2/052400 A1l

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

L. /
International Bureau

(43) International Publication Date

07\
' 3

74
Y,

A

A0 0 00O

(10) International Publication Number

4 July 2002 (04.07.2002) PCT WO 02/052400 A1l
(51) International Patent Classification’: GOG6F 7/10, (81) Designated States (national): AE, AG, AL, AM, AT, AU,
9/34, 15/173 AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
(21) International Application Number: PCT/US01/46902 GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(22) International Filing Date: 6 December 2001 (06.12.2001) MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
S, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG, UZ, VN, YU,
(25) Filing Language: English ZA, ZW.
(26) Publication Language: English .
(84) Designated States (regional): ARIPO patent (GH, GM,
(30) Priority Data: KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
60/254,436 8 December 2000 (08.12.2000) US Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
09/976,765 12 October 2001 (12.10.2001) ~ US European patent (AT, BE, CH, CY, DE, DK, ES, I, IR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(71) Applicant: FINISAR CORPORATION [US/US]; 1308 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
Moffett Park Drive, Sunnyvale, CA 94089-1133 (US). NE, SN, TD, TG).
(72) Inventors: GENTIEU, Paul, R.; 1074 Reed Avenue #66, pyplished:
Sunnyvale, Ca 94085 (US). ACQUISTAPACE, Tom; __ iy international search report
5645 White Mountain Court, Martinez, CA 94553 (US).
IRYAMI, Farhad; 271 El Bonito Way, Millbrae, CA
94030 (U,S) arha omtto Tray, Mtibrae For two-letter codes and other abbreviations, refer to the "Guid-
’ ance Notes on Codes and Abbreviations” appearing at the begin-
(74) Agent: WILLIAMS, Gary, S.; Pennie & Edmonds LLP, 18 of each regular issue of the PCT Gazelte.

1155 Avenue of the Americas, New York, NY 10036 (US).

(54) Title: SYNCHRONOUS NETWORK TRAFFIC PROCESSOR

PTPIPE A

Input NG =)
Busses | N1 ")
PIPE_CTRL

CTRL_REG ~—|

Input
Pipaline

INPIPE B

DM_CTRL —/
IMMDATA 1 =]

IMMDATA 2 &=

150

DM_
REG_CTRL

INPIPE_A
NEIPE B
DC_CTAL

IMMDATA,_f
IMMDATA 2

=

COMPARE_FLAGS
PIPE_CTRL
DM_CTRL
DC_CTRL
IMMDATA_1
IMMDATA_2

—
~—

Lommas |
<

CLK

Insiruction
Memory

INSTRUCTION

Data Modify

Unit
120

REG_RD_DATA! 'll

Register Bank
170

REG_RD_DATAZ l I

Data Compare

Unit
110

Execution
Control Unit

130

ouTo Output

Busses

]

> ouTt

DOM_PERIPH_CTRL

Counter 0

DM_PERIF}'-I_RD Counter {

REG_WR_DATA

DC_REG_CTRL

PERIPH_WR
Gounter 2

Counter 3

Control

141 Registers | CTRL_REG

144

DC_PERIPH_CTRL

External
Memary

interface |—», External memory

OC_PERIPH_RD.

:conkal signals and

146 data

Perlpheral

Unit

PERIPH_FLAG 140

160

IWR _ADDR, IWR DATA

Local

START_STOP
Interface

k— TO/
> FROM
148 HOST

(57) Abstract: A synchronous network traffic processor that synchronously processes, analyzes and generates data for high-speed
network protocols, on a wire-speed, word-by-word basis. The synchronous network processor is protocol independent and may be

programmed to convert protocols on the fly. The synchronous network traffic processor includes a data compare unit (110) a data

modify unit (120) an execution control unit (130) a peripheral unit (140), an input pipeline unit (150), an instruction memory (160)
and a bank of general purpose registers (170). An embodiment of the synchronous network processor described has a low gate count
and can be easily implemented using programmable logic. An appropriately programmed synchronous network traffic processor
may replace modules traditionally implemented with hard-wired logic or ASIC.

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902

SYNCHRONOUS NETWORK TRAFFIC PROCESSOR

The present application claims priority to United States Provisional Patent
Application entitled “SYNCHRONOUS NETWORK TRAFFIC PROCESSOR?”, filed
December 8, 2000, and bearing serial number 60/254,436.

FIELD OF THE INVENTION
The present invention relates generally to data processors for high speed
communication systems and networks. More particularly, the present invention relates to

processors for real-time analysis and processing of network data.

BACKGROUND OF THE INVENTION
Network communication devices are, in general, protocol dependent.
Since devices which communicate within computer and storage Networks must strictly
adhere to rapidly changing protocols associated with those networks, it has become clear
that the use of protocol independent-network processors to analyze, generate and process

traffic within these networks is of extreme practical and business importance.

As such, network communication devices typically include specially designed
protocol-specific state machines and decoder logic. Protocol-specific hardware offers the
advantages of high performance and cost-effectiveness. However, high-speed networking
protocol standards are in a state of flux - new protocols are emerging and changing all the
time. Since protocol-specific hardware designs are not reusable for different protocols,
major redesigning efforts are expended in producing protocol-specific hardware for these
emerging protocols. Furthermore, protocol-specific hardware designs cannot be easily
updgraded to include new features and functionality. In most cases, modifications to the

hardware itself must be made.

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
SUMMARY OF THE INVENTION

An embodiment of the present invention includes a network traffic processor. The
processor itself is protocol independent; it does not have any hardwired logic for
recognizing packets, frames, or any other protocol-specific entities. Framing-based tasks
are performed inside the processor using user-defined software instructions. Thus, the same
processor may be used to implement network data processing systems for virtually any
protocol. Furthermore, new features and functionality can be easily added to the network
traffic processor through software upgrades. As a result, the development cost of network
data processing systems, as well as the cost of upgrading the system, can also be greatly

reduced.

The network traffic processor of the present invention is capable of synchronously
processing and generating data for high-speed protocols (serial or otherwise), on a wire-
speed, word-by-word basis. Significantly, the processor is capable of operating data directly
on its input/output busses without requiring the data to be moved in and out of registers or
internal memory units. The low overhead of operating on data directly on its input/output
busses, minimizes the total clock cycles required to process and generate each I/O data
word. The network processor receives and transmits data on every clock, and executes
instructions upon the same clock, eliminating the need for polling or interrupts to determine

whether data is ready to be read or written.

According to an embodiment of the present invention, multiple synchronous
network traffic processors may be implemented in a system, in a chain mode or otherwise,
for providing a multitude of programmable functions. The synchronous network traffic
processor may also be integrated with other hardware functions, such as other types of

processors, memory controllers, FIFOs, etc.

The synchronous network traffic processor, in one embodiment, has a low gate count
and can be easily implemented using programmable logic (e.g., FPGA). An appropriately
programmed synchronous network traffic processor may replace modules traditionally
implemented with hard-wired logic or ASIC.

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
BRIEF DESCRIPTION OF THE DRAWINGS

Additional features of the invention will be more readily apparent from the
following detailed description and appended claims when taken in conjunction with the
drawings, in which:

Figure 1 is a block diagram illustrating the main functional units of a synchronous
network data processor in accordance with an embodiment of the present invention.

Figure 2A is a block diagram illustrating an exemplary implementation of two input
pipelines of the input pipeline unit in accordance with one embodiment of the invention.

Figure 2B is a block diagram illustrating an exemplary implementation of two
pass-through pipelines of the input pipeline unit in accordance with one embodiment of the
invention.

Figure 3A is a block diagram illustrating an exemplary implementation of the data
compare unit in accordance with one embodiment of the invention.

Figure 3B is a block diagram illustrating an exemplary implementation of the source
select and mask unit of Figure 3A.

Figure 3C is a block diagram illustrating an exemplary implementation of the flag
update of Figure 3A.

Figure 4 is a block diagram illustrating an exemplary implementation of the data
modify unit in accordance with an embodiment of the present invention.

Figure 5 is a block diagram illustrating an exemplary high-speed data modification
system implemented with synchronous network data processors of the present invention.

Figure 6 is a block diagram illustrating a general network data processing system

implemented with synchronous network data processors of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides a processor for synchronously processing and
generating data for high speed serial protocols on a word-by-word basis. In contrast to
conventional microprocessors, whose main focus is on register and memory operatioﬁs, an
emphasis of the present invention is I/O processing. The processor of the present invention
is capable of operating directly on the data streams in its I/O busses without requiring the
data to be moved in and out of registers or internal memory. In addition, the processor of
the present invention has a wide instruction set. These factors reduce the total clock cycles
required to process and optionally modify each I/O data word. Indeed, in one embodiment
of the present invention, a data word may be processed and modified in a single instruction

clock cycle.

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902

Significantly, the processor of the present invention executes instructions
synchronously with a master clock that drives the I/O busses. In one embodiment, the
processor interfaces directly to the inbound serial-parallel and outbound parallel-serial
converters of the receive and transmit serial interfaces. Words are received and transmitted
on every clock cycle, eliminating the need for polling or interrupts to determine whether
data is ready to be read or written. The processor does not have any hardwired logic for
recognizing packets, frames, or any other asynchronously-arriving protocol-specific entities.
The emphasis is on individual words, which arrive synchronously with instruction
execution. Any framing functionality is performed by software. Thus, the processor may be

programmed to handle any network protocol.

Figure 1 is a block diagram illustrating the main functional units of a synchronous
network data processor 100 in accordance with an embodiment of the present invention. As
illustrated, the synchronous network data processor 100 includes a data compare unit 110, a
data modify unit 120, an execution control unit 130, a peripheral unit 140, an input pipeline
unit 150, an instruction memory 160, and a bank of general-purpose registers 170. The
peripheral unit 140 of the illustrated embodiment includes control signal decoders 141,
counters 142, control registers 144, an external memory interface 146, and a local interface
148. In the preferred embodiment, instruction memory 160 is a 128-word instruction
memory, and register bank 170 includes sixteen banks of 40-bit registers. Data are
communicated between the main functional units via 40-bit wide data paths, corresponding
to four ten-bit undecoded input characters and four eight-bit decoded characters plus control
or status bits. Forty-bit wide data paths illustrated in Figure 1 include: PTPIPE_A,
PTPIPE_B, INPIPE_A, INPIPE_B, IMMDATA_1, IMMDATA_2, REG__RD_DATAL,
REG__RD_DATA2, PERIPH_WR, DM_PERIPH_RD, DC_PERIPH_RD, and
REG_WR_DATA. Also illustrated are address busses and control signal paths such as
PIPE_CTRL, CTRL_REG, DM_CTRL, DC_CTRL, INSTRUCTION,
COMPARE_FLAGS, PERIPH_FLAG, START_STOP, IWR_ADDR, IWR_DATA,
DM_PERIPH_CTRL, DM_REG_CTRL, DC_PERIPH_CTRL, and DC_REG_CTRL For

simplicity, some addresses busses and control signals are omitted in Figure 1.

The input pipeline unit 150, in the present embodiment, includes four 40-bit wide by
16-stage pipeline registers for the input busses. Two of these pipelines (INPIPE_A,
INPIPE_B) feed data from input bus INO and IN1 to the data compare unit 110 and data
modify unit 120; the other two pipelines (PTPIPE_A, PTPIPE_B) are used for automatic
pass-through of data from the input busses INO and IN1 to output busses OUTO0 and OUT1

-4

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
without program intervention. The input pipeline unit 150 is driven by an externally
generated clock signal CLK. Particularly, each pipeline of the input pipeline unit 150 is
operable for receiving/outputting one word during one cycle of the clock signal CLK. The
pipeline stages from which the outputs are taken are selectable by control signals
PIPE_CTRL and CTRL_REG. The signal PIPE_CTRL is generated by the execution
control unit 130 based on a currently executed instruction. The control signal CTRL_REG
is generated by the control registers 144 based on the values stored therein by the execution

control unit 130 in previous execution cycles.

