
USOORE37178E

(19) United States
(12) Reissued Patent

Kingdon
US RE37,178 E

May 15, 2001
(10) Patent Number:
(45) Date of Reissued Patent:

(54) METHOD AND APPARATUS FOR
AUTHENTICATION OF CLIENT SERVER

OTHER PUBLICATIONS

Bruce Lindsay and Virgil Gilgor, Migration and Authenti
COMMUNICATION cation of Protected Objects, RJ2298 (31040) Aug. 14, 1978,

(75) Inventor: Kevin Kingdon, Fremont, CA (US) Computer Science.

(73) Assignee: Novell, Inc., Provo, UT (US) (List continued on next page.)
Primary Examiner Salvatore Cangialosi

(21) Appl. No.: 08/778,151 (74) Attorney, Agent, or Firm-Dinsmore & Shohl LLP
(22) Filed: Sep. 20, 1996 (57) ABSTRACT

Related U.S. Patent Documents The present invention provides a method and apparatus for
Reissue of: message packet authentication to prevent the forging of
(64) Patent No.: 5,349,642 message packets. After a message packet is created, a Secret

Issued: Sep. 20, 1994 session key is preappended to the message, and a message
Appl. No.: 07/970,611 digesting algorithm is executed on the altered message to
Filed: Nov. 3, 1992 create a message digest. A portion of the message digest,

referred to as the Signature, is then appended to the actual
(51) Int. Cl." .. H04L 9/28 message when it is Sent over the wire. The receiving Station
(52) U.S. Cl. 380/25; 380/28; 380/30 Strips the Signature from the message, preappends the same
(58) Field of Search 380/23, 25, 28, Secret Session key and creates its own message digest. The

380/30 Signature of the digest created by the receiving Station is
compared to the Signature of the digest appended by the

(56) References Cited Sending Station. If there is a match, an authentic message is
assumed. If there is no match, the message is considered as

U.S. PATENT DOCUMENTS invalid and discarded. An advantage of the present invention
4,405,829 9/1983 Rivest et al. 38030 is that the session key is never transmitted over the wire. The
4,656,474 4/1987 Mollier et al. 380/23 receiving station (server) already has the key and uses the
4,799,258 1/1989 Davies 380/30 key along with the message data to recalculate the message
4,868,877 9/1989 Fischer 380/30 digest upon receiving the packet. The shared Secret key
4,969,189 11/1990 Ohta et al. 380/30 (session key) is generated during initiation of the NCP
4,995,082 2/1991 Schnorr 380/30 Session. In addition, cumulative State information is main
E. 3.0 Ech - is: tained by both the Sending Station and the receiving Station.

5. 40.63 4 8/1992 (GN, et al., ... 380/30 This State information is also used to authenticate messages.
5,210.795 5/1993 Lipner et al. 380/25
5,214,702 5/1993 Fischer 380/30 44 Claims, 9 Drawing Sheets

CREATEMESSAGE--2OO

PREAPPEND SEr-20

64BTESYN-FL WITH (SH-203
YES

EXECUTE MD-2O4

APPEND SIGNATURE E"r-205

SENDESSAGE-- 206
CENT

RECEIVEMESSAGE--2O7

STRIPSENATRE-2C8

PREAPPENSESSION
KEY TOMESSAGE 2O9

64 BYTES) NO-FIL WITHOS --21
YES |

EXECUTEMD 212
CREATEGEST

217-- (EEE)ALERT EXECUTE MESSAGE-- 215
23

UNAUTHORIZED NO 1 SIGNATURE SYES-IVAIDESSAGE--214 216-MESSAGE DISCARD SIGNATURE3 L

US RE37,178 E
Page 2

OTHER PUBLICATIONS

Roger M. Needham and Michael D. Schroeder, Using
Encryption for Authentication in Large Networks of Com
puters, Communications of the ACM. Dec. 1978, vol. 21,
No. 12.
Henk Meijer and Selim Akl. Digital Signature Schemes,
Cryptolgia, vol. 6, No. 4, Oct. 1982.
Christer Linden and Hans Block, Sealing Electronic Money
in Sweden, Computers & Security 1 (1982) 226-230.
Selim G. Akl. Digital Signatures: A Tutorial Survey, Com
puter, Feb. 1983, IEEE.
R.R. Jueneman, S.M. Matyas and C.H. Meyer, Message
Authentication with Manipulation Detection Codes, 1983
IEEE Symposium on Security and Privacy.
Taher Elgamal, A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms, IEEE Transactions
on Information Theory, vol. IT-31, No. 4, Jul. 1985.
G. M. J. Pluimakers and J. van Leeuwen, Authentication: A
Concise Survey, Computer & Security, 5 (1986) 243-250.
C. Fernandez, A. Vaquero, J. M. Troya and J. M. Sanchez,
Automating the Computation of Authenticators for Inter
bank Telex Messages, Computer & Security, 6 (1987)
396-402.
June M. Power and Steve R. Wilbur, Authentication in a
Heterogenous Environment, Computer & Security, 6 (1987)
41-48.
Per ChristofferSSon, Message Authentication and EncCryp
tion Combined, Computers & Security, 7 (1988) 65-71.

Ramesh Karri, A Security Imbedded Authentication Proto
col, 1988 IEEE INFOCOM.
Karen R. Sollins, Cascaded Authentication, 1988 IEEE
Symposium on Security and Privacy.
Chris Mitchell, Dave Richard Michael Walker, A Remark on
Hash Functions for Message Authentication, Computer &
Security, 8 (1989) 55-58.
Martha Branstad, W. Curtis Barker, Pamela Cochrane, The
Role of Trust in Protected Mail, 1990 IEEE Symposium on
Security and Privacy.
William C. Barker, Use of Privacy-Enhanced Mail for
Software Distribution, 1990 IEEE 5th Annual Computer
Security Applications Conference.
Joseph J. Tardo and Kannan Alagappan, SPX: Global
Authentication Using Public Key Certificates, 1991 IEEE
Symposium on Security and Privacy.
Claus Fritzner, Lief Nilsen and ASmund Skomedal, Protect
ing Security Information in Distrbuted Systems, 1991 IEEE
Symposium on Security and Privacy.
Selwyn Russell, Paradigms for Verification of Authorization
at Source of Electronic Documents In an Integrated Envi
ronment, 1992 IEEE 8th Annual Computer Security Appli
cations Conference.
Phil Joo Moon, Joon Won Lee, Moon Suk Jun. Chul Hee
Lee, The New High-Speed Digital Signature, 1992 17th
IEEE Conference on Local Computer Networks.
J. Galvin, K. McCloghrie, and J. Davin, SNMP Security
Protocols, Jul. 1992.

