wo 2014/012863 A2 |11 NPFV 0O O O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/012863 A2

23 January 2014 (23.01.2014) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 21/00 (2013.01) GO6F 17/30 (2006.01) kind of national protection available). AE, AG, AL, AM,
21) Tnt tional Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: PCT/EP2013/064839 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
12 July 2013 (12.07.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
- . MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . L
121764%0.7 15 July 2012 (15.07.2012) Ep (84) Designated States (unless otherwise indicated, for every
. kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: EBERHARD KARLS UNIVERSITAT GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
TUBINGEN [DE/DE]; Geschwister-Scholl-Platz, 72074 UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Tiibingen (DE). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Tnventors: LASKOV, Pavel; Biihlerstrae 18, 72072 EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Tiibingen (DE). SRNDIC, Nedim; Kolberger Weg 6/1 MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
72073 Tiibin en’ (DE) i ’ ’ TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
g ’ KM, ML, MR, NE, SN, TD, TG).
(74) Agent: PATENTANWALTE RUFF, WILHELM, BEI- Published:

ER, DAUSTER & PARTNER; Kronenstrafle 30, 70174
Stuttgart (DE).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: METHOD OF AUTOMATICALLY EXTRACTING FEATURES FROM A COMPUTER READABLE FILE

2

10 o0bj <<
[Type /Catalog
/OpenAction <<
/S fJavaScript
1JS (alert(Hello!');)

>>
/Pages 30 R
>> endobj

3 0 obj <<
[Mype /Pages
/Kids [220R 23 0 R]
/Count 2

>> endobj

22 0 obj <<
Mype /Page
/Parent 30 R
/MediaBox [00612792]
/Resources . . .

>> endobj

230 obj <<
[Mype /Page
/Parent30 R
/MediaBox [0 0 333 444]

/Resources . . .
>> endobj

Type
3
a Mype

3¢

3c

MediaBox

. Resourc\e\s
YRS,
P
/Hesou\rc

MediaBox

612
792

1
1!\3 ¢/
Type .17
+ | /OpenAction/S;1
{OpenAction/J)$;1
{Pages/Count : 1
[Pages/Kids/Type : 21
« 1{Pages/Kids/Parent : 2
1a _~{/PagesKids!...

ypo{Page]
/Pare

Fig. 1

(57) Abstract: A method of automatically extracting features (1) from a computer readable file (2) having a given file type, the fea-
tures (1) usable for characterization and/or classification of the file (2), the file (2) comprising a number of objects (3a, 3b, 3c¢), the
objects (3a, 3b, 3c) being logically organized such that structural relationships are defined between objects (3a, 3b, 3c), comprises
the step of: automatically generating the features (1) based on the structural relationships between the objects (3a, 3b, 3c¢).

10

15

20

25

30

WO 2014/012863 PCT/EP2013/064839

Method of automatically extracting features from a computer readable

file

The invention relates to a method of automatically extracting features
from a computer readable file having a given file type, a method of gen-
erating a classifier for classifying a computer readable file having a given
file type, a method of classifying a computer readable file having a given

file type and a method of comparing files having a given file type.

US 2009/0013405 A1 discloses the scanning of computer files for mal-
ware using a classifying technique to classify an input file as a clean file
or a dirty file. The parameters of the classifying technique are derived to
train the classification on a corpus of reference files including clean files
known to be free of malware and dirty files known to contain malware.
The classification is performed using a representation of files in a feature
space defined by a set of predetermined features for respective file for-
mats, the features being a predetermined value or range of values for
one or more data fields of given meanings. The representation of a file is
derived by determining the file format, parsing the file on the basis of the
structure of data fields in the determined file format to identify the data
fields and their meaning, and determining, on the basis of the identified
data fields, which of the set of predetermined features are present.

A similar approach was proposed by Kittilsen in the more narrow context
of detection malicious PDF files. In this method, the a priori defined fixed
set of features is computed by extracting certain textual keywords from a
PDF files deemed to be essential for identification of malicious PDF files.

It is the technical problem underlying the invention to provide for a meth-
od of automatically extracting features from a computer readable file
having a given file type, a method of generating a classifier for classify-

ing a computer readable file having a given file type, a method of classi-

10

15

20

25

30

WO 2014/012863 -2 PCT/EP2013/064839

fying a computer readable file having a given file type and a method of
comparing files having a given file type, not needing a priori knowledge
and definition of features to be extracted from the files, increasing ro-

bustness against attacks and/or increasing the classification accuracy.

The invention solves this problem by providing a method of automatically
extracting features from a computer readable file having a given file type
according to claim 1, a method of generating a classifier for classifying a
computer readable file having a given file type according to claim 7, a
method of classifying a computer readable file having a given file type
according to claim 10 and a method of comparing files having a given

file type according to claim 11.