In the present embodiment, the execution control unit 130 executes one instruction
at every instruction cycle. Instructions are fetched and executed from the internal
instruction memory 160. Any results the instruction generates may be used in the following
instruction. Instruction execution may be interrupted by a trap, which can be generated
either internally or from the external interrupt pins. Traps transfer control either to a fixed
address or a relative offset from the current program counter (PC); the trap address,
absolute/relative mode, and condition are all software-programmable. Every instruction
may execute conditionally. Further, every instruction may specify up to two different
conditional relative branches, each with its own destination address. Conditional execution
control fields are shared with the control fields for the second branch. Therefore, if

conditional execution is used the second branch must be disabled or use the same condition.

The processor 100 can execute two types of instructions: data compare instructions
and data modify instructions. Data compare instructions are for generating control signals
that control the data compare unit 110; data modify instructions are for generating control
signals that control the data modify unit 120

Significantly, the execution control unit 130 is synchronous with the input pipeline
unit 150. That is, both the execution control unit 130 and the input pipeline unit 150 are
driven by the same externally generated clock signal CLK. During each cycle of the clock
signal CLK, one data word is received by each pipeline of the input pipeline unit 150 and
one instruction is executed by the execution control unit 130. This is significantly different
from conventional microprocessors where data is required to be moved in and out of
registers or internal memory and where the instruction clock is not synchronous with the I/O

clock.

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
With reference still to Figure 1, the data compare unit 110 is operable for selectively
performing mask/match comparisons of two instruction-specified operands during each
instruction cycle. In the present embodiment, the instruction-specified operands may come
from the input pipeline unit 150 (via INPIPE_A, INPIPE_B), the register bank 170 (via
REG_RD_DATAZ2), peripheral units 140 (via DM_PERIPH_RD), and the execution control
unit 130 (via IMMDATA_1, IMMDATA_2). The mask/match and compare operations
performed by the data compare unit 110 are instruction-specified. In particular, the
mask/match and compare operations performed are specified by the control signal
DC_CTRL, which is generated by the execution control unit 130 based on the currently
executed instruction. The data compare unit 110 stores the results of the mask/match
comparisons to a set of compare flags, which are provided to the execution control unit 130
and peripheral unit 140 (via COMPARE_FLAGS). The set of compare flags may be used
by the execution control unit 130 and the peripheral unit 140 in the next instruction cycle to
conditionally branch, execute, trap, increment a counter, etc. In the present embodiment,
there is one compare flag for each 8-bit byte of the 40 bit input word, allowing multiple
independent byte comparisons as well as whole 40-bit word comparisons in one instruction.
Also illustrated in Figure 1 are the DC_REG_CTRL and the DC_PERIPH_CTRL signal
paths that communicate addresses and commands from the data compare unit 110 to the

register bank 170 and the peripheral unit 140, respectively.

The data modify unit 120 of the present embodiment includes arithmetic logic units
(ALUs) operable for performing arithmetic and logic operations using instruction-specified
operands and operators. In the present embodiment, instruction-specified operands and
operators may come from the input pipeline unit 150 (via INPIPE_A, INPIPE_B), the
register bank 170 (via REG_RD_DATAL1), peripheral units 140 (DM_PERIPH_RD), and
the execution control unit 130 (via IMMDATA_1, IMMDATA_2). Using the
instruction-specified operands and operators, the data modify unit 120 generates output data
words that are provided to the output busses OUTO and OUT1, the register bank 170 (via
REG_WR_DATA), and/or the peripheral units 140 (via PERIPH_WR). The data modify
unit 120 also allows instruction-specified data to pass through unaltered to the output busses
OUTO and OUT1. The modification operations performed by the data modify unit 120 are
instruction-specified. In particular, the data modifications performed by the data modify
unit 120 are specified by the control signal DM_CTRL, which is generated by the execution
control unit 130 according to the currently executed instruction. Also illustrated are the
DM_REG_CTRL and the DM_PERIPH_CTRL signal paths that communicate addresses

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
and commands from the data modify unit 120 to the register bank 170 and peripheral unit

140, respectively.

With reference still to Figure 1, the peripheral unit 140 includes four 20-bit counters
142, control registers 144, an external memory/peripheral interface 146, and a local
interface 148. The local interface 148 allows a host computer to download instructions to
the instruction memory 160 via IWR_ADDR and IWR_DATA busses, and to control the
operations of the processor 100 via START_STOP signals and PERIPH_FLAGS. In
addition, the control register 144 generates the CTRL,_REG signal for controlling the
operations of the pass-through pipes of the input pipeline unit 150. The local interface 148
also allows the host computer to communicate with the processor 100 via shared mailbox
registers (not shown). Counters 142 that maybe cascaded to give two 40-bit counters or one
40-bit and two 20-bit counters. Each counter 142 has an independently programmable
increment enable, allowing it to increment in different modes: synchronously at every clock
cycle, selectively when a register is written, or based on a mask/match of the compare flags
generated by the data compare unit 110. Additionally, one or two counters 142 may be used
as an address generator for the external memory/peripheral interface 146. The data modify
unit 120 may configure the counters 142 and the control registers 144 by communicating
appropriate data via the PERIPH_WR bus.

An Exemplary Implementation of the Input Pipeline Unit
An exemplary implementation of the input pipeline unit 150 according to one

embodiment of invention is illustrated in Figures 2A and 2B. Figure 2A illustrates two
input pipelines 210 and 220, and Figure 2B illustrates two pass-through pipelines 230 and
240. Pipelines 210, 220, 230 and 240 each includes sixteen 40-bit wide registers 214
(herein called 16-stage pipeline registers) that are driven by the clock signal CLK.

As illustrated in Figure 2A, input pipeline 210 includes a multiplexer 212 that
selectively provides data from either one of the input busses INO and IN1 to the 40-bit wide
byl6-stage pipeline registers 214 according to a control signal PA_SRC provided by the
control registers 144 of the peripheral unit 140. Likewise, input pipeline 220 includes a
multiplexer 212 that selectively provides data from either one of the input busses INO and
IN1 to the pipeline registers 214 according to a control signal PB_SRC, which is also
provided by the control registers 144.

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
In the illustrated embodiment, each stage of the pipeline registers 214 includes an

output for outputting one of the input data words after a delay of a number of clock cycles
corresponding to a position of the respective stage in the pipeline. The outputs of the
pipelines 210 and 220 are determined by the pipeline stage select multiplexers 216, which
select the stages from which the outputs are taken. The particular stages of the pipelines
210 and 220 from which the outputs are selected are controlled by control signals
PA_WORD_SEL and PB_WORD_SEL, which are generated by the execution control unit

130 in accordance with the currently executed instruction.

Pass-through pipelines 230 and 240 of Figure 2B are used for automatic
pass-through of unmodified data from the input busses INO and IN1 to the output busses
OUTO and OUT1 without program intervention. Similar to pipelines 210 and 220, each
stage of the pipeline registers 214 includes an output for outputting one of the input data
words after a delay of a number of instructions cycles corresponding to a position of the
respective stage in the pipeline. The outputs of the pipelines 230 and 240 are determined by
the pipeline stage select multiplexers 226, which select the stages from which the outputs
are taken. The particular stages of the pipelines 230 and 240 from which the outputs are
selected are controlled by control signals PO_WORD_SEL and P1_WORD_SEL, which are
provided by the control registers 144 of the peripheral unit 140.

An Exemplary Implementation of the Data Compare Unit
An exemplary implementation of the data compare unit 110 is illustrated in Figures

3A-3C. Asshown in Figure 3A, the data compare unit 110 includes source select and mask
units 310, comparators 320 and flag update units 330. Each source select and mask unit 310
is configured for receiving data from the input pipeline unit 150 (via INPIPE_A,
INPIPE_B), the register bank 170 (via REG_RD_DATAZ2), the peripheral unit 140 (via
DC_PERIPH_RD) and the execution control unit 130 (via IMMDATA_1, IMMDATA_2).
The source select and mask units 310 perform instruction-specified masking operations on
the data to generate masked data and comparands to be provided to the comparators 320.
The comparators 320 perform comparisons or "matching" operations between the masked
data and the comparands to generate match outputs, which are provided to the flag update
units 330. The flag update units 330 in turn generate a set of compare flags DCO, DC1,
DC2, DC3 and DC4 based on instruction-specified flag update modes.

In the present embodiment, there is one compare flag for each 8-bit byte of the 40 bit

input word, allowing multiple independent byte comparisons as well as whole 40-bit word

-8-

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902

comparisons in one instruction. It should be appreciated that the data to be masked and the
comparands to be generated by the source select and mask units 310 are
instruction-specified. Specifically, each of the select and mask units 310 receives the
control signal DC_CTRL, which is generated by the execution control unit 130 according to

a currently executed instruction.

Figure 3B illustrates an exemplary implementation of a source select and mask unit
310 in accordance with an embodiment of the present invention. As illustrated, the source
select and mask unit 310 includes 8-bit multiplexers 342a-342f. Although it is not
illustrated in Figure 3B, it is appreciated that the multiplexers 342a-342f are controlled by
the signal DC_CTRL. Thus, the sources of the data, the mask and the comparand are

specified by the currently executed instruction.

It should also be noted that the data paths within the illustrated source select and
mask unit 310 are only eight bits wide. For example, the source select and mask unit 310
processes bit-0 to bit-7 of the 40-bit wide data. The remaining bits of the 40-bit data words
are handled by the other source select and mask units 310 of the data modify unit 120.

As illustrated, multiplexes 342a-342c each includes inputs for receiving data from
the input pipeline unit 150 (via INPIPE_A and INPIPE_B). The output of the multiplexer
342a is coupled to one of the inputs of multiplexer 342d, which also receives data from the
register bank 170 (via REG_DATAZ2) and from the peripheral unit (via DC_PERIPH_RD).
Thus, by applying the appropriate control signals, the output of the multiplexer 342d, which
is the data to be masked, can be chosen from any one of these sources. Similarly, because
multiplexer 342e is coupled to receive data from input pipeline unit 150 (via multiplexer
342b), the register bank 170, or the execution control unit 130 (via IMMDATA_1), the
output of the multiplexer 342a, which is the mask data, may be chosen from any one of
these data sources. The outputs of multiplexer 342e-342f are coupled to an AND-gate 344,
which performs a masking operation on the data. In the present embodiment, the
comparand may be selected from data within the input pipeline unit 150, the register bank
170, the peripheral unit 140 or the execution control unit 130 (via IMMDATA_2) when
appropriate control signals are applied to multiplexers 342c and 342f.