US RE37,178 E Sheet 1 of 9 May 15, 2001 U.S. Patent

EN|HOWN HEMMES

©),
Œ

U.S. Patent May 15, 2001 Sheet 2 of 9 US RE37,178 E

CREATEMESSAGE -- 20O

PREAPPEND SESSINKEY-20
2O2

NO 64 BYTES? FILL WITHOS-N-2O3

YES - us
EXECUTE MD 2O4.

APPEND SIGNATURE SY-205

SEND MESSAGE SEND MESSAGEN, 2O6
- -r- - - - - - - - - - - - - CLIENT

SERVER
RECEIVE MESSAGEN-2O7

STRIPSGNATURE 2O8.

PREAPPEND SESSION YTONESSAn-209
21O

64BYTEs). No 211

YES

EXECUTE MD 212
CREATE DIGEST

217 NGENERATE ALERT 213 EXECUTE MESSAGE - 215

SIGNATURE =
SIGNATURE 2 YES WALD MESSAGE 214 UNAUTHORIZED NO

26 MESSAGE DISCARD

FG. 2

US RE37,178 E Sheet 3 of 9 May 15, 2001 U.S. Patent

U.S. Patent May 15, 2001 Sheet 4 of 9 US RE37,178 E

4-O1

4-O2

4-O3

4-O4

RECEIVE REPLY/4-O5

CHECK USING
PROVISIONAL STATE 4O6

4-O7
NO DO NOT

WALD REPLY2 ADVANCE STATE 4-O8

YES

ADVANCE STATE, IE
PROVISIONAL = CURRENT 4O9

FG. 4

U.S. Patent May 15, 2001 Sheet 5 of 9 US RE37,178 E

51O -- REPLY TO MESSAGE

<G> NO 5O1
YES

RECEIVE MESSAGE
VERIFY SIGNATURES

BASED ON 5O7
USE STATE YES 5O2 PROVISIONAL STATE
OF FIRST
PACKET NO 5O6 USE STATE

OF FIRST
5O3 JCHECK SEQUENCEF PACKET

NO

504 RECOMPUTE
YES PROVISIONAL STATE

BASED ONNEW 5O5
MESSAGE

REPEAT
SEQUENCE it

NO

511/NEXT VERIFY SIGNATURES
CONSECUTIVEN YES
SEQUENCEF BASED ON - 512,

PROVISIONAL STATE

NO 514 NO

512-INVALID, DISCARD <GD
YES

PROVISIONAL STATE
BECOMESCURRENT STATE 515

CREATE NEW STATE
PROVISIONAL STATE 516

5 17

REPLY BASED ON NO YES SA
PROVISIONAL STATE PACKET

F.G. 5

513

U.S. Patent May 15, 2001 Sheet 6 of 9 US RE37,178 E

CLIENT PROMPTS FOR (6O1
NAME AND PASSWORD

CLIENT REQUESTS (3O2
CHALLENGE FROM SERVER

CLIENT LOOKS UP OBJECT (3O3
D FOR USERNAME

CLIENT EXECUTES DIGEST
ALGORTHM OF PASSWORD AND (6O4
OBJECT ID TO GENERATEDIGEST1

BUILD BUFFER THAT CONTAINS
DIGEST FOLLOWED ACHALLENGE (6O5
FOLLOWED BY STRING "AUTHORIZED
NETWARE CLIENT" PAD WITH ZEROS

COMPUTEMESSAGE DIGEST laoa
OF BUFFER = DBUFFER

1ST 8 BYTES OF (3O7
DBUFFER = SESSION KEY

F.G. (3

U.S. Patent May 15, 2001 Sheet 7 of 9 US RE37,178 E

CENT GENERATESSESSION KEY - 7O1

SEND AUTHENTICATIONL-702
REQUEST TO SERVER CLIENT

SERVER
SERVER HAS STORED COPY

OF PASSWORD AND OBJECTID/703
AND IT KNOWS CHALLENGE

SERVER CALCULATES DIGEST-704

7O5

NO
DO NOT INITIALIZE CHANGE STATE

YES 7O6

7O7

INTIALIZE CLIENT STATE
STORE SESSION KEY

INITIALIZES SERVER STATE,
STORE SESSION KEY

FIG. 7

SIGNATURE =
SIGNATURE 2

U.S. Patent May 15, 2001 Sheet 8 of 9 US RE37,178 E

l
CD
c

N 25
S as V-SN

2 CO
al
ca

CQ
(S)

CQ is Q
l

C)
ge
NS

g co

U.S. Patent May 15, 2001 Sheet 9 of 9 US RE37,178 E

STATESTORAGE 909

91O

eos 907
902 - SESSION GD DIGESTER / CHALLENGE- 923

KEY BUFFERS PASSWORD- 924
902 906

MESSAGE
90 NNEAR 911 908

GD SESSION - 919 KEY

DIGESTER / CHALLENGE-/ 929
e22- BUFFERS PASSWORD- 930

926

STATESTORAGE 925

FG. 9

US RE37,178 E
1

METHOD AND APPARATUS FOR
AUTHENTICATION OF CLIENT SERVER

COMMUNICATION

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifi
cation; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to the field of network communi

cations.
2. Background Art
Personal computers, or WorkStations, may be linked

through a computer network to allow the Sharing of data,
applications, files, processing power, communications and
other resources, Such as printers, modems, mass Storage and
the like. Generally, the Sharing of resources is accomplished
the use of a network Server. The Server is a processing unit
dedicated managing the centralized resources, managing
data and sharing these resources with other PCs and
workstations, often referred to as "clients'. The server,
network and PCS or WorkStations, combined together, con
Stitute client/server computer network. An example of a
client/server network model is illustrated in FIG. 1.