Provided is a method of automatically or machine-based extracting a set
of features from a computer readable file having a given file type, the set
of features usable for automatic or machine-based characterization
and/or classification of the file.

The file comprises a number of logical objects, the objects being hierar-
chically logically organized such that structural relationships are defined
between at least some of the objects.

The set of features is automatically generated based on at least a part of
the structural relationships between the objects. The use of implicit
structural relationship for feature generation, as proposed in the current
invention, has the following technical advantages in comparison to prior
art:

. Certain structural relationships are essential for correct embedding
of malicious content into non-executable files. The analysis of such
relationships during the classification process, as proposed in the

current invention, results in a significantly more accurate detection.

10

15

20

25

30

WO 2014/012863 -3- PCT/EP2013/064839

. The lack of reliance on manually defined features, as disclosed in
US 2009/0013405 A1 and by Kittilsen, makes the design of classifi-
cation system less time consuming and costly. The extraction of
structural features as proposed by the current invention merely re-
quires an integration of an off-the-shelf parser for a specific file for-
mat. Such parsers are available for the majority of popular file for-
mats, and their integration requires less technical expertise than the
manual analysis of a specific file format.

. The classifier built on the features proposed by the current invention
would be less prone to evasion attacks. Knowing an a priori defined
set of features, an attacker may devise a modification of his mali-
cious file such that it is no longer detected. This can be done with
relative ease by inserting content that causes changes in the fea-
tures deemed to be characteristic of benign files. The system built
on implicit structural relationships cannot be easily understood by
an attacker, which significantly reduces the risk of an evasion at-
tack.

The file may be parsed to create a parser representation of the file and
the structural relationship between the objects may be generated based
on the parser representation.

The objects may be hierarchically organized, e.g. in a tree or an extend-
ed tree based ordering.

The objects may be organized by structural parent-child relationships,
wherein an object may be declared as a named child of another object.
Names selected of a group of predetermined names may be assigned to
the objects, the names corresponding to properties of the objects. The

10

15

20

25

30

WO 2014/012863 -4 - PCT/EP2013/064839

names may correspond to predetermined types of the objects, the types
defined by the file type.

Each of the number of objects may have a corresponding object type,
the object type selected from a root object type, the root object type cor-
responding to an object having at least one child object but no parent
object, an intermediate object type, the intermediate object type corre-
sponding to an object having at least one parent object and at least one
child object, and a leaf object type, the leaf object type corresponding to
an object having at least one parent object but no child object.

The structural relationships may be represented by paths or properties
of paths from an object having the root object type to objects having the
leaf object type.

The features may be generated based on counts of paths having identi-
cal properties, wherein paths have identical properties, if the numbers of
objects along the paths are identical and corresponding objects along
the paths have identical object names.

The type of file may be Portable Document Format (PDF), Hypertext
Markup Language (HTML), Shockwave Flash (SWF), Office Open XML.
It is self-evident, that all types of files may be used having an inherent

logical structure usable for structural feature extraction.

Provided is a method of generating a classifier for classifying a computer
readable file having a given file type. The method comprises the steps
of: providing files having the given file type, automatically extracting fea-
tures from each file of the files using the above described method and
generating the classifier using the extracted features of the files.

10

15

20

25

30

WO 2014/012863 -5- PCT/EP2013/064839

The method may comprise the steps of: providing classified files having
the given file type, and generating the classifier using the extracted fea-
tures of the files and the classification of the files.

The files may be classified into benign (good) and malicious (malign)
files. It is self-evident, that the files may be classified into more than two
categories, wherein the categories may e.g. be assigned numbers,
characters, etc.

Provided is a method of classifying a computer readable file having a
given file type, the method comprising the steps of: automatically ex-
tracting features from the file using the feature extracting method de-
scribed above and using the classifier generated by the method of gen-
erating a classifier described above to classify the file.

Provided is a method of comparing files having a given file type, the
method comprising the step of: automatically extracting features from
the files using the method of extracting features as described above and
determining the files as similar, if the features of the files satisfy a given

similarity criteria.

The files may be determined as similar, if the features of the files are
identical.

The invention will now be described using the attached schematic draw-

ings, wherein

Fig. 1 depicts different representations of a computer readable file
having a first type to be classified,

Fig. 2 depicts a system architecture of the invention, and

10

15

20

25

30

WO 2014/012863 -6 - PCT/EP2013/064839

Fig. 3 depicts different representations of a computer readable file

having a second type to be classified.

The invention will now be described with reference to files having the
Portable Document Format (PDF) format and the Shockwave Flash
(SWF) format. It is self-evident, that various other file types may be used

in context of the invention.