Figure 3C is a block diagram illustrating an exemplary flag update unit 330 in

accordance with an embodiment of the present invention. The flag update unit 330 provides

additional programmability and flexibility to the processor 100 by allowing the instruction

-9-

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
to specify how the compare flags are updated. Particularly, as illustrated in Figure 3C, the
flag update unit 330 includes an AND-gate 332, an OR-gate 334, and XOR-gate 336, each
having an input for receiving a comparison result from a comparator 320. The outputs of
the logic gates are coupled to inputs of multiplexer 338. Responsive to a flag update mode
control signal generated by the execution control unit 130, the multiplexer 338 selects one
of the outputs of AND-date 332, OR-gate 334, XOR-gate 336, or the comparison results
from the comparator 320, to be provided to a memory element 342 (e.g., a D-flip-flop). The
output of the memory element 342 is fed back to the inputs of the logic gates 332, 334 and
336 to form feed-back loops. In this way, the flag update unit 330 updates the compare
flags according to the instruction and according to the state of the compare flags in a
previous instruction cycle. It should be noted that the memory element 342 is synchronous
with the clock signal CLK that drives the input pipeline unit 150 and the execution control
unit 130. Thus, the updated compare flags are provided to the execution control unit 130

for use in the next clock cycle.

An Exemplary Implementation of the Data Modify Unit
Figure 4 is a block diagram illustrating an exemplary implementation of the data

modify unit 120 in accordance with an embodiment of the present invention. According to
the present invention, the data modify unit 120 may access any instruction-specified data
stored within the input pipeline unit 150, and modify the instruction specified data using an
instruction-specified operator during one instruction cycle. The data modify unit 120 may

also allow data to pass-through without any modification.

Particularly, as illustrated in Figure 4, the data modify unit 120 includes two
multiplexers 410a-410b, which are operable to receive data from input pipeline unit 150
(via INPIPE_A, INPIPE_B), the register bank 170 (via REG_RD_DATAL1), or the
peripheral unit 140 (via DM_PERIPH_RD). The outputs of the multiplexers 410a-410b are
coupled to ALUs 420a-420b, which also receive data from the execution control unit 130 as
operands (via IMMDATA_1, IMMDATA_2). The outputs of the AL.Us 420a-420b are
provided as inputs to another ALU 420c. The outputs of the ALUs 4202a-420c are also
provided to multiplexers 430a-430b. The multiplexers 430a-430b are also coupled to
receive data directly from the pass-through pipelines PTPIPE_A and PTPIPE_B of the input
pipeline unit 150. The control signals outO_src and outl_src, received from the control
registers, are for selecting the inputs to the output multiplexers 430a and 430b, respectively.
The output of the multiplexers 4302-430b are coupled to output registers 440a-440b, which
provide data to the output busses OUTO and OUT1 of the processor 100.

-10 -

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902

According the present embodiment, the sources of the data to be modified, as well as
the operators, are instruction-specified. Particularly, the data modify unit 120 receives the
control signals SRC1_SEL, SRC2_SEL, opl, op2, op3 (via control signal bus DM_CTRL),
which are generated by the execution control unit 130 according to the current instruction.
The control signals SRC1_SEL and SRC2_SEL are for selecting the inputs of multiplexers
410a-410b. The control signals “opl", “op2", and “op3" are for controlling the logic
operations of ALUs 420a-420c. Thus, by using appropriate instructions, the data modify
unit 120 may be configured for performing a variety of instruction-specified data

modification operations during each clock cycle to generate the desired data for output.

Exemplary Applications of the Processor of the Present Invention
Figure 5 is a block diagram illustrating a high-speed data modification system 520

coupled between network devices 510 and 512. As illustrated, network devices 510 and
512 communicate with one another via high speed communication paths 514 and 516.
Inserted into the high speed communication paths 514 and 516, the data modification
system 520 enables real-time system-level testing of the devices 510 and 512 by injecting
errors into the communication paths 514 and 516, and monitoring the responses of the
devices 510 and 512.

As illustrated, data modification system 520 includes two trace memories 522 for
capturing the data that are communicated between the devices 510 and 512 for output to an
analyzer. Additionally, data modification system 520 includes a trigger subsystem 526 and
two data jammers 524. The trigger subsystem 526 monitors the data paths 514 and 516,
waiting for a datum in the streams to match a predefined pattern. When the trigger
subsystem 526 detects an input datum matching the predefined pattern, the trigger
subsystem 526 generates a trigger signal to the data jammers 524. The data jammers 524
respond to the trigger signal by "jamming" - altering selected portions of the input datum in

a predefined manner in real time.

The trigger subsystem 526 and the data jammers 524 may be implemented with the
high-speed synchronous network data processor of the present invention. Particularly, one
synchronous network data processor 100 may be used to implement the trigger subsystem
526 by loading appropriate data compare instructions and data modify instructions into the
processor. Each of the data jammers 524 may also be implemented with a synchronous
network data processor 100 by loading appropriate instructions therein. A significant

advantage of using the synchronous network data processor of the present invention in the

-11-

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
data modification system 520 is that the system may be re-programmed for different types of

protocols as well as to perform different tasks.

Application of synchronous network data processor of the present invention is not
limited to data modification systems. Figure 6 is a block diagram illustrating a general
network data processing system 600 implemented with synchronous network data
processors of the present invention. As shown, the general network data processing system
600 includes four synchronous network data processor 100 interconnected by an
interconnect fabric 670. Also interconnected by the interconnect fabric 670 are a FIFO
module 610, a RAM module 620, a CAM module 630, I/O modules 640, a RX data path
650, and a TX data path 660. According to the present invention, the RX data path 650 is a
inbound serial-to-parallel interface, and the TX data path module 660 is an outbound
parallel-to-serial interface. The I/O modules 640 are for coupling the network data

processing system 600 to data analyzers and other network data processing systems.

Branch Control and Conditional Execution of Instructions by the Processor
According to the present invention, the processor 100 may execute every instruction

conditionally. Further, every instruction may specify up to two different conditional relative
branches, each with its own destination address. In the present embodiment, conditional
execution control fields are shared with the control files for the second branch. If

conditional execution is used, the second branch is disabled or use the same condition.

The bits that are examined when determining whether to conditionally branch,
execute, or trap are referred to as the “flags,” and are held in the flags register of the
execution control unit 130. There are six flags in total, which include the five flags
generated by data compare instructions (DC4-DCO0) and one programmable “P” flag
generated by the peripheral unit 140. The “P” flag is selectable from one of several sources
including counter wrap flags, the external memory interface ready signal, and the carry
output of the data modify unit 120. The format of the flags register is shown below in Table
L.

Table 1
Bit 39-6 5 4 3 2 1 0
Name | Reserved P DC4 DC3 DC2 DC1 DCO

-12 -

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902

A branch or execute condition is specified by three fields: Mask, Match, and
True/False. Mask and Match are the same width as the flags register (40-bit), and True/False
is a single bit. The execution control unit 130 evaluates the condition by logically ANDing
the flags with Mask, and then comparing this result to Match. If the comparison result
(True if equal, False if not equal) is the same as the True/False bit, the condition is

considered satisfied and the branch or conditional execution takes place.
The branch conditions and the execution conditions of an instruction are defined by

its common control fields. The syntax and operations of the common control fields are
described below in Table 2.

-13-

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

Table 2

Common Control Field

Function

br(maskl, matchl, tf1,
addrl,mask2, match2, tf2,
addr2)

Conditional branch control. The two conditions are
evaluated as described above. If condition 1 is
satisfied, a branch is taken to addrl. Otherwise, if
condition 2 is satisfied, a branch is taken to addr2.
Otherwise, control transfers to the following
instruction. Legal values are any 6-bit constant for
the mask and match fields, T or F for the tf field, and
a 12-bit constant or a label (string) for addrl and
addr2.

The second branch condition and address may be
omitted if not used. If no branch control field is given
at all, control falls through to the next instruction.

The second branch condition is shared with the
execute condition; therefore if both conditional
execution and the second branch are used, their
conditions must be the same.

When the second branch is not specified, the
assembler encodes either an always-satisfied
condition or the execute condition specified by the
exec_on() field. In each case, the second branch
target is the next instruction. When neither branch is
specified, the assembler encodes always-satisfied
conditions for both branches, and the next instruction
for both branch targets.

Address 0xF80 has a special function when used as
the branch 2 address. It causes a branch to the
program counter (PC) saved by a previous subroutine
call and is used to return from the subroutine. The
branch 2 mask/match/tf controls still function
normally, allowing conditional returns.

exec_on(mask, match, tf)

Conditional execution control. The condition is
evaluated as described above. If it is satisfied, the
instruction executes; otherwise it does not execute (is
treated as a no-op). All common control fields with
the exception of bg_run are active regardless of
whether the instruction executes or not.

The execute condition is shared with the second
branch condition (see above).

If no conditional execution control field is specified,
the instruction executes.

-14 -

WO 02/052400 PCT/US01/46902

Save the current program counter (PC). Used to
implement subroutine calls. The ctrl field defines
how the PC is saved:

0: don’t save PC

1: store current address + 1 to saved_PC

(subroutine returns to next instruction)

2: store branch address 2 to saved_PC

(subroutine returns to branch address 2. Branch 2 still
5 behaves normally).

Others: reserved

When present, causes the instruction to run in the
background (i.e., execute continuously until
interrupted by the execution of another instruction of
the same type). If not present, the instruction
executes for the present instruction cycle only. Once
10 an instruction is running in the background, it is no
longer subject to any execution condition it may have
been issued with.

save_pc(ctrl)

bg_run An interruption of a background-running instruction
occurs only if the interrupting instruction actually
executes; i.e., its execution condition is satisfied.

15 While background run mode is only supported for
data compare instructions in one preferred
embodiment, in an alternate embodiment background
run mode is supported for both data compare and
data modify instructions..

20 Some pseudo-control operations that can be implemented using the execution
control fields are shown below in Table 3. Appropriate macros for these can be defined in a
standard header file. Software written using the pseudo-control codes may be translated
into the processor-specific common control fields using a pre-processor.

5 Table 3

Pseudo-control | Operation Implementation

. Jump to address

jmp (unconditionally) br(0, 0, T, addr)

. Jump to subroutine

jst (unconditionally) br(0, 0, T, subr) save_pc(1)

30 |, Jump to subroutine; br(0, 0, T, subr, 0, 0, T, retaddr)

jstr return to specified save, pc(2)
address (unconditionally) | 52Ve-P
Return from subroutine

ret (unconditionally) br(0, 0, F, 0, 0, 0, T, 0xF80)
Branch if carry

bes set br(0x20, 0x20, T, addr)
(P = DM carry flag)

35

-15-

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902

Branch if carry clear

(P =DM carry flag)
Jump if still in loop

(P = counter wrap flag)
Execute on end of loop
(P = counter wrap flag)

bee br(0x20, 0x20, F, addr)

loop br(0x20, 0x20, F, addr)

exec_on(0x20, 0x20, T)
br(0x01, 0x01, T/F, addr)

exec_loopend

]1:3);—(05 fgti;f br(0x03, 0x03, T/F, addr)
br_c24t/f Branch on 1-5 byte br(0x07, 0x07, T/F, addr)
br c32t/f comparison true/false br(0x0f, 0x0f, T/F, addr)
br c40t/f br(0x1f, 0x1f, T/F, addr)

Data Compare Instructions Executable by the Processor
Data compare instructions perform a three operand (data, mask, and match)

comparison operation of up to 40 bits at a time. The sources of the data to be compared can
be the input pipeline unit 150, the register bank 170, the peripheral unit 140, and/or the
execution control unit 130. According to the present embodiment, the input pipelines are
fed from the processor’s input busses INO and IN1, and the pipeline stage read by the

compare instruction can be selected on the fly by the currently executed instruction.

Data compare instructions are carried out by the data compare unit 110 which
includes five independent 8-bit comparators 330, each of which has selectable inputs for its
data, mask, and match values. Each comparator 330 updates its own comparison result flag,
which can be used as part of a conditional branch or execution condition. This flag can
either be set to the comparison result, or to the logical AND, OR, or XOR of the comparison

result and current flag value.