FIG. 1 illustrates a client machine 101 coupled to a server
macabre 102. The client machine 101 may be a PC,
WorkStation, etc. The Server machine may be a dedicated
processor, PC, WorkStation, etc, that includes maSS Storage
on which files are Stored. Typically, the mass Storage is a
disk drive or other suitable device.

The client machine 101 is comprised of a client 102 that
communicates with a client stub 103. The client stub 103
communicates with a transport entity 104. The server
machine 105 includes a server 106, server stub 107, and
transport entity 108.

Referring to the client machine 101, the client 102 is a
local processor that utilizes files of the server. The client stub
103 is a collection of local procedures that enable the client
to access the Server. The transport entity 104 provides acceSS
to the network, or “wire' 109. Wire 109 refers to the
communications medium between the client and Server and
may be an actual hardwired communications medium, or
may be a wireless connection. Similarly, the server stub 107
is a collection of procedures that enable the Server to
communicate with the client, and transport entity 108 pro
vides access from the server to the wire 109.

In operation, communication between the client and
Server is in the form of requests (from the client) and replies
(from the server). This communication is in the form of
remote procedure calls. The client is analogous to an appli
cation calling a procedure and getting a result. The differ
ence is that the procedure is not necessarily on the same
machine as the client 101, but rather on the server machine
105.

Initially, the client 102 calls a stub procedure located on
the client machine in the client stub 103 (resident in the
client 102 local address space). The client stub 103 con
Structs a message from the call and provides it to the
transport entity 104. The transport entity 104 communicates
the message on the wire 109 to the server machine 105. At
the Server, the transport entity 108 passes the message to the
server stub 107. The server stub then calls the appropriate
server procedure front the server 106. The server 106

15

25

35

40

45

50

55

60

65

2
operates on the message and then returns the procedure and
any result to the server stub 107. The server stub 107
constructs a reply message and provides it to the transport
entity 108. The reply message is sent to the transport entity
104 of the client machine 101 over the wire 109. The
transport entity provides the reply message to the client Stub
103. The client stub 103 returns the procedure and any value
returned by the server to the client 102.
On a computer network, clients and users have different

levels of privileges. Certain functions, adding users, deleting
users, changing passwords, etc., are restricted to the highest
privileged users. These users and clients are often network
administrators, and it is necessary for these users to be able
to modify the network as necessary. In addition, there may
be certain types of files or activities that are restricted from
most users. For example, financial data is often restricted to
users who have a need to know or use the financial data.
Generally, other users are not permitted to access that data.

In a client/server model, messages are transported as
"packets'. An example of a message packet is illustrated in
FIG. 3A. The message consists of a 4-byte length header
(low high) indicator 301. The length header 301 identifies
the length of the message that follows and includes the
following information:
CheckSum
PacketLength
TransportControl
HPacketType
DestinationNet
DestinationNode
DestinationSocket
SourceNet
SourceNode
SourceSocket

The length header 301 is followed by a request code 302.
The request code 302 is the particular type of procedure
being requested by the client. The request code 302 is
followed by data 303. The data 303 may be of variable
length.
One particular type of message packet is referred to as an

“NCP packet”, where NCP refers to NetWare Core Protocol.
(NetWare is a trademark of Novell, Corporation of Provo,
Utah). NetWare is an operating system for network systems.
An NCP packet includes the following additional informa
tion in the length header:

packet type
Sequence number
connection low
task

connection high
The Standard portion of the message packet provides

Source address, destination address and length, among other
pieces of information. The NCP portion includes a connec
tion number and a sequence number. The Station connection
number provides the server with an index into a table of
active Stations. The Server uses the active Station table to
track information about that Station's Session, including the
Station's network address and Sequence number.
The connection number is used in part as a Security check.

When a Server receives a request packet, it uses the packet's
connection number as an indeX into its connection table. The
request packer's network address must match the network
address Stored in the connection table entry corresponding to

US RE37,178 E
3

the connection number contained in the request packet. This
is one method of validating a request packet.

The Sequence number is also used to validate packets. The
Sequence number is a byte that is maintained by both the
Server and the client. When the client Sends a request packet,
that client increments the Sequence number. Likewise, when
a Server receives a request packet, it increments that client's
Sequence number (Stored in the Server's connection table).
The Sequence number wraps around on every 256th request
made by the client (because it is one byte in length).

Before incrementing the client's Sequence number, the
Server checks the Sequence number against a list of already
received request packets. This check is to ensure that the
Server does not Service duplicate request packets. If the
Sequence number does not indicate a duplicate request
packet, the Server checks the request packet's Sequence
number against the Sequence number Stored in the Server's
connection table. If these two numbers are not equal, the
Server discards the packet.

In spite of these precautions, it is Sometimes possible to
forge a message packet by detecting the network address,
connection Station, the Station's connection number, and the
Station's Sequence number. Typically, the purpose in forging
a message packet is to “imitate' a higher privileged user or
client So that the privilege level of the forger can be
upgraded. The forger may obtain a more privileged Station's
connection number by capturing network packets from the
communications medium. These are network packets that
are Sent from a higher privileged Station to the Server. A
forger may capture these packets using a protocol analysis
tool.

By obtaining a connection number, a forger may attempt
to forge a message by Sending a message to the Server
destination address, using the same Station connection num
ber as in the intercepted message. However, that alone is not
Sufficient to enable an intruder to forge a message. AS noted
above, the Server checks the Sequence number and compares
it against a list of already-received requests. The Sequence
number of the new request should have associated with it the
next consecutive Sequence number. If not, it is an invalid
request and the Server discards the packet.
An intruder may attempt to forge a message by "guessing

at the Sequence number. Because the Sequence numbers
“wrap around” after 256, the intruder need only try to make
256 attempts before the sequence number is found. It should
be noted that the intruder does not receive responses from
the Server, but rather must detect responses from the Server
or detect if a request issued to the Server has been executed
(e.g., a change in privilege Status for the intruder).
One possible Solution to a network intruder is to monitor

network use to detect intruder-type activity. For example, the
network could be monitored So that trial and error attempts
to provide a correct Sequence number are detected. For
example, a window could be defined with a certain number
of allowed failed tries at providing Sequence numbers. A
problem is that depending on the size of the window for
allowed retries, an intruder could randomly provide a correct
sequence number within the window. If the window is made
Smaller, legitimate transactions might be interrupted when
the correct Sequence number is not provided by a legitimate
user. It is desired to provide a method and apparatus for
preventing intruder network access instead of just detecting
intruder access.