Portable Document Format (PDF) is an open standard published as ISO
32000-1:2008 [16] and referred to as the PDF Reference hereinafter.

The syntax of PDF comprises the four main elements:1) Objects. These
are the basic building blocks in PDF. 2) File structure. It specifies how
objects are layed out and modified in a PDF file. 3) Document structure.
It determines how objects are logically organized to represent the con-
tents of a PDF file (text, graphics, etc.). 4) Content streams. They pro-
vide a means for efficient storage of various parts of the document con-

tent.

Further, there exist 9 basic object types in PDF. Simple object types are
Boolean, Numeric, String and Null. PDF strings have bounded length
and are enclosed in brackets (" and ’)’. The type Name is used as an
identifier in the description of the PDF document structure. Names are
introduced using the character ‘/’ and can contain arbitrary characters
except null (0x00). The aforementioned 5 object types will be referred to
as primitive types in this description. An Array is a one-dimensional or-
dered collection of PDF objects enclosed in square brackets, [and 7.
Arrays may contain PDF objects of different type, including nested ar-
rays. A Dictionary is an unordered set of key-value pairs enclosed be-
tween the symbols ‘<<’ and >>'. The keys must be name objects and
must be unique within a dictionary. The values may be of any PDF ob-

ject type, including nested dictionaries. A Stream object is a PDF dic-

10

15

20

25

30

WO 2014/012863 -7 - PCT/EP2013/064839

tionary followed by a sequence of bytes. The bytes represent information
which may be compressed or encrypted, and the associated dictionary
contains information on whether and how to decode the bytes. These
bytes usually contain content to be rendered, but may also contain a set
of other objects. Finally, an indirect object is any of the previously de-
fined objects supplied with a unique object identifier and enclosed in the
keywords obj and endobj. Due to their unique identifiers, indirect objects

can be referenced from other objects via indirect references.

The syntax of PDF objects is illustrated in a simplified exemplary PDF
file 2 shown in the left-hand side of Fig. 1.

The PDF file 2 contains four indirect objects denoted by their two-part
object identifiers, e.g., 1 O for the first object, and the obj and endobj
keywords. These objects are dictionaries, as they are surrounded with
the symbols ‘<<’ and >>’. The first one is the Catalog dictionary, denot-
ed by its Type entry which contains a PDF name with the value Catalog.
The Catalog has 2 additional dictionary entries: Pages and OpenAction.
OpenAction is an example of a nested dictionary. It has two entries: S, a
PDF name indicating that this is a JavaScript action dictionary, and JS, a
PDF string containing the actual JavaScript script to be executed:
alert(’Hello!’);. Pages is an indirect reference to the object with the object
identifier 3 O: the Pages dictionary that immediately follows the Catalog.
It has an integer, Count, indicating that there are 2 pages in the docu-
ment, and an array Kids identifiable by the square brackets, with two
references to Page objects. The same object types are used to build the
remaining Page objects. Notice that each of the Page objects contains a
backward reference to the Pages object in their Parent entry. Altogether,
there are three references pointing to the same indirect object, Pages.

10

15

20

25

30

WO 2014/012863 -8- PCT/EP2013/064839

The relations between various basic objects constitute the logical, tree-
like document structure of the PDF-file 2, illustrated in the middle part of
Figure 1.

The nodes in the document structure are objects 3a, 3b and 3c them-
selves, and the edges correspond to the names (e.g. Pages, Kids, etc.)
under which child objects reside in a parent object.

For arrays, parent-child relationship is nameless and corresponds to an
integer index of individual elements. Notice that the document structure
is, strictly speaking, not a tree but rather a directed, potentially cyclic
graph, as indirect references may point to other objects anywhere in the

document structure.

The root node 3a in the document structure is a special PDF dictionary

with the mandatory Type entry containing the name Catalog.

Any object of a primitive type constitutes a leaf or leaf object 3c in the

document structure.

Objects not being a root object 3a or a leaf object 3c are denoted inter-
mediate objects 3b.

Following, the general methodology and the technical instruments need-
ed for the analysis of the document structure leading to a reliable dis-
crimination between malicious and benign PDF documents will be de-

scribed.

The proposed method for structure-based detection of malicious PDF
documents comprises the following steps, schematically shown in Fig. 2:

10

15

20

25

30

WO 2014/012863 -9.- PCT/EP2013/064839

1) Extraction of structural features 1. As the basic pre-processing step,
the content of a PDF document or PDF file 2 is parsed and converted
into the special form of structural features, so called bag-of-paths 1,

which characterizes the document structure in a well-defined way.