The syntax of a data compare instruction executable by the processor 100 is:

compare data, mask, match [data compare specific control fields]

[Common control fields];

The C-equivalent logical operation performed by a data compare instruction is
described below in Table 4.

Table 4

for (comp = 0; comp < 5; comp++) // do all 5 comparators

{

-16 -

WO 02/052400 PCT/US01/46902
I/ perform 8-bit mask/match comparison
if ((data[comp] & mask[comp]) == match[comp]) result[comp] = 1;
else

result[comp] = 0;
// update comparison result flag (SET, AND, OR, or XOR)
switch(update_mode)
{

case SET: flag[comp] = result[comp]; break;

case AND: flag[comp] &= result[comp]; break;

case OR : flag[comp] |= result[comp]; break;

case XOR: flag[comp] /= result[comp]; break;

The compare flags are updated one clock after the instruction executes, and therefore
may be used in the following instruction. Note that if a branch or execute condition is used
in the same instruction as the compare, the flag values are those that existed BEFORE the
compare instruction executes.

Although data for the data compare instructions may come from numerous sources

20

25

30

35

and may be specified on the fly by the currently executed instruction, there are a few

limitations. Table 5 below shows the legal values for the three comparator source fields.

Table 5
Input Input Register | Peripheral | Immediate

Source] ‘

Pipeline A | Pipeline B Bank Data data
Mnemonic ina[n] inb[n] r{n] periph[n] [value]

data YES YES YES YES NO
mask YES YES YES YES YES
match YES YES YES YES YES

The comparator source fields are also subject to the following restrictions:

17 -

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902

(A) If an input pipe is used for the mask source, it may not be the same as that
used for the data.

(B) If the same input pipe is used in more than one source, the pipe word number
(n) (i.e., the point at which the input pipe is tapped) must be the same in both
uses.

(C) If aregister or peripheral is used in more than one source, the number (n)
must be the same in both uses. The parameters of r and periph are the register

or internal peripheral number. Legal values for these parameters are 0-15.

The immediate data value is a 40-bit constant specified in the instruction. Two

different values may be specified for the mask and match fields.

The parameters of the input pipelines specify the stage in the input pipelines from
which data are accessed. For example, an instruction including the field “ina[4]” indicates
using the word in the fourth stage of input pipeline INPIPE_A. Legal values for these
parameters are 0-15. The input bus feeding each pipeline and the pipeline enables are set by

fields in the control registers 144.

Table 6 shows the type-specific control fields that are supported by data compare
instructions.

Table 6

Control Field Function
byte_sel(c4, ¢3, c2,cl,c0) | Selects the byte number of the 40-bit source word to

apply to each comparator’s data input. This field is only
valid when using an input pipe as the data source, and
has no effect otherwise. Legal values for c4-c0 are 4-0
(byte 4 is the msb of the 40 bit input word, and byte 0 is
the 1sb). For the mask and match fields, or for non input
pipe data sources, the byte number of the input word is
the same as the comparator number; e.g., the third

comparator uses byte 3 of the mask word.

If this field is not given, the byte selects default to the

previous values given, or 4,3,2,1,0 if no previous values

were given.

-18 -

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

update_mode()

given.

Used in conjunction with the FLAG_UPD_CFG field of
the control registers to set the flag update mode for all
comparators. The truth table for FLAG_UPD_CFG can
be found in Appendix-A. Legal values for mode are O
and 1. If this field is not given, the mode defaults to the

previous value given, or “0"if no previous value was

Data compare instructions may be run in background mode by applying the bg_run

common control field to the instruction. In background run mode, a data compare

instruction runs continuously, updating the compare flags, until the next compare instruction

executes. Normal conditional branching and execution may be performed based on the flags

generated by the background-running instruction.

Instruction examples illustrating both legal and illegal uses of the data compare

instructions are illustrated below in Table 7.

Table 7

Code Examples

Description

compare ina[0], OxfIfIffLL,
0x123456789a byte_sel(4, 3, 2, 1, 0)
update_mode(SET);

40-bit straight comparison of the word in
the first stage of input pipe A to a
constant. The word was equal to
0x123456789a if all five comparator flags
are true after the instruction executes.

compare ina[0], OX{fTfffiffo,
0x1234567890;

Same as above but with the Jower 4 bits

masked off (ignored in the comparison).

The control fields default to the previous
values used if not specified.

compare ina[0], r[2], inb[8];

Compare the first stage of input pipe A
with the ninth stage of input pipe B, after
masking the data in pipe B with data in
r[2].

compare inb[12], 18], periph[4];

Compare Pipe B stage 12 with peripheral
4, using mask in r[8].

compare ina[1], r[2], inb[0];

Compare a word in the input pipeline to
the word received one clock ago.
Assumes Pipes A and B both have the
same source bus (in0 or inl). (The pipe
source busses are set by bits in
CTRL_REG).

-19 -

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

compare inb[4], ina[0], ina[0];

See if all the bits set in the first stage of
input pipe A are also set in the fifth stage
of input pipe B.

compare inb[4], r[13], t[13];

Same as above, but using registers.

compare ina[0], OxOfffffffff, SOFi3
bg_run;

Background run example: start up the
compare unit looking for SOFi3 in the
input data stream, and then let other
instructions execute. “SOFi3” is a C-style
definition of the numeric value of a “start
of frame” ordered set.

compare ina[3], OXffffffffff,
0x123456789a byte_sel(2, 2, 2, 2, 2);

Byte_sel example: Compare input pipe A
stage 3 byte 2 with five different values
(0x12, 0x34, 0x56, 0x78, and 0x9a). The
five flags hold the results of the five
comparisons.

compare ina[3], 0x73ff3f7ff8,
0x123456789a, byte_sel(2, 2, 2, 2, 2);

Same as above, but with five different
8-bit masks for the comparisons.

compare ina[3], Oxfffffffffs,
0xaal2345678 byte_sel(4, 1, 0, 1, 0);

Compare the 16-bit word in Pipe A stage
3 bytes 1-0 to two different values
(0x1234

and 0x5678), and byte 4 to Oxaa.

compare ina[7], Oxfffffefff, WORD_A
update_mode(SET);

compare ina[7], Oxfffffffftf, WORD_B
update_mode(AND);

compare ina[7], Oxffffffffff, WORD_C
update_mode(AND);

Update_mode example: if WORD_A,
WORD_B, and WORD_C are received in
succession. The comparison flags are set
on the first comparison, then ANDed
with the current flags. The pipes advance
1 stage per instruction, so reading the
same pipe word on successive
instructions has the effect of reading
successive input words. This could
alternatively be done with conditional
branching. If the five flags are true after
execution of the third compare
instruction, the three specified words
have been received in succession.

compare ina[1], Ox{f, ina[2];

compare r[2], Oxff, r[4];

compare ina[3], periph[2], periph[3];

compare inb[0], inb[0], Oxff;

compare 0xff, ina[1], r[2];

Examples of illegal usages.

-20-

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
Data Modify Instructions Executable by the Processor

A description of the data modify instructions executable by the processor 100 of the
preferred embodiment follows. Data modify instructions perform arithmetic and logic
operations using up to four operands and three operation codes (opcodes), and store the
results to one or more write destinations. The instructions use the same sources as data
compare instructions: the input pipeline unit 150, the register bank 170, the peripheral unit
140, or immediate data from the execution control unit 130 as defined in the currently

executed instruction.

Data modify instructions are performed by the data modify unit 120, which includes
three two-operand arithmetic logic units ALU1-ALU3. ALU1 and ALU2 have their first
operand (X) selectable from among the input pipeline unit 150, the register bank 170, or the
peripheral unit 140. Their second operand (Y) is an immediate data value provided by the
execution control unit 130 and specified in the currently executed instruction. The operands
of ALU3 are the outputs of ALU1 and ALU2. ALUS3 also generates a carry flag, which can

be selected as a source flag for conditional branching or execution.

An optional ALU-bypass mode is available to the instructions. In the ALU-bypass
mode, the results from ALLU1 and ALU2 are provided to the output busses (OUTO and
OUT1), bypassing the ALU3. This mode allows both busses to be updated with one

instruction.

The data modify unit 120 also supports an internal pass-through mode where data
from the input pipeline unit 150 are provided directly to the output busses OUTO and
OUT1. In this pass-through mode, “default” data can be supplied to the output busses
whenever data modify instructions are not executing. The pass-through operation is
configured by fields in the control registers 144 of the peripheral unit 140. The opcodes
supported by data modify instructions are shown below in Table 8. Operations are shown as

C equivalents.

Table 8
. o Supported by
Opcode Operation Description ALU’s
and X&Y Bitwise Jogical AND of X and Y 1,2,3
or X|Y Bitwise logical OR of X and Y 1,2,3
Xor X Y Bitwise logical XOR of X and Y 1,2,3
nor ~(X|Y) Bitwise logical NOR of X and Y 1,2

=21 -

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
ror8a ror(X, 8) & Y | Rotate X right 8 bits, AND with Y | 1
rorla ror(X, 1) & Y | Rotate X right 1 bit, ANDwith Y |1
rol8a rol(X, 8) & Y | Rotate X left 8 bits, ANDwithY |2
rol2a rol(X,2) & Y | Rotate X left 2 bits, AND withY |2
add X+Y Sumof X and Y 3
addpl X+Y+1 Sum of X and Y, plus 1 3
pass_imm | Y Pass Y (immediate data) toresult | 1,2
tbd12 tbd tbd 1,2
tbd3_a tbd tbd 3
tbd3_b tbd tbd 3
tbd3_c tbd tbd 3

Table 9 below shows pseudo-opcodes that may be implemented using the native

opcodes. Appropriate macros for these can be defined in a standard header file.

Table 9

(I)’;eudo— Operation Description Implementation Note
nop (none) No operation null = or(0, 0)
not ~A i‘“’“se nverse of |y or(A, OxFFEEEEFEE)
inc A+1 Increment A add(A, 1) or addpl(A, 0)
dec A-1 Decrement A add(A, Oxffffffffe)
sub A-B Diffterence of A | addp1(4, not(8))
subi A-B Difference of A | addpl(4, ~B)
neg -A Negate A addp1(0, not(A))

Sum of A and add(A, 1)
ade A+C carry exec_on(0x20,0x20,T) 1
sec C=1 Carry =1 add(1, OxfEEfeefer)
cle C=0 Carry =0 add(0, 0)

_ Carry=1if A>= _

testge A>=B B.0ifA <B null = sub(A, B)
testnz Al=0 Ocagiyfilzi__f‘g =" | qull = add(A, OXEEEFFFEREF)

Carry=1if A< null = add(A,
testneg | A<0 0,0if A>=0 0x8000000000)
ror8 ror(A, 8) potate ATIhtS | 1orga(a, OXSEFSSSSSEE)
rol8 rol(A, 8) bRi‘t’;ate Aleft8 | J18a(A, OxEFFEFEEEEL)
shr A>>1 Shift A right 1 bit | rorla(A, Oxefffffffff)
shl A<<1 Shift A left 1 bit | add(A, A)
shr8 A>>8 oruft Atight 8 | rorga(A, OXOOFESEEEER)

-22.