SUMMARY OF THE PRESENT INVENTION

The present invention provides a method and apparatus
for message packet authentication to prevent the forging of

15

25

35

40

45

50

55

60

65

4
message packets. After a message packet is created, a Secret
Session key is preappended to the message, and a message
digesting algorithm is executed on the altered message to
create a message digest. A portion of the message digest,
referred to as the Signature, is then appended to the actual
message when it is Sent over the wire. The receiving Station
Strips the Signature from the message, preappends the same
Secret Session key and creates its own message digest. The
Signature of the digest created by the receiving Station is
compared to the Signature of the digest appended by the
Sending Station. If there is a match, an authentic message is
assumed. If there is no match, the message is considered as
invalid and discarded. An advantage of the present invention
is that the session key is never transmitted over the wire. The
receiving station (server) already has the key and uses the
key along with the message data to recalculate the message
digest upon receiving the packet. The shared Secret key
(session key)is generated during initiation of the NCP Ses
Sion. In addition, cumulative State information is maintained
by both the Sending Station and the receiving Station. This
State information is also used to authenticate messages.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a client/server model.
FIG. 2 is a flow diagram of a message Session using the

Session key of the present invention.
FIGS. 3A-3G are diagrams of message Structure during a

message Session.
FIG. 4 is a flow diagram of the client State during a

message Session.
FIG. 5 is a flow diagram of the server state during a

message Session.
FIG. 6 is a flow diagram illustrating the generation of a

Session key.
FIG. 7 is a flow diagram of a method of authenticating a

Session key.
FIG. 8 is a block diagram of a computer system in which

the present invention may be implemented.
FIG. 9 is a block diagram of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

A method and apparatus for message authentication is
described. In the following description, numerous specific
details, Such as message type, message length, etc., are
provided in detail in order to provide a more thorough
description of the present invention. It will be apparent,
however, that the present invention may be practiced with
out these Specific details. In other instances, well-known
features are not described in detail So as not to unnecessarily
obscure the present invention.
The present invention provides a signature with each

message that identifies and authenticates the Sender. In
addition, the invention trackS State information about the
Session and uses its cumulative effect to help protect and
authenticate SenderS.

The Signature Scheme of the invention takes advantage of
an operation known as “message digesting”. Message
digesting is a Scheme to provide data integrity and detect
errors. There are a number of message digesting algorithms
available for use, some of which are provided by Rivest,
Shamir and ASSociates (RSA). RSA message digesting algo
rithms are known as MD2, MD4 and MD5. The preferred
embodiment of the present invention utilizes a derivative of

US RE37,178 E
S

message digesting algorithm MD4. The MD4 algorithm is
described in RFC 1320, “The MD4 Message-Digest
Algorithm”, R. Rivest, MIT Laboratory for Computer Sci
ence and RSA Data Security, Inc. April 1992, incorporated
by reference herein. In the preferred embodiment of the
present invention, the padding Scheme described herein is
used instead of the padding scheme described in the MD4
algorithm. However, the present invention may be used with
any Suitable padding Scheme. In addition, the MD2 and
MD5 digesting algorithms may be used as the digesting
algorithm.

Other cryptographically Secure, one way hashing algo
rithms may be used instead of a digesting algorithm without
departing from the Scope and Spirit of the present invention.
A hash function is a mathematical function that maps values
from a large domain into a Smaller range. In the preferred
embodiment the hash function is such that the results of
applying the function to a set of values in the domain will be
evenly distributed (and apparently random) over the range.
Using the present Scheme, encryption of a message can be
avoided, Saving time, while Still providing the benefit of an
effective digital authentication Signature.

MESSAGE SIGNATURE

The method for creating and utilizing a signature to
authenticate a message is illustrated in the flow diagram of
FIG. 2. At step 200, a message is created by the client. This
message is as shown in FIG. 3A. The message consists of a
4-byte length header (low high)indicator 301. The length
header 301 identifies the length of the message that follows
and includes Source and destination information. The length
header 301 is followed by a request code 302. The request
code 302 is the particular type of procedure being requested
by the client. The request code 302 is followed by data 303.
The data 303 may be of variable length.
At Step 201 a Session key, whose creation is described in

detail below, is pre-appended to the message. The prepend
ing of the session key of step 201 of FIG. 2 is illustrated in
FIG. 3B. An 8-byte key 304 is preappended to the message
before the length indicator 301.

At decision block 202, the argument “64 bytes?” is made.
If the argument is false, meaning the message does not have
64 bytes, the system proceeds to step 203 and the remainder
of the message is filled with zeros. This is the padding 305
of FIG.3B. In the preferred embodiment, the message digest
algorithm requires 64 bytes for operation So that if
necessary, padding 305 (consisting of Zeros) is added to the
end of the message. The request code and data total 52 bytes,
with 4 bytes of the length indicated in 8 bits of the session
key for a total of 64 bytes.

After step 203, or if the argument at decision block 202 is
true, the system proceeds to step 204. At step 204, the
message digest algorithm is executed to generate a message
digest from the preappended message. The execution of the
message digest algorithm creates the 16-byte message digest
of FIG. 3C.
At step 205, the first eight bytes, i.e. the signature 306, of

the digest is appended to the message. This is illustrated in
FIG. 3D. The 8-byte signature 306 is added to the end of the
actual NCP data. No padding is required for sending the
message over the wire. At Step 206, the message is Sent to
the server. Steps 200-206 are executed by the client, and
steps 206-216 are executed by the server.
At step 206, the server receives the message. At step 208,

the server strips the signature 306 from the message. The
Signature 306 is Stripped from the message as illustrated in
FIG. 3E.