2) Learning and classification. The detection process is driven by exam-
ples of malicious and benign PDF documents 2. During the learning
step, a model including a classifier is created from the data with known
classification (“training data”). The model encodes the differences be-
tween the malicious and benign data. During the classification step, the
model is applied to new data (“test data”), in order to classify it as mali-

cious or benign.

The technical realization of these two fundamental tasks is presented
below.

A common approach to the design of data-driven security instruments is
to a priori define a set of “intrinsic features” which are subsequently used
for learning and classification. It was successfully applied for network
intrusion detection [13, 15], botnet detection [9], detection of drive-by-
downloads [6, 7, 3], and some other related problems. The challenge in
defining features for detection of malicious PDF documents lies in the
extremely complex structure of the PDF format.

The invention therefore departs from the knowledge-driven strategy
mentioned above and considers a rich set of potential features which
matches the complexity of PDF structure. These features will be later

automatically reduced to a smaller subset based on the available data.

The goal of the structural analysis of PDF documents is to recover all
parent-child relations between its objects 3a, 3b and 3c. The document

10

15

20

25

30

WO 2014/012863 -10 - PCT/EP2013/064839

structure can be represented by a set of paths 1a from the root or root

object 3a to leaves or leaf objects 3c (“bag of paths™).

For the sake of simplicity, in the following description each path is de-
noted 1a and each path count is denoted 1b. It is self-evident, that alt-
hough denoted with identical reference signs, the paths (and eventually
the corresponding counts) differ from each other. Accordingly, different
objects are denoted with identical reference signs 3a, 3b and 3c, respec-

tively.

Formally, the invention defines a structural path 1a to be a concatena-
tion of the object names encountered along the edges leading from the

root or root object 3a to a specific leaf or leaf object 3c.

For notational convenience, the invention uses the forward slash symbol

'[" as a delimiter between the names on a structural path.

The same structural path 1a may occur multiple times in a document if
the same path crosses some arrays and leads to different leaf objects
3c. The counts 1b of specific paths 1a in a document constitute a very

good measure of structural similarity between different documents.

On the other hand, multiple structural paths may lead to the same object
due to indirect references. Such references may even form circular de-
pendencies, in which case the set of structural paths becomes infinite. In
some semantic constructs of PDF, e.g., page trees, multiple paths are
required in order to facilitate content rendering. Precise treatment of indi-
rect references is only possible with directed graphs. However, compari-
son of graphs is computationally difficult, and hence we adhere to the
tree-like view of the document structure and introduce additional heuris-
tics which produce a finite set of structural paths while keeping a good

semantic approximation of the existing relations.

10

15

20

25

30

WO 2014/012863 -11 - PCT/EP2013/064839

Thus the main operation to be performed in the inventive feature extrac-
tion step is to count the structural paths having identical properties in a

document 2, as shown in Figure 1, right.

Additional transformations, to be referred to as “embeddings”, can be
applied to the path counts. The binary embedding detects the presence
of non-zero counts, the frequency embedding divides the counts over
the total number of paths in a document, while the count embedding re-
fers to the path count itself.

Extraction of the structural features must meet the following require-

ments:

R1) All paths 1a must be extracted with their exact counts 1b.

R2) The algorithm must be deterministic, i.e., it must produce the same
set of paths for PDF files 2 with the same logical structure.

R3) The choice among multiple paths to a given object should be se-
mantically the most meaningful one with respect to the PDF Reference
[16].

As a first step in the feature extraction process, the document 2 is
parsed using e.g. the established PDF parser Poppler.

The parser maintains an internal representation 4 of the document 2 and
provides access to all fields of individual objects. Conceptually, path ex-
traction amounts to a recursive enumeration of leafs or leaf objects 3c in
the document structure, starting from the Catalog object returned by the
parser.

10

15

20

25

30

WO 2014/012863 -12 - PCT/EP2013/064839

The extracted paths 1a are inserted into a suitable data structure, e.g., a
hash table or a map, to accumulate the counts of structural paths.

Several refinements may be introduced to this general algorithm to en-
sure that it terminates and that the above mentioned requirements are

met.

The requirement R1 is naturally satisfied by the recursive nature of our
feature extraction. Since the recursion terminates only if a leaf node or
leaf object 3c is encountered, the algorithm is guaranteed to never un-
derestimate the count 1b of a particular path 1a. To prevent an overes-
timation of the path count 1b due to multiple paths as well as an infinite
recursion due to circular references, the requirement R3 must be en-

forced.

The enforcement of requirements R2 and R3 is tightly coupled and ulti-
mately boils down to the intelligent treatment of indirect references. Ob-
viously, one cannot always dereference them, as this may result in an
infinite recursion. One cannot also avoid their dereferencing, as this
would hardly ever move the algorithm beyond the root node. Hence, a
consistent strategy for selective dereferencing should be implemented.