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902

shl8 A<<8 Shift A left 8 bits | rol8a(A, Ox{fffffff00)

shrn A>>N gﬂlsﬁ(l@ f%hgy) (Various)

shin A<<N (Sll}lit ﬁé%f)t NBIts | various)

bset bset(A, N) Set bit Nin A or(A, 1 << N)

belr belr(A, N) Clear bitNin A | and(A, ~(1 << N))
Swap bytes 0 and | or(ror8a(A,

bswap01l | bswap(0,1) lin A, 0x00000000ff),
zero others rol8a(A, 0x000000££00))
Swap bytes 1 and | or(ror8a(A,

bswapl2 | bswap(1,2) 2in A, 0x000000££00),
zero others rol8a(A, 0x0000ff0000))
Swap bytes 2 and | or(ror8a(A,

bswap23 | bswap(2,3) 3in A, 0x0000££0000),
zero others rol8a(A, 0x00ff000000))
Swap bytes 3 and | or(ror8a(A,

bswap34 | bswap(3,4) 4in A, 0x00£f000000),
zero others rol8a(A, 0xff00000000))

Notes:

@8] Assumes P flag is programmed to be the ALU3 carry ﬂég. See the PERIPH_CTRL

register.

2 Can be implemented with multi-instruction macros using rorla, ror8a, rol2a, and

rol8a opcodes. Worst case N requires 5 instructions.

Data modify instructions write their results to one or more of the following write
destinations: either of the two output busses OUTO and OUT]1, the register bank 170, or the

peripheral unit 140.

The syntax of the data modify instructions in normal mode is:

destl [,dest2...] = op3(opl(srcl, imml), op2(src2, imm?2)) [Common control
fields];

ALU3 bypass mode is specified by assigning one or more of the output busses to the
ALU1 or ALU2 results, using the following syntax.

destl [,dst2...] = op3(out0 = opl(srcl, imml), op2(src2, imm?2)) [Common
control fields];
destl [,dest2...] = op3(opl(srcl, imml), outl = op2(src2, imm2)) [Common

control fields];

-23

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
destl [,dest2...] = op3(out0 = opl(srcl, imml), outl = op2(src2, imm?2))

[Common control fields];

The first syntax places out0 in bypass mode. The second syntax places outl in
bypass mode, and the third places both outputs in bypass mode. When an output is in bypass

mode, it is illegal to also use it as an ALU3 destination.

The operation codes opl-op3 are for ALUs 420a-420c, respectively; srcl and src2
are the selectable source fields for ALU 420a and ALU 420b, and imm1 and imm?2 are the
two 40-bit immediate data values. The C-equivalent logic operation performed by a data

modify instruction is illustrated below in Table 10.

Table 10

resultl = alul2_operation(opl, srcl, imml);

result2 = alul2_operation(op2, src2, imm?2);
if (outQ_bypass)

out0 = resultl;
if (outl_bypass)

outl = result2;

dest(s) = alu3_operation(op3, resultl, result2);

Additionally, the ALU3 carry flag is updated if the ALU3 opcode is “add” or
“addp1"” (other opcodes and DC instructions do not change the carry flag value). The carry
is set if the addition overflowed, and cleared otherwise. In addition to arithmetic operations,

the carry flag (not shown) can be used as a general-purpose branch and execute control flag.

Table 11 below shows the legal sources for the source (stcl and src2) and
destination (dest) fields of a data modify instruction. Note that null can be specified for
dest, in which case the ALU3 result is ignored. The immediate data operands (imm1 and

imm?2) are 40-bit constants specified in the instruction.

Table 11
Source/ Input 0 | Inputl | Register | Peripheral | Output | Output | None
Dest Pipeline | Pipeline Bank Data Bus Bus
Mnemonic | in0O[n] inl[n] r[n] periph[n] out0 outl null
srcl YES YES YES YES NO NO NO
src2 NO YES YES NO NO NO NO

-24 -

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902

[dest | NO | No [vyBS | YBS | YES | YES | YES |

The parameters of r and periph are the register or internal peripheral number. Legal

values for these parameters are 0-15.

The parameters of in0 and inl are the word in the input pipeline register to operate
on. For example, in0[4] means use the word in stage 4 of the input 0 pipeline. Legal values
for these parameters are 0-15.

In the present embodiment, the source and destination fields are subject to the
following additional restrictions:

(A) If the same input pipe is used in more than one source, the pipe word number

(n) must be the same in both uses.

(B) If two registers are used as sources and a register is also used as a '
destination, the register number (n) of one of the source registers must be the
same as that of the destination register.

(C) If a peripheral is used in more than one source, the number (n) must be the
same in both uses.

(D) If both a register and peripheral are used as destinations, the number (n) must
be the same in both uses.

(E) No more than one register may be used as a destination.

(F) No more than one peripheral may be used as a destination.

Table 12 below illustrates some exemplary usages of the data modify instructions.

Table 12
Code Examples Description
out0 = in0[0]; Pass-through data.
outl =rf4]; Output data from register.
out0 = 0x08BCB51717; Send an SOF (Start of Frame).
r[0] = 0x12345678,; , Initialize register to constant.
r[1] =1[0]; Move regiéter to register.
1[2] = periph[3]; Move peripheral value to register (save
DC flags).
periph[3] =1[2]; Move register to peripheral.

-25-

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

r[3] =1in0[1];

Move input value to register.

periph[11] = Oxaa;

Store constant to peripheral.

r[0] = £[0];

No operation.

1[0] = add(r[0], r[11);

Add register to register.

outl, r[6] = 0x0123456789;

set output and register to 40 bit constant

out0, outl, r[12] = periph[3];

set both outputs and register to peripheral

value

out0, outl, r[5], periph[5] = in1[3];

Multiple destinations.

r[0] = or(out0 = 1, outl = 2)

ALU-3 bypass mode.

null = or(out0 = 1, outl = 2)

ALU-3 results ignored.

out0 = or(r[2], periph[3]);

Logical OR of register and peripheral

value

out0 = xor(in0[0], 1);

Toggle bit 0 of input, send to output bus 0

1[3] = and(in1[6], Oxffff);

Store lower 16 bits of input to r[3]

r[7] = add(z[7], 1);

increment r[7]

out0 = or(and(inl[4], Oxffffff00), 0x8b);

output = input with byte 0 changed to
0x8b

out0, outl, r[3], periph[3] =
addp1(xor(in0[8], 0x123456789a),
or(periph[2], 0xfedcba9876));

Example of complex data modify

instruction.

113], periph[3] = addp1(out0 = xor(in0[8],
0x123456789a), outl = or(periph[2],
Oxfedcba9876));

With ALU3 bypass mode on both outputs

r[3], periph[3], outl = addpl(outO =
xor(in0[8], 0x123456789a), or(periph[2],
0xfedcba9876));

With ALU3 bypass mode on OUTO only

13], periph[3], out0 = addp1(xor(in0[8],
0x123456789a), outl = or(periph[2],
0xfedcba9876));

With ALU3 bypass mode on OUT1 only

out0 = or(in0O[1], in0[2]);

r[0] = and(r[1], 1[2]);

Examples of illegal usage

-26 -

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

1[0] = add(periph[O], periph[1]);

r[0], periph[1] = 2;

1[0}, r[1] = 0;

periph[0], periph[1] = 1[6];

Peripheral Unit and Control Registers
The peripheral unit 140 is accessed via a set of registers referenced by the

instructions as periph[n]. The peripheral unit 140 is divided into a number of subunits,

which are described in more detail below. Table 13 below shows the address map of the

subunits and registers in the peripheral unit.

Table 13
Register Name Address Description Subunit 1‘};3?;
External Memory
. External
. Interface write data
EXT_WR_DATA periph[0] with normal %ﬁ;?fzz Uit W
addressing
External Memory
External
EXT_RD_DATA | periphfo] | nterfacereaddata |y oo R
with normal Interface Unit
addressing
MAILBOX_W periph[1] hMOE;Ibox Register to %(r)l(i:?l Interface W
MAILBOX_ R periph[1] lf\r/{)alilib}?c))(s tReglster %(:E:ﬂ Interface R
Counter 3 (upper .
CTR_32 periph[3] | 20) and Counter2 | Counter Unit } »
(lower 20 bits)
CTR_INC periph[3] fecg’f;‘g Increment | counter Unit | W
ENG_CTRL periph[4] Control Register [Global] W
TRAP_CTRL periph[5] ;greagl?s%;nml Trap Unit W
CTR_DATA periph6] r%‘;‘;tg Data Counter Unit | W
PERIPH_CTRL periph[7] fggﬁm Control | 1G10bal) W
External Memory External
. Interface write data
EXT_WR_DATA_I | periph[8] . ; Memory W
with ALUZ indexed Interface Unit
addressing

-27 -

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
External Memory External
. Interf d dat
EXT_RD_DATA_I | periph[8] with AL Uo mdoxed | Memory R
: Interface Unit
addressing
RESERVED others Reserved

The format of the peripheral subunits are described in Appendix-A.

Alternate Embodiments

While the present invention has been described with reference to a few specific

embodiments, the description is illustrative of the invention and is not to be construed as

limiting the invention. Various modifications may occur to those skilled in the art without

departing from the true spirit and scope of the invention as defined by the claims below.

-28 -

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902
APPENDIX A

Peripheral Register Formats

EXT_WR_DATA - External Memory Interface Write Data - Write Only

Field Name

Bits

Function

data

39-0

This value is written to the external
memory interface write data bus. Writing
this value also causes the interface chip
gselect and write strobe to be asserted. The
address presented to the external memory
interface during the write is the
concatenated value of Counter 3 (upper 20
bits) and Counter2 (lower 20 bits)).

The instruction writing the memory
interface does not stall due to a
deasserted interface RDY signal; instead,
this signal can be used as part of a
branch/execute/trap condition to provide
software-based wait states (during which
other useful instructions may execute). The
write value has not necessarily been
accepted by the external memory until it
asserts RDY.

EXT_WR_DATA_I - External Memory Interface Write Data with ALU2 Indexed
Addressing- Write Only

Field Name | Bits | Function
This register functions equivalently to the
EXT_WR_DATA register, except that the

data 39-0
address presented to the external memory
interface ig Counter32 + the ALU2 result.

-29 -

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

EXT_RD_DATA - External Memory Interface Read Data - Read Only

Field Name

Bits

Function

data

39-0

This value is read from the external memory
interface read data bus. Reading this wvalue
also causes the interface chip select and
read strobe to be asserted. The address
presented to the external memory interface
during the read is the concatenated value
of Counter 3 (upper 20 bits) and Counter 2
(lower 20 bits).

The instruction reading the memory
interface does not stall due to a
deasserted interface RDY signal; instead,
this signal can be used as part of a
branch/execute/trap condition to provide
software-based wait states (during which
other useful instructions may execute). The
read value is not necessarily valid until
the external memory asserts RDY.

EXT_RD_DATA_I - External Memory Interface Read Data with ALU2 Indexed
Addressing- Read Only

Field Name | Bits | Function
This register functions equivalently to the
‘data 39-0 EXT_RD_DATA register, except that the
address presented to the external memory
interface is Counter32 + the ALU2 result.

MAILBOX_W - Mailbox Register to Host — Write Only (Processor), Read Only

(Host)
Field Name | Bits | Function
39- .

res 39 Reserved, write 0
Mailbox register value. This value is
writeable by the PicoEngine and readable by

data 31-0 | the host CPU for communication between the
PicoEngine and host. The data contained in
this register is application-dependent.

-30 -

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
MAILBOX_R - Mailbox Register from Host — Read Only (Processor), Write Only
(Host)

Field Name | Bits | Function
39- .
res 32 Reserved, write 0
Mailbox register value. This wvalue is
readable by the PicoEngine and writeable by
data 31-0 | the host CPU for communication between the
PicoEngine and host. The data contained in
this register is application-dependent.