15

25

35

40

45

50

55

60

65

6
At Step 209, the Server pre-appends the Session key

generated and stored by the server (which should be the
same Session key as generated and Stored by a valid user) to
the message. This is illustrated in FIG. 3F where the server
Session key 304 is preappended to the message. At decision
block 210, the argument “64 bytes?” is made. If the argu
ment is false, the System proceeds to Step 211 and fills the
remainder of the message with Zeros, as illustrated by
padding 305 of FIG. 3F.

After step 211, or if the argument at decision block 210 is
true, the system proceeds to step 212. At step 212, the MD4
algorithm is executed to create a Server message digest,
referred to here as digest'. This results in the 16-byte
message digest of FIG. 3G. The first 8 bytes, i.e. Signature
306 of this message digest are then Stripped away and
compared to the signature 306 that was sent with the
message by the client.
At decision block 213, the argument “Signature=

Signature"?” is made. This step is to determine if the
Signature generated by the client is the same as the Signature'
generated by the Server. If the argument at decision block
213 is true, the System proceeds to Step 214 and a valid
message is indicated. At Step 215, the message is executed.
If the argument at decision block 212 is false, the System
proceeds to Step 216. At Step 216, an unauthorized message
is indicated and the message is discarded. At Step 217, an
alert is generated to indicate that an unauthenticated mes
Sage was attempted.
The preferred embodiment of the present invention uti

lizes eight bytes of the digest as the Signature. Any number
of bytes or bits of the digest may be used as the Signature
without departing from the Scope of the present invention.

In Some cases, message packets use the entire data field,
precluding the ability to append the eight byte message
digest. In typical applications, block size negotiations
assume 64 bytes for protocol header information. In reality,
most protocol headers consume leSS than 56 bytes, leaving
8 bytes always available for the 8 byte digest information. If
eight bytes of free Space are not available, an artificially
Smaller block size is negotiated So that an 8 byte Space can
be guaranteed.

STATE TRACKING

In addition to the message Signature Scheme described
above, the present invention also provides a method of
message authentication using State information. The nature
of the MD4 algorithm is such that it is cumulative, i.e. the
message digest function can be executed in Stages.

For example, a block of a file of messages can be provided
to the message digest algorithm, digested and the next block
of file can be read in and the digesting continued. The output
State of the execution of the digesting algorithm is used as
an input State on the next digesting Step. The net effect of
executing the message digest algorithm in Stages is as if the
message digest algorithm were executed on an entire block
of information in a single pass. Thus, a cumulative effect can
be had by remembering the State at the end of each algorithm
execution. The present invention takes advantage of this
cumulative effect and State information to provide an addi
tional level of Security and authentication.

Both the client and Server track and Store State informa
tion. In the present invention, this State information consists
of the most recently generated message digest. A provisional
message digest, using the current message digest and new
message, is generated and Stored by the client and Server.
When a new message is received, a new message digest is

US RE37,178 E
7

generated and compared to the provisional digest. A match
is only possible if the other party had the previous State
information. The incorrect starting State information will
propagate an error that identifies intruders and forged mes
SageS.

Referring to FIG. 4, a flow diagram of State tracking for
a client is illustrated. At step 401, the current state of the
client is the full 16 byte message digest generated from a
previous valid message. At Step 402, the client creates a new
message. At Step 403, the client applies the message digest
ing algorithm to the new message, using the current State
(digest) as a starting point to create a provisional State.
At step 404, the message is sent to the server. At step 405,

the client receives a reply from the server. At step 406, the
reply is checked, using the provisional state of step 403. This
is accomplished by Stripping the Server generated digest
from the message, applying the message digest algorithm to
the message (using the provisional State as a starting point)
and comparing the first eight bytes of the resulting digest to
the first eight bytes of the Server generated digest.
At decision block 407, the argument “valid reply?” is

made. If the argument is false, the System proceeds to Step
408 and does not advance the state, since an invalid reply has
been received. The next message generated by the client will
use the existing current State as the Starting point for the
digesting algorithm. If the argument at decision block 407 is
true, the System proceeds to Step 409 and advances the State,
that is, is makes the provisional State the current State. That
new current State will now be the Starting point when
applying the digesting algorithm to the next message.

In Some cases, the client may send a burst of data to the
Server, or a client request may generate a burst reply. The
order of the messages in the packet burst (except for the first
packet) is not necessarily fixed. This can create problems in
calculating State information, because of the cumulative
nature of the digesting algorithm. For packet burst replies,
the Server calculates the message digest for the first reply
packet and uses the same State to calculate message digests
for all remaining packets in the burst. In this manner,
regardless of the order of packets after the first packet, State
integrity can be maintained.

Burst requests are handled the same way. The first packet
in a stream is factored in the State of the digest algorithm.
Subsequent packets in the burst request use the same State as
the first packet as the initial State.
A flow diagram illustrating the operation of the Server in

maintaining State information is illustrated in FIG. 5. At Step
501, the server receives a message from the client. At
decision block 502, the argument “burst'?” is made. If the
argument is true, the System uses the State of the first packet
and returns to step 503. If the argument is false, the system
proceeds to Step 503 and checks the Sequence number. At
decision block 504, the argument “repeat Sequence num
ber?” is made. This is to identify repeat requests. The digest
output generated for request packets is always factored into
the digest State. Thus, the prior digest State must be main
tained by the Server when repeat requests are encountered.
If the argument at decision block 504 is true, the system
proceeds to Step 505 and recomputes a provisional State
based on the new message, using the Stored previous State.

At decision block 506, the argument “burst'?” is made. If
the argument is true, the System proceeds to Step uses the
state of the first packet and returns to step 507. If the
argument is false, the System proceeds to Step 507. At Step
507, the signatures of the message are verified based on the
provisional state. At decision block 508, the argument

15

25

35

40

45

50

55

60

65

8
“valid'?” is made. If the argument is false, the system
discards the message and provides an alert for a potential
forged message at step 509. If the argument at decision block
508 is true, the system replies to message at step 510.