In the inventive extraction algorithm, these issues are approached by
maintaining a breadth-first search (BFS) order in the enumeration of leaf
objects 3c. This strategy essentially postulates that the shortest path to a
given leaf is semantically the most meaningful. For example, this obser-
vation intuitively holds for various cases when circular relations arise
from explicit upward references by means of the Parent entry in a dic-
tionary, as demonstrated by the example in Fig. 1.

Two further technical details are useful for the implementation of the

BFS traversal. It is important to keep track of all objects visited at least

10

15

20

25

30

WO 2014/012863 -13- PCT/EP2013/064839

once during the traversal and backtrack whenever an object is visited
more than once. It is also necessary to sort all entries in a dictionary in
some fixed order before descending to the node’s children. Since no
specific ordering of dictionary fields is required by the PDF Reference,
such ordering must be artificially enforced in order to satisfy the re-
quirement R2.

Once the counts 1b or other embeddings over the set of structural paths
1a are extracted, almost any learning algorithm can be applied to create
a model including a classifier from the given training data and use this
model to classify unknown examples. This procedure is described later

in this text.

Now turning to SWF files, the syntax of SWF objects is illustrated in a
simplified exemplary SWF file 2° shown in the left-hand side of Fig. 3.
Objects depicted in Fig. 3 being equivalent to the objects depicted in Fig.

“ 1

1 have the same reference number marked with a)

SWF is an Adobe Flash file format used for multimedia, vector graphics
and ActionScript [28]. The format of SWF files is described in the SWF
File Format Specification [29].

According to the SWF file structure, every SWF file consists of a header
and a series of tagged data blocks, i.e., tags. In the file, tags are layed
out linearly, one after the other.

Every tag consists of a tag header and a sequence of values of different
data types called fields. There are different types of tags for different us-
es, and the tag type is given in the tag header. Every type of tag has a
name and a specific sequence of data fields. The name and data type of
the fields for a given type of tag, along with their correct order, are de-
fined by the SWF File Format Specification [29]. The data type of the

10

15

20

25

30

WO 2014/012863 -14 - PCT/EP2013/064839

fields can be one of many primitive data types defined by the SWF File
Format Specification [29] or a nested tag. This nesting of tags as fields
of other tags may repeat multiple times.

Analogous to the example of PDF files depicted in Fig. 1, it is possible to
define a structural tree representation 4° of SWF files 2’. Let us define an
abstract node 3a’ with no parents as the root node. Let the tags repre-
sent intermediate nodes 3b’. The values of tags' fields which are of
primitive data types are the leaf nodes 3c’. It is possible to define parent-
child relationships between these nodes which describe the structure of
the SWF file 2'.

The abstract root node 3a’ is a parent of all top-level tags, i.e., tags
which are not fields of other tags. This parent-child relationship is named
after the tag type.

Every tag is a parent of all its fields, including fields of primitive types
and other tags. These parent-child relationships are named after the
names of the given fields.

Given these parent-child relationships, one can obtain a structural tree
representation of a SWF file by starting from the abstract root node and
following all parent-child relationships recursively until a leaf node is

found.

After defining a structural tree representation of a SWF file 2’ in such a
way, the rest of the description regarding the PDF file format also ap-
plies to SWF (definition of a structural path, definition of a bag-of-paths,
extracting bags-of-paths by traversing the tree, learning and classifica-
tion, file similarity...).

10

15

20

25

30

WO 2014/012863 -15- PCT/EP2013/064839

The left-hand side of Fig. 3 depicts a textual representation of the SWF
file 2. SWF files are binary files, i.e., they are not printable and therefore
cannot be easily visualized. For the purpose of illustration, the contents
of the SWF file 2’ in Fig. 3 is presented as text; the tags begin with a '+'
sign, headers and field names with a '-' sign. The textual representation
is a simplified view of the SWF file 2’, not the physical representation as
was the case with PDF 2 in Fig. 1.

The middle part of Fig. 3 depicts the internal representation or logical
structure 4’. One should note the abstract root node 3a’ (not actually a
part of the file). One can also see that the fields are intermediate nodes
3b’, the field values are leaf nodes 3¢’ and the field names are used to
name the parent-child relationships.

The right-hand side of Fig. 3 depicts the resulting bag-of paths 1’ from
this example. In this simple example, every structural path occurs once,
which is not the case for normal SWF files.

With the embeddings extracted from the files, learning algorithms may
be applied for classification. For an overview of suitable algorithms, the
expert may refer to any standard textbook on machine learning, e.g., [1,
10], or use any entry-level machine learning toolbox, such as SHOGUN
or WEKA.