CTR_32 - Counter 32 Register - Read Only

Field Name | Bits Function

Value of counter 3, also used for external
counter3 | 39-20 . .

memory address high bits.

Value of counter 2, also used for external
counter2 | 19-0 .

memory address low bits.

CTR_INC - Counter Increment Register ~ Write Only

Field Name | Bits Function
Writing this register increments any
counter programmed to increment on a write
to CTR_INC (as determined by the

x 39-0

ctr*_inc_on_wr bits in the PERIPH_CTRL
register) . The value written is
irrelevant.

CTR_DATA - Counter Data Register - Write Only

Field Name | Bits Function
This data is written to counters 3 and 1
when those counters are enabled by the
ctr_31 |39-20 cod Snanb- Y
corresponding ctr_wren bits in the
PERIPH_CTRL register.
This data is written to counters 2 and 0
when those counters are enabled by the
ctr 20 |19-0 e cou “nab- Y
"corresponding ctr_wren bits in the
PERIPH_CTRL register.

-31 -

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

ENG_CTRL - Control Register —~ Write Only

Field Name

Bits

Function

res

39-
38

Reserved, write 0

reg_bank
ren

37-
36

Register bank read enable. Selects which
register bank will be read when a register
(r[0] through r[15]) is used as a source in
Data Compare or Data Modify instructions.
Each bank includes 16 independent
registers. Background-running instructions
read from the bank that was active at the
time the background-running instruction was
issued. [Note: Engines currently only
support Bank 0 unless specially configured
during hardware synthesis. Ask PG if in
doubt].

11: Bank 3
10: Bank 2
01l: Bank 1
00: Bank O

reg_bank
wen

35~
32

Write enable bits for the four register
banks. Selects which banks will be written
when the Data Modify unit writes a register
(r[0] through r[1l5]). Each bank includes 16
independent registers. More than one bank
may be written simultaneously. [Note:
Engines currently only support Bank 0
unless specially configured during hardware
synthesis. Ask PG if in doubt].

lxxx: Enable bank 3 for write; 0xxx:
disable
x1xx: Enable bank 2 for write; x0xx:
disable
xxlx: Enable bank 1 for write; xx0x:
disable
xxxl: Enable bank 0 for write; xxxO0:
disable

-32.

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

outl_en

31

Output bus 1 update enable. When this bit
is 1, the output bus is in passthrough mode
and passes data from its default source
whenever the bus is not being written by a
Data Modify instruction. When 0, the bus

holds its previous value.

out0_en

30

Same as above, for output bus 0.

outl_src

29

Selects the default source for output bus
1. The data from thisg source is passed to
the output bus whenever a Data Modify
instruction isn’t updating the bus, and the
bus update enable (outl_en) is 1. The
values for src are:

0: input bus 0 passthrough pipeline

1: input bus 1 passthrough pipeline

The number of clocks of input to output
delay is set by the pl_word_sel field.

out0_src

28

Same as above, for output bus 0.

pl_word_
sel

27~
24

Word select for the inl to output bus
passthrough pipeline. This gives the number
of clocks (equal to pl_word_sel + 2) of
delay between input bus 1 and the output
bus in passthrough mode. An output bus is
in passthrough mode whenever it isn’t being
updated by a DM instruction,
field is 1.

and its out_en

p0_word__
sel

23-
20

Same functionality as above, for the in0 to
output bus passthrough pipeline. ‘

flag upd
cfg

19

DC instruction compare flag update control.
Used in conjunction with the DC control
field flag_update() to set the compare flag

update mode as follows:

flag upd cfg pdate Update mode
SET

u
0
1 AND
0 OR
1 XOR

R P O O

-33.

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

comp_mod

18-
14

Selects the comparator mode (0 = equality,
1= magnitude) for each DC comparator. In
equality mode, the comparator result is 1
if (data & mask) == match, otherwise 0. In
magnitude mode, the result is 1 if (data &
mask) >= match, otherwise 0.

[Magnitude mode issues and description]

pb_en

13

Enable for Data Compare input pipeline B.
0: disable pipeline (does not advance)

1: enable pipeline (advances 1 word per
instruction)

pb_src

12-8

Source bus for Data Compare input pipeline
B (one bit per input bus byte).

0: input bus 0

1l: input bus 1

res

Reserved, write 0

pa_en

Enable for Data Compare input pipeline A.
0: disable pipeline (does not advance)

1: enable pipeline (advances 1 word per
instruction)

pa_src

Source bus for Data Compare input pipeline
A (one bit per input bus byte).

0: input bus 0

1: input bus 1

-34 -

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

TRAP_CTRL- Trap Control Register — Write Only

Field Name

Bits

Function

res

39-
32

Reserved, write 0

trap_rel
ative

31

Trap relative address enable. When 1,
trap_addr is treated as a sign-extended
relative address from the current PC; a
trap causes control to transfer to the PC +
trap_addr. When 0, trap_addr is treated as
an absolute address; a trap causes control
to transfer to trap addr.

trap_res
tore

30

Trap restore. When 1, enables restoring the
state of the trap_en bit after a return
from the trap routine. Otherwise, trap_en
remains disabled after the return from the
trap routine.

trap_en

29

Trap enable. Enables traps when 1, disables
them when 0. When the trap is enabled and
its match/mask/tf condition is satisfied,
control transfers to the target address
specified by the trap_addr and
trap_relative fields.

Trap_en 1s cleared upon entry to the trap
routine, thus disabling further traps. If
trap_restore is set, the bit will be
restored to its value before the trap upon
return from the trap routine (which occurs
via a branch to the saved PC). However, if
software writes this bit before the trap
routine returns, the bit written will be
preserved upon the return.

trap_f

28

Trap on match/mask true/false. Determines
whether trap should be taken if its
match/mask condition is true (trap_f = 0)
or false

(trap_f = 1).

-35.

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

trap_mat
ch

27~
20

Trap condition match bits. These bits

specify the trap condition in the same
manner as the branch/execute condition
bits.

bits 27-26
interrupts 1-0 respectively

bit 25 : match bit for the Peripheral
flag

bits 24-20 : match bits for Data Compare

flags 4-0 respectively

: match bits for external

trap_mas

19~
12

Trap condition mask bits. These bits
specify the trap condition in the same
manner as the branch/execute condition
bits.

bits 19-18
interrupts 1-0 respectively

bit 17 : mask bit for the Peripheral
flag

bits 16-12 : mask bits for Data Compare
flags 4-0 respectively

: mask bits for external

res

11-
10

Reserved, write 0

trap add
r

9-0

Trap destination address.

Holds the target address for traps. Control
is transferred to trap_addr (if
trap_relative = 0) or the current PC +
trap_addr (if trap_relative = 1) when traps
are enabled and the trap match/mask/tf
condition is satisfied. Indirect branching
may be implemented by writing the target
address to this field and trapping on an
always-satigfied condition.

PERIPH_CTRL - Peripheral Control Register - Write Only

Field Name | Bits | Function

res 39 Reserved, write 0
Count on match/mask true/false. Determines
whether counting should occur if the

ct_f 38 match/mask condition is true (ct_f = 0) or
false
(ct_f = 1).

- 36 -

10

15

20

25

30

35

WO 02/052400 PCT/US01/46902
Count enable condition mask bits. These
bits specify the count condition (when
count enable on match/mask/tf is configured

37- |by ctr*_ie_sel) in the same manner as the
ct_mask . .
32 branch/execute condition bits.
bit 37 : mask bit for the Peripheral flag
bits 36-32 : mask bits for Data Compare
flags 4-0 respectively
pf_en_hi ig_ (See pf_en)
Count enable condition match bits. These
bits specify the count condition (when
count enable on match/mask/tf is configured
29— by ctr*_ie _sel) in the same manner as the
ct_match 24 branch/execute condition bits.
bit 29 : match bit for the Peripheral
flag
bits 28-24 : match bits for Data Compare
flags 4-0 resgpectively
Counter write enables. These bits enable
one or more of the counters for writing
when the CTR_DATA register is written.
bit 23: 1 = enable write to counter 3, 0 =
93— disable
ctr_wren 20 bit 22: 1 = enable write to counter 2, 0 =
disable
bit 21: 1 = enable write to counter 1, 0 =
disable
bit 20: 1 = enable write to counter 0, 0 =
disable

-37 -

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

pf_en

19-
16

Peripheral flag enable bits, used in
combination with pf_en _hi. Selects the
source(s) of the Peripheral flag (the P bit
of the Flags register) used in branch,
execute, trap, and count conditions. All
sources with an enable bit of 1 are
logically ANDed to generate the P bit;
sources with an enable bit of 0 are
ignored.

pf_en_hi, pf_en, source:

1x xxxx: Data Modify unit ALU3 carry flag
x1l xxxx: EXT_RDY (ready flag) signal from
External Memory Interface

xx 1xxx: Counter 3 wrap flag; 1 when
counter 3 wraps from Oxfffff to O

xx xlxx: Counter 2 wrap flag; 1 when
counter 2 wraps from Oxfffff to O

xx xxlx: Counter 1 wrap flag; 1 when
counter 1 wraps from Oxfffff to O

xx xxxl: Counter 0 wrap flag; 1 when
counter 0 wraps from Oxfffff to O

Note: each counter wrap flag maintains its
state until the counter is next updated,
either by an increment or software write.
Software writes to the CTR_DATA register
reset the wrap flags of any counters
written to.

ctr3_inc
_Oon_wr

15

Counter 3 increment enable on peripheral
register write. If this bit is 1, counter 3
will be incremented on any write to the
CTR_INC register as well as any conditions
generated due to the ctr3_ie_sel bits. If
this bit is 0 or whenever CTR_INC is not
written, counting is controlled by the
ctr3_ie_sel bits.

-38 -

10

15

20

25

30

35

WO 02/052400

PCT/US01/46902

Counter 3 default increment enable bits.
Selects the condition for incrementing
counter 3.

111: increment when previous counter wraps
(cascade with previous)

ctrl3_ie_ | 14- 110: increment always

sel 12 100: increment when counter mask/match/tf
condition is satisfied
000: increment on external memory interface
read or write (memory address
autoincrement)
others: reserved

ctr2_inc 11 Same functionality as ctr3_inc_on_wr, for

_Oon_wr counter 2.

ot i Same functionality as ctr3_ie sel, for

r2_1ie

cel — T | 10-8 | counter 2, with the following exception:
0111: don’t increment

ctrl_inc - Same functionality as ctr3_inc_on_wr, for

_on_wr counter 1.

ctrl_ie_ 6-a Same functionality as ctr3_ie _sel, for

sel counter 1.

ctr0_inc 3 Same functionality as ctr3_inc_on_wr, for

_On_wr counter 0.

. Same functionality as ctr3_ie_sel, for
ctrO_ie_ \ . .
cel 2-0 counter 0, with the following exception:
e

111: don’t increment

-39 .

WO 02/052400 PCT/US01/46902
WHAT IS CLAIMED IS:

1. A processor synchronous with an instruction clock signal, comprising:

an execution control unit synchronous with the instruction clock signal and operable
to execute an instruction per clock cycle of the instruction clock signal;

an input pipeline unit synchronous with the instruction clock signal and operable to
receive a stream of input data words one data word per clock cycle of the instruction clock
signal, the input pipeline unit further operable to selectively output one input data word per
clock cycle of the instruction clock signal;

a data modify unit coupled to the input pipeline unit, the data modify unit operable
to selectively modify input data words received form the input pipeline unit according to
instruction-specified operators to generate modified data words one modified data word per
clock cycle of the instruction clock signal; and

a processor output selector operable to selectively output, at each clock cycle of the
instruction clock signal, an instruction-specified one of the input data words and the

modified data words.