If the argument at decision block 504 is false, the system
proceeds to decision block 511. At decision block 511, the
argument “next consecutive Sequence number?” is made. If
the argument is false, the System proceeds to Step 512,
declares the message invalid and discards it. In other words,
the Sequence number was in appropriate. If the argument at
decision block 511 is true, the system proceeds to step 513
and Verifies the Signatures based on the provisional State that
has been maintained.
At decision block 514, the argument “valid'?” is made. If

the argument is false, the system proceeds to step 509, the
message is discarded, and an alert is generated. If the
argument is true, the System proceeds to Step 515. At Step
515, the provisional state is redefined as the current state. At
Step 516, a new provisional State is created based on the
reply. At decision block 517, the argument “burst'?” is made.
If the argument is true, the System uses the State of the first
packet and proceeds to Step 518. If the argument is false, the
system proceeds to step 518 and replies to the client based
on the provisional State that has been calculated.

SESSION KEY

A method of generating a client Session key is illustrated
in FIG. 6. When a user attempts to communicate on the
network, the user must first be identified to the server. To
initiate a Session, the user attempts to log on to the client
machine. At Step 601, the client requests a challenge from
the server machine. The challenge consists of 8 bytes of
random numbers. The client then prompts the user for an
account name and a password at step 602. When the user
enters an account name and password, the client machine
determines an object ID associated with the account at Step
603. (The object ID is a numeric Surrogate key or index that
is associated with each account).
At step 604, the client machine uses the password and the

object ID to compute a digest using a digest algorithm to
generate a 16 byte result referred to here as Digest1. At Step
605, the client machine builds a buffer of Digest1, the
challenge and, optionally, a text String. In the preferred
embodiment, the text String of the present invention is
“Authorized NetWare Client”. The buffer is padded with 0's
if necessary to provide 64 bytes for execution of the digest
algorithm.
At Step 606, the client machine performs a Second digest

on the buffer (Digest1, the challenge, O’s padding, and,
optionally, the text String) to generate a digest of the buffer
called Dbuffer. At step 607, the first eight bytes of Dbuffer
are Stripped and defined as the Session key. Although eight
bytes are used as the Session key in the preferred embodi
ment of the present invention, any number of bytes or bits
may be used without departing from the Scope of the
invention.
The Server also has stored the password, account name,

and object ID of the user. The server also has generated the
challenge, and Stores that value. Using the same Steps, the
Server machine can generate the Session key. Thus, the
Session key is never transmitted over the wire. It is a
generated from Secure information at the client machine and
the Server machine. In addition, because the Session key
depends in part on the challenge (a random number) the
Session key is different for each client/server Session.

Although not shown in FIG. 6, a response is generated to
the challenge after step 604. The response, which is sent

US RE37,178 E
9

over the wire to the Server, is generated by a hashing
algorithm that is different from the hashing algorithm that is
used in steps 605 and 606. If step 604 is accomplished using
the MD4 algorithm, then the challenge response can use, for
example, the MD5 algorithm and the Session key is gener
ated using the MD4 algorithm. Alternatively, the challenge
response can be generated using the MD4 algorithm and the
Session key can be generated using a different algorithm,
such as the MD5 algorithm. Any different digesting or
hashing Schemes can be used as long as there is no mapping
of the output of one algorithm to the output of the other
algorithm.
The MD5 algorithm is described in RFC 1321, “The MD5

Message-Digest Algorithm”, R. Rivest, MIT Laboratory for
Computer Science and RSA Data Security, Inc. April 1992
and incorporated herein by reference.

SESSION KEY AUTHENTICATION

FIG. 7 illustrates a flow diagram of a method of authen
ticating a Session key. At Step 701, a client generates a
Session key as described in connection with FIG. 6. At Step
702, a request is sent to the Server by the client, using the
Session key to generate a digest and a signature as described
in connection with FIG. 2.
At step 703, the server strips the signature from the

message of the client, and uses the Server's Stored copy of
the account name, password, and object ID to first generate
its version of Digest1, namely Digest1', and then uses
Digest1' to generate the Server version of the Session key,
namely Session key'. At Step 704, the Server generates
Digest" as described in connection with FIG. 2.
At decision block 705, the argument “Signature=

Signature'?” is made. If the argument is false, the System
proceeds to Step 706 and the Server Sends a negative ack to
the client and the Server does not change its State. The Server
does not initialize its State for a new Session. If the argument
at decision block 705 is true, the system proceeds to step 707
and the server sends an “OK” acknowledgement to the
client. At step 708, the server initializes the client state and
stores the session key it has generated. At step 709, the
Server initializes the Server State and Stores the Session key.
The initial state of the client and server is defined to be an
initial State documented, for example, in the MD4Standard.

The client and server of the present invention may be
implemented on any conventional or general purpose com
puter System. An example of one embodiment of a computer
system for implementing this invention is illustrated in FIG.
8. A keyboard 810 and mouse 811 are coupled to a
bi-directional system bus 818. The keyboard and mouse are
for introducing user input to the computer System and
communicating that user input to CPU 813. The computer
system of FIG. 8 also includes a video memory 814, main
memory 815 and mass storage 812, all coupled to
bi-directional system bus 818 along with keyboard 810,
mouse 811 and CPU 813. The mass storage 812 may include
both fixed and removable media, Such as magnetic, optical
or magnetic optical Storage Systems or any other available
mass Storage technology. BuS 818 may contain, for example,
32 address lines for addressing video memory 814 or main
memory 815. The system bus 818 also includes, for
example, a 32-bit data bus for transferring data between and
among the components, Such as CPU 813, main memory
815, video memory 814 and mass storage 812. Alternatively,
multiplex data/address lines may be used instead of Separate
data and address lines.

