remains in ESTAB state 1068. Each
entity on a side of a link should not send more than one ACK IFMP-C adjacency
protocol message generated by a packet arrival per timeout period, according to a
specific embodiment.

An IFMP-C Interface message may be contained in IFMP-C Message
field 1006 of the encapsutated IFMP-C packet 1000 in Fig. 15a. As mentioned
above, after synchronization of a link is established, IFMP-C Interface messages are
used to discover and configure the interfaces on the IFMP-C agent. In a specific
embodiment, IFMP-C Interface messages include Interface List request and
response messages, an Interface List errors message, Interface Query request and
response messages, an Interface Query errors message, Interface Configuration
request and response messages, and an Interface Configuration Errors message.
IFMP-C Interface List messages and Interface Query messages have specific values
in Message Type field 1016. Of course, additional messages are possible or
messages performing similar functions are possible in other embodiments.

Interface List request and response messages and Interface List errors
messages are used to determine what interfaces are available on the IFMP-C agent.
Figs. 17a and 17b illustrate the structure of Interface List request and response
messages, respectively. As seen in Fig. 17a, an Interface List request message
1100 has the generic format as previously described in relation to Fig. 15b, with
Message Body field 1030 containing a Next Cookie field 1112, which is a 32:bit
value returned from a previous interface list response. Next Cookie field 1112 is
used to support interface lists that span more than one message. The value in Next
Cookie field 1112 is a value returned by the IFMP-C agent to allow the next
message request to continue at the place in the interface list the previous message
terminated. A predefined value, such as 0 in a specific embodiment, is used to
indicate that the interface list should start from the beginning. If the Interface List
request message has the PLEASE_ACK flag set in its Flags field 1020 and the
operation is successful, the [IFMP-C agent returns an Interface List response
message 1114 (seen in Fig. 17b) with its Flags field 1020 set to an ACK flag and

10

15

20

25

- 30

WO 97/28505 _ PCT/US97/01595
94

Code field 1018 set to the predetermined value (0 in the specific embodiment)
indicating no error. As shown in Fig. 17b, Next Cookie field 1112 in Interface List
response message 1114 is a 32-bit value returned as part of the message. If the
vatue in Next Cookie field 1112 is 0, then all of the interfaces have been
enumerated. If the value is not 0, then that value is used as an argument to the next
interface list message to get any remaining interfaces. The IFMP-C agent assigns
each interface a unique 32-bit identifier, which is used in other IFMP-C messages [0
refer to a specific interface. Interface List response message 1114 lists in the
Interface Identifier 1 field 1118, Interface Identifier 2 field 1120, etc. all the
identifiers for each interface on the IFMP-C agent that can be listed in the response
message.

If the Interface List request failed, the IFPMP-C agent returns an
Interface List errors message that consists of the IFMP-C header. In the Interface
List errors message, the NACK flag should be set in Flags field 1020, Code field
1018 should indicate the cause of the failure, and Transaction Identifier field 1022
should be the same as in the Interface List request message. Exemplary causes of
failure, each having a specific value for use in Code field 1018, include that the
cookie was invalid, the IFMP-C agent was unable to allocate a message buffer to
complete the response, a client-specific error prevented the request from
completing, or other causes.

Interface Query request and response messages and Interface Query
€IToTS messages are used to obtain the attributes associated with a specified interface
on the JFMP-C agent. Figs. 17c and 174 illustrate the structure of Interface Query
request and response messages, respectively. As seen in Fig. 17¢c, an Interface
Query request message 1130 has the genetic format as previously described in
relation to Fig. 15b with Message Body field 1030 containing an Interface Identifier
field 1132, which is a 32-bit identifier that uniquely identifies the interface whose
attributes are being queried. As described above, interface identifiers are assigned
by the IFMP-C agenr and are obtained through the Interface List messages. If
Interface Query request message 1130 from IFMP-C controller has the
PLEASE_ACK flag set in its Flags field 1020 and the operation is successful, the
TFMP-C agent returns Interface Query response message 1134 (shown in Fig. 17d)

10

15

20

25

30

WO 97728505 . PCT/USI7/01595
95

having an ACK flag set in its-Flags ﬁel& 1020 and Code field 1018 set to the
predetermined value indicating no error. As seen in Fig. 17d, the Message Body
field 1030 of Interface Query response message 1134 also includes a 48-bit Interface
Name field 1136 for the name of the queried interface (the MAC address can be
used in a specific embodiment), an 8-bit Interface Type field 1138 (values may be
defined for various interfaces types such as ATM, Ethernet, FastEthernet, Gigabit
Ethernet, FDDI, or other LAN interfaces), an 8-bit Media Type field 1140
(indicating the interface’s physical media, such as multimode fiber, Category 5
twisted pair, single mode fiber, etc.). Additionally, the Interface Query respomse
message 1134 includes a 32-bit Supported Speeds field 1142 and a 32-bit Current
Speed field 1144. Supported Speeds field 1142 indicates the different transmission
rates (e.g., 10 Megabits per second (Mbps), 25 Mbps, 100 Mbps, 155 Mbps, 622
Mbps, 1000 Mbps, as well as others) that the queried interface supporis. For
interfaces supporting more than one transmission rate, several flags can be set in
field 1142. An auto negotiation flag may be set in Supported Speeds field 1142 if
the interface supports auto negotiation of the speed settings. Current Speed field
1144 indicates the current transmission rate of the queried interface. If the interface
is in auto-configure mode, the current interface speed is indicated in Current Speed
field 1144 and the auto negotiation flag is set in Supported Speeds field 1142,
IFMP-C Interface Query response message 1134 also includes a 32-bit Supported
Duplex field 1146 (indicaﬁng duplex rates supported by the queried interface, such
as half duplex, full duplex; or auto negotiation of duplex setting; more than one flag
may be set for interfaces supporting more than one duplex setting), a 32-bit Current
Duplex field 1148 (indicating the current duplex setting of the interface; if the
interface is in auto pegotiation mode for duplex setting, field 1146 will so indicate).
Further, Interface Query response message 1134 includes a 32-bit Interface Slot
Identifier field 1150 (identifies the physical slot that the interface occupies on the
IFMP-C agent), a 32-bit Interface Port Identifier field 1152 (identifies the physical
port that the interface occupies on the IFMP-C agent), a 16-bit Interface Flags field
1154, and a 16-bit Interface Status field 1156. Interface Flags field 1154 specifies
the current settings of configuration options on the queried interface, with each flag

indicating a different state (such as the interface being administratively up, being in

10

15

20

25

. 30

WO 97/28505) PCT/US97/01595
96

a promiscuous mode, accepting ali multicast packets, etc.). Interface Status field
1156 indicates current status information (such as IFMP-C control traffic is funning
over this interface, or the link on this interface is up, etc.) about the link that is not
mutable by the IFMP-C controller. Still further, Interface Query response message
1134 includes a 32-bit Minimum Receive Label field 1158, a 32-bit Maximum
Receive Label field 1160, a 32-bit Minimum Transmit Labe! field 1162, and a 32-
bit Maximum Transmit Label field 1164. If the interface is ATM, Minimum
Receive Label field 1158 and Maximum Receive Label field 1160 respectively
indicate the minimum and maximum VCI on which the interface can receive. If the
interface-1s ATM, Minimum Transmit Label field 1162 and Maximum Transmit
Label field 1164 respectively indicate the minimum and maximum VCI on which
the interface can transmit. If the queried interface is not ATM, fields 1158, 1160,
1162 and 1164 are set to zero.

If Interface Query request fails, then the [FMP-C agent sends an
Interface Query errors message that consists of an IJFMP-C header having a NACK
flag set in its Flags field 1020, the appropriate cause of failure indicated in its Code
field 1018, and its Transaction Identifier field 1022 the same as in the Interface
Query request message 1130. Exemplary causes of failure that may be indicated in
Code field 1018 of the Interface Query errors message include the interface
identifier being invalid, thc; IFMP-C agent being unable to allacate a message buffer
to complete the response, a client-specific error preventing the request from
completing, as well as others.

Interfacé Configuration request and respoﬁse messages and Interface
Configuration errors messages are used to allow the IFMP-C controller to change
the interface configuration on the IFMP-C agent. Fig. 17¢ illustrates the structure
of an Interface Configuration request message 1170, As seen in Fig. 17a, an
Interface Conﬁguratioﬁ request message 1170 has the generic format as previously
described in relation to Fig. 15b with Message Body field 1030 containing an
Imterface Identifier field 1132 (uniquely identifying the interface whose
configuration is to be changed), a 16-bit Clear Flags field 1172, a 16-bit Set Flags
field 1174, a 32-bit Speed field 1176, and a 32-bit Duplex field 1178. Clear Flags
field 1172 indicates which flags that the IFMP-C agent should clear on the specified

10

15

20

25

30

W0 97/28505 PCT/US97/01595
97

interface to affect the operation of the intcrface. Examples of clearing flags include
taking the interface administratively down, taking the interface out of promiscuous
mode, preventing the interface from receiving all multicast packets, etc. Set Flags
field 1174 indicates which flags that the IFMP-C agent should set on the specified
interface to affect the operation of the interface. Examples of setting flags include
making the interface administratively up, putting the interface into promiscuous
mode, allowing the interface to receive all multicast packets, etc. Speed field 1176
is used to allow the IFMP-C controller to change the speed setting (among the
interface’s supported speeds, such as auto negotiation, 10 Mbps, 25 Mbps, 100
Mbps, 155 Mbps, 622 Mbps, 1000 Mbps, or others) of the specified interface.
Duplex field 1178 allows the IFMP-C controller to change the duplex setting
(among the interface’s supported duplex settings, such as auto negotiated duplex,
half duplex, or full duplex) of the specified interface. Setting Speed field 1176 or
Duplex field 1178 to a predefined value such as (0 in a specific embodiment
indicates that the speed or duplex setting should not be changed. If Interface
Configuration request message 1170 from IFMP-C controller has the
PLEASE_ACK flag set in its Flags field 1020 and the operation is successful, the
IFMP-C agent returns an Interface Configuration response message consisting of the
IFMP-C header fields (all the fields shown in Fig. 15b except the Message Body
field) having an ACK flag set in its Flags field 1020 and Code field 1018 set to the
predetermined value indicating no error. A

If the Interface Configuration request message failed, the IFMP-C
agent returns an Interface Configuration errors message that consists of‘ the IFMP-C
header, In the Interface List errors message, the NACK flag should be set in Flags
field 1020, Code field 1018 should indicate the cause of the failure, and
Transaction Identifier field 1022 should be the same as in the Interface List request
message. Exemplary causes of failure, each having a specific value for use in Code
field 1018, include an invalid inferface identifier, invalid configuration parameters
are used, a client-specific error prevented the request from completing, or other
causes,

In addition to IFMP-C Adjacency and Interface messages, other types
of IFMP-C messages 1012 include IFMP-C Branch request, response, and errors

10

15

20

25

30

WO 9728505 PCTUS97/01595
98

messages. Six types of IFMP-C Branch messages exist to create, modify and delete
forwarding branches. Specifically, [FMP-C Branch messages include: Add
Branch, Delete Branch, Delete Tree, Move Branch, Read Branch, and Get Tree
Statistics. Each forwarding branch is given a preference value, When multiple
matches occur, the branch with the lowest preference is used.