2. The processor of claim 1, further comprising:
a data compare unit coupled to the input pipeline unit, the data compare unit
operable to selectively compare input data words received from the input pipeline unit to

instruction-specified operands to generate compare flags.

3. The processor of claim 2, wherein the execution control unit is operable to configure
during each clock cycle of the instruction clock signal at least one of the data modify unit

and the data compare unit according to a current instruction.

4. The processor of claim 3, wherein the execution control unit is operable to
determine a next instruction to be processed according to compare flags generated by the
data compare unit during a current clock cycle of the instruction clock signal and a branch

operator specified in the current instruction.

5. The processor of claim 2, wherein the input pipeline unit comprises:

a plurality of successive stages each having an output, each respective stage operable
to output a respective one of the input data words after a delay of a number of clock cycles
of the instruction clock signal corresponding to a position of the respective stage in the

input pipeline unit; and

- 40 -

WO 02/052400 PCT/US01/46902

an output multiplexer coupled to at least a subset of the stages of the input pipeline
unit, the output multiplexer operable to select for output to the data modifying unit and the
data compare unit an instruction-specified one of the outputs from the subset of the stages of

the input pipeline unit.

6. The processor of claim 2, further comprising:

a register bank accessible by the execution control unit, the data compare unit and
the data modify unit, the register bank operable to store data for the execution control unit,
the data compare unit and the data modify unit; and

a peripheral unit accessible by the data modify unit, the peripheral unit for storing

instruction-specified data therein.

7. The processor of claim 2, wherein the processor output selector comprises a
multiplexer coupled to the input pipeline unit and the data modify unit to receive,

respectively, the input data words and the modified data words.

8. The processor of claim 2, wherein the data modify unit comprises arithmetic logic

units operable to perform instruction-specified operations on the input data words.

9. The processor of claim 1, wherein the execution control unit is operable to execute
one instruction having at least two branch control operators during each clock cycle of the

instruction clock signal.

10. The processor of claim 1, wherein the execution control unit is operable to execute

one conditional instruction during each clock cycle of the instruction clock signal.

11. The processor of claim 1, wherein the execution control unit is operable to repeat
execution of a current instruction having a background mode operator during a next clock

cycle of the instruction clock signal.

12. A processor synchronous with an instruction clock signal, comprising:

an execution control unit synchronous with the instruction clock signal and operable
to execute an instruction per clock cycle of the instruction clock signal;

an input pipeline unit synchronous with the instruction clock signal and operable to

receive a stream of input data words one data word per clock cycle of the instruction clock

-41 -

WO 02/052400 PCT/US01/46902
signal, the input pipeline unit further operable to selectively output the input data words one
input data word per clock cycle of the instruction clock signal; and

a data compare unit coupled to the input pipeline unit, the data compare unit
operable to generate compare flags by selectively comparing input data words received from
the input pipeline unit to instruction-specified operands,

wherein the execution control unit is operable to determine a next instruction to be
processed according to compare flags generated by the data compare unit during a current
clock cycle of the instruction clock signal and a branch operator specified in a current

instruction.

13. A processor synchronous with an instruction clock signal, the processor comprising:

an input pipeline unit operable to receive a plurality of input data words at a rate of
one input data word per clock cycle of the instruction clock signal;

an execution control unit;

an instruction memory storing instructions for execution by the execution control
unit,

wherein the execution control unit is operable to execute, during each clock cycle of
the instruction clock signal, one of the instructions so as to control an instruction-specified

operation on an instruction-specified one of the input data words in the input pipeline unit.

14. The processor of claim 13, further comprising:

a data modify unit coupled to the input pipeline unit, the data modify unit operable
to selectively modify, during each clock cycle of the instruction clock signal, an input data
word received from the input pipeline unit in accordance with an instruction specified

operator, the data modify unit further operable to generate a modified output data word.

15. The processor of claim 14, further comprising:

a data compare unit coupled to the input pipeline unit, the data compare unit
operable to selectively compare during each clock cycle of the instruction clock signal an
input data word received from the input pipeline unit with an instruction specified operand

and generating a resultant set of compare flags.
16. The processor of claim 15, wherein the execution control unit is operable to

configure, during each clock cycle of the instruction clock signal, at least one of the data

modify unit and the data compare unit in accordance with a current instruction.

_42 .

WO 02/052400 PCT/US01/46902

17. The processor of claim 16, wherein the execution control unit is operable to
determine a next instruction to be executed in accordance with the compare flags generated
by the data compare unit in a current clock cycle of the instruction clock signal and a branch

control operator in the current instruction.

18. The processor of claim 13, wherein the input pipeline unit comprises:

a plurality of successive stages each having an output, each respective stage
outputting a respective one of the input data words after a delay of a number of clock cycles
of the instruction clock signal corresponding to a position of the respective stage in the
input pipeline unit; and

an output multiplexer coupled to at léast a subset of the stages of the input pipeline
unit, the output multiplexer operable to select for output to the data modifying unit an
instruction-specified one of the outputs from the subset of the stages of the input pipeline

unit.

19. The processor of claim 14, further comprising a processor output selector coupled to
the input pipeline unit and the data modify unit, the processor output selector operable to
selectively output, at each clock cycle of the instruction clock signal, one of the input data

words and the modified data words.

20. The processor of claim 15, further comprising:

a register bank accessible by the execution control unit, the data compare unit and
the data modify unit, the register bank operable to store data for the execution control unit,
the data compare unit and the data modify unit; and

a peripheral unit accessible by the data modify unit, the peripheral unit for storing

instruction-specified data therein.

21. The processor of claim 14, wherein the data modify unit comprises arithmetic logic

units operable to perform instruction-specified operations on the input data words.
22. The processor of claim 13, wherein the execution control unit is operable to execute
one instruction having at least two branch control operators during each clock cycle of the

instruction clock signal.

23. The processor of claim 13, wherein the execution control unit is operable to execute

one conditional instruction during each clock cycle of the instruction clock signal.

-43 -

WO 02/052400 PCT/US01/46902

24. The processor of claim 13, wherein the execution control unit is operable to repeat
execution of a current instruction having a background mode operator during a next clock

cycle of the instruction clock signal.

25. A processor synchronous with an instruction clock signal, comprising:

an input pipeline unit operable to continuously receive a stream of input data words
including one data word during each clock cycle of the instruction clock signal, the input
pipeline unit further operable to output successive ones of the data words during successive
clock cycles of the instruction clock signal;

a data modify unit coupled to the input pipeline unit, said data modify unit operable
to selectively modify during each clock cycle of the instruction clock signal an input data
word received from the input pipeline unit in accordance with an instruction specified
operator and generating a resultant output data word; |

a data compare unit coupled to the input pipeline unit, said data compare unit
operable to selectively compare during each clock cycle of the instruction clock signal an
input data word received from the input pipeline unit with an instruction specified operand
and generating a resultant set of compare flags; and .

an execution control unit, coupled to the data modify unit and data compare unit, the
execution control unit operable to configure during each clock cycle of the instruction clock
signal at least one of the data modify unit and the data compare unit in accordance with a

current instruction.

26. The processor of claim 25, the execution control unit operable to determine a next
instruction to be processed by the execution control unit in accordance with the compare
flags generated during a current clock cycle of the instruction clock signal and a branch

control operator in the current instruction.

27. The processor of claim 25, wherein the input pipeline unit comprises:

a plurality of successive stages each having an output, each respective stage operable
to output a respective one of the input data words after a delay of a number of clock cycles
of the instruction clock signal corresponding to a position of the respective stage in the
input pipeline unit; and

an output multiplexer coupled to at least a subset of the stages of the input pipeline
unit, the output multiplexer operable to select for output to the data modifying unit an
instruction-specified one of the outputs from the subset of the stages of the input pipeline

unit.

- 44 -

WO 02/052400 PCT/US01/46902
28. The processor of claim 27, wherein the output multiplexer is operable to select for
output to the data compare unit an instruction-specified one of the outputs from the subset

of the stages of the input pipeline unit.

29. The processor of claim 25, wherein the input pipeline unit comprises:

first and second input pipelines, each pipeline having a plurality of successive stages
each having an output, each respective stage operable to output a respective input data word
of a first stream and a second stream of input data words after a delay of a number of clock
cycles of the instruction clock signal corresponding to a position of the respective stage in
the input pipeline unit;

a first output multiplexer coupled to at least a first subset of the stages of the first
input pipeline, the first output multiplexer operable to select for output to the data modify
unit an instruction-specified one of the outputs from the first subset of the stages of the first
input pipeline; and

a second output multiplexer coupled to at least a second subset of the stages of the
second pipeline, the second output multiplexer operable to select for output to the data
modify unit an instruction-specified one of the outputs from the second subset of the stages

of the second input pipeline.

30. The processor of claim 29, further comprising:

a register bank accessible by the execution control unit, the data compare unit and
the data modify unit, the register bank storing data for the execution control unit, the data
compare unit and the data modify unit; and

a peripheral unit accessible by the data modify unit, the peripheral unit for storing

instruction-specified data therein.

31. The processor of claim 30, wherein the data modify unit comprises:

a first input multiplexer coupled to the first and second output multiplexers of the
input pipeline unit, the register bank and the peripheral unit, the first input multiplexer
operable to selectively receive data from an instruction-specified one of the first and second
output multiplexers, a memory location of the register bank and a memory location of the
peripheral unit; and

a second input multiplexer coupled to the first and second output multiplexers of the
input pipeline unit, the register bank and the peripheral unit, the second input multiplexer
operable to selectively receive data from an instruction-specified one of the first and second
output multiplexers, a memory location of the register bank and a memory location of the

peripheral unit.

-45 -

WO 02/052400 PCT/US01/46902
32. The processor of claim 31, wherein the data modify unit comprises:

a first arithmetic logic unit coupled to the output of the first input multiplexer of the
data modify unit, the first arithmetic logic unit selectively performing an
instruction-specified operation on data provided by the first input multiplexer of the data
modify unit; and

a second arithmetic logic unit coupled the output of the second input multiplexer of
the data modify unit, the second arithmetic logic unit selectively performing an
instruction-specified operation on data provided by the second input multiplexer of the data

modify unit.

33. The processor of claim 32, wherein the data modify unit comprises:
a third arithmetic logic unit coupled to the outputs of the first and second arithmetic
logic units, the third arithmetic logic unit performing an instruction-specified operation on

data provided by outputs of the first and second arithmetic logic units.

34. The processor of claim 33, wherein the input pipeline unit comprises:

first and second pass-through pipelines, each pipeline having a plurality of
successive stages each having an output, each respective stage outputting a respective input
data word of the first and second streams of input data words after a delay of a number of
clock cycles of the instruction clock signal corresponding to a position of the respective
stage in the input pipeline unit;

a third output multiplexer coupled to at least a third subset of the stages of the first
pass-through pipeline, the third output multiplexer operable to select for output to the data
modify unit an instruction-specified one of the outputs from the third subset of the stages of
the first pass-through pipeline; and ‘

a fourth output multiplexer coupled to at least a fourth subset of the stages of the
second pass-through pipeline, the fourth output multiplexer operable to select for output to
the data modify unit an instruction-specified one of the outputs from the fourth subset of the

stages of the second pass-through pipeline.