In the preferred embodiment of this invention, the CPU
813 is a 32-bit microprocessor manufactured by Intel, such

15

25

35

40

45

50

55

60

65

10
as the 80386 or 80486. However, any other suitable micro
processor or microcomputer may be utilized. Main memory
815 is comprised of dynamic random access memory
(DRAM). Video memory 814 is a dual-ported video random
acceSS memory.
One port of the video memory 814 is coupled to video

amplifier816. The video amplifier 816 is used to drive the
cathode ray tube (CRT) raster monitor 817. Video amplifier
816 is well known in the art and may be implemented by any
Suitable means. This circuitry converts pixel data Stored in
video memory 814 to a raster signal suitable for use by
monitor 817. Monitor 817 is a type of monitor suitable for
displaying graphic images, and in the preferred embodiment
of this invention, has a resolution of approximately 1020x
832. Other resolution monitors may be utilized in this
invention.
The computer System described above is for purposes of

example only. The present invention may be implemented in
any type of computer System or programming or processing
environment.
A block diagram of the present invention is illustrated in

FIG. 9. A message generator 901 is a source of messages
from a Sending Station to a receiving Station. In this example,
the Sending Station is a client and the receiving Station is a
server. The message generator 901 provides a message 902.
A session key 904 is stored in session key storage 903. The
session key 904 is preappended to the message 902 at
Summer 905, resulting in appended message 906. Appended
message 906 is provided to the digester/buffer block 907,
where it is digested and the first eight bytes are used as a
signature 908. Signature 908 is combined with message 902
at Summer 911, resulting in Signed message 912. Signed
message 912 is coupled to a receiving station through
transmitter/receiver 913.

State storage 909 stores the current and provisional states
of the sending station and provides them on line 910 to the
digester/buffer block 907 as needed. A challenge 923 and
local password 924 are also provided to the digester/buffer
block 907 for generation of the session key 904 on initial
ization of a Session.
The received signed message 914 is separated into Sig

nature 916 and message 917 elements at subtractor 915. The
message 917 is combined with a session key 920 from
session key storage 919 at Summer 918, resulting in an
appended message 921. Appended message 921 is provided
to digester/buffer 922, where it is digested. The first eight
bytes of the digest define a signature 927. The signature 927
is provided to compare/authenticate block 928, along with
the signature 916 of the received message 914. The
compare/signature block compares signature 927 with Sig
nature 916. When the Signatures match, a valid message is
indicated. If the Signatures do not match, the message is
declared invalid and discarded.

State information for the digesting operation of digester/
buffer 922 is provided on line 926 from state storage 925. A
challenge 929 and password 930 are also provided to
digester/buffer 922 for generation of a Session key.
The elements of FIG. 9 can be implemented as executable

instructions in a processing means.
Thus, a method and apparatus for authentication of client/

Server communication has been described.
Claims of the invention:
I claim:
1. A method of authenticating a message transmitted

between a Sender and a receiver comprising the Steps of
generating a message at Said Sender,

US RE37,178 E
11

combining a Session key with Said message to create a first
appended message;

calculating a first digest of Said first appended message;
combining a first portion of Said first digest with Said

message to create a transmit message,
transmitting Said transmit message to Said receiver;
removing Said first portion of Said first digest from Said

transmit message to result in Said message;
combining Said Session key with Said message to generate

a Second appended message;
calculating a Second digest of Said Second appended

meSSage,
comparing said said first portion of said first digest and

a Second portion of Said Second digest;
authenticating Said message when Said first portion of Said

first digest matches Said Second portion of Said Second
digest.

2. The method of claim I wherein said sender is a client
in a client/server network.

3. The method of claim 1 wherein said receiver is a server
in a client/server network.

4. The method of claim 1 wherein said step of calculating
a first digest of Said first appended message is accomplished
by executing a digest algorithm on Said first appended
meSSage.

5. The method of claim 4 wherein said digest algorithm is
an MD4 digest algorithm.

6. The method of claim 4 wherein a current state of said
Sender is used as an initial State when executing Said digest
algorithm to create Said first digest.

7. The method of claim 6 wherein said current state is
used as an initial State when executing Said digest algorithm
to create Said Second digest.

8. The method of claim 7 wherein said current state is
advanced when an authenticated message is received.

9. The method of claim 8 wherein said current state is not
advanced when an authenticated message is not received.

10. The method of claim 1 wherein said session key is
generated by the Steps of:

providing a random number Sequence challenge to Said
Sender;

requesting a password from a user of Said Sender;
generating a first pass digest from Said password;
combining Said first pass digest and Said challenge in a

buffer; generating a buffer digest of Said buffer;
defining Said Session key as a first number of bytes of Said

buffer digest.
11. Apparatus for authenticating a message transmitted

between a Sender and a receiver comprising:
means for generating a message at Said Sender,
means for combining a Session key with Said message to

create a first appended message;
means for calculating a first digest of Said first appended

meSSage,
means for combining Said a first portion of Said first digest

with Said message to create a transmit message;
means for transmitting Said transmit message to Said

receiver;
means for removing Said first portion of Said first digest

from Said transmit message to result in Said message;
means for combining Said Session key with Said message

to generate a Second appended message;
means for calculating a Second digest of Said Second

appended message;

5

15

25

35

40

45

50

55

60

65

12
means for comparing said said first portion of Said first

digest and a Second portion of Said Second digest,
means for authenticating Said message when Said first

portion of Said first digest matches Said Second portion
of Said Second digest.

12. The apparatus of claim 11 wherein Said Sender is a
client in a client/server network.

13. The apparatus of claim 11 wherein said receiver is a
Server in a client/server network.

14. The apparatus of claim 11 wherein said first digest of
Said first appended message is calculated by executing a
digest algorithm on Said first appended message.

15. The apparatus of claim 14 wherein Said digest algo
rithm is an MD4 digest algorithm.

16. The apparatus of claim 14 wherein a current state of
Said Sender is used as an initial State when executing Said
digest algorithm to create Said first digest.

17. The apparatus of claim 16 wherein said current state
is used as an initial State when executing Said digest algo
rithm to create Said Second digest.

18. The apparatus of claim 17 wherein said current state
is advanced when an authenticated message is received.

19. The apparatus of claim 18 wherein said current state
is not advanced when an authenticated message is not
received.

20. The apparatus of claim 11 further including means for
generating a Session key comprising:
means for providing a random number Sequence chal

lenge to Said Sender;
means for requesting a password from a user of Said

Sender,
means for generating a first pass digest from Said pass

word;
means for combining Said first pass digest and Said

challenge in a buffer;
means for generating a buffer digest of Said buffer;
means for defining Said Session key as a first number of

bytes of said buffer digest.
21. A method of authenticating a message transmitted

between a Sender and a receiver, comprising the Steps of
generating a meSSage at a Sender,
combining a Session key with Said message to create a

first appended message,
creating a first hash of Said first appended meSSage,
combining at least a portion of Said first hash with Said

message to create a transmit message,
transmitting Said transmit message to a receiver,
determining from the transmit message Said portion of

Said first hash and Said message,
combining Said Session key with Said meSSage to generate

a Second appended message,
creating a Second hash of Said Second appended message,
comparing Only a portion of Said first hash and a corre

Sponding portion of Said Second hash, and
authenticating Said meSSage when Said portion of Said

first hash matches Said corresponding portion of Said
Second hash.