By means of example, two specific algorithms are described, decision
trees and Support Vector Machines.

Although both of the chosen methods are, in principle, suitable for high-
dimensional data, the dimensionality may be artificially reduced for com-
putational reasons by selecting only those paths 1a that occur in at least
a predetermined number of training files. This reduces the number of

features significantly.

10

15

20

25

30

WO 2014/012863 -16 - PCT/EP2013/064839

It is not necessary to use class information for the selection of “discrimi-
native features” as it was done, e.g., in Zozzle [7]. Such manual pre-
selection of features introduces an artificial bias to a specific dataset and
provides an attacker with an easy opportunity to evade the classifier by
adding features from the opposite class to his malicious examples.

The decision tree is a popular classification technique in which predic-
tions are made in a sequence of single-attribute tests. Each test either
assigns a certain class to an example or invokes further tests. Decision
trees have arisen from the field of operational decision making and are
especially attractive for security applications, as they provide a clear jus-
tification for specific decisions — the feature extremely appreciated by

security administrators.

The goal of automatic decision tree inference is to build a decision tree
from known classifications of training data. Several classical algorithms
exist for decision tree inference, e.g., CART [2], RIPPER [4], C4.5 [18].

The Support Vector Machine (SVM) is another popular machine learning
algorithm [5]. Its main geometric idea is to fit a hyperplane to data in
such a way that examples of both classes are separated with the largest
possible margin M. In the case of a linear decision function, it is repre-
sented by the hyperplane’s weight vector w and the threshold p which

are directly used to assign labels y to unknown examples x.

Nonlinear decision functions are possible by applying a nonlinear trans-
formation to input data which maps it into a feature space with special
properties, the so-called Reproducing Kernel Hilbert Space (RKHS). The
elegance of SVM consists in the fact that such transformation can be
done implicitly, by choosing an appropriate nonlinear kernel function

k(x1,x2) which compares two examples x1 and x2. The solution a to the

10

15

20

25

30

WO 2014/012863 -17 - PCT/EP2013/064839

dual SVM learning problem, equivalent to the primal solution w, can be
used for a nonlinear decision function expressed as a comparison of an
unknown example x with selected examples xi in the training data, the

so-called “support vectors”.

The invention provides for a method for automatically extracting features
e.g. being usable for the detection of malicious PDF files based on the
difference between the underlying structural properties of benign and
malicious PDF files.

The automatically extracted features may also be used to determine

similarities between different files.

By relying on structure instead of the actual content, it renders it unnec-
essary to deal with the very expressive PDF obfuscation techniques, in-
terpretation of JavaScript and dynamic execution — hard problems that
related methods continue to struggle with — and reaps the benefits of
remaining a static method: very high throughput and robustness.

References
[11 C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[2] L. Breiman, J. Friedman, J. Olshen, and C. Stone. Classification and Re-
gression Trees. Wadsworth, 1984.

[3] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: a fast filter for the
large-scale detection of malicious web pages. In International Conference on
World Wide Web (WWW), pages 197-206, 2011.

[4] W.Cohen. Fast effective rule induction. In International Conference on
Machine Learning (ICML), pages 115-123, 1995.

[5] C. Cortes and V. Vapnik. Support vector networks. Machine Learning,
20:273-297, 1995.

10

15

20

25

30

WO 2014/012863 -18 - PCT/EP2013/064839

[6] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-by-
download attacks and malicious JavaScript code. In International Conference
on World Wide Web (WWW), pages 281-290, 2010.

[71 C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. ZOZZLE: Fast and pre-
cise in-browser JavaScript malware detection. In USENIX Security Symposium,
pages 33438, 2011.

[8] M. Engelberth, C. Willems, and H. T. MalOffice — analysis of various ap-
plication data files. In Virus Bulletin International Conference, 2009.

9] G.Gu, P.Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter: De-
tecting malware infection through IDS-driven dialog correlation. In USENIX Se-
curity Symposium, pages 167-182, 2007.

[10] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: data mining, inference and prediction. Springer series in statistics.
Springer, New York, N.Y., 2009. 2nd edition.

[11] Vorsicht bei angeblicher telekom-onlinerechnung. http://heise.de/-
1545909.

[12] P. Laskov and N. Srndié. Static detection of malicious JavaScript-bearing
PDF documents. In Proceedings of the 27th Annual Computer Security Applica-
tions Conference, ACSAC 11, pages 373-382, New York, NY, USA, 2011.
ACM.

[13] W. Lee, S. Stolfo, and K. Mok. A data mining framework for building in-
trusion detection models. In IEEE Symposium on Security and Privacy, pages
120-132, 1999.