35. The processor of claim 34, wherein the data modify unit comprises:

a first data modify unit output multiplexer coupled to outputs of the first and third
arithmetic logic units, and coupled to outputs of the third and fourth output multiplexers of
the input pipeline unit, the first data modify unit output multiplexer operable to select for
output an instruction-specified one of the outputs of the first and third arithmetic logic units

and the outputs of the third and fourth output multiplexers of the input pipeline unit; and

- 46 -

WO 02/052400 PCT/US01/46902

a second data modify unit output multiplexer coupled to outputs of the second and
third arithmetic logic units, and coupled to outputs of the third and fourth output
multplexers of the input pipeline unit, the second data modify unit output multiplexer
operable to select for output an instruction-specified one of the outputs of the second and
third arithmetic logic units and the outputs of the third and fourth output multiplexers of the

input pipeline unit.

36. The processor of claim 30, wherein the data compare unit comprises:

a plurality of source select and mask units, each source select and mask unit
operable to select as mask operands instruction-specified ones of the outputs of the first and
second output multiplexers of the input pipeline unit, an output of the register bank, an
output of the peripheral unit, and an immediate data output of the execution control unit,
each source select and mask unit generating a masked output;

each source select and mask unit operable to select as compare operands
instruction-specified ones of the outputs of the first and second output multiplexers of the
input pipeline unit, an output of the register bank, an output of the execution control unit
and an immediate data output of the execution control unit, each source select and mask unit
generating a compare output; and

a plurality of comparators coupled to the outputs of the source select and mask units,
the comparators generating compare results of comparing the masked outputs and the

compare outputs of the source select and mask units.

37. The processor of claim 36, wherein the data compare unit comprises:

a plurality of flag update units coupled to the outputs of the comparators, the flag
update units performing an instruction-specified logic operation on the compare results and
a set of compare flags generated in a previous clock cycle of the instruction clock signal to

generate the resultant compare flags.
38. The processor of claim 25, wherein the execution control unit is operable to
executing one instruction having at least two branch control operators during each clock

cycle of the instruction clock signal.

39. The processor of claim 25, wherein the execution control unit is operable to

executing one conditional instruction during each clock cycle of the instruction clock signal.

-47 -

WO 02/052400 PCT/US01/46902
40. The processor of claim 25, wherein the execution control unit is operable to
repeating execution of a current instruction having a background mode operator during a

next clock cycle of the instruction clock signal.

41. A protocol independent synchronous processor for processing network data,
comprising:

an execution control unit synchronous with an instruction clock signal, the execution
control unit operable to execute an instruction per clock cycle of the instruction clock
signal;

an input interface synchronous with the instruction clock signal, the input interface
operable to receive network data at a rate of one data word per clock cycle of the instruction
clock signal; and

a plurality of configurable units synchronous with the instruction clock signal, the
plurality of configurable units operable to process the received network data in real time

under control of the execution control unit.

42. The protocol independent synchronous processor of claim 41 further comprising a
plurality of configurable connections operable to interconnect the plurality of configurable

units in real time under control of the execution control unit.

43. The protocol independent synchronous processor of claim 42 wherein the execution
control unit is operable to configure the plurality of configurable units and the plurality of
configurable connections in accordance with any selected network protocol of a multiplicity
of predefined network protocols so as to configure the processor to process the received

network data in real time in a manner consistent with the selected network protocol.

44. The protocol independent synchronous processor of claim 43 further comprising an
instruction memory configured to store software instructions for the execution control unit,
wherein the instructions define a procedure executable by the execution control unit, the

procedure corresponding to the selected network protocol.
45. A protocol independent synchronous processor for processing network data,

comprising:

an input interface for receiving the network data;

-48 -

WO 02/052400 PCT/US01/46902

a plurality of software configurable units for processing a sequence of data words of
the network data in real time, at a rate corresponding to a rate at which the network data is
received at the input interface;

software configurable connections for interconnecting the plurality of software
configurable units and input interface; and

a software execution unit, coupled to the plurality of software configurable units and
software configurable connections, the software execution unit operable for configuring the
plurality of software configurable units and software configurable connections in
accordance with any selected network protocol of a predefined multiplicity of network
protocols so as to configure the processor to process the received network data in real time

in a manner consistent with the selected network protocol.

-49 -

PCT/US01/46902

WO 02/052400

/
VIVa 9 9aay gmi ’ L b1
8yl v)
mwmh — . NOUONMISNI | 000
— soepBU| _ ; uoponnsu|
/oL 12507 dOLS™IMVLS o8l B
* — M10
Jun oo == £ VAVGWNI
ovL V14 HdIY3d uopnoexg [+ VLVQANI
N . —» THLO 0a
jeseyduad Y — N1 WA
. —— YLD 3dId
- : : SOV IHVANOD
eyep oL — T VLYW
pUe SjeuBs [0u0st—] i $um— Y LYAWNI
fiowow [puea < soepony ay Hdi¥ad oa oLt 10700
Ao - wn % L
letieixg) QmQE.oo eeq - g 3didNI
THL0 HdMad 0a ¥ AdidNI
g—. " ") o o
3 7410 939 04 vLva oy o3y
038 NMLO <—— gimspey | T _
[o4UoD 0L} . THL0 O3
siueg Jesibay “Na
g 181un0D VLVa M O3 g — | WLvd oy o
- Z Jejunoh & —
} J8junon -t — -
. ay Hdiad wa 0z} K= L YLVannL
L —— TYLO WA A
oo TILO HdIMEd WA | Ay Mcagm = 0g} O LD
. v Y JdIaN :
sossng 11N0 ¢ e — eujjedid K INI 7] sessng
ndino ﬁ 0LNo <= ¢ 8 3ddld | ndy = oy | ndy
V 3dldLd

1/8

PCT/US01/46902

WO 02/052400

vz 614

g 3dIdNI
- (3un foyuo
~ _ uonNoSXs WoLY)
9le I/\ 105]93 obelg euladid N— 73S a¥om &ad
TR aouauninal ~e w
5| oS S1o15Ibey 0 obeis ONI
bz — Uq Oy X oBe1s-91 (siepsipoy OFC T~ 0z2
|0U0D) Woly) suljedid jnduj
O¥s 4ad
Y AdIdNI
< 1 (uun jonuod
Y - m——7 0
OO0 OaOuIuuaIl A m
: ONI
a1 obelg Emym_mmm 0 obeig 212
19 O X 8beig-9i
. : (sto18169y
vie [013U0D Woly) ~— Oke

58S Vd auledid induj

2/8

PCT/US01/46902

WO 02/052400

: uun
¥00 “ o1epdn Beyy
osg —/
nun
€00 +~— e1epdn Bel
ogg —
wn
€90 * ojepdn Bejy
ogg —
nun
bOQ “— sepdn By
oge —
nun
034 “— o1epd Beyy |
sbej4 ogg —
aledwon

0ce

0ce

0ce

0ce

0ce

ve "B

ole
N
%SE PUE 108]8S 82108

ole
N
JSBN pue 108j9g 82I1n0g

ole
nn
YSBI\ puUe 109|898 82IN0g

oLe
nun
YSBI\ puUB 198|188 991N0g

BlEp poysew

oLe
nun
¥SBIN pue }09]8g 80Inog

A

1810 04

- 2 V.LVAANI

0L VYLYAWIL

) QY HdIM3ad 0a

12 V.iVa gy o3y

) g 3dIdNI

J Y 3didNI

sioyeledwon

3/8

PCT/US01/46902

WO 02/052400

<

de¢ "bi-

Ao

0-/pueiedwicd

A A A A

eve

vvmmm

VAT

ozye

0-ZeTep

il r\K/\

pere

Z VLYANNI
\L&%
L
— I VLVanWnI
i =
a¥ Hd3d oq qzve
. Z vV.iva 93¥ 1 [0:21 9 3dIdNI
ezre S [0:21 v"adIdNI

|

4/8

PCT/US01/46902

WO 02/052400

(un jouod
uolnodX Wo.l4)
|0JJUOD Spowl
ajepdn Hej

g b4

AT0

Bej4 esedwon) «

A4

8¢ce

yee

FARS

02¢ l0jesedwod wou

5/8

PCT/US01/46902

WO 02/052400

) Z VLVAnNI

°02r ESALS _ -
0 QY HdIM3d Na
1 WWiva ay 939
- . 1|
UM HdAd Wa <= e
b VLAVaWnI
ay Hdi¥3ad
A) Na
qosy) ivd QY o3y
ﬁ /uu) € 3dldNI
qov¥) —~
-\) 2025 — B0ty ¢ OV 3didNI
‘Boy ¢ 138 10MS
+100 << naino))

) g 3didLd

<
21S8™ 1IN0
BOSY
BOYY — <
‘Boy <
0Lno << jndino 2
) 7] |

218710 . Vv 3didld

6/8

PCT/US01/46902

WO 02/052400

8o1ne(]

olG

142

¢cs

"Wa
ooel)

¥ZS
wep

4

92¢
J1eb6u |

'

‘.

¢ €48

wep

ccs

"W
eoel]

90IA8(q

ONmI\\

143°

7/8

PCT/US01/46902

WO 02/052400

9 "B

099
yjedejeq

 —— X1

1N0 VYIS

0v9

{———— @Inpoil O/l
lno

s|npoy
VO

0.9

o1IqRS J90UL0IBI]

ov9
8[npolN O/}

I

0S9
Yyedejeq
X

—
NI IVId=3S

8/8

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/46902

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 7/10 9/34 ; 15/173
US CL 712/225; 709/246, 248,249,250

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 712/225; 709/246, 248,249,250

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Please See Continuation Sheet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

col. 3, line 9.

Y US 5,241,635 A(PAPADOPOULOS et al)31 August 1993(31.08.1993), see figures
2,3,8,11,12,14 and 15, col. 3, line 5-col. 5,line 36, and. col. 7, lines 5-64.

1-3, 5-16, 18-32, 38-45

Y US 5,530,703 A(LIU et al) 25 June 1996(25.06.1996) 1,12,13,25,41,45
see figs. 2,3,4, col. 5, lines 18-62.

A US,5,864,679 A(KANAI et al) 26 January 1999(26.01.1999) 1,12,13,25,41,45
see figs. 7,9,11,12, 26.

A US 6,021,419 A (CLARKE, Jr. et al) 01 February 2000(01.02.2000), see column 7, lines 1,12,13,25,41,45
21-56.

A US 5,710,908 A (MAN)20 January 1998(20.01.1998), see figs. 2,3,4. 1,12,13,25,41,45

A US 6,084,887 A (SALISBURY) 04 July 2000(04.07.2000),see fig.2 and column 3, line 20- 1,12,13,25,41,45

D Further documents are listed in the continuation of Box C.

L]

See patent family annex.

* Special categories of cited documents:

“A”" document defining the general state of the art which is not considered to be
of particular relevance

“E” earlier application or patent published on or after the international filing date

“L" document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“O" document referring to an oral disclosure, use, exhibition or other means

“P" document published prior to the international filing date but later than the
priority date claimed

T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent famity

Date of the actual completion of the international search

28 February 2002 (28.02.2002)

Date of mailing of the international search report

03 APR 2002

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Authorized officer
Eric Coleman

%WM&:. ﬁ?
Telephone No. (703)-305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US01/46902

Continuation of B. FIELDS SEARCHED Item 3:

EAST
search terms: converting, translating, protocols, selecting, multiplexing, modified, comparing, matching, on-the-fly, network , asic, ,

processor, operands, traffic, word, tagged, token,synchronizing

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