22. The method of claim 21, wherein said Sender is a
client in a client/server network.

23. The method of claim 21, wherein Said receiver is a
Server in a client/server network.

24. The method of claim 21, wherein the Steps of creating
involve calculating.

25. The method of claim 24, wherein Said Step of calcu
lating a first hash of Said first appended message is accom

US RE37,178 E
13

plished by executing a digest algorithm. On Said first
appended message.

26. A method of generating a Session key, in a computer
System comprising the Steps of

providing a random number Sequence,
requesting a paSSword from a user,
creating a first hash from Said paSSword,
combining Said first hash and Said Sequence,
creating a second hash of Said combined first hash and

Sequence, and
defining a SeSSion key as a portion of Said Second hash.
27. A Session key generated by the method of claim 26.
28. The method of claim 26, wherein the Steps of creating

involve calculating.
29. The method of claim 26, wherein the hashes are

digests.
30. A method of authenticating a message transmitted

between a Sender and a receiver, comprising the Steps of
generating a meSSage at a Sender,
combining a SeSSion key with Said message to create a

first appended meSSage,
creating a first hash of Said first appended message using

a current State as an initial State,
combining at least a portion of Said first hash with Said

meSSage to create a transmit message,
transmitting Said transmit meSSage to a receiver,
determining from Said transmit meSSage Said portion of

Said first hash and Said message,
combining Said Session key with Said meSSage to generate

a Second appended message,
creating a Second hash of Said Second appended message

using Said current State as an initial State,
comparing Said portion of Said first hash and at least a

portion of Said Second hash, and
authenticating Said meSSage when Said portion of Said

first hash matches Said portion of Said Second hash.
31. The method of claim 30, wherein Said current State is

advanced when an authenticated message is received.
32. The method of claim 30, wherein Said current State is

not advanced when an authenticated message is not
received.

33. The method of claim 30, wherein the portions of the
first and Second hashes are the entire first and Second
hashes, respectively.

34. The method of claim 30, wherein the hashes are
digests.

35. A computer System for authenticating a message
transmitted between a Sender and a receiver, comprising:

a first computer having.
means for generating a message,
means for combining a Session key with Said message

to create a first appended meSSage,
means for creating a first hash of Said first appended

message,
means for combining at least a portion of said first hash

with Said meSSage to create a transmit message,
means for transmitting Said transmit message,

a Second computer having.
means for receiving Said transmit message,
means for determining from the transmit Saidportion of

Said first hash and Said message,
means for combining Said Session key with Said mes

Sage to generate a Second appended message,
means for creating a Second hash of Said Second

appended message,

15

25

35

40

45

50

55

60

65

14
means for comparing Only a portion of Said first hash
and a corresponding portion of Said Second hash,
and

means for authenticating Said message when Said por
tion of Said first hash matches Said corresponding
portion of Said Second hash.

36. The computer System of claim 35, wherein Said Sender
is a client in a client/server network.

37. The computer System of claim 35, wherein Said
receiver is a server in a client/server network.

38. The computer System of claim 35, wherein the hashes
are digests.

39. A computer System for authenticating a message
transmitted between a Sender and a receiver, comprising:

a first computer having.
means for generating a message,
means for combining a Session key with Said message

to create a first appended meSSage,
means for creating a first hash of Said first appended

meSSage using a current State as an initial State,
means for combining at least a portion of said first hash

with Said meSSage to create a transmit message,
means for transmitting Said transmit message,

a Second computer having.
means for receiving Said transmit meSSage,
means for determining from Said transmit message Said

portion of Said first hash and Said message,
means for combining Said Session key with Said mes

Sage to generate a Second appended message,
means for creating a Second hash of Said Second

appended message using Said current State as an
initial State,

means for comparing Saidportion of Said first hash and
at least a portion of Said Second hash, and

means for authenticating Said message when Said por
tion of Said first hash matches Said portion of Said
Second hash.

40. The computer System of claim 39, wherein Said current
State is advanced when an authenticated message is
received.

41. The computer System of claim 39, wherein Said current
State is not advanced when an authenticated meSSage is not
received.

42. The computer System of claim 39, wherein the portions
of the first and Second hashes comprise the entire first and
Second hashes, respectively.

43. A computer readable medium comprising a program
capable of authenticating a message transmitted between a
Sender and a receiver by performing the Steps of

generating a meSSage at a Sender,
combining a Session key with Said message to create a

first appended message,
creating a first hash of Said first appended meSSage,
combining at least a portion of Said first hash with Said

message to create a transmit message,
transmitting Said transmit message to a receiver,
determining from the transmit message Said portion of

Said first hash and Said message,
combining Said Session key with Said meSSage to generate

a Second appended message,
creating a Second hash of Said Second appended message,
comparing Only a portion of Said first hash and a corre

Sponding portion of Said Second hash, and
authenticating Said meSSage when Said portion of Said

first hash matches Said corresponding portion of Said
Second hash.

US RE37,178 E
15

44. A computer readable medium comprising a program
capable of authenticating a message transmitted between a
Sender and a receiver by performing the Steps of

generating a meSSage at a Sender,
combining a SeSSion key with Said message to create a

first appended meSSage,
creating a first hash of Said first appended message using

a current State of Said Sender as an initial State,
combining at least a portion of Said first hash with Said 10

meSSage to create a transmit message,
transmitting Said transmit meSSage to a receiver,

5

16
determining from Said transmit meSSage Said portion of

Said first hash and Said message,
combining Said Session key with Said meSSage to generate

a Second appended message,
creating a Second hash of Said Second appended meSSage

using Said current State as an initial State,
comparing Said portion of Said first hash and at least a

portion of Said Second hash, and
authenticating Said meSSage when Said portion of Said

first hash matches Said portion of Said Second hash.