[14] W.-J. Li, S. Stolfo, A. Stavrou, E. Androulaki, and A. Keromytis. A study
of malcode-bearing documents. In Detection of Intrusions and Malware & Vul-
nerability Assessment (DIMVA), pages 231-250, 2007.

[15] M. Mahoney and P. Chan. Learning rules for anomaly detection of hostile
network traffic. In International Conference on Data Mining (ICDM), 2003.

[16] PDF Reference. http://www.adobe.com/devnet/pdf/pdf reference.html,
2008.

[17] N. Provos, P. Mavrommatis, M. Abu Rajab, and F. Monrose. All your
iIFRAMEs point to us. In USENIX Security Symposium, pages 1-16, 2008.

10

15

20

25

30

WO 2014/012863 -19- PCT/EP2013/064839

[18] J.Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1992.

[19] Blackhole crimeware kit drives web threat spike.
http://www.theregister.co.uk/2012/01/26/ sophos_fakeav_conficker/.

[20] K. Rieck, T. Holz, K. Willems, P. Dussel, and P. Laskov. Learning and
classification of malware behavior. In Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 5th International Conference, pages 108—
125, July 2008.

[21] K. Rieck, T. Krlger, and A. Dewald. Cujo: Efficient detection and preven-
tion of drive-by-download attacks. In Annual Computer Security Applications
Conference (ACSAC), pages 31-39, 2010.

[22] Z. Shafiq, S. Khayam, and M. Farooq. Embedded malware detection us-
ing markov n-grams. In Detection of Intrusions and Malware & Vulnerability As-
sessment (DIMVA), pages 88—-107, 2008.

[23] K.Z. Snow, S. Krishnan, F. Monrose, and N. Provos. ShellOS: Enabling
fast detection and forensic analysis of code injection attacks. In USENIX Securi-
ty Symposium, 2011.

[24] PDF malware writers keep targeting vulnerability.
http://www.symantec.com/connect/blogs/pdf-malware-writers-keep-targeting-
vulnerability.

[25] Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. Markatos. Combin-
ing static and dynamic analysis for the detection of malicious documents. In Eu-
ropean Workshop on System Security (EuroSec), 2011.

[26] C. Willems, T. Holz, and F. Freiling. CWSandbox: Towards auto-
mated dynamic binary analysis. IEEE Security and Privacy, 5(2):32-39,
2007.

[27] Jarle Kittilsen. “Detecting malicious PDF documents”. M.Sc.
Thesis. Gjgvik University College., 2011.

[28] https://en.wikipedia.org/w/index.php?title=SWF&oldid=560823206
[29] http://wwwimages.adobe.com/www.adobe.com/content/
dam/Adobe/en/devnet/swi/pdf/swi-file-format-spec.pdf

WO 2014/012863 -20- PCT/EP2013/064839

Claims

1. Method of automatically extracting features (1) from a computer
readable file (2) having a given file type, the features (1) usable for
characterization and/or classification of the file (2), the file (2) com-
prising a number of objects (3a, 3b, 3c), the objects (3a, 3b, 3c) be-
ing logically organized such that structural relationships are defined
between objects (3a, 3b, 3c),
the method comprising the step of:

- automatically generating the features (1) based on the structural
relationships between the objects (3a, 3b, 3c).

2. Method according to claim 1, characterized by the steps of:
- parsing the file (2) to create a parser representation (4) of the
file and
- determining the structural relationship between the objects (3a,

3b, 3c) based on the parser representation (4).

3. Method according to claim 1 or 2, characterized in that

- the objects (3a, 3b, 3c) are hierarchically organized.

4. Method according to anyone of the preceding claims, characterized
in that
- the objects (3a, 3b, 3c) are organized by structural parent-child
relationships, wherein an object may be declared as a named
child of another object, and wherein
- each of the number of objects has a corresponding ob-
ject type, the object type selected from
- a root object type, the root object type corresponding
to an object (3a) having at least one child object but

no parent object,

WO 2014/012863 -21 - PCT/EP2013/064839

- an intermediate object type, the intermediate object
type corresponding to an object (3b) having at least
one parent object and at least one child object, and

- a leaf object type, the leaf object type corresponding
to an object (3c) having at least one parent object
but no child object,

- wherein the structural relationships are repre-
sented by paths (1a) from an object (3a) having
the root object type to objects (3c) having the
leaf object type.

5. Method according to claim 4, characterized in that
- the features (1) are generated based on counts (1b) of paths
(1a) having identical properties, wherein paths (1a) have iden-
tical properties if the numbers of objects along the paths are
identical and corresponding objects along the paths (1a) have
identical object names.

6. Method according to anyone of the preceding claims, characterized
in that the type of file is Portable Document Format (PDF), Hyper-
text Markup Language (HTML), Shockwave Flash (SWF), Office
Open XML.