As mentioned earlier, the basic forwarding is done through branches,
where each branch consists 6f two components: the input data and the outpur data,
The input data provides enough information to allow incoming packets to be
matched to branches, and the output data is the information necessary to forward the
packet that matches the input data, The basic aperations used to modify the IFMP-
C agent’s forwarding state are Add Branch and Delete Branch. Adding more than
one branch with the same input data results in a Tree, which can be used to forward
each incoming packet to multiple destinations. For example, a first Add Branch
message having a particular input data and some output data establishes unicast
packet forwarding. A second Add Branch message with the same input data and
other output data converts the unicast forwarding to a muiticast forwarding by
adding another output branch associated with the same input data. Other output
branches may be added in the same manner with further Add Branch messages.

The Delete Branch message is an IFMP-C Branch message used to delete a single
branch. Use of a Delete Branch message on a multicast connection with two
branches removes a branch having specified output data, cdnvcrting the multicast
forwarding into a unicast forwarding. Another IFMP-C Branch message, the Delete
Tree message is used to delete all branches sharing the same input data. Another
IFMP-C Branch message, the Move Branch message is used to change existing
output information on an existing branch. Additional IFMP-C Branch messages
include Get Tree Statistics messages, which are used to obtain statistics of the
forwarding entry whose input data is specified, and Read Branch messages, which
are used for diagnostic and debugging purposes to aliow the IFMP-C controller to
retrieve all forwarding branches on an IFMP-C agent.

The Add Branch message and the Delete Branch request messages are
IFMP-C Branch messages that use the same message format 1200 (but have
different message types), shown in Fig. 18a. As seen in Fig. 18a, IFMP-C

10

15

20

25

. -30

WO 97728505 PCT/US97/01595
99

Add/Delete Branch request message format 1200 has the generic format as
previously described in relation to Fig. 15b with Message Body field 1030 that
includes: Input Interface Identifier field 1201, a 16-bit Input Precedence field 1202,
a 16-bit Input Flags field 1204, a 32-bit Output Interface Identifier field 1206, a 24-
bit Reserved field 1208, an B-bit Key Length field 1210, a 8-bit Output Header
Length field 1212, a 8-bit Remove Length field 1214, a &-bit Transformation Type
field 1216, a 8-bit Transformation Data Length field 1218, a 32-bit Quality of
Service Handle field 1222, a predefined length Input Key Data field 1224, a
predefined length Input Key Mask field 1226, a predefined length Output -Header
Data field 1228, and a Transformation Data field 1230.

The fieids shown in Fig. 18a (other than the generic IFMP-C header
fields shown in Fig. 15b) are described herein. Assigned by the TFMP-C agent and
obtained through IFMP-C Interface List messages, Input Interface Identifier field
1201 uniquely identifies the specific input interface to which the input branch is to
be applied. Input Precedence field 1202, a 16-bit unsigned integer in a specific
embodiment, denctes the precedence assigned to the branch. When matching
incoming packets to input keys, the key with the lowest precedence is matched first,
If more than one entry has the same precedence, then the IFMP-C agent may select
any of the matching branches to forward the packet. Input Flags field 1204 applied
to the input branch and flags indicated in this field are used to denote specific
behavior that should be taken if packets match this forwarding entry, Examples of
such behavior that may be flagged include: "fall through" - searching at the next
precedence level after a packet ‘is transmitted, rather than terminaﬁng; or "drop" -
dropping all packets that match this input entry. Output Interface Identifier field
1206 uniquely identifies the interface to use for transmitting the packet. Reserved
field 1208, which may be reserved for future use, may be set by a sender entity to 0)
and ignored by the receiver entity in a specific embodiment if this field is not used,
Key Length field 1210, a 8-bit unsigned inteper in a specific embodiment, gives the
length of the Input Key Data field 1224 and the Input Key Mask field 1226 in
octets. Qutput Header Length field 1212, a 8-bit unsigned integer in the specific
embodiment, gives the length of the Qutput Header Data field 1228 in octets.
Remove Length field 1214, a 8-bit unsigned integer, specifies a number of octets to

10

15

20

25

30

WO 97728505 PCT/US97/01595
100

remove from the beginning of the pack;:t before applying the transformation
indicated in Transformation Data field 1230.

Transformation Type field 1216 specifies the type of modification
(for example, no modification, IP packet to IFMP flow type 1, IP packet to IFMP
flow type 2, IFMP flow type 1 to IP packet, IFMP flow type 2 to IP packet,
standard IP forwarding, truncating packet, or other modifications) that is to be made
to the packet before it is transmitted. Some of the types of modifications require
data that is not part of the packet, so this required data is provided in
Transformation Data field 1230. Specifically, "IP packet to IFMP flow type 1 (or
2)" ransformation type converts from IPv4 {or other IP packet version in use) to
the encapsulation for IFMP flow type 1 (or 2) previously discussed. "IFMP flow
type 1 (or 2) to IPv4 packet" transformation type converts a packet arriving as an
IFMP flow type 1 (or 2) to a IPv4 packet using Transformation Data field 1230 to
reconstruct the removed fields as well as updating the TTL and IP header
checksum. “Standard IP forwarding" transformation type decrements the TTL in
the IP header and updates the IP header checksum. The "Truncate packet”
transformation type limits the size of the packet to that specified (in Transformation
Data field 1230) by the forwarding data.

As shown in Fig. 18a, Transformation Data Length field 1218 is a 8-
bit unsigned integer specifying the length of the Transformation Data field 1230 that
is.included in the Add/Delete Branch message format 1200. If the transformation
does not require additional data in Transformation Data field 1230, then
Transformation Data Length field 1218 is set to zero. Quality of Service Haﬁdle
field 1222 indicates how packets matching the branch should be handled by the
IFMP-C agent. Its length specified by the Key Length field 1210, Input Key Data
field 1224 contains the data that is compared with the incoming packet to see if it
matches the forwarding entry. The data in Key Data field 1224 holds link level
informatijon such as MAC address, layer 3 information such as IP address, etc. Its
length specified by the Key Length field 1210, Key Mask field 1226 is used to
specify the relevant bits of the key data, when comparing the information in Input
Key Data field 1224 to the incoming packet. Its length specified by Output Header
Length field 1212, Output Header Data field 1228 contains a header (typically link

10

15

20

25

30

WO 97/28505) PCT/US97/01595

101

level information such as a MAC header on an Ethernet interface, or the VPI/VCI
on ATM interfaces) that should be prepended to the packet before it is transmitted.
As mentioned above, Transformation Data ficld 1230 contains the data required to
perform the specified transformation. For "IFMP flow type 1 (or 2) to IPv4"
transformation, the data in Transformation Data field 1230 is similar to the flow
identifiers shown in Fig. 7a (or Fig. 7b for Flow type 2, éxcept that Type of
Service and Protocol fields may be Reserved in some embodiments). When
"Truncate packet" transformation is specified so that a partial copy of the packet is
sent to a specific destination, the data 1240 in Transformation Data field 1230
includes a 16-bit Reserved field 1242 that may be set to zero by the sender and
ignored by the teceiving entity, and a 16-bit Truncate Length field 1244, as shown
in Fig. 18b. Truncate Length field 1244 denotes how many bytes of the packet
should be transmitted out the interface. If the arriving packet is longer than this
number, it is truncated to this length. This truncated tength is the number of bytes
after any bytes have been removed and does not include any output header that may
be added.

If an IFMP-C Add (or Delete) Branch request message has the
PLEASE ACK flag set in its Flags field 1020 and the operation is successful, the
IFMP-C agent returns an IFMP-C Add (or Delete) Branch response message 1250
with the format shown in Fig. 18¢, having an ACK flag set in its Flags field 1020
and Code field 1018 set to the predefined value indicating no error. As shown in
Fig. 18c, the response message has IFMP-C header fields of the generic IFMP-C
message, with the message body containing a 16-bit Resetved field 1252 and a 16-
bit Output Count field 1254. Reserved field 1252 is reserved for future use and
may be set to zero by the sender and ignored by the receiver. Qutput Count field
1254, an unsigned integer, contains the number of output branches that share the
same input information after the current operation is applied (if branch count is 1,
then it is a unicast branch; if branch count is greater than 1, then it is a multicast
branch). This field 1254 is used by the IFMP-C controller to help verify the
consistency of the branch state after each operation.

If the IFMP-C Add Branch (or Delete Branch) request failed, then the
IFMP-C agent sends an IFMP-C Add Branch (or Delete Branch) errors message.

WO 97/28505) PCT/US97/01595
102

The errors message consists of the IFMP-C header, which the same Transaction
Identifier field 1022 as the request message, the NACK flag set in its Flags field
1020 and its Code field 1018 set to indicate the cause for the failure, Exemplary
causes for failure include, for example: if one of the interface identifiers is invalid;
if the input key length is longer than the maximum supported by the IFMP-C agent;
the output transformation is unsupported or unrecognized by the IFMP-C agent; the
IFMP-C agent has insufficient resources to complete the request; another branch
exists with the same input key but has different flags; the quality of service
parameters are invalid or unsupported by the IFMP-C agent; the input key or mask
is-not supported by the IFMP-C agent; the specified branch attempting to be added
already exists on the IFMP-C agent; the specified branch attempting to be deleted
does not exist on the IFMP-C agent; a client-specific error prevented the completion
of the request; or other causes.

As shown in Fig 18d, the IFMP-C Delete Tree request message 1260
has a message format containing many of the fields described for Fig. 18a. Delete
Tree request message format 1260 has the generic format as previously described in
relation to Fig. 15b with Message Body field 1030 that includes: Input Interface
Identifier field 1201, Input Precedence field 1202, Input Flags field 1204, a 56-bit
Reserved field 1262, Key Length field 1210, predefined length Input Key Data field
1224, and predefined length Input Key Mask fieid 1226.

Input Interface Identifier field 1201 uniquely identifies the input
interface to which the input branch (for which the Tree is to be deleted) should be
applied. Input Key Data field 1224 prm}ides the data that is compared with the
incoming packet to see if it matches the forwarding entry to be deleted, and Input
Key Mask field 1226 specifies the relevant bits of the key data when comparing the
input key data to the incoming packet. Reserved field 1262 is reserved for future
use and may be set to zero by the sender and ignored by the receiver.

If IFMP-C Delete Tree request message 1260 has a PLEASE ACK
flag set in its Flags field 1020 and the operation is successful, then the IEMP-C
agent returns an IFMP-C Delete Tree response message which is the IFMP-C
header fields (as shown in Fig. 15b except without the Message Body field), with
the ACK flag set in its Flags field 1020 and its Code field 1018 set to the

10

15

20

25

30

WO 9728505 PCT/US97/01595
103

predefined value indicating no error. If IFMP-C Delete Tree request fails, then the
IFMP-C agent returns an IFMP-C Delete Tree errors message which is the [FMP-C
header fields (as shown in Fig. 15b except without the Message Body field), with
the NACK flag set in its Flags field 1020 and its Code field 1018 set to identify the
cause of the failure (such as invalid interface identifier, no branch exists with input
key as specified in the request, another branch exists with same input key as
specified but with different flags, or other causes).

Fig. 18e illustrates the structure of an IFMP-C Move Branch request
message 1300, containing many of the fields described for Fig. 18a. Move Branch
request message format 1300 has the generic format as previously described -in
relation to Fig. 15b with Message Body field 1030 that includes (described MSB to
LSB): Input Interface Identifier field 1201, Input Precedence field 1202, Input Flags
field 1204, a 32-bit Old Output Interface Identifier field 1302, a 24-bit Reserved
field 1304, 8-bit Key Length field 1210, a 8-bit Old Output Header Length field
1308, a 8-bit Old Remove Length field 1310, a 8-bit Old Transformation Type field
1312, a 8-bit Old Transformation Data Length field 1314, a 32-bit Old Quality of
Service Handle field 1318, a 32-bit New Qutput Interface Identifier field 1320, a
32-bit Reserved field 1322, a 8-bit New Output Header Length field 1324, a 8-bit
New Remove Length field 1326, a 8-bit New Transformation Type field 1328, a 8-
bit New Transformation Data Length Tield 1330, a 32-bit New Quality of Service
Handle field 1334, predefined length Input Key Data field 1224, predefined length
Input Key Mask field 1226, a predefined length Old Qutput Header Data field 1340,
a predefined length Old Transformation Data field 1342, a p'rcdeﬂncd length New
Output Header Data field 1344, and a predefined length New Transformation Data
field 1346. Many of the fields listed above are described above for Figs. 18a, and
various other fields in Move Branch request message 1300 are easily understood by
simply noting that the values of the fields defining the output data of the old branch
are replaced with the values in the fields defining the output data of the new branch
taking the old branch’s place.

If IFMP-C Move Branch request message 1300 has a PLEASE _ACK
flag set in its Flags field 1020 and the operation is successful, then the [FMP-C

agent returns an [IFMP-C Move Branch response message which has the same

10

15

20

25

30

WO 97/28505 PCT/USI?01505
104

for-mat 1250 as the IFMP-C Add/Delet-e Branch response message (seen in Fig. 18c)
with the ACK flag set in its Flags field 1020 and its Code field 1018 set to the
predefined value indicating no error. If IFMP-C Move Branch request fails, then
the IFMP-C agent returns an IFMP-C Move Branch errors message which is the
IFMP-C header fields (as shown in Fig. 15b except without the Message Body
field), with the NACK flag set in its Flags field 1020 and its Code field 1018 set to
identify the specific cause of the failure (such as invalid interface identifier, input
key length longer than maximum length supported, insufficient resources at IFMP-C
agent, output transformation unsupported or unrecognized, no branch exists with
Same input key as specified for the original branch in the request, the original -
branch does not exist and no branch maiches the new branch, another branch exists
with same input key as specified but with different flags, quality of service
parameters invalid or unsupported, a client-specific error prevents the completion of
the request, or other causes),

Being yet another IFMP-C Branch message type, IFMP-C Get Tree
Statistics messages are used by the IFMP-C controller to determine when entries are
no longer being used so that these entries may be reclaimed. The IFMP-C agent
keeps a running counter of each time an entry is used to forward a packet. This
entry is kept for each tree, as each branch on the tree will be used the same number
of times. As seen in Fig. 19a, an IFMP-C Get Tree Statistics request message 1400
‘has the generic format as previously described in relation to Fig. 15b with Méssage
Body field 1030 that includes a list of tree data information: Tree Data 1 field 1402,
and Tree Darta 2 field 1404 in 2 specific embodimént. Additional Tree Data fields
also may be included in the list contained as Message Body field 1030. Fig. 19b
illustrates the Tree Data field structure 1406, which all Tree Data fields use. Each
Tree Data field structure 1406 includes (MSB to LSB) Input Interface Identifier
field 1201, Input Precedence field 1202, Input Flags field 1204, a 40-bit Reserved
field 1408, Key Length field 1210, a 18-bit Record Size field 1410, a 64-bit Usage
Count field 1412, predefined length Input Key Data field 1224, and predefined
length Input Key Mask field 1226, Input Interface Identifier field 1201 uniquely
identifies the input interface to which the input branch (for which the Tree Statistics
are 10 be obtained) should be applied. Reserved field 1408 is reserved for future

10

15

20

25

30

WO 9728505] PCT/US97/01595

105

ust; and may be set to zero by the sender and ignored by the receiver. Record Size
field 1410, which indicates the size of the particular tree record (for example, in
Tree Data 1 field 1402), is used to find the beginning of the next tree record (for
example, in Tree Data 2 field 1404). Usage Count field 1412 is a 64-bit unsigned
integer which is incremented each time the IFMP-C agent uses the specified tree to
forward a packet. In a request message, Usage Count field 1412 is set to zero by
the sender and is ignored by the receiver. The remaining fields are not described
herein as they have already been described in reiation to Fig. 18a.

If IFMP-C Get Tree Statistics request message 1400 has a
PLEASE ACK flag set in its Flags field 1020 and the operation is successful, then
the IFMP-C agent returns an IFMP-C Get Tree Statistics response message, which
has the same format as the request message 1400 (Fig. 19a), with the ACK flag set
in its Flags field 1020 and its Code field 1018 set to the predefined value indicating
no error. The Get Tree Statistics response message also returns the appropriate
counter values in the Usage Count fields of the Tree Data fields.

If IFMP-C Get Tree Statistics request fails, then the IFMP-C agent
returns an IFMP-C Get Tree Statistics errors message which is the IFMP-C header
fields {as shown in Fig. 15b except without the Message Body field) of the request
message, with the NACK flag set in its Flags field 1020 and its Code field 1018 set
to identify the specific causc‘ of the failure (such as invalid interface identifier, one
of the spéciﬁed output trees does not exist on the IFMP-C agent, another tree exists
with same input key as specified but with different flags, or other causes).

Another of the IFMP-C Branch message types are IFMP-C Read
Branch messages which are used for diagnrostic and debugging purposes to allow the
IFMP-C controller to retrieve all forwarding branches on an IFMP-C agent. To
enumerate all of the branches on the IFMP-C agent, the Read Branch message uses
a "getnext" operation. Every time an entry is ready, the IFMP-C agent returns the
branch information as well as a cookie to use as an argument to the next read
operation. The cookie is opaque to the IFMP-C controller and is used by the
IFMP-C agent to remember where it left off on the last read. A predefined value,
such as 0 in a specific embodiment, may be reserved and used by the IFMP-C

controller to get the initial entry on the IFMP-C agent. A successive string of get

-10

15

20

25

30

wo 97{28505 PCT/US97/01595
106

forwarding entry requests will be successful until all of the tables are enumerated at
which point the IFMP-C agent returns an indication that the end of the list has been
reached.

Figs. 20a and 20b illustrate the structure of IFMP-C Read Branch
request message 1420 and IFMP-C Read Branch response messages 1430,
respectively. As seen in Fig, 20a, IFMP-C Read Branch request message 1420 has
the generic format as previously described in relation to Fig. 15b, with Message
Body field 1030 containing Input Interface Identifier field 1201 and a 32-bit Next
-Cookie field 1422. Input Interface Identifier field 1201 uniquely identifies the input
“interface on which the branches should be read. Next Cookie field 1422 is an
opaque 32-bit value returned as part of the previous Read Branch response message.
The value in Next Cookie field 1112 is a state kept by the IFMP-C agent to keep
track of the location of the last Read Branch request. A predefined value, such as 0
in a specific embodiment, is used to indicate that starting from the beginning of the
list should be done.)

If the TFMP-C Read Branch request message has the PLEASE ACK
flag set in its Flags field 1020 and the operation is successful, the IFMP-C agent
returns an TFMP-C Read Branch response message 1430 (seen in Fig. 20b) with its
Flags field 1020 set to an ACK flag and Code field 1018 set to the predetermined
value (0 in the specific embodiment) indicating no error. As shown in Fig. 20b,
-Read Branch response message 1430 has the generic format as previously described
in relation to Fig. 15b, with Message Body field 1030 containing: Input Interface
Identifier field 1201, Input Precedence field 1202, Input Flags field 1204, Output
Interface Identifier field 1206, a 24-bit Reserved field 1432, Key Length field 1210,
Output Header Length field 1212, Remove Lenpth field 1214, Transformation Type
field 1216, Transformation Data Length field 1218, Quality of Service Handle field
1222, Next Cookie field 1422, predefined length Input Key Data field 1224,
predefined length Input Key Mask field 1226, predefined iength Output Header Data
field 1228, and Transformation Data field 1230. Reserved field 1432 is reserved
for future use and is set 10 zero by the sender and ignored by the receiver. Next
Cookie field 1422 is the state kept by the IFMP-C agent to keep track of the

location of the last request and is used as the input to the next Read Branch

10

15

20

25

30

WO 97/28505 PCTfUS97/01595
' 107

méssage. The remaining fields are not described herein, as- they have been
described earlier in relation to Fig. 18a. _

If the Read Branch request failed, the IFMP-C agent returns a Read
Branch errors message that consists of the IFMP-C header. The Read Branch
errors message should be identical to the IFMP-C header of the Read Branch
request message except with the NACK flag set in Flags.ﬁcld 1020 and with Code
field 1018 set to indicate the cause of the failure. Exemplary causes of failure
include that one of the interface identifiers in the message was invalid, the cookie
was invalid, the IFMP-C agent was unable to allocate a message buffer to complete
the response, a client-specific error prevented the request from completing, or other
causes.

In addition to IFMP-C Adjacency, Interface and Branch messages,
IFMP-C messages include an IFMP-C Control messages, such as an IFMP-C Reset
message. The IFMP-C Reset message is used to re-initialize the state of the IFMP-
C agent when the IFMP-C controller has lost communication with the I[FMP-C
agent or if the IFMP-C controller believes that IFMP-C agent is corrupted. The
IFMP-C Reset request message instructs the IFMP-C agent to reset all of its state to
the initial condition. Upon receiving the Reset request message, the IFMP-C agent
removes all forwarding branches and initializes the interfaces without resetting the .
IFMP-C adjacency protocol state. The IFMP-C Reset message consists of the
IFMP-C header shown in Fig. 15b (without the Message Body ﬁeld) with Message
Type field 1016 set to denote the message ‘as a reset message. If the Reset request
message has a PLEASE_ACK flag set in its Flags field 1020 and the operation is
successful, then the IFMP-C agent returns a Re/set response message that consists of
the identical IFMP-C header as the Reset request message, except with its Flags
field 1020 set as an ACK flag and its code field set to a predefined value indicating
no error. If the Reset request fails, then the IFMP-C agent returns a Reset erTors
message consisting of the identical IFMP-C header as the Reset request message,
except with its Flags field 1020 set as a NACK flag and its code field set to a value
indicating the specific cause for the error (such as a client-specific error preventing

completion of the request).

10

15

20

25

30

WO 97/28505) PCTAUSYT/01595

108

In addition to IFMP-C Adjacency, Interface, Branch, and Control
messages, the IFMP-C protocol also includes IFMP-C Management messages,
which are used to get the information needed for network management and
diagnostic purposes. IFMP-C Management messages include various message
types: IFMP-C Node Information messages and IFMP-C Interface Statistics
messages.

IFMP-C Node Information messages obtain information (such as
software version number, etc.) about the node running IFMP-C. An IFMP-C Node
Information request message has the generic format of [FMP-C Header {without
Message Body field 1030, as shown in Fig. 15b) with Message Type field 1016
identifying the message as an IFMP-C Node Information message.,

If the IFMP-C Node Information request message has the
PLEASE ACK flag set in its Flags fieid 1020 and the operation is successful, the
IFMP-C agent returns an IFMP-C Node Information response message 1440 (seen
in Fig. 21a) with its Flags field 1020 set t0 an ACK flag and Code field 1018 set to
the predetermined value (0 in the specific embodiment) indicating no error. As
shown in Fig. 21a, IFMP-C Node Information response message 1440 has the
generic format as previously described in relation to Fig. 15b, with Message Body
field 1030 containing: a 48-bit Node ID ficld 1442, a 48-bit Parent ID field 1444, a
16-bit Node Type field 1446, a 15-bit Reserved field 1448, a 32-bit Parent Slot field
1450, a 32-bit Parent Shelf field 1452, a lﬁ-bit Firm Minor Version field 1454, and
a 16-bit Firm Major Version field 1456. Node ID field 1442 is a value (such as a
MAC address for the node) that uniquely identiftes the node. For situations where
the node is part of a larger system such as a board in a chassis, Parent ID field
1444 is set 10 a value (such as a MAC address for the parent) that uniquely
identifies the container (or parent) of the nede. If the node is not part of a larger
system such as a board in a chassis, Parent ID field 1444 is set to a predefined
value, such as 0 in a specific embodiment, indicating no parent node. Node Type
tield 1446 is a 16-bit unsigned integer which indicates the type of the IFMP-C node.
The value in Node Type field 1446 may be assigned by the vendor so that the
combination of the Organization Unique Identifier (QUI, which are the high-order
24 bits of a MAC address) portion of the Node ID and the Node Type are unique

10

15

20

25

30

WO 97/28505 PCT/US97/01595

109

for each type of IFMP-C agent, Resefved field 1448 is reserved for future use, and
may be set to 0 by the sender and ignored by the receiver. If the node is part of a
larger system such as a board in a chassis, then Parent Slot field 1450 is set to
correspond to the slot that the node occupies in the parent container. If the [FMP-C
agent can not determine the slot information or is not part of a larger container,
then Parent Slot field 1450 may be set to 0. If the node is part of a larger system
such as a board in a chassis, then Parent Shelf field 1452 is set to carrespond to the
slot that the node occupies in the parent container. If the IFMP-C agent can not
determine the shelf information or is not part of a larger container, then Parent
Shelf field 1452 may be set to 0. Firm Minor Version field 1454 indicates the
minor version of the firmware of the IFMP-C agent currently running, and Firm
Major Version field 1456 identifies the major version of the firmware of the IFMP-
C agent currently running.

If the Node Information request failed, then the IFMP-C agent returns
a Node Information errors message that consists of the IFMP-C header. The Node
Information errors message should be identical to the [IFMP-C header of the Node
Information request message except with the NACK flag set in Flags field 1020 and
with Cede field 1018 set to indicate the cause of the failure. Exemplary causes of
failure include that the IFMP-C agent was unable to allocate a message buffer to
complete the response, a client-specific error prevented the request from
completing, or other causes.

Another IFMP-C Network Management message type, IFMP-C
Interface Statistics messages are used to get information about each of the interfaces
on the IFMP-C agent. An IFMP-C Interface Statistics request message 1460 allows
the IFMP-C controller to request statistics for more than one interface in a single
request message. As seen in Fig. 21b, an IFMP-C Interface Statistics request
message 1460 has the generic format as shown in Fig. 15b with Message Body field
1030 that includes: a 16-bit Reserved field 1462, a 16-bit Number of Interfaces field
1464, followed by muitiple Interface Identifier fields 1466, 1468 and others.
Reserved field 1462 is reserved for future use, and may be set to 0 by the sender
and ignored by the receiver. Number of Interfaces field 1464 indicates the number

of Interface Identifier fields in the request message. Interface Statistics request

10

15

20

25

. 30

WO 97128505 PCTIUS97/01595
110

mes_Sage 1460 includes multiple Interfac;: Identifier fields (e.g. 1466 and 1468) to
list identifiers for each interface the IFMP-C controller is interested in. In the
specific embodiment, the reply must fit in a single message, so that the [FMP-C
agent returns responses for as many interfaces that fit in a single Tesponse message.

If the IFMP-C Interface Statistics request message has the
PLEASE_ACK flag set in its Flags field 1020 and the operation is successful, the
IFMP-C agent returns an IFMP-C Interface Statistics response message 1470 (seen
in Fig. 21c) with its Flags field 1020 set to an ACK flag and Code field 1018 set to
the predetermined value (0 in the specific embodiment) indicating no error. As
shown in Fig. 21¢, IFMP-C Interface Statistics response message 1470 has the
generic format as previously described in relation to Fig. 15b, with Message Body
field 1030 containing: Interface Statistics fields (e.g., 1472, 1474) which provide
general statistics (statistics common across different interface types) about the
interface, and specific statistics (statistics that only apply to specific interface types).
A typical Interface Statistics field structure 1480, as shown in Fig. 21d, includes: a
8-bit Reserved ficld 1482, a 8-bit Interface Type field 1484, a 16-bit Record Length
field 1486, a 32-bit Interface Identifier field 1488, a 16-bit General Statistics Length
field 1490, a Specific Statistics Length field 1492, a General Statistics field 1494,
and a Specific Statistics field 1496, Reserved field 1482 is reserved for future use
and may be set to 0 by the sender and ignored by the receiver. Interface Type field
1484 describes the type of interface (e.g. ATM, Ethernet, or other LAN interface)
being queried. Interface Identifier field 1488 uniquely indicates which interface the
statistics describe. General Statistics Length ficld 1490 specifies the length of the
General Statistics field 1494 in octets, and Specific Statistics Length field 1492
specifies the length of the Specific Statistics field 1496 in octets. General Statistics
field 1494 contains general statistics associated with all interfaces and has the
structure shown in Fig. 2le. Specific Statistics field 1496 contains the interface
type specific statistics, with exemplary structures (for ATM and Ethernet interfaces)
shown in Figs. 21f and 21g. Other structures may be used for other LAN
interfaces,

As seen in Fig. 21e, General Statistics field 1494 includes: a 64-bit
Received Octets field 1500 which indicates the number of octets received on the

10

15

20

25

30

WO 97/28505 - . PCT/US97/01595

111

specified interface; a 64-bit Received Niulticast Packets field 1502 which indicates
the number of packets addressed as multicast packets that were received on the
specified interface; a 64-bit Received Broadcast Packets field 1504 which indicates
the number of packets addressed as broadcast packets that were received on the
specified interface; a 64-bit Received Unicast Packets field 1506 which indicates the
number of packets addresscd as unicast packets that were received on the specified
interface; a 64-bit Received Discards field 1508 which indicates the munber of
packets that were discarded on input for the specified interface; a 64-bit Received
Errors field 1510 which indicates the number of receive errors on the specified
interface; a 64-bit Received Unknown fieid 1512 which indicates the number of
received packets having an unrecognized protocol on the specified interface; a 64-
bit Transmit Octets field 1514 which indicates the number of octets transmitted on
the specified interface; a 64-bit Transmit Multicast Packets field 1516 which
indicates the number of packets addressed as muiticast packets that were received on
the specified interface; a 64-bit Transmit Broadcast Packets field 1518 which
indicates the number of packets addressed as broadcast packets that were transmitted
on the specified interface; a 64-bit Transmit Unicast Packets field 1520 which
indicates the number of packets addressed as neither multicast nor broadeast packets
that were transmitted on the specified interface; 4 64-bit Transmit Discards field
1522 which indjcates the number of packets that’were discarded while transmitting
on the specified interface; and a 64-bit Transmit Errors field 1524 which indicates
the number of transmit errors that have occurred on the specified interface.

Specific Statistics field 1496 for specific stattstics for ATM and
Ethernet interfaces are respectively shown in Figs. 21f and 21g. As seen in Fig.
21f, Specific Statistics field structure 530 for an ATM interface includes: a 64-bit
Received Cells field 1532 which indicates the number of ATM cells received on the
specified interface; a-64-bit Transmit Cells field 1534 which indicates the number of
ATM cells transmitted on the specified interface; a 64-bit AAL5 CRC Errors field
1535 which indicates the number of packets with incorrect AALS Cyclic
Redundancy Checksum (CRC) received on the specified interface; and a 64-bit
Physical Errors field 1536 which indicates the number of physical errors that have

occurred on the specified ATM interface. Another example of Specific Statistics

10

15

20

25

30

WO 97/28505) PCT/US97/01595

112

field 1496 for an Ethernet interface inciudes: a 64-bit Received CRC Errors field
1542 which indicates the npumber of packets that have been received with an
improper CRC on the specified interface; and a 64-bit Transmit Collisions field
1544 which indicates the number of collisions generated while attempting to send
packets on the specified interface.

If the IFMP-C Interface Statistics request failed, then the [IFMP-C
agent returns an IFMP-C Interface Statistics errors message that consists of the
IFMP-C header. The Interface Statistics errors message should be identical to the
IFMP-C header of the Interface Statistics request message except with the NACK
fiag set in Flags field 1020 and with Code field 1018 set to indicate the cause of the
failure. Exemplary causes of failure include that the interface identifier is invalid,
the number of interfaces listed is not consistent with the number of interfaces in the
message, the IFMP-C agent was unable to allocate a message buffer to complete the
response, a client-specific error prevented the request from completing, or other

causes.

IV. Conclusion

The mventions claimed herein provide an improved method and
apparatus for transmitting packets over a network. It is to be understood that the
above description is intended to be llustrative and not restrictive. Many
embodiments will be apparent to those of skill in the art upon reviewing the above
description. By way of example the inventions herein have been illustrated
primarily with regard to transmission of IP packets capable of carrying voice,
video, image, facsimile, and data signals, but they are not so limited. By way of
further example, the invention has been illustrated in conjunction with specific
components and operating speeds, but the invention is not so limited. Still further,
it is understood that although specific examples of message types, errors, etc. are
described for a specific embodiment, these are merely examples and other
embodiments can use different, additional, fewer, or a2 combination of the features
described. The scope of the inventions should, therefore, be determined not with

reference to the above description, but should instead be determined with reference

WO 9728505 PCTUSY7/01595
113

to the appended claims, along with the full scope of equivalents to which such
.claims are entitled, by one of ordinary skill in the art.

AT S AT I S A4 SPRUSUN AU FEEWUDUN 01244010400 avoqoll o 1l

0

25

30

-114-

The claims defining the invention are as follows:

1. A method for transmitting packets between an upstream node and a downstream
node in a nctwork, said downstream node being downstream from said upstream node,
said method comprising the steps of:

establishing default virtual channels between said upstream node and said
downstream node;

receiving a packét at said downstream node;

determining whether the packet arrived on one of said default virtual channels;

selectively performing a flow classification, at seid downstream node, on said
packet;)

selecting at said downstream node, & free label on said upstream node; and

informing said upstream node that future packets belonging to said specified
flow should be sent with said selected free labe] attached.

2. The method of claim 1 wherein said upstream and downstream nodes use ATM.
3. The method of claim 2 wherein said free label comprises a VEIVCL

4. The method of claim 1 wherein said network comprises a local area computer
network.

3. A method for transmitting packets between an upstréam node and a downstream

node in a network, said downstream node being downstream from said upstream node,
said method comprising the steps of:

establishing default virtual channels between said upstream node and said
downstream node;

receiving a packet ai said downsiream node;

performing a flow classification at said downstream node on said packet to
determine whether said packet belongs to a specified flow that should be redirected in the
upst&m node;

selecting a free label at said downsream node;

informing said upstream node that futurc packets belonging to said specified
flow should be sent with said sclected free labe] attached; and

[RALibUJAxty instruction memo.doc:eaa

24/04 '01 TUE 15:14 [TX/RX NO 8277]

4 REX CUUL 19142 SEKUSUN ARU FEXGUSUN DIZY201345b W 4bll b I¢

-115-

wherein said network comprises a Jocal area computer network, and wherein said
informing step is performed by IFMP software that enables communication between said

upstream and dewnstream nodes.

s 6. A methed for transmitting packets between an upstresm nede and a downstream
node in a nctwork, said downstream nede being downstream from said wpstream node,
said method comprising the steps of:

establishing default virtua} channels between szid upstream node and said
downstream node;

0 receiving a packet at said downstream node;

performing a flow classification at said downstream node on said packet to
determine whether said packet belongs to a specified flow that should be redirected in the

upstream node;

T selecting a free Jabe] at said downstream node;
’ 15 informing said upstream node that future packets belonging 1o said specified
".": flow should be sent with said selected free label attached;

wherein said flow classification performing step includes looking at a flow
identifier of the packet to determine whether said packet belongs to a specified flow that

should be redirected in the upstream node, said flow identifier comprising specified

Teana 20 header fields from the packet; and

rel sending said future packets belonging to the specified flow with said specified
Teenet header fields removed to provide security.

L 7. The method of claim 6 wherein said future packets may be reconstructed using

35 the flow identifier at a destination permitted to receive said specified flow.

8. A method for switching a flow at a first node, said first node having a

downstream link to a second node and an upstrearn liok to a third nods, said method

comprising the steps of:
kW performing a flow classification at said first node on a first packet to determine
veer whether said first packet belongs to a specified flow that should be redirected in the third
v node;

selecting a first free label at said first node;
informing said third node that future packets belonging to said specified flow
35 should be sent with said selected first free label attached;

[RALiBU]Anty instruction memo.doc:zas

2‘4/04 '01 TUE 15:14 [TX/RX NO 92771

{4, APRZUUT 19042 SFEUDUN AND FERGUSUN DIZYZbED4HD N-dpll b1

Teasdt 0

25

30

- 116 -

performing a flow classification at said second node on a second packet to
determine whether said second packet belongs to ssid specified flow that should be
redirected in the third node;

selecting a second free labe] at said second node;

informing said Srst node that future packets belonging to said specified flow
should be sent with said selected second free label attached; and

selectively switching said specified flow from said upstream link by said first
node to said downstream link; and

wherein said specified flow from said upstream link may be sent by said first

node to said downstream link.
9. The method of claim § wherein said sccond packet is said first packet.

10. The method of claim 9 wherein said first, second and third nodes use ATM.

11. The method of claim 10 wherein said first and sccond free labels comprise
VPI/VCls.
12. A method for switching a flow at a first node, said first node having a

downstream link to a second node and an upstresm link to a third node, said method
comnptising the steps of!

performing 2 flow classification at said first node on a first packet to determine
whether said first packet belongs to & specified flow that should be redirected in the third
node;

selecting a first free label at said first node;

informing said third node that future packets belonging ta said specified flow
should be sent with said sclected first free label attached;

performing a flow classification at said second node on a second packet te
determine whether said second packet belongs to said specified flow that should be
redirected in the third node;

selecting a second free label at said second node;

informing said first node that future packets belonging to said specified flow
should be sent with said selected second free tabel attached,

[RALiBUJAtty instruttion memo.doc ess

24/04 01 TUE 15:14 [TX/RX NO 8277]

5

30

24 AP 20U 19043 SPRUSUN AN FEKGUSUN bI29Zb1548b NG doll o r 14

<117~

wherein said specified flow from said upstream link may be switched by said
first node to said downstream link, said second packet is said first packet, and said
informing steps are performed by IFMP software that enables communication between

said nodes.

13. A computer program product that enables dynamic shifting between routing and
switching in a network having an upstream node and a downstream node downstream
from, said upstream node, said computer program product comprising:

computer reedable code that performs a flow classification on a packet at said
downstream node to determine whether said packet belongs to a specified flow that
should be redirected in said upstream node;

computer readable code that selects, at said downstream node, 2 first free label
on said upstream nede;

computer readable code that informs said upstream node that future packets
belonging to said specified flow should be sent with said selected first Tee label attached;
and

a tangible mediumn that stores the computer readable codes.

14, The compuicr program product of claim 13, wherein said tangible media

comprnses & hard disk on 2 computer,

15. The computer program product of claim 13, wherein said tangible media is

selected from a group consisting of CD-ROM, tape, floppy disk, and the like.

16. A method for transmitting packets between an upstream node and a downstream
node in a network comprising the steps of:

receiving a packet from said upstream node at said downstream node;
performing a flow classification, at said downstream node, on said packet;

selectively assigning, at said downstream node, a free label on said upstream

node;
sending a message to said upsweam node indicating seid free label; and

selectively including said free label in future packets from said upstream node.

17. The method of claim 16 wherein saig free label comprises a VPIVCL.

|RALMUJA Ly ingtrucdon memo.doc:eaa

24/04 '01 TUE 15:14 [TX/RX NO 92771

ChORYK ZUUBL 102 BYKUBUN ANU FERUUDUN D1£Y£0 15480 VRN B O S

-118 -

18. The method of claim 16 wherein said network comprisés an ATM network.

19. A method for forwarding packets from a first node to 8 sécond node in a network
comprising the steps of:
5 receiving a first packet from said first node;

performing a flow classification on said first packet,
selcctively assigoing 2 free label to a flow associated with said first packet;

sending a message to said first node indicating said free label; and
forwarding future packets from said flow using a channel indicated by said free

10 label.

20, The method of claim 19 further comprising the steps of.

::':.: setting a timer upon assigning said free label; and
TR forwarding future packets from said flow using a default channel upon expiration
15 of said timer.

: 21. A method for switching a flow at a fixst node comprising the steps oft

receiving a first packet of said flow from an upstream node;

performing a flow classification on said first packet;

:--;-: 20 selecting a first free label on said upstream node;

-:;g:. sending 2 message to said upstream node indicating said first free label;

_:.::: receiving a message from a downstream node indicating a second free 1abel; and
E.: .E Iselectivcly switching future packets of said flow from said upstream node to said
C downstream node based on said first and second free labels.

25
22. The method of ¢laim 21 further wherein said upsteam and downstream nodes use

ATM.

23, A computer program product for transmitting packets between an upstream node

. 30 and a downstreamn pode in a network comprising:
: code for receiving a packet from said upstream node at said downstreatn node;

code for performing a flow classification, at said downstream node, on said

packet;

[RALBU)Atty instruction memo.doc:ead

24/04 '01 TUE 15:14 [TX/RX NO 92771

L4 AL LUUL 10049 DIRUDUN ANL PELAUVUDUN 01£Y£017400 NG, 4001 f. 1D

: .
1aea” 20

k]

-119 -

code for selectively assigning, st said downstream node, a free label on said
upstream node;

code for sending a message to said upstream node indicating said free label; and

code for selectively including said free lzbel in foture packets from said

upsiream node.

24, A computer program product for forwarding packets from 2 fitst node to 2
second node in a network comprising:

code for receiving a first packet from said first node;

code for performing a flow classification on said first packet,

code for selectively assigning a free label to a flow associated with said first
packet;

code for sending a message to said first node indicating said free label; and

code for forwarding future packets from said flow using a channel indicated by

said free Jabel,

23, A computer program product for switching a flow at a first node compnsing;
code for receiving a first packet of said flow from an upstream node;
code for performing a flow classification on said first packet;
code for selecting a first free labe! on said upstream node;
code for sending a message to said upstream node indicating said first free label;
code for receiving 2 message from a downstream node indicating a second free
label; and
code for selectively switching future packets of smd flow from said upstream

node to said downstream node based on said first and second free labels.

26. A method for transmitting packets between an upstresm node and a downstream
nods in a network, said method being substantially as described herein with reference to
any one of the embodiments, as that embodiment is described in the accompanying

drawings.

27. A method for switching a flow at a first node, said method being substantially as
described herein with reference to any one of the embodiments, as that embodiment is

described with reference to the accompanying drawings.

[R:ALibUJActy meucton mema.doc:caa

24/04 '01 TUE 15:14 [TX/RX NO 9277]

VY, YU L1t
VUL Jdeby VIDUUUL AN L LAUVUGD UL LILU L JRUY v YUl
LTe ik Al L .

!

-120 -

28. A computer program product that enables dynamic shifting between routing and

switching in a network having an upstream node and 2 downstream node downstream

from said upstream node, said computer programn product being substantially a3 described

herein with reference to any one of the embodiments, as that embodiment is described
5 with reference to the agccompanying drawings.

29. A method for forwarding packets from 2 first node to a second node in 3

network, said method being substantially as described herein with reference to the
accompanying drawings,

30. A computer prograrn product for transmitting packets between an upstream node
and & downstream node in a network, said computer program product being substantiaily

pons™t 85 described herein with reference to the accompanying drawings,
g i 15 31, A computer program product for forwarding packets from a first node to a
't second node in a network, said computer program product being substantially as

deseribed herein with reference to the accompanying drawings.

ogesed 3z A computer program product for switching a flow at a first node, said computer
¥ program product being substantially as described herein with reference to the
e accompanying drawings.

5 DATED this twenty-fourth Day of April, 2001

E “..:‘ Ipsilon Netwarks, Inc

R 25 Patent Attorneys for the Applicant
SPRUSON & FERGUSON

[RALibU]Ay instruction mieTno, dor.caa

24/04 '01 TUE 15:14 [TX/RX NO 9277]

o
WO 97/28505 PCT/USY7I01595

1/80

/e /!

i
CPU ATM 3
23~ Stundu_rg__fius ’ ' I Stcndu_rg__B_us NIC
'_Seﬁwgr_e' iSoftware—7 91 ||
257 — Sy
{08aseT Ethernet ATY 25 et b | NS
ase erne !
100BaseT Ethernet, _ NIC 1 mEE® @J @ 3 3
ond/or FODI NICs
/ 27 13 £ 134J [132
FIG. 15 FIG, 13

Stondard Bus

T

Sofware]
T
907 f\ -
10BaseT Ethernet AT™
100BaseT Ethernet, NIC

_and/for FODINICs Lgpg

FIG. It

SUBSTITUTE SHEET (RULE 26)

PCTNUISHTI01595

"

WO 97/28505

/50

&

NY

174

mnmg.

114

-

YOS dI

; (e

e~ 8i

ADM3109 Yo} IM
/2. H..w [« S dl
1044 do_; :
pouayia > { g

1004 40 3jdulay}y

»mm\

SUBSTITUTE SHEET (RULE 26)

PCT/US97/01595

WO 97128505

/40

— Gy
R ~_sd
cdawer sdqugg
quge 5 ~oF
m..m..m.l\u. 13
}S°H
"1
M sdqugg <=
........... \ yo}Img di
%Vu\ mm.m. N.\
sdqugz—"" ", Ne-00
e N\ g
> ,
ADMay0g YIYAS dI

ic :

1004 46
ULy TS S~ g

CE~ : :]
£b- NY
] []
» A,

SUBSTITUTE SHEET (RULE 26}

{VO 97128505 PCT/US97/01595

| e 1 1

e |V

| |

| y |

g ifsug,1

! : 916

B —

| |

i |

917, N /9193 [9175
ETHERNET/LAN £ - o5 ETHERNET/LAN
ETHERNET/LAN 919, | g9, — T_ETHERNET/LAN
917, 917,
513
917, I/_c,w4
ETHERNET/LAN ETHERNET/LAN
FIG. Zr
T (A LAV
1/0 SYSTEM CENTRAL RO
CONTROLLER MEMORY PROCESSOR
N B |
| | DISPLAY i
| | ADAPTER 4 5
\ 2 |
| 53 77 55E 79 81
; [[i [[
} REMOVABLE | FIXED NETWORK
| | MONITOR DISK KEYBD |1 sk INTERFACE
) 1
]
optionolf
for host
() FI6. 3

SUBSTITUTE SHEET (RULE 25)

PCT/US97/01595

WO 97/28505

5/50

Wi, wo1Bo1Q Yooig YO}IMS gy [gry
PR ang | f A || AHd || ana e e R IV N P T
Ry pJD38IQ
A 19y304
v, 41d pond(o) el w1 41d Pong(IHN) A103
ot
[
901 _ /um_s /Jw.q
{ | it e ! }
| 0} X_VE
A vanen ¥4new — — VBN yanan i
¥or (onn) Auzsv whon_
9~ g1 ngaQ
i0
, NI 1AOO HIN WHOO . K_ [] coo | ram o WIN HHOD o651y
i wrd | | aor i | L, [
18yl anany _HH_E..E b
1d0/1m AR LT YNT1 .
(orw)
7 b (o) ndd(0g6 (2p) [}32%
318vL 2oF 007 [Y40
LIo/1i1 | N .
YOVLS an I |
s L SR LIEY HIN HOY AV
| o’ \ HSV 14 1008 | [BoN 26—z
£ g vk -z

SUBSTITUTE SHEET (RULE 26)

WO 97728505 PCT/USYTI01595

- 160 6/50
START -

Establish default

162
virtual channels /
on ali ports

164

wait for
packets to
arrive

' 178
168

Is the
dﬁfOUHI fiow labelled
channe downstream

170
r

Flow classif
pqcket y SWitCh //_130
flow

172

should
fiow be

switched
?

_ Yes

labe | |~ 174
flow

Forward | 17
packet

182
wait for packet
to arrive

F16. 5b

SUBSTITUTE SHEET (RULE 26)

WO 97728505

PCT/US97/01595

7750

1600

Packet -
arrives

1604
I

Access tree bound
to speciolized channel

1610
ﬂ\

Search branch
table for matching
input branch

1612

1516-\\

Forward pocket
as specified

found? No

Yes

l

Forward packet

#

1606
Wait for packet
to arrive

Send packet to
Switch controller

1

1616
Wait for packet
to arrive

1620

“fall

1624
/

Continue search
at next precedence

through" level
specified? e
1626
Yes
No
1539a\
Wait for pecket
to arrive
FIG. br

SUBSTITUTE SHEET (RULE 26)

\'NO 97/28505 PCT/US97/01595

8/50

1680

Packet arrives

from switching
agent

16572
Flow clossify |~

packet
1654 j/‘IEEO
Should Yes
flow be Labe! flow
switched?
No

1656
Forward packet 7

1658

Wait for packet
to arrive

F16. b

SUBSTITUTE SHEET (RULE 26)

WO 97/28505

/560

Label flow

PCT/USS7/01595

19

on upstream link

select free label x ,//FISQ

select temporary
label x' on
contral port

/194

Send GSMP message

port

196
to map x on upstream e
link to x' on control

)

Wait for GSMP

ocknow ledge message

188

Send IFMP
redirect message

on upstream link

|~ 200

|

(Step 176 of Fig 5b)

FIG. ba

SUBSTITUTE SHEET (RULE 26)

‘;WO 97/28505 PCT/US97/01595

10/50
: 210
Switch flow)

Send GSMP message

FIG. BbH to map x on /319

upstream link to

y on downstream
link

wait for GSMP /,/'574
acknowledge message

4

[Step 176 of Fig 5b)

218

Forward Packet

220

Is fiow
labelled on
downstream
link?

No

7226 . /‘EBO , /PEEP

Hos
”feﬁiﬂf delete flow Send packet
explre redirect jon OHCS::::I“

No

/FEHH

Send packet
on labelled channel

[Step 182 of Fig 5b) FIG. 6C
SUBSTITUTE SHEET (RULE 26)

;NO 97/18505 PCT/USY7/01595

11/50
1660 1664
- /

Use IFMP-C to
condition source
switching agent
to forward future
packets in flow
with appropriate
header and transformation
out on destination
interface

laser flow

for interface
on source swilching

interface on other
(destination) switching

i / 1680

Select free lgbel X on
1668 link between switch controller
/- end source switching agent
Select free label X
on link between switch /1612
contreller and source Wait for free label Y to be
switching agent chosen be switching node
i 1670 | .and communicated via IFMP
Select free label Y on 1664
link between switch
controller und destinagtion Use GSMP to map X to Y
Switching agent
l ~ 1672 { . 1666
. Use IFMP-C to condition
Use GSMP to map X to Y source switching agent to
] 1674 | forward future packets of flow |
— to X with appropriate
éj:;t IFS';{fPiIghitnog %‘;’g'tt'?g heoder end transformation

forward future packets recieved
on Y out destination interfoce
with appropriate header and

transformation

i 1676

Use IFMP-C to condition
source switching agent to
forward future packets of
flow ta X with appropriate

header and transformation FIG 6d

SUBSTITUTE SHEET (RULE 26)

WO 97128505

apprepriote header and transformation

PCT/US97/01595

12/50

1700
' Label flowl
//r1702

Select free label X on
link between switch

controller and switching
node

/1'704
Select free label Y on
link between switch
controller and destinction

Switch agent

1706
use GSMP o map X to Y

Use IFMP-C to condition dest,
switching agent to forvard-future
packets received on Y out
destination interface with

/—1710

Use IFMP 1o request upstream
switch node to transmit
future pockets of fiow X

FIG. be

SUBSTITUTE SHEET (RULE 26)

WO 97728505 PCT/USYT/01595

13/50

240 F low Type 1
/ flow identifier
MSE " LSB
0 1 2 3
01234 5 6 7 B3012345678901234 5 6 78901

- IF\II!llllllll e e O
|||||||

Version IHL Type of Service | Time to Live Protocoi

Source Address

Destination Address

Source Port Destination Port }word
bit
FI6. 73
2B0Flow Type 2
MSB | ’//F flow identifier | g
3
0172 3 4 5 6789012 3 4 5 §789 0 1 2 3 4586 7 8 g 01
Ver3|on IHL Type of Sérvrce Tlme to lee Pfoioéof ~

Source Address

Destination Address _}word

bit
FI6. 7b

SUBSTITUTE SHEET (RULE 26)

WO 97/28505

14/50

/

PCT/UGS97/01595

360 generic IFMP adjacency

protocol message

MgB 02 , 04) o
QtJ{4ﬁﬁ]8ﬁpjg}&ﬁ6]Sﬁpjgﬁﬁﬁﬁ]ﬁﬁpj/ﬂw
©Version | id;_éo&e” | Checksum }word
Sender Instance -1 08
Peer Instonce A~310
Peer Tdentity ~—312
Peer Next Sequence Number 434
Address List
; :
FI6. 8 ta
MSB LSB
0 1 3
01234567890123456789012345678901
Version| IHL | Type of service Total length
Iden Flogs Frogment offset
Time to live Header checksum

Protocol

Source cddress

Destination address

Options + Padding

Data

generic IP packet (IPv4)

FI6. 8b

SUBSTITUTE SHEET (RULE 26)

WO 97728505

START 5750

PCT/US97/01595

[ﬁacket urrivesf’/fjga

322

incoming eessage
is RSIACK

324

Sender Instence and

Source IP Address in RSTACK message
matches the values stored from

No

{SEE FIG. &o)

332
/[

previous message by Peer Update
Peer Verifier operation far port

on which RSTACK message
received?

326

Peer Instance and
Peer Identity in RSTACK message

mutches the values of Sender Instance
and Source 1P Address currently in use for al
SYN, SYNACK, ond ACK messages transmitted
out of the port on which

the RSTACK message
! received

Generate new instance number |~ I3
for the link

i

Delete Peer Verifier b 0
I /r335

Discerd the RSTACK ||
message

340

Set Sequence Number and Send SYN
Peer Next Sequence Number to Zero message

e e et ki et e o et e T T s A . e = e e e -

SUBSTITUTE SHEET (RULE 26)

;NO 97/28505 PCT/USY7/01595

16/50
FIG, 87
/rﬂﬁ?

Update Peer Verifier
and Send SYNACK

350

56
ﬁ\ BorD

Update Peer Verifier
and Send Ack

Send RSTACK

\Ljﬁﬁ

Send ACK

C or SYN _355
or SYNACK

Legend

A: SYNACK AND Z%C

B: SYNACK AND NOT(%C)

C: ACK AND %ZB AND 7%C

D: ACK AND NOT (%B AND %C)

where Z B: Sender Instance and Source IP Address in
incoming message matches the values stored
from previous message by Update Peer
Verifier Operation for the port on which
incoming message is received

where 7% C: Peer Instance and Peer Identity in incoming
message matches the values of Sender Instonce

and Source IP Address currently in use for all
SYN, SYNACK, and ACK messages transmitted out
of the port on shich incoming message is received

SUBSTITUTE SHEET (RULE 26)

WO 97728505 PCTAUS97/01595

17/50

) /380 generic IFMP Redirect
Protocol message
MSB 980

LSB
0 N 2 3
01231456789012/3456789012345678901
1 1 1386
Version Op Code Checksum é
Sender Instance 1368
Peer Instance 4350
Sequence Number 1 3%
Messoge Body
FI6. 93 \394
420 REDIRECT
/ message element
MSB 424 LS8
0 477 1 2 3
0123/4567890123456789012345678901
Flow Type | Flow Id Length Lifetime Y426
Labe| 428
Flow Identifier
A
FI6. 9c - \ g
432 RECLAIM message
d element
MSB

0 sy A%) 8
01234(567890%3456789012345678901/—433

Flow T);pe Flow Id Length Reserved
Label 10
Fiow Identifier 1
FIG. 94

SUBSTITUTE SHEET (RULE 26)

;NO 97/28505 PCT/US97/01595

18/50

START }. 7
/'400

Receive IFMP Redirect
Protocol message packet

402

s 404

Synchronization

No discard IFMP Redirect
Potocol message packet

(IFMP adjacency protacol)
currently achieved

Yes [

Check Source IP Address,
Sender Instance, and
Peer Instance in
received IFMP redirect
Protocol message packet

Sender
Instance
and Source IP Address fields

match values stored by
Update Peer verifier operation

of IFMP adjacency protoco! for
part on which IFMP redirect
protocol messoge received

408

410

Peer Instance field

matches current value for

Sender Instance of the

IFMP adjacency protocol
2

412

continue

FI16. 30

SUBSTITUTE SHEET (RULE 26)

WO 97728505 PCTIUSO701595

19/50
MgB 5 1 449) 3LSB
0123/;56789011;3456789012345678901
Flow Type Flow Id{Length Reserved 1450
Label a0

Flow Identifier

FIG. 9 \ 454
45E LABEL RANGE
/ message element
MSB LSB
0 1 2 3
012345678901234567890123456789¢011
Minimum Label }- 48
Maximum Lable A 460
FIG. 9f
/—452 ERROR message element
MSB » . . LB
0 ' i 2 3
01234567890123456789012345678901
Error Code Parcmeter \
164/ FIG. 9g \

SUBSTITUTE SHEET (RULE 26)

‘NO 9728503

PCT/US97/01595

20/50
//—470 Label on ATM data link

MSB LSB
C 1 2 3
01234567890123456789012345678901
Reserved - VPI VCI
2 474/ 475]
FI6. 103
480 Default encapsulated
//r IP packet
MSB LSB
o 48 1) 3
012 3]4 56789012345678901234567890 1/,454
' LLC (OxAA—AA=D3) ’
SNAP (0X00-00-08—00)
IPv4 Datagram 1986
Pad (0 ~ 47 octets) R
AAL-5 CPCS-PDU Trailer (8 octels) 740
FIG. 106

SUBSTITUTE SHEET (RULE 26)

WO 97/28505 PCT/US97/01595

21/50
- ’ 492 Flow Type O encapsulated IP packet
MSB /s P P LS3
0 1 2 3
01234567890123456789012345678901
119
IPv4 Datagram
Pad (0 - 47 octets) A 9%
AAL-5 CPCS-PDU Trailer (8 octets) 4%
FI6. 10c -
500 Flow Type 1 encapsulated
MSB / IP packet LSB
01234567890123456789012345678901
Total Length Identification A 504
Flags Fragment Offset Checksum 4 510
Loos Datg 4512
Pad (0 - 47 octets) Pl
© AAL-5 CPCS-PDU Trailer (8 octets) i
Fi6. 10d
520 Fiow Type 2 encapsulated
MSB / IP packet LSB
0 522 1 _ 2 3
0123456‘\7890123456789012345678901
* Total Length Ldentif ication %24
Flags Fragment Offset Checksum)53
L I
526 528 Date |53
Pod (0 - 47 octets) A5
AAL-5 CPCS-PDU Trailer (8 octets) |53
FIG. 10e

SUBSTITUTE SHEET (RULE 25)

WO 97128505 PCT/US97/01595

22/50
' /540 encopsulated GSMP packet
MSB \ LSB
0123]4567890123456789012345678901f544
’ LLC (OxAA—AA=03) ’
SNAP (0X00-00-08-00)
GSMP Message 5
Pad (0 — 47 octets) 1548
AAL-5 CPCS-PDU Trailer (8 octets) 150
FIG. 113
/ 52 GSMP adjacency protocal message
MSA LSB
0 hh4 1 RAB 2 hR8 » 3
012345678901 2\34567890/12345678890'1
Version Message Type Result Code A %60
Sender Instance P
. Sender Port , _—hb4
Sender Name A hbb
- 568
Receiver Name
Receiver Port ‘ A0
Receiver Instance 572

FIG. 11h

SUBSTITUTE SHEET {RULE 26)

WO 97128505 PCT/US97/01595

23/50
| START,) /

packet orrives FIG. 11c
\\“530

incoming message

is RSTACK
?

(SEF FIG. 11d)
562

584
Sender instance, Sender
Port, & Sender Nome in RSTACK nmessage
match the values stored from
previous message by the Update

Peer Verifier operation? /-593

Discard the RSTACK ||

message

Yes

Receiver Instance, 586

Receiver Port, & Receiver Nome
fields in incoming message match
values of Sender Instance, Sender
Port, & Sender. Name fields
currently sent in
outgoing SYN,

SYNACK, & ACK
mesguges

588

Yes

SYNSENT state

5480
o TNa Reset link Zr B

Genercte new instance number /594
for the link

Sender Instance, Sender S enter
Part, & Sender Name ;ggngeN SYNSENT
previously stored by J state

Update Peer Verifier operation

I

]

I

E

‘ |
600

5% |

Delete the values of ¥~ /_5‘(78 / |
i

|

I

I

|

1

[}

e e e e o e e e o o = e o et e e e e e e

SUBSTITUTE SHEET (RULE 26)

WO 97728505 PCT/USH7/01595

24/50
FIG. 11d

604
607 /r

Update Peer Verifier
and Send SYNACK

B or ACK

603\ B or D

Send
RSTACK

Update Peer Verifier
and Send Ack

Send RSTACK

\Lﬁvﬁ

Send ACK

C or SYN \510
or SYNACK

Legend

A: SYNACK AND %C
B: SYNACK AND NOT(%C)
C: ACK AND %ZB AND %C
D: ACK AND NOT(%B AND %C)
where 7%B: Sender Instance, Sender Port, and Sender Name
in incoming message match values stored

from previous messoge by Update Peer Verifier
operation

where %C: Receiver Instance, Receiver Port, and
Receiver Name fields in incoming message
match values of Sender Instance, Sender

Port, & Sender Name currently sent in outgoing
SYN, SYNACK, ACK messages

SUBSTITUTE SHEET (RULE 26)

WO 97728505 PCT/US97/01595

25/50

/HEO generic GSMP
Connection Management message

MSB LSB
0 622 1 624 2 626 3
O1234[567890123/'456789012{345578901 624
Version Message Type Result Code
Transaction Identifier 6%
Port Session Number 632
Input Port A b
zero 4636 Input VPI Input VCI 640
6387 Output Port B
zero |64 Output VPI Output VCI b6
Number of Branches \ Reserved Priorit)f
L 650 \1545 \ 552 \ 654

FiG. 12

SUBSTITUTE SHEET (RULE 26)

WO 97728505

Add Branch
request message
received

connection
(Input Port,
Input VPI/VCI)
specified in request message
exist in
switch
?

666

Output
branch (Output
Port, Output VPI/VCI)
specified in request message
exists in

switch
?

680

Priority
specified in request
message different than

current priority

for the branch
?

Yes /rERQ

change priority for

the branch to priority

specified in request
message

PCT/US97/01595

26/50

///'550

b62

/['554

Establish
connection as

specified in
request messoge

672
670 /r
Send
failure
response
message
568 \ Yes
No [Add ne branch
es specified in =
t
request messoge r 674 /—678
specified in No
request message response
?

send success
response message

/“534

No change
in priority

FI6. 13a

SUBSTITUTE SHEET (RULE 26)

WO 97728505

27/50

Delete Branch
request message ///—590
received

697

Connection
(Input Port, Input YPI/VCI)
Specified in request message

exist in Switch
2

694

Output
branch (Cutput port, Dutput
VPI/VCI) specified in
request message exists
in Switch?

PCT/US97/01595

/f?UE

send failure

Yes /FEPE

Delete output branch
specified in request
message

698

No

successful
b

700

AckAl]
specified in
request message
?

Yes./'70:"

send success
respense message

response message

/r704

No response

FI6. 13b

SUBSTITUTE SHEET (RULE 26)

WO 97/28505

26/50

. /710
Delete Tree

request message
received

712

Connection
(Input port, Input
VPI/VCI) specified in
request messoge

exists in
switch?

PCTNUSY7/01595

/F7?4

Send failure

Yes J714

Delete Connection
specified in request
message

AckA il

response message

/FP?E

specified in
request message

No response

?

Yes /720

Send success
response message

FIG. 13c

SUBSTITUTE SHEET (RULE 25)

i)vo 97/28505 PCT/US97/01595

Verify Tree 730
request message -
received

732

Connection
(input port, Input
VPI/VCI) specified in
request message
exists in switch

s 744

Send Failure
response message

Yes //'73%

Check actual number of /riwﬁ
branches for specified
connection & compare Set actuol number
w/Number of Branch specified | |[into Number of Branch
in request message field of response m €D off

AckAll

specified in

request message
?

742
7

No response

/‘ 740

send success
response message

FIG. 13d

SUBSTITUTE SHEET (RULE 26)

WO 97128505

30/50

Delete All Request |~ 2"
message received

752

any
Connections
(Input VPI/VCI)
for Input poert specified
in request message

PCT/US97/01595

764
/

exist
?

Send Failure
response message

//-754

Delete all connections
for input port specified
in request messoge

AckAll

762
r

specified in

No response

request message
2

76
/r 0

send success
response message

FiG. 13e

SUBSTITUTE SHEET (RULE 26)

WO 97128505

31/50

PCT/US97/01595

/ 770 GSMP CM

move Roct message

MSB (522 , 21 /625 8

01234567890125/45678901/2345678001
Version Message Type| Result Code A ‘
Transaction Identifier -/—530
Port Session Number L5
Cid Input Port 77
74 zero | 0l¢ Tnput VPI Old Input VCI f7%
New Input Port 70
782~ 2er0 | New Input VPI New Input VCI V7%
/ Reserved 7%
784/
FIG. 13f

SUBSTITUTE SHEET (RULE 26)

WO 97128505

//rjyv
Move Root

request message received

/9%

Connection
specified in Old

No

PCTIUSY7/01595

32/50

FI6. 13g

Input port/VPI/VCI of
request message

exists
?

794

Connection
specified in New Input
Port/VPI/VCI of request
message
unassigned
3

/r795

Each output branch of
existing connection free

extablished as specified
in New Input Port/VPI/VCI in
request message & Qld

Input Port/VPI/VC deleted

|

798
No

/'805 205

No modifications
to existing connections
& set code field to zero

Send failure
response message

in response message

800

_JZTEM4

No response

AckA il

specif ied

in request

message
l?

. /—302

Send Success
response message

SUBSTITUTE SHEET (RULE 26)

\'VO 97128505 PCT/US97/01595

33/50

/—520 GSMP CM Move Branch

message :
MSB 6ac 1 624 ? o26 3LSB
01234{557890123[456789012[345578901 528
Version Message T)"Pe Result | Code
Transaction Identifier B0
Port Session Number 6%
Input Port 634
zero -6 Input VPI Input VCI 640
636 0ld Output Port 622
zero 0ld Output VPI 0ld Output VCI 4628
Car gz New Output Port 1830
zero New Output VPI New Qutput VCI 8%
L\‘HEE LBEM Reserved \ Priority\
a3 \an
FIG. 13h

SUBSTITUTE SHEET (RULE 25)

WO 97/28505

Move Branch
request message’
received

Connection
specified (Input Port,
VPIVCI) of request

message exists
?

846

Old Output
branch (01d Port/VPI/VCI)

specified in request
message exists

?
i, //'345

Add new output branch
as specified in request
message & delete old
output branch as specified

in request message

AckAll
specified in
request
message
?

Yes /854

Send success
response message

PCT/US97/01595

844

/”BEU '

/r553

| | No modification |__] send failure
of connection state response
message

g56
/F

No response

FIG. 131

SUBSTITUTE SHEET {RULE 26)

WO 97/28505 PCT/USY7/01595

35/50

/-870 GSMP Port Manogement Message

Y e) 62 3

01234{567890123[456789012[345678901/_523
Version Message Type Result Code
Transoction Identifier 630
Port 1872
Port Session Number N—674
Event Sequence Number -1~ 576
Event !-'Iogs Durntior] Function 19
\-378 \‘5‘5'0
FIG. 14

SUBSTITUTE SHEET (RULE 26)

{VO 97128505 PCT/USITI01595

J6/50

/1000 Encaopsulated
IFMP-C Packet

MSB LS8
1002~ | ‘ /1004
I~ LLC (OxAA—AA-03)
SNAP (Ox00~00—00—88—24)
1006
IFMP-C Messages
PAD (1 - 47 octets) ——1008
CPCS—
AAL=5 POU Trailer
\
FIG. 15 1010
1012 TFMP-C
MSB d Messaqge LSB
[1015 /-1013 [105’0
1014 ; ! ’ e
Version Message Type Code Flags
1022~ Transaction Identifier Message Length 1024
1086~ Senders Sync Instance
1026~ Peer Sync Instance
1030~
Message Body

FIG. 150

SUBSTITUTE SHEET (RULE 25)

WO 97/28505 PCT/US97/01595

37/50
1040 TFMP-C Adjacency
MSB ~ Protocol Message |SB
1014 1016 1018 1020
/ [f [
Version Message Type Code Flogs
1022~ Transaction Identifier Message Length 1024
10424 Senders Instance
- 1044~ Peer Instance
1045~~"""Sender Type ACK Interval 1048
Sender Name ~~—1050
Peer Name .
FI6. 163 105

SUBSTITUTE SHEET {RULE 26)

‘\IJVO 97/28505 PCT/US97/01595

Send 1076 36/50 1065
RSTACK RSTACK drop message /_MBE Send SY,I\;N_CK
N 1074 Reset link AND o
Send SYN

B or ACK B or D

Update Peer
AND Send SYNACK

SYNRCVD
1064

Send RSTACK

/ \
Send 1078
SYN

Update Peer Drop
AND Send ACK mess\silge
Reset link \!07‘9 1080
AND Send SYN
1086 "
Send ACK Send ACK
1090 " 1070
Send RSTACK
- 1088

A: SYNACK AND %X where ZX = Peer Instonce and Peer Nome

B: SYNACK AND NOT(%X) in received message match

C: ACK AND ZX AND ZY local values of instance and

D: ACK AND NOT(%X AND ZY) name gssociated with the link

E: RSTACK AND %X AND ZY %Y = Sender Instance and Sender

F: RSTACK AND NOT(%X AND %Y) Neme in received message

G: (SYN OR SYNACK) AND NOT (%X) mateh the volues Stored for the

H: (SYN OR SYNACK) AND NOT (%X) peer instance ond peer name

FIG. 160

SUBSTITUTE SHEET (RULE 26)

WO 97/28505

PCT/US97/01595

39/50
1100IFMP-C Interface
List Request
Message
MSB LSB
/1015 /—!018 [.1020
1014, : ; L /
Version Message Type Code Flags
1022~{ Transaction Identifier Message Length 1024

1026 -4 Senders Sync Instance
10268~ Peer Sync Instance
Next Cookie
1112/ FIG. 173
1114 IFMP-C Interface
//F List response message
MSB LSB
/1015 [1015 [!020
1024 Version Meséage Type Code Fllcgs
1022~ ansaction Identifier Message Length 41024
1026~ Senders Sync Instance
1026~ Peer Sync Instance
112~ Next Cookie
1116— Number of Interfaces
1118~ Interface Identifier 1
1120~ Interfoce Identifier 2

FI6. 176

SUBSTITUTE SHEET (RULE 26)

§N0 97/28505 PCT/US97/01595

40/50 1130 IFMP-C Interface
- / Query Request

MSB : [1016 fjojhgessnge /_1020
1014 , "
Version Message Type Code Flogs
1028 T ransaction Identifier Message Length 41024
1026~ Senders Sync Instance
10281 Peer Sync Instance
Interface Identifier
132/ FIG. 170 .. .
Interface
e
/.1015 /—1018 [1020
1014 - ' , ’
: Version Messoge Type Code Flags
1022~ Transaction Identifier Message Length A-1024
1026~ Senders Sync Instance
1026~ Peer Sync Instance
1132~ Interface Identifier
1136~ Interfoce Name
1136~ Interface Type| Media Type 1140
1142 Supported Speeds
1144~ Current Speed
1146~ Supported Duplex
1146~ Current Duplex
1150~ Intertace Slot Identifier
1152~ Interface Port Identifier
1154~ Interface Flags Interfoce Status 41192
1158~ Minimum Receive Label
1160~ Maximum Receive Label
1162~ Minimum Transmit Label
1164 Maximum Transmit Label

FIG. 170

SUBSTITUTE SHEET (RULE 26)

WO 97/28505

PCT/US97/01595
41/50
1170
vSa -~ LSB
/—1015 [1018 [10?0
1014 . X ' ’
Version Message Type Code Flogs
1022~1 Transaction Identifier Message Length 1024
1026 Senders Sync Instance
1026~ Peer Sync Instiance
1132~ Interface Identifier
1172~ Clear Flags Set T lags 1174
1176~ Speed
1178~_ Dup lex
FIG. 17e

SUBSTITUTE SHEET (RULE 26)

\;VO 97/28505

PCT/USY7/01595
42/50
. IFMP-C Add/Delete
1200 Branch Request
/ Message ‘
MSB LSB
/1015 1018 [1020
1014~ - § ? 4
Version Message Type Code Flags
10220 Transaction Identifier Message Length 41024
1026~ Senders Sync Instance
1028~ Peer Sync Instance
1201~ Input Interface Identifier
1202~ Input Prededence Input Flags 1204
1206~ Output Interface Identifier
1208~ Reserved Key Length/‘f‘-’ja
1212~ Output Header Length Rjemove Length| Transfornation Type |Transforction Do Lenglh |-~ 7218
1214/ Quality of Service Handle™-1216 - 1222
1224~ Input Key Data
1226~ Input Key Mask
1228~ Output Heoder Data
1230~ Transformation Data
FIG. 18a
120
MSB LSB
J Reserved Truncate Length
1'242/ 1244—/
FIG. 18b

SUBSTITUTE SHEET (RULE 26)

WO 97/28505 PCT/US97/01595

43/50 IFMP--C
. Delete Tree
/1260 Request Message
MSB ‘ LSB
[1015 [1015 f!020
1014~ - 4 ’ '
Version Message Type Cade F lags
1022~ " ansaction Identifier Message Length 1024
10261 Senders Sync Instance
1026~ Peer Sync Instance
1201~ Input Interface Identifier
1202 Input Prededence Input Flags 41204
1262~
Reserved Key Length 1210
1224~
Input Key Data
1226 -
™~ Input Key Mask
FIG. 180
IFMP-C Add/Delete
Branch Response
/—1250 Message
MSB LSB
[1015 /—1013 [1090
1014~ - ! i ' ‘
Version Message Type Code Flogs
1022~ T ransaction Identifier Message Length 41024
1026~ Senders Sync Instance
10287\ Peer Sync Instance
1252 Reserved Output Count 1254
FI6. 18c

SUBSTITUTE SHEET (RULE 26)

)
WO 97/28505

PCTNIS97/01595
44/50
' 1300 IFMP-C Move Branch
/ Request Message
M3B LSB
/1015 [1015 [102’0
1014 - 7 ' ’
Version Message Type Code Flags
1022~ T ransaction Identifier Message Length 41024
1026~ Senders Sync Instance
1026~ Peer Sync Instance
1201~ Input Interface Identifier
1‘902“H\ Input Prededence Input Flags A~1204
1302~ Old Output Interface Identifier
1210
1304~ 1310~ Reserved 1312~ Key Length7
1308~ 01 Qutput Header Length Ad Remove Length | Ot Transformation Type|OK Trarst Doto Length |—7.374
1316~ Old Quality of Service Handle
1320~ New Output Interfoce Identifier
1322 -]
— 1326~ Reserved T/—IJEB
1224\ Oulpul Heater tenglh | New Remove Length | New Transformotion Type {New Tronsf. Dote Length 1330
1334~ New Quality of Service Value
1224
T Input Key Data
1226~ Input Key Mask
1340~ Old Output Header
1342“\ Old Transformation Data
1344 New Output Header
1346+ New Transformation Data

FI16.

18e

SUBSTITUTE SHEET (RULE 26)

WO 97/28505

PCT/USO7/01595
45/60
, 1400 IFMP-C
Get Tree Stotistics
Request/Response
MSB Message LSB
/1015 /-1018 /-1020
1014 - : / 4
Version Message Type Code Flags
1022~ Transaction Identifier Message Length 1024
1026~ Senders Sync Instance
1025~ Peer Sync Instance
1402~ Tree Dato 1
B N Tree Dato 2
FIG. 198
1406 Tree Data
/ field structure
MSB LSB
1132
4% | |
! Input Interface Identifier
1’90‘?‘\\ Input Precedence Input Flags 1204
- d
1408~]210\ Reserve s
Key Length Record Size T
1412"‘\ Usage Count
‘1’2‘94'3\ Input Key Data
1226 ~_ Input Key Mask

FIG. 19b

SUBSTITUTE SHEET (RULE 26)

WO 97/28505

PCT/US97/01595

1024

SUBSTITUTE SHEET (RULE 26)

46/50
1420 IFMP-C
Read Branch
Request Message
MSB LSB
/1015 [mm [1090
1014 4 ’ '
™ Version Message Type Code Flags
1022 Transaction Identifier Message Length
1035‘7\ Senders Sync Instance
| 1028~ Peer Sync Instance
1201~ Input Interface Identifier
1422~ Next Cockie
FIG. 208

W0 97/28505

PCT/US97101595
47/50
/—1430 IFMP—C Read Branch
Response Message
[1015 [1015 [105’0
1014 7 ' '
"} Version | Message Type Code Flags

1028~ Transaction Identifier Message Length 41024
1026~ Senders Sync Instance
1028~ Peer Sync Instance
1201~ Input Interface Identifier
1202~ Input Prededence Input Flogs A1
1206—~{_ Ouiput Interface Identifier
1437~ Reserved Key Length
1212~ 0utput eader Length Remove Length| Transfornation Type | Trersfomotion eta Legth 7218

12147 Quality of Service Handle™~1216 - 1222
1422~ Next Cookie
1224~ Input Key Data
1226~ Input Key Mask

28 ~

1228~ Output Header Data
1230~

Transformation Data

FI6.

20b

SUBSTITUTE SHEET (RULE 26)

WO 97128505

PCT/US7M01595
48/50
1440 IFMP-C Node Information
/_ Response Message
MSB LSB
[1016 1018 /-1030
1014~ ‘ , - .
Version Message Type Code Flags
1022~ T rqnsaction Identifier Message Length L1024
1026~ Senders Sync Instance
1028~1 Peer Sync Instance
1442 Node ID
1444~¢ Parent ID
1446~ Node Type Reserved A 1448
1450~ Parent Slot
1452 Parent Shelf
Firm Minor Version Firm Major Version
14547 FIG. 213 \ 1456
1460 TFMP—C Interface Statistics
/ Request Message
M8 [1015 [1015 /—1020 HE
1014 , y 7 i
Version Message Type Code Flags
1022~ Transaction Identifier Message Length 11024
1026 Senders Sync Instance
1026~[Peer Sync Instance
1462~ Reserved Number of Interfaces 47464
1466~ Interface Identifier 1
1466~ Interface Identifier 2

FI6. 21b

SUBSTITUTE SHEET (RULE 26)

WO 97728505 PCT/USY7/01595

459/50

1470 IFMP-C Interface Statistics
/ Response Message

MSB LSB
/1015 ij /—1090
1014 . ' '
Version Message Type Code Flags
1022~ Transaction Identifier Message Length 1024
1026~ Senders Sync Instance
1028 Peer Sync Instance
1472~ Interface Statistics
1474~ Interface Statistics
FIG. 21c
1480 Interface Stotistics
/ Field Structure
MSB LSB
/_ 1482 /—1484 [1455 |
Reserved |Interfoce Type Record Length
1488 Interface Identifier
1490~ General Statistics Length |Specific Statistics Lengtht 149

1494 -

I~ Genera! Statistics
1495~ Specific Statistics

FI16. 21d

SUBSTITUTE SHEET (RULE 26)

\.N'O 97/28505 PCT/US97/01595

) _50/50 General Statistics

MSB /1494Fie|d Structure LSB
1500 Receive| Octets
1302~ Received Multicast Paockets
1504~ Received Broadcast Packets
1506~ Received Unicast Packets
1508~ , Received Discards
1510~ Received Errors
1512~ Received Unknown
1514~ Transmit Octets
1516~ Transmit Mulitcast Packets
1518~ Transmit Broadcast Packets
1520~ Transmit Unicast Packets
1822 Transmit Discards
1524~ Transmit Errors

FI6. 21e
/1530 ?TM Specific Statistics
MSB ield Structure LSB
|
18320 l Received Celts
1534 Transmit Celis
1535~ AALS CRC Errors
1536~ Physical Errars
FI6. 21f
Ethernet
/—]540 Specific Statistics

MSB , Field St’ructure LSB
1542~ | Received CRC Errors
1544 Transmit Collisions

FIB. 21g

SUBSTITUTE SHEET (RULE 28)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