7. Method of generating a classifier for classifying a computer reada-
ble file (2) having a given file type, the method comprising the steps
of:

- providing files (2) having the given file type,

- automatically extracting features (1) from each file of the files
(2) using the method of anyone of claims 1 to 6 and

- generating the classifier using the extracted features (1) of the
files (2).

WO 2014/012863 -22. PCT/EP2013/064839

10.

11.

12.

Method according to claim 7, characterized by the steps of:
- providing classified files (2) having the given file type, and
- generating the classifier using the extracted features (1) of the

files (2) and the classification of the files (2).

Method according to claim 8, characterized in that
- the files (2) are classified into benign and malicious files.

Method of classifying a computer readable file (2) having a given

file type, the method comprising the steps of:

- automatically extracting features (1) from the file (2) using the
method of anyone of claims 1 to 6 and

- using the classifier generated by the method of anyone of
claims 7 to 9 and the extracted features (1) to classify the file

2).

Method of comparing files (2) having a given file type, the method

comprising the step of:

- automatically extracting features (1) from the files using the
method of anyone of claims 1 to 6 and

- determining the files (2) as similar, if the features (1) of the files

satisfy a given similarity criteria.
Method according to claim 11, characterized in that

- the files (2) are determined as similar, if the features (1) of the

files (2) are identical.

PCT/EP2013/064839

WO 2014/012863

R

"/spiysabed]
-2 " Juaied/spiy/sabed)
|z . adAp/spryysabedy
| : Junonysabed/
|:SryuoOYUSdQ)
|:S/uoloyUadoy

(b2 8dhj.

!

b

og

o€

)

bojeren

26 xogepoy |2 |

¢cl9 1duogeaer

o¢

Q ‘LioeH)ere}

s/
S

uonoyuadoy/

qe

[gopus <<
"' 890IN0SaYy/
[¥v¥ €8¢ 0 0] XogeIpaN/
Y 0 € uaiey/
obeyq; adA|/
>>[q0 0 €2

[qopus <<
" §90Jn0SaY/
[¢62 219 0 0] XogeIPaN/
d 0 € lusaled/
abed/ adAly/

>>[go 0 22

[qopus <<
¢ Wunoyy/
[40€2 Y 0zelspiy/
sobeds odA}/

>>[qoo¢g

[gopus <<
H 0 € sabeyy
<<

(!(.iolleH.)1ale) Sry
1duogenery g/
>> uonoyuadQy/

Bojeyen; adAyy

0 | \

og

>>1qo0 |

4

SUBSTITUTE SHEET (RULE 26)

WO 2014/012863 PCT/EP2013/064839

2/3

d
|j> I:> E> Learning

Feature @
Extraction Bag-of-paths

ot Classification
PDF File = e —>

Fig. 2

Training
PDF File

SUBSTITUTE SHEET (RULE 26)

PCT/EP2013/064839

WO 2014/012863

3/3

¢ b4

at

80~
oQ/
o/
a/
o/
o/

| - Junogeiigiigseyfisiii/sadeygyedeygaul
| 1 Xy A/Spunogadeys/adeysaul

| : U\ A/SpUnogedeyg/adeysaul

| - XejyX/spunogadeyg/adeygaul

| : UINX/Spunogadeygyadeysaul

|+ SyaN/spunogadeyS/edeygaul

| : (19ceyg/Iapest/sdeySaulagy

| - ybuaTenx3/sapesp/edeyssulagy

| - ybuapuybie) jiopesp/edeygauleqy

| : an|g/lojonpunciByoegyioj0npunolbydegles/

| - UsaILy/lojonpunoibyoeg/iojonpuncibyoegies)
|+ pagioj0npunoibyoeg/ioj0punoibyoegias/

, |- YbuaTpuyBey s1apestiojonpunoiByoegiag

N N A M L U e e

a |

El

.om\llH?o%_zm___u_\

68

Ll
UIAA/

T

sadeyg/

8¢ v
262

L8]
L I~
Ve e
L6 | [gibuapuybey

Tany

punogsadeys/

Jopeay)

e

adeygaulaq

I0j09punoibyoegies),

e

Beg

|

[—]

- unodeihisy4 -
wm_é_m.
So msm -
68 XEIA -
18- UINA-
82 XX -
262 UINX -
8:SHAN -
spunogodeys -
| Qlodeys -
pg: yibusTeng -
16} : ibuapuybey -
JapEeay -
adeygeuyeq +
264 8nig-
Gl " usain) -
b0z mwm.
J0[0)puno.toeg -
6.5 yluapuybel -
Japesy -

10j09punoi6yoegles +

-~
~ ~ —
~ -~
~ -~

AMS|
N

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings

